

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

索引

Authors

This list is sorted by the number of commits per contributor in descending order.

	@AbericYang [https://github.com/AbericYang]

	@aberic [https://github.com/aberic]

Change Log

Unreleased [https://github.com/ennoo/rivet/tree/HEAD]

Merged pull requests:

	Add license scan report and status #1 [https://github.com/ennoo/rivet/pull/1] (fossabot [https://github.com/fossabot])

* This Change Log was automatically generated by github_changelog_generator [https://github.com/skywinder/Github-Changelog-Generator]

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at aberic@qq.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

rivet [image: _images/rivet.svg]GoDoc [https://godoc.org/github.com/ennoo/rivet] [image: _images/e9591f0670210ddd5d32ad2b1be932eb6cc78b89.svg?type=shield]FOSSA Status [https://app.fossa.io/projects/git%2Bgithub.com%2Fennoo%2Frivet?ref=badge_shield] [image: _images/rivet1.svg]GitHub

[image: _images/rivet2.svg]Go Report Card [https://goreportcard.com/report/github.com/ennoo/rivet]
[image: _images/474e759e4a7b48c3b4aaefda5079f1d3.svg]Codacy Badge [https://www.codacy.com/app/aberic/rivet?utm_source=github.com&utm_medium=referral&utm_content=ennoo/rivet&utm_campaign=Badge_Grade]
[image: _images/rivet3.svg]Travis (.org) [https://www.travis-ci.org/ennoo/rivet]
[image: _images/rivet4.svg]CircleCI (all branches) [https://circleci.com/gh/ennoo/rivet]
[image: _images/rivet5.svg]Coveralls github [https://coveralls.io/github/ennoo/rivet?branch=master]

rivet提供一套用于go开发的微服务解决方案，包括网关、负载均衡、熔断降级、请求转发等功能，目前支持consul作为第三方服务发现组件。除此外也基于第三方开源框架做了简单的封装，如Http/Https、MySQL数据库以及一些常用的工具方法。
在examples中有上述相关组件和实现的Demo。

 Migration Guide from v2 -> v3

Migration Guide from v2 -> v3

Version 3 adds several new, frequently requested features. To do so, it introduces a few breaking changes. We’ve worked to keep these as minimal as possible. This guide explains the breaking changes and how you can quickly update your code.

Token.Claims is now an interface type

The most requested feature from the 2.0 verison of this library was the ability to provide a custom type to the JSON parser for claims. This was implemented by introducing a new interface, Claims, to replace map[string]interface{}. We also included two concrete implementations of Claims: MapClaims and StandardClaims.

MapClaims is an alias for map[string]interface{} with built in validation behavior. It is the default claims type when using Parse. The usage is unchanged except you must type cast the claims property.

The old example for parsing a token looked like this..

	if token, err := jwt.Parse(tokenString, keyLookupFunc); err == nil {
		fmt.Printf("Token for user %v expires %v", token.Claims["user"], token.Claims["exp"])
	}

is now directly mapped to…

	if token, err := jwt.Parse(tokenString, keyLookupFunc); err == nil {
		claims := token.Claims.(jwt.MapClaims)
		fmt.Printf("Token for user %v expires %v", claims["user"], claims["exp"])
	}

StandardClaims is designed to be embedded in your custom type. You can supply a custom claims type with the new ParseWithClaims function. Here’s an example of using a custom claims type.

	type MyCustomClaims struct {
		User string
		*StandardClaims
	}
	
	if token, err := jwt.ParseWithClaims(tokenString, &MyCustomClaims{}, keyLookupFunc); err == nil {
		claims := token.Claims.(*MyCustomClaims)
		fmt.Printf("Token for user %v expires %v", claims.User, claims.StandardClaims.ExpiresAt)
	}

ParseFromRequest has been moved

To keep this library focused on the tokens without becoming overburdened with complex request processing logic, ParseFromRequest and its new companion ParseFromRequestWithClaims have been moved to a subpackage, request. The method signatues have also been augmented to receive a new argument: Extractor.

Extractors do the work of picking the token string out of a request. The interface is simple and composable.

This simple parsing example:

	if token, err := jwt.ParseFromRequest(tokenString, req, keyLookupFunc); err == nil {
		fmt.Printf("Token for user %v expires %v", token.Claims["user"], token.Claims["exp"])
	}

is directly mapped to:

	if token, err := request.ParseFromRequest(req, request.OAuth2Extractor, keyLookupFunc); err == nil {
		claims := token.Claims.(jwt.MapClaims)
		fmt.Printf("Token for user %v expires %v", claims["user"], claims["exp"])
	}

There are several concrete Extractor types provided for your convenience:

	HeaderExtractor will search a list of headers until one contains content.

	ArgumentExtractor will search a list of keys in request query and form arguments until one contains content.

	MultiExtractor will try a list of Extractors in order until one returns content.

	AuthorizationHeaderExtractor will look in the Authorization header for a Bearer token.

	OAuth2Extractor searches the places an OAuth2 token would be specified (per the spec): Authorization header and access_token argument

	PostExtractionFilter wraps an Extractor, allowing you to process the content before it’s parsed. A simple example is stripping the Bearer text from a header

RSA signing methods no longer accept []byte keys

Due to a critical vulnerability [https://auth0.com/blog/2015/03/31/critical-vulnerabilities-in-json-web-token-libraries/], we’ve decided the convenience of accepting []byte instead of rsa.PublicKey or rsa.PrivateKey isn’t worth the risk of misuse.

To replace this behavior, we’ve added two helper methods: ParseRSAPrivateKeyFromPEM(key []byte) (*rsa.PrivateKey, error) and ParseRSAPublicKeyFromPEM(key []byte) (*rsa.PublicKey, error). These are just simple helpers for unpacking PEM encoded PKCS1 and PKCS8 keys. If your keys are encoded any other way, all you need to do is convert them to the crypto/rsa package’s types.

	func keyLookupFunc(*Token) (interface{}, error) {
		// Don't forget to validate the alg is what you expect:
		if _, ok := token.Method.(*jwt.SigningMethodRSA); !ok {
			return nil, fmt.Errorf("Unexpected signing method: %v", token.Header["alg"])
		}
		
		// Look up key
		key, err := lookupPublicKey(token.Header["kid"])
		if err != nil {
			return nil, err
		}
		
		// Unpack key from PEM encoded PKCS8
		return jwt.ParseRSAPublicKeyFromPEM(key)
	}

 jwt-go

jwt-go

[image: ../../../../_images/jwt-go.svg]Build Status [https://travis-ci.org/dgrijalva/jwt-go]
[image: ../../../../_images/jwt-go1.svg]GoDoc [https://godoc.org/github.com/dgrijalva/jwt-go]

A go [http://www.golang.org] (or ‘golang’ for search engine friendliness) implementation of JSON Web Tokens [http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html]

NEW VERSION COMING: There have been a lot of improvements suggested since the version 3.0.0 released in 2016. I’m working now on cutting two different releases: 3.2.0 will contain any non-breaking changes or enhancements. 4.0.0 will follow shortly which will include breaking changes. See the 4.0.0 milestone to get an idea of what’s coming. If you have other ideas, or would like to participate in 4.0.0, now’s the time. If you depend on this library and don’t want to be interrupted, I recommend you use your dependency mangement tool to pin to version 3.

SECURITY NOTICE: Some older versions of Go have a security issue in the cryotp/elliptic. Recommendation is to upgrade to at least 1.8.3. See issue #216 for more detail.

SECURITY NOTICE: It’s important that you validate the alg presented is what you expect [https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/]. This library attempts to make it easy to do the right thing by requiring key types match the expected alg, but you should take the extra step to verify it in your usage. See the examples provided.

What the heck is a JWT?

JWT.io has a great introduction [https://jwt.io/introduction] to JSON Web Tokens.

In short, it’s a signed JSON object that does something useful (for example, authentication). It’s commonly used for Bearer tokens in Oauth 2. A token is made of three parts, separated by .’s. The first two parts are JSON objects, that have been base64url [http://tools.ietf.org/html/rfc4648] encoded. The last part is the signature, encoded the same way.

The first part is called the header. It contains the necessary information for verifying the last part, the signature. For example, which encryption method was used for signing and what key was used.

The part in the middle is the interesting bit. It’s called the Claims and contains the actual stuff you care about. Refer to the RFC [http://self-issued.info/docs/draft-jones-json-web-token.html] for information about reserved keys and the proper way to add your own.

What’s in the box?

This library supports the parsing and verification as well as the generation and signing of JWTs. Current supported signing algorithms are HMAC SHA, RSA, RSA-PSS, and ECDSA, though hooks are present for adding your own.

Examples

See the project documentation [https://godoc.org/github.com/dgrijalva/jwt-go] for examples of usage:

	Simple example of parsing and validating a token [https://godoc.org/github.com/dgrijalva/jwt-go#example-Parse--Hmac]

	Simple example of building and signing a token [https://godoc.org/github.com/dgrijalva/jwt-go#example-New--Hmac]

	Directory of Examples [https://godoc.org/github.com/dgrijalva/jwt-go#pkg-examples]

Extensions

This library publishes all the necessary components for adding your own signing methods. Simply implement the SigningMethod interface and register a factory method using RegisterSigningMethod.

Here’s an example of an extension that integrates with multiple Google Cloud Platform signing tools (AppEngine, IAM API, Cloud KMS): https://github.com/someone1/gcp-jwt-go

Compliance

This library was last reviewed to comply with RTF 7519 [http://www.rfc-editor.org/info/rfc7519] dated May 2015 with a few notable differences:

	In order to protect against accidental use of Unsecured JWTs [http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html#UnsecuredJWT], tokens using alg=none will only be accepted if the constant jwt.UnsafeAllowNoneSignatureType is provided as the key.

Project Status & Versioning

This library is considered production ready. Feedback and feature requests are appreciated. The API should be considered stable. There should be very few backwards-incompatible changes outside of major version updates (and only with good reason).

This project uses Semantic Versioning 2.0.0 [http://semver.org]. Accepted pull requests will land on master. Periodically, versions will be tagged from master. You can find all the releases on the project releases page [https://github.com/dgrijalva/jwt-go/releases].

While we try to make it obvious when we make breaking changes, there isn’t a great mechanism for pushing announcements out to users. You may want to use this alternative package include: gopkg.in/dgrijalva/jwt-go.v3. It will do the right thing WRT semantic versioning.

BREAKING CHANGES:*

	Version 3.0.0 includes a lot of changes from the 2.x line, including a few that break the API. We’ve tried to break as few things as possible, so there should just be a few type signature changes. A full list of breaking changes is available in VERSION_HISTORY.md. See MIGRATION_GUIDE.md for more information on updating your code.

Usage Tips

Signing vs Encryption

A token is simply a JSON object that is signed by its author. this tells you exactly two things about the data:

	The author of the token was in the possession of the signing secret

	The data has not been modified since it was signed

It’s important to know that JWT does not provide encryption, which means anyone who has access to the token can read its contents. If you need to protect (encrypt) the data, there is a companion spec, JWE, that provides this functionality. JWE is currently outside the scope of this library.

Choosing a Signing Method

There are several signing methods available, and you should probably take the time to learn about the various options before choosing one. The principal design decision is most likely going to be symmetric vs asymmetric.

Symmetric signing methods, such as HSA, use only a single secret. This is probably the simplest signing method to use since any []byte can be used as a valid secret. They are also slightly computationally faster to use, though this rarely is enough to matter. Symmetric signing methods work the best when both producers and consumers of tokens are trusted, or even the same system. Since the same secret is used to both sign and validate tokens, you can’t easily distribute the key for validation.

Asymmetric signing methods, such as RSA, use different keys for signing and verifying tokens. This makes it possible to produce tokens with a private key, and allow any consumer to access the public key for verification.

Signing Methods and Key Types

Each signing method expects a different object type for its signing keys. See the package documentation for details. Here are the most common ones:

	The HMAC signing method [https://godoc.org/github.com/dgrijalva/jwt-go#SigningMethodHMAC] (HS256,HS384,HS512) expect []byte values for signing and validation

	The RSA signing method [https://godoc.org/github.com/dgrijalva/jwt-go#SigningMethodRSA] (RS256,RS384,RS512) expect *rsa.PrivateKey for signing and *rsa.PublicKey for validation

	The ECDSA signing method [https://godoc.org/github.com/dgrijalva/jwt-go#SigningMethodECDSA] (ES256,ES384,ES512) expect *ecdsa.PrivateKey for signing and *ecdsa.PublicKey for validation

JWT and OAuth

It’s worth mentioning that OAuth and JWT are not the same thing. A JWT token is simply a signed JSON object. It can be used anywhere such a thing is useful. There is some confusion, though, as JWT is the most common type of bearer token used in OAuth2 authentication.

Without going too far down the rabbit hole, here’s a description of the interaction of these technologies:

	OAuth is a protocol for allowing an identity provider to be separate from the service a user is logging in to. For example, whenever you use Facebook to log into a different service (Yelp, Spotify, etc), you are using OAuth.

	OAuth defines several options for passing around authentication data. One popular method is called a “bearer token”. A bearer token is simply a string that should only be held by an authenticated user. Thus, simply presenting this token proves your identity. You can probably derive from here why a JWT might make a good bearer token.

	Because bearer tokens are used for authentication, it’s important they’re kept secret. This is why transactions that use bearer tokens typically happen over SSL.

More

Documentation can be found on godoc.org [http://godoc.org/github.com/dgrijalva/jwt-go].

The command line utility included in this project (cmd/jwt) provides a straightforward example of token creation and parsing as well as a useful tool for debugging your own integration. You’ll also find several implementation examples in the documentation.

 jwt-go Version History

jwt-go Version History

3.2.0

	Added method ParseUnverified to allow users to split up the tasks of parsing and validation

	HMAC signing method returns ErrInvalidKeyType instead of ErrInvalidKey where appropriate

	Added options to request.ParseFromRequest, which allows for an arbitrary list of modifiers to parsing behavior. Initial set include WithClaims and WithParser. Existing usage of this function will continue to work as before.

	Deprecated ParseFromRequestWithClaims to simplify API in the future.

3.1.0

	Improvements to jwt command line tool

	Added SkipClaimsValidation option to Parser

	Documentation updates

3.0.0

	Compatibility Breaking Changes: See MIGRATION_GUIDE.md for tips on updating your code

	Dropped support for []byte keys when using RSA signing methods. This convenience feature could contribute to security vulnerabilities involving mismatched key types with signing methods.

	ParseFromRequest has been moved to request subpackage and usage has changed

	The Claims property on Token is now type Claims instead of map[string]interface{}. The default value is type MapClaims, which is an alias to map[string]interface{}. This makes it possible to use a custom type when decoding claims.

	Other Additions and Changes

	Added Claims interface type to allow users to decode the claims into a custom type

	Added ParseWithClaims, which takes a third argument of type Claims. Use this function instead of Parse if you have a custom type you’d like to decode into.

	Dramatically improved the functionality and flexibility of ParseFromRequest, which is now in the request subpackage

	Added ParseFromRequestWithClaims which is the FromRequest equivalent of ParseWithClaims

	Added new interface type Extractor, which is used for extracting JWT strings from http requests. Used with ParseFromRequest and ParseFromRequestWithClaims.

	Added several new, more specific, validation errors to error type bitmask

	Moved examples from README to executable example files

	Signing method registry is now thread safe

	Added new property to ValidationError, which contains the raw error returned by calls made by parse/verify (such as those returned by keyfunc or json parser)

2.7.0

This will likely be the last backwards compatible release before 3.0.0, excluding essential bug fixes.

	Added new option -show to the jwt command that will just output the decoded token without verifying

	Error text for expired tokens includes how long it’s been expired

	Fixed incorrect error returned from ParseRSAPublicKeyFromPEM

	Documentation updates

2.6.0

	Exposed inner error within ValidationError

	Fixed validation errors when using UseJSONNumber flag

	Added several unit tests

2.5.0

	Added support for signing method none. You shouldn’t use this. The API tries to make this clear.

	Updated/fixed some documentation

	Added more helpful error message when trying to parse tokens that begin with BEARER

2.4.0

	Added new type, Parser, to allow for configuration of various parsing parameters

	You can now specify a list of valid signing methods. Anything outside this set will be rejected.

	You can now opt to use the json.Number type instead of float64 when parsing token JSON

	Added support for Travis CI [https://travis-ci.org/dgrijalva/jwt-go]

	Fixed some bugs with ECDSA parsing

2.3.0

	Added support for ECDSA signing methods

	Added support for RSA PSS signing methods (requires go v1.4)

2.2.0

	Gracefully handle a nil Keyfunc being passed to Parse. Result will now be the parsed token and an error, instead of a panic.

2.1.0

Backwards compatible API change that was missed in 2.0.0.

	The SignedString method on Token now takes interface{} instead of []byte

2.0.0

There were two major reasons for breaking backwards compatibility with this update. The first was a refactor required to expand the width of the RSA and HMAC-SHA signing implementations. There will likely be no required code changes to support this change.

The second update, while unfortunately requiring a small change in integration, is required to open up this library to other signing methods. Not all keys used for all signing methods have a single standard on-disk representation. Requiring []byte as the type for all keys proved too limiting. Additionally, this implementation allows for pre-parsed tokens to be reused, which might matter in an application that parses a high volume of tokens with a small set of keys. Backwards compatibilty has been maintained for passing []byte to the RSA signing methods, but they will also accept *rsa.PublicKey and *rsa.PrivateKey.

It is likely the only integration change required here will be to change func(t *jwt.Token) ([]byte, error) to func(t *jwt.Token) (interface{}, error) when calling Parse.

	Compatibility Breaking Changes

	SigningMethodHS256 is now *SigningMethodHMAC instead of type struct

	SigningMethodRS256 is now *SigningMethodRSA instead of type struct

	KeyFunc now returns interface{} instead of []byte

	SigningMethod.Sign now takes interface{} instead of []byte for the key

	SigningMethod.Verify now takes interface{} instead of []byte for the key

	Renamed type SigningMethodHS256 to SigningMethodHMAC. Specific sizes are now just instances of this type.

	Added public package global SigningMethodHS256

	Added public package global SigningMethodHS384

	Added public package global SigningMethodHS512

	Renamed type SigningMethodRS256 to SigningMethodRSA. Specific sizes are now just instances of this type.

	Added public package global SigningMethodRS256

	Added public package global SigningMethodRS384

	Added public package global SigningMethodRS512

	Moved sample private key for HMAC tests from an inline value to a file on disk. Value is unchanged.

	Refactored the RSA implementation to be easier to read

	Exposed helper methods ParseRSAPrivateKeyFromPEM and ParseRSAPublicKeyFromPEM

1.0.2

	Fixed bug in parsing public keys from certificates

	Added more tests around the parsing of keys for RS256

	Code refactoring in RS256 implementation. No functional changes

1.0.1

	Fixed panic if RS256 signing method was passed an invalid key

1.0.0

	First versioned release

	API stabilized

	Supports creating, signing, parsing, and validating JWT tokens

	Supports RS256 and HS256 signing methods

 Server-Sent Events

Server-Sent Events

[image: ../../../../_images/sse.svg]GoDoc [https://godoc.org/github.com/gin-contrib/sse]
[image: ../../../../_images/sse1.svg]Build Status [https://travis-ci.org/gin-contrib/sse]
[image: ../../../../_images/badge.svg]codecov [https://codecov.io/gh/gin-contrib/sse]
[image: ../../../../_images/sse2.svg]Go Report Card [https://goreportcard.com/report/github.com/gin-contrib/sse]

Server-sent events (SSE) is a technology where a browser receives automatic updates from a server via HTTP connection. The Server-Sent Events EventSource API is standardized as part of HTML5[1] by the W3C [http://www.w3.org/TR/2009/WD-eventsource-20091029/].

	Read this great SSE introduction by the HTML5Rocks guys [http://www.html5rocks.com/en/tutorials/eventsource/basics/]

	Browser support [http://caniuse.com/#feat=eventsource]

Sample code

import "github.com/gin-contrib/sse"

func httpHandler(w http.ResponseWriter, req *http.Request) {
	// data can be a primitive like a string, an integer or a float
	sse.Encode(w, sse.Event{
		Event: "message",
		Data: "some data\nmore data",
	})

	// also a complex type, like a map, a struct or a slice
	sse.Encode(w, sse.Event{
		Id: "124",
		Event: "message",
		Data: map[string]interface{}{
			"user": "manu",
			"date": time.Now().Unix(),
			"content": "hi!",
		},
	})
}

event: message
data: some data\\nmore data

id: 124
event: message
data: {"content":"hi!","date":1431540810,"user":"manu"}

Content-Type

fmt.Println(sse.ContentType)

text/event-stream

Decoding support

There is a client-side implementation of SSE coming soon.

 gin 1.x series authors

 List of all the awesome people working to make Gin the best Web Framework in Go.

gin 1.x series authors

Gin Core Team: Bo-Yi Wu (@appleboy), 田欧 (@thinkerou), Javier Provecho (@javierprovecho)

gin 0.x series authors

Maintainers: Manu Martinez-Almeida (@manucorporat), Javier Provecho (@javierprovecho)

People and companies, who have contributed, in alphabetical order.

@858806258 (杰哥)

	Fix typo in example

@achedeuzot (Klemen Sever)

	Fix newline debug printing

@adammck (Adam Mckaig)

	Add MIT license

@AlexanderChen1989 (Alexander)

	Typos in README

@alexanderdidenko (Aleksandr Didenko)

	Add support multipart/form-data

@alexandernyquist (Alexander Nyquist)

	Using template.Must to fix multiple return issue

	★ Added support for OPTIONS verb

	★ Setting response headers before calling WriteHeader

	Improved documentation for model binding

	★ Added Content.Redirect()

	★ Added tons of Unit tests

@austinheap (Austin Heap)

	Added travis CI integration

@andredublin (Andre Dublin)

	Fix typo in comment

@bredov (Ludwig Valda Vasquez)

	Fix html templating in debug mode

@bluele (Jun Kimura)

	Fixes code examples in README

@chad-russell

	★ Support for serializing gin.H into XML

@dickeyxxx (Jeff Dickey)

	Typos in README

	Add example about serving static files

@donileo (Adonis)

	Add NoMethod handler

@dutchcoders (DutchCoders)

	★ Fix security bug that allows client to spoof ip

	Fix typo. r.HTMLTemplates -> SetHTMLTemplate

@el3ctro- (Joshua Loper)

	Fix typo in example

@ethankan (Ethan Kan)

	Unsigned integers in binding

(Evgeny Persienko)

	Validate sub structures

@frankbille (Frank Bille)

	Add support for HTTP Realm Auth

@fmd (Fareed Dudhia)

	Fix typo. SetHTTPTemplate -> SetHTMLTemplate

@ironiridis (Christopher Harrington)

	Remove old reference

@jammie-stackhouse (Jamie Stackhouse)

	Add more shortcuts for router methods

@jasonrhansen

	Fix spelling and grammar errors in documentation

@JasonSoft (Jason Lee)

	Fix typo in comment

@joiggama (Ignacio Galindo)

	Add utf-8 charset header on renders

@julienschmidt (Julien Schmidt)

	gofmt the code examples

@kelcecil (Kel Cecil)

	Fix readme typo

@kyledinh (Kyle Dinh)

	Adds RunTLS()

@LinusU (Linus Unnebäck)

	Small fixes in README

@loongmxbt (Saint Asky)

	Fix typo in example

@lucas-clemente (Lucas Clemente)

	★ work around path.Join removing trailing slashes from routes

@mattn (Yasuhiro Matsumoto)

	Improve color logger

@mdigger (Dmitry Sedykh)

	Fixes Form binding when content-type is x-www-form-urlencoded

	No repeat call c.Writer.Status() in gin.Logger

	Fixes Content-Type for json render

@mirzac (Mirza Ceric)

	Fix debug printing

@mopemope (Yutaka Matsubara)

	★ Adds Godep support (Dependencies Manager)

	Fix variadic parameter in the flexible render API

	Fix Corrupted plain render

	Add Pluggable View Renderer Example

@msemenistyi (Mykyta Semenistyi)

	update Readme.md. Add code to String method

@msoedov (Sasha Myasoedov)

	★ Adds tons of unit tests.

@ngerakines (Nick Gerakines)

	★ Improves API, c.GET() doesn’t panic

	Adds MustGet() method

@r8k (Rajiv Kilaparti)

	Fix Port usage in README.

@rayrod2030 (Ray Rodriguez)

	Fix typo in example

@rns

	Fix typo in example

@RobAWilkinson (Robert Wilkinson)

	Add example of forms and params

@rogierlommers (Rogier Lommers)

	Add updated static serve example

@se77en (Damon Zhao)

	Improve color logging

@silasb (Silas Baronda)

	Fixing quotes in README

@SkuliOskarsson (Skuli Oskarsson)

	Fixes some texts in README II

@slimmy (Jimmy Pettersson)

	Added messages for required bindings

@smira (Andrey Smirnov)

	Add support for ignored/unexported fields in binding

@superalsrk (SRK.Lyu)

	Update httprouter godeps

@tebeka (Miki Tebeka)

	Use net/http constants instead of numeric values

@techjanitor

	Update context.go reserved IPs

@yosssi (Keiji Yoshida)

	Fix link in README

@yuyabee

	Fixed README

 Benchmark System

Benchmark System

VM HOST: DigitalOceanMachine: 4 CPU, 8 GB RAM. Ubuntu 16.04.2 x64Date: July 19th, 2017Go Version: 1.8.3 linux/amd64Source: Go HTTP Router Benchmark [https://github.com/julienschmidt/go-http-routing-benchmark]

Static Routes: 157

Gin: 30512 Bytes

HttpServeMux: 17344 Bytes
Ace: 30080 Bytes
Bear: 30472 Bytes
Beego: 96408 Bytes
Bone: 37904 Bytes
Denco: 10464 Bytes
Echo: 73680 Bytes
GocraftWeb: 55720 Bytes
Goji: 27200 Bytes
Gojiv2: 104464 Bytes
GoJsonRest: 136472 Bytes
GoRestful: 914904 Bytes
GorillaMux: 675568 Bytes
HttpRouter: 21128 Bytes
HttpTreeMux: 73448 Bytes
Kocha: 115072 Bytes
LARS: 30120 Bytes
Macaron: 37984 Bytes
Martini: 310832 Bytes
Pat: 20464 Bytes
Possum: 91328 Bytes
R2router: 23712 Bytes
Rivet: 23880 Bytes
Tango: 28008 Bytes
TigerTonic: 80368 Bytes
Traffic: 626480 Bytes
Vulcan: 369064 Bytes

GithubAPI Routes: 203

Gin: 52672 Bytes

Ace: 48992 Bytes
Bear: 161592 Bytes
Beego: 147992 Bytes
Bone: 97728 Bytes
Denco: 36440 Bytes
Echo: 95672 Bytes
GocraftWeb: 95640 Bytes
Goji: 86088 Bytes
Gojiv2: 144392 Bytes
GoJsonRest: 134648 Bytes
GoRestful: 1410760 Bytes
GorillaMux: 1509488 Bytes
HttpRouter: 37464 Bytes
HttpTreeMux: 78800 Bytes
Kocha: 785408 Bytes
LARS: 49032 Bytes
Macaron: 132712 Bytes
Martini: 564352 Bytes
Pat: 21200 Bytes
Possum: 83888 Bytes
R2router: 47104 Bytes
Rivet: 42840 Bytes
Tango: 54584 Bytes
TigerTonic: 96384 Bytes
Traffic: 1061920 Bytes
Vulcan: 465296 Bytes

GPlusAPI Routes: 13

Gin: 3968 Bytes

Ace: 3600 Bytes
Bear: 7112 Bytes
Beego: 10048 Bytes
Bone: 6480 Bytes
Denco: 3256 Bytes
Echo: 9000 Bytes
GocraftWeb: 7496 Bytes
Goji: 2912 Bytes
Gojiv2: 7376 Bytes
GoJsonRest: 11544 Bytes
GoRestful: 88776 Bytes
GorillaMux: 71488 Bytes
HttpRouter: 2712 Bytes
HttpTreeMux: 7440 Bytes
Kocha: 128880 Bytes
LARS: 3640 Bytes
Macaron: 8656 Bytes
Martini: 23936 Bytes
Pat: 1856 Bytes
Possum: 7248 Bytes
R2router: 3928 Bytes
Rivet: 3064 Bytes
Tango: 4912 Bytes
TigerTonic: 9408 Bytes
Traffic: 49472 Bytes
Vulcan: 25496 Bytes

ParseAPI Routes: 26

Gin: 6928 Bytes

Ace: 6592 Bytes
Bear: 12320 Bytes
Beego: 18960 Bytes
Bone: 11024 Bytes
Denco: 4184 Bytes
Echo: 11168 Bytes
GocraftWeb: 12800 Bytes
Goji: 5232 Bytes
Gojiv2: 14464 Bytes
GoJsonRest: 14216 Bytes
GoRestful: 127368 Bytes
GorillaMux: 123016 Bytes
HttpRouter: 4976 Bytes
HttpTreeMux: 7848 Bytes
Kocha: 181712 Bytes
LARS: 6632 Bytes
Macaron: 13648 Bytes
Martini: 45952 Bytes
Pat: 2560 Bytes
Possum: 9200 Bytes
R2router: 7056 Bytes
Rivet: 5680 Bytes
Tango: 8664 Bytes
TigerTonic: 9840 Bytes
Traffic: 93480 Bytes
Vulcan: 44504 Bytes

Static Routes

BenchmarkGin_StaticAll 50000 34506 ns/op 0 B/op 0 allocs/op

BenchmarkAce_StaticAll 30000 49657 ns/op 0 B/op 0 allocs/op
BenchmarkHttpServeMux_StaticAll 2000 1183737 ns/op 96 B/op 8 allocs/op
BenchmarkBeego_StaticAll 5000 412621 ns/op 57776 B/op 628 allocs/op
BenchmarkBear_StaticAll 10000 149242 ns/op 20336 B/op 461 allocs/op
BenchmarkBone_StaticAll 10000 118583 ns/op 0 B/op 0 allocs/op
BenchmarkDenco_StaticAll 100000 13247 ns/op 0 B/op 0 allocs/op
BenchmarkEcho_StaticAll 20000 79914 ns/op 5024 B/op 157 allocs/op
BenchmarkGocraftWeb_StaticAll 10000 211823 ns/op 46440 B/op 785 allocs/op
BenchmarkGoji_StaticAll 10000 109390 ns/op 0 B/op 0 allocs/op
BenchmarkGojiv2_StaticAll 3000 415533 ns/op 145696 B/op 1099 allocs/op
BenchmarkGoJsonRest_StaticAll 5000 364403 ns/op 51653 B/op 1727 allocs/op
BenchmarkGoRestful_StaticAll 500 2578579 ns/op 314936 B/op 3144 allocs/op
BenchmarkGorillaMux_StaticAll 500 2704856 ns/op 115648 B/op 1578 allocs/op
BenchmarkHttpRouter_StaticAll 100000 18541 ns/op 0 B/op 0 allocs/op
BenchmarkHttpTreeMux_StaticAll 100000 22332 ns/op 0 B/op 0 allocs/op
BenchmarkKocha_StaticAll 50000 31176 ns/op 0 B/op 0 allocs/op
BenchmarkLARS_StaticAll 50000 40840 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_StaticAll 5000 517656 ns/op 120576 B/op 1413 allocs/op
BenchmarkMartini_StaticAll 300 4462289 ns/op 125442 B/op 1717 allocs/op
BenchmarkPat_StaticAll 500 2157275 ns/op 533904 B/op 11123 allocs/op
BenchmarkPossum_StaticAll 10000 254701 ns/op 65312 B/op 471 allocs/op
BenchmarkR2router_StaticAll 10000 133956 ns/op 22608 B/op 628 allocs/op
BenchmarkRivet_StaticAll 30000 46812 ns/op 0 B/op 0 allocs/op
BenchmarkTango_StaticAll 5000 390613 ns/op 39225 B/op 1256 allocs/op
BenchmarkTigerTonic_StaticAll 20000 88060 ns/op 7504 B/op 157 allocs/op
BenchmarkTraffic_StaticAll 500 2910236 ns/op 729736 B/op 14287 allocs/op
BenchmarkVulcan_StaticAll 5000 277366 ns/op 15386 B/op 471 allocs/op

Micro Benchmarks

BenchmarkGin_Param 20000000 113 ns/op 0 B/op 0 allocs/op

BenchmarkAce_Param 5000000 375 ns/op 32 B/op 1 allocs/op
BenchmarkBear_Param 1000000 1709 ns/op 456 B/op 5 allocs/op
BenchmarkBeego_Param 1000000 2484 ns/op 368 B/op 4 allocs/op
BenchmarkBone_Param 1000000 2391 ns/op 688 B/op 5 allocs/op
BenchmarkDenco_Param 10000000 240 ns/op 32 B/op 1 allocs/op
BenchmarkEcho_Param 5000000 366 ns/op 32 B/op 1 allocs/op
BenchmarkGocraftWeb_Param 1000000 2343 ns/op 648 B/op 8 allocs/op
BenchmarkGoji_Param 1000000 1197 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_Param 1000000 2771 ns/op 944 B/op 8 allocs/op
BenchmarkGoJsonRest_Param 1000000 2993 ns/op 649 B/op 13 allocs/op
BenchmarkGoRestful_Param 200000 8860 ns/op 2296 B/op 21 allocs/op
BenchmarkGorillaMux_Param 500000 4461 ns/op 1056 B/op 11 allocs/op
BenchmarkHttpRouter_Param 10000000 175 ns/op 32 B/op 1 allocs/op
BenchmarkHttpTreeMux_Param 1000000 1167 ns/op 352 B/op 3 allocs/op
BenchmarkKocha_Param 3000000 429 ns/op 56 B/op 3 allocs/op
BenchmarkLARS_Param 10000000 134 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_Param 500000 4635 ns/op 1056 B/op 10 allocs/op
BenchmarkMartini_Param 200000 9933 ns/op 1072 B/op 10 allocs/op
BenchmarkPat_Param 1000000 2929 ns/op 648 B/op 12 allocs/op
BenchmarkPossum_Param 1000000 2503 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_Param 1000000 1507 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_Param 5000000 297 ns/op 48 B/op 1 allocs/op
BenchmarkTango_Param 1000000 1862 ns/op 248 B/op 8 allocs/op
BenchmarkTigerTonic_Param 500000 5660 ns/op 992 B/op 17 allocs/op
BenchmarkTraffic_Param 200000 8408 ns/op 1960 B/op 21 allocs/op
BenchmarkVulcan_Param 2000000 963 ns/op 98 B/op 3 allocs/op
BenchmarkAce_Param5 2000000 740 ns/op 160 B/op 1 allocs/op
BenchmarkBear_Param5 1000000 2777 ns/op 501 B/op 5 allocs/op
BenchmarkBeego_Param5 1000000 3740 ns/op 368 B/op 4 allocs/op
BenchmarkBone_Param5 1000000 2950 ns/op 736 B/op 5 allocs/op
BenchmarkDenco_Param5 2000000 644 ns/op 160 B/op 1 allocs/op
BenchmarkEcho_Param5 3000000 558 ns/op 32 B/op 1 allocs/op
BenchmarkGin_Param5 10000000 198 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_Param5 500000 3870 ns/op 920 B/op 11 allocs/op
BenchmarkGoji_Param5 1000000 1746 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_Param5 1000000 3214 ns/op 1008 B/op 8 allocs/op
BenchmarkGoJsonRest_Param5 500000 5509 ns/op 1097 B/op 16 allocs/op
BenchmarkGoRestful_Param5 200000 11232 ns/op 2392 B/op 21 allocs/op
BenchmarkGorillaMux_Param5 300000 7777 ns/op 1184 B/op 11 allocs/op
BenchmarkHttpRouter_Param5 3000000 631 ns/op 160 B/op 1 allocs/op
BenchmarkHttpTreeMux_Param5 1000000 2800 ns/op 576 B/op 6 allocs/op
BenchmarkKocha_Param5 1000000 2053 ns/op 440 B/op 10 allocs/op
BenchmarkLARS_Param5 10000000 232 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_Param5 500000 5888 ns/op 1056 B/op 10 allocs/op
BenchmarkMartini_Param5 200000 12807 ns/op 1232 B/op 11 allocs/op
BenchmarkPat_Param5 300000 7320 ns/op 964 B/op 32 allocs/op
BenchmarkPossum_Param5 1000000 2495 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_Param5 1000000 1844 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_Param5 2000000 935 ns/op 240 B/op 1 allocs/op
BenchmarkTango_Param5 1000000 2327 ns/op 360 B/op 8 allocs/op
BenchmarkTigerTonic_Param5 100000 18514 ns/op 2551 B/op 43 allocs/op
BenchmarkTraffic_Param5 200000 11997 ns/op 2248 B/op 25 allocs/op
BenchmarkVulcan_Param5 1000000 1333 ns/op 98 B/op 3 allocs/op
BenchmarkAce_Param20 1000000 2031 ns/op 640 B/op 1 allocs/op
BenchmarkBear_Param20 200000 7285 ns/op 1664 B/op 5 allocs/op
BenchmarkBeego_Param20 300000 6224 ns/op 368 B/op 4 allocs/op
BenchmarkBone_Param20 200000 8023 ns/op 1903 B/op 5 allocs/op
BenchmarkDenco_Param20 1000000 2262 ns/op 640 B/op 1 allocs/op
BenchmarkEcho_Param20 1000000 1387 ns/op 32 B/op 1 allocs/op
BenchmarkGin_Param20 3000000 503 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_Param20 100000 14408 ns/op 3795 B/op 15 allocs/op
BenchmarkGoji_Param20 500000 5272 ns/op 1247 B/op 2 allocs/op
BenchmarkGojiv2_Param20 1000000 4163 ns/op 1248 B/op 8 allocs/op
BenchmarkGoJsonRest_Param20 100000 17866 ns/op 4485 B/op 20 allocs/op
BenchmarkGoRestful_Param20 100000 21022 ns/op 4724 B/op 23 allocs/op
BenchmarkGorillaMux_Param20 100000 17055 ns/op 3547 B/op 13 allocs/op
BenchmarkHttpRouter_Param20 1000000 1748 ns/op 640 B/op 1 allocs/op
BenchmarkHttpTreeMux_Param20 200000 12246 ns/op 3196 B/op 10 allocs/op
BenchmarkKocha_Param20 300000 6861 ns/op 1808 B/op 27 allocs/op
BenchmarkLARS_Param20 3000000 526 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_Param20 100000 13069 ns/op 2906 B/op 12 allocs/op
BenchmarkMartini_Param20 100000 23602 ns/op 3597 B/op 13 allocs/op
BenchmarkPat_Param20 50000 32143 ns/op 4688 B/op 111 allocs/op
BenchmarkPossum_Param20 1000000 2396 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_Param20 200000 8907 ns/op 2283 B/op 7 allocs/op
BenchmarkRivet_Param20 1000000 3280 ns/op 1024 B/op 1 allocs/op
BenchmarkTango_Param20 500000 4640 ns/op 856 B/op 8 allocs/op
BenchmarkTigerTonic_Param20 20000 67581 ns/op 10532 B/op 138 allocs/op
BenchmarkTraffic_Param20 50000 40313 ns/op 7941 B/op 45 allocs/op
BenchmarkVulcan_Param20 1000000 2264 ns/op 98 B/op 3 allocs/op
BenchmarkAce_ParamWrite 3000000 532 ns/op 40 B/op 2 allocs/op
BenchmarkBear_ParamWrite 1000000 1778 ns/op 456 B/op 5 allocs/op
BenchmarkBeego_ParamWrite 1000000 2596 ns/op 376 B/op 5 allocs/op
BenchmarkBone_ParamWrite 1000000 2519 ns/op 688 B/op 5 allocs/op
BenchmarkDenco_ParamWrite 5000000 411 ns/op 32 B/op 1 allocs/op
BenchmarkEcho_ParamWrite 2000000 718 ns/op 40 B/op 2 allocs/op
BenchmarkGin_ParamWrite 5000000 283 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_ParamWrite 1000000 2561 ns/op 656 B/op 9 allocs/op
BenchmarkGoji_ParamWrite 1000000 1378 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_ParamWrite 1000000 3128 ns/op 976 B/op 10 allocs/op
BenchmarkGoJsonRest_ParamWrite 500000 4446 ns/op 1128 B/op 18 allocs/op
BenchmarkGoRestful_ParamWrite 200000 10291 ns/op 2304 B/op 22 allocs/op
BenchmarkGorillaMux_ParamWrite 500000 5153 ns/op 1064 B/op 12 allocs/op
BenchmarkHttpRouter_ParamWrite 5000000 263 ns/op 32 B/op 1 allocs/op
BenchmarkHttpTreeMux_ParamWrite 1000000 1351 ns/op 352 B/op 3 allocs/op
BenchmarkKocha_ParamWrite 3000000 538 ns/op 56 B/op 3 allocs/op
BenchmarkLARS_ParamWrite 5000000 316 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_ParamWrite 500000 5756 ns/op 1160 B/op 14 allocs/op
BenchmarkMartini_ParamWrite 200000 13097 ns/op 1176 B/op 14 allocs/op
BenchmarkPat_ParamWrite 500000 4954 ns/op 1072 B/op 17 allocs/op
BenchmarkPossum_ParamWrite 1000000 2499 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_ParamWrite 1000000 1531 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_ParamWrite 3000000 570 ns/op 112 B/op 2 allocs/op
BenchmarkTango_ParamWrite 2000000 957 ns/op 136 B/op 4 allocs/op
BenchmarkTigerTonic_ParamWrite 200000 7025 ns/op 1424 B/op 23 allocs/op
BenchmarkTraffic_ParamWrite 200000 10112 ns/op 2384 B/op 25 allocs/op
BenchmarkVulcan_ParamWrite 1000000 1006 ns/op 98 B/op 3 allocs/op

GitHub

BenchmarkGin_GithubStatic 10000000 156 ns/op 0 B/op 0 allocs/op

BenchmarkAce_GithubStatic 5000000 294 ns/op 0 B/op 0 allocs/op
BenchmarkBear_GithubStatic 2000000 893 ns/op 120 B/op 3 allocs/op
BenchmarkBeego_GithubStatic 1000000 2491 ns/op 368 B/op 4 allocs/op
BenchmarkBone_GithubStatic 50000 25300 ns/op 2880 B/op 60 allocs/op
BenchmarkDenco_GithubStatic 20000000 76.0 ns/op 0 B/op 0 allocs/op
BenchmarkEcho_GithubStatic 2000000 516 ns/op 32 B/op 1 allocs/op
BenchmarkGocraftWeb_GithubStatic 1000000 1448 ns/op 296 B/op 5 allocs/op
BenchmarkGoji_GithubStatic 3000000 496 ns/op 0 B/op 0 allocs/op
BenchmarkGojiv2_GithubStatic 1000000 2941 ns/op 928 B/op 7 allocs/op
BenchmarkGoRestful_GithubStatic 100000 27256 ns/op 3224 B/op 22 allocs/op
BenchmarkGoJsonRest_GithubStatic 1000000 2196 ns/op 329 B/op 11 allocs/op
BenchmarkGorillaMux_GithubStatic 50000 31617 ns/op 736 B/op 10 allocs/op
BenchmarkHttpRouter_GithubStatic 20000000 88.4 ns/op 0 B/op 0 allocs/op
BenchmarkHttpTreeMux_GithubStatic 10000000 134 ns/op 0 B/op 0 allocs/op
BenchmarkKocha_GithubStatic 20000000 113 ns/op 0 B/op 0 allocs/op
BenchmarkLARS_GithubStatic 10000000 195 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_GithubStatic 500000 3740 ns/op 768 B/op 9 allocs/op
BenchmarkMartini_GithubStatic 50000 27673 ns/op 768 B/op 9 allocs/op
BenchmarkPat_GithubStatic 100000 19470 ns/op 3648 B/op 76 allocs/op
BenchmarkPossum_GithubStatic 1000000 1729 ns/op 416 B/op 3 allocs/op
BenchmarkR2router_GithubStatic 2000000 879 ns/op 144 B/op 4 allocs/op
BenchmarkRivet_GithubStatic 10000000 231 ns/op 0 B/op 0 allocs/op
BenchmarkTango_GithubStatic 1000000 2325 ns/op 248 B/op 8 allocs/op
BenchmarkTigerTonic_GithubStatic 3000000 610 ns/op 48 B/op 1 allocs/op
BenchmarkTraffic_GithubStatic 20000 62973 ns/op 18904 B/op 148 allocs/op
BenchmarkVulcan_GithubStatic 1000000 1447 ns/op 98 B/op 3 allocs/op
BenchmarkAce_GithubParam 2000000 686 ns/op 96 B/op 1 allocs/op
BenchmarkBear_GithubParam 1000000 2155 ns/op 496 B/op 5 allocs/op
BenchmarkBeego_GithubParam 1000000 2713 ns/op 368 B/op 4 allocs/op
BenchmarkBone_GithubParam 100000 15088 ns/op 1760 B/op 18 allocs/op
BenchmarkDenco_GithubParam 2000000 629 ns/op 128 B/op 1 allocs/op
BenchmarkEcho_GithubParam 2000000 653 ns/op 32 B/op 1 allocs/op
BenchmarkGin_GithubParam 5000000 255 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_GithubParam 1000000 3145 ns/op 712 B/op 9 allocs/op
BenchmarkGoji_GithubParam 1000000 1916 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_GithubParam 1000000 3975 ns/op 1024 B/op 10 allocs/op
BenchmarkGoJsonRest_GithubParam 300000 4134 ns/op 713 B/op 14 allocs/op
BenchmarkGoRestful_GithubParam 50000 30782 ns/op 2360 B/op 21 allocs/op
BenchmarkGorillaMux_GithubParam 100000 17148 ns/op 1088 B/op 11 allocs/op
BenchmarkHttpRouter_GithubParam 3000000 523 ns/op 96 B/op 1 allocs/op
BenchmarkHttpTreeMux_GithubParam 1000000 1671 ns/op 384 B/op 4 allocs/op
BenchmarkKocha_GithubParam 1000000 1021 ns/op 128 B/op 5 allocs/op
BenchmarkLARS_GithubParam 5000000 283 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_GithubParam 500000 4270 ns/op 1056 B/op 10 allocs/op
BenchmarkMartini_GithubParam 100000 21728 ns/op 1152 B/op 11 allocs/op
BenchmarkPat_GithubParam 200000 11208 ns/op 2464 B/op 48 allocs/op
BenchmarkPossum_GithubParam 1000000 2334 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_GithubParam 1000000 1487 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_GithubParam 2000000 782 ns/op 96 B/op 1 allocs/op
BenchmarkTango_GithubParam 1000000 2653 ns/op 344 B/op 8 allocs/op
BenchmarkTigerTonic_GithubParam 300000 14073 ns/op 1440 B/op 24 allocs/op
BenchmarkTraffic_GithubParam 50000 29164 ns/op 5992 B/op 52 allocs/op
BenchmarkVulcan_GithubParam 1000000 2529 ns/op 98 B/op 3 allocs/op
BenchmarkAce_GithubAll 10000 134059 ns/op 13792 B/op 167 allocs/op
BenchmarkBear_GithubAll 5000 534445 ns/op 86448 B/op 943 allocs/op
BenchmarkBeego_GithubAll 3000 592444 ns/op 74705 B/op 812 allocs/op
BenchmarkBone_GithubAll 200 6957308 ns/op 698784 B/op 8453 allocs/op
BenchmarkDenco_GithubAll 10000 158819 ns/op 20224 B/op 167 allocs/op
BenchmarkEcho_GithubAll 10000 154700 ns/op 6496 B/op 203 allocs/op
BenchmarkGin_GithubAll 30000 48375 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_GithubAll 3000 570806 ns/op 131656 B/op 1686 allocs/op
BenchmarkGoji_GithubAll 2000 818034 ns/op 56112 B/op 334 allocs/op
BenchmarkGojiv2_GithubAll 2000 1213973 ns/op 274768 B/op 3712 allocs/op
BenchmarkGoJsonRest_GithubAll 2000 785796 ns/op 134371 B/op 2737 allocs/op
BenchmarkGoRestful_GithubAll 300 5238188 ns/op 689672 B/op 4519 allocs/op
BenchmarkGorillaMux_GithubAll 100 10257726 ns/op 211840 B/op 2272 allocs/op
BenchmarkHttpRouter_GithubAll 20000 105414 ns/op 13792 B/op 167 allocs/op
BenchmarkHttpTreeMux_GithubAll 10000 319934 ns/op 65856 B/op 671 allocs/op
BenchmarkKocha_GithubAll 10000 209442 ns/op 23304 B/op 843 allocs/op
BenchmarkLARS_GithubAll 20000 62565 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_GithubAll 2000 1161270 ns/op 204194 B/op 2000 allocs/op
BenchmarkMartini_GithubAll 200 9991713 ns/op 226549 B/op 2325 allocs/op
BenchmarkPat_GithubAll 200 5590793 ns/op 1499568 B/op 27435 allocs/op
BenchmarkPossum_GithubAll 10000 319768 ns/op 84448 B/op 609 allocs/op
BenchmarkR2router_GithubAll 10000 305134 ns/op 77328 B/op 979 allocs/op
BenchmarkRivet_GithubAll 10000 132134 ns/op 16272 B/op 167 allocs/op
BenchmarkTango_GithubAll 3000 552754 ns/op 63826 B/op 1618 allocs/op
BenchmarkTigerTonic_GithubAll 1000 1439483 ns/op 239104 B/op 5374 allocs/op
BenchmarkTraffic_GithubAll 100 11383067 ns/op 2659329 B/op 21848 allocs/op
BenchmarkVulcan_GithubAll 5000 394253 ns/op 19894 B/op 609 allocs/op

Google+

BenchmarkGin_GPlusStatic 10000000 183 ns/op 0 B/op 0 allocs/op

BenchmarkAce_GPlusStatic 5000000 276 ns/op 0 B/op 0 allocs/op
BenchmarkBear_GPlusStatic 2000000 652 ns/op 104 B/op 3 allocs/op
BenchmarkBeego_GPlusStatic 1000000 2239 ns/op 368 B/op 4 allocs/op
BenchmarkBone_GPlusStatic 5000000 380 ns/op 32 B/op 1 allocs/op
BenchmarkDenco_GPlusStatic 30000000 45.8 ns/op 0 B/op 0 allocs/op
BenchmarkEcho_GPlusStatic 5000000 338 ns/op 32 B/op 1 allocs/op
BenchmarkGocraftWeb_GPlusStatic 1000000 1158 ns/op 280 B/op 5 allocs/op
BenchmarkGoji_GPlusStatic 5000000 331 ns/op 0 B/op 0 allocs/op
BenchmarkGojiv2_GPlusStatic 1000000 2106 ns/op 928 B/op 7 allocs/op
BenchmarkGoJsonRest_GPlusStatic 1000000 1626 ns/op 329 B/op 11 allocs/op
BenchmarkGoRestful_GPlusStatic 300000 7598 ns/op 1976 B/op 20 allocs/op
BenchmarkGorillaMux_GPlusStatic 1000000 2629 ns/op 736 B/op 10 allocs/op
BenchmarkHttpRouter_GPlusStatic 30000000 52.5 ns/op 0 B/op 0 allocs/op
BenchmarkHttpTreeMux_GPlusStatic 20000000 85.8 ns/op 0 B/op 0 allocs/op
BenchmarkKocha_GPlusStatic 20000000 89.2 ns/op 0 B/op 0 allocs/op
BenchmarkLARS_GPlusStatic 10000000 162 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_GPlusStatic 500000 3479 ns/op 768 B/op 9 allocs/op
BenchmarkMartini_GPlusStatic 200000 9092 ns/op 768 B/op 9 allocs/op
BenchmarkPat_GPlusStatic 3000000 493 ns/op 96 B/op 2 allocs/op
BenchmarkPossum_GPlusStatic 1000000 1467 ns/op 416 B/op 3 allocs/op
BenchmarkR2router_GPlusStatic 2000000 788 ns/op 144 B/op 4 allocs/op
BenchmarkRivet_GPlusStatic 20000000 114 ns/op 0 B/op 0 allocs/op
BenchmarkTango_GPlusStatic 1000000 1534 ns/op 200 B/op 8 allocs/op
BenchmarkTigerTonic_GPlusStatic 5000000 282 ns/op 32 B/op 1 allocs/op
BenchmarkTraffic_GPlusStatic 500000 3798 ns/op 1192 B/op 15 allocs/op
BenchmarkVulcan_GPlusStatic 2000000 1125 ns/op 98 B/op 3 allocs/op
BenchmarkAce_GPlusParam 3000000 528 ns/op 64 B/op 1 allocs/op
BenchmarkBear_GPlusParam 1000000 1570 ns/op 480 B/op 5 allocs/op
BenchmarkBeego_GPlusParam 1000000 2369 ns/op 368 B/op 4 allocs/op
BenchmarkBone_GPlusParam 1000000 2028 ns/op 688 B/op 5 allocs/op
BenchmarkDenco_GPlusParam 5000000 385 ns/op 64 B/op 1 allocs/op
BenchmarkEcho_GPlusParam 3000000 441 ns/op 32 B/op 1 allocs/op
BenchmarkGin_GPlusParam 10000000 174 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_GPlusParam 1000000 2033 ns/op 648 B/op 8 allocs/op
BenchmarkGoji_GPlusParam 1000000 1399 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_GPlusParam 1000000 2641 ns/op 944 B/op 8 allocs/op
BenchmarkGoJsonRest_GPlusParam 1000000 2824 ns/op 649 B/op 13 allocs/op
BenchmarkGoRestful_GPlusParam 200000 8875 ns/op 2296 B/op 21 allocs/op
BenchmarkGorillaMux_GPlusParam 200000 6291 ns/op 1056 B/op 11 allocs/op
BenchmarkHttpRouter_GPlusParam 5000000 316 ns/op 64 B/op 1 allocs/op
BenchmarkHttpTreeMux_GPlusParam 1000000 1129 ns/op 352 B/op 3 allocs/op
BenchmarkKocha_GPlusParam 3000000 538 ns/op 56 B/op 3 allocs/op
BenchmarkLARS_GPlusParam 10000000 198 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_GPlusParam 500000 3554 ns/op 1056 B/op 10 allocs/op
BenchmarkMartini_GPlusParam 200000 9831 ns/op 1072 B/op 10 allocs/op
BenchmarkPat_GPlusParam 1000000 2706 ns/op 688 B/op 12 allocs/op
BenchmarkPossum_GPlusParam 1000000 2297 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_GPlusParam 1000000 1318 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_GPlusParam 5000000 399 ns/op 48 B/op 1 allocs/op
BenchmarkTango_GPlusParam 1000000 2070 ns/op 264 B/op 8 allocs/op
BenchmarkTigerTonic_GPlusParam 500000 4853 ns/op 1056 B/op 17 allocs/op
BenchmarkTraffic_GPlusParam 200000 8278 ns/op 1976 B/op 21 allocs/op
BenchmarkVulcan_GPlusParam 1000000 1243 ns/op 98 B/op 3 allocs/op
BenchmarkAce_GPlus2Params 3000000 549 ns/op 64 B/op 1 allocs/op
BenchmarkBear_GPlus2Params 1000000 2112 ns/op 496 B/op 5 allocs/op
BenchmarkBeego_GPlus2Params 500000 2750 ns/op 368 B/op 4 allocs/op
BenchmarkBone_GPlus2Params 300000 7032 ns/op 1040 B/op 9 allocs/op
BenchmarkDenco_GPlus2Params 3000000 502 ns/op 64 B/op 1 allocs/op
BenchmarkEcho_GPlus2Params 3000000 641 ns/op 32 B/op 1 allocs/op
BenchmarkGin_GPlus2Params 5000000 250 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_GPlus2Params 1000000 2681 ns/op 712 B/op 9 allocs/op
BenchmarkGoji_GPlus2Params 1000000 1926 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_GPlus2Params 500000 3996 ns/op 1024 B/op 11 allocs/op
BenchmarkGoJsonRest_GPlus2Params 500000 3886 ns/op 713 B/op 14 allocs/op
BenchmarkGoRestful_GPlus2Params 200000 10376 ns/op 2360 B/op 21 allocs/op
BenchmarkGorillaMux_GPlus2Params 100000 14162 ns/op 1088 B/op 11 allocs/op
BenchmarkHttpRouter_GPlus2Params 5000000 336 ns/op 64 B/op 1 allocs/op
BenchmarkHttpTreeMux_GPlus2Params 1000000 1523 ns/op 384 B/op 4 allocs/op
BenchmarkKocha_GPlus2Params 2000000 970 ns/op 128 B/op 5 allocs/op
BenchmarkLARS_GPlus2Params 5000000 238 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_GPlus2Params 500000 4016 ns/op 1056 B/op 10 allocs/op
BenchmarkMartini_GPlus2Params 100000 21253 ns/op 1200 B/op 13 allocs/op
BenchmarkPat_GPlus2Params 200000 8632 ns/op 2256 B/op 34 allocs/op
BenchmarkPossum_GPlus2Params 1000000 2171 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_GPlus2Params 1000000 1340 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_GPlus2Params 3000000 557 ns/op 96 B/op 1 allocs/op
BenchmarkTango_GPlus2Params 1000000 2186 ns/op 344 B/op 8 allocs/op
BenchmarkTigerTonic_GPlus2Params 200000 9060 ns/op 1488 B/op 24 allocs/op
BenchmarkTraffic_GPlus2Params 100000 20324 ns/op 3272 B/op 31 allocs/op
BenchmarkVulcan_GPlus2Params 1000000 2039 ns/op 98 B/op 3 allocs/op
BenchmarkAce_GPlusAll 300000 6603 ns/op 640 B/op 11 allocs/op
BenchmarkBear_GPlusAll 100000 22363 ns/op 5488 B/op 61 allocs/op
BenchmarkBeego_GPlusAll 50000 38757 ns/op 4784 B/op 52 allocs/op
BenchmarkBone_GPlusAll 20000 54916 ns/op 10336 B/op 98 allocs/op
BenchmarkDenco_GPlusAll 300000 4959 ns/op 672 B/op 11 allocs/op
BenchmarkEcho_GPlusAll 200000 6558 ns/op 416 B/op 13 allocs/op
BenchmarkGin_GPlusAll 500000 2757 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_GPlusAll 50000 34615 ns/op 8040 B/op 103 allocs/op
BenchmarkGoji_GPlusAll 100000 16002 ns/op 3696 B/op 22 allocs/op
BenchmarkGojiv2_GPlusAll 50000 35060 ns/op 12624 B/op 115 allocs/op
BenchmarkGoJsonRest_GPlusAll 50000 41479 ns/op 8117 B/op 170 allocs/op
BenchmarkGoRestful_GPlusAll 10000 131653 ns/op 32024 B/op 275 allocs/op
BenchmarkGorillaMux_GPlusAll 10000 101380 ns/op 13296 B/op 142 allocs/op
BenchmarkHttpRouter_GPlusAll 500000 3711 ns/op 640 B/op 11 allocs/op
BenchmarkHttpTreeMux_GPlusAll 100000 14438 ns/op 4032 B/op 38 allocs/op
BenchmarkKocha_GPlusAll 200000 8039 ns/op 976 B/op 43 allocs/op
BenchmarkLARS_GPlusAll 500000 2630 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_GPlusAll 30000 51123 ns/op 13152 B/op 128 allocs/op
BenchmarkMartini_GPlusAll 10000 176157 ns/op 14016 B/op 145 allocs/op
BenchmarkPat_GPlusAll 20000 69911 ns/op 16576 B/op 298 allocs/op
BenchmarkPossum_GPlusAll 100000 20716 ns/op 5408 B/op 39 allocs/op
BenchmarkR2router_GPlusAll 100000 17463 ns/op 5040 B/op 63 allocs/op
BenchmarkRivet_GPlusAll 300000 5142 ns/op 768 B/op 11 allocs/op
BenchmarkTango_GPlusAll 50000 27321 ns/op 3656 B/op 104 allocs/op
BenchmarkTigerTonic_GPlusAll 20000 77597 ns/op 14512 B/op 288 allocs/op
BenchmarkTraffic_GPlusAll 10000 151406 ns/op 37360 B/op 392 allocs/op
BenchmarkVulcan_GPlusAll 100000 18555 ns/op 1274 B/op 39 allocs/op

Parse.com

BenchmarkGin_ParseStatic 10000000 133 ns/op 0 B/op 0 allocs/op

BenchmarkAce_ParseStatic 5000000 241 ns/op 0 B/op 0 allocs/op
BenchmarkBear_ParseStatic 2000000 728 ns/op 120 B/op 3 allocs/op
BenchmarkBeego_ParseStatic 1000000 2623 ns/op 368 B/op 4 allocs/op
BenchmarkBone_ParseStatic 1000000 1285 ns/op 144 B/op 3 allocs/op
BenchmarkDenco_ParseStatic 30000000 57.8 ns/op 0 B/op 0 allocs/op
BenchmarkEcho_ParseStatic 5000000 342 ns/op 32 B/op 1 allocs/op
BenchmarkGocraftWeb_ParseStatic 1000000 1478 ns/op 296 B/op 5 allocs/op
BenchmarkGoji_ParseStatic 3000000 415 ns/op 0 B/op 0 allocs/op
BenchmarkGojiv2_ParseStatic 1000000 2087 ns/op 928 B/op 7 allocs/op
BenchmarkGoJsonRest_ParseStatic 1000000 1712 ns/op 329 B/op 11 allocs/op
BenchmarkGoRestful_ParseStatic 200000 11072 ns/op 3224 B/op 22 allocs/op
BenchmarkGorillaMux_ParseStatic 500000 4129 ns/op 752 B/op 11 allocs/op
BenchmarkHttpRouter_ParseStatic 30000000 52.4 ns/op 0 B/op 0 allocs/op
BenchmarkHttpTreeMux_ParseStatic 20000000 109 ns/op 0 B/op 0 allocs/op
BenchmarkKocha_ParseStatic 20000000 81.8 ns/op 0 B/op 0 allocs/op
BenchmarkLARS_ParseStatic 10000000 150 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_ParseStatic 1000000 3288 ns/op 768 B/op 9 allocs/op
BenchmarkMartini_ParseStatic 200000 9110 ns/op 768 B/op 9 allocs/op
BenchmarkPat_ParseStatic 1000000 1135 ns/op 240 B/op 5 allocs/op
BenchmarkPossum_ParseStatic 1000000 1557 ns/op 416 B/op 3 allocs/op
BenchmarkR2router_ParseStatic 2000000 730 ns/op 144 B/op 4 allocs/op
BenchmarkRivet_ParseStatic 10000000 121 ns/op 0 B/op 0 allocs/op
BenchmarkTango_ParseStatic 1000000 1688 ns/op 248 B/op 8 allocs/op
BenchmarkTigerTonic_ParseStatic 3000000 427 ns/op 48 B/op 1 allocs/op
BenchmarkTraffic_ParseStatic 500000 5962 ns/op 1816 B/op 20 allocs/op
BenchmarkVulcan_ParseStatic 2000000 969 ns/op 98 B/op 3 allocs/op
BenchmarkAce_ParseParam 3000000 497 ns/op 64 B/op 1 allocs/op
BenchmarkBear_ParseParam 1000000 1473 ns/op 467 B/op 5 allocs/op
BenchmarkBeego_ParseParam 1000000 2384 ns/op 368 B/op 4 allocs/op
BenchmarkBone_ParseParam 1000000 2513 ns/op 768 B/op 6 allocs/op
BenchmarkDenco_ParseParam 5000000 364 ns/op 64 B/op 1 allocs/op
BenchmarkEcho_ParseParam 5000000 418 ns/op 32 B/op 1 allocs/op
BenchmarkGin_ParseParam 10000000 163 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_ParseParam 1000000 2361 ns/op 664 B/op 8 allocs/op
BenchmarkGoji_ParseParam 1000000 1590 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_ParseParam 1000000 2851 ns/op 976 B/op 9 allocs/op
BenchmarkGoJsonRest_ParseParam 1000000 2965 ns/op 649 B/op 13 allocs/op
BenchmarkGoRestful_ParseParam 200000 12207 ns/op 3544 B/op 23 allocs/op
BenchmarkGorillaMux_ParseParam 500000 5187 ns/op 1088 B/op 12 allocs/op
BenchmarkHttpRouter_ParseParam 5000000 275 ns/op 64 B/op 1 allocs/op
BenchmarkHttpTreeMux_ParseParam 1000000 1108 ns/op 352 B/op 3 allocs/op
BenchmarkKocha_ParseParam 3000000 495 ns/op 56 B/op 3 allocs/op
BenchmarkLARS_ParseParam 10000000 192 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_ParseParam 500000 4103 ns/op 1056 B/op 10 allocs/op
BenchmarkMartini_ParseParam 200000 9878 ns/op 1072 B/op 10 allocs/op
BenchmarkPat_ParseParam 500000 3657 ns/op 1120 B/op 17 allocs/op
BenchmarkPossum_ParseParam 1000000 2084 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_ParseParam 1000000 1251 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_ParseParam 5000000 335 ns/op 48 B/op 1 allocs/op
BenchmarkTango_ParseParam 1000000 1854 ns/op 280 B/op 8 allocs/op
BenchmarkTigerTonic_ParseParam 500000 4582 ns/op 1008 B/op 17 allocs/op
BenchmarkTraffic_ParseParam 200000 8125 ns/op 2248 B/op 23 allocs/op
BenchmarkVulcan_ParseParam 1000000 1148 ns/op 98 B/op 3 allocs/op
BenchmarkAce_Parse2Params 3000000 539 ns/op 64 B/op 1 allocs/op
BenchmarkBear_Parse2Params 1000000 1778 ns/op 496 B/op 5 allocs/op
BenchmarkBeego_Parse2Params 1000000 2519 ns/op 368 B/op 4 allocs/op
BenchmarkBone_Parse2Params 1000000 2596 ns/op 720 B/op 5 allocs/op
BenchmarkDenco_Parse2Params 3000000 492 ns/op 64 B/op 1 allocs/op
BenchmarkEcho_Parse2Params 3000000 484 ns/op 32 B/op 1 allocs/op
BenchmarkGin_Parse2Params 10000000 193 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_Parse2Params 1000000 2575 ns/op 712 B/op 9 allocs/op
BenchmarkGoji_Parse2Params 1000000 1373 ns/op 336 B/op 2 allocs/op
BenchmarkGojiv2_Parse2Params 500000 2416 ns/op 960 B/op 8 allocs/op
BenchmarkGoJsonRest_Parse2Params 300000 3452 ns/op 713 B/op 14 allocs/op
BenchmarkGoRestful_Parse2Params 100000 17719 ns/op 6008 B/op 25 allocs/op
BenchmarkGorillaMux_Parse2Params 300000 5102 ns/op 1088 B/op 11 allocs/op
BenchmarkHttpRouter_Parse2Params 5000000 303 ns/op 64 B/op 1 allocs/op
BenchmarkHttpTreeMux_Parse2Params 1000000 1372 ns/op 384 B/op 4 allocs/op
BenchmarkKocha_Parse2Params 2000000 874 ns/op 128 B/op 5 allocs/op
BenchmarkLARS_Parse2Params 10000000 192 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_Parse2Params 500000 3871 ns/op 1056 B/op 10 allocs/op
BenchmarkMartini_Parse2Params 200000 9954 ns/op 1152 B/op 11 allocs/op
BenchmarkPat_Parse2Params 500000 4194 ns/op 832 B/op 17 allocs/op
BenchmarkPossum_Parse2Params 1000000 2121 ns/op 560 B/op 6 allocs/op
BenchmarkR2router_Parse2Params 1000000 1415 ns/op 432 B/op 5 allocs/op
BenchmarkRivet_Parse2Params 3000000 457 ns/op 96 B/op 1 allocs/op
BenchmarkTango_Parse2Params 1000000 1914 ns/op 312 B/op 8 allocs/op
BenchmarkTigerTonic_Parse2Params 300000 6895 ns/op 1408 B/op 24 allocs/op
BenchmarkTraffic_Parse2Params 200000 8317 ns/op 2040 B/op 22 allocs/op
BenchmarkVulcan_Parse2Params 1000000 1274 ns/op 98 B/op 3 allocs/op
BenchmarkAce_ParseAll 200000 10401 ns/op 640 B/op 16 allocs/op
BenchmarkBear_ParseAll 50000 37743 ns/op 8928 B/op 110 allocs/op
BenchmarkBeego_ParseAll 20000 63193 ns/op 9568 B/op 104 allocs/op
BenchmarkBone_ParseAll 20000 61767 ns/op 14160 B/op 131 allocs/op
BenchmarkDenco_ParseAll 300000 7036 ns/op 928 B/op 16 allocs/op
BenchmarkEcho_ParseAll 200000 11824 ns/op 832 B/op 26 allocs/op
BenchmarkGin_ParseAll 300000 4199 ns/op 0 B/op 0 allocs/op
BenchmarkGocraftWeb_ParseAll 30000 51758 ns/op 13728 B/op 181 allocs/op
BenchmarkGoji_ParseAll 50000 29614 ns/op 5376 B/op 32 allocs/op
BenchmarkGojiv2_ParseAll 20000 68676 ns/op 24464 B/op 199 allocs/op
BenchmarkGoJsonRest_ParseAll 20000 76135 ns/op 13866 B/op 321 allocs/op
BenchmarkGoRestful_ParseAll 5000 389487 ns/op 110928 B/op 600 allocs/op
BenchmarkGorillaMux_ParseAll 10000 221250 ns/op 24864 B/op 292 allocs/op
BenchmarkHttpRouter_ParseAll 200000 6444 ns/op 640 B/op 16 allocs/op
BenchmarkHttpTreeMux_ParseAll 50000 30702 ns/op 5728 B/op 51 allocs/op
BenchmarkKocha_ParseAll 200000 13712 ns/op 1112 B/op 54 allocs/op
BenchmarkLARS_ParseAll 300000 6925 ns/op 0 B/op 0 allocs/op
BenchmarkMacaron_ParseAll 20000 96278 ns/op 24576 B/op 250 allocs/op
BenchmarkMartini_ParseAll 5000 271352 ns/op 25072 B/op 253 allocs/op
BenchmarkPat_ParseAll 20000 74941 ns/op 17264 B/op 343 allocs/op
BenchmarkPossum_ParseAll 50000 39947 ns/op 10816 B/op 78 allocs/op
BenchmarkR2router_ParseAll 50000 42479 ns/op 8352 B/op 120 allocs/op
BenchmarkRivet_ParseAll 200000 7726 ns/op 912 B/op 16 allocs/op
BenchmarkTango_ParseAll 30000 50014 ns/op 7168 B/op 208 allocs/op
BenchmarkTigerTonic_ParseAll 10000 106550 ns/op 19728 B/op 379 allocs/op
BenchmarkTraffic_ParseAll 10000 216037 ns/op 57776 B/op 642 allocs/op
BenchmarkVulcan_ParseAll 50000 34379 ns/op 2548 B/op 78 allocs/op

 CHANGELOG

CHANGELOG

Gin 1.3.0

	[NEW] Add func (*Context) QueryMap [https://godoc.org/github.com/gin-gonic/gin#Context.QueryMap], func (*Context) GetQueryMap [https://godoc.org/github.com/gin-gonic/gin#Context.GetQueryMap], func (*Context) PostFormMap [https://godoc.org/github.com/gin-gonic/gin#Context.PostFormMap] and func (*Context) GetPostFormMap [https://godoc.org/github.com/gin-gonic/gin#Context.GetPostFormMap] to support type map[string]string as query string or form parameters, see #1383 [https://github.com/gin-gonic/gin/pull/1383]

	[NEW] Add func (*Context) AsciiJSON [https://godoc.org/github.com/gin-gonic/gin#Context.AsciiJSON], see #1358 [https://github.com/gin-gonic/gin/pull/1358]

	[NEW] Add Pusher() in type ResponseWriter [https://godoc.org/github.com/gin-gonic/gin#ResponseWriter] for supporting http2 push, see #1273 [https://github.com/gin-gonic/gin/pull/1273]

	[NEW] Add func (*Context) DataFromReader [https://godoc.org/github.com/gin-gonic/gin#Context.DataFromReader] for serving dynamic data, see #1304 [https://github.com/gin-gonic/gin/pull/1304]

	[NEW] Add func (*Context) ShouldBindBodyWith [https://godoc.org/github.com/gin-gonic/gin#Context.ShouldBindBodyWith] allowing to call binding multiple times, see #1341 [https://github.com/gin-gonic/gin/pull/1341]

	[NEW] Support pointers in form binding, see #1336 [https://github.com/gin-gonic/gin/pull/1336]

	[NEW] Add func (*Context) JSONP [https://godoc.org/github.com/gin-gonic/gin#Context.JSONP], see #1333 [https://github.com/gin-gonic/gin/pull/1333]

	[NEW] Support default value in form binding, see #1138 [https://github.com/gin-gonic/gin/pull/1138]

	[NEW] Expose validator engine in type StructValidator [https://godoc.org/github.com/gin-gonic/gin/binding#StructValidator], see #1277 [https://github.com/gin-gonic/gin/pull/1277]

	[NEW] Add func (*Context) ShouldBind [https://godoc.org/github.com/gin-gonic/gin#Context.ShouldBind], func (*Context) ShouldBindQuery [https://godoc.org/github.com/gin-gonic/gin#Context.ShouldBindQuery] and func (*Context) ShouldBindJSON [https://godoc.org/github.com/gin-gonic/gin#Context.ShouldBindJSON], see #1047 [https://github.com/gin-gonic/gin/pull/1047]

	[NEW] Add support for time.Time location in form binding, see #1117 [https://github.com/gin-gonic/gin/pull/1117]

	[NEW] Add func (*Context) BindQuery [https://godoc.org/github.com/gin-gonic/gin#Context.BindQuery], see #1029 [https://github.com/gin-gonic/gin/pull/1029]

	[NEW] Make jsonite [https://github.com/json-iterator/go] optional with build tags, see #1026 [https://github.com/gin-gonic/gin/pull/1026]

	[NEW] Show query string in logger, see #999 [https://github.com/gin-gonic/gin/pull/999]

	[NEW] Add func (*Context) SecureJSON [https://godoc.org/github.com/gin-gonic/gin#Context.SecureJSON], see #987 [https://github.com/gin-gonic/gin/pull/987] and #993 [https://github.com/gin-gonic/gin/pull/993]

	[DEPRECATE] func (*Context) GetCookie for func (*Context) Cookie [https://godoc.org/github.com/gin-gonic/gin#Context.Cookie]

	[FIX] Don’t display color tags if func DisableConsoleColor [https://godoc.org/github.com/gin-gonic/gin#DisableConsoleColor] called, see #1072 [https://github.com/gin-gonic/gin/pull/1072]

	[FIX] Gin Mode "" when calling func Mode [https://godoc.org/github.com/gin-gonic/gin#Mode] now returns const DebugMode, see #1250 [https://github.com/gin-gonic/gin/pull/1250]

	[FIX] Flush() now doesn’t overwrite responseWriter status code, see #1460 [https://github.com/gin-gonic/gin/pull/1460]

Gin 1.2.0

	[NEW] Switch from godeps to govendor

	[NEW] Add support for Let’s Encrypt via gin-gonic/autotls

	[NEW] Improve README examples and add extra at examples folder

	[NEW] Improved support with App Engine

	[NEW] Add custom template delimiters, see #860

	[NEW] Add Template Func Maps, see #962

	[NEW] Add *context.Handler(), see #928

	[NEW] Add *context.GetRawData()

	[NEW] Add *context.GetHeader() (request)

	[NEW] Add *context.AbortWithStatusJSON() (JSON content type)

	[NEW] Add *context.Keys type cast helpers

	[NEW] Add *context.ShouldBindWith()

	[NEW] Add *context.MustBindWith()

	[NEW] Add *engine.SetFuncMap()

	[DEPRECATE] On next release: *context.BindWith(), see #855

	[FIX] Refactor render

	[FIX] Reworked tests

	[FIX] logger now supports cygwin

	[FIX] Use X-Forwarded-For before X-Real-Ip

	[FIX] time.Time binding (#904)

Gin 1.1.4

	[NEW] Support google appengine for IsTerminal func

Gin 1.1.3

	[FIX] Reverted Logger: skip ANSI color commands

Gin 1.1

	[NEW] Implement QueryArray and PostArray methods

	[NEW] Refactor GetQuery and GetPostForm

	[NEW] Add contribution guide

	[FIX] Corrected typos in README

	[FIX] Removed additional Iota

	[FIX] Changed imports to gopkg instead of github in README (#733)

	[FIX] Logger: skip ANSI color commands if output is not a tty

Gin 1.0rc2 (…)

	[PERFORMANCE] Fast path for writing Content-Type.

	[PERFORMANCE] Much faster 404 routing

	[PERFORMANCE] Allocation optimizations

	[PERFORMANCE] Faster root tree lookup

	[PERFORMANCE] Zero overhead, String() and JSON() rendering.

	[PERFORMANCE] Faster ClientIP parsing

	[PERFORMANCE] Much faster SSE implementation

	[NEW] Benchmarks suite

	[NEW] Bind validation can be disabled and replaced with custom validators.

	[NEW] More flexible HTML render

	[NEW] Multipart and PostForm bindings

	[NEW] Adds method to return all the registered routes

	[NEW] Context.HandlerName() returns the main handler’s name

	[NEW] Adds Error.IsType() helper

	[FIX] Binding multipart form

	[FIX] Integration tests

	[FIX] Crash when binding non struct object in Context.

	[FIX] RunTLS() implementation

	[FIX] Logger() unit tests

	[FIX] Adds SetHTMLTemplate() warning

	[FIX] Context.IsAborted()

	[FIX] More unit tests

	[FIX] JSON, XML, HTML renders accept custom content-types

	[FIX] gin.AbortIndex is unexported

	[FIX] Better approach to avoid directory listing in StaticFS()

	[FIX] Context.ClientIP() always returns the IP with trimmed spaces.

	[FIX] Better warning when running in debug mode.

	[FIX] Google App Engine integration. debugPrint does not use os.Stdout

	[FIX] Fixes integer overflow in error type

	[FIX] Error implements the json.Marshaller interface

	[FIX] MIT license in every file

Gin 1.0rc1 (May 22, 2015)

	[PERFORMANCE] Zero allocation router

	[PERFORMANCE] Faster JSON, XML and text rendering

	[PERFORMANCE] Custom hand optimized HttpRouter for Gin

	[PERFORMANCE] Misc code optimizations. Inlining, tail call optimizations

	[NEW] Built-in support for golang.org/x/net/context

	[NEW] Any(path, handler). Create a route that matches any path

	[NEW] Refactored rendering pipeline (faster and static typeded)

	[NEW] Refactored errors API

	[NEW] IndentedJSON() prints pretty JSON

	[NEW] Added gin.DefaultWriter

	[NEW] UNIX socket support

	[NEW] RouterGroup.BasePath is exposed

	[NEW] JSON validation using go-validate-yourself (very powerful options)

	[NEW] Completed suite of unit tests

	[NEW] HTTP streaming with c.Stream()

	[NEW] StaticFile() creates a router for serving just one file.

	[NEW] StaticFS() has an option to disable directory listing.

	[NEW] StaticFS() for serving static files through virtual filesystems

	[NEW] Server-Sent Events native support

	[NEW] WrapF() and WrapH() helpers for wrapping http.HandlerFunc and http.Handler

	[NEW] Added LoggerWithWriter() middleware

	[NEW] Added RecoveryWithWriter() middleware

	[NEW] Added DefaultPostFormValue()

	[NEW] Added DefaultFormValue()

	[NEW] Added DefaultParamValue()

	[FIX] BasicAuth() when using custom realm

	[FIX] Bug when serving static files in nested routing group

	[FIX] Redirect using built-in http.Redirect()

	[FIX] Logger when printing the requested path

	[FIX] Documentation typos

	[FIX] Context.Engine renamed to Context.engine

	[FIX] Better debugging messages

	[FIX] ErrorLogger

	[FIX] Debug HTTP render

	[FIX] Refactored binding and render modules

	[FIX] Refactored Context initialization

	[FIX] Refactored BasicAuth()

	[FIX] NoMethod/NoRoute handlers

	[FIX] Hijacking http

	[FIX] Better support for Google App Engine (using log instead of fmt)

Gin 0.6 (Mar 9, 2015)

	[NEW] Support multipart/form-data

	[NEW] NoMethod handler

	[NEW] Validate sub structures

	[NEW] Support for HTTP Realm Auth

	[FIX] Unsigned integers in binding

	[FIX] Improve color logger

Gin 0.5 (Feb 7, 2015)

	[NEW] Content Negotiation

	[FIX] Solved security bug that allow a client to spoof ip

	[FIX] Fix unexported/ignored fields in binding

Gin 0.4 (Aug 21, 2014)

	[NEW] Development mode

	[NEW] Unit tests

	[NEW] Add Content.Redirect()

	[FIX] Deferring WriteHeader()

	[FIX] Improved documentation for model binding

Gin 0.3 (Jul 18, 2014)

	[PERFORMANCE] Normal log and error log are printed in the same call.

	[PERFORMANCE] Improve performance of NoRouter()

	[PERFORMANCE] Improve context’s memory locality, reduce CPU cache faults.

	[NEW] Flexible rendering API

	[NEW] Add Context.File()

	[NEW] Add shorcut RunTLS() for http.ListenAndServeTLS

	[FIX] Rename NotFound404() to NoRoute()

	[FIX] Errors in context are purged

	[FIX] Adds HEAD method in Static file serving

	[FIX] Refactors Static() file serving

	[FIX] Using keyed initialization to fix app-engine integration

	[FIX] Can’t unmarshal JSON array, #63

	[FIX] Renaming Context.Req to Context.Request

	[FIX] Check application/x-www-form-urlencoded when parsing form

Gin 0.2b (Jul 08, 2014)

	[PERFORMANCE] Using sync.Pool to allocatio/gc overhead

	[NEW] Travis CI integration

	[NEW] Completely new logger

	[NEW] New API for serving static files. gin.Static()

	[NEW] gin.H() can be serialized into XML

	[NEW] Typed errors. Errors can be typed. Internet/external/custom.

	[NEW] Support for Godeps

	[NEW] Travis/Godocs badges in README

	[NEW] New Bind() and BindWith() methods for parsing request body.

	[NEW] Add Content.Copy()

	[NEW] Add context.LastError()

	[NEW] Add shorcut for OPTIONS HTTP method

	[FIX] Tons of README fixes

	[FIX] Header is written before body

	[FIX] BasicAuth() and changes API a little bit

	[FIX] Recovery() middleware only prints panics

	[FIX] Context.Get() does not panic anymore. Use MustGet() instead.

	[FIX] Multiple http.WriteHeader() in NotFound handlers

	[FIX] Engine.Run() panics if http server can’t be setted up

	[FIX] Crash when route path doesn’t start with ‘/’

	[FIX] Do not update header when status code is negative

	[FIX] Setting response headers before calling WriteHeader in context.String()

	[FIX] Add MIT license

	[FIX] Changes behaviour of ErrorLogger() and Logger()

 Contributor Covenant Code of Conduct

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at teamgingonic@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

 Contributing

Contributing

	With issues:

	Use the search tool before opening a new issue.

	Please provide source code and commit sha if you found a bug.

	Review existing issues and provide feedback or react to them.

	With pull requests:

	Open your pull request against master

	Your pull request should have no more than two commits, if not you should squash them.

	It should pass all tests in the available continuous integrations systems such as TravisCI.

	You should add/modify tests to cover your proposed code changes.

	If your pull request contains a new feature, please document it on the README.

 Gin Web Framework

Gin Web Framework

[image: ../../../../_images/gin.svg]Build Status [https://travis-ci.org/gin-gonic/gin]
[image: ../../../../_images/badge1.svg]codecov [https://codecov.io/gh/gin-gonic/gin]
[image: ../../../../_images/gin1.svg]Go Report Card [https://goreportcard.com/report/github.com/gin-gonic/gin]
[image: ../../../../_images/gin2.svg]GoDoc [https://godoc.org/github.com/gin-gonic/gin]
[image: ../../../../_images/Join%20Chat.svg]Join the chat at https://gitter.im/gin-gonic/gin [https://gitter.im/gin-gonic/gin?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
[image: ../../../../_images/badge2.svg]Sourcegraph [https://sourcegraph.com/github.com/gin-gonic/gin?badge]
[image: ../../../../_images/users.svg]Open Source Helpers [https://www.codetriage.com/gin-gonic/gin]
[image: ../../../../_images/gin3.svg]Release [https://github.com/gin-gonic/gin/releases]

Gin is a web framework written in Go (Golang). It features a martini-like API with much better performance, up to 40 times faster thanks to httprouter [https://github.com/julienschmidt/httprouter]. If you need performance and good productivity, you will love Gin.

Contents

	Installation

	Prerequisite

	Quick start

	Benchmarks

	Gin v1.stable

	Build with jsoniter

	API Examples

	Using GET,POST,PUT,PATCH,DELETE and OPTIONS

	Parameters in path

	Querystring parameters

	Multipart/Urlencoded Form

	Another example: query + post form

	Map as querystring or postform parameters

	Upload files

	Grouping routes

	Blank Gin without middleware by default

	Using middleware

	How to write log file

	Custom Log Format

	Model binding and validation

	Custom Validators

	Only Bind Query String

	Bind Query String or Post Data

	Bind Uri

	Bind HTML checkboxes

	Multipart/Urlencoded binding

	XML, JSON, YAML and ProtoBuf rendering

	JSONP rendering

	Serving static files

	Serving data from reader

	HTML rendering

	Multitemplate

	Redirects

	Custom Middleware

	Using BasicAuth() middleware

	Goroutines inside a middleware

	Custom HTTP configuration

	Support Let’s Encrypt

	Run multiple service using Gin

	Graceful restart or stop

	Build a single binary with templates

	Bind form-data request with custom struct

	Try to bind body into different structs

	http2 server push

	Define format for the log of routes

	Set and get a cookie

	Testing

	Users

Installation

To install Gin package, you need to install Go and set your Go workspace first.

	Download and install it:

$ go get -u github.com/gin-gonic/gin

	Import it in your code:

import "github.com/gin-gonic/gin"

	(Optional) Import net/http. This is required for example if using constants such as http.StatusOK.

import "net/http"

Use a vendor tool like Govendor [https://github.com/kardianos/govendor]

	go get govendor

$ go get github.com/kardianos/govendor

	Create your project folder and cd inside

$ mkdir -p $GOPATH/src/github.com/myusername/project && cd "$_"

	Vendor init your project and add gin

$ govendor init
$ govendor fetch github.com/gin-gonic/gin@v1.3

	Copy a starting template inside your project

$ curl https://raw.githubusercontent.com/gin-gonic/examples/master/basic/main.go > main.go

	Run your project

$ go run main.go

Prerequisite

Now Gin requires Go 1.6 or later and Go 1.7 will be required soon.

Quick start

assume the following codes in example.go file
$ cat example.go

package main

import "github.com/gin-gonic/gin"

func main() {
	r := gin.Default()
	r.GET("/ping", func(c *gin.Context) {
		c.JSON(200, gin.H{
			"message": "pong",
		})
	})
	r.Run() // listen and serve on 0.0.0.0:8080
}

run example.go and visit 0.0.0.0:8080/ping on browser
$ go run example.go

Benchmarks

Gin uses a custom version of HttpRouter [https://github.com/julienschmidt/httprouter]

See all benchmarks

Benchmark name | (1) | (2) | (3) 		 | (4)
——————————————–|———–:|————:|———–:|———:
BenchmarkGin_GithubAll | 30000 | 48375 | 0 | 0
BenchmarkAce_GithubAll | 10000 | 134059 | 13792 | 167
BenchmarkBear_GithubAll | 5000 | 534445 | 86448 | 943
BenchmarkBeego_GithubAll | 3000 | 592444 | 74705 | 812
BenchmarkBone_GithubAll | 200 | 6957308 | 698784 | 8453
BenchmarkDenco_GithubAll | 10000 | 158819 | 20224 | 167
BenchmarkEcho_GithubAll | 10000 | 154700 | 6496 | 203
BenchmarkGocraftWeb_GithubAll | 3000 | 570806 | 131656 | 1686
BenchmarkGoji_GithubAll | 2000 | 818034 | 56112 | 334
BenchmarkGojiv2_GithubAll | 2000 | 1213973 | 274768 | 3712
BenchmarkGoJsonRest_GithubAll | 2000 | 785796 | 134371 | 2737
BenchmarkGoRestful_GithubAll | 300 | 5238188 | 689672 | 4519
BenchmarkGorillaMux_GithubAll | 100 | 10257726 | 211840 | 2272
BenchmarkHttpRouter_GithubAll | 20000 | 105414 | 13792 | 167
BenchmarkHttpTreeMux_GithubAll | 10000 | 319934 | 65856 | 671
BenchmarkKocha_GithubAll | 10000 | 209442 | 23304 | 843
BenchmarkLARS_GithubAll | 20000 | 62565 | 0 | 0
BenchmarkMacaron_GithubAll | 2000 | 1161270 | 204194 | 2000
BenchmarkMartini_GithubAll | 200 | 9991713 | 226549 | 2325
BenchmarkPat_GithubAll | 200 | 5590793 | 1499568 | 27435
BenchmarkPossum_GithubAll | 10000 | 319768 | 84448 | 609
BenchmarkR2router_GithubAll | 10000 | 305134 | 77328 | 979
BenchmarkRivet_GithubAll | 10000 | 132134 | 16272 | 167
BenchmarkTango_GithubAll | 3000 | 552754 | 63826 | 1618
BenchmarkTigerTonic_GithubAll | 1000 | 1439483 | 239104 | 5374
BenchmarkTraffic_GithubAll | 100 | 11383067 | 2659329 | 21848
BenchmarkVulcan_GithubAll | 5000 | 394253 | 19894 | 609

	(1): Total Repetitions achieved in constant time, higher means more confident result

	(2): Single Repetition Duration (ns/op), lower is better

	(3): Heap Memory (B/op), lower is better

	(4): Average Allocations per Repetition (allocs/op), lower is better

Gin v1. stable

	[x] Zero allocation router.

	[x] Still the fastest http router and framework. From routing to writing.

	[x] Complete suite of unit tests

	[x] Battle tested

	[x] API frozen, new releases will not break your code.

Build with jsoniter [https://github.com/json-iterator/go]

Gin uses encoding/json as default json package but you can change to jsoniter [https://github.com/json-iterator/go] by build from other tags.

$ go build -tags=jsoniter .

API Examples

You can find a number of ready-to-run examples at Gin examples repository [https://github.com/gin-gonic/examples].

Using GET, POST, PUT, PATCH, DELETE and OPTIONS

func main() {
	// Creates a gin router with default middleware:
	// logger and recovery (crash-free) middleware
	router := gin.Default()

	router.GET("/someGet", getting)
	router.POST("/somePost", posting)
	router.PUT("/somePut", putting)
	router.DELETE("/someDelete", deleting)
	router.PATCH("/somePatch", patching)
	router.HEAD("/someHead", head)
	router.OPTIONS("/someOptions", options)

	// By default it serves on :8080 unless a
	// PORT environment variable was defined.
	router.Run()
	// router.Run(":3000") for a hard coded port
}

Parameters in path

func main() {
	router := gin.Default()

	// This handler will match /user/john but will not match /user/ or /user
	router.GET("/user/:name", func(c *gin.Context) {
		name := c.Param("name")
		c.String(http.StatusOK, "Hello %s", name)
	})

	// However, this one will match /user/john/ and also /user/john/send
	// If no other routers match /user/john, it will redirect to /user/john/
	router.GET("/user/:name/*action", func(c *gin.Context) {
		name := c.Param("name")
		action := c.Param("action")
		message := name + " is " + action
		c.String(http.StatusOK, message)
	})

	router.Run(":8080")
}

Querystring parameters

func main() {
	router := gin.Default()

	// Query string parameters are parsed using the existing underlying request object.
	// The request responds to a url matching: /welcome?firstname=Jane&lastname=Doe
	router.GET("/welcome", func(c *gin.Context) {
		firstname := c.DefaultQuery("firstname", "Guest")
		lastname := c.Query("lastname") // shortcut for c.Request.URL.Query().Get("lastname")

		c.String(http.StatusOK, "Hello %s %s", firstname, lastname)
	})
	router.Run(":8080")
}

Multipart/Urlencoded Form

func main() {
	router := gin.Default()

	router.POST("/form_post", func(c *gin.Context) {
		message := c.PostForm("message")
		nick := c.DefaultPostForm("nick", "anonymous")

		c.JSON(200, gin.H{
			"status": "posted",
			"message": message,
			"nick": nick,
		})
	})
	router.Run(":8080")
}

Another example: query + post form

POST /post?id=1234&page=1 HTTP/1.1
Content-Type: application/x-www-form-urlencoded

name=manu&message=this_is_great

func main() {
	router := gin.Default()

	router.POST("/post", func(c *gin.Context) {

		id := c.Query("id")
		page := c.DefaultQuery("page", "0")
		name := c.PostForm("name")
		message := c.PostForm("message")

		fmt.Printf("id: %s; page: %s; name: %s; message: %s", id, page, name, message)
	})
	router.Run(":8080")
}

id: 1234; page: 1; name: manu; message: this_is_great

Map as querystring or postform parameters

POST /post?ids[a]=1234&ids[b]=hello HTTP/1.1
Content-Type: application/x-www-form-urlencoded

names[first]=thinkerou&names[second]=tianou

func main() {
	router := gin.Default()

	router.POST("/post", func(c *gin.Context) {

		ids := c.QueryMap("ids")
		names := c.PostFormMap("names")

		fmt.Printf("ids: %v; names: %v", ids, names)
	})
	router.Run(":8080")
}

ids: map[b:hello a:1234], names: map[second:tianou first:thinkerou]

Upload files

Single file

References issue #774 [https://github.com/gin-gonic/gin/issues/774] and detail example code [https://github.com/gin-gonic/examples/tree/master/upload-file/single].

file.Filename SHOULD NOT be trusted. See Content-Disposition on MDN [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition#Directives] and #1693 [https://github.com/gin-gonic/gin/issues/1693]

The filename is always optional and must not be used blindly by the application: path information should be stripped, and conversion to the server file system rules should be done.

func main() {
	router := gin.Default()
	// Set a lower memory limit for multipart forms (default is 32 MiB)
	// router.MaxMultipartMemory = 8 << 20 // 8 MiB
	router.POST("/upload", func(c *gin.Context) {
		// single file
		file, _ := c.FormFile("file")
		log.Println(file.Filename)

		// Upload the file to specific dst.
		// c.SaveUploadedFile(file, dst)

		c.String(http.StatusOK, fmt.Sprintf("'%s' uploaded!", file.Filename))
	})
	router.Run(":8080")
}

How to curl:

curl -X POST http://localhost:8080/upload \
 -F "file=@/Users/appleboy/test.zip" \
 -H "Content-Type: multipart/form-data"

Multiple files

See the detail example code [https://github.com/gin-gonic/examples/tree/master/upload-file/multiple].

func main() {
	router := gin.Default()
	// Set a lower memory limit for multipart forms (default is 32 MiB)
	// router.MaxMultipartMemory = 8 << 20 // 8 MiB
	router.POST("/upload", func(c *gin.Context) {
		// Multipart form
		form, _ := c.MultipartForm()
		files := form.File["upload[]"]

		for _, file := range files {
			log.Println(file.Filename)

			// Upload the file to specific dst.
			// c.SaveUploadedFile(file, dst)
		}
		c.String(http.StatusOK, fmt.Sprintf("%d files uploaded!", len(files)))
	})
	router.Run(":8080")
}

How to curl:

curl -X POST http://localhost:8080/upload \
 -F "upload[]=@/Users/appleboy/test1.zip" \
 -F "upload[]=@/Users/appleboy/test2.zip" \
 -H "Content-Type: multipart/form-data"

Grouping routes

func main() {
	router := gin.Default()

	// Simple group: v1
	v1 := router.Group("/v1")
	{
		v1.POST("/login", loginEndpoint)
		v1.POST("/submit", submitEndpoint)
		v1.POST("/read", readEndpoint)
	}

	// Simple group: v2
	v2 := router.Group("/v2")
	{
		v2.POST("/login", loginEndpoint)
		v2.POST("/submit", submitEndpoint)
		v2.POST("/read", readEndpoint)
	}

	router.Run(":8080")
}

Blank Gin without middleware by default

Use

r := gin.New()

instead of

// Default With the Logger and Recovery middleware already attached
r := gin.Default()

Using middleware

func main() {
	// Creates a router without any middleware by default
	r := gin.New()

	// Global middleware
	// Logger middleware will write the logs to gin.DefaultWriter even if you set with GIN_MODE=release.
	// By default gin.DefaultWriter = os.Stdout
	r.Use(gin.Logger())

	// Recovery middleware recovers from any panics and writes a 500 if there was one.
	r.Use(gin.Recovery())

	// Per route middleware, you can add as many as you desire.
	r.GET("/benchmark", MyBenchLogger(), benchEndpoint)

	// Authorization group
	// authorized := r.Group("/", AuthRequired())
	// exactly the same as:
	authorized := r.Group("/")
	// per group middleware! in this case we use the custom created
	// AuthRequired() middleware just in the "authorized" group.
	authorized.Use(AuthRequired())
	{
		authorized.POST("/login", loginEndpoint)
		authorized.POST("/submit", submitEndpoint)
		authorized.POST("/read", readEndpoint)

		// nested group
		testing := authorized.Group("testing")
		testing.GET("/analytics", analyticsEndpoint)
	}

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

How to write log file

func main() {
 // Disable Console Color, you don't need console color when writing the logs to file.
 gin.DisableConsoleColor()

 // Logging to a file.
 f, _ := os.Create("gin.log")
 gin.DefaultWriter = io.MultiWriter(f)

 // Use the following code if you need to write the logs to file and console at the same time.
 // gin.DefaultWriter = io.MultiWriter(f, os.Stdout)

 router := gin.Default()
 router.GET("/ping", func(c *gin.Context) {
 c.String(200, "pong")
 })

 router.Run(":8080")
}

Custom Log Format

func main() {
	router := gin.New()

	// LoggerWithFormatter middleware will write the logs to gin.DefaultWriter
	// By default gin.DefaultWriter = os.Stdout
	router.Use(gin.LoggerWithFormatter(func(param gin.LogFormatterParams) string {

		// your custom format
		return fmt.Sprintf("%s - [%s] \"%s %s %s %d %s \"%s\" %s\"\n",
				param.ClientIP,
				param.TimeStamp.Format(time.RFC1123),
				param.Method,
				param.Path,
				param.Request.Proto,
				param.StatusCode,
				param.Latency,
				param.Request.UserAgent(),
				param.ErrorMessage,
)
	}))
	router.Use(gin.Recovery())

	router.GET("/ping", func(c *gin.Context) {
		c.String(200, "pong")
	})

	router.Run(":8080")
}

Sample Output

::1 - [Fri, 07 Dec 2018 17:04:38 JST] "GET /ping HTTP/1.1 200 122.767µs "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.80 Safari/537.36" "

Controlling Log output coloring

By default, logs output on console should be colorized depending on the detected TTY.

Never colorize logs:

func main() {
 // Disable log's color
 gin.DisableConsoleColor()

 // Creates a gin router with default middleware:
 // logger and recovery (crash-free) middleware
 router := gin.Default()

 router.GET("/ping", func(c *gin.Context) {
 c.String(200, "pong")
 })

 router.Run(":8080")
}

Always colorize logs:

func main() {
 // Force log's color
 gin.ForceConsoleColor()

 // Creates a gin router with default middleware:
 // logger and recovery (crash-free) middleware
 router := gin.Default()

 router.GET("/ping", func(c *gin.Context) {
 c.String(200, "pong")
 })

 router.Run(":8080")
}

Model binding and validation

To bind a request body into a type, use model binding. We currently support binding of JSON, XML, YAML and standard form values (foo=bar&boo=baz).

Gin uses go-playground/validator.v8 [https://github.com/go-playground/validator] for validation. Check the full docs on tags usage here [http://godoc.org/gopkg.in/go-playground/validator.v8#hdr-Baked_In_Validators_and_Tags].

Note that you need to set the corresponding binding tag on all fields you want to bind. For example, when binding from JSON, set json:"fieldname".

Also, Gin provides two sets of methods for binding:

	Type - Must bind

	Methods - Bind, BindJSON, BindXML, BindQuery, BindYAML

	Behavior - These methods use MustBindWith under the hood. If there is a binding error, the request is aborted with c.AbortWithError(400, err).SetType(ErrorTypeBind). This sets the response status code to 400 and the Content-Type header is set to text/plain; charset=utf-8. Note that if you try to set the response code after this, it will result in a warning [GIN-debug] [WARNING] Headers were already written. Wanted to override status code 400 with 422. If you wish to have greater control over the behavior, consider using the ShouldBind equivalent method.

	Type - Should bind

	Methods - ShouldBind, ShouldBindJSON, ShouldBindXML, ShouldBindQuery, ShouldBindYAML

	Behavior - These methods use ShouldBindWith under the hood. If there is a binding error, the error is returned and it is the developer’s responsibility to handle the request and error appropriately.

When using the Bind-method, Gin tries to infer the binder depending on the Content-Type header. If you are sure what you are binding, you can use MustBindWith or ShouldBindWith.

You can also specify that specific fields are required. If a field is decorated with binding:"required" and has a empty value when binding, an error will be returned.

// Binding from JSON
type Login struct {
	User string `form:"user" json:"user" xml:"user" binding:"required"`
	Password string `form:"password" json:"password" xml:"password" binding:"required"`
}

func main() {
	router := gin.Default()

	// Example for binding JSON ({"user": "manu", "password": "123"})
	router.POST("/loginJSON", func(c *gin.Context) {
		var json Login
		if err := c.ShouldBindJSON(&json); err != nil {
			c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
			return
		}
		
		if json.User != "manu" || json.Password != "123" {
			c.JSON(http.StatusUnauthorized, gin.H{"status": "unauthorized"})
			return
		}
		
		c.JSON(http.StatusOK, gin.H{"status": "you are logged in"})
	})

	// Example for binding XML (
	//	<?xml version="1.0" encoding="UTF-8"?>
	//	<root>
	//		<user>user</user>
	//		<password>123</password>
	//	</root>)
	router.POST("/loginXML", func(c *gin.Context) {
		var xml Login
		if err := c.ShouldBindXML(&xml); err != nil {
			c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
			return
		}
		
		if xml.User != "manu" || xml.Password != "123" {
			c.JSON(http.StatusUnauthorized, gin.H{"status": "unauthorized"})
			return
		}
		
		c.JSON(http.StatusOK, gin.H{"status": "you are logged in"})
	})

	// Example for binding a HTML form (user=manu&password=123)
	router.POST("/loginForm", func(c *gin.Context) {
		var form Login
		// This will infer what binder to use depending on the content-type header.
		if err := c.ShouldBind(&form); err != nil {
			c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
			return
		}
		
		if form.User != "manu" || form.Password != "123" {
			c.JSON(http.StatusUnauthorized, gin.H{"status": "unauthorized"})
			return
		}
		
		c.JSON(http.StatusOK, gin.H{"status": "you are logged in"})
	})

	// Listen and serve on 0.0.0.0:8080
	router.Run(":8080")
}

Sample request

$ curl -v -X POST \
 http://localhost:8080/loginJSON \
 -H 'content-type: application/json' \
 -d '{ "user": "manu" }'
> POST /loginJSON HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.51.0
> Accept: */*
> content-type: application/json
> Content-Length: 18
>
* upload completely sent off: 18 out of 18 bytes
< HTTP/1.1 400 Bad Request
< Content-Type: application/json; charset=utf-8
< Date: Fri, 04 Aug 2017 03:51:31 GMT
< Content-Length: 100
<
{"error":"Key: 'Login.Password' Error:Field validation for 'Password' failed on the 'required' tag"}

Skip validate

When running the above example using the above the curl command, it returns error. Because the example use binding:"required" for Password. If use binding:"-" for Password, then it will not return error when running the above example again.

Custom Validators

It is also possible to register custom validators. See the example code [https://github.com/gin-gonic/examples/tree/master/custom-validation/server.go].

package main

import (
	"net/http"
	"reflect"
	"time"

	"github.com/gin-gonic/gin"
	"github.com/gin-gonic/gin/binding"
	"gopkg.in/go-playground/validator.v8"
)

// Booking contains binded and validated data.
type Booking struct {
	CheckIn time.Time `form:"check_in" binding:"required,bookabledate" time_format:"2006-01-02"`
	CheckOut time.Time `form:"check_out" binding:"required,gtfield=CheckIn" time_format:"2006-01-02"`
}

func bookableDate(
	v *validator.Validate, topStruct reflect.Value, currentStructOrField reflect.Value,
	field reflect.Value, fieldType reflect.Type, fieldKind reflect.Kind, param string,
) bool {
	if date, ok := field.Interface().(time.Time); ok {
		today := time.Now()
		if today.Year() > date.Year() || today.YearDay() > date.YearDay() {
			return false
		}
	}
	return true
}

func main() {
	route := gin.Default()

	if v, ok := binding.Validator.Engine().(*validator.Validate); ok {
		v.RegisterValidation("bookabledate", bookableDate)
	}

	route.GET("/bookable", getBookable)
	route.Run(":8085")
}

func getBookable(c *gin.Context) {
	var b Booking
	if err := c.ShouldBindWith(&b, binding.Query); err == nil {
		c.JSON(http.StatusOK, gin.H{"message": "Booking dates are valid!"})
	} else {
		c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
	}
}

$ curl "localhost:8085/bookable?check_in=2018-04-16&check_out=2018-04-17"
{"message":"Booking dates are valid!"}

$ curl "localhost:8085/bookable?check_in=2018-03-08&check_out=2018-03-09"
{"error":"Key: 'Booking.CheckIn' Error:Field validation for 'CheckIn' failed on the 'bookabledate' tag"}

Struct level validations [https://github.com/go-playground/validator/releases/tag/v8.7] can also be registered this way.
See the struct-lvl-validation example [https://github.com/gin-gonic/examples/tree/master/struct-lvl-validations] to learn more.

Only Bind Query String

ShouldBindQuery function only binds the query params and not the post data. See the detail information [https://github.com/gin-gonic/gin/issues/742#issuecomment-315953017].

package main

import (
	"log"

	"github.com/gin-gonic/gin"
)

type Person struct {
	Name string `form:"name"`
	Address string `form:"address"`
}

func main() {
	route := gin.Default()
	route.Any("/testing", startPage)
	route.Run(":8085")
}

func startPage(c *gin.Context) {
	var person Person
	if c.ShouldBindQuery(&person) == nil {
		log.Println("====== Only Bind By Query String ======")
		log.Println(person.Name)
		log.Println(person.Address)
	}
	c.String(200, "Success")
}

Bind Query String or Post Data

See the detail information [https://github.com/gin-gonic/gin/issues/742#issuecomment-264681292].

package main

import (
	"log"
	"time"

	"github.com/gin-gonic/gin"
)

type Person struct {
	Name string `form:"name"`
	Address string `form:"address"`
	Birthday time.Time `form:"birthday" time_format:"2006-01-02" time_utc:"1"`
}

func main() {
	route := gin.Default()
	route.GET("/testing", startPage)
	route.Run(":8085")
}

func startPage(c *gin.Context) {
	var person Person
	// If `GET`, only `Form` binding engine (`query`) used.
	// If `POST`, first checks the `content-type` for `JSON` or `XML`, then uses `Form` (`form-data`).
	// See more at https://github.com/gin-gonic/gin/blob/master/binding/binding.go#L48
	if c.ShouldBind(&person) == nil {
		log.Println(person.Name)
		log.Println(person.Address)
		log.Println(person.Birthday)
	}

	c.String(200, "Success")
}

Test it with:

$ curl -X GET "localhost:8085/testing?name=appleboy&address=xyz&birthday=1992-03-15"

Bind Uri

See the detail information [https://github.com/gin-gonic/gin/issues/846].

package main

import "github.com/gin-gonic/gin"

type Person struct {
	ID string `uri:"id" binding:"required,uuid"`
	Name string `uri:"name" binding:"required"`
}

func main() {
	route := gin.Default()
	route.GET("/:name/:id", func(c *gin.Context) {
		var person Person
		if err := c.ShouldBindUri(&person); err != nil {
			c.JSON(400, gin.H{"msg": err})
			return
		}
		c.JSON(200, gin.H{"name": person.Name, "uuid": person.ID})
	})
	route.Run(":8088")
}

Test it with:

$ curl -v localhost:8088/thinkerou/987fbc97-4bed-5078-9f07-9141ba07c9f3
$ curl -v localhost:8088/thinkerou/not-uuid

Bind HTML checkboxes

See the detail information [https://github.com/gin-gonic/gin/issues/129#issuecomment-124260092]

main.go

...

type myForm struct {
 Colors []string `form:"colors[]"`
}

...

func formHandler(c *gin.Context) {
 var fakeForm myForm
 c.ShouldBind(&fakeForm)
 c.JSON(200, gin.H{"color": fakeForm.Colors})
}

...

form.html

<form action="/" method="POST">
 <p>Check some colors</p>
 <label for="red">Red</label>
 <input type="checkbox" name="colors[]" value="red" id="red">
 <label for="green">Green</label>
 <input type="checkbox" name="colors[]" value="green" id="green">
 <label for="blue">Blue</label>
 <input type="checkbox" name="colors[]" value="blue" id="blue">
 <input type="submit">
</form>

result:

{"color":["red","green","blue"]}

Multipart/Urlencoded binding

package main

import (
	"github.com/gin-gonic/gin"
)

type LoginForm struct {
	User string `form:"user" binding:"required"`
	Password string `form:"password" binding:"required"`
}

func main() {
	router := gin.Default()
	router.POST("/login", func(c *gin.Context) {
		// you can bind multipart form with explicit binding declaration:
		// c.ShouldBindWith(&form, binding.Form)
		// or you can simply use autobinding with ShouldBind method:
		var form LoginForm
		// in this case proper binding will be automatically selected
		if c.ShouldBind(&form) == nil {
			if form.User == "user" && form.Password == "password" {
				c.JSON(200, gin.H{"status": "you are logged in"})
			} else {
				c.JSON(401, gin.H{"status": "unauthorized"})
			}
		}
	})
	router.Run(":8080")
}

Test it with:

$ curl -v --form user=user --form password=password http://localhost:8080/login

XML, JSON, YAML and ProtoBuf rendering

func main() {
	r := gin.Default()

	// gin.H is a shortcut for map[string]interface{}
	r.GET("/someJSON", func(c *gin.Context) {
		c.JSON(http.StatusOK, gin.H{"message": "hey", "status": http.StatusOK})
	})

	r.GET("/moreJSON", func(c *gin.Context) {
		// You also can use a struct
		var msg struct {
			Name string `json:"user"`
			Message string
			Number int
		}
		msg.Name = "Lena"
		msg.Message = "hey"
		msg.Number = 123
		// Note that msg.Name becomes "user" in the JSON
		// Will output : {"user": "Lena", "Message": "hey", "Number": 123}
		c.JSON(http.StatusOK, msg)
	})

	r.GET("/someXML", func(c *gin.Context) {
		c.XML(http.StatusOK, gin.H{"message": "hey", "status": http.StatusOK})
	})

	r.GET("/someYAML", func(c *gin.Context) {
		c.YAML(http.StatusOK, gin.H{"message": "hey", "status": http.StatusOK})
	})

	r.GET("/someProtoBuf", func(c *gin.Context) {
		reps := []int64{int64(1), int64(2)}
		label := "test"
		// The specific definition of protobuf is written in the testdata/protoexample file.
		data := &protoexample.Test{
			Label: &label,
			Reps: reps,
		}
		// Note that data becomes binary data in the response
		// Will output protoexample.Test protobuf serialized data
		c.ProtoBuf(http.StatusOK, data)
	})

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

SecureJSON

Using SecureJSON to prevent json hijacking. Default prepends "while(1)," to response body if the given struct is array values.

func main() {
	r := gin.Default()

	// You can also use your own secure json prefix
	// r.SecureJsonPrefix(")]}',\n")

	r.GET("/someJSON", func(c *gin.Context) {
		names := []string{"lena", "austin", "foo"}

		// Will output : while(1);["lena","austin","foo"]
		c.SecureJSON(http.StatusOK, names)
	})

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

JSONP

Using JSONP to request data from a server in a different domain. Add callback to response body if the query parameter callback exists.

func main() {
	r := gin.Default()

	r.GET("/JSONP?callback=x", func(c *gin.Context) {
		data := map[string]interface{}{
			"foo": "bar",
		}
		
		//callback is x
		// Will output : x({\"foo\":\"bar\"})
		c.JSONP(http.StatusOK, data)
	})

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

AsciiJSON

Using AsciiJSON to Generates ASCII-only JSON with escaped non-ASCII chracters.

func main() {
	r := gin.Default()

	r.GET("/someJSON", func(c *gin.Context) {
		data := map[string]interface{}{
			"lang": "GO语言",
			"tag": "
",
		}

		// will output : {"lang":"GO\u8bed\u8a00","tag":"\u003cbr\u003e"}
		c.AsciiJSON(http.StatusOK, data)
	})

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

PureJSON

Normally, JSON replaces special HTML characters with their unicode entities, e.g. < becomes \u003c. If you want to encode such characters literally, you can use PureJSON instead.
This feature is unavailable in Go 1.6 and lower.

func main() {
	r := gin.Default()
	
	// Serves unicode entities
	r.GET("/json", func(c *gin.Context) {
		c.JSON(200, gin.H{
			"html": "Hello, world!",
		})
	})
	
	// Serves literal characters
	r.GET("/purejson", func(c *gin.Context) {
		c.PureJSON(200, gin.H{
			"html": "Hello, world!",
		})
	})
	
	// listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

Serving static files

func main() {
	router := gin.Default()
	router.Static("/assets", "./assets")
	router.StaticFS("/more_static", http.Dir("my_file_system"))
	router.StaticFile("/favicon.ico", "./resources/favicon.ico")

	// Listen and serve on 0.0.0.0:8080
	router.Run(":8080")
}

Serving data from reader

func main() {
	router := gin.Default()
	router.GET("/someDataFromReader", func(c *gin.Context) {
		response, err := http.Get("https://raw.githubusercontent.com/gin-gonic/logo/master/color.png")
		if err != nil || response.StatusCode != http.StatusOK {
			c.Status(http.StatusServiceUnavailable)
			return
		}

		reader := response.Body
		contentLength := response.ContentLength
		contentType := response.Header.Get("Content-Type")

		extraHeaders := map[string]string{
			"Content-Disposition": `attachment; filename="gopher.png"`,
		}

		c.DataFromReader(http.StatusOK, contentLength, contentType, reader, extraHeaders)
	})
	router.Run(":8080")
}

HTML rendering

Using LoadHTMLGlob() or LoadHTMLFiles()

func main() {
	router := gin.Default()
	router.LoadHTMLGlob("templates/*")
	//router.LoadHTMLFiles("templates/template1.html", "templates/template2.html")
	router.GET("/index", func(c *gin.Context) {
		c.HTML(http.StatusOK, "index.tmpl", gin.H{
			"title": "Main website",
		})
	})
	router.Run(":8080")
}

templates/index.tmpl

<html>
	<h1>
		{{ .title }}
	</h1>
</html>

Using templates with same name in different directories

func main() {
	router := gin.Default()
	router.LoadHTMLGlob("templates/**/*")
	router.GET("/posts/index", func(c *gin.Context) {
		c.HTML(http.StatusOK, "posts/index.tmpl", gin.H{
			"title": "Posts",
		})
	})
	router.GET("/users/index", func(c *gin.Context) {
		c.HTML(http.StatusOK, "users/index.tmpl", gin.H{
			"title": "Users",
		})
	})
	router.Run(":8080")
}

templates/posts/index.tmpl

{{ define "posts/index.tmpl" }}
<html><h1>
	{{ .title }}
</h1>
<p>Using posts/index.tmpl</p>
</html>
{{ end }}

templates/users/index.tmpl

{{ define "users/index.tmpl" }}
<html><h1>
	{{ .title }}
</h1>
<p>Using users/index.tmpl</p>
</html>
{{ end }}

Custom Template renderer

You can also use your own html template render

import "html/template"

func main() {
	router := gin.Default()
	html := template.Must(template.ParseFiles("file1", "file2"))
	router.SetHTMLTemplate(html)
	router.Run(":8080")
}

Custom Delimiters

You may use custom delims

	r := gin.Default()
	r.Delims("{[{", "}]}")
	r.LoadHTMLGlob("/path/to/templates")

Custom Template Funcs

See the detail example code [https://github.com/gin-gonic/examples/tree/master/template].

main.go

import (
 "fmt"
 "html/template"
 "net/http"
 "time"

 "github.com/gin-gonic/gin"
)

func formatAsDate(t time.Time) string {
 year, month, day := t.Date()
 return fmt.Sprintf("%d%02d/%02d", year, month, day)
}

func main() {
 router := gin.Default()
 router.Delims("{[{", "}]}")
 router.SetFuncMap(template.FuncMap{
 "formatAsDate": formatAsDate,
 })
 router.LoadHTMLFiles("./testdata/template/raw.tmpl")

 router.GET("/raw", func(c *gin.Context) {
 c.HTML(http.StatusOK, "raw.tmpl", map[string]interface{}{
 "now": time.Date(2017, 07, 01, 0, 0, 0, 0, time.UTC),
 })
 })

 router.Run(":8080")
}

raw.tmpl

Date: {[{.now | formatAsDate}]}

Result:

Date: 2017/07/01

Multitemplate

Gin allow by default use only one html.Template. Check a multitemplate render [https://github.com/gin-contrib/multitemplate] for using features like go 1.6 block template.

Redirects

Issuing a HTTP redirect is easy. Both internal and external locations are supported.

r.GET("/test", func(c *gin.Context) {
	c.Redirect(http.StatusMovedPermanently, "http://www.google.com/")
})

Issuing a Router redirect, use HandleContext like below.

r.GET("/test", func(c *gin.Context) {
 c.Request.URL.Path = "/test2"
 r.HandleContext(c)
})
r.GET("/test2", func(c *gin.Context) {
 c.JSON(200, gin.H{"hello": "world"})
})

Custom Middleware

func Logger() gin.HandlerFunc {
	return func(c *gin.Context) {
		t := time.Now()

		// Set example variable
		c.Set("example", "12345")

		// before request

		c.Next()

		// after request
		latency := time.Since(t)
		log.Print(latency)

		// access the status we are sending
		status := c.Writer.Status()
		log.Println(status)
	}
}

func main() {
	r := gin.New()
	r.Use(Logger())

	r.GET("/test", func(c *gin.Context) {
		example := c.MustGet("example").(string)

		// it would print: "12345"
		log.Println(example)
	})

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

Using BasicAuth() middleware

// simulate some private data
var secrets = gin.H{
	"foo": gin.H{"email": "foo@bar.com", "phone": "123433"},
	"austin": gin.H{"email": "austin@example.com", "phone": "666"},
	"lena": gin.H{"email": "lena@guapa.com", "phone": "523443"},
}

func main() {
	r := gin.Default()

	// Group using gin.BasicAuth() middleware
	// gin.Accounts is a shortcut for map[string]string
	authorized := r.Group("/admin", gin.BasicAuth(gin.Accounts{
		"foo": "bar",
		"austin": "1234",
		"lena": "hello2",
		"manu": "4321",
	}))

	// /admin/secrets endpoint
	// hit "localhost:8080/admin/secrets
	authorized.GET("/secrets", func(c *gin.Context) {
		// get user, it was set by the BasicAuth middleware
		user := c.MustGet(gin.AuthUserKey).(string)
		if secret, ok := secrets[user]; ok {
			c.JSON(http.StatusOK, gin.H{"user": user, "secret": secret})
		} else {
			c.JSON(http.StatusOK, gin.H{"user": user, "secret": "NO SECRET :("})
		}
	})

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

Goroutines inside a middleware

When starting new Goroutines inside a middleware or handler, you SHOULD NOT use the original context inside it, you have to use a read-only copy.

func main() {
	r := gin.Default()

	r.GET("/long_async", func(c *gin.Context) {
		// create copy to be used inside the goroutine
		cCp := c.Copy()
		go func() {
			// simulate a long task with time.Sleep(). 5 seconds
			time.Sleep(5 * time.Second)

			// note that you are using the copied context "cCp", IMPORTANT
			log.Println("Done! in path " + cCp.Request.URL.Path)
		}()
	})

	r.GET("/long_sync", func(c *gin.Context) {
		// simulate a long task with time.Sleep(). 5 seconds
		time.Sleep(5 * time.Second)

		// since we are NOT using a goroutine, we do not have to copy the context
		log.Println("Done! in path " + c.Request.URL.Path)
	})

	// Listen and serve on 0.0.0.0:8080
	r.Run(":8080")
}

Custom HTTP configuration

Use http.ListenAndServe() directly, like this:

func main() {
	router := gin.Default()
	http.ListenAndServe(":8080", router)
}

or

func main() {
	router := gin.Default()

	s := &http.Server{
		Addr: ":8080",
		Handler: router,
		ReadTimeout: 10 * time.Second,
		WriteTimeout: 10 * time.Second,
		MaxHeaderBytes: 1 << 20,
	}
	s.ListenAndServe()
}

Support Let’s Encrypt

example for 1-line LetsEncrypt HTTPS servers.

package main

import (
	"log"

	"github.com/gin-gonic/autotls"
	"github.com/gin-gonic/gin"
)

func main() {
	r := gin.Default()

	// Ping handler
	r.GET("/ping", func(c *gin.Context) {
		c.String(200, "pong")
	})

	log.Fatal(autotls.Run(r, "example1.com", "example2.com"))
}

example for custom autocert manager.

package main

import (
	"log"

	"github.com/gin-gonic/autotls"
	"github.com/gin-gonic/gin"
	"golang.org/x/crypto/acme/autocert"
)

func main() {
	r := gin.Default()

	// Ping handler
	r.GET("/ping", func(c *gin.Context) {
		c.String(200, "pong")
	})

	m := autocert.Manager{
		Prompt: autocert.AcceptTOS,
		HostPolicy: autocert.HostWhitelist("example1.com", "example2.com"),
		Cache: autocert.DirCache("/var/www/.cache"),
	}

	log.Fatal(autotls.RunWithManager(r, &m))
}

Run multiple service using Gin

See the question [https://github.com/gin-gonic/gin/issues/346] and try the following example:

package main

import (
	"log"
	"net/http"
	"time"

	"github.com/gin-gonic/gin"
	"golang.org/x/sync/errgroup"
)

var (
	g errgroup.Group
)

func router01() http.Handler {
	e := gin.New()
	e.Use(gin.Recovery())
	e.GET("/", func(c *gin.Context) {
		c.JSON(
			http.StatusOK,
			gin.H{
				"code": http.StatusOK,
				"error": "Welcome server 01",
			},
)
	})

	return e
}

func router02() http.Handler {
	e := gin.New()
	e.Use(gin.Recovery())
	e.GET("/", func(c *gin.Context) {
		c.JSON(
			http.StatusOK,
			gin.H{
				"code": http.StatusOK,
				"error": "Welcome server 02",
			},
)
	})

	return e
}

func main() {
	server01 := &http.Server{
		Addr: ":8080",
		Handler: router01(),
		ReadTimeout: 5 * time.Second,
		WriteTimeout: 10 * time.Second,
	}

	server02 := &http.Server{
		Addr: ":8081",
		Handler: router02(),
		ReadTimeout: 5 * time.Second,
		WriteTimeout: 10 * time.Second,
	}

	g.Go(func() error {
		return server01.ListenAndServe()
	})

	g.Go(func() error {
		return server02.ListenAndServe()
	})

	if err := g.Wait(); err != nil {
		log.Fatal(err)
	}
}

Graceful restart or stop

Do you want to graceful restart or stop your web server?
There are some ways this can be done.

We can use fvbock/endless [https://github.com/fvbock/endless] to replace the default ListenAndServe. Refer issue #296 [https://github.com/gin-gonic/gin/issues/296] for more details.

router := gin.Default()
router.GET("/", handler)
// [...]
endless.ListenAndServe(":4242", router)

An alternative to endless:

	manners [https://github.com/braintree/manners]: A polite Go HTTP server that shuts down gracefully.

	graceful [https://github.com/tylerb/graceful]: Graceful is a Go package enabling graceful shutdown of an http.Handler server.

	grace [https://github.com/facebookgo/grace]: Graceful restart & zero downtime deploy for Go servers.

If you are using Go 1.8, you may not need to use this library! Consider using http.Server’s built-in Shutdown() [https://golang.org/pkg/net/http/#Server.Shutdown] method for graceful shutdowns. See the full graceful-shutdown [https://github.com/gin-gonic/examples/tree/master/graceful-shutdown] example with gin.

// +build go1.8

package main

import (
	"context"
	"log"
	"net/http"
	"os"
	"os/signal"
	"syscall"
	"time"

	"github.com/gin-gonic/gin"
)

func main() {
	router := gin.Default()
	router.GET("/", func(c *gin.Context) {
		time.Sleep(5 * time.Second)
		c.String(http.StatusOK, "Welcome Gin Server")
	})

	srv := &http.Server{
		Addr: ":8080",
		Handler: router,
	}

	go func() {
		// service connections
		if err := srv.ListenAndServe(); err != nil && err != http.ErrServerClosed {
			log.Fatalf("listen: %s\n", err)
		}
	}()

	// Wait for interrupt signal to gracefully shutdown the server with
	// a timeout of 5 seconds.
	quit := make(chan os.Signal)
	// kill (no param) default send syscall.SIGTERM
	// kill -2 is syscall.SIGINT
	// kill -9 is syscall.SIGKILL but can"t be catch, so don't need add it
	signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM)
	<-quit
	log.Println("Shutdown Server ...")

	ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
	defer cancel()
	if err := srv.Shutdown(ctx); err != nil {
		log.Fatal("Server Shutdown:", err)
	}
	// catching ctx.Done(). timeout of 5 seconds.
	select {
	case <-ctx.Done():
		log.Println("timeout of 5 seconds.")
	}
	log.Println("Server exiting")
}

Build a single binary with templates

You can build a server into a single binary containing templates by using go-assets [https://github.com/jessevdk/go-assets].

func main() {
	r := gin.New()

	t, err := loadTemplate()
	if err != nil {
		panic(err)
	}
	r.SetHTMLTemplate(t)

	r.GET("/", func(c *gin.Context) {
		c.HTML(http.StatusOK, "/html/index.tmpl",nil)
	})
	r.Run(":8080")
}

// loadTemplate loads templates embedded by go-assets-builder
func loadTemplate() (*template.Template, error) {
	t := template.New("")
	for name, file := range Assets.Files {
		if file.IsDir() || !strings.HasSuffix(name, ".tmpl") {
			continue
		}
		h, err := ioutil.ReadAll(file)
		if err != nil {
			return nil, err
		}
		t, err = t.New(name).Parse(string(h))
		if err != nil {
			return nil, err
		}
	}
	return t, nil
}

See a complete example in the https://github.com/gin-gonic/examples/tree/master/assets-in-binary directory.

Bind form-data request with custom struct

The follow example using custom struct:

type StructA struct {
 FieldA string `form:"field_a"`
}

type StructB struct {
 NestedStruct StructA
 FieldB string `form:"field_b"`
}

type StructC struct {
 NestedStructPointer *StructA
 FieldC string `form:"field_c"`
}

type StructD struct {
 NestedAnonyStruct struct {
 FieldX string `form:"field_x"`
 }
 FieldD string `form:"field_d"`
}

func GetDataB(c *gin.Context) {
 var b StructB
 c.Bind(&b)
 c.JSON(200, gin.H{
 "a": b.NestedStruct,
 "b": b.FieldB,
 })
}

func GetDataC(c *gin.Context) {
 var b StructC
 c.Bind(&b)
 c.JSON(200, gin.H{
 "a": b.NestedStructPointer,
 "c": b.FieldC,
 })
}

func GetDataD(c *gin.Context) {
 var b StructD
 c.Bind(&b)
 c.JSON(200, gin.H{
 "x": b.NestedAnonyStruct,
 "d": b.FieldD,
 })
}

func main() {
 r := gin.Default()
 r.GET("/getb", GetDataB)
 r.GET("/getc", GetDataC)
 r.GET("/getd", GetDataD)

 r.Run()
}

Using the command curl command result:

$ curl "http://localhost:8080/getb?field_a=hello&field_b=world"
{"a":{"FieldA":"hello"},"b":"world"}
$ curl "http://localhost:8080/getc?field_a=hello&field_c=world"
{"a":{"FieldA":"hello"},"c":"world"}
$ curl "http://localhost:8080/getd?field_x=hello&field_d=world"
{"d":"world","x":{"FieldX":"hello"}}

Try to bind body into different structs

The normal methods for binding request body consumes c.Request.Body and they
cannot be called multiple times.

type formA struct {
 Foo string `json:"foo" xml:"foo" binding:"required"`
}

type formB struct {
 Bar string `json:"bar" xml:"bar" binding:"required"`
}

func SomeHandler(c *gin.Context) {
 objA := formA{}
 objB := formB{}
 // This c.ShouldBind consumes c.Request.Body and it cannot be reused.
 if errA := c.ShouldBind(&objA); errA == nil {
 c.String(http.StatusOK, `the body should be formA`)
 // Always an error is occurred by this because c.Request.Body is EOF now.
 } else if errB := c.ShouldBind(&objB); errB == nil {
 c.String(http.StatusOK, `the body should be formB`)
 } else {
 ...
 }
}

For this, you can use c.ShouldBindBodyWith.

func SomeHandler(c *gin.Context) {
 objA := formA{}
 objB := formB{}
 // This reads c.Request.Body and stores the result into the context.
 if errA := c.ShouldBindBodyWith(&objA, binding.JSON); errA == nil {
 c.String(http.StatusOK, `the body should be formA`)
 // At this time, it reuses body stored in the context.
 } else if errB := c.ShouldBindBodyWith(&objB, binding.JSON); errB == nil {
 c.String(http.StatusOK, `the body should be formB JSON`)
 // And it can accepts other formats
 } else if errB2 := c.ShouldBindBodyWith(&objB, binding.XML); errB2 == nil {
 c.String(http.StatusOK, `the body should be formB XML`)
 } else {
 ...
 }
}

	c.ShouldBindBodyWith stores body into the context before binding. This has
a slight impact to performance, so you should not use this method if you are
enough to call binding at once.

	This feature is only needed for some formats – JSON, XML, MsgPack,
ProtoBuf. For other formats, Query, Form, FormPost, FormMultipart,
can be called by c.ShouldBind() multiple times without any damage to
performance (See #1341 [https://github.com/gin-gonic/gin/pull/1341]).

http2 server push

http.Pusher is supported only go1.8+. See the golang blog [https://blog.golang.org/h2push] for detail information.

package main

import (
	"html/template"
	"log"

	"github.com/gin-gonic/gin"
)

var html = template.Must(template.New("https").Parse(`
<html>
<head>
 <title>Https Test</title>
 <script src="/assets/app.js"></script>
</head>
<body>
 <h1 style="color:red;">Welcome, Ginner!</h1>
</body>
</html>
`))

func main() {
	r := gin.Default()
	r.Static("/assets", "./assets")
	r.SetHTMLTemplate(html)

	r.GET("/", func(c *gin.Context) {
		if pusher := c.Writer.Pusher(); pusher != nil {
			// use pusher.Push() to do server push
			if err := pusher.Push("/assets/app.js", nil); err != nil {
				log.Printf("Failed to push: %v", err)
			}
		}
		c.HTML(200, "https", gin.H{
			"status": "success",
		})
	})

	// Listen and Server in https://127.0.0.1:8080
	r.RunTLS(":8080", "./testdata/server.pem", "./testdata/server.key")
}

Define format for the log of routes

The default log of routes is:

[GIN-debug] POST /foo --> main.main.func1 (3 handlers)
[GIN-debug] GET /bar --> main.main.func2 (3 handlers)
[GIN-debug] GET /status --> main.main.func3 (3 handlers)

If you want to log this information in given format (e.g. JSON, key values or something else), then you can define this format with gin.DebugPrintRouteFunc.
In the example below, we log all routes with standard log package but you can use another log tools that suits of your needs.

import (
	"log"
	"net/http"

	"github.com/gin-gonic/gin"
)

func main() {
	r := gin.Default()
	gin.DebugPrintRouteFunc = func(httpMethod, absolutePath, handlerName string, nuHandlers int) {
		log.Printf("endpoint %v %v %v %v\n", httpMethod, absolutePath, handlerName, nuHandlers)
	}

	r.POST("/foo", func(c *gin.Context) {
		c.JSON(http.StatusOK, "foo")
	})

	r.GET("/bar", func(c *gin.Context) {
		c.JSON(http.StatusOK, "bar")
	})

	r.GET("/status", func(c *gin.Context) {
		c.JSON(http.StatusOK, "ok")
	})

	// Listen and Server in http://0.0.0.0:8080
	r.Run()
}

Set and get a cookie

import (
 "fmt"

 "github.com/gin-gonic/gin"
)

func main() {

 router := gin.Default()

 router.GET("/cookie", func(c *gin.Context) {

 cookie, err := c.Cookie("gin_cookie")

 if err != nil {
 cookie = "NotSet"
 c.SetCookie("gin_cookie", "test", 3600, "/", "localhost", false, true)
 }

 fmt.Printf("Cookie value: %s \n", cookie)
 })

 router.Run()
}

Testing

The net/http/httptest package is preferable way for HTTP testing.

package main

func setupRouter() *gin.Engine {
	r := gin.Default()
	r.GET("/ping", func(c *gin.Context) {
		c.String(200, "pong")
	})
	return r
}

func main() {
	r := setupRouter()
	r.Run(":8080")
}

Test for code example above:

package main

import (
	"net/http"
	"net/http/httptest"
	"testing"

	"github.com/stretchr/testify/assert"
)

func TestPingRoute(t *testing.T) {
	router := setupRouter()

	w := httptest.NewRecorder()
	req, _ := http.NewRequest("GET", "/ping", nil)
	router.ServeHTTP(w, req)

	assert.Equal(t, 200, w.Code)
	assert.Equal(t, "pong", w.Body.String())
}

Users

Awesome project lists using Gin [https://github.com/gin-gonic/gin] web framework.

	gorush [https://github.com/appleboy/gorush]: A push notification server written in Go.

	fnproject [https://github.com/fnproject/fn]: The container native, cloud agnostic serverless platform.

	photoprism [https://github.com/photoprism/photoprism]: Personal photo management powered by Go and Google TensorFlow.

	krakend [https://github.com/devopsfaith/krakend]: Ultra performant API Gateway with middlewares.

	picfit [https://github.com/thoas/picfit]: An image resizing server written in Go.

 Version 1.4 (2018-06-03)

Version 1.4 (2018-06-03)

Changes:

	Documentation fixes (#530, #535, #567)

	Refactoring (#575, #579, #580, #581, #603, #615, #704)

	Cache column names (#444)

	Sort the DSN parameters in DSNs generated from a config (#637)

	Allow native password authentication by default (#644)

	Use the default port if it is missing in the DSN (#668)

	Removed the strict mode (#676)

	Do not query max_allowed_packet by default (#680)

	Dropped support Go 1.6 and lower (#696)

	Updated ConvertValue() to match the database/sql/driver implementation (#760)

	Document the usage of 0000-00-00T00:00:00 as the time.Time zero value (#783)

	Improved the compatibility of the authentication system (#807)

New Features:

	Multi-Results support (#537)

	rejectReadOnly DSN option (#604)

	context.Context support (#608, #612, #627, #761)

	Transaction isolation level support (#619, #744)

	Read-Only transactions support (#618, #634)

	NewConfig function which initializes a config with default values (#679)

	Implemented the ColumnType interfaces (#667, #724)

	Support for custom string types in ConvertValue (#623)

	Implemented NamedValueChecker, improving support for uint64 with high bit set (#690, #709, #710)

	caching_sha2_password authentication plugin support (#794, #800, #801, #802)

	Implemented driver.SessionResetter (#779)

	sha256_password authentication plugin support (#808)

Bugfixes:

	Use the DSN hostname as TLS default ServerName if tls=true (#564, #718)

	Fixed LOAD LOCAL DATA INFILE for empty files (#590)

	Removed columns definition cache since it sometimes cached invalid data (#592)

	Don’t mutate registered TLS configs (#600)

	Make RegisterTLSConfig concurrency-safe (#613)

	Handle missing auth data in the handshake packet correctly (#646)

	Do not retry queries when data was written to avoid data corruption (#302, #736)

	Cache the connection pointer for error handling before invalidating it (#678)

	Fixed imports for appengine/cloudsql (#700)

	Fix sending STMT_LONG_DATA for 0 byte data (#734)

	Set correct capacity for []bytes read from length-encoded strings (#766)

	Make RegisterDial concurrency-safe (#773)

Version 1.3 (2016-12-01)

Changes:

	Go 1.1 is no longer supported

	Use decimals fields in MySQL to format time types (#249)

	Buffer optimizations (#269)

	TLS ServerName defaults to the host (#283)

	Refactoring (#400, #410, #437)

	Adjusted documentation for second generation CloudSQL (#485)

	Documented DSN system var quoting rules (#502)

	Made statement.Close() calls idempotent to avoid errors in Go 1.6+ (#512)

New Features:

	Enable microsecond resolution on TIME, DATETIME and TIMESTAMP (#249)

	Support for returning table alias on Columns() (#289, #359, #382)

	Placeholder interpolation, can be actived with the DSN parameter interpolateParams=true (#309, #318, #490)

	Support for uint64 parameters with high bit set (#332, #345)

	Cleartext authentication plugin support (#327)

	Exported ParseDSN function and the Config struct (#403, #419, #429)

	Read / Write timeouts (#401)

	Support for JSON field type (#414)

	Support for multi-statements and multi-results (#411, #431)

	DSN parameter to set the driver-side max_allowed_packet value manually (#489)

	Native password authentication plugin support (#494, #524)

Bugfixes:

	Fixed handling of queries without columns and rows (#255)

	Fixed a panic when SetKeepAlive() failed (#298)

	Handle ERR packets while reading rows (#321)

	Fixed reading NULL length-encoded integers in MySQL 5.6+ (#349)

	Fixed absolute paths support in LOAD LOCAL DATA INFILE (#356)

	Actually zero out bytes in handshake response (#378)

	Fixed race condition in registering LOAD DATA INFILE handler (#383)

	Fixed tests with MySQL 5.7.9+ (#380)

	QueryUnescape TLS config names (#397)

	Fixed “broken pipe” error by writing to closed socket (#390)

	Fixed LOAD LOCAL DATA INFILE buffering (#424)

	Fixed parsing of floats into float64 when placeholders are used (#434)

	Fixed DSN tests with Go 1.7+ (#459)

	Handle ERR packets while waiting for EOF (#473)

	Invalidate connection on error while discarding additional results (#513)

	Allow terminating packets of length 0 (#516)

Version 1.2 (2014-06-03)

Changes:

	We switched back to a “rolling release”. go get installs the current master branch again

	Version v1 of the driver will not be maintained anymore. Go 1.0 is no longer supported by this driver

	Exported errors to allow easy checking from application code

	Enabled TCP Keepalives on TCP connections

	Optimized INFILE handling (better buffer size calculation, lazy init, …)

	The DSN parser also checks for a missing separating slash

	Faster binary date / datetime to string formatting

	Also exported the MySQLWarning type

	mysqlConn.Close returns the first error encountered instead of ignoring all errors

	writePacket() automatically writes the packet size to the header

	readPacket() uses an iterative approach instead of the recursive approach to merge splitted packets

New Features:

	RegisterDial allows the usage of a custom dial function to establish the network connection

	Setting the connection collation is possible with the collation DSN parameter. This parameter should be preferred over the charset parameter

	Logging of critical errors is configurable with SetLogger

	Google CloudSQL support

Bugfixes:

	Allow more than 32 parameters in prepared statements

	Various old_password fixes

	Fixed TestConcurrent test to pass Go’s race detection

	Fixed appendLengthEncodedInteger for large numbers

	Renamed readLengthEnodedString to readLengthEncodedString and skipLengthEnodedString to skipLengthEncodedString (fixed typo)

Version 1.1 (2013-11-02)

Changes:

	Go-MySQL-Driver now requires Go 1.1

	Connections now use the collation utf8_general_ci by default. Adding &charset=UTF8 to the DSN should not be necessary anymore

	Made closing rows and connections error tolerant. This allows for example deferring rows.Close() without checking for errors

	[]byte(nil) is now treated as a NULL value. Before, it was treated like an empty string / []byte("")

	DSN parameter values must now be url.QueryEscape’ed. This allows text values to contain special characters, such as ‘&’.

	Use the IO buffer also for writing. This results in zero allocations (by the driver) for most queries

	Optimized the buffer for reading

	stmt.Query now caches column metadata

	New Logo

	Changed the copyright header to include all contributors

	Improved the LOAD INFILE documentation

	The driver struct is now exported to make the driver directly accessible

	Refactored the driver tests

	Added more benchmarks and moved all to a separate file

	Other small refactoring

New Features:

	Added old_passwords support: Required in some cases, but must be enabled by adding allowOldPasswords=true to the DSN since it is insecure

	Added a clientFoundRows parameter: Return the number of matching rows instead of the number of rows changed on UPDATEs

	Added TLS/SSL support: Use a TLS/SSL encrypted connection to the server. Custom TLS configs can be registered and used

Bugfixes:

	Fixed MySQL 4.1 support: MySQL 4.1 sends packets with lengths which differ from the specification

	Convert to DB timezone when inserting time.Time

	Splitted packets (more than 16MB) are now merged correctly

	Fixed false positive io.EOF errors when the data was fully read

	Avoid panics on reuse of closed connections

	Fixed empty string producing false nil values

	Fixed sign byte for positive TIME fields

Version 1.0 (2013-05-14)

Initial Release

 Contributing Guidelines

Contributing Guidelines

Reporting Issues

Before creating a new Issue, please check first if a similar Issue already exists [https://github.com/go-sql-driver/mysql/issues?state=open] or was recently closed [https://github.com/go-sql-driver/mysql/issues?direction=desc&page=1&sort=updated&state=closed].

Contributing Code

By contributing to this project, you share your code under the Mozilla Public License 2, as specified in the LICENSE file.
Don’t forget to add yourself to the AUTHORS file.

Code Review

Everyone is invited to review and comment on pull requests.
If it looks fine to you, comment with “LGTM” (Looks good to me).

If changes are required, notice the reviewers with “PTAL” (Please take another look) after committing the fixes.

Before merging the Pull Request, at least one team member [https://github.com/go-sql-driver?tab=members] must have commented with “LGTM”.

Development Ideas

If you are looking for ideas for code contributions, please check our Development Ideas [https://github.com/go-sql-driver/mysql/wiki/Development-Ideas] Wiki page.

 Go-MySQL-Driver

Go-MySQL-Driver

A MySQL-Driver for Go’s database/sql [https://golang.org/pkg/database/sql/] package

[image: Golang Gopher holding the MySQL Dolphin]Go-MySQL-Driver logo

	Features

	Requirements

	Installation

	Usage

	DSN (Data Source Name)

	Password

	Protocol

	Address

	Parameters

	Examples

	Connection pool and timeouts

	context.Context Support

	ColumnType Support

	LOAD DATA LOCAL INFILE support

	time.Time support

	Unicode support

	Testing / Development

	License

Features

	Lightweight and fast [https://github.com/go-sql-driver/sql-benchmark]

	Native Go implementation. No C-bindings, just pure Go

	Connections over TCP/IPv4, TCP/IPv6, Unix domain sockets or custom protocols [https://godoc.org/github.com/go-sql-driver/mysql#DialFunc]

	Automatic handling of broken connections

	Automatic Connection Pooling (by database/sql package)

	Supports queries larger than 16MB

	Full sql.RawBytes [https://golang.org/pkg/database/sql/#RawBytes] support.

	Intelligent LONG DATA handling in prepared statements

	Secure LOAD DATA LOCAL INFILE support with file Whitelisting and io.Reader support

	Optional time.Time parsing

	Optional placeholder interpolation

Requirements

	Go 1.9 or higher. We aim to support the 3 latest versions of Go.

	MySQL (4.1+), MariaDB, Percona Server, Google CloudSQL or Sphinx (2.2.3+)

Installation

Simple install the package to your $GOPATH [https://github.com/golang/go/wiki/GOPATH] with the go tool [https://golang.org/cmd/go/] from shell:

$ go get -u github.com/go-sql-driver/mysql

Make sure Git is installed [https://git-scm.com/downloads] on your machine and in your system’s PATH.

Usage

Go MySQL Driver is an implementation of Go’s database/sql/driver interface. You only need to import the driver and can use the full database/sql [https://golang.org/pkg/database/sql/] API then.

Use mysql as driverName and a valid DSN as dataSourceName:

import "database/sql"
import _ "github.com/go-sql-driver/mysql"

db, err := sql.Open("mysql", "user:password@/dbname")

Examples are available in our Wiki [https://github.com/go-sql-driver/mysql/wiki/Examples].

DSN (Data Source Name)

The Data Source Name has a common format, like e.g. PEAR DB [http://pear.php.net/manual/en/package.database.db.intro-dsn.php] uses it, but without type-prefix (optional parts marked by squared brackets):

[username[:password]@][protocol[(address)]]/dbname[?param1=value1&...¶mN=valueN]

A DSN in its fullest form:

username:password@protocol(address)/dbname?param=value

Except for the databasename, all values are optional. So the minimal DSN is:

/dbname

If you do not want to preselect a database, leave dbname empty:

/

This has the same effect as an empty DSN string:

Alternatively, Config.FormatDSN [https://godoc.org/github.com/go-sql-driver/mysql#Config.FormatDSN] can be used to create a DSN string by filling a struct.

Password

Passwords can consist of any character. Escaping is not necessary.

Protocol

See net.Dial [https://golang.org/pkg/net/#Dial] for more information which networks are available.
In general you should use an Unix domain socket if available and TCP otherwise for best performance.

Address

For TCP and UDP networks, addresses have the form host[:port].
If port is omitted, the default port will be used.
If host is a literal IPv6 address, it must be enclosed in square brackets.
The functions net.JoinHostPort [https://golang.org/pkg/net/#JoinHostPort] and net.SplitHostPort [https://golang.org/pkg/net/#SplitHostPort] manipulate addresses in this form.

For Unix domain sockets the address is the absolute path to the MySQL-Server-socket, e.g. /var/run/mysqld/mysqld.sock or /tmp/mysql.sock.

Parameters

Parameters are case-sensitive!

Notice that any of true, TRUE, True or 1 is accepted to stand for a true boolean value. Not surprisingly, false can be specified as any of: false, FALSE, False or 0.

allowAllFiles

Type: bool
Valid Values: true, false
Default: false

allowAllFiles=true disables the file Whitelist for LOAD DATA LOCAL INFILE and allows all files.
Might be insecure! [http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html]

allowCleartextPasswords

Type: bool
Valid Values: true, false
Default: false

allowCleartextPasswords=true allows using the cleartext client side plugin [http://dev.mysql.com/doc/en/cleartext-authentication-plugin.html] if required by an account, such as one defined with the PAM authentication plugin [http://dev.mysql.com/doc/en/pam-authentication-plugin.html]. Sending passwords in clear text may be a security problem in some configurations. To avoid problems if there is any possibility that the password would be intercepted, clients should connect to MySQL Server using a method that protects the password. Possibilities include TLS / SSL, IPsec, or a private network.

allowNativePasswords

Type: bool
Valid Values: true, false
Default: true

allowNativePasswords=false disallows the usage of MySQL native password method.

allowOldPasswords

Type: bool
Valid Values: true, false
Default: false

allowOldPasswords=true allows the usage of the insecure old password method. This should be avoided, but is necessary in some cases. See also the old_passwords wiki page [https://github.com/go-sql-driver/mysql/wiki/old_passwords].

charset

Type: string
Valid Values: <name>
Default: none

Sets the charset used for client-server interaction ("SET NAMES <value>"). If multiple charsets are set (separated by a comma), the following charset is used if setting the charset failes. This enables for example support for utf8mb4 (introduced in MySQL 5.5.3 [http://dev.mysql.com/doc/refman/5.5/en/charset-unicode-utf8mb4.html]) with fallback to utf8 for older servers (charset=utf8mb4,utf8).

Usage of the charset parameter is discouraged because it issues additional queries to the server.
Unless you need the fallback behavior, please use collation instead.

collation

Type: string
Valid Values: <name>
Default: utf8mb4_general_ci

Sets the collation used for client-server interaction on connection. In contrast to charset, collation does not issue additional queries. If the specified collation is unavailable on the target server, the connection will fail.

A list of valid charsets for a server is retrievable with SHOW COLLATION.

The default collation (utf8mb4_general_ci) is supported from MySQL 5.5. You should use an older collation (e.g. utf8_general_ci) for older MySQL.

Collations for charset “ucs2”, “utf16”, “utf16le”, and “utf32” can not be used (ref [https://dev.mysql.com/doc/refman/5.7/en/charset-connection.html#charset-connection-impermissible-client-charset]).

clientFoundRows

Type: bool
Valid Values: true, false
Default: false

clientFoundRows=true causes an UPDATE to return the number of matching rows instead of the number of rows changed.

columnsWithAlias

Type: bool
Valid Values: true, false
Default: false

When columnsWithAlias is true, calls to sql.Rows.Columns() will return the table alias and the column name separated by a dot. For example:

SELECT u.id FROM users as u

will return u.id instead of just id if columnsWithAlias=true.

interpolateParams

Type: bool
Valid Values: true, false
Default: false

If interpolateParams is true, placeholders (?) in calls to db.Query() and db.Exec() are interpolated into a single query string with given parameters. This reduces the number of roundtrips, since the driver has to prepare a statement, execute it with given parameters and close the statement again with interpolateParams=false.

This can not be used together with the multibyte encodings BIG5, CP932, GB2312, GBK or SJIS. These are blacklisted as they may introduce a SQL injection vulnerability [http://stackoverflow.com/a/12118602/3430118]!

loc

Type: string
Valid Values: <escaped name>
Default: UTC

Sets the location for time.Time values (when using parseTime=true). “Local” sets the system’s location. See time.LoadLocation [https://golang.org/pkg/time/#LoadLocation] for details.

Note that this sets the location for time.Time values but does not change MySQL’s time_zone setting [https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html]. For that see the time_zone system variable, which can also be set as a DSN parameter.

Please keep in mind, that param values must be url.QueryEscape [https://golang.org/pkg/net/url/#QueryEscape]’ed. Alternatively you can manually replace the / with %2F. For example US/Pacific would be loc=US%2FPacific.

maxAllowedPacket

Type: decimal number
Default: 4194304

Max packet size allowed in bytes. The default value is 4 MiB and should be adjusted to match the server settings. maxAllowedPacket=0 can be used to automatically fetch the max_allowed_packet variable from server on every connection.

multiStatements

Type: bool
Valid Values: true, false
Default: false

Allow multiple statements in one query. While this allows batch queries, it also greatly increases the risk of SQL injections. Only the result of the first query is returned, all other results are silently discarded.

When multiStatements is used, ? parameters must only be used in the first statement.

parseTime

Type: bool
Valid Values: true, false
Default: false

parseTime=true changes the output type of DATE and DATETIME values to time.Time instead of []byte / string
The date or datetime like 0000-00-00 00:00:00 is converted into zero value of time.Time.

readTimeout

Type: duration
Default: 0

I/O read timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.

rejectReadOnly

Type: bool
Valid Values: true, false
Default: false

rejectReadOnly=true causes the driver to reject read-only connections. This
is for a possible race condition during an automatic failover, where the mysql
client gets connected to a read-only replica after the failover.

Note that this should be a fairly rare case, as an automatic failover normally
happens when the primary is down, and the race condition shouldn’t happen
unless it comes back up online as soon as the failover is kicked off. On the
other hand, when this happens, a MySQL application can get stuck on a
read-only connection until restarted. It is however fairly easy to reproduce,
for example, using a manual failover on AWS Aurora’s MySQL-compatible cluster.

If you are not relying on read-only transactions to reject writes that aren’t
supposed to happen, setting this on some MySQL providers (such as AWS Aurora)
is safer for failovers.

Note that ERROR 1290 can be returned for a read-only server and this option will
cause a retry for that error. However the same error number is used for some
other cases. You should ensure your application will never cause an ERROR 1290
except for read-only mode when enabling this option.

serverPubKey

Type: string
Valid Values: <name>
Default: none

Server public keys can be registered with mysql.RegisterServerPubKey [https://godoc.org/github.com/go-sql-driver/mysql#RegisterServerPubKey], which can then be used by the assigned name in the DSN.
Public keys are used to transmit encrypted data, e.g. for authentication.
If the server’s public key is known, it should be set manually to avoid expensive and potentially insecure transmissions of the public key from the server to the client each time it is required.

timeout

Type: duration
Default: OS default

Timeout for establishing connections, aka dial timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.

tls

Type: bool / string
Valid Values: true, false, skip-verify, preferred, <name>
Default: false

tls=true enables TLS / SSL encrypted connection to the server. Use skip-verify if you want to use a self-signed or invalid certificate (server side) or use preferred to use TLS only when advertised by the server. This is similar to skip-verify, but additionally allows a fallback to a connection which is not encrypted. Neither skip-verify nor preferred add any reliable security. You can use a custom TLS config after registering it with mysql.RegisterTLSConfig [https://godoc.org/github.com/go-sql-driver/mysql#RegisterTLSConfig].

writeTimeout

Type: duration
Default: 0

I/O write timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.

System Variables

Any other parameters are interpreted as system variables:

	<boolean_var>=<value>: SET <boolean_var>=<value>

	<enum_var>=<value>: SET <enum_var>=<value>

	<string_var>=%27<value>%27: SET <string_var>='<value>'

Rules:

	The values for string variables must be quoted with '.

	The values must also be url.QueryEscape [http://golang.org/pkg/net/url/#QueryEscape]’ed!
(which implies values of string variables must be wrapped with %27).

Examples:

	autocommit=1: SET autocommit=1

	time_zone=%27Europe%2FParis%27 [https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html]: SET time_zone='Europe/Paris'

	tx_isolation=%27REPEATABLE-READ%27 [https://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_tx_isolation]: SET tx_isolation='REPEATABLE-READ'

Examples

user@unix(/path/to/socket)/dbname

root:pw@unix(/tmp/mysql.sock)/myDatabase?loc=Local

user:password@tcp(localhost:5555)/dbname?tls=skip-verify&autocommit=true

Treat warnings as errors by setting the system variable sql_mode [https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html]:

user:password@/dbname?sql_mode=TRADITIONAL

TCP via IPv6:

user:password@tcp([de:ad:be:ef::ca:fe]:80)/dbname?timeout=90s&collation=utf8mb4_unicode_ci

TCP on a remote host, e.g. Amazon RDS:

id:password@tcp(your-amazonaws-uri.com:3306)/dbname

Google Cloud SQL on App Engine (First Generation MySQL Server):

user@cloudsql(project-id:instance-name)/dbname

Google Cloud SQL on App Engine (Second Generation MySQL Server):

user@cloudsql(project-id:regionname:instance-name)/dbname

TCP using default port (3306) on localhost:

user:password@tcp/dbname?charset=utf8mb4,utf8&sys_var=esc%40ped

Use the default protocol (tcp) and host (localhost:3306):

user:password@/dbname

No Database preselected:

user:password@/

Connection pool and timeouts

The connection pool is managed by Go’s database/sql package. For details on how to configure the size of the pool and how long connections stay in the pool see *DB.SetMaxOpenConns, *DB.SetMaxIdleConns, and *DB.SetConnMaxLifetime in the database/sql documentation [https://golang.org/pkg/database/sql/]. The read, write, and dial timeouts for each individual connection are configured with the DSN parameters readTimeout, writeTimeout, and timeout, respectively.

ColumnType Support

This driver supports the ColumnType interface [https://golang.org/pkg/database/sql/#ColumnType] introduced in Go 1.8, with the exception of ColumnType.Length() [https://golang.org/pkg/database/sql/#ColumnType.Length], which is currently not supported.

context.Context Support

Go 1.8 added database/sql support for context.Context. This driver supports query timeouts and cancellation via contexts.
See context support in the database/sql package [https://golang.org/doc/go1.8#database_sql] for more details.

LOAD DATA LOCAL INFILE support

For this feature you need direct access to the package. Therefore you must change the import path (no _):

import "github.com/go-sql-driver/mysql"

Files must be whitelisted by registering them with mysql.RegisterLocalFile(filepath) (recommended) or the Whitelist check must be deactivated by using the DSN parameter allowAllFiles=true (Might be insecure! [http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html]).

To use a io.Reader a handler function must be registered with mysql.RegisterReaderHandler(name, handler) which returns a io.Reader or io.ReadCloser. The Reader is available with the filepath Reader::<name> then. Choose different names for different handlers and DeregisterReaderHandler when you don’t need it anymore.

See the godoc of Go-MySQL-Driver [https://godoc.org/github.com/go-sql-driver/mysql] for details.

time.Time support

The default internal output type of MySQL DATE and DATETIME values is []byte which allows you to scan the value into a []byte, string or sql.RawBytes variable in your program.

However, many want to scan MySQL DATE and DATETIME values into time.Time variables, which is the logical equivalent in Go to DATE and DATETIME in MySQL. You can do that by changing the internal output type from []byte to time.Time with the DSN parameter parseTime=true. You can set the default time.Time location [https://golang.org/pkg/time/#Location] with the loc DSN parameter.

Caution: As of Go 1.1, this makes time.Time the only variable type you can scan DATE and DATETIME values into. This breaks for example sql.RawBytes support [https://github.com/go-sql-driver/mysql/wiki/Examples#rawbytes].

Alternatively you can use the NullTime [https://godoc.org/github.com/go-sql-driver/mysql#NullTime] type as the scan destination, which works with both time.Time and string / []byte.

Unicode support

Since version 1.1 Go-MySQL-Driver automatically uses the collation utf8_general_ci by default.

Other collations / charsets can be set using the collation DSN parameter.

Version 1.0 of the driver recommended adding &charset=utf8 (alias for SET NAMES utf8) to the DSN to enable proper UTF-8 support. This is not necessary anymore. The collation parameter should be preferred to set another collation / charset than the default.

See http://dev.mysql.com/doc/refman/5.7/en/charset-unicode.html for more details on MySQL’s Unicode support.

Testing / Development

To run the driver tests you may need to adjust the configuration. See the Testing Wiki-Page [https://github.com/go-sql-driver/mysql/wiki/Testing] for details.

Go-MySQL-Driver is not feature-complete yet. Your help is very appreciated.
If you want to contribute, you can work on an open issue [https://github.com/go-sql-driver/mysql/issues?state=open] or review a pull request [https://github.com/go-sql-driver/mysql/pulls].

See the Contribution Guidelines [https://github.com/go-sql-driver/mysql/blob/master/CONTRIBUTING] for details.

License

Go-MySQL-Driver is licensed under the Mozilla Public License Version 2.0 [https://raw.github.com/go-sql-driver/mysql/master/LICENSE]

Mozilla summarizes the license scope as follows:

MPL: The copyleft applies to any files containing MPLed code.

That means:

	You can use the unchanged source code both in private and commercially.

	When distributing, you must publish the source code of any changed files licensed under the MPL 2.0 under a) the MPL 2.0 itself or b) a compatible license (e.g. GPL 3.0 or Apache License 2.0).

	You needn’t publish the source code of your library as long as the files licensed under the MPL 2.0 are unchanged.

Please read the MPL 2.0 FAQ [https://www.mozilla.org/en-US/MPL/2.0/FAQ/] if you have further questions regarding the license.

You can read the full terms here: LICENSE [https://raw.github.com/go-sql-driver/mysql/master/LICENSE].

[image: Golang Gopher transporting the MySQL Dolphin in a wheelbarrow]Go Gopher and MySQL Dolphin

 Gorilla WebSocket

Gorilla WebSocket

Gorilla WebSocket is a Go [http://golang.org/] implementation of the
WebSocket [http://www.rfc-editor.org/rfc/rfc6455.txt] protocol.

[image: ../../../../_images/websocket.svg]Build Status [https://travis-ci.org/gorilla/websocket]
[image: ../../../../_images/websocket1.svg]GoDoc [https://godoc.org/github.com/gorilla/websocket]

Documentation

	API Reference [http://godoc.org/github.com/gorilla/websocket]

	Chat example [https://github.com/gorilla/websocket/tree/master/examples/chat]

	Command example [https://github.com/gorilla/websocket/tree/master/examples/command]

	Client and server example [https://github.com/gorilla/websocket/tree/master/examples/echo]

	File watch example [https://github.com/gorilla/websocket/tree/master/examples/filewatch]

Status

The Gorilla WebSocket package provides a complete and tested implementation of
the WebSocket [http://www.rfc-editor.org/rfc/rfc6455.txt] protocol. The
package API is stable.

Installation

go get github.com/gorilla/websocket

Protocol Compliance

The Gorilla WebSocket package passes the server tests in the Autobahn Test
Suite [https://github.com/crossbario/autobahn-testsuite] using the application in the examples/autobahn
subdirectory [https://github.com/gorilla/websocket/tree/master/examples/autobahn].

Gorilla WebSocket compared with other packages

	
	github.com/gorilla
	golang.org/x/net

	RFC 6455 Features

	Passes Autobahn Test Suite	Yes	No

	Receive fragmented message	Yes	No, see note 1

 GORM

GORM

The fantastic ORM library for Golang, aims to be developer friendly.

[image: go report card]go report card [https://goreportcard.com/report/github.com/jinzhu/gorm]
[image: wercker status]wercker status [https://app.wercker.com/project/byKey/8596cace912c9947dd9c8542ecc8cb8b]
[image: ../../../../_images/gorm1.svg]Join the chat at https://gitter.im/jinzhu/gorm [https://gitter.im/jinzhu/gorm?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
[image: Open Collective Backer]Open Collective Backer [https://opencollective.com/gorm]
[image: Open Collective Sponsor]Open Collective Sponsor [https://opencollective.com/gorm]
[image: ../../../../_images/license-MIT-brightgreen.svg]MIT license [http://opensource.org/licenses/MIT]
[image: ../../../../_images/gorm2.svg]GoDoc [https://godoc.org/github.com/jinzhu/gorm]

Overview

	Full-Featured ORM (almost)

	Associations (Has One, Has Many, Belongs To, Many To Many, Polymorphism)

	Hooks (Before/After Create/Save/Update/Delete/Find)

	Preloading (eager loading)

	Transactions

	Composite Primary Key

	SQL Builder

	Auto Migrations

	Logger

	Extendable, write Plugins based on GORM callbacks

	Every feature comes with tests

	Developer Friendly

Getting Started

	GORM Guides http://gorm.io

Contributing

You can help to deliver a better GORM, check out things you can do [http://gorm.io/contribute.html]

License

© Jinzhu, 2013~time.Now

Released under the MIT License [https://github.com/jinzhu/gorm/blob/master/License]

 Inflection

Inflection

Inflection pluralizes and singularizes English nouns

[image: wercker status]wercker status [https://app.wercker.com/project/byKey/f8c7432b097d1f4ce636879670be0930]

Basic Usage

inflection.Plural("person") => "people"
inflection.Plural("Person") => "People"
inflection.Plural("PERSON") => "PEOPLE"
inflection.Plural("bus") => "buses"
inflection.Plural("BUS") => "BUSES"
inflection.Plural("Bus") => "Buses"

inflection.Singular("people") => "person"
inflection.Singular("People") => "Person"
inflection.Singular("PEOPLE") => "PERSON"
inflection.Singular("buses") => "bus"
inflection.Singular("BUSES") => "BUS"
inflection.Singular("Buses") => "Bus"

inflection.Plural("FancyPerson") => "FancyPeople"
inflection.Singular("FancyPeople") => "FancyPerson"

Register Rules

Standard rules are from Rails’s ActiveSupport (https://github.com/rails/rails/blob/master/activesupport/lib/active_support/inflections.rb)

If you want to register more rules, follow:

inflection.AddUncountable("fish")
inflection.AddIrregular("person", "people")
inflection.AddPlural("(bu)s$", "${1}ses") # "bus" => "buses" / "BUS" => "BUSES" / "Bus" => "Buses"
inflection.AddSingular("(bus)(es)?$", "${1}") # "buses" => "bus" / "Buses" => "Bus" / "BUSES" => "BUS"

Contributing

You can help to make the project better, check out http://gorm.io/contribute.html for things you can do.

Author

jinzhu

	http://github.com/jinzhu

	wosmvp@gmail.com

	http://twitter.com/zhangjinzhu

License

Released under the MIT License [http://www.opensource.org/licenses/MIT].

 go-isatty

go-isatty

[image: ../../../../_images/go-isatty.svg]Godoc Reference [http://godoc.org/github.com/mattn/go-isatty]
[image: ../../../../_images/go-isatty1.svg]Build Status [https://travis-ci.org/mattn/go-isatty]
[image: ../../../../_images/badge5.svg]Coverage Status [https://coveralls.io/github/mattn/go-isatty?branch=master]
[image: ../../../../_images/go-isatty2.svg]Go Report Card [https://goreportcard.com/report/mattn/go-isatty]

isatty for golang

Usage

package main

import (
	"fmt"
	"github.com/mattn/go-isatty"
	"os"
)

func main() {
	if isatty.IsTerminal(os.Stdout.Fd()) {
		fmt.Println("Is Terminal")
	} else if isatty.IsCygwinTerminal(os.Stdout.Fd()) {
		fmt.Println("Is Cygwin/MSYS2 Terminal")
	} else {
		fmt.Println("Is Not Terminal")
	}
}

Installation

$ go get github.com/mattn/go-isatty

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

Thanks

	k-takata: base idea for IsCygwinTerminal

https://github.com/k-takata/go-iscygpty

 cron

 [image: ../../../../_images/cron.png]GoDoc [http://godoc.org/github.com/robfig/cron]
[image: ../../../../_images/cron.svg]Build Status [https://travis-ci.org/robfig/cron]

cron

Documentation here: https://godoc.org/github.com/robfig/cron

 Globally Unique ID Generator

Globally Unique ID Generator

[image: ../../../../_images/godoc-reference-blue.svg]godoc [https://godoc.org/github.com/rs/xid] [image: ../../../../_images/license-MIT-red.svg]license [https://raw.githubusercontent.com/rs/xid/master/LICENSE] [image: ../../../../_images/xid.svg]Build Status [https://travis-ci.org/rs/xid] [image: ../../../../_images/xid1.svg]Coverage [http://gocover.io/github.com/rs/xid]

Package xid is a globally unique id generator library, ready to be used safely directly in your server code.

Xid is using Mongo Object ID algorithm to generate globally unique ids with a different serialization (base64) to make it shorter when transported as a string:
https://docs.mongodb.org/manual/reference/object-id/

	4-byte value representing the seconds since the Unix epoch,

	3-byte machine identifier,

	2-byte process id, and

	3-byte counter, starting with a random value.

The binary representation of the id is compatible with Mongo 12 bytes Object IDs.
The string representation is using base32 hex (w/o padding) for better space efficiency
when stored in that form (20 bytes). The hex variant of base32 is used to retain the
sortable property of the id.

Xid doesn’t use base64 because case sensitivity and the 2 non alphanum chars may be an
issue when transported as a string between various systems. Base36 wasn’t retained either
because 1/ it’s not standard 2/ the resulting size is not predictable (not bit aligned)
and 3/ it would not remain sortable. To validate a base32 xid, expect a 20 chars long,
all lowercase sequence of a to v letters and 0 to 9 numbers ([0-9a-v]{20}).

UUIDs are 16 bytes (128 bits) and 36 chars as string representation. Twitter Snowflake
ids are 8 bytes (64 bits) but require machine/data-center configuration and/or central
generator servers. xid stands in between with 12 bytes (96 bits) and a more compact
URL-safe string representation (20 chars). No configuration or central generator server
is required so it can be used directly in server’s code.

| Name | Binary Size | String Size | Features
|————-|————-|—————-|—————-
| UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier] | 16 bytes | 36 chars | configuration free, not sortable
| shortuuid [https://github.com/stochastic-technologies/shortuuid] | 16 bytes | 22 chars | configuration free, not sortable
| Snowflake [https://blog.twitter.com/2010/announcing-snowflake] | 8 bytes | up to 20 chars | needs machin/DC configuration, needs central server, sortable
| MongoID [https://docs.mongodb.org/manual/reference/object-id/] | 12 bytes | 24 chars | configuration free, sortable
| xid | 12 bytes | 20 chars | configuration free, sortable

Features:

	Size: 12 bytes (96 bits), smaller than UUID, larger than snowflake

	Base32 hex encoded by default (20 chars when transported as printable string, still sortable)

	Non configured, you don’t need set a unique machine and/or data center id

	K-ordered

	Embedded time with 1 second precision

	Unicity guaranteed for 16,777,216 (24 bits) unique ids per second and per host/process

	Lock-free (i.e.: unlike UUIDv1 and v2)

Best used with zerolog [https://github.com/rs/zerolog]’s
RequestIDHandler [https://godoc.org/github.com/rs/zerolog/hlog#RequestIDHandler].

Notes:

	Xid is dependent on the system time, a monotonic counter and so is not cryptographically secure. If unpredictability of IDs is important, you should not use Xids. It is worth noting that most of the other UUID like implementations are also not cryptographically secure. You shoud use libraries that rely on cryptographically secure sources (like /dev/urandom on unix, crypto/rand in golang), if you want a truly random ID generator.

References:

	http://www.slideshare.net/davegardnerisme/unique-id-generation-in-distributed-systems

	https://en.wikipedia.org/wiki/Universally_unique_identifier

	https://blog.twitter.com/2010/announcing-snowflake

	Python port by Graham Abbott [https://github.com/graham]: https://github.com/graham/python_xid

	Scala port by Egor Kolotaev [https://github.com/kolotaev]: https://github.com/kolotaev/ride

	Rust port by Jérôme Renard [https://github.com/jeromer/]: https://github.com/jeromer/libxid

Install

go get github.com/rs/xid

Usage

guid := xid.New()

println(guid.String())
// Output: 9m4e2mr0ui3e8a215n4g

Get xid embedded info:

guid.Machine()
guid.Pid()
guid.Time()
guid.Counter()

Benchmark

Benchmark against Go Maxim Bublis [https://github.com/satori]’s UUID [https://github.com/satori/go.uuid].

BenchmarkXID 	20000000	 91.1 ns/op	 32 B/op	 1 allocs/op
BenchmarkXID-2 	20000000	 55.9 ns/op	 32 B/op	 1 allocs/op
BenchmarkXID-4 	50000000	 32.3 ns/op	 32 B/op	 1 allocs/op
BenchmarkUUIDv1 	10000000	 204 ns/op	 48 B/op	 1 allocs/op
BenchmarkUUIDv1-2 	10000000	 160 ns/op	 48 B/op	 1 allocs/op
BenchmarkUUIDv1-4 	10000000	 195 ns/op	 48 B/op	 1 allocs/op
BenchmarkUUIDv4 	 1000000	 1503 ns/op	 64 B/op	 2 allocs/op
BenchmarkUUIDv4-2 	 1000000	 1427 ns/op	 64 B/op	 2 allocs/op
BenchmarkUUIDv4-4 	 1000000	 1452 ns/op	 64 B/op	 2 allocs/op

Note: UUIDv1 requires a global lock, hence the performence degrading as we add more CPUs.

Licenses

All source code is licensed under the MIT License [https://raw.github.com/rs/xid/master/LICENSE].

 Table of Contents

 [image: ../../../../_images/a5889e7aed127aa5272543b0c4840ceb9029fa15.png]cobra logo

Cobra is both a library for creating powerful modern CLI applications as well as a program to generate applications and command files.

Many of the most widely used Go projects are built using Cobra, such as:
Kubernetes [http://kubernetes.io/],
Hugo [http://gohugo.io],
rkt [https://github.com/coreos/rkt],
etcd [https://github.com/coreos/etcd],
Moby (former Docker) [https://github.com/moby/moby],
Docker (distribution) [https://github.com/docker/distribution],
OpenShift [https://www.openshift.com/],
Delve [https://github.com/derekparker/delve],
GopherJS [http://www.gopherjs.org/],
CockroachDB [http://www.cockroachlabs.com/],
Bleve [http://www.blevesearch.com/],
ProjectAtomic (enterprise) [http://www.projectatomic.io/],
Giant Swarm’s gsctl [https://github.com/giantswarm/gsctl],
Nanobox [https://github.com/nanobox-io/nanobox]/Nanopack [https://github.com/nanopack],
rclone [http://rclone.org/],
nehm [https://github.com/bogem/nehm],
Pouch [https://github.com/alibaba/pouch],
Istio [https://istio.io],
Prototool [https://github.com/uber/prototool],
mattermost-server [https://github.com/mattermost/mattermost-server],
etc.

[image: Travis CI status]Build Status [https://travis-ci.org/spf13/cobra]
[image: CircleCI status]CircleCI status [https://circleci.com/gh/spf13/cobra]
[image: ../../../../_images/cobra1.svg]GoDoc [https://godoc.org/github.com/spf13/cobra]

Table of Contents

	Overview

	Concepts

	Commands

	Flags

	Installing

	Getting Started

	Using the Cobra Generator

	Using the Cobra Library

	Working with Flags

	Positional and Custom Arguments

	Example

	Help Command

	Usage Message

	PreRun and PostRun Hooks

	Suggestions when “unknown command” happens

	Generating documentation for your command

	Generating bash completions

	Contributing

	License

Overview

Cobra is a library providing a simple interface to create powerful modern CLI
interfaces similar to git & go tools.

Cobra is also an application that will generate your application scaffolding to rapidly
develop a Cobra-based application.

Cobra provides:

	Easy subcommand-based CLIs: app server, app fetch, etc.

	Fully POSIX-compliant flags (including short & long versions)

	Nested subcommands

	Global, local and cascading flags

	Easy generation of applications & commands with cobra init appname & cobra add cmdname

	Intelligent suggestions (app srver… did you mean app server?)

	Automatic help generation for commands and flags

	Automatic help flag recognition of -h, --help, etc.

	Automatically generated bash autocomplete for your application

	Automatically generated man pages for your application

	Command aliases so you can change things without breaking them

	The flexibility to define your own help, usage, etc.

	Optional tight integration with viper [http://github.com/spf13/viper] for 12-factor apps

Concepts

Cobra is built on a structure of commands, arguments & flags.

Commands represent actions, Args are things and Flags are modifiers for those actions.

The best applications will read like sentences when used. Users will know how
to use the application because they will natively understand how to use it.

The pattern to follow is
APPNAME VERB NOUN --ADJECTIVE.
or
APPNAME COMMAND ARG --FLAG

A few good real world examples may better illustrate this point.

In the following example, ‘server’ is a command, and ‘port’ is a flag:

hugo server --port=1313

In this command we are telling Git to clone the url bare.

git clone URL --bare

Commands

Command is the central point of the application. Each interaction that
the application supports will be contained in a Command. A command can
have children commands and optionally run an action.

In the example above, ‘server’ is the command.

More about cobra.Command [https://godoc.org/github.com/spf13/cobra#Command]

Flags

A flag is a way to modify the behavior of a command. Cobra supports
fully POSIX-compliant flags as well as the Go flag package [https://golang.org/pkg/flag/].
A Cobra command can define flags that persist through to children commands
and flags that are only available to that command.

In the example above, ‘port’ is the flag.

Flag functionality is provided by the pflag
library [https://github.com/spf13/pflag], a fork of the flag standard library
which maintains the same interface while adding POSIX compliance.

Installing

Using Cobra is easy. First, use go get to install the latest version
of the library. This command will install the cobra generator executable
along with the library and its dependencies:

go get -u github.com/spf13/cobra/cobra

Next, include Cobra in your application:

import "github.com/spf13/cobra"

Getting Started

While you are welcome to provide your own organization, typically a Cobra-based
application will follow the following organizational structure:

 ▾ appName/
 ▾ cmd/
 add.go
 your.go
 commands.go
 here.go
 main.go

In a Cobra app, typically the main.go file is very bare. It serves one purpose: initializing Cobra.

package main

import (
 "{pathToYourApp}/cmd"
)

func main() {
 cmd.Execute()
}

Using the Cobra Generator

Cobra provides its own program that will create your application and add any
commands you want. It’s the easiest way to incorporate Cobra into your application.

Here [https://github.com/spf13/cobra/blob/master/cobra/README] you can find more information about it.

Using the Cobra Library

To manually implement Cobra you need to create a bare main.go file and a rootCmd file.
You will optionally provide additional commands as you see fit.

Create rootCmd

Cobra doesn’t require any special constructors. Simply create your commands.

Ideally you place this in app/cmd/root.go:

var rootCmd = &cobra.Command{
 Use: "hugo",
 Short: "Hugo is a very fast static site generator",
 Long: `A Fast and Flexible Static Site Generator built with
 love by spf13 and friends in Go.
 Complete documentation is available at http://hugo.spf13.com`,
 Run: func(cmd *cobra.Command, args []string) {
 // Do Stuff Here
 },
}

func Execute() {
 if err := rootCmd.Execute(); err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

You will additionally define flags and handle configuration in your init() function.

For example cmd/root.go:

import (
 "fmt"
 "os"

 homedir "github.com/mitchellh/go-homedir"
 "github.com/spf13/cobra"
 "github.com/spf13/viper"
)

func init() {
 cobra.OnInitialize(initConfig)
 rootCmd.PersistentFlags().StringVar(&cfgFile, "config", "", "config file (default is $HOME/.cobra.yaml)")
 rootCmd.PersistentFlags().StringVarP(&projectBase, "projectbase", "b", "", "base project directory eg. github.com/spf13/")
 rootCmd.PersistentFlags().StringP("author", "a", "YOUR NAME", "Author name for copyright attribution")
 rootCmd.PersistentFlags().StringVarP(&userLicense, "license", "l", "", "Name of license for the project (can provide `licensetext` in config)")
 rootCmd.PersistentFlags().Bool("viper", true, "Use Viper for configuration")
 viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
 viper.BindPFlag("projectbase", rootCmd.PersistentFlags().Lookup("projectbase"))
 viper.BindPFlag("useViper", rootCmd.PersistentFlags().Lookup("viper"))
 viper.SetDefault("author", "NAME HERE <EMAIL ADDRESS>")
 viper.SetDefault("license", "apache")
}

func initConfig() {
 // Don't forget to read config either from cfgFile or from home directory!
 if cfgFile != "" {
 // Use config file from the flag.
 viper.SetConfigFile(cfgFile)
 } else {
 // Find home directory.
 home, err := homedir.Dir()
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 // Search config in home directory with name ".cobra" (without extension).
 viper.AddConfigPath(home)
 viper.SetConfigName(".cobra")
 }

 if err := viper.ReadInConfig(); err != nil {
 fmt.Println("Can't read config:", err)
 os.Exit(1)
 }
}

Create your main.go

With the root command you need to have your main function execute it.
Execute should be run on the root for clarity, though it can be called on any command.

In a Cobra app, typically the main.go file is very bare. It serves, one purpose, to initialize Cobra.

package main

import (
 "{pathToYourApp}/cmd"
)

func main() {
 cmd.Execute()
}

Create additional commands

Additional commands can be defined and typically are each given their own file
inside of the cmd/ directory.

If you wanted to create a version command you would create cmd/version.go and
populate it with the following:

package cmd

import (
 "fmt"

 "github.com/spf13/cobra"
)

func init() {
 rootCmd.AddCommand(versionCmd)
}

var versionCmd = &cobra.Command{
 Use: "version",
 Short: "Print the version number of Hugo",
 Long: `All software has versions. This is Hugo's`,
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Hugo Static Site Generator v0.9 -- HEAD")
 },
}

Working with Flags

Flags provide modifiers to control how the action command operates.

Assign flags to a command

Since the flags are defined and used in different locations, we need to
define a variable outside with the correct scope to assign the flag to
work with.

var Verbose bool
var Source string

There are two different approaches to assign a flag.

Persistent Flags

A flag can be ‘persistent’ meaning that this flag will be available to the
command it’s assigned to as well as every command under that command. For
global flags, assign a flag as a persistent flag on the root.

rootCmd.PersistentFlags().BoolVarP(&Verbose, "verbose", "v", false, "verbose output")

Local Flags

A flag can also be assigned locally which will only apply to that specific command.

rootCmd.Flags().StringVarP(&Source, "source", "s", "", "Source directory to read from")

Local Flag on Parent Commands

By default Cobra only parses local flags on the target command, any local flags on
parent commands are ignored. By enabling Command.TraverseChildren Cobra will
parse local flags on each command before executing the target command.

command := cobra.Command{
 Use: "print [OPTIONS] [COMMANDS]",
 TraverseChildren: true,
}

Bind Flags with Config

You can also bind your flags with viper [https://github.com/spf13/viper]:

var author string

func init() {
 rootCmd.PersistentFlags().StringVar(&author, "author", "YOUR NAME", "Author name for copyright attribution")
 viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
}

In this example the persistent flag author is bound with viper.
Note, that the variable author will not be set to the value from config,
when the --author flag is not provided by user.

More in viper documentation [https://github.com/spf13/viper#working-with-flags].

Required flags

Flags are optional by default. If instead you wish your command to report an error
when a flag has not been set, mark it as required:

rootCmd.Flags().StringVarP(&Region, "region", "r", "", "AWS region (required)")
rootCmd.MarkFlagRequired("region")

Positional and Custom Arguments

Validation of positional arguments can be specified using the Args field
of Command.

The following validators are built in:

	NoArgs - the command will report an error if there are any positional args.

	ArbitraryArgs - the command will accept any args.

	OnlyValidArgs - the command will report an error if there are any positional args that are not in the ValidArgs field of Command.

	MinimumNArgs(int) - the command will report an error if there are not at least N positional args.

	MaximumNArgs(int) - the command will report an error if there are more than N positional args.

	ExactArgs(int) - the command will report an error if there are not exactly N positional args.

	ExactValidArgs(int) - the command will report an error if there are not exactly N positional args OR if there are any positional args that are not in the ValidArgs field of Command

	RangeArgs(min, max) - the command will report an error if the number of args is not between the minimum and maximum number of expected args.

An example of setting the custom validator:

var cmd = &cobra.Command{
 Short: "hello",
 Args: func(cmd *cobra.Command, args []string) error {
 if len(args) < 1 {
 return errors.New("requires a color argument")
 }
 if myapp.IsValidColor(args[0]) {
 return nil
 }
 return fmt.Errorf("invalid color specified: %s", args[0])
 },
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Hello, World!")
 },
}

Example

In the example below, we have defined three commands. Two are at the top level
and one (cmdTimes) is a child of one of the top commands. In this case the root
is not executable meaning that a subcommand is required. This is accomplished
by not providing a ‘Run’ for the ‘rootCmd’.

We have only defined one flag for a single command.

More documentation about flags is available at https://github.com/spf13/pflag

package main

import (
 "fmt"
 "strings"

 "github.com/spf13/cobra"
)

func main() {
 var echoTimes int

 var cmdPrint = &cobra.Command{
 Use: "print [string to print]",
 Short: "Print anything to the screen",
 Long: `print is for printing anything back to the screen.
For many years people have printed back to the screen.`,
 Args: cobra.MinimumNArgs(1),
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Print: " + strings.Join(args, " "))
 },
 }

 var cmdEcho = &cobra.Command{
 Use: "echo [string to echo]",
 Short: "Echo anything to the screen",
 Long: `echo is for echoing anything back.
Echo works a lot like print, except it has a child command.`,
 Args: cobra.MinimumNArgs(1),
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Print: " + strings.Join(args, " "))
 },
 }

 var cmdTimes = &cobra.Command{
 Use: "times [string to echo]",
 Short: "Echo anything to the screen more times",
 Long: `echo things multiple times back to the user by providing
a count and a string.`,
 Args: cobra.MinimumNArgs(1),
 Run: func(cmd *cobra.Command, args []string) {
 for i := 0; i < echoTimes; i++ {
 fmt.Println("Echo: " + strings.Join(args, " "))
 }
 },
 }

 cmdTimes.Flags().IntVarP(&echoTimes, "times", "t", 1, "times to echo the input")

 var rootCmd = &cobra.Command{Use: "app"}
 rootCmd.AddCommand(cmdPrint, cmdEcho)
 cmdEcho.AddCommand(cmdTimes)
 rootCmd.Execute()
}

For a more complete example of a larger application, please checkout Hugo [http://gohugo.io/].

Help Command

Cobra automatically adds a help command to your application when you have subcommands.
This will be called when a user runs ‘app help’. Additionally, help will also
support all other commands as input. Say, for instance, you have a command called
‘create’ without any additional configuration; Cobra will work when ‘app help
create’ is called. Every command will automatically have the ‘–help’ flag added.

Example

The following output is automatically generated by Cobra. Nothing beyond the
command and flag definitions are needed.

$ cobra help

Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.

Usage:
 cobra [command]

Available Commands:
 add Add a command to a Cobra Application
 help Help about any command
 init Initialize a Cobra Application

Flags:
 -a, --author string author name for copyright attribution (default "YOUR NAME")
 --config string config file (default is $HOME/.cobra.yaml)
 -h, --help help for cobra
 -l, --license string name of license for the project
 --viper use Viper for configuration (default true)

Use "cobra [command] --help" for more information about a command.

Help is just a command like any other. There is no special logic or behavior
around it. In fact, you can provide your own if you want.

Defining your own help

You can provide your own Help command or your own template for the default command to use
with following functions:

cmd.SetHelpCommand(cmd *Command)
cmd.SetHelpFunc(f func(*Command, []string))
cmd.SetHelpTemplate(s string)

The latter two will also apply to any children commands.

Usage Message

When the user provides an invalid flag or invalid command, Cobra responds by
showing the user the ‘usage’.

Example

You may recognize this from the help above. That’s because the default help
embeds the usage as part of its output.

$ cobra --invalid
Error: unknown flag: --invalid
Usage:
 cobra [command]

Available Commands:
 add Add a command to a Cobra Application
 help Help about any command
 init Initialize a Cobra Application

Flags:
 -a, --author string author name for copyright attribution (default "YOUR NAME")
 --config string config file (default is $HOME/.cobra.yaml)
 -h, --help help for cobra
 -l, --license string name of license for the project
 --viper use Viper for configuration (default true)

Use "cobra [command] --help" for more information about a command.

Defining your own usage

You can provide your own usage function or template for Cobra to use.
Like help, the function and template are overridable through public methods:

cmd.SetUsageFunc(f func(*Command) error)
cmd.SetUsageTemplate(s string)

Version Flag

Cobra adds a top-level ‘–version’ flag if the Version field is set on the root command.
Running an application with the ‘–version’ flag will print the version to stdout using
the version template. The template can be customized using the
cmd.SetVersionTemplate(s string) function.

PreRun and PostRun Hooks

It is possible to run functions before or after the main Run function of your command. The PersistentPreRun and PreRun functions will be executed before Run. PersistentPostRun and PostRun will be executed after Run. The Persistent*Run functions will be inherited by children if they do not declare their own. These functions are run in the following order:

	PersistentPreRun

	PreRun

	Run

	PostRun

	PersistentPostRun

An example of two commands which use all of these features is below. When the subcommand is executed, it will run the root command’s PersistentPreRun but not the root command’s PersistentPostRun:

package main

import (
 "fmt"

 "github.com/spf13/cobra"
)

func main() {

 var rootCmd = &cobra.Command{
 Use: "root [sub]",
 Short: "My root command",
 PersistentPreRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PersistentPreRun with args: %v\n", args)
 },
 PreRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PreRun with args: %v\n", args)
 },
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd Run with args: %v\n", args)
 },
 PostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PostRun with args: %v\n", args)
 },
 PersistentPostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PersistentPostRun with args: %v\n", args)
 },
 }

 var subCmd = &cobra.Command{
 Use: "sub [no options!]",
 Short: "My subcommand",
 PreRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd PreRun with args: %v\n", args)
 },
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd Run with args: %v\n", args)
 },
 PostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd PostRun with args: %v\n", args)
 },
 PersistentPostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd PersistentPostRun with args: %v\n", args)
 },
 }

 rootCmd.AddCommand(subCmd)

 rootCmd.SetArgs([]string{""})
 rootCmd.Execute()
 fmt.Println()
 rootCmd.SetArgs([]string{"sub", "arg1", "arg2"})
 rootCmd.Execute()
}

Output:

Inside rootCmd PersistentPreRun with args: []
Inside rootCmd PreRun with args: []
Inside rootCmd Run with args: []
Inside rootCmd PostRun with args: []
Inside rootCmd PersistentPostRun with args: []

Inside rootCmd PersistentPreRun with args: [arg1 arg2]
Inside subCmd PreRun with args: [arg1 arg2]
Inside subCmd Run with args: [arg1 arg2]
Inside subCmd PostRun with args: [arg1 arg2]
Inside subCmd PersistentPostRun with args: [arg1 arg2]

Suggestions when “unknown command” happens

Cobra will print automatic suggestions when “unknown command” errors happen. This allows Cobra to behave similarly to the git command when a typo happens. For example:

$ hugo srever
Error: unknown command "srever" for "hugo"

Did you mean this?
 server

Run 'hugo --help' for usage.

Suggestions are automatic based on every subcommand registered and use an implementation of Levenshtein distance [http://en.wikipedia.org/wiki/Levenshtein_distance]. Every registered command that matches a minimum distance of 2 (ignoring case) will be displayed as a suggestion.

If you need to disable suggestions or tweak the string distance in your command, use:

command.DisableSuggestions = true

or

command.SuggestionsMinimumDistance = 1

You can also explicitly set names for which a given command will be suggested using the SuggestFor attribute. This allows suggestions for strings that are not close in terms of string distance, but makes sense in your set of commands and for some which you don’t want aliases. Example:

$ kubectl remove
Error: unknown command "remove" for "kubectl"

Did you mean this?
 delete

Run 'kubectl help' for usage.

Generating documentation for your command

Cobra can generate documentation based on subcommands, flags, etc. in the following formats:

	Markdown

	ReStructured Text

	Man Page

Generating bash completions

Cobra can generate a bash-completion file. If you add more information to your command, these completions can be amazingly powerful and flexible. Read more about it in Bash Completions.

Contributing

	Fork it

	Download your fork to your PC (git clone https://github.com/your_username/cobra && cd cobra)

	Create your feature branch (git checkout -b my-new-feature)

	Make changes and add them (git add .)

	Commit your changes (git commit -m 'Add some feature')

	Push to the branch (git push origin my-new-feature)

	Create new pull request

License

Cobra is released under the Apache 2.0 license. See LICENSE.txt [https://github.com/spf13/cobra/blob/master/LICENSE.txt]

 Generating Bash Completions For Your Own cobra.Command

Generating Bash Completions For Your Own cobra.Command

If you are using the generator you can create a completion command by running

cobra add completion

Update the help text show how to install the bash_completion Linux show here Kubectl docs show mac options [https://kubernetes.io/docs/tasks/tools/install-kubectl/#enabling-shell-autocompletion]

Writing the shell script to stdout allows the most flexible use.

// completionCmd represents the completion command
var completionCmd = &cobra.Command{
	Use: "completion",
	Short: "Generates bash completion scripts",
	Long: `To load completion run

. <(bitbucket completion)

To configure your bash shell to load completions for each session add to your bashrc

~/.bashrc or ~/.profile
. <(bitbucket completion)
`,
	Run: func(cmd *cobra.Command, args []string) {
		rootCmd.GenBashCompletion(os.Stdout);
	},
}

Note: The cobra generator may include messages printed to stdout for example if the config file is loaded, this will break the auto complete script

Example from kubectl

Generating bash completions from a cobra command is incredibly easy. An actual program which does so for the kubernetes kubectl binary is as follows:

package main

import (
	"io/ioutil"
	"os"

	"k8s.io/kubernetes/pkg/kubectl/cmd"
	"k8s.io/kubernetes/pkg/kubectl/cmd/util"
)

func main() {
	kubectl := cmd.NewKubectlCommand(util.NewFactory(nil), os.Stdin, ioutil.Discard, ioutil.Discard)
	kubectl.GenBashCompletionFile("out.sh")
}

out.sh will get you completions of subcommands and flags. Copy it to /etc/bash_completion.d/ as described here [https://debian-administration.org/article/316/An_introduction_to_bash_completion_part_1] and reset your terminal to use autocompletion. If you make additional annotations to your code, you can get even more intelligent and flexible behavior.

Creating your own custom functions

Some more actual code that works in kubernetes:

const (
 bash_completion_func = `__kubectl_parse_get()
{
 local kubectl_output out
 if kubectl_output=$(kubectl get --no-headers "$1" 2>/dev/null); then
 out=($(echo "${kubectl_output}" | awk '{print $1}'))
 COMPREPLY=($(compgen -W "${out[*]}" -- "$cur"))
 fi
}

__kubectl_get_resource()
{
 if [[${#nouns[@]} -eq 0]]; then
 return 1
 fi
 __kubectl_parse_get ${nouns[${#nouns[@]} -1]}
 if [[$? -eq 0]]; then
 return 0
 fi
}

__kubectl_custom_func() {
 case ${last_command} in
 kubectl_get | kubectl_describe | kubectl_delete | kubectl_stop)
 __kubectl_get_resource
 return
 ;;
 *)
 ;;
 esac
}
`)

And then I set that in my command definition:

cmds := &cobra.Command{
	Use: "kubectl",
	Short: "kubectl controls the Kubernetes cluster manager",
	Long: `kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlatform/kubernetes.`,
	Run: runHelp,
	BashCompletionFunction: bash_completion_func,
}

The BashCompletionFunction option is really only valid/useful on the root command. Doing the above will cause __kubectl_custom_func() (__<command-use>_custom_func()) to be called when the built in processor was unable to find a solution. In the case of kubernetes a valid command might look something like kubectl get pod [mypod]. If you type kubectl get pod [tab][tab] the __kubectl_customc_func() will run because the cobra.Command only understood “kubectl” and “get.” __kubectl_custom_func() will see that the cobra.Command is “kubectl_get” and will thus call another helper __kubectl_get_resource(). __kubectl_get_resource will look at the ‘nouns’ collected. In our example the only noun will be pod. So it will call __kubectl_parse_get pod. __kubectl_parse_get will actually call out to kubernetes and get any pods. It will then set COMPREPLY to valid pods!

Have the completions code complete your ‘nouns’

In the above example “pod” was assumed to already be typed. But if you want kubectl get [tab][tab] to show a list of valid “nouns” you have to set them. Simplified code from kubectl get looks like:

validArgs []string = { "pod", "node", "service", "replicationcontroller" }

cmd := &cobra.Command{
	Use: "get [(-o|--output=)json|yaml|template|...] (RESOURCE [NAME] | RESOURCE/NAME ...)",
	Short: "Display one or many resources",
	Long: get_long,
	Example: get_example,
	Run: func(cmd *cobra.Command, args []string) {
		err := RunGet(f, out, cmd, args)
		util.CheckErr(err)
	},
	ValidArgs: validArgs,
}

Notice we put the “ValidArgs” on the “get” subcommand. Doing so will give results like

kubectl get [tab][tab]
node pod replicationcontroller service

Plural form and shortcuts for nouns

If your nouns have a number of aliases, you can define them alongside ValidArgs using ArgAliases:

argAliases []string = { "pods", "nodes", "services", "svc", "replicationcontrollers", "rc" }

cmd := &cobra.Command{
 ...
	ValidArgs: validArgs,
	ArgAliases: argAliases
}

The aliases are not shown to the user on tab completion, but they are accepted as valid nouns by
the completion algorithm if entered manually, e.g. in:

kubectl get rc [tab][tab]
backend frontend database

Note that without declaring rc as an alias, the completion algorithm would show the list of nouns
in this example again instead of the replication controllers.

Mark flags as required

Most of the time completions will only show subcommands. But if a flag is required to make a subcommand work, you probably want it to show up when the user types [tab][tab]. Marking a flag as ‘Required’ is incredibly easy.

cmd.MarkFlagRequired("pod")
cmd.MarkFlagRequired("container")

and you’ll get something like

kubectl exec [tab][tab][tab]
-c --container= -p --pod=

Specify valid filename extensions for flags that take a filename

In this example we use –filename= and expect to get a json or yaml file as the argument. To make this easier we annotate the –filename flag with valid filename extensions.

	annotations := []string{"json", "yaml", "yml"}
	annotation := make(map[string][]string)
	annotation[cobra.BashCompFilenameExt] = annotations

	flag := &pflag.Flag{
		Name: "filename",
		Shorthand: "f",
		Usage: usage,
		Value: value,
		DefValue: value.String(),
		Annotations: annotation,
	}
	cmd.Flags().AddFlag(flag)

Now when you run a command with this filename flag you’ll get something like

kubectl create -f
test/ example/ rpmbuild/
hello.yml test.json

So while there are many other files in the CWD it only shows me subdirs and those with valid extensions.

Specify custom flag completion

Similar to the filename completion and filtering using cobra.BashCompFilenameExt, you can specify
a custom flag completion function with cobra.BashCompCustom:

	annotation := make(map[string][]string)
	annotation[cobra.BashCompCustom] = []string{"__kubectl_get_namespaces"}

	flag := &pflag.Flag{
		Name: "namespace",
		Usage: usage,
		Annotations: annotation,
	}
	cmd.Flags().AddFlag(flag)

In addition add the __handle_namespace_flag implementation in the BashCompletionFunction
value, e.g.:

__kubectl_get_namespaces()
{
 local template
 template="{{ range .items }}{{ .metadata.name }} {{ end }}"
 local kubectl_out
 if kubectl_out=$(kubectl get -o template --template="${template}" namespace 2>/dev/null); then
 COMPREPLY=($(compgen -W "${kubectl_out}[*]" -- "$cur"))
 fi
}

Using bash aliases for commands

You can also configure the bash aliases for the commands and they will also support completions.

alias aliasname=origcommand
complete -o default -F __start_origcommand aliasname

and now when you run `aliasname` completion will make
suggestions as it did for `origcommand`.

$) aliasname <tab><tab>
completion firstcommand secondcommand

 Description

 [image: ../../../../_images/pflag.svg]Build Status [https://travis-ci.org/spf13/pflag]
[image: ../../../../_images/pflag1.svg]Go Report Card [https://goreportcard.com/report/github.com/spf13/pflag]
[image: ../../../../_images/pflag2.svg]GoDoc [https://godoc.org/github.com/spf13/pflag]

Description

pflag is a drop-in replacement for Go’s flag package, implementing
POSIX/GNU-style –flags.

pflag is compatible with the GNU extensions to the POSIX recommendations
for command-line options [http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html]. For a more precise description, see the
“Command-line flag syntax” section below.

pflag is available under the same style of BSD license as the Go language,
which can be found in the LICENSE file.

Installation

pflag is available using the standard go get command.

Install by running:

go get github.com/spf13/pflag

Run tests by running:

go test github.com/spf13/pflag

Usage

pflag is a drop-in replacement of Go’s native flag package. If you import
pflag under the name “flag” then all code should continue to function
with no changes.

import flag "github.com/spf13/pflag"

There is one exception to this: if you directly instantiate the Flag struct
there is one more field “Shorthand” that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.

Define flags using flag.String(), Bool(), Int(), etc.

This declares an integer flag, -flagname, stored in the pointer ip, with type *int.

var ip *int = flag.Int("flagname", 1234, "help message for flagname")

If you like, you can bind the flag to a variable using the Var() functions.

var flagvar int
func init() {
 flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}

Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by

flag.Var(&flagVal, "name", "help message for flagname")

For such flags, the default value is just the initial value of the variable.

After all flags are defined, call

flag.Parse()

to parse the command line into the defined flags.

Flags may then be used directly. If you’re using the flags themselves,
they are all pointers; if you bind to variables, they’re values.

fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)

There are helper functions available to get the value stored in a Flag if you have a FlagSet but find
it difficult to keep up with all of the pointers in your code.
If you have a pflag.FlagSet with a flag called ‘flagname’ of type int you
can use GetInt() to get the int value. But notice that ‘flagname’ must exist
and it must be an int. GetString(“flagname”) will fail.

i, err := flagset.GetInt("flagname")

After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.

The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
‘P’ to the name of any function that defines a flag.

var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
	flag.BoolVarP(&flagvar, "boolname", "b", true, "help message")
}
flag.VarP(&flagVal, "varname", "v", "help message")

Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.

The default set of command-line flags is controlled by
top-level functions. The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.

Setting no option default values for flags

After you create a flag it is possible to set the pflag.NoOptDefVal for
the given flag. Doing this changes the meaning of the flag slightly. If
a flag has a NoOptDefVal and the flag is set on the command line without
an option the flag will be set to the NoOptDefVal. For example given:

var ip = flag.IntP("flagname", "f", 1234, "help message")
flag.Lookup("flagname").NoOptDefVal = "4321"

Would result in something like

Parsed Arguments	Resulting Value
————-	————-
–flagname=1357	ip=1357
–flagname	ip=4321
[nothing]	ip=1234

Command line flag syntax

--flag // boolean flags, or flags with no option default values
--flag x // only on flags without a default value
--flag=x

Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags
or a flag with a default value

// boolean or flags where the 'no option default value' is set
-f
-f=true
-abc
but
-b true is INVALID

// non-boolean and flags without a 'no option default value'
-n 1234
-n=1234
-n1234

// mixed
-abcs "hello"
-absd="hello"
-abcs1234

Flag parsing stops after the terminator “–“. Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.

Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.

Mutating or “Normalizing” Flag names

It is possible to set a custom flag name ‘normalization function.’ It allows flag names to be mutated both when created in the code and when used on the command line to some ‘normalized’ form. The ‘normalized’ form is used for comparison. Two examples of using the custom normalization func follow.

Example #1: You want -, _, and . in flags to compare the same. aka –my-flag == –my_flag == –my.flag

func wordSepNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
	from := []string{"-", "_"}
	to := "."
	for _, sep := range from {
		name = strings.Replace(name, sep, to, -1)
	}
	return pflag.NormalizedName(name)
}

myFlagSet.SetNormalizeFunc(wordSepNormalizeFunc)

Example #2: You want to alias two flags. aka –old-flag-name == –new-flag-name

func aliasNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
	switch name {
	case "old-flag-name":
		name = "new-flag-name"
		break
	}
	return pflag.NormalizedName(name)
}

myFlagSet.SetNormalizeFunc(aliasNormalizeFunc)

Deprecating a flag or its shorthand

It is possible to deprecate a flag, or just its shorthand. Deprecating a flag/shorthand hides it from help text and prints a usage message when the deprecated flag/shorthand is used.

Example #1: You want to deprecate a flag named “badflag” as well as inform the users what flag they should use instead.

// deprecate a flag by specifying its name and a usage message
flags.MarkDeprecated("badflag", "please use --good-flag instead")

This hides “badflag” from help text, and prints Flag --badflag has been deprecated, please use --good-flag instead when “badflag” is used.

Example #2: You want to keep a flag name “noshorthandflag” but deprecate its shortname “n”.

// deprecate a flag shorthand by specifying its flag name and a usage message
flags.MarkShorthandDeprecated("noshorthandflag", "please use --noshorthandflag only")

This hides the shortname “n” from help text, and prints Flag shorthand -n has been deprecated, please use --noshorthandflag only when the shorthand “n” is used.

Note that usage message is essential here, and it should not be empty.

Hidden flags

It is possible to mark a flag as hidden, meaning it will still function as normal, however will not show up in usage/help text.

Example: You have a flag named “secretFlag” that you need for internal use only and don’t want it showing up in help text, or for its usage text to be available.

// hide a flag by specifying its name
flags.MarkHidden("secretFlag")

Disable sorting of flags

pflag allows you to disable sorting of flags for help and usage message.

Example:

flags.BoolP("verbose", "v", false, "verbose output")
flags.String("coolflag", "yeaah", "it's really cool flag")
flags.Int("usefulflag", 777, "sometimes it's very useful")
flags.SortFlags = false
flags.PrintDefaults()

Output:

 -v, --verbose verbose output
 --coolflag string it's really cool flag (default "yeaah")
 --usefulflag int sometimes it's very useful (default 777)

Supporting Go flags when using pflag

In order to support flags defined using Go’s flag package, they must be added to the pflag flagset. This is usually necessary
to support flags defined by third-party dependencies (e.g. golang/glog).

Example: You want to add the Go flags to the CommandLine flagset

import (
	goflag "flag"
	flag "github.com/spf13/pflag"
)

var ip *int = flag.Int("flagname", 1234, "help message for flagname")

func main() {
	flag.CommandLine.AddGoFlagSet(goflag.CommandLine)
	flag.Parse()
}

More info

You can see the full reference documentation of the pflag package
at godoc.org [http://godoc.org/github.com/spf13/pflag], or through go’s standard documentation system by
running godoc -http=:6060 and browsing to
http://localhost:6060/pkg/github.com/spf13/pflag after
installation.

 atomic

atomic [image: ../../../_images/atomic.svg]GoDoc [https://godoc.org/go.uber.org/atomic] [image: ../../../_images/atomic1.svg]Build Status [https://travis-ci.com/uber-go/atomic] [image: ../../../_images/badge6.svg]Coverage Status [https://codecov.io/gh/uber-go/atomic] [image: ../../../_images/atomic2.svg]Go Report Card [https://goreportcard.com/report/go.uber.org/atomic]

Simple wrappers for primitive types to enforce atomic access.

Installation

go get -u go.uber.org/atomic

Usage

The standard library’s sync/atomic is powerful, but it’s easy to forget which
variables must be accessed atomically. go.uber.org/atomic preserves all the
functionality of the standard library, but wraps the primitive types to
provide a safer, more convenient API.

var atom atomic.Uint32
atom.Store(42)
atom.Sub(2)
atom.CAS(40, 11)

See the documentation [https://godoc.org/go.uber.org/atomic] for a complete API specification.

Development Status

Stable.

Released under the MIT License.

 Releases

Releases

v1.1.0 (2017-06-30)

	Added an Errors(error) []error function to extract the underlying list of
errors for a multierr error.

v1.0.0 (2017-05-31)

No changes since v0.2.0. This release is committing to making no breaking
changes to the current API in the 1.X series.

v0.2.0 (2017-04-11)

	Repeatedly appending to the same error is now faster due to fewer
allocations.

v0.1.0 (2017-31-03)

	Initial release

 multierr

multierr [image: ../../../_images/multierr.svg]GoDoc [https://godoc.org/go.uber.org/multierr] [image: ../../../_images/multierr1.svg]Build Status [https://travis-ci.com/uber-go/multierr] [image: ../../../_images/badge7.svg]Coverage Status [https://codecov.io/gh/uber-go/multierr]

multierr allows combining one or more Go errors together.

Installation

go get -u go.uber.org/multierr

Status

Stable: No breaking changes will be made before 2.0.

Released under the MIT License.

 Changelog

Changelog

1.10.0 (29 Apr 2019)

Bugfixes:

	#657 [https://github.com/uber-go/zap/pull/657]: Fix MapObjectEncoder.AppendByteString not adding value as a
string.

	#706 [https://github.com/uber-go/zap/pull/706]: Fix incorrect call depth to determine caller in Go 1.12.

Enhancements:

	#610 [https://github.com/uber-go/zap/pull/610]: Add zaptest.WrapOptions to wrap zap.Option for creating test
loggers.

	#675 [https://github.com/uber-go/zap/pull/675]: Don’t panic when encoding a String field.

	#704 [https://github.com/uber-go/zap/pull/704]: Disable HTML escaping for JSON objects encoded using the
reflect-based encoder.

Thanks to @iaroslav-ciupin, @lelenanam, @joa, @NWilson for their contributions
to this release.

v1.9.1 (06 Aug 2018)

Bugfixes:

	#614 [https://github.com/uber-go/zap/pull/614]: MapObjectEncoder should not ignore empty slices.

v1.9.0 (19 Jul 2018)

Enhancements:

	#602 [https://github.com/uber-go/zap/pull/602]: Reduce number of allocations when logging with reflection.

	#572 [https://github.com/uber-go/zap/pull/572], #606 [https://github.com/uber-go/zap/pull/606]: Expose a registry for third-party logging sinks.

Thanks to @nfarah86, @AlekSi, @JeanMertz, @philippgille, @etsangsplk, and
@dimroc for their contributions to this release.

v1.8.0 (13 Apr 2018)

Enhancements:

	#508 [https://github.com/uber-go/zap/pull/508]: Make log level configurable when redirecting the standard
library’s logger.

	#518 [https://github.com/uber-go/zap/pull/518]: Add a logger that writes to a *testing.TB.

	#577 [https://github.com/uber-go/zap/pull/577]: Add a top-level alias for zapcore.Field to clean up GoDoc.

Bugfixes:

	#574 [https://github.com/uber-go/zap/pull/574]: Add a missing import comment to go.uber.org/zap/buffer.

Thanks to @DiSiqueira and @djui for their contributions to this release.

v1.7.1 (25 Sep 2017)

Bugfixes:

	#504 [https://github.com/uber-go/zap/pull/504]: Store strings when using AddByteString with the map encoder.

v1.7.0 (21 Sep 2017)

Enhancements:

	#487 [https://github.com/uber-go/zap/pull/487]: Add NewStdLogAt, which extends NewStdLog by allowing the user
to specify the level of the logged messages.

v1.6.0 (30 Aug 2017)

Enhancements:

	#491 [https://github.com/uber-go/zap/pull/491]: Omit zap stack frames from stacktraces.

	#490 [https://github.com/uber-go/zap/pull/490]: Add a ContextMap method to observer logs for simpler
field validation in tests.

v1.5.0 (22 Jul 2017)

Enhancements:

	#460 [https://github.com/uber-go/zap/pull/460] and #470 [https://github.com/uber-go/zap/pull/470]: Support errors produced by go.uber.org/multierr.

	#465 [https://github.com/uber-go/zap/pull/465]: Support user-supplied encoders for logger names.

Bugfixes:

	#477 [https://github.com/uber-go/zap/pull/477]: Fix a bug that incorrectly truncated deep stacktraces.

Thanks to @richard-tunein and @pavius for their contributions to this release.

v1.4.1 (08 Jun 2017)

This release fixes two bugs.

Bugfixes:

	#435 [https://github.com/uber-go/zap/pull/435]: Support a variety of case conventions when unmarshaling levels.

	#444 [https://github.com/uber-go/zap/pull/444]: Fix a panic in the observer.

v1.4.0 (12 May 2017)

This release adds a few small features and is fully backward-compatible.

Enhancements:

	#424 [https://github.com/uber-go/zap/pull/424]: Add a LineEnding field to EncoderConfig, allowing users to
override the Unix-style default.

	#425 [https://github.com/uber-go/zap/pull/425]: Preserve time zones when logging times.

	#431 [https://github.com/uber-go/zap/pull/431]: Make zap.AtomicLevel implement fmt.Stringer, which makes a
variety of operations a bit simpler.

v1.3.0 (25 Apr 2017)

This release adds an enhancement to zap’s testing helpers as well as the
ability to marshal an AtomicLevel. It is fully backward-compatible.

Enhancements:

	#415 [https://github.com/uber-go/zap/pull/415]: Add a substring-filtering helper to zap’s observer. This is
particularly useful when testing the SugaredLogger.

	#416 [https://github.com/uber-go/zap/pull/416]: Make AtomicLevel implement encoding.TextMarshaler.

v1.2.0 (13 Apr 2017)

This release adds a gRPC compatibility wrapper. It is fully backward-compatible.

Enhancements:

	#402 [https://github.com/uber-go/zap/pull/402]: Add a zapgrpc package that wraps zap’s Logger and implements
grpclog.Logger.

v1.1.0 (31 Mar 2017)

This release fixes two bugs and adds some enhancements to zap’s testing helpers.
It is fully backward-compatible.

Bugfixes:

	#385 [https://github.com/uber-go/zap/pull/385]: Fix caller path trimming on Windows.

	#396 [https://github.com/uber-go/zap/pull/396]: Fix a panic when attempting to use non-existent directories with
zap’s configuration struct.

Enhancements:

	#386 [https://github.com/uber-go/zap/pull/386]: Add filtering helpers to zaptest’s observing logger.

Thanks to @moitias for contributing to this release.

v1.0.0 (14 Mar 2017)

This is zap’s first stable release. All exported APIs are now final, and no
further breaking changes will be made in the 1.x release series. Anyone using a
semver-aware dependency manager should now pin to ^1.

Breaking changes:

	#366 [https://github.com/uber-go/zap/pull/366]: Add byte-oriented APIs to encoders to log UTF-8 encoded text without
casting from []byte to string.

	#364 [https://github.com/uber-go/zap/pull/364]: To support buffering outputs, add Sync methods to zapcore.Core,
zap.Logger, and zap.SugaredLogger.

	#371 [https://github.com/uber-go/zap/pull/371]: Rename the testutils package to zaptest, which is less likely to
clash with other testing helpers.

Bugfixes:

	#362 [https://github.com/uber-go/zap/pull/362]: Make the ISO8601 time formatters fixed-width, which is friendlier
for tab-separated console output.

	#369 [https://github.com/uber-go/zap/pull/369]: Remove the automatic locks in zapcore.NewCore, which allows zap to
work with concurrency-safe WriteSyncer implementations.

	#347 [https://github.com/uber-go/zap/pull/347]: Stop reporting errors when trying to fsync standard out on Linux
systems.

	#373 [https://github.com/uber-go/zap/pull/373]: Report the correct caller from zap’s standard library
interoperability wrappers.

Enhancements:

	#348 [https://github.com/uber-go/zap/pull/348]: Add a registry allowing third-party encodings to work with zap’s
built-in Config.

	#327 [https://github.com/uber-go/zap/pull/327]: Make the representation of logger callers configurable (like times,
levels, and durations).

	#376 [https://github.com/uber-go/zap/pull/376]: Allow third-party encoders to use their own buffer pools, which
removes the last performance advantage that zap’s encoders have over plugins.

	#346 [https://github.com/uber-go/zap/pull/346]: Add CombineWriteSyncers, a convenience function to tee multiple
WriteSyncers and lock the result.

	#365 [https://github.com/uber-go/zap/pull/365]: Make zap’s stacktraces compatible with mid-stack inlining (coming in
Go 1.9).

	#372 [https://github.com/uber-go/zap/pull/372]: Export zap’s observing logger as zaptest/observer. This makes it
easier for particularly punctilious users to unit test their application’s
logging.

Thanks to @suyash, @htrendev, @flisky, @Ulexus, and @skipor for their
contributions to this release.

v1.0.0-rc.3 (7 Mar 2017)

This is the third release candidate for zap’s stable release. There are no
breaking changes.

Bugfixes:

	#339 [https://github.com/uber-go/zap/pull/339]: Byte slices passed to zap.Any are now correctly treated as binary blobs
rather than []uint8.

Enhancements:

	#307 [https://github.com/uber-go/zap/pull/307]: Users can opt into colored output for log levels.

	#353 [https://github.com/uber-go/zap/pull/353]: In addition to hijacking the output of the standard library’s
package-global logging functions, users can now construct a zap-backed
log.Logger instance.

	#311 [https://github.com/uber-go/zap/pull/311]: Frames from common runtime functions and some of zap’s internal
machinery are now omitted from stacktraces.

Thanks to @ansel1 and @suyash for their contributions to this release.

v1.0.0-rc.2 (21 Feb 2017)

This is the second release candidate for zap’s stable release. It includes two
breaking changes.

Breaking changes:

	#316 [https://github.com/uber-go/zap/pull/316]: Zap’s global loggers are now fully concurrency-safe
(previously, users had to ensure that ReplaceGlobals was called before the
loggers were in use). However, they must now be accessed via the L() and
S() functions. Users can update their projects with

gofmt -r "zap.L -> zap.L()" -w .
gofmt -r "zap.S -> zap.S()" -w .

	#309 [https://github.com/uber-go/zap/pull/309] and #317 [https://github.com/uber-go/zap/pull/317]: RC1 was mistakenly shipped with invalid
JSON and YAML struct tags on all config structs. This release fixes the tags
and adds static analysis to prevent similar bugs in the future.

Bugfixes:

	#321 [https://github.com/uber-go/zap/pull/321]: Redirecting the standard library’s log output now
correctly reports the logger’s caller.

Enhancements:

	#325 [https://github.com/uber-go/zap/pull/325] and #333 [https://github.com/uber-go/zap/pull/333]: Zap now transparently supports non-standard, rich
errors like those produced by github.com/pkg/errors.

	#326 [https://github.com/uber-go/zap/pull/326]: Though New(nil) continues to return a no-op logger, NewNop() is
now preferred. Users can update their projects with gofmt -r 'zap.New(nil) -> zap.NewNop()' -w ..

	#300 [https://github.com/uber-go/zap/pull/300]: Incorrectly importing zap as github.com/uber-go/zap now returns a
more informative error.

Thanks to @skipor and @chapsuk for their contributions to this release.

v1.0.0-rc.1 (14 Feb 2017)

This is the first release candidate for zap’s stable release. There are multiple
breaking changes and improvements from the pre-release version. Most notably:

	Zap’s import path is now “go.uber.org/zap” — all users will
need to update their code.

	User-facing types and functions remain in the zap package. Code relevant
largely to extension authors is now in the zapcore package.

	The zapcore.Core type makes it easy for third-party packages to use zap’s
internals but provide a different user-facing API.

	Logger is now a concrete type instead of an interface.

	A less verbose (though slower) logging API is included by default.

	Package-global loggers L and S are included.

	A human-friendly console encoder is included.

	A declarative config struct allows common logger configurations to be managed
as configuration instead of code.

	Sampling is more accurate, and doesn’t depend on the standard library’s shared
timer heap.

v0.1.0-beta.1 (6 Feb 2017)

This is a minor version, tagged to allow users to pin to the pre-1.0 APIs and
upgrade at their leisure. Since this is the first tagged release, there are no
backward compatibility concerns and all functionality is new.

Early zap adopters should pin to the 0.1.x minor version until they’re ready to
upgrade to the upcoming stable release.

 Contributor Covenant Code of Conduct

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, gender identity and expression, level of
experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at oss-conduct@uber.com. The project
team will review and investigate all complaints, and will respond in a way
that it deems appropriate to the circumstances. The project team is obligated
to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org],
version 1.4, available at
http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/].

 Contributing

Contributing

We’d love your help making zap the very best structured logging library in Go!

If you’d like to add new exported APIs, please open an issue [https://github.com/uber-go/zap/issues/new]
describing your proposal — discussing API changes ahead of time makes
pull request review much smoother. In your issue, pull request, and any other
communications, please remember to treat your fellow contributors with
respect! We take our code of conduct seriously.

Note that you’ll need to sign Uber’s Contributor License Agreement [https://cla-assistant.io/uber-go/zap]
before we can accept any of your contributions. If necessary, a bot will remind
you to accept the CLA when you open your pull request.

Setup

Fork [https://github.com/uber-go/zap/fork], then clone the repository:

mkdir -p $GOPATH/src/go.uber.org
cd $GOPATH/src/go.uber.org
git clone git@github.com:your_github_username/zap.git
cd zap
git remote add upstream https://github.com/uber-go/zap.git
git fetch upstream

Install zap’s dependencies:

make dependencies

Make sure that the tests and the linters pass:

make test
make lint

If you’re not using the minor version of Go specified in the Makefile’s
LINTABLE_MINOR_VERSIONS variable, make lint doesn’t do anything. This is
fine, but it means that you’ll only discover lint failures after you open your
pull request.

Making Changes

Start by creating a new branch for your changes:

cd $GOPATH/src/go.uber.org/zap
git checkout master
git fetch upstream
git rebase upstream/master
git checkout -b cool_new_feature

Make your changes, then ensure that make lint and make test still pass. If
you’re satisfied with your changes, push them to your fork.

git push origin cool_new_feature

Then use the GitHub UI to open a pull request.

At this point, you’re waiting on us to review your changes. We try to respond
to issues and pull requests within a few business days, and we may suggest some
improvements or alternatives. Once your changes are approved, one of the
project maintainers will merge them.

We’re much more likely to approve your changes if you:

	Add tests for new functionality.

	Write a good commit message [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Maintain backward compatibility.

 Frequently Asked Questions

Frequently Asked Questions

Design

Why spend so much effort on logger performance?

Of course, most applications won’t notice the impact of a slow logger: they
already take tens or hundreds of milliseconds for each operation, so an extra
millisecond doesn’t matter.

On the other hand, why not make structured logging fast? The SugaredLogger
isn’t any harder to use than other logging packages, and the Logger makes
structured logging possible in performance-sensitive contexts. Across a fleet
of Go microservices, making each application even slightly more efficient adds
up quickly.

Why aren’t Logger and SugaredLogger interfaces?

Unlike the familiar io.Writer and http.Handler, Logger and
SugaredLogger interfaces would include many methods. As Rob Pike points
out [https://go-proverbs.github.io/], “The bigger the interface, the weaker the abstraction.”
Interfaces are also rigid — any change requires releasing a new major
version, since it breaks all third-party implementations.

Making the Logger and SugaredLogger concrete types doesn’t sacrifice much
abstraction, and it lets us add methods without introducing breaking changes.
Your applications should define and depend upon an interface that includes
just the methods you use.

Why sample application logs?

Applications often experience runs of errors, either because of a bug or
because of a misbehaving user. Logging errors is usually a good idea, but it
can easily make this bad situation worse: not only is your application coping
with a flood of errors, it’s also spending extra CPU cycles and I/O logging
those errors. Since writes are typically serialized, logging limits throughput
when you need it most.

Sampling fixes this problem by dropping repetitive log entries. Under normal
conditions, your application writes out every entry. When similar entries are
logged hundreds or thousands of times each second, though, zap begins dropping
duplicates to preserve throughput.

Why do the structured logging APIs take a message in addition to fields?

Subjectively, we find it helpful to accompany structured context with a brief
description. This isn’t critical during development, but it makes debugging
and operating unfamiliar systems much easier.

More concretely, zap’s sampling algorithm uses the message to identify
duplicate entries. In our experience, this is a practical middle ground
between random sampling (which often drops the exact entry that you need while
debugging) and hashing the complete entry (which is prohibitively expensive).

Why include package-global loggers?

Since so many other logging packages include a global logger, many
applications aren’t designed to accept loggers as explicit parameters.
Changing function signatures is often a breaking change, so zap includes
global loggers to simplify migration.

Avoid them where possible.

Why include dedicated Panic and Fatal log levels?

In general, application code should handle errors gracefully instead of using
panic or os.Exit. However, every rule has exceptions, and it’s common to
crash when an error is truly unrecoverable. To avoid losing any information
— especially the reason for the crash — the logger must flush any
buffered entries before the process exits.

Zap makes this easy by offering Panic and Fatal logging methods that
automatically flush before exiting. Of course, this doesn’t guarantee that
logs will never be lost, but it eliminates a common error.

See the discussion in uber-go/zap#207 for more details.

What’s DPanic?

DPanic stands for “panic in development.” In development, it logs at
PanicLevel; otherwise, it logs at ErrorLevel. DPanic makes it easier to
catch errors that are theoretically possible, but shouldn’t actually happen,
without crashing in production.

If you’ve ever written code like this, you need DPanic:

if err != nil {
 panic(fmt.Sprintf("shouldn't ever get here: %v", err))
}

Installation

What does the error expects import "go.uber.org/zap" mean?

Either zap was installed incorrectly or you’re referencing the wrong package
name in your code.

Zap’s source code happens to be hosted on GitHub, but the import
path [https://golang.org/cmd/go/#hdr-Remote_import_paths] is go.uber.org/zap. This gives us, the project
maintainers, the freedom to move the source code if necessary. However, it
means that you need to take a little care when installing and using the
package.

If you follow two simple rules, everything should work: install zap with go get -u go.uber.org/zap, and always import it in your code with import "go.uber.org/zap". Your code shouldn’t contain any references to
github.com/uber-go/zap.

Usage

Does zap support log rotation?

Zap doesn’t natively support rotating log files, since we prefer to leave this
to an external program like logrotate.

However, it’s easy to integrate a log rotation package like
gopkg.in/natefinch/lumberjack.v2 [https://godoc.org/gopkg.in/natefinch/lumberjack.v2] as a zapcore.WriteSyncer.

// lumberjack.Logger is already safe for concurrent use, so we don't need to
// lock it.
w := zapcore.AddSync(&lumberjack.Logger{
 Filename: "/var/log/myapp/foo.log",
 MaxSize: 500, // megabytes
 MaxBackups: 3,
 MaxAge: 28, // days
})
core := zapcore.NewCore(
 zapcore.NewJSONEncoder(zap.NewProductionEncoderConfig()),
 w,
 zap.InfoLevel,
)
logger := zap.New(core)

Extensions

We’d love to support every logging need within zap itself, but we’re only
familiar with a handful of log ingestion systems, flag-parsing packages, and
the like. Rather than merging code that we can’t effectively debug and
support, we’d rather grow an ecosystem of zap extensions.

We’re aware of the following extensions, but haven’t used them ourselves:

Package	Integration
—	—
github.com/tchap/zapext	Sentry, syslog
github.com/fgrosse/zaptest	Ginkgo
github.com/blendle/zapdriver	Stackdriver

 :zap: zap

:zap: zap [image: ../../../_images/zap.svg]GoDoc [https://godoc.org/go.uber.org/zap] [image: ../../../_images/zap1.svg]Build Status [https://travis-ci.com/uber-go/zap] [image: ../../../_images/badge8.svg]Coverage Status [https://codecov.io/gh/uber-go/zap]

Blazing fast, structured, leveled logging in Go.

Installation

go get -u go.uber.org/zap

Note that zap only supports the two most recent minor versions of Go.

Quick Start

In contexts where performance is nice, but not critical, use the
SugaredLogger. It’s 4-10x faster than other structured logging
packages and includes both structured and printf-style APIs.

logger, _ := zap.NewProduction()
defer logger.Sync() // flushes buffer, if any
sugar := logger.Sugar()
sugar.Infow("failed to fetch URL",
 // Structured context as loosely typed key-value pairs.
 "url", url,
 "attempt", 3,
 "backoff", time.Second,
)
sugar.Infof("Failed to fetch URL: %s", url)

When performance and type safety are critical, use the Logger. It’s even
faster than the SugaredLogger and allocates far less, but it only supports
structured logging.

logger, _ := zap.NewProduction()
defer logger.Sync()
logger.Info("failed to fetch URL",
 // Structured context as strongly typed Field values.
 zap.String("url", url),
 zap.Int("attempt", 3),
 zap.Duration("backoff", time.Second),
)

See the documentation [https://godoc.org/go.uber.org/zap] and FAQ for more details.

Performance

For applications that log in the hot path, reflection-based serialization and
string formatting are prohibitively expensive — they’re CPU-intensive
and make many small allocations. Put differently, using encoding/json and
fmt.Fprintf to log tons of interface{}s makes your application slow.

Zap takes a different approach. It includes a reflection-free, zero-allocation
JSON encoder, and the base Logger strives to avoid serialization overhead
and allocations wherever possible. By building the high-level SugaredLogger
on that foundation, zap lets users choose when they need to count every
allocation and when they’d prefer a more familiar, loosely typed API.

As measured by its own benchmarking suite [https://github.com/uber-go/zap/tree/master/benchmarks], not only is zap more performant
than comparable structured logging packages — it’s also faster than the
standard library. Like all benchmarks, take these with a grain of salt.1

Log a message and 10 fields:

Package	Time	Objects Allocated
:—	:—:	:—:
:zap: zap	3131 ns/op	5 allocs/op
:zap: zap (sugared)	4173 ns/op	21 allocs/op
zerolog	16154 ns/op	90 allocs/op
lion	16341 ns/op	111 allocs/op
go-kit	17049 ns/op	126 allocs/op
logrus	23662 ns/op	142 allocs/op
log15	36351 ns/op	149 allocs/op
apex/log	42530 ns/op	126 allocs/op

Log a message with a logger that already has 10 fields of context:

Package	Time	Objects Allocated
:—	:—:	:—:
:zap: zap	380 ns/op	0 allocs/op
:zap: zap (sugared)	564 ns/op	2 allocs/op
zerolog	321 ns/op	0 allocs/op
lion	7092 ns/op	39 allocs/op
go-kit	20226 ns/op	115 allocs/op
logrus	22312 ns/op	130 allocs/op
log15	28788 ns/op	79 allocs/op
apex/log	42063 ns/op	115 allocs/op

Log a static string, without any context or printf-style templating:

Package	Time	Objects Allocated
:—	:—:	:—:
:zap: zap	361 ns/op	0 allocs/op
:zap: zap (sugared)	534 ns/op	2 allocs/op
zerolog	323 ns/op	0 allocs/op
standard library	575 ns/op	2 allocs/op
go-kit	922 ns/op	13 allocs/op
lion	1413 ns/op	10 allocs/op
logrus	2291 ns/op	27 allocs/op
apex/log	3690 ns/op	11 allocs/op
log15	5954 ns/op	26 allocs/op

Development Status: Stable

All APIs are finalized, and no breaking changes will be made in the 1.x series
of releases. Users of semver-aware dependency management systems should pin
zap to ^1.

Contributing

We encourage and support an active, healthy community of contributors —
including you! Details are in the contribution guide and
the code of conduct. The zap maintainers keep an eye on
issues and pull requests, but you can also report any negative conduct to
oss-conduct@uber.com. That email list is a private, safe space; even the zap
maintainers don’t have access, so don’t hesitate to hold us to a high
standard.

Released under the MIT License.

1 In particular, keep in mind that we may be
benchmarking against slightly older versions of other packages. Versions are
pinned in zap’s glide.lock [https://github.com/uber-go/zap/blob/master/glide.lock] file. ↩

 Building sys/unix

Building sys/unix

The sys/unix package provides access to the raw system call interface of the
underlying operating system. See: https://godoc.org/golang.org/x/sys/unix

Porting Go to a new architecture/OS combination or adding syscalls, types, or
constants to an existing architecture/OS pair requires some manual effort;
however, there are tools that automate much of the process.

Build Systems

There are currently two ways we generate the necessary files. We are currently
migrating the build system to use containers so the builds are reproducible.
This is being done on an OS-by-OS basis. Please update this documentation as
components of the build system change.

Old Build System (currently for GOOS != "Linux" || GOARCH == "sparc64")

The old build system generates the Go files based on the C header files
present on your system. This means that files
for a given GOOS/GOARCH pair must be generated on a system with that OS and
architecture. This also means that the generated code can differ from system
to system, based on differences in the header files.

To avoid this, if you are using the old build system, only generate the Go
files on an installation with unmodified header files. It is also important to
keep track of which version of the OS the files were generated from (ex.
Darwin 14 vs Darwin 15). This makes it easier to track the progress of changes
and have each OS upgrade correspond to a single change.

To build the files for your current OS and architecture, make sure GOOS and
GOARCH are set correctly and run mkall.sh. This will generate the files for
your specific system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, perl, go

New Build System (currently for GOOS == "Linux" && GOARCH != "sparc64")

The new build system uses a Docker container to generate the go files directly
from source checkouts of the kernel and various system libraries. This means
that on any platform that supports Docker, all the files using the new build
system can be generated at once, and generated files will not change based on
what the person running the scripts has installed on their computer.

The OS specific files for the new build system are located in the ${GOOS}
directory, and the build is coordinated by the ${GOOS}/mkall.go program. When
the kernel or system library updates, modify the Dockerfile at
${GOOS}/Dockerfile to checkout the new release of the source.

To build all the files under the new build system, you must be on an amd64/Linux
system and have your GOOS and GOARCH set accordingly. Running mkall.sh will
then generate all of the files for all of the GOOS/GOARCH pairs in the new build
system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, perl, go, docker

Component files

This section describes the various files used in the code generation process.
It also contains instructions on how to modify these files to add a new
architecture/OS or to add additional syscalls, types, or constants. Note that
if you are using the new build system, the scripts cannot be called normally.
They must be called from within the docker container.

asm files

The hand-written assembly file at asm_${GOOS}_${GOARCH}.s implements system
call dispatch. There are three entry points:

 func Syscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
 func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr)
 func RawSyscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)

The first and second are the standard ones; they differ only in how many
arguments can be passed to the kernel. The third is for low-level use by the
ForkExec wrapper. Unlike the first two, it does not call into the scheduler to
let it know that a system call is running.

When porting Go to an new architecture/OS, this file must be implemented for
each GOOS/GOARCH pair.

mksysnum

Mksysnum is a script located at ${GOOS}/mksysnum.pl (or mksysnum_${GOOS}.pl
for the old system). This script takes in a list of header files containing the
syscall number declarations and parses them to produce the corresponding list of
Go numeric constants. See zsysnum_${GOOS}_${GOARCH}.go for the generated
constants.

Adding new syscall numbers is mostly done by running the build on a sufficiently
new installation of the target OS (or updating the source checkouts for the
new build system). However, depending on the OS, you make need to update the
parsing in mksysnum.

mksyscall.pl

The syscall.go, syscall_${GOOS}.go, syscall_${GOOS}_${GOARCH}.go are
hand-written Go files which implement system calls (for unix, the specific OS,
or the specific OS/Architecture pair respectively) that need special handling
and list //sys comments giving prototypes for ones that can be generated.

The mksyscall.pl script takes the //sys and //sysnb comments and converts
them into syscalls. This requires the name of the prototype in the comment to
match a syscall number in the zsysnum_${GOOS}_${GOARCH}.go file. The function
prototype can be exported (capitalized) or not.

Adding a new syscall often just requires adding a new //sys function prototype
with the desired arguments and a capitalized name so it is exported. However, if
you want the interface to the syscall to be different, often one will make an
unexported //sys prototype, an then write a custom wrapper in
syscall_${GOOS}.go.

types files

For each OS, there is a hand-written Go file at ${GOOS}/types.go (or
types_${GOOS}.go on the old system). This file includes standard C headers and
creates Go type aliases to the corresponding C types. The file is then fed
through godef to get the Go compatible definitions. Finally, the generated code
is fed though mkpost.go to format the code correctly and remove any hidden or
private identifiers. This cleaned-up code is written to
ztypes_${GOOS}_${GOARCH}.go.

The hardest part about preparing this file is figuring out which headers to
include and which symbols need to be #defined to get the actual data
structures that pass through to the kernel system calls. Some C libraries
preset alternate versions for binary compatibility and translate them on the
way in and out of system calls, but there is almost always a #define that can
get the real ones.
See types_darwin.go and linux/types.go for examples.

To add a new type, add in the necessary include statement at the top of the
file (if it is not already there) and add in a type alias line. Note that if
your type is significantly different on different architectures, you may need
some #if/#elif macros in your include statements.

mkerrors.sh

This script is used to generate the system’s various constants. This doesn’t
just include the error numbers and error strings, but also the signal numbers
an a wide variety of miscellaneous constants. The constants come from the list
of include files in the includes_${uname} variable. A regex then picks out
the desired #define statements, and generates the corresponding Go constants.
The error numbers and strings are generated from #include <errno.h>, and the
signal numbers and strings are generated from #include <signal.h>. All of
these constants are written to zerrors_${GOOS}_${GOARCH}.go via a C program,
_errors.c, which prints out all the constants.

To add a constant, add the header that includes it to the appropriate variable.
Then, edit the regex (if necessary) to match the desired constant. Avoid making
the regex too broad to avoid matching unintended constants.

Generated files

zerror_${GOOS}_${GOARCH}.go

A file containing all of the system’s generated error numbers, error strings,
signal numbers, and constants. Generated by mkerrors.sh (see above).

zsyscall_${GOOS}_${GOARCH}.go

A file containing all the generated syscalls for a specific GOOS and GOARCH.
Generated by mksyscall.pl (see above).

zsysnum_${GOOS}_${GOARCH}.go

A list of numeric constants for all the syscall number of the specific GOOS
and GOARCH. Generated by mksysnum (see above).

ztypes_${GOOS}_${GOARCH}.go

A file containing Go types for passing into (or returning from) syscalls.
Generated by godefs and the types file (see above).

 Package validator

Package validator

[image: ../../../../_images/Join%20Chat.svg]Join the chat at https://gitter.im/bluesuncorp/validator [https://gitter.im/go-playground/validator?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
[image: ../../../../_images/version-8.18.2-green.svg]Project status
[image: ../../../../_images/badge9.svg]Build Status [https://semaphoreci.com/joeybloggs/validator]
[image: ../../../../_images/badge10.svg]Coverage Status [https://coveralls.io/github/go-playground/validator?branch=v8]
[image: ../../../../_images/validator.svg]Go Report Card [https://goreportcard.com/report/github.com/go-playground/validator]
[image: ../../../../_images/validator.v8]GoDoc [https://godoc.org/gopkg.in/go-playground/validator.v8]
[image: ../../../../_images/vibe-d.svg]License

 lumberjack

lumberjack [image: ../../../../_images/lumberjack.v2]GoDoc [https://godoc.org/gopkg.in/natefinch/lumberjack.v2] [image: https://drone.io/github.com/natefinch/lumberjack/status.png]Build Status [https://drone.io/github.com/natefinch/lumberjack/latest] [image: ../../../../_images/00gchpxtg4gkrt5d.png]Build status [https://ci.appveyor.com/project/natefinch/lumberjack] [image: ../../../../_images/badge11.svg]Coverage Status [https://coveralls.io/r/natefinch/lumberjack?branch=v2.0]

Lumberjack is a Go package for writing logs to rolling files.

Package lumberjack provides a rolling logger.

Note that this is v2.0 of lumberjack, and should be imported using gopkg.in
thusly:

import "gopkg.in/natefinch/lumberjack.v2"

The package name remains simply lumberjack, and the code resides at
https://github.com/natefinch/lumberjack under the v2.0 branch.

Lumberjack is intended to be one part of a logging infrastructure.
It is not an all-in-one solution, but instead is a pluggable
component at the bottom of the logging stack that simply controls the files
to which logs are written.

Lumberjack plays well with any logging package that can write to an
io.Writer, including the standard library’s log package.

Lumberjack assumes that only one process is writing to the output files.
Using the same lumberjack configuration from multiple processes on the same
machine will result in improper behavior.

Example

To use lumberjack with the standard library’s log package, just pass it into the SetOutput function when your application starts.

Code:

log.SetOutput(&lumberjack.Logger{
 Filename: "/var/log/myapp/foo.log",
 MaxSize: 500, // megabytes
 MaxBackups: 3,
 MaxAge: 28, //days
})

type Logger

type Logger struct {
 // Filename is the file to write logs to. Backup log files will be retained
 // in the same directory. It uses <processname>-lumberjack.log in
 // os.TempDir() if empty.
 Filename string `json:"filename" yaml:"filename"`

 // MaxSize is the maximum size in megabytes of the log file before it gets
 // rotated. It defaults to 100 megabytes.
 MaxSize int `json:"maxsize" yaml:"maxsize"`

 // MaxAge is the maximum number of days to retain old log files based on the
 // timestamp encoded in their filename. Note that a day is defined as 24
 // hours and may not exactly correspond to calendar days due to daylight
 // savings, leap seconds, etc. The default is not to remove old log files
 // based on age.
 MaxAge int `json:"maxage" yaml:"maxage"`

 // MaxBackups is the maximum number of old log files to retain. The default
 // is to retain all old log files (though MaxAge may still cause them to get
 // deleted.)
 MaxBackups int `json:"maxbackups" yaml:"maxbackups"`

 // LocalTime determines if the time used for formatting the timestamps in
 // backup files is the computer's local time. The default is to use UTC
 // time.
 LocalTime bool `json:"localtime" yaml:"localtime"`
 // contains filtered or unexported fields
}

Logger is an io.WriteCloser that writes to the specified filename.

Logger opens or creates the logfile on first Write. If the file exists and
is less than MaxSize megabytes, lumberjack will open and append to that file.
If the file exists and its size is >= MaxSize megabytes, the file is renamed
by putting the current time in a timestamp in the name immediately before the
file’s extension (or the end of the filename if there’s no extension). A new
log file is then created using original filename.

Whenever a write would cause the current log file exceed MaxSize megabytes,
the current file is closed, renamed, and a new log file created with the
original name. Thus, the filename you give Logger is always the “current” log
file.

Backups use the log file name given to Logger, in the form name-timestamp.ext
where name is the filename without the extension, timestamp is the time at which
the log was rotated formatted with the time.Time format of
2006-01-02T15-04-05.000 and the extension is the original extension. For
example, if your Logger.Filename is /var/log/foo/server.log, a backup created
at 6:30pm on Nov 11 2016 would use the filename
/var/log/foo/server-2016-11-04T18-30-00.000.log

Cleaning Up Old Log Files

Whenever a new logfile gets created, old log files may be deleted. The most
recent files according to the encoded timestamp will be retained, up to a
number equal to MaxBackups (or all of them if MaxBackups is 0). Any files
with an encoded timestamp older than MaxAge days are deleted, regardless of
MaxBackups. Note that the time encoded in the timestamp is the rotation
time, which may differ from the last time that file was written to.

If MaxBackups and MaxAge are both 0, no old log files will be deleted.

func (*Logger) Close

func (l *Logger) Close() error

Close implements io.Closer, and closes the current logfile.

func (*Logger) Rotate

func (l *Logger) Rotate() error

Rotate causes Logger to close the existing log file and immediately create a
new one. This is a helper function for applications that want to initiate
rotations outside of the normal rotation rules, such as in response to
SIGHUP. After rotating, this initiates a cleanup of old log files according
to the normal rules.

Example

Example of how to rotate in response to SIGHUP.

Code:

l := &lumberjack.Logger{}
log.SetOutput(l)
c := make(chan os.Signal, 1)
signal.Notify(c, syscall.SIGHUP)

go func() {
 for {
 <-c
 l.Rotate()
 }
}()

func (*Logger) Write

func (l *Logger) Write(p []byte) (n int, err error)

Write implements io.Writer. If a write would cause the log file to be larger
than MaxSize, the file is closed, renamed to include a timestamp of the
current time, and a new log file is created using the original log file name.
If the length of the write is greater than MaxSize, an error is returned.

Generated by godoc2md [http://godoc.org/github.com/davecheney/godoc2md]

 YAML support for the Go language

YAML support for the Go language

Introduction

The yaml package enables Go programs to comfortably encode and decode YAML
values. It was developed within Canonical [https://www.canonical.com] as
part of the juju [https://juju.ubuntu.com] project, and is based on a
pure Go port of the well-known libyaml [http://pyyaml.org/wiki/LibYAML]
C library to parse and generate YAML data quickly and reliably.

Compatibility

The yaml package supports most of YAML 1.1 and 1.2, including support for
anchors, tags, map merging, etc. Multi-document unmarshalling is not yet
implemented, and base-60 floats from YAML 1.1 are purposefully not
supported since they’re a poor design and are gone in YAML 1.2.

Installation and usage

The import path for the package is gopkg.in/yaml.v2.

To install it, run:

go get gopkg.in/yaml.v2

API documentation

If opened in a browser, the import path itself leads to the API documentation:

	https://gopkg.in/yaml.v2

API stability

The package API for yaml v2 will remain stable as described in gopkg.in [https://gopkg.in].

License

The yaml package is licensed under the Apache License 2.0. Please see the LICENSE file for details.

Example

package main

import (
 "fmt"
 "log"

 "gopkg.in/yaml.v2"
)

var data = `
a: Easy!
b:
 c: 2
 d: [3, 4]
`

// Note: struct fields must be public in order for unmarshal to
// correctly populate the data.
type T struct {
 A string
 B struct {
 RenamedC int `yaml:"c"`
 D []int `yaml:",flow"`
 }
}

func main() {
 t := T{}

 err := yaml.Unmarshal([]byte(data), &t)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- t:\n%v\n\n", t)

 d, err := yaml.Marshal(&t)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- t dump:\n%s\n\n", string(d))

 m := make(map[interface{}]interface{})

 err = yaml.Unmarshal([]byte(data), &m)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- m:\n%v\n\n", m)

 d, err = yaml.Marshal(&m)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- m dump:\n%s\n\n", string(d))
}

This example will generate the following output:

--- t:
{Easy! {2 [3 4]}}

--- t dump:
a: Easy!
b:
 c: 2
 d: [3, 4]

--- m:
map[a:Easy! b:map[c:2 d:[3 4]]]

--- m dump:
a: Easy!
b:
 c: 2
 d:
 - 3
 - 4

 YAML support for the Go language

YAML support for the Go language

Introduction

The yaml package enables Go programs to comfortably encode and decode YAML
values. It was developed within Canonical [https://www.canonical.com] as
part of the juju [https://juju.ubuntu.com] project, and is based on a
pure Go port of the well-known libyaml [http://pyyaml.org/wiki/LibYAML]
C library to parse and generate YAML data quickly and reliably.

Compatibility

The yaml package supports most of YAML 1.2, but preserves some behavior
from 1.1 for backwards compatibility.

Specifically, as of v3 of the yaml package:

	YAML 1.1 bools (yes/no, on/off) are supported as long as they are being
decoded into a typed bool value. Otherwise they behave as a string. Booleans
in YAML 1.2 are true/false only.

	Octals encode and decode as 0777 per YAML 1.1, rather than 0o777
as specified in YAML 1.2, because most parsers still use the old format.
Octals in the 0o777 format are supported though, so new files work.

	Does not support base-60 floats. These are gone from YAML 1.2, and were
actually never supported by this package as it’s clearly a poor choice.

and offers backwards
compatibility with YAML 1.1 in some cases.
1.2, including support for
anchors, tags, map merging, etc. Multi-document unmarshalling is not yet
implemented, and base-60 floats from YAML 1.1 are purposefully not
supported since they’re a poor design and are gone in YAML 1.2.

Installation and usage

The import path for the package is gopkg.in/yaml.v3.

To install it, run:

go get gopkg.in/yaml.v3

API documentation

If opened in a browser, the import path itself leads to the API documentation:

	https://gopkg.in/yaml.v3

API stability

The package API for yaml v3 will remain stable as described in gopkg.in [https://gopkg.in].

License

The yaml package is licensed under the MIT and Apache License 2.0 licenses.
Please see the LICENSE file for details.

Example

package main

import (
 "fmt"
 "log"

 "gopkg.in/yaml.v3"
)

var data = `
a: Easy!
b:
 c: 2
 d: [3, 4]
`

// Note: struct fields must be public in order for unmarshal to
// correctly populate the data.
type T struct {
 A string
 B struct {
 RenamedC int `yaml:"c"`
 D []int `yaml:",flow"`
 }
}

func main() {
 t := T{}

 err := yaml.Unmarshal([]byte(data), &t)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- t:\n%v\n\n", t)

 d, err := yaml.Marshal(&t)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- t dump:\n%s\n\n", string(d))

 m := make(map[interface{}]interface{})

 err = yaml.Unmarshal([]byte(data), &m)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- m:\n%v\n\n", m)

 d, err = yaml.Marshal(&m)
 if err != nil {
 log.Fatalf("error: %v", err)
 }
 fmt.Printf("--- m dump:\n%s\n\n", string(d))
}

This example will generate the following output:

--- t:
{Easy! {2 [3 4]}}

--- t dump:
a: Easy!
b:
 c: 2
 d: [3, 4]

--- m:
map[a:Easy! b:map[c:2 d:[3 4]]]

--- m dump:
a: Easy!
b:
 c: 2
 d:
 - 3
 - 4

