

    
      Navigation

      
        	
          index

        	
          next |

        	endofday 0.1 documentation 
 
      

    


    
      
          
            
  
endofday

Contents:



	Introduction

	Tutorial
	Setting Up

	Running Locally

	Global Inputs & Outputs

	Processes

	Task Dependencies

	Approximating Pi

	Integration with Agave

	Specifying Global Inputs As Agave URIs

	Specifying Processes as Agave Applications

	Running in Agave












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2014, Joe Stubbs, Walter Moreira.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	endofday 0.1 documentation 
 
      

    


    
      
          
            
  
Introduction

At its heart, endofday is a workflow engine for docker containers. When we refer to a workflow, we mean an
orchestrated set of tasks or processes that together accomplish some larger objective. In the case of endofday,
the individual tasks are container invocations which means that virtually any Linux host can provide computational
resources in support of executing an endofday workflow. One of the great features of endofday is that you can easily
transition from executing your entire workflow on your personal machine, to executing part or all of it in a remote
cloud, freeing up your local resources for other tasks.

Each task within a workflow can have any number of inputs and outputs, and each input or output can be any file or
directory. By defining the input of one task to be the output of another task, a dependency can be created between two
tasks. The endofday engine analyzes the dependencies of all tasks within a workflow and executes the tasks in the proper
order, running tasks in parallel when possible.

[image: _images/generic.png]
Workflows for endofday are defined in a text file using the YAML [http://yaml.org/] format. The YAML definition includes a description of
each container that should be executed (the image, command to run, inputs and outputs) as well as the global inputs and
outputs of the workflow. This makes endofday workflows very easy to share and distribute. Thanks to Docker [http://docker.com], you can
execute the same workflow from one host to the next by simply copying the yml file to the new host. No additional
software installation is needed: if the images are not available locally, they will be pulled automatically from the
Docker hub when endofday executes.

endofday also has first class support for data and applications registered within the Agave [http://agaveapi.co] science-as-a-service
platform, so data inputs and application assets do not need to reside on the same machine as endofday and applications
do not have to be packaged into containers or even executed on hosts that can run Docker. To provide Agave support,
endofday ships two additional Docker images that handle retrieving Agave URLs and submitting jobs, and the core engine
provides two classes for executing these images when appropriate.

The Agave support is an indication of how easy it is to extend endofday to integrate other kinds of processes and
workloads. Essentially, one only needs to wrap the process in a generic docker image and implement a class to be
called by the main engine. Using this technique, it would be easy to provide support for other kinds of processes
such as web service calls, for example.

By default, the endofday binary orchestrates the workflow execution synchronously and locally (even if the processes
themselves are running on remote servers), logging messages to standard out during the execution. Alternatively,
using your Agave credentials, you can execute an entire workflow asynchronously and remotely in Agave’s cloud. The
outputs will be archived to a pre-configured storage system and you can even configure endofday to have
Agave email you when the job completes.

In the tutorial we cover each execution mode by working through specific examples.





          

      

      

    


    
         Copyright 2014, Joe Stubbs, Walter Moreira.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	endofday 0.1 documentation 
 
      

    


    
      
          
            
  
Tutorial

In this tutorial we illustrate the main features of endofday by working through some simple examples at the
command line.


Setting Up

The primary dependency for this tutorial is Docker and a few images available from the public Docker hub. To install
docker on your machine, refer to the official documentation [http://docs.docker.com/installation/].

Once Docker is installed, install endofday by first pulling the official image:

$ docker pull jstubbs/eod





Create a directory for your endofday work and run the setup script there:

$ mkdir eod; cd eod
$ docker run -v $(pwd):/staging jstubbs/eod --setup





Running --setup installs a small bash script, endofday.sh, as well as an example configuration file, endofday.conf, in
the current working directory. That’s it—you are now ready to run endofday workflows on your local machine.

In order to execute tasks in the Agave cloud you will need an Agave account and API keys. To sign up for an Agave
account and generate your client keys, see the beginners_guides [http://agaveapi.co/documentation/beginners-guides/].

Once you have your Agave credentials, update the endofday.conf file with the following fields inside the agave section:



	username

	password

	client_name

	client_key

	client_secret

	api_server

	storage_system

	home_dir






endofday will archive results of task executions to an Agave storage system whose id is the value configured for
storage_system within the directory home_dir. If storage_system and home_dir are not supplied, endofday
will attempt to use a sensible default for the given Agave tenant. Note that some tenants do not provide default
storage and execution systems.




Running Locally

endofday can execute entire workflows on your local machine. To illustrate this, we are going to work through a simple
example that approximates the number \(\pi\) using basic algebra. The example is a toy one, but it illustrates
how to use the main features of endofday. It also illustrates how to cast the map-reduce model of computation into the
endofday framework.

The basic idea behind our \(\pi\) approximation is that, given a unit circle inscribed in a square, the ratio of the area of
the circle to the area of the square is


\[\frac{\pi r^2}{(2r)^2} = \frac{\pi r^2}{4r^2} = \frac{\pi}{4}\]

Therefore, we can approximate \(\pi\) as 4 times an approximation of (area of circle)/(area of square). We can approximate
the ratio of the areas by randomly picking coordinates \((x,y)\) in \([0,1]\) and determining if they are in the circle by
checking the algebraic equation for a circle we all learned in
elementary school: \(x^2 + y^2 \le 1\). The
ratio of the areas will then be well approximated by the ratio of points in the circle to total points for a
sufficiently large selection of coordinates.

We’re going to build a workflow to implement this approximation algorithm in three main steps:


	Create n lists of coordinates to process.

	Run n workers, one for each list produced in step 1, to determine how many points in the list are in the circle
(and how many are outside).

	Run an “aggregator” to sum the results from step two and compute the final \(\pi\) approximation.



By the end of this section we will have created a complete YAML workfile description that we can use to execute
the workflow. To get started, create a new text file called approximate_pi.yml (or something similar), and add the
following:

---
name: approximate_pi





This line simply supplies a name to our workflow. The name attribute is required but it can be any valid string.




Global Inputs & Outputs

Luckily for us, there are Docker images on the public hub available for each of these tasks. For step 1, we’ll use the
jstubbs/genpoints image to generate lists of random coordinates for use in step 2.

All input files in an endofday workflow are either global inputs or outputs from another task. We know from the
documentation of the genpoints program that the number of lists and the number of coordinates in each
list to be generated can be configured by supplying a configration file to the genpoints program. We can specify such
a configuration file as a global input to the entire workflow. To do so, we create an inputs collection just
below the workflow name and add our input file:

---
name: approximate_pi

inputs:
    - input <- genpoints.conf





To define the global input we provide two values—label and source—separated by <-. In this case, the label is
simply “input”. The label can be whatever we want, but it should be unique so that we can use it to reference the input
in other sections of the workflow definition. The source attribute, in this case “genpoints.conf”, tells endofday
where to find the file. Here we have provided a relative path, so endofday looks in the current working
directory. Alternatively, we could have provided any absolute path on the file system.

We also need to create the genpoints.conf file.  All we have to do is supply the number of files and the number of
coordinates per file we want the genpoints program to generate. Since each file will be parsed in its own process, we’ll
choose to create four files and generate 10,000 coordinates in each. Here is what the config file should like like:

[genpoints]

files: 4
coords: 10000





Similarly, we can define global outputs for the workflow by listing outputs from specific tasks in the workflow.
This feature is mainly useful as documentation (you are declaring this output to be a “final” output, not just an
intermediate result) of your workflow. It’s also useful for making workflows composable, though this feature is still
experimental.

---
name: approximate_pi

inputs:
    - input <- genpoints.conf

outputs:
    - approx_pi.pi








Processes

The heart of a workflow is the set of processes or tasks that will be invoked. Each process defines a Docker image to
execute, a command to execute in the container, inputs and outputs for the container, and (optionally) a description
of the task. Here is the process definition for the first step in our workflow:

processes:
    generate_coords:
        image: jstubbs/genpoints
        description: creates lists of randomly generated coordinates from [0,1]
        inputs:
            - inputs.input -> /data/gen.conf
        outputs:
            - /data/out_0 -> out_0
            - /data/out_1 -> out_1
            - /data/out_2 -> out_2
            - /data/out_3 -> out_3
        command: python ./genpoints.py -p /data/gen.conf





We’ve created a new entry in the processes section called generate_coords which is just a label for our process. It
can be anything as long as it is unique across the workflow. The image and description fields are
self explanatory. In the input section, we list all file inputs to the process. Here we have specified that we want to
use the input labeled “input” from the (global) “inputs” section and we want to map it to the path /data/gen.conf in the
jstubbs/genpoints container. We could have mapped it anywhere in
the container—endofday will take care of mounting the Docker volumes properly at runtime.

The outputs section is similar— we list all the outputs we expect from this container invocation in terms of their
paths in the container, and we assign each a unique label (unique within the outputs of this process). We happen to
know from our experience running the genpoints container that it stores the outputs in the /data directory and
labels them out_0 through out_n. In this case we configured it to generate four files.

Finally, the command value is what is actually passed to the docker run statement. We are executing the
genpoints script and passing a single argument, the location of our config file in the container. Note that this matches
the path specified in our our input declaration. This is by design.




Task Dependencies

We create task dependencies by declaring outputs from one task to be inputs to another task. For step 2 in our workflow
we will use the jstubbs/ctpts image to process the outputs created from the generate_coords task. There will be
four such processes since four outputs were created in step 1.

processes:
    generate_coords:
        image: jstubbs/genpoints
        description: creates lists of randomly generated coordinates from [0,1]
        inputs:
            - inputs.input -> /data/gen.conf
        outputs:
            - /data/out_0 -> out_0
            - /data/out_1 -> out_1
            - /data/out_2 -> out_2
            - /data/out_3 -> out_3
        command: python ./genpoints.py -p /data/gen.conf

    count_points_0:
        image: jstubbs/ctpts
        inputs:
            - generate_coords.out_0 -> /tmp/input
        outputs:
            - /tmp/output -> out
        command: python ./ctpoints.py -p /tmp/input

    count_points_1:
        image: jstubbs/ctpts
        inputs:
            - generate_coords.out_1 -> /tmp/input
        outputs:
            - /tmp/output -> out
        command: python ./ctpoints.py -p /tmp/input

    count_points_2:
        image: jstubbs/ctpts
        inputs:
            - generate_coords.out_2 -> /tmp/input
        outputs:
            - /tmp/output -> out
        command: python ./ctpoints.py -p /tmp/input

    count_points_3:
        image: jstubbs/ctpts
        inputs:
            - generate_coords.out_3 -> /tmp/input
        outputs:
            - /tmp/output -> out
        command: python ./ctpoints.py -p /tmp/input





Note the input section of each of our count_points tasks: they refer to an output from the generate_coords task, but
this is the only input to the task. As a result, each count_points task depends on the generate_coords task, but none
of them depend on each other. When endofday executed this workflow,
all count_points tasks will execute in parallel.








Approximating Pi

Finally, we’ll use the jstubbs/apprxpi image to combine the results from step 2 and produce the final approximation.
This task will depend on all of the count_point tasks, as evidenced by the input section. Putting everything together
we now have a complete workflow:

---
name: approximate_pi

inputs:
    - input <- genpoints.conf

outputs:
    - approx_pi.pi

 processes:
     generate_coords:
         image: jstubbs/genpoints
         description: creates lists of randomly generated coordinates from [0,1]
         inputs:
             - inputs.input -> /data/gen.conf
         outputs:
             - /data/out_0 -> out_0
             - /data/out_1 -> out_1
             - /data/out_2 -> out_2
             - /data/out_3 -> out_3
         command: python ./genpoints.py -p /data/gen.conf

     count_points_0:
         image: jstubbs/ctpts
         inputs:
             - generate_coords.out_0 -> /tmp/input
         outputs:
             - /tmp/output -> out
         command: python ./ctpoints.py -p /tmp/input

     count_points_1:
         image: jstubbs/ctpts
         inputs:
             - generate_coords.out_1 -> /tmp/input
         outputs:
             - /tmp/output -> out
         command: python ./ctpoints.py -p /tmp/input

     count_points_2:
         image: jstubbs/ctpts
         inputs:
             - generate_coords.out_2 -> /tmp/input
         outputs:
             - /tmp/output -> out
         command: python ./ctpoints.py -p /tmp/input

     count_points_3:
         image: jstubbs/ctpts
         inputs:
             - generate_coords.out_3 -> /tmp/input
         outputs:
             - /tmp/output -> out
         command: python ./ctpoints.py -p /tmp/input

     approx_pi:
         image: jstubbs/apprxpi
         inputs:
             - count_points_0.out -> /data/out_0
             - count_points_1.out -> /data/out_1
             - count_points_2.out -> /data/out_2
             - count_points_3.out -> /data/out_3
         outputs:
             - /tmp/pi -> out
         command: python ./apprxpi.py -p /data





We can execute this workflow by issuing the following command:

$ ./endofday.sh approximate_pi.yml





The result of running this computation looks something like:

Using multiprocessing with 8 processes.
creating:  /staging/approx_pi/generate_coords/data
.  generate_coords
.  count_points_0
creating:  /staging/approximate_pi/count_points_0/tmp
creating:  /staging/approximate_pi/count_points_1/tmp
creating:  /staging/approximate_pi/count_points_3/tmp
.  count_points_1
.  count_points_2
creating:  /staging/approximate_pi/count_points_2/tmp
.  count_points_3
.  approx_pi
creating:  /staging/approximate_pi/approx_pi/tmp
3.14219





You’ll notice that endofday created a directory called approximate_pi in the current working directory, and inside
approximate_pi will be directories for each task that was executed. Within each subdirectory are all the outputs
generated by the task. For instance, inside approximate_pi/count_points_2/tmp you should see a file called output.




Integration with Agave

The endofday engine can be used with data and applications registered with Agave. We look at each individually.




Specifying Global Inputs As Agave URIs

One or more global inputs can be specified as Agave URIs of the form agave://my.storage.system.id//path/to/file as
well as any publicly available URI
via a supported transport, giving you the ability to reference resources on remote servers. For the list of supported
transfer protocols, see the Agave documentation for importing data [http://agaveapi.co/documentation/tutorials/data-management-tutorial/#importing-data].

As part of the task dependency analysis, endofday will determine if a remote global input is used by a local task.
If so, it will automatically create a download task to retrieve the resource and insert it into the proper place
in the workflow.

Here is an example of an alternative global inputs section for the approximate pi workflow that references an input file
in an Agave storage system:

---
name: approximate_pi

inputs:
    - input <- agave://endofday.local.storage.com//data/genpoints.conf








Specifying Processes as Agave Applications

In addition to arbitrary docker images, processes within the workflow definition can refer to applications registered
in the Agave application catalog. The endofday engine executes these applications by submitting a job to the Agave
jobs service. Agave in turn executes the application on the execution system defined in the application definition,
and endofday
monitors the job status until the application completes. Outputs from an Agave application can be used as inputs to
another task just like other task outputs. Note that if an Agave application output is needed as the input for a task
running locally (e.g. a Docker container execution), endofday will create an additional task to download the output.
Otherwise, endofday will leave the output on the remote system defined in the application definition.

The yaml syntax used to define an Agave application process is similar to that for Docker container processes, with
a few exceptions. We illustrate with an example from the Validate workflow system, a set of applications for genome
wide association studies. You can find complete examples of Validate workflow definitions in the eod repo [https://github.com/joestubbs/endofday/tree/master/endofday/tests/validate].

processes:
    step_1:
        app_id: FaST-LMM-2.07
        execution: agave_app
        description: Step 1
        inputs:
            inputFAM:
                - inputs.fam_input
            inputPED:
                - inputs.ped_input
            inputBED:
                - inputs.bed_input
            inputBIM:
                - inputs.bim_input
            inputMAP:
                - inputs.map_input
            inputPHENO:
                - inputs.pheno_input
        parameters:
            MainFileset: "P"
            SimFileset: "BEDBIMFAM"
            output: "YAMLTest_LMM.txt"
        outputs:
            - YAMLTest_LMM.txt -> some_output





The above YAML snippet defines a processes section with a single process. Within the step_1 process,
execution: agave_app is specified to indicate that this process is an Agave app. Instead of specifying
image as we did for a Docker container, app_id: FaST-LMM-2.07 provides the Agave application id, in this case
FaST-LMM-2.07. Note that the username given in the endofday.conf must have permission in Agave to
execute the application.

The inputs stanza differs slightly from that of a Docker container process to accommodate Agave’s application
definition format. The inputs section is a YAML collection with an entry for each defined input for the application;
the keys must correspond to input id’s defined in the application definition and the values should be a YAML list
of references to global inputs or task outputs defined elsewhere in the workflow definition.

There is also a parameters section corresponding to parameters defined for the Agave application. This should be
a YAML collection whose keys are the id’s of the parameters and the values are the values to be supplied to the app.

The outputs section is given as a list of strings of the form <relative_path> -> <identifier>. Here, a
<relative_path> refers to a path relative the job work directory. In a future release, endofday will support
supplying the Agave application output id instead of a relative path; however, since defining outputs is optional when
registering an Agave application, this approach will only be valid for some applications. The <identifier> can be
any valid string and is used to reference the output in other sections of the workflow definition.




Running in Agave

Any endofday workflow can be executed remotely and asynchronously in the Agave cloud if the Agave tenant is
configured with the required execution resources needed to do so.


Warning

Because of the computational resources required to run endofday executions, remote endofday execution
is not available in all tenants. Check with your tenant administrator or contact the core Agave development team
if you are interested in this feature.



The endofday binary itself is registered as an Agave application for participating tenants, and as such, users can
manually submit jobs to the Agave jobs service to launch endofday remotely. As a shortcut, users can simply
pass the --agave flag to the endofday binary; for example:

$ ./endofday.sh --agave approximate_pi.yml





Using the --agave flag, endofday will first upload any global inputs that reference local files
or folders to the configured Agave storage system and then submit an appropriate job to execute the entire workflow.
The local endofday process exits as soon as the job is submitted and logs the job id to standard output. When the
job completes, the results are automatically archived to the configured storage system. By specifying an address for
email in your agave configuration in endofday, you will receive an email when the outputs are available.







          

      

      

    


    
         Copyright 2014, Joe Stubbs, Walter Moreira.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	endofday 0.1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, Joe Stubbs, Walter Moreira.
      Created using Sphinx 1.3.5.
    

  developers.html


    
      Navigation


      
        		
          index


        		endofday 0.1 documentation »

 
      


    


    
      
          
            
  
Developers


This section is intended for developers wishing to understand the inner-workings of eod. The information it contains is
not necessary for using the tool.





Overview & Layout


The eod functionality is provided through two docker containers: eod and eod_job_submit.





Tasks


The tasks.py module is at the heart of the eod functionality. Its main() function is the entrypoint for the eod
docker container (launched by endofday.sh) except when the –agave flag is issued, in which case the agaverun.py
module’s main() function is entered.


At a high level, the tasks module does the following, in order:
1. Initial setup and command line args parsing
2. Iterate over user-supplied yaml file, creating Task objects for each task defined in the yaml file. These
will either be SimpleDockerTask objects (in case image is supplied) or AgaveAppTask objects (in case app_id is
supplied).
3. Iterate over task list generated in 2) to set the input and output volume mounts for each task.
4. Execute the doit engine with the provided list of tasks and the DockerLoaded task loader.


One key point is that the input volume mounts cannot be set until all tasks have been created. A volume mount is simply
a pair: (host path, container path), and the issue is to resolve the host path from the user supplied description of its
source (which will either refer to a global input or a task output). In case the source references the output of another
task, the host path for the input will reference the same host path as the output, so as to not have to copy files
around on the system. Therefore, by constructing all tasks first, we know we can find the host path for all inputs.
This resolution happens in the global resolve_source() function.



AgaveAppTask objects


AgaveAppTask objects represent tasks that launch an Agave job to execute an app on a remote server. They maintain a list
of AgaveAppTaskOutput and AgaveAppTaskInput objects, which are wrappers around the basic TaskInput and TaskOuput objects.


AddedInputs - these








          

      

      

    


    
        © Copyright 2014, Joe Stubbs, Walter Moreira.
      Created using Sphinx 1.3.5.
    

  

_images/generic.png
inputs:
- global input <- fuser/input.txt

outputs:
- /datajout
processe:
Process_A:
/data/input user/inage A

m - inputs. global_input -> /data/input
outputs
- /datajoutput AL -> outputl
/éatasout_a1 ‘Jéatasout a2 - Jdatajoutput A2 -> outputz
comand: run_pa

Jemp/input_B1 Jtarget/input_82 :
user/inage_81

Process B2 - Process_A.outputl -> /tmp/input_B1
outputs:
- Itnp/output_B1 -> output
Jemp/output_B1 Jtarget/output B2 comand: run_pbl

Jdata/a Jdatasp

user/inage_82

- Process_A.output2 -> /target/input_82

outputs:
- /target/output B2 -> output
/data/out command: run_pb2
Process_C:
inage: user/inage_C
inputs

- Process B1.output -> /data/a
- Process B2.output -> /data/b
outputs:
- /datajout
comand: run_pc





_static/plus.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/up-pressed.png





_static/file.png





_static/comment-bright.png





_static/down-pressed.png





_static/ajax-loader.gif





README.html


    
      Navigation


      
        		
          index


        		endofday 0.1 documentation »

 
      


    


    
      
          
            
  
endofday


Execute workflows of docker containers described in yaml files.



Quickstart


The only dependency is docker and an image that is available from
the docker hub, so you do not need to clone this repository or
download anything. To get started:



		Change into a directory where you will work and execute:


$ docker run -v $(pwd):/staging jstubbs/endofday --setup






This command installs a single script endofday.sh in the
current working directory.





		Create a yaml file defining your workflow: specify which containers
to run and define the inputs, outputs, and command. Use
outputs from one container as inputs to another to create a
dependency. You can also specify files on your local system to use
as inputs. Use any image available locally or on the docker hub.
Examples can be found in the examples directory of this
repository. See the endofday.yml reference for more details.





		Execute the workflow using the endofday.sh script:


$ ./endofday.sh my_workflow.yml















More Details


Suppose we found several Docker images that do part of the work in
which we are interested.  Each of the images would have its own way to
obtain inputs and to generate outputs.  The following diagram shows a
(fictitious) example and the associated endofday yaml file that
represents it.  Each block shows an individual image and the files
(relative to each container) which are expected as inputs and outputs.



Example


[image: endofday.png]


inputs:
  - input1 <- /home/user/input.txt

outputs:
  - /data/output.txt

processes:
  P:
    image: user/image_p
    inputs:
      - inputs.input1 -> /data/input_p.txt
    outputs:
      - /data/output_p_1.txt -> output_p_1
      - /data/output_p_2.txt -> output_p_2
    command: run_p

  N1:
    image: user/image_n1
    inputs:
      - P.output_p_1 -> /tmp/input_n1.txt
    outputs:
      - /tmp/output_n1.txt -> output_n1
    command: run_n1

  N2:
    image: user/image_n2
    inputs:
      - P.output_p_2 -> /target/input_n2.txt
    outputs:
      - /target/output_n2.txt -> output_n2
    command: run_n2

  S:
    image: user/image_s
    inputs:
      - N1.output_n1 -> /data/a.txt
      - N2.output_n2 -> /data/b.txt
    outputs:
      - /data/output.txt
    command: run_s









Agave Integration


We are building support for running endofday tasks on the Agave Platform’s compute cloud. Initially, two use cases will be
supported: 1) executing entire workflows on the cloud and 2) farming out individual task computations to Agave as part
of a workflow running on your local machine.


After configuring endofday to use your Agave account for submitting jobs, you can execute an entire workflow on the
Agave cloud simply by executing:



$ ./endofday --agave my_workflow.yml










All docker containers will be executed on the Agave cloud and their outputs archived to your default storage system
or another storage system you configure. You can configure an email address to get a notification when the results
are ready.


Alternatively, you can instruct endofday to execute specific tasks on the Agave cloud as part of a larger workflow
executing on your local machine. The endofday engine will send instructions to Agave to run the specific container
and command in cloud after uploading all necessary dependencies to the storage system defined. Once the job completes,
endofday will download the results and continue executing the workflow.


To execute a specific task on the Agave cloud, specify ‘agave’ as the value for execution directly in the yaml
workflow definition file. For example, to run N2 on Agave we would update the above yaml file with this stanza:


.   .   .

N2:
  image: user/image_n2
  execution: agave
  inputs:
    - P.output_p_2 -> /target/input_n2.txt
  outputs:
    - /target/output_n2.txt -> output_n2
  command: run_n2






To use either approach, you first need an Agave account and an API client. If you don’t have those already you can
get those here: http://preview.agaveapi.co/documentation/beginners-guides/



Configuration


Configure endofday to use your Agave credentials by adding the following fields to your endofday.conf file under
the Agave section.


[agave]
# these configurations are only needed when running on the Agave platform

# the base URL for the Agave tenant to use
api_server: https://agave.iplantc.org

# Agave username
username: testuser
password: abcd123

# client credentials
client_name: demo
client_key: MY_CLIENT_KEY
client_secret: MY_CLIENT_SECRET

# storage system for persisting results
storage_system: data.iplantcollaborative.org

# home directory for endofday. Each work flow execution will automatically get a directory within this directory.
# Default is to use the Agave username.
home_dir: testuser














          

      

      

    


    
        © Copyright 2014, Joe Stubbs, Walter Moreira.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





_static/down.png





