
emsx_api_doc Documentation
Release 2.1.0

Terrence C. Kim

Jun 19, 2023

Table of Contents

1 Introduction 3
1.1 Support . 4
1.2 EMSX API Code Samples . 4
1.3 EMSX API access from Microsoft Excel (COM) . 4
1.4 EMSX API access from MATLAB . 4
1.5 EMSX API access from R . 5

2 Server Side EMSX API 7
2.1 Creating User Identities . 7
2.2 Using User Identities . 9
2.3 Server Side Request/Response . 12
2.4 How to install serverapi.exe . 13

2.4.1 Linux Environment . 13
2.4.2 Windows Environment . 17

3 Programmable EMSX API 23
3.1 EMSX Features . 24
3.2 EMSX Teams . 25
3.3 EMSX Element Definitions . 26
3.4 EMSX Element Definition (A to M) . 26
3.5 Multi-Leg Element Definition . 33
3.6 EMSX Element Definition (N to Z) . 34
3.7 Accessing the Test Environment . 42
3.8 API Demo Tool . 42
3.9 Order State Diagram . 42
3.10 Route State Diagram . 44
3.11 EMSX API Schema . 46
3.12 EMSX API History Service Schema . 46
3.13 Session Object . 46

3.13.1 EMSX API & Correlation ID . 46
3.14 Description of Request/Response Service . 46

3.14.1 Buy-Side Request/Response Service . 46
3.14.2 Sell-Side Request/Response Service . 47
3.14.3 CFD & Odd Lot Flag . 47
3.14.4 Date & Time Format . 48
3.14.5 Custom Notes & Free Text Fields . 48

3.15 Buy-Side Request/Response Service . 49

i

3.15.1 Assign Trader Request . 49
3.15.2 Broker Spec Request . 51
3.15.3 Cancel Order Extended Request . 60
3.15.4 Cancel Route Extended Request . 61
3.15.5 Create Basket Request . 62
3.15.6 Create Order Request . 64
3.15.7 Create Order and Route Extended Request . 66
3.15.8 Create Order And Route Manually Request . 69
3.15.9 Delete Order Request . 70
3.15.10 Get All Field Metadata Request . 71
3.15.11 Get Broker Strategies with Asset Class Request . 75
3.15.12 Get Broker Strategy Info with Asset Class Request . 76
3.15.13 Get Brokers with Asset Class Request . 79
3.15.14 Get Field Metadata Request . 80
3.15.15 Get Teams Request . 81
3.15.16 Get Trade Desks Request . 81
3.15.17 Get Traders Request . 82
3.15.18 Group Route Extended Request . 83
3.15.19 Group Route Extended Request - Multi-Leg Options . 87
3.15.20 Group Route Extended Request - Route As Spread . 88
3.15.21 Manual Fill Request . 88
3.15.22 Modify Order Extended Request . 89
3.15.23 Modify Route Extended Request . 91
3.15.24 Route Extended Request . 95
3.15.25 Route Manually Extended Request . 97

3.16 Sell-Side Request/Response Service . 99
3.16.1 Manual Fill Request . 100
3.16.2 Sell Side Ack Request . 101
3.16.3 Sell Side Reject Request . 101

3.17 EMSX Subscription . 102
3.17.1 Description of Subscription Messages . 103
3.17.2 Description of Event Status Messages . 103
3.17.3 Description of Order Status Messages . 105
3.17.4 Description of the Child Route Status Messages . 106
3.17.5 Description of the Child Route Status Changes . 106
3.17.6 Description of Fills using Route Subscription . 107
3.17.7 Description of Order Expiration Logic . 109
3.17.8 Description of Route Expiration Logic . 110

3.18 EMSX History Request . 132

4 MiFID II 139

5 IOI API Service 141

6 FAQ 143
6.1 General FAQ . 143

7 Glossary 147

Bibliography 149

ii

emsx_api_doc Documentation, Release 2.1.0

This document is for developers who will use the Bloomberg EMSX API to develop custom applications.

The Bloomberg EMSX API is available as desktop API and server-side API. The desktop API requires full Bloomberg
terminal to use.

The Bloomberg API uses an event-driven model. The EMSX API is an extension of Bloomberg API 3.0 and it lets
users integrate streaming real-time and static data into their own custom applications. The user can choose the data
they require down to the level of individual fields. The Bloomberg API 3.0 programming interface implementations
are extremely lightweight. For details to the Desktop API, please refer to the Desktop API Programmers Guide from
WAPI<GO>.

The Bloomberg API interface is thread-safe and thread-aware, giving applications the ability to utilize multiple pro-
cessors efficiently. The Bloomberg API supports run-time downloadable schema for the service it provides, and it
provides methods to query these schemas at runtime. This means additional service in Bloomberg API is supported
without addition to the interface.

The object model for Java, .NET and C++ are identical. The C interface provides a C-style version of the object model.

Important: The Bloomberg EMSX API requires the full understanding of how Bloomberg EMSX<GO> function
works within the Bloomberg terminal. Before starting on any EMSX API, please have your local EMSX representative
provide a full training of EMSX<GO> function. This documentation does not include any details on how EMSX<GO>
works.

Due to the trading nature with the various Trading API’s at Bloomberg (e.g. EMSX API, IOI API, etc.) Bloomberg
cannot legally assist on the client-side coding other than providing a high-level overview of the service, advice on
some of the best practices approach to use the request/response paradigm and asynchronous event-driven nature of the
subscription paradigm.

It is highly recommended that the technical resource working on the Trading API has extensive programming experi-
ences and a solid understanding of software application architecture.

Warning: Please note that performance/load test should never be performed on any of the API environment as
this is a shared environment and we monitor and increase capacity as needed.

Table of Contents 1

emsx_api_doc Documentation, Release 2.1.0

2 Table of Contents

CHAPTER 1

Introduction

The EMSX API is available as programmable and with Excel as both COM and Add-In. The EMSX API provides
Bloomberg users with the ability to manage and automate Equities, Futures and Options trading using Microsoft
Excel/VBA or creating a custom application in C++, C# (.NET), Python and Java. You can also use Matlab using
Trading Toolbox and R.

It also allows users to access the full 2000+ global execution venues available through EMSX.

The EMSX API requires separate authorization by the receiving broker on top of the Bloomberg Authorization.

Note: EMSX API users will need the following steps completed before using the EMSX API at the desktop.

1. Signed ETORSA, Bloomberg Electronic Trading & Order Routing Services Agreement and applicable country
legal paperwork, including FIET are required. An override for UAT testing can be requested in the event clients
do not have all legal documentation in place. This cannot be performed for the production environment.

2. Enable EMSX API per UUID by the Global EMSX Trade Desk for Test (Beta) and Production. Enable Excel
Add-In inside the Bloomberg Ribbon for those using the Excel Add-In.

3. To get access to EMSX API in UAT and production, please click <Help><Help> on EMSX<GO>.

4. Download Bloomberg Desktop API v3 SDK from WAPI<GO> in Bloomberg terminal.

For Server Side EMSX API access, the following additional steps are required on top of the desktop EMSX API
requirements.

1. Signed EMSxNET Order Originator Agreement.

2. Install serverapi.exe and register with Bloomberg.

To get access to EMSX API in UAT and production, please click <Help><Help> on EMSX<GO>.

3

emsx_api_doc Documentation, Release 2.1.0

1.1 Support

For all EMSX functionality and EMSX API techincal inquires please contact the EMSX Trade Desk. They are avail-
able 24/6 and please ensure you provide your Bloomberg UUID.

By Bloomberg Terminal:

HELP 2x (F1 key) on your terminal, ask to speak to the EMSX Trade Desk HELP 1x (F1 key) on your terminal, to
compose an email message to the EMSX Trade Desk.

By email:

emsx@bloomberg.net

By Phone:

Please call your local global customer support number and ask to speak to the EMSX Trade Desk

+1-212-617-2000 +44-20-7330-7500 +65-6212-1000

1.2 EMSX API Code Samples

Important: The latest EMSX API Code samples can be found here.

1.3 EMSX API access from Microsoft Excel (COM)

The EMSX API for Excel is accessible using Microsoft Component Object Model (COM) or as part of Bloomberg
ribbon within Bloomberg Excel Add-In.

The Microsoft Component Object Model (COM) is a platform-independent, distributed, object-oriented system for
creating binary software component that can interact with Bloomberg EMSX API services from your desktop where
Bloomberg terminal is installed.

ref https://msdn.microsoft.com/en-us/library/windows/desktop/ms694363(v=vs.85).aspx

1.4 EMSX API access from MATLAB

The EMSX API for MATLAB is accessible by using MATLAB Trading Toolbox in addition to the standard MATLAB
package. The matlab samples for EMSX API can be found in both MATLAB Central file exchange.

Please contact your local MATLAB representative for more details on the MATLAB Trading Toolbox.

Important: MathWorks should be your first point of contact for any support while using MATLAB Trading Toolbox.
Bloomberg Level II Support desk will not support MATLAB scripts.

4 Chapter 1. Introduction

mailto:emsx@bloomberg.net
https://github.com/tkim/emsx_api_repository
https://msdn.microsoft.com/en-us/library/windows/desktop/ms694363(v=vs.85).aspx
https://www.mathworks.com/matlabcentral/fileexchange/43869-algorithmic-trading-with-bloomberg-emsx-and-matlab?focused=3799740&tab=example

emsx_api_doc Documentation, Release 2.1.0

1.5 EMSX API access from R

The EMSX API currently can not be accessed via R language. The current R repository is designed for market data
Bloomberg API usage using both the subscription and request/response services. Unfortunately, this is not a generic
Bloomberg API wrapper for R in its current state.

1.5. EMSX API access from R 5

https://github.com/Rblp/Rblpapi/blob/master/README.md
https://github.com/Rblp/Rblpapi

emsx_api_doc Documentation, Release 2.1.0

6 Chapter 1. Introduction

CHAPTER 2

Server Side EMSX API

EMSX API is available for use via both the desktop (Desktop API, or DAPI) and via a server-side endpoint known as
EMSX API Server. The first relies on a logged in Bloomberg terminal for it’s connection, whereas the server does not.
This makes DAPI unsuitable for mission critical applications.

However, the service schema is the same across the two platforms. This means that the code base for an application
which was developed on the desktop API is capable of working on the server-side solution without changes to the
underlying business logic.

All that is required to move desktop EMSX API applications to the server is the addition of code needed to perform
user authentication.

Important: Please reference BBPC<GO> in your Bloomberg terminal for full network and connectivity setup. This
is in the Bloomberg Transport and Security Specification document.

2.1 Creating User Identities

The steps involved in connecting to the EMSX API on the desktop are as follows:-

In the server environment, the user identities must be created and cached prior to the making requests. Therefore, the
process would look as follows:-

7

emsx_api_doc Documentation, Release 2.1.0

Note: Note: The EMSX API Server code samples demonstrate how to create identity object.

The first new step is to open the authentication service. This is done in the same way as for any other service in the
Bloomberg API. For example:-

d_authsvc = "//blp/apiauth";
session.openServiceAsync(d_authsvc);

Once the service is opened, we need to create and send an authorization request. To create an identity for a specific
user, you will need the AuthID for the user. This is the name the user is known by in the EMRS system for your server.
The values for these names will have been agreed with you as part of the implementation of the server, or subsequently
when adding a new user. Also, an IP address is required. The only requirement for this IP address is that it is unique
amongst all the identities generated for a session. You can create and send the request as follows:-

private Identity userIdentity;

*
*
*

Service authService = session.getService(d_authsvc);
Request authReq = authService.createAuthorizationRequest();

authReq.set("authId", authID);
authReq.set("ipAddress", appIP);

userIdentity = session.createIdentity();

authRequestID = new CorrelationID();

try
{

session.sendAuthorizationRequest(authReq, userIdentity, authRequestID);
}
catch (Exception e)
{

System.out.println("Unable to send authorization request: " + e.getMessage());
}

8 Chapter 2. Server Side EMSX API

emsx_api_doc Documentation, Release 2.1.0

In the above code, you can see that an empty identity object is created using session.createIdentity(). This
is the object that will be populated once successful authentication has been achieved, and it is the object that will need
to be cached.

We will receive a Response event for the Authentication service. In the example below, we use a CorrelationID
to identify messages from the Authentication service, and check for success or failure:-

if(msg.correlationID()==authRequestID) {

if(msg.messageType().equals(AUTHORIZATION_SUCCESS)) {
System.out.println("Authorised...Opening EMSX service...");
System.out.println("Seat Type: " + userIdentity.seatType().

→˓toString());
session.openServiceAsync(d_service);

} else if(msg.messageType().equals(AUTHORIZATION_FAILURE)) {
System.out.println("Authorisation failed...");
System.out.println(msg.toString());
wait(1000);
// Automatically retry...
sendAuthRequest(session);

} else {
System.out.println("Unexpected authorisation message...");
System.out.println(msg.toString());

}
}

When we receive the successful authorization, we can continue with opening the usual EMSX service. If multiple
authorization requests have been sent, for a number of different UUIDs, it is necessary to wait for all the responses
before being able to use all the identity objects.

In the above code, you will see that we examine the ‘seatType’ of the identity. The seat type in this case will be either
BPS or non-BPS.

2.2 Using User Identities

When a client application connects to EMSX<GO> via the API on desktop, it does so by leveraging the identity of
the logged in Bloomberg terminal user. This means that when a request or subscription object is received by the
Bloomberg infrastructure, the target EMSX blotter can be identified.

In the server environment, there is no Bloomberg terminal, and therefore no implied user can be identified. Moreover,
the server is capable of connecting to any number of EMSX user blotters, simultaneously. Therefore, the application
making the call must indicate which user is the intended target. This is done through the creation and use of Identity
object.

An Identity object represents a specific Bloomberg UUID. Once created, an Identity object can be cached for 24hrs,
and used with every sendRequest() and subscribe() call.

Identity objects are live, that is they remain connected to Bloomberg in real-time and are capable of receiving events.
We recommend that an identity is recreated every 24hrs, to ensure that it picks up the latest changes to any user
settings, including access to EMSX.

Any number of user Identity object can be created by a server-side application. If the application uses the identities of
real traders within a firm, then each trader would have an identity created to represent them in the server application.
The server application would, perhaps, receive an instruction from the upstream client-side application to create an
order in a trader’s blotter. The server application would select the appropriate user identity from the cache and add it
to the request.

2.2. Using User Identities 9

emsx_api_doc Documentation, Release 2.1.0

Migrating the existing desktop application call to a server application simply involves changing all sendRequest()
and subscribe() calls to include the appropriate identity, as follows:-

DAPI:
session.sendRequest(request, requestID);
session.subscribe(subscriptions);

Server:
session.sendRequest(request, Identity, requestID);
session.subscribe(subscriptions, Identity);

Following python sample summarizes the above:-

import sys
import blpapi
import datetime
import time

SESSION_STARTED = blpapi.Name("SessionStarted")
SESSION_TERMINATED = blpapi.Name("SessionTerminated")
SESSION_STARTUP_FAILURE = blpapi.Name("SessionStartupFailure")
SESSION_CONNECTION_UP = blpapi.Name("SessionConnectionUp")
SESSION_CONNECTION_DOWN = blpapi.Name("SessionConnectionDown")

SERVICE_OPENED = blpapi.Name("ServiceOpened")
SERVICE_OPEN_FAILURE = blpapi.Name("ServiceOpenFailure")

SLOW_CONSUMER_WARNING = blpapi.Name("SlowConsumerWarning")
SLOW_CONSUMER_WARNING_CLEARED = blpapi.Name("SlowConsumerWarningCleared")

SUBSCRIPTION_FAILURE = blpapi.Name("SubscriptionFailure")
SUBSCRIPTION_STARTED = blpapi.Name("SubscriptionStarted")
SUBSCRIPTION_TERMINATED = blpapi.Name("SubscriptionTerminated")

AUTHORIZATION_SUCCESS = blpapi.Name("AuthorizationSuccess")
AUTHORIZATION_FAILURE = blpapi.Name("AuthorizationFailure")
HANDLE = blpapi.Name("handle")

#EMSX/IOI API Server authentication
d_service = "//blp/emapisvc_beta"
d_auth = "//blp/apiauth"
d_host = "1.2.3.4" #static ip address of the server
d_port = 8195
d_user = "MyAuthIDOrEMRSID"

.

.

.

class SessionEventHandler():

def sendAuthRequest(self, session):

authService = session.getService(d_auth)
authReq = authService.createAuthorizationRequest()
authReq.set("emrsId", d_user)

(continues on next page)

10 Chapter 2. Server Side EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

authReq.set("ipAddress", d_host)
self.identity = session.createIdentity ()

print("Sending authorization request: %s" % (authReq))

session.sendAuthorizationRequest(authReq, self.identity)

print("Authorization request.sent.")
.
.
.

def processSessionStatusEvent(self,event,session):
print("Processing SESSION_STATUS event")

for msg in event:

print(msg)

if msg.messageType() == SESSION_STARTED:
print("Session started...")
session.openServiceAsync(d_auth)

elif msg.messageType() == SESSION_STARTUP_FAILURE:
sys.stderr.write("Error: Session startup failed")

elif msg.messageType() == SESSION_CONNECTION_UP:
print("Session connection is up")

elif msg.messageType() == SESSION_CONNECTINO_DOWN:
print("Session connection is down")

else:
print(msg)

def processServiceStatusEvent(self,event,session):
print("Processing SERVICE_STATUS event")

for msg in event:

print(msg)

if msg.messageType() ==SERVICE_OPENED:

serviceName = msg.asElement().getElementAsString(
→˓"serviceName");

print("Service opened [%s] % (serviceName))

if serviceName==d_auth;

print("Auth service opened... Opening
→˓application service...")

session.openServiceAsync(d_service)

elif serviceName==d_service;

(continues on next page)

2.2. Using User Identities 11

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

print("Application service opened... Sending
→˓authorization request...")

self.sendAuthRequest(session)

elif msg.messageType() == SERVICE_OPEN_FAILURE:
print("Error: Service Failed to open")

def processAuthorizationStatusEvent(self,event):

print("Processing AUTHORIZATION_STATUS event")

for msg in event:

print("AUTHORIZATION_STATUS message: %s" % (msg))

.

.

.

2.3 Server Side Request/Response

As of today, the following emapisvc and emapisvc_beta requests are available from the server side access.

Request Name Action
AssignTrader Assign an order to another UUID.
CancelRouteEx Cancel outstanding routes (placements).
CreateOrder Create an order or stage an order into EMSX<GO>.
CreateOrderAndRouteEx Create a new order and route in a single request.
CreateOrderAndRouteManually Create the order and notify EMSX this is routed.
DeleteOrder Delete an existing order in EMSX<GO>.
GetAllFieldMetaData Get all field meta data in a response message.
GetBrokerStrategiesWithAssetClass Get all broker strategy information and asset class data.
GetBrokerStrategyInfoWithAssetClass Get all broker strategy info and asset class data.
GetBrokerWithAssetClass Get all broker data with asset class in a response message.
GetFieldMetaData Get field meta data in a reponse message.
GetTeams Get team data in a response message.
GroupRouteEx Submit the entire list as a single route to a basket algorithm.
ModifyOrder Modify parent order.
ModifyRouteEx Modify child route.
RouteEx Route existing order.
RouteManuallyEx Route manually and notify EMSX that it is routed.

Any other requests will return the following error:

"Obsolete request type: " << request_type

12 Chapter 2. Server Side EMSX API

emsx_api_doc Documentation, Release 2.1.0

2.4 How to install serverapi.exe

Please follow the following steps to install and register the installer with Bloomberg Enterprise Solutions with the
assistance from EMSX Implementation team.

2.4.1 Linux Environment

The following example is based on the linux environment.

• Run serverapi.exe

./serverapiinstaller64

• You will see the following message

./serverapiinstaller64
logging to /tmp/bloomberg/install.2019111211.130037.log

Bloomberg ECD Installer for Linux (64-bit)
Version 3.2.2.0

Warning: This program is protected by copyright law and international treaties.

Unauthorized reproduction or distribution of this program, or any portion of
it, may result in severe civil and criminal penalties, and will be prosecuted
to the maximum extent possible under law.

Would you like to continue? (Y/N):

• Type:- Y

Would you like to continue? (Y/N): Y

Checking connectivity to Bloomberg ...

a) via Bloomberg Network to [Hostname = 208.134.161.62 Port = 8194] ...
Succeeded.

[Hostname = 208.134.161.158
→˓Port = 8194] ...
Succeeded.

[Hostname = 208.134.161.18
→˓Port = 8194] ...
Succeeded.

[Hostname = 208.134.161.179
→˓Port = 8194] ...
Succeeded.

b) via the Internet to [Hostname = api1.bloomberg.net Port = 8194] ...

Could not resolve host: [Hostname = api1.bloomberg.net Port = 8194]

(continues on next page)

2.4. How to install serverapi.exe 13

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Error.

[Hostname = api2.bloomberg.net Port = 8194]
→˓...

Could not resolve host: [Hostname = api2.bloomberg.net Port = 8194]

Error.

[Hostname = api3.bloomberg.net Port = 8194]
→˓...

Could not resolve host: [Hostname = api3.bloomberg.net Port = 8194]

Error.

[Hostname = api4.bloomberg.net Port = 8194]
→˓...

Could not resolve host: [Hostname = api4.bloomberg.net Port = 8194]

Error.

[Hostname = api5.bloomberg.net Port = 8194]
→˓...

Could not resolve host: [Hostname = api5.bloomberg.net Port = 8194]

Error.

[Hostname = api6.bloomberg.net Port = 8194]
→˓...

Could not resolve host: [Hostname = api6.bloomberg.net Port = 8194]

Error.

[Hostname = api7.bloomberg.net Port = 8194]
→˓...

Could not resolve host: [Hostname = api7.bloomberg.net Port = 8194]

Error.

[Hostname = api8.bloomberg.net Port = 8194]
→˓...

Could not resolve host: [Hostname = api8.bloomberg.net Port = 8194]

Error.

Internet connectivity unavailable. Connecting via the Bloomberg Network.

• Select the appropriate network option if it doesn’t select by default (private vs. public/internet)

Select Product Class
1) blpddm Software that provides development access to distribute data locally or
→˓contribute data to Bloomberg. (continues on next page)

14 Chapter 2. Server Side EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

2) ServerApi Provides access to Bloomberg real-time streaming and static data
0) Quit

• Select:- 2 for Server API

Please enter selection: 2

Installation path:
'/opt/local'

Use this path? (Y/N/Q):

• Select:- York

Creating the root directory /opt/local ...
done.

Downloading latest installer ...
done.

logging to /tmp/bloomberg/install.2019111211.130037.log

Beginning new install ...

Note: If the default port is already being used by a different service it may show the following message:

*** WARNING: Port conflict detected with other service.
The port of the Desktop will conflict with the ServerApi should installation proceed.
→˓If you still want to install
ServerApi, you will need to specify a different port number.

Do you want to continue with the installation? (Y/N) [N]:

• Select:- Y and enter the port

Do you want to continue with the installation? (Y/N) [N]:y
Please enter ServerApi listen port: [8294]:8294

• Select the version:-

Versions available for ServerApi
1) 3.86.5.1 Linux64 ServerAPI 2017-06

2) 3.88.0.1 Linux64 ServerAPI 2017-08

3) 3.90.3.1 Linux64 ServerAPI 2017-10

4) 3.90.6.1 Linux64 ServerAPI 2018-01

5) 3.98.5.1 Linux64 ServerAPI 2018-04

6) 3.102.0.1 Linux64 ServerAPI 2018-05

7) 3.106.0.1 Linux64 ServerAPI 2018-07

(continues on next page)

2.4. How to install serverapi.exe 15

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

8) 3.112.3.1 Linux64 ServerAPI 2018-10

9) 3.112.4.1 Linux64 ServerAPI 2019-01

10) 3.114.9.1 Linux64 ServerAPI 2019-04

11) 3.118.9.1 Linux64 ServerAPI 2019-07

12) 3.120.2.0 Linux64 Development B-Pipe 2019-10 (64-bit)

13) 3.120.2.1 Linux64 ServerAPI 2019-10

0) Quit
Please enter version of ServerApi that you want to install:

• Select the latest:-

Please enter version of ServerApi that you want to install: 13
Downloading ServerApi components ...

• Enter other information:-

Enter the following information:

Country (e.g., USA):
State (e.g., NY):
City or Town (e.g., New York):
Company Name (e.g., Bloomberg L.P.):
Department Name (e.g., Equity Trading)

• Finished:-

Enter the following information:

Country (e.g., USA): USA
State (e.g., NY): NY
City or Town (e.g., New York): New York
Company Name (e.g., Bloomberg L.P.): My Firm
Department Name (e.g., Equity Trading): Futures Trading

Creating certificate ...
done.

Registering server ...
done.

done.

Call Bloomberg's Global Customer Support at +1 (212) 318-2000 and ask for the Global
→˓Installs desk. The Bloomberg representative will ask you to read your registration
→˓number over the phone four characters at a time.

Your registration key is:
123b-4567-1ab2-12c9-g66f-964e-h50b-fa48-c78t-a123

(continues on next page)

16 Chapter 2. Server Side EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

This key was also saved in regkey.txt in the ServerApi root directory.

ServerApi installation completed. Press ENTER to quit:

Note: Once the registration process is completed. EMSX Implementation team globally will assist with configuring
the Server Side EMSX API with various execution destinations per client request.

2.4.2 Windows Environment

The following example is based on the windows environment.

• Run serverapi.exe

C:\temp>serverapiinstaller.exe

• You will see the following message

C:\temp>serverapiinstaller.exe
logging to C:\temp\install.2016102610.152444.log

Bloomberg ECD Installer for Windows (32-bit)
Version 3.2.2.0

Warning: This program is protected by copyright law and international treaties.

Unauthorized reproduction or distribution of this program, or any portion of
it, may result in severe civil and criminal penalties, and will be prosecuted
to the maximum extent possible under law.

logging to C:\temp\install.2016102610.152444.log

Bloomberg ECD Installer for Windows (32-bit)
Version 3.2.2.0

Warning: This program is protected by copyright law and international treaties.

Unauthorized reproduction or distribution of this program, or any portion of
it, may result in severe civil and criminal penalties, and will be prosecuted
to the maximum extent possible under law.

Would you like to continue? (Y/N):

• Type:- Y

Would you like to continue? (Y/N): y

Checking connectivity to Bloomberg ...

(continues on next page)

2.4. How to install serverapi.exe 17

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

a) via Bloomberg Network to [Hostname = 208.134.161.62 Port = 8194] ...
Succeeded.

[Hostname = 208.134.161.158 Port = 8194] ...
Succeeded.

[Hostname = 208.134.161.18 Port = 8194] ...
Succeeded.

[Hostname = 208.134.161.179 Port = 8194] ...
Succeeded.

b) via the Internet to [Hostname = api1.bloomberg.net Port = 8194] ...
Succeeded.

[Hostname = api2.bloomberg.net Port = 8194] ...
Succeeded.

[Hostname = api3.bloomberg.net Port = 8194] ...
Succeeded.

[Hostname = api4.bloomberg.net Port = 8194] ...
Succeeded.

[Hostname = api5.bloomberg.net Port = 8194] ...
Succeeded.

[Hostname = api6.bloomberg.net Port = 8194] ...
Succeeded.

[Hostname = api7.bloomberg.net Port = 8194] ...
Succeeded.

[Hostname = api8.bloomberg.net Port = 8194] ...
Succeeded.

Which of the above routes will you use to connect to Bloomberg? (a/b):

• Select the appropriate network option (private vs. public/internet)

Which of the above routes will you use to connect to Bloomberg? (a/b): b

Bloomberg Network connectivity unavailable. Connecting via the Internet.

Select Product Class
1) blpddm Software that provides development access to distribute data locally or
→˓contribute data to Bloomberg.
2) ServerApi Provides access to Bloomberg real-time streaming and static data
0) Quit

Please enter selection:

• Select:- 2 for Server API

18 Chapter 2. Server Side EMSX API

emsx_api_doc Documentation, Release 2.1.0

Please enter selection: 2

Installation path:
'C:\'

Use this path? (Y/N/Q):

• Select:- Y

Use this path? (Y/N/Q): y

Downloading latest installer ...
done.

logging to C:\temp\install.2016102610.152444.log

Beginning new install ...

Note: If the default port is already being used by a different service it may show the following message:

*** WARNING: Port conflict detected with other service.
The port of the Desktop will conflict with the ServerApi should installation proceed.
→˓If you still want to install
ServerApi, you will need to specify a different port number.

Do you want to continue with the installation? (Y/N) [N]:

• Select:- Y and enter the port

Do you want to continue with the installation? (Y/N) [N]:y
Please enter ServerApi listen port: [8294]:8294

• Select the version:-

Versions available for ServerApi
1) 3.46.6.0 Windows ServerAPI 2014-07

2) 3.48.8.1 Windows ServerAPI 2014-09

3) 3.48.9.1 Windows ServerAPI 2014-11

4) 3.50.7.1 Windows ServerAPI 2015-01

5) 3.56.4.1 Windows ServerAPI 2015-04

6) 3.60.0.1 Windows ServerAPI 2015-07

7) 3.64.5.1 Windows ServerAPI 2015-10

8) 3.70.0.1 Windows ServerAPI 2016-01

9) 3.72.2.1 Windows ServerAPI 2016-04

10) 3.82.3.1 Windows ServerAPI 2016-10

(continues on next page)

2.4. How to install serverapi.exe 19

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

11) 3.46.6.0 Windows64 ServerAPI 2014-07

12) 3.48.8.1 Windows64 ServerAPI 2014-09

13) 3.48.9.1 Windows64 ServerAPI 2014-11

14) 3.50.7.1 Windows64 ServerAPI 2015-01

15) 3.56.4.1 Windows64 ServerAPI 2015-04

16) 3.60.0.1 Windows64 ServerAPI 2015-07

17) 3.64.5.1 Windows64 ServerAPI 2015-10

18) 3.70.0.1 Windows64 ServerAPI 2016-01

19) 3.72.2.1 Windows64 ServerAPI 2016-04

20) 3.82.3.1 Windows64 ServerAPI 2016-10

0) Quit
Please enter version of ServerApi that you want to install:

• Select the latest:-

Please enter version of ServerApi that you want to install: 20
Downloading ServerApi components ...

• Enter other information:-

Enter the following information:

Country (e.g., USA): State (e.g., NY): City or Town (e.g., New York): Company Name (e.g.,
Bloomberg L.P.): Department Name (e.g., Equity Trading):

• Finished:-

Enter the following information:

Country (e.g., USA): USA
State (e.g., NY): NY
City or Town (e.g., New York): New York
Company Name (e.g., Bloomberg L.P.): Bloomberg LP
Department Name (e.g., Equity Trading): EMSX

Creating certificate ...
done.

Registering server ...
done.

Do you want to install ServerApi as a Windows Service? (Y/N): y

Installing ServerApi as a windows Service...
service ServerApi configured for restart on first error
done

(continues on next page)

20 Chapter 2. Server Side EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

done.

*** Please reboot your computer for changes to take effect ***

Call Bloomberg's Global Customer Support at +1 (212) 318-2000 and ask for the
Global Installs desk. The Bloomberg representative will ask you to read your
registration number over the phone four characters at a time.

Your registration key is:
321c-5ad5-7fa8-2954-1930-abb0-b64c-ecaf-1505-64d4

Note: Once the registration process is completed. EMSX Implementation team globally will assist with configuring
the Server Side EMSX API with various execution destinations per client request.

2.4. How to install serverapi.exe 21

emsx_api_doc Documentation, Release 2.1.0

22 Chapter 2. Server Side EMSX API

CHAPTER 3

Programmable EMSX API

The programmable API provides developers with access to EMSX data via a number of programming languages. It
can be used independantly of the EMSX Excel add-in, or as a complement. The API provide the developer with the
means to replicate most of the behaviour available from the EMSX<GO> in the terminal.

The API supports two distinct programming paradigms; Subscription and Request/Response. Anyone already familiar
with the Bloomberg API will recognize this approach. The EMSX API is simply an additional service (//blp/
emapisvc or //blp/emapisvc_beta) on the Bloomberg API, with certain subtle differences due to the nature
of the data involved.

The Request/Response methods are used to directly affect the state of the order book. Using these methods, the
developer can Create and Delete (or Cancel) orders and routes (placements). When a request is made, for example
CreateOrder, the application must supply the necessary field values as parameters. The application must then
wait for, and process, any responses (success or failure, for example) before the order or route can be futher utilized.
Requests are matched to their responses through the use of CorrelationIDs.

The subscription service is used to maintain a local view of a user’s order book. Subscriptions are made for either
orders or routes (placements), and any number of subscriptions can be made. The subscription is made at a user
level, meaning all orders (or routes) for a given user are monitored on single subscription. When implementing
subscription service, it’s important to write the code using two separate .subscribe() events for the order and
route subscriptions.

When a subscription is first made, the application will receive all the necessary messages to bring the local image
of the user’s EMSX order book up to date. These initial messages will contain all the relevant fields for each order,
both static and dynamic. Thereafter (within the same session), the user will only receive dynamic fields in any update
messages. It is the developer’s responsibility to identify the changes, and respond appropriately. These messages
are not stateful, and the API does not guarentee the order in which messages are received. However, this should not
negatively impact the application, as long as the developer is aware of this and takes it into account.

For example, when a CreateOrder is issued, as discussed above, it is perfectly feasible for a subscription event to
be received before the response to the request. As this is a new order, the EMSX_SEQUENCE (the order ID number)
will not yet be known on the client side. Therefore, you may be receiving messages for a sequence number that is
not recognised, and will not be known until the response to the original CreateOrder request is processed. This
can be dealt with through simple buffering of the subscription events. In order to simplify this process, non AIM
users have the option of using EMSX_ORD_REF_ID in subscription by supplying the EMSX_ORDER_REF_ID in the
Request. This will allow the user to use the subscription event without having to wait for the response. The user can

23

emsx_api_doc Documentation, Release 2.1.0

match requests with responses as well as subscription events. EMSX_ORDER_REF_ID has 16 character limitations
but otherwise should be good to use as custom user defined field.

The EMSX_REQUEST_SEQ should also be added to every request. The EMSX_REQUEST_SEQ should consist of 64-
bit integer and should be reset once a week. The purpose of this unique user assigned sequence number is to prevent
duplicate requests from being sent during system outages. The number also should be unique per serial number of the
Bloomberg terminal.

3.1 EMSX Features

The EMSX API supports 99.9% of the features supported in EMSX<GO> function.

The following standalone EMSX settings will also impact the EMSX API.

Important: Please note the following EMSX settings are changed by Bloomberg at the user or user firms request.

EMSX Setting
EMSX Routing enabled
Orders=routes enabled
Staging Protection enabled
Use B/O & S/C for Futures enabled
Allow MKT routes on LMT
Broker (Hard) Restrictions
Directed Broker
Restricted Secuirites List (EMSX)
Cross check for Equity
Cross check for Futures
Broker (Soft) restriction
Allow After-Market Routing for Day Order
Exec/Research/Risk Capital Rate Type
Enable Route as Futures Spread
Enable Basket All or None
Enable Restricted Securities Validation (RTIP)
Filter out Directed/Restricted brokers
Enable Team Risk Ticket
Enable Routing InvestorID to Broker
Allow Blottery Snc Orders to be Deleted
Enable Centralized Trading controls
Block Market Routes
AIM: Use Settlement Date from B/S
AIM: Send AIM Order# in BlockID tag
LMSA: Lock Broker Code on Order
LMSA: AIM Restricted Order Violation Setting
LMSA: AIM Add Order from EMSX Lanuch Ticket

Important: The following settings are controlled by the user of EMSX<GO>.

24 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

EMSX User Defaults EMSX Setting Location
Home Currency Setting under Confirmation & Warnings in EMSX
Warn About Restricted Short Sells Setting under Confirmation & Warnings in EMSX
Order Violation Settings Setting under Confirmation & Warnings in EMSX
Confirm Order Violation Setting under Confirmation & Warnings in EMSX
Quantity Warning Setting under Confirmation & Warnings in EMSX
Quantity Maximum Setting under Confirmation & Warnings in EMSX
Market Value Warning Setting under Confirmation & Warnings in EMSX
%ADV Warning Threshold Setting under Confirmation & Warnings in EMSX
%ADV Maximum Threshold Setting under Confirmation & Warnings in EMSX
ADV Benchmark Setting under Confirmation & Warnings in EMSX
Price Tolerance level Setting under Confirmation & Warnings in EMSX

EMSX Routing Defaults EMSX Setting Location
Strategy Time Zone Setting under Routing Generic
Show Commission Fields Setting under Routing Generic
Show Basket Name in Broker Notes Setting under Routing Generic
Send Odd Lots Setting under Routing Generic
Send Parent Order Instruction* Setting under Routing Generic
User Order Values for Routing Setting under Routing Generic

3.2 EMSX Teams

The EMSX API allows the same action on TEAMVIEW as you would have permission on EMSX<GO> function.

The TEAMVIEW feature in EMSX<GO> allows a team member to view or take action on behalf of the team members
based on the team setting within EMSX<GO>.

For EMSX API, This offers flexibilities within the application design. For example, a single subscription with the team
name can capture all the events for the team members. The topic string for using team remains the same as non-team
with the exception of adding team name on the topic string as illustrated below.

Important: //blp/emapisvc_beta/order;team=my_team_name?fields=EMSX_ASSIGNED_TRADER,
EMSX_BASKET_NAME, EMSX_CFD_FLAG, EMSX_AMOUNT

Trading on behalf of team members from TEAMVIEW requires creating a route on behalf of the team member. The
service object of type RouteEx and fill in the required fields before submitting the request.

Within RouteEx, there is an element EMSX_TRADER_UUID where the user can enter the order owner’s Bloomberg
UUID. Bloomberg will do the validation against the user privilege setup via EMT<GO> and EMBR<GO>.

A user can be part of more than one team on the backend. When the user creates the topic string and does not belong
to a team or specify a wrong team, the user will receive an error.

In cases where a user is defined as a member of multiple teams, then the user will need to supply multiple subscriptions.
(One for each team). These subscriptions should be monitored separately since the user will receive two notifications.

Important: It’s best to keep the overall design simple. TEAM is a heirarchical structure and thus best to have a single
order and single route subscription for the entire TEAM strucuture and avoid replication. The replication increases the
bandwidth usage and provides ZERO benefit for the end client.

3.2. EMSX Teams 25

emsx_api_doc Documentation, Release 2.1.0

3.3 EMSX Element Definitions

For information on accessing field meta data, this is currently only supported within Bloomberg terminal.

The user will need to access FLDS<GO> function within the Bloomberg terminal. Once in FLDS<GO>, type EMSX
underneath the security section and choose EMSX under the filter. The source is Calcrt and should select All for Field
Type.

3.4 EMSX Element Definition (A to M)

The EMSX element definitions will include the type of the element and will inform whether the element is an ORDER,
ROUTE, or sometimes both O,R elements. The type consists of INT64, INT32, STRING, and FLOAT64.

26 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

Field Definition
API_SEQ_NUM

INT64 Special field to indicate the sequence number
of the API
events. The number begins at 1 and increases with each
event posted
to a client subscription. It can be used by the client side
to
guarantee order, and to identify any gaps in
subscription events.

EMSX_ACCOUNT

STRING O,R The account of the routing firm as
designated by
the broker chosen. This field is applicable to trades on
an order
and/or route level, and does not populate on a per
security basis.

EMSX_AMOUNT

INT32 O,R The total amount of the order or route.
This field
is applicable to trades on an order and/or route level,
and does not
populate on a per security basis.

EMSX_APA_MIC

STRING ROUTE Approved publication arrangement in
MiFID II.
This is a route level field.

EMSX_ASSET_CLASS

STRING STATIC ORDER The asset class of the order.
This
field is applicable to trades on an order level, and does
not
populate on a per security basis. This is a static field.

EMSX_ASSIGNED_TRADER

STRING ORDER The name of the trader assigned to
the order.
This field is applicable to trades on an order level, and
does not
populate on a per security basis.

EMSX_AVG_PRICE

FLOAT64 O,R The average price for one share
executed with
the order, calculated over the life of the order. This
field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_BASKET_NAME

STRING ORDER The name assigned to a group of
related orders
contained in a basket. This field is applicable to trades
on an
order level, and does not populate on a per security
basis.

EMSX_BASKET_NUM

INT32 ORDER The number corresponding to the
EMSX_BASKET_NAME assigned to a group of related
orders.
This field is applicable to trades on an order level, and
does not
populate on a per security basis.

EMSX_BLOCK_ID

STRING ORDER The EMSX Block ID

EMSX_BOOKNAME

STRING This element is used to specify TOMS book
name while
using CreateOrderAndRouteEx, RouteEx, and
GroupRouteEx

requests. This element requires EMSX_TOMS_PXNUM
element to
specify the TOMS PX#. This element is not available
from the order
or route subscription services.

EMSX_BROKER

STRING O,R The code for the broker with whom the
order is
routed. This field is applicable to trades on an order
and/or route
level, and does not populate on a per security basis.

EMSX_BROKER_COMM

FLOAT64 O,R The amount of commission charged by
the broker
for the order or route. This field is applicable to trades
on an
order and/or route level, and does not populate on a per
security
basis.

EMSX_BROKER_LEI

STRING ROUTE Broker Legal Entity Identifier in
MiFID II.

EMSX_BROKER_SI

STRING ROUTE Broker Systematic Internalizer in
MiFID II.

EMSX_BROKER_STATUS

STRING ROUTE Broker status in EMSX. This element
will
populate one of the three values: CXRPRJ, CXLREJ,
and
MODIFIED. More details can be found in here.

EMSX_BSE_AVG_PRICE

FLOAT64 STATIC O,R The EMSX Bombay Stock
Exchange
Average Price. Average price of the fills completed for
the order or
route on the Bombay Stock Exchange (BSE). This field
is applicable
to trades on an order and/or route level, and does not
populate
on a per security basis.

EMSX_BSE_FILLED

INT32 O,R The EMSX Bombay Stock Exchange
Filled. Total
quantity of the fills completed for the order or route on
the Bombay
Stock Exchange (BSE). This field is applicable to
trades on an order
and/or route level, and does not populate on a per
security basis.

EMSX_BUYSIDE_LEI

STRING O,R The buyside Legal Entity Identifier in
MiFID II.

EMSX_CFD_FLAG

STRING ORDER The EMSX Contract For Difference
Flag.
Indicates if the order is a contract for differences
(CFD) trade.
This field is applicable to trades on an order level, and
does not
populate on a per security basis.

EMSX_CLEARING_ACCOUNT

STRING ROUTE The clearing account defined on a
futures or
option route. This field is applicable to trades on a
route level,
and does not populate on a per security basis.

EMSX_CLEARING_FIRM

STRING ROUTE The clearing firm defined on a futures
or
options route. This field is applicable to trades on a
route level,
and does not populate on a per security basis.

3.4. EMSX Element Definition (A to M) 27

https://emsx-api-doc.readthedocs.io/en/latest/programmable/emsxSubscription.html#description-of-the-child-route-status-messages

emsx_api_doc Documentation, Release 2.1.0

EMSX_CLIENT_IDENTIFICATION

STRING O,R MiFID II field for client Identification.

28 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

EMSX_CLIENT_ORDER_ID

STRING ROUTE The client order ID identifier
generated
between EMSX and the EOR Broker. This value is
unique per day. This
field is applicable to trades on a route level, and does
not
populate on a per security basis.

EMSX_COMM_DIFF_FLAG

STRING O,R The EMSX Commission Difference
between broker
commission and AIM (Asset and Investment Manager)
commission values.
This field is applicable to trades on an order and/or
route level,
and does not populate on a per security basis.

EMSX_COMM_RATE

FLOAT64 O,R The EMSX Commission Rate of
commission charged
on the trade. This field is applicable to trades on an
order and/or
route level, and does not populate on a per security
basis.

EMSX_CURRENCY_PAIR

STRING STATIC O,R The EMSX Currency Pair
which provides
the spot rate to convert the security’s currency and the
user’s
currency. This field is applicable to trades on an order
and/or
route level, and does not populate on a per security
basis.

EMSX_CUSTOM_ACCOUNT

STRING ROUTE The EMSX Route Account, is the
account value at
the level of the route. This field is applicable to trades
on a
route level, and does not populate on a per security
basis.

EMSX_CUSTOM_NOTEn

STRING ORDER 79-character free text field.

EMSX_DATE

INT32 ORDER The EMSX Order Creation Date is the
date on
which the order is created. This field is applicable to
trades on an
order level, and does not populate on a per security
basis.

EMSX_DAY_AVG_PRICE

FLOAT64 O,R The EMSX Day Average Price is the
average price
for one share executed with the order, based on shares
filled today.
This field is applicable to trades on an order and/or
route level,
and does not populate on a per security basis.

EMSX_DAY_FILL

INT32 O,R The EMSX Day Fill is the total quantity
of shares
filled today for this order/security, across any number
of brokers.
This field is applicable to trades on an order and/or
route level,
and does not populate on a per security basis.

EMSX_DIR_BROKER_FLAG

STRING ORDER The EMSX Directed Brokers is an
indicator of
whether the order has funds with the directed brokers
defined. This
field is applicable to trades on an order level, and does
not
populate on a per security basis.

EMSX_EXCHANGE

STRING STATIC ORDER The EMSX Exchange is the
exchange
code for the order where the security in the order is
listed. This
field is applicable to trades on an order level, and does
not
populate on a per security basis.

EMSX_EXCHANGE_DESTINATION

STRING O,R The EMSX Exchange Destination is the
Exchange
destination of the security for the order or route. This
field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_EXEC_INSTRUCTION

STRING O,R The EMSX execution instruction field.

EMSX_EXECUTE_BROKER

STRING ROUTE The EMSX Execution Broker is the
executing
broker on the trade for the route. This field is
applicable to
trades on a route level, and does not populate on a per
security
basis.

EMSX_FILL_ID

INT32 STATIC O,R The fill number associated with
a
route. This field is applicable to trades on an order
and/or route
level, and does not populate on a per security basis.

EMSX_FILLED

INT32 O,R The quantity of shares which have been
executed by
broker. This field is applicable to trades on an order
and/or route
level, and does not populate on a per security basis.

EMSX_GPI

STRING O,R The Global Personal Identifier in MiFID
II.

EMSX_GTD_DATE

INT32 O,R The EMSX Good to Date is the date the
order is in
force until, based on local exchange date and time.
This field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_HAND_INSTRUCTION

STRING O,R The EMSX Handling Instruction is the
instructions
for handling the order or route. The values can be
preconfigured or
a value customized by the broker. This field is
applicable to trades
on an order and/or route level, and does not populate on
a per
security basis.

EMSX_IDLE_AMOUNT

STRING ORDER The quantity of shares yet to be
routed or
executed, equal to the order quantity minus amounts
filled,
unreleased, and routed. This field is applicable to
trades on an
order level, and does not populate on a per security
basis.

EMSX_INVESTOR_ID

STRING ORDER The identifier for the buy side
investor as
used for markets such as Korea and Taiwan. This field
is applicable
to trades on an order level, and does not populate on a
per security
basis.

EMSX_IS_MANUAL_ROUTE

INT32 STATIC ROUTE The EMSX Manual Route
indicates that
the route was not communicated electronically to the
broker. This
field is applicable to trades on a route level, and does
not
populate on a per security basis.

EMSX_ISIN

STRING STATIC ORDER The EMSX International
Securities
Identification Number or the ISIN (International
Securities
Identification Number) of the security in the order.
This field is
applicable to trades on an order level, and does not
populate on a
per security basis.

EMSX_LAST_CAPACITY

STRING ROUTE The broker capacity in order
execution.
(e.g. agent, cross as agent, cross as principal, and
principal)

EMSX_LAST_FILL_DATE

INT32 ROUTE The date of the last fill based on the
user’s
time zone. This field is applicable to trades on a route
level, and
does not populate on a per security basis.

EMSX_LAST_FILL_TIME

INT32 ROUTE The time of the last fill based on
seconds from
midnight in the user’s time zone. This field is
applicable to trades
on a route level, and does not populate on a per security
basis.

3.4. EMSX Element Definition (A to M) 29

emsx_api_doc Documentation, Release 2.1.0

EMSX_LAST_FILL_TIME_MICROSEC

INT32 ROUTE The last fill time based on the user’s
time
zone in microseconds. This field is applicable to trades
on a
route level, and does not populate on a per security
basis.

30 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

EMSX_LAST_MARKET

STRING ROUTE The last market of execution for a
trade as
returned by the broker.This field is applicable to trades
on a route
level, and does not populate on a per security basis.

EMSX_LAST_PRICE

FLOAT64 ROUTE The last execution price for a trade.
This
field is applicable to trades on a route level, and does
not
populate ona per security basis.

EMSX_LAST_SHARES

INT32 ROUTE The last executed quantity for a trade.
This
field is applicable to trades on a route level, and does
not
populate on a per security basis.

EMSX_LEG_FILL_DATE_ADDED

INT32 ROUTE The date added for the leg fill.

EMSX_LEG_FILL_PRICE

FLOAT64 ROUTE The leg fill price.

EMSX_LEG_FILL_SEQ_NO

INT32 ROUTE The leg fill sequence number.

EMSX_LEG_FILL_SHARES

FLOAT64````ROUTE The leg fill shares.

EMSX_LEG_FILL_SIDE

STRING ROUTE The leg fill side.

EMSX_LEG_FILL_TICKER

STRING ROUTE The leg fill ticker.

EMSX_LEG_FILL_TIME_ADDED

INT32 ROUTE The time added for the leg fill.

EMSX_LIMIT_PRICE

FLOAT64 O,R The price which is the maximum the
order to buy
securities or commodities should be executed at; or the
minimum at
which securities or commodities should be sold. This
field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_MIFID_II_INSTRUCTION

STRING O,R The MiFID II instruction field.

EMSX_MISC_FEES

FLOAT64 ROUTE The EMSX Miscellaneous Fees is
the assorted
fees associated with a trade, such as regulatory fees and
taxes.
This field is applicable to trades on a route level, and
does not
populate on a per security basis.

EMSX_MOD_PEND_STATUS

STRING ORDER Only valid for Sell-Side EMSX on
E2E
(EMSX to EMSX) settings. Fields that can populate:
Size, Price,
Stop, GTDDate, TIF, Type and instruments.
e.g. EMSX_MOD_PEND_STATUS= “Pending
Info|Size: 500.0 -> 200.0|
Price 2.0000 -> 4.0000|Instr: -> test instr”

3.4. EMSX Element Definition (A to M) 31

emsx_api_doc Documentation, Release 2.1.0

32 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

3.5 Multi-Leg Element Definition

Field Definition
EMSX_ML_ID

STRING ROUTE The multi-leg ID.

EMSX_ML_LEG_QUANTITY

INT32 ROUTE The EMSX Multi-Leg Shares per Leg
is the number of
shares per leg in the multi-leg strategy. This field is
applicable to
trades on a route level, and does not populate on a per
security basis.

EMSX_ML_NUM_LEGS

INT32 ROUTE The EMSX Multi-Leg Number Legs is
the number of
legs in the multi-leg strategy. This field is applicable to
trades on
a route level, and does not populate on a per security
basis.

EMSX_ML_PERCENT_FILLED

FLOAT64 ROUTE The EMSX Multi-Leg Percent
Filled is the percent
of legs filled in a multi-leg strategy. This field is
applicable to
trades on a route level, and does not populate on a per
security basis.

EMSX_ML_RATIO

FLOAT64 ROUTE The EMSX Multi-Leg Ratio is the
factor that
controls the number of securities in each leg. This field
is applicable
to trades on a route level, and does not populate on a
per security
basis.

EMSX_ML_REMAIN_BALANCE

FLOAT64 ROUTE The EMSX Multi-Leg Remaining
Balance is the
balance yet to be filled across the legs of a multi-leg
strategy. This
field is applicable to trades on a route level, and does
not populate
on a per security basis.

EMSX_ML_STRATEGY

STRING ROUTE The EMSX Multi-Leg Strategy Name
is the name of
the multi-leg strategy for the route. This field is
applicable to
trades on avroute level, and does not populate on a per
security basis.

EMSX_ML_TOTAL_QUANTITY

INT32 ROUTE The EMSX Multi-Leg Quantity is the
total number of
mutli-leg packages in the order. One package consists
of several legs
with individual quantities of certain options for each
leg. This field
is applicable to trades on a route level, and does not
populate on a
per security basis.

3.5. Multi-Leg Element Definition 33

emsx_api_doc Documentation, Release 2.1.0

3.6 EMSX Element Definition (N to Z)

Field Definition
EMSX_NOTES

STRING O,R The EMSX Instructions is the free form
instructions that may be sent to the broker. This field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_NSE_AVG_PRICE

FLOAT64 O,R The EMSX National Stock Exchange
Average Price
is the average price of the fills completed for the order
or route
on the National Stock Exchange (NSE). This field is
applicable to
trades on an order and/or route level, and does not
populate on a
per security basis.

EMSX_NSE_FILLED

INT32 O,R The EMSX National Stock Exchange
Filled is the
total quantity of the fills completed for the order or
route on
the National Stock Exchange (NSE). This field is
applicable to
trades on an order and/or route level, and does not
populate on a
per security basis.

EMSX_ORD_REF_ID

STRING ORDER The EMSX Order Reference ID. The
element is
called the EMSX_ORDER_REF_ID in the
request/response services.
Not available to AIM users.

EMSX_ORDER_AS_OF_DATE

INT32 ORDER The order as of date in EMSX in New
York
time zone.

34 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

EMSX_ORDER_AS_OF_TIME_MICROSEC

FLOAT64 ORDER The order as of time in
microseconds in
New York time zone.

3.6. EMSX Element Definition (N to Z) 35

emsx_api_doc Documentation, Release 2.1.0

EMSX_ORDER_TYPE

STRING O,R The order type in EMSX. (e.g. market,
limit,
stop limit and etc.)

EMSX_ORIGINATE_TRADER

STRING ORDER The trader who routed the order. This
field
is applicable to trades on an order level, and does not
populate
on a per security basis.

EMSX_ORIGINATE_TRADER_FIRM

STRING STATIC ORDER The firm of the trader who
routed
the order. This field is applicable to trades on an order
level
and does not populate on a per security basis.

EMSX_OTC_FLAG

STRING ROUTE The OTC flag in EMSX.

EMSX_P_A

STRING ROUTE The EMSX Principal/Agency
element specifies
the capacity in which the broker acts for a particular
order and
route; either ‘Principal’ or ‘Agency’. This field is
applicable to trades on a route level, and does not
populate on a
per security basis.

EMSX_PERCENT_REMAIN

FLOAT64 O,R The remaining balance of the order as a
percentage of the projected remaining volume in the
day. This
field is applicable to trades on an order and/or route
level, and
does not populate on a per security basis.

EMSX_PM_UUID

INT32 STATIC ORDER The Portfolio Manager UUID
in AIM.

EMSX_PORT_MGR

STRING STATIC ORDER The EMSX Portfolio
Manager is the
name of the portfolio manager in the AIM function.
For standalone
users, this is the same as the EMSX Trader Name. This
field is
applicable to trades on an order level, and does not
populate on a
per security basis.

EMSX_PORT_NAME

STRING ORDER The EMSX Portfolio Name is the
name of the
portfolio from which the order is sourced. This field is
applicable to trades on an order level, and does not
populate on a
per security basis.

EMSX_PORT_NUM

INT32 ORDER The EMSX Portfolio Number is the
number of the
portfolio from which the order is sourced. This field is
applicable to trades on an order level, and does not
populate on a
per security basis.

EMSX_POSITION

STRING STATIC ORDER The EMSX Position
specifies if the
position for the order is open or closed. This field is
applicable to trades on an order level, and does not
populate on
a per security basis.

EMSX_PRINCIPAL

FLOAT64 O,R The EMSX Principal is the gross
executed value
of the trade. This field is applicable to trades on an
order
and/or route level, and does not populate on a per
security basis.

EMSX_PRODUCT

STRING STATIC ORDER The EMSX Product Name
is the
product type of the order. This field is applicable to
trades on
an order level, and does not populate on a per security
basis.

EMSX_QUEUED_DATE

INT32 O,R The EMSX Queued Date is the date in the
future
when a route will be released to the broker. This field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_QUEUED_TIME

INT32 O,R The time in the future when a route will be
released to the broker. This field is applicable to trades
on an
order and/or route level, and does not populate on a per
security
basis.

EMSX_QUEUED_TIME_MICROSEC

FLOAT64 O,R EMSX_QUEUED_TIME in
microseconds.

EMSX_REASON_CODE

STRING O,R The reason code customized by a firm
for the
order or route. The corresponding description for a
code is in
EMSX Reason Code Description. This field is
applicable to
trades on an order and/or route level, and does not
populate on a
per security basis.

EMSX_REASON_DESC

STRING O,R The EMSX Reason Code Description is
the reason
description customized by a firm for the order or route.
The
corresponding code for the description is in EMSX
Reason Code.
This field is applicable to trades on an order and/or
route level,

and does not populate on a per security basis.

EMSX_REMAIN_BALANCE

FLOAT64 O,R The amount of shares not executed on
and still
outstanding. This field is applicable to trades on an
order
and/or route level, and does not populate on a per
security basis.

EMSX_ROUTE_AS_OF_DATE

INT32 ROUTE The date of the creation of the route in
the
New York time zone. This field is applicable to trades
on a route
level, and does not populate on a per security basis.

36 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

EMSX_ROUTE_AS_OF_TIME_MICROSEC

FLOAT64 ROUTE The route as of time in
microseconds, in
New York time zone.

EMSX_ROUTE_CREATE_DATE

INT32 STATIC ROUTE The date of the creation of the
route in the user’s time zone. This field is applicable to
trades
on a route level, and does not populate on a per security
basis.

EMSX_ROUTE_CREATE_TIME

INT32 STATIC ROUTE The time of the creation of
the
route in seconds from midnight in the user’s time zone.
This field
is applicable to trades on a route level, and does not
populate on
a per security basis.

EMSX_ROUTE_CREATE_TIME_MICROSEC

FLOAT64 STATIC ROUTE
EMSX_ROUTE_CREATE_TIME

in microseconds.

EMSX_ROUTE_ID

INT32 STATIC O,R The transaction number of the
route
in the system. This field is applicable to trades on an
order
and/or route level, and does not populate on a per
security basis.

EMSX_ROUTE_LAST_UPDATE_TIME

INT32 ROUTE The time stamp of the last execution or
cancellation on a route. This field is applicable to
trades on a
route level and does not populate on a per security
basis.

3.6. EMSX Element Definition (N to Z) 37

emsx_api_doc Documentation, Release 2.1.0

EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC

FLOAT64 ROUTE
EMSX_ROUTE_LAST_UPDATE_TIME in
microseconds.

38 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

EMSX_ROUTE_PRICE

FLOAT64 O,R The route price benchmark for the
route. This
is the midpoint during market hours, and the next
opening price
between exchange sessions. This field is applicable to
trades on
an order and/or route level, and does not populate on a
per
security basis.

EMSX_ROUTE_REF_ID

STRING ROUTE The EMSX Route Reference ID. The
element is
called the EMSX_ROUTE_REF_ID in the
request/response services.
Not available to AIM users.

EMSX_SEC_NAME

STRING STATIC ORDER The EMSX Security Name
is the long
name of the security being traded in EMSX. This field
is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_SEDOL

STRING STATIC ORDER The EMSX Stock Exchange
Daily
Official List - SEDOL (Stock Exchange Daily Official
List) number
of the security in the order. This field is applicable to
trades
on an order level and does not populate on a per
security basis.

EMSX_SEQUENCE

INT32 STATIC O,R The sequence number generated
by the
EMSX function for the order. This field is applicable to
trades on
an order and/or route level,and does not populate on a
per
security basis.

EMSX_SETTLE_AMOUNT

FLOAT64 O,R The EMSX Net Money is the executed
value of
trade net of commission, taxes, and fees. This field is
applicable
to trades on an order and/or route level, and does not
populate on
a per security basis.

EMSX_SETTLE_CURRENCY

STRING O,R The settlement currency of the order or
route,
will only be populated when settlement currency
differs from
trading currency. This field is applicable to trades on an
order
and/or route level, and does not populate on a per
security basis.

EMSX_SETTLE_DATE

INT32 O,R The date on which payment is due to
settle the
trade for the order or route. This field is applicable to
trades
on an order and/or route level, and does not populate on
a per
security basis.

EMSX_SI

STRING ORDER The Systematic Internalizer in MiFID
II.

EMSX_SIDE

STRING STATIC ORDER The EMSX Side specifies
whether
the order or route is generated from the buy side (B) or
sell side
(S). This field is applicable to trades on an order and/or
route
level, and does not populate on a per security basis.

EMSX_START_AMOUNT

INT32 STATIC ORDER The original order quantity at
creation of the order. This field is applicable to trades
on an
order and/or route level, and does not populate on a per
security
basis.

EMSX_STATUS

STRING O,R The current status of the order or route.
This
field is applicable to trades on an order and/or route
level, and
does not populate on a per security basis.

EMSX_STEP_OUT_BROKER

STRING ORDER The name of the broker the executing
broker
gives all or a portion of the commission to for the
order. This
field is applicable to trades on an order level, and does
not
populate on a per security basis.

EMSX_STOP_PRICE

FLOAT64 O,R The price at which an order to buy or
sell
a security is triggered. Once the trigger price is
reached, the
order becomes a market order. This field is applicable
to trades
on an order and/or route level, and does not populate on
a per
security basis.

EMSX_STRATEGY_END_TIME

INT32 O,R The end time for the EMSX Strategy Type
EMSX_STRATEGY_TYPE. This field is applicable to
trades on an
order and/or route level, and does not populate on a per
security
basis.

EMSX_STRATEGY_PART_RATE1

FLOAT64 O,R The first participation rate for the
algorithmic strategy on the route. This field is
applicable to
trades on an order and/or route level, and does not
populate on a
per security basis.

EMSX_STRATEGY_PART_RATE2

FLOAT64 O,R The second participation rate for the
algorithmic strategy on the route. This field is
applicable to
trades on an order and/or route level, and does not
populate on a
per security basis.

EMSX_STRATEGY_START_TIME

INT32 O,R The start time for the EMSX Strategy
Type
EMSX_STRATEGY_TYPE. This field is applicable to
trades on an
order and/or route level, and does not populate on a per
security
basis.

EMSX_STRATEGY_STYLE

STRING O,R The execution urgency for the
algorithmic
strategy on the route; values are customized by
individual
brokers. This field is applicable to trades on an order
and/or
route level, and does not populate on a per security
basis.

EMSX_STRATEGY_TYPE

STRING O,R The method used for the route or order,
customized by individual brokers. This field is
applicable to
trades on an order and/or route level, and does not
populate on a
per security basis.

EMSX_TICKER

STRING STATIC ORDER The ticker specifies the
abbreviation assigned to a security for trading
purposes. This

field is applicable to trades on an order level, and does
not
populate on a per security basis.

EMSX_TIF

STRING O,R The time limit of the order; how long the
order
remains in effect for. This field is applicable to trades
on an
order and/or route level, and does not populate on a per
security
basis.

EMSX_TIME_STAMP

INT32 O,R The time the order or route is created, in
seconds from midnight based on the user’s time. This
field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_TIME_STAMP_MICROSEC

FLOAT64 O,R EMSX_TIME_STAMP in
microseconds.

EMSX_TOMS_PXNUM

INT32 This element allows the user to insert the
TOMS PX#
while using CreateOrderAndRouteEx,
RouteEx, and
GroupRouteEx requests. This element is required to
use
EMSX_BOOKNAME to specify the TOMS book name.
This element is
not available from the order or route subscription
services.

EMSX_TRAD_UUID

INT32 ORDER The UUID of the EMSX Trader. This
field is
equivalent to EMSX_TRADER_UUID in the elements
in the
request/response.

EMSX_TRADE_DESK

STRING ‘‘ STATIC‘‘ ORDER The name of the trading
desk on
the order. This field is applicable to trades on an order
level,
and does not populate on a per security basis. This is
specifically for AIM.

3.6. EMSX Element Definition (N to Z) 39

emsx_api_doc Documentation, Release 2.1.0

EMSX_TRADE_REPORTING_INDICATOR

STRING STATIC ORDER The trade reporting
indicator
for MiFID II.

EMSX_TRADER

STRING ORDER The current trader’s Bloomberg login
name.
This field is to trades on an order level, and does not
populate
on a per security basis.

EMSX_TRADER_NOTES

STRING ORDER The free form notes for the trader
which are
not passed on to the brokers. This field is applicable to
trades
on an order level, and does not populate on a per
security basis.

EMSX_TRANSACTION_REPORTING_MIC

STRING ROUTE The transaction reporting MIC code
in
MiFID II.

40 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

EMSX_TS_ORDNUM

INT32 STATIC ORDER The order number generated
by the
AIM. For a non-AIM user, this number is the same as
the
EMSX_SEQUENCE Number. This field is applicable to
trades on
an order level, and does not populate on a per security
basis.

EMSX_TYPE

STRING O,R The type of the order; this can be a
preconfigured valued or a value configured by the
individual
broker. This field is applicable to trades on an order
and/or
route level, and does not populate on a per security
basis.

EMSX_UNDERLYING_TICKER

STRING STATIC ORDER The instrument to which a
derivative, such as an equity or index option, is related.
This
field is applicable to trades on an order and/or route
level, and
does not populate on a per security basis.

EMSX_URGENCY_LEVEL

INT32 ROUTE The integer which is the parameter for
a
route strategy, which determines a route’s priority. This
field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_USER_COMM_AMOUNT

FLOAT64 O,R The EMSX User Commission Amount
is the total
commission charged on the trade based on user-defined
commission
rates entered. This field is applicable to trades on an
order
and/or route level, and does not populate on a per
security basis.

EMSX_USER_COMM_RATE

FLOAT64 O,R The EMSX User Commission Rate is
the
user-defined commission rate for the trade. This field is
applicable to trades on an order and/or route level, and
does not
populate on a per security basis.

EMSX_USER_FEES

FLOAT64 O,R The user-defined fees for the trade.
This
field is applicable to trades on an order and/or route
level, and
does not populate on a per security basis.

EMSX_USER_NET_MONEY

FLOAT64 O,R The executed value of trade net of
user-defined commission, taxes, and fees. This field is
applicable
to trades on an order and/or route level, and does not
populate on
a per security basis.

EMSX_WAIVER_FLAG

STRING ROUTE The waiver flag indicator for MiFID
II.

EMSX_WORK_PRICE

FLOAT64 ORDER The limit price of the last working
route of
a given order. This field is applicable to trades on an
order
and/or route level, and does not populate on a per
security basis.

EMSX_WORKING

INT32 O,R The amount the broker is working with.
This
field is applicable to trades on an order and/or route
level, and
does not populate on a per security basis.

EMSX_YELLOW_KEY

STRING STATIC ORDER The yellow key of the
security in
the order. This is applicable to trades on an order level,
and
does not populate on a per security basis.

EVENT_STATUS

INT32 Special field to indicate the status type of an
event.
This is a means of determining the type of event you
have
received. This helps the developers to know what
structure of the
message should be, including the expected fields that
should be
available. (e.g. EVENT_STATUS = 1 Heartbeat
Message,
EVENT_STATUS = 6 new order or route messsags
on all
subscription fields.)

MSG_SUB_TYPE

STRING Special field to indicate the service specific
details
in the EMSX API. MSG_SUB_TYPE = O is to
indicate an Order
event and MSG_SUB_TYPE = R is to indicate a
Route event.

MSG_TYPE

STRING Special field to indicate the service specific
details.
The value is always MSG_TYPE = E for EMSX
message type.

3.6. EMSX Element Definition (N to Z) 41

emsx_api_doc Documentation, Release 2.1.0

3.7 Accessing the Test Environment

Bloomberg provides a test environment for clients to build and test their strategies using the EMSX API.

This is accomplished by referencing //blp/emapisvc_beta as the service name in your program. This command
will allow your service to redirect all EMSX API requests and subscriptions to the test environment.

Once the client has thoroughly tested the custom-built strategies, they can access the production environment by
changing the service name from //blp/emapisvc_beta to //blp/emapisvc.

Inside the Bloomberg Terminal type UAT ON <GO>.This command allows the particular terminal window and launch-
pad to log into the beta environment. Please note, when a user is remote into the beta environment it only affects that
particular terminal window and the other Bloomberg panels will not be affected by the UAT ON <GO> command.

To check which environment your current view is in, type VSAT <GO> inside the Bloomberg terminal.

To get back to production type UAT OFF <GO>. Please note that the testing environment in Beta will not operate in
the exact same way as the production environment. Also, please note that the beta environment is a lot slower than the
production environment and no one should perform any volume or load testing in the beta environment.

3.8 API Demo Tool

API Demo Tool is a handy tool while developing on any Bloomberg API services. The API Demo Tool provides
real-time schema viewing tool among other handy tools that can be leveraged during the initial development.

The API Demo Tool can be downloaded from the Bloomberg terminal along with other generic Bloomberg API code
samples.

WAPI<GO> >> API Download Center >> Download

3.9 Order State Diagram

Following is an order state diagram for EMSX API:-

Order State PDF

42 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/orderState.pdf

emsx_api_doc Documentation, Release 2.1.0

3.9. Order State Diagram 43

emsx_api_doc Documentation, Release 2.1.0

3.10 Route State Diagram

Following is a route state diagram for EMSX API:-

Route State PDF

44 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/routeState.pdf

emsx_api_doc Documentation, Release 2.1.0

3.10. Route State Diagram 45

emsx_api_doc Documentation, Release 2.1.0

3.11 EMSX API Schema

EMSX API Schema

3.12 EMSX API History Service Schema

EMSX API History Service Schema

3.13 Session Object

Connecting and creating a session object for EMSX API uses BBCOMM for desktop and AuthID or EMRSID + IP
Address for server side EMSX API access.

BBCOMM is the service that runs on an EMSX user’s computer and conducts all communication to and from
Bloomberg. The application connects to the local BBCOMM and the most common configuration is “localhost”
for hostname and “8194” for port number.

If the application is not able to establish a connection to the local BBCOMM the call to session.start() will
fail and return false. If the connection to the emapisvc service fails, OpenService call will return false.

3.13.1 EMSX API & Correlation ID

The CorrelationID ties the subscriptions and request response messages. The user would have to inspect the
result to identify the source of the data and handle the message or the errors. Using the CorrelationID the user can
immediately tell if it is emapisvc or mktdata. The CorrelationID is unique to the subscription only and not to the
orders and routes.

The CorrelationID s are set when you send the request or submit the subscription. The CorrelationID
s belong to the message. When an event fires, which is passed to the handler, this opens up the event and iterate
through the message(s). There can be more than one message per event. Each message (MessageDataType) has a
.correlationID property. The CorrelationID (CorrelationID datatype) is specified to a value and once the
user submit it with the request in sendRequest call or when the user adds it to the individual subscription in the
subscriptions list prior to the session.subscribe call.

3.14 Description of Request/Response Service

The request/response service can be used for both buy-side EMSX<GO> workflows or sell-side EMSX to EMSX (E2E)
workflows.

The buy-side EMSX request/response supports all the basic buy-side execution management control via re-
quest/response service where the sell-side EMSX request/response supports additional sell-side workflow for acknowl-
edging or rejecting an order coming in via E2E workflow.

3.14.1 Buy-Side Request/Response Service

EMSX API supports the following buy-side Request/Response services:- Please note, the descriptions to the legacy
request/response services are omitted from the description section.

46 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/emapisvc_3.33.1.4.xml
https://github.com/tkim/emsx_api_repository/blob/master/emsx.history_1.4.0.0.xml

emsx_api_doc Documentation, Release 2.1.0

Request Name Action
AssignTrader Assign an order to another UUID.
CancelRouteEx Cancel outstanding routes (placements).
CreateOrder Create an order or stage an order into EMSX<GO>.
CreateOrderAndRouteEx Create a new order and route in a single request.
CreateOrderAndRouteManually Create the order and notify EMSX this is routed.
DeleteOrder Delete an existing order in EMSX<GO>.
GetAllFieldMetaData Get all field meta data in a response message.
GetBrokerStrategiesWithAssetClass Get all broker strategy information and asset class data.
GetBrokerStrategyInfoWithAssetClass Get all broker strategy info and asset class data.
GetBrokerWithAssetClass Get all broker data with asset class in a response message.
GetFieldMetaData Get field meta data in a reponse message.
GetTeams Get team data in a response message.
GroupRouteEx Submit the entire list as a single route to a basket algorithm.
ModifyOrder Modify parent order.
ModifyRouteEx Modify child route.
RouteEx Route existing order.
RouteManuallyEx Route manually and notify EMSX that it is routed.

Note: CreateOrderAndRouteEx can be used for both strategy and non-strategy broker destinations.

CreateOrderAndRouteManually is generally used for phone orders to brokers, where the actual placement is
outside of EMSX<GO>.

RouteEx can be used for both strategy and non-strategy broker destinations.

RouteManuallyEx is generally used for phone orders to manually enter back the execution to EMSX<GO>.

3.14.2 Sell-Side Request/Response Service

EMSX API supports the following sell-side Request/Response services:- Please note, the descriptions to the legacy
request/response services are omitted from the description section.

Request Name Action
ManualFill Request to manually fill a child route.
SellSideAck Request to acknowlede an order on EMSX to EMSX setting.
SellSideReject Request to reject an order on EMSX to EMSX setting.

Note: SellSideAck is used for EMSX to EMSX or E2E settings where sell-side EMSX<GO> is used to receive
order from buy-side EMSX.

SellSideReject is used for EMSX to EMSX or E2E settings where sell-side EMSX<GO> is used to receive order
from buy-side EMSX.

3.14.3 CFD & Odd Lot Flag

This is a feature that indicates CFD orders or to flag an odd lot in EMSX API. EMSX_CFD_FLAG is used to flag a
particular order as CFD

3.14. Description of Request/Response Service 47

emsx_api_doc Documentation, Release 2.1.0

• 0 = not flagged

• 1 = flagged

EMSX_ODD_LOT_FLAG is an odd lot is a quantity of stock that is less than 100 shares. A deal involving 100 shares
or more is considered a round-lot transactions.

• 0 = not an odd lot / it won’t fill odd lots

• 1 = odd lot

3.14.4 Date & Time Format

All date format except EMSX_QUEUED_TIME are in yyyymmdd format. All time format except
EMSX_STRATEGY_END_TIME, EMSX_STRATEGY_START_TIME, and EMSX_RELEASE_TIME are in number
of seconds from midnight.

The Strategy time zone is set using the EMSX<GO> function in the Bloomberg terminal under Routing Defaults
section inside the Settings menu. In the Routing Defaults, the user can select Exchange vs. User time zone for strategy
time zone. The default is the Exchange time.

Element Description
EMSX_DATE yyyymmdd
EMSX_GTD_DATE yyyymmdd
EMSX_LAST_FILL_DATE yyyymmdd
EMSX_QUEUED_DATE yyyymmdd
EMSX_ROUTE_CREATE_DATE yyyymmdd
EMSX_SETTLE_DATE yyyymmdd
EMSX_QUEUED_TIME hhmm
EMSX_RELEASE_TIME hhmm (For the API, it is defaulted to the exchange time.)
EMSX_STRATEGY_END_TIME hhmmss
EMSX_STRATEGY_START_TIME hhmmss
EMSX_LAST_FILL_TIME Number of seconds from midnight
EMSX_ROUTE_CREATE_TIME Number of seconds from midnight
EMSX_ROUTE_LAST_UPDATE_TIME Number of seconds from midnight
EMSX_TIME_STAMP Number of seconds from midnight

The //blp/emsx.history and //blp/emsx.history.uat are set in date time objects unlike the //blp/
emapisvc or //blp/emapisvc_beta.

3.14.5 Custom Notes & Free Text Fields

The EMSX API provides several different EMSX options for entering and using free text fields. Some of these free
text fields can be used for an internal only workflow where the others can be used to communicate with the various
execution counterparts.

The following elements are available on order and/or route subscription services. These elements will be passed to the
external trading counterparts.

48 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

Element Description
EMSX_ACCOUNT 29-character free text field (29+1 check digit), FIX Tag 1
EMSX_BASKET_NAME 20-character free text field (20+1 check digit)
EMSX_INVESTOR_ID 12-character free text field mostly used to identify Investor ID
EMSX_NOTES 43-character free text field (43+1 check digit), FIX Tag 58
EMSX_ORDER_REF_ID 15-character field (15+1 check digit) order subscription only, not available for AIM

users
EMSX_ROUTE_REF_ID 15-character field (15+1 check digit) route subscription only, not available for AIM

users
EMSX_TRADER_NOTES 43-character free text field (43+1 check digit), internal & read only from API

The following elements are available only for internal fields unless custom mapped to a custom FIX tag to a particular
trading counterparty.

Warning: The following EMSX_CUSTOM_NOTE* elements are only available on order subscription service.

Element Description
EMSX_CUSTOM_NOTE1 79-character free text field (79+1 check digit)
EMSX_CUSTOM_NOTE2 79-character free text field (79+1 check digit)
EMSX_CUSTOM_NOTE3 79-character free text field (79+1 check digit)
EMSX_CUSTOM_NOTE4 79-character free text field (79+1 check digit)
EMSX_CUSTOM_NOTE5 79-character free text field (79+1 check digit)

3.15 Buy-Side Request/Response Service

The EMSX API allows developers to use the Request/Response services for order and route creation, modification,
queries related to orders and routes as well as EMSX Team details. Depending on the type of action required, the
application programmer must create a specific request, populate it with required parameters and send that request to
the EMSX API service, which provides the response. Communication with the request/response service requires the
following steps:

1. Create a session (if session does not yet exist).

2. Connect session to //blp/emapisvc_beta or //blp/emapisvc service and start it.

3. Fetch a service object from the session representing emapisvc.

4. Use the service object from above to create a Request object of the desired type

5. Send request object via sendRequest method of session object, pass object of type EventQueue to the
sendRequest.

6. Loop through the EventQueue object until event of type Event::RESPONSE is read.

These are initialized in the constructor as below and are then available for the life of the application for submission of
various requests.

3.15.1 Assign Trader Request

The AssignTrader request allows EMSX API to reassign order to another user UUID. A typical setup will have
the different UUID as another part of the TEAM setup for the order creater UUID. This will allow systematically

3.15. Buy-Side Request/Response Service 49

emsx_api_doc Documentation, Release 2.1.0

generated trades to be reassigned to another human trader if need be from the EMSX API.

Assigned trader must be in same EMBR<GO> group for this to work. EMBR<GO> is an internal Bloomberg function
the account managers will use to set this feature on behalf of the client. The EMSX account manager will check off
the ability to reassign before the AssignTrader request will work. Once this feature is on, trading on behalf other
UUID feature will no longer work for that team.

Full code sample:-

Assign Trader cpp Assign Trader cs Assign Trader vba
Assign Trader java Assign Trader py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("AssignTrader")
12

13 request.append("EMSX_SEQUENCE", 3744303)
14 request.append("EMSX_SEQUENCE", 3744341)
15

16 request.set("EMSX_ASSIGNEE_TRADER_UUID", 12109783)
17

18 print "Request: %s" % request.toString()
19

20 self.requestID = blpapi.CorrelationId()
21

22 session.sendRequest(request, correlationId=self.requestID)
23

24 elif msg.messageType() == SERVICE_OPEN_FAILURE:
25 print >> sys.stderr, "Error: Service failed to open"

Output:- Without proper EMBR<GO> permssion.

C:\Users\tckim\OneDrive_scripts>py -3 AssignTrader.py
Bloomberg - EMSX API Example - AssignTrader
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...

(continues on next page)

50 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/AssignTrader.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/AssignTrader.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/AssignTrader.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/AssignTrader.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/AssignTrader.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Request: AssignTrader = {
EMSX_SEQUENCE[] = {

4733955
}
EMSX_ASSIGNEE_TRADER_UUID = 7569479

}

Processing RESPONSE event
MESSAGE: ErrorInfo = {

ERROR_CODE = 96233
ERROR_MESSAGE = "Not Authorized"

}

CORRELATION ID: 3
MESSAGE TYPE: ErrorInfo
ERROR CODE: 96233 ERROR MESSAGE: Not Authorized
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.2 Broker Spec Request

The BrokerSpec request allows EMSX API users to call all the production broker strategy name and fields and FIX
tags associated with the broker strategies. Unfortunately, this is currently only available for production broker strategy
fields. The service name is \\blp\emsx.brokerspec.

Full code sample:-

Broker Spec cpp Broker Spec cs Broker Spec vba
Broker Spec java Broker Spec py

Call //blp/emsx.brokerspec service:-

SESSION_STARTED = blpapi.Name("SessionStarted")
SESSION_STARTUP_FAILURE = blpapi.Name("SessionStartupFailure")
SERVICE_OPENED = blpapi.Name("ServiceOpened")
SERVICE_OPEN_FAILURE = blpapi.Name("ServiceOpenFailure")
ERROR_INFO = blpapi.Name("ErrorInfo")
BROKER_SPEC = blpapi.Name("BrokerSpec")

d_service="//blp/emsx.brokerspec" # The BrokerSpec service is only available in the
→˓production environment
d_host="localhost"
d_port=8194
bEnd=False

Specify the UUID:-

3.15. Buy-Side Request/Response Service 51

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/BrokerSpec.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/BrokerSpec.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/BrokerSpec.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/AssignTrader.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/BrokerSpec.py

emsx_api_doc Documentation, Release 2.1.0

def processServiceStatusEvent(self,event,session):
print "Processing SERVICE_STATUS event"

for msg in event:

if msg.messageType() == SERVICE_OPENED:
print "Service opened..."

service = session.getService(d_service)

request = service.createRequest("GetBrokerSpecForUuid")

request.set("uuid", 8049857)

print "Request: %s" % request.toString()

self.requestID = blpapi.CorrelationId()

session.sendRequest(request, correlationId=self.requestID)

elif msg.messageType() == SERVICE_OPEN_FAILURE:
print >> sys.stderr, "Error: Service failed to open"

Get broker code, strategy name, and strategy parameters

brokers=msg.getElement("brokers")

num = brokers.numValues()

print "Number of Brokers: %d\n" % (num)

for broker in brokers.values():
code = broker.getElement("code").getValue()
assetClass = broker.getElement("assetClass").getValue()

if broker.hasElement("strategyFixTag"):
tag = broker.getElement("strategyFixTag").getValue()
print "\nBroker code: %s\tclass: %s\ttag: %s" % (code,assetClass,tag)
strats = broker.getElement("strategies")
numStrats = strats.numValues()
print"\tNo. of Strategies: %d" % (numStrats)
for strat in strats.values():

name = strat.getElement("name").getValue()
fixVal = strat.getElement("fixValue").getValue()
print "\n\tStrategy Name: %s\tFix Value: %s" % (name,fixVal)

parameters = strat.getElement("parameters")

numParams = parameters.numValues()

print "\t\tNo. of Parameters: %d\n" % (numParams)

for param in parameters.values():
pname = param.getElement("name").getValue()
tag = param.getElement("fixTag").getValue()
required = param.getElement("isRequired").getValue()
replaceable = param.getElement("isReplaceable").getValue()

(continues on next page)

52 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

print "\t\tParameter: %s\tTag: %d\tRequired: %s\tReplaceable: %s" %
→˓(pname,tag,required,replaceable)

typeName = param.getElement("type").getElement(0).name()

vals = ""

if typeName=="enumeration":

enumerators = param.getElement("type").getElement(0).getElement(
→˓"enumerators")

for enum in enumerators.values():
vals = vals + enum.getElement("name").getValue() + "[" + enum.

→˓getElement("fixValue").getValue() + "],"

if len(vals) > 0: vals = vals[:-1]

elif typeName=="range":
rng = param.getElement("type").getElement(0)
mn = rng.getElement("min").getValue()
mx = rng.getElement("max").getValue()
st = rng.getElement("step").getValue()
vals = "min:%d max:%d step:%d" % (mn,mx,st)

elif typeName=="string":
possVals = param.getElement("type").getElement(0).getElement(

→˓"possibleValues")

for val in possVals.values():
vals = vals + val +","

if len(vals) > 0: vals = vals[:-1]

if len(vals) > 0:
print "\t\t\tType: %s (%s)" % (typeName, vals)

else:
print "\t\t\tType: %s" % (typeName)

else:
print "\nBroker code: %s\tclass: %s" % (code,assetClass)
print"\tNo strategies\n"

Output:-

C:\Users_scripts>py -3 BrokerSpec.py
Bloomberg - EMSX API Example - BrokerSpec
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}
(continues on next page)

3.15. Buy-Side Request/Response Service 53

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: GetBrokerSpecForUuid = {

uuid = 6767714
}

Processing RESPONSE event
MESSAGE TYPE: BrokerSpec
Number of Brokers: 20

Broker code: BB class: Equity tag: 9002
No. of Strategies: 10

Strategy Name: NONE Fix Value: NONE
No. of Parameters: 0

Strategy Name: VWAP Fix Value: VWAP
No. of Parameters: 0

Strategy Name: PARTICIPATE Fix Value: PART
No. of Parameters: 0

Strategy Name: INLINE Fix Value: INLINE
No. of Parameters: 0

Strategy Name: BIPS Fix Value: 2
No. of Parameters: 0

Strategy Name: EP_PE Fix Value: EP
No. of Parameters: 0

Strategy Name: PAIRS STRATEGY Fix Value: PAIR
No. of Parameters: 0

Strategy Name: BEST EX Fix Value: BEST-EX
No. of Parameters: 0

Strategy Name: ratest Fix Value: ratest
No. of Parameters: 0

Time In Force:
Name: DAY Fix Value: 0
Name: FOK Fix Value: 4
Name: GTC Fix Value: 1
Name: GTD Fix Value: 6

(continues on next page)

54 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Order Types:
Name: LMT Fix Value: 2
Name: MKT Fix Value: 1
Name: SL Fix Value: 4
Name: ST Fix Value: 3

Handling Instructions:
Name: ANY Fix Value: 2
Name: Auto Fix Value: 1
Name: DMA Fix Value: 4
Name: MAN Fix Value: 3
Name: ORD Fix Value: 0

Broker code: BB class: Option
No strategies

Time In Force:
Name: DAY Fix Value: 0

Order Types:
Name: LMT Fix Value: 2
Name: MKT Fix Value: 1

Handling Instructions:
Name: ANY Fix Value: 2
Name: AUTO Fix Value: 1
Name: MAN Fix Value: 3

Broker code: EFIX class: Equity tag: 6005
No. of Strategies: 53

Strategy Name: TSTRIKE1 Fix Value: 2
No. of Parameters: 0

Strategy Name: INLINE Fix Value: INLINE
No. of Parameters: 0

Strategy Name: STRATEGY8 Fix Value: 8
No. of Parameters: 0

Strategy Name: STRATEGY9 Fix Value: 9
No. of Parameters: 0

Strategy Name: STRATEGY10 Fix Value: 10
No. of Parameters: 0

Strategy Name: STRATEGY11 Fix Value: 11
No. of Parameters: 0

Strategy Name: STRATEGY12 Fix Value: 12
(continues on next page)

3.15. Buy-Side Request/Response Service 55

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

No. of Parameters: 0

Strategy Name: STRATEGY13 Fix Value: 13
No. of Parameters: 0

Strategy Name: STRATEGY14 Fix Value: 14
No. of Parameters: 0

Strategy Name: STRATEGY15 Fix Value: 15
No. of Parameters: 0

Strategy Name: STRATEGY16 Fix Value: 16
No. of Parameters: 0

Strategy Name: STRATEGY17 Fix Value: 17
No. of Parameters: 0

Strategy Name: STRATEGY18 Fix Value: 18
No. of Parameters: 0

Strategy Name: STRATEGY19 Fix Value: 19
No. of Parameters: 0

Strategy Name: STRATEGY20 Fix Value: 20
No. of Parameters: 0

Strategy Name: STRATEGY21 Fix Value: 21
No. of Parameters: 0

Strategy Name: STRATEGY22 Fix Value: 22
No. of Parameters: 0

Strategy Name: STRATEGY23 Fix Value: 23
No. of Parameters: 0

Strategy Name: STRATEGY24 Fix Value: 24
No. of Parameters: 0

Strategy Name: STRATEGY25 Fix Value: 25
No. of Parameters: 0

Strategy Name: Merge Fix Value: Merge
No. of Parameters: 0

(continues on next page)

56 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Strategy Name: VWAP Fix Value: GVW3
No. of Parameters: 0

Strategy Name: TWAP Fix Value: GTW3
No. of Parameters: 0

Strategy Name: VP Fix Value: GVP3
No. of Parameters: 0

Strategy Name: VWAP2 Fix Value: 3
No. of Parameters: 0

Strategy Name: ABC Fix Value: 4
No. of Parameters: 0

Strategy Name: TIME TEST Fix Value: 1
No. of Parameters: 0

Strategy Name: TIME TEST1 Fix Value: 40
No. of Parameters: 0

Strategy Name: strategy 29 Fix Value: L
No. of Parameters: 0

Strategy Name: strategy 30 Fix Value: 30
No. of Parameters: 0

Strategy Name: ALGOT Fix Value: TT
No. of Parameters: 0

Strategy Name: Mike Sat Morning Fix Value: M3
No. of Parameters: 0

Strategy Name: janurary Fix Value: jan
No. of Parameters: 0

Strategy Name: test33 Fix Value: 10114
No. of Parameters: 0

Strategy Name: iceberg Fix Value: iceberg
No. of Parameters: 0

(continues on next page)

3.15. Buy-Side Request/Response Service 57

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Strategy Name: Merge2 Fix Value: Merge2
No. of Parameters: 0

Strategy Name: testwf Fix Value: testwf
No. of Parameters: 0

Strategy Name: TS Strike Fix Value: y
No. of Parameters: 0

Strategy Name: TS Strike Fix Value: y
No. of Parameters: 0

Strategy Name: strategy 30 Fix Value: 30
No. of Parameters: 0

Strategy Name: Strategy 30 Fix Value: 30
No. of Parameters: 0

Strategy Name: INLIN Fix Value: INLINE
No. of Parameters: 0

Strategy Name: TS Strike Fix Value: y
No. of Parameters: 0

Strategy Name: Strategy 30 Fix Value: 30
No. of Parameters: 0

Strategy Name: SMART Fix Value: SMART
No. of Parameters: 0

Strategy Name: y029test Fix Value: 1029
No. of Parameters: 0

Strategy Name: ra_test Fix Value: ratest
No. of Parameters: 0

Strategy Name: DEMO Fix Value: D
No. of Parameters: 0

Strategy Name: A Fix Value: 2
No. of Parameters: 0

(continues on next page)

58 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Strategy Name: TEST1 Fix Value: T1
No. of Parameters: 0

Strategy Name: TEST2 Fix Value: T2
No. of Parameters: 0

Strategy Name: TEST3 Fix Value: T3
No. of Parameters: 0

Strategy Name: jeff Fix Value: jeff
No. of Parameters: 0

Time In Force:
Name: CLO Fix Value: 7
Name: DAY Fix Value: 0
Name: FOK Fix Value: 4
Name: GTC Fix Value: 1
Name: GTD Fix Value: 6
Name: GTX Fix Value: 5
Name: IOC Fix Value: 3
Name: OPG Fix Value: A

Order Types:
Name: CD Fix Value: Q
Name: COVR Fix Value: F
Name: FUN Fix Value: I
Name: JP Fix Value: N
Name: LMT Fix Value: 2
Name: LOB Fix Value: R
Name: LOC Fix Value: B
Name: LOO Fix Value: 6
Name: MKT Fix Value: 1
Name: MOC Fix Value: 5
Name: MOO Fix Value: X
Name: OC Fix Value: A
Name: PEGG Fix Value: P
Name: RED Fix Value: E
Name: SL Fix Value: 4
Name: ST Fix Value: 3

Handling Instructions:
Name: ANY Fix Value: 2
Name: AUTO Fix Value: 1
Name: MAN Fix Value: 3

Broker code: EFIX class: Future tag: 1000
No. of Strategies: 6

Strategy Name: test 2 Fix Value: 200
No. of Parameters: 0

Strategy Name: test Fix Value: 100
No. of Parameters: 0

(continues on next page)

3.15. Buy-Side Request/Response Service 59

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Strategy Name: time test Fix Value: time
No. of Parameters: 0

Strategy Name: Range test Fix Value: rng
No. of Parameters: 0

Strategy Name: test3 Fix Value: I
No. of Parameters: 0

Strategy Name: DEMO Fix Value: D
No. of Parameters: 0

Time In Force:
Name: DAY Fix Value: 0
Name: GTC Fix Value: 1
Name: GTD Fix Value: 6
Name: GTI Fix Value: 8
Name: GTT Fix Value: 9
Name: IOC Fix Value: 3

Order Types:
Name: LMT Fix Value: 2
Name: MKT Fix Value: 1
Name: MOC Fix Value: 5
Name: SL Fix Value: 4
Name: ST Fix Value: 3

Handling Instructions:
Name: ANY Fix Value: 2
Name: AUTO Fix Value: 1
Name: DOT Fix Value: 4
Name: MAN Fix Value: 3

...

3.15.3 Cancel Order Extended Request

In EMSX<GO> there is a feature that allows the user to cancel the parent order and child routes associated with the
parent order in a single call. The CancelOrderEx request replicates this EMSX<GO> UI feature.

However, unlike the CancelRouteEx request which changes the parent order state into Assigned, this request will
permanently place the order in an inoperable Cancel state.

Important: Please note this request does not work for AIM users. This request only works for standalone EMSX
API user.

Full code sample:-

Cancel Order cs Cancel Order py

60 Chapter 3. Programmable EMSX API

https://emsx-api-doc.readthedocs.io/en/latest/programmable/requestResponse.html#cancel-route-extended-request
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CancelOrder.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CancelOrderEx.py

emsx_api_doc Documentation, Release 2.1.0

Hint: Please right click on the top code sample link to open in a new tab.

3.15.4 Cancel Route Extended Request

In EMSX<GO> we have a notion of parent order and child routes. The CancelRoute request is to effectively send
out a cancellation request to the execution venue of the current live route. Submission of CancelRoute does not
automatically cancel the outstanding route. This action needs to be acknowledged and performed by the execution
venue of the route.

Full code sample:-

Cancel Route cpp Cancel Route cs Cancel Route vba
Cancel Route java Cancel Route py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("CancelRoute")
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14 #request.set("EMSX_TRADER_UUID", 1234567) # UUID of trader who

→˓owns the order
15

16 routes = request.getElement("ROUTES")
17

18 route = routes.appendElement()
19 route.getElement("EMSX_SEQUENCE").setValue(3744354)
20 route.getElement("EMSX_ROUTE_ID").setValue(1)
21

22 print "Request: %s" % request.toString()
23

24 self.requestID = blpapi.CorrelationId()
25

26 session.sendRequest(request, correlationId=self.requestID)
27

28 elif msg.messageType() == SERVICE_OPEN_FAILURE:
29 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users\tckim\OneDrive_scripts>py -3 CancelOrderEx.py
Bloomberg - EMSX API Example - CancelOrderEx

(continues on next page)

3.15. Buy-Side Request/Response Service 61

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/CancelRoute.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CancelRoute.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/CancelRoute.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/CancelRoute.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CancelRoute.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: CancelOrderEx = {

EMSX_SEQUENCE[] = {
4733955

}
}

Processing RESPONSE event
MESSAGE: CancelOrderEx = {

STATUS = 1
MESSAGE = "Order cancellation request sent to broker"

}

CORRELATION ID: 3
MESSAGE TYPE: CancelOrderEx
STATUS: 1 MESSAGE: Order cancellation request sent to broker
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.5 Create Basket Request

Creating a basket requires the user to create a request from the service object of type CreateBasket and fill in the
required fields before submitting the request.

The CreateBasket request creates a basket with the list of securities. This maintains a list or a basket from a
portfolio perspective.

Currently, in EMSX API this is a two-step process.

The first step is for the user to use CreateOrder request to create the orders and capture the EMSX_SEQUENCE
from the response message.

The second step is to include the EMSX_SEQUENCE number inside an array to add the orders into a basket and use
the EMSX_BASKET_NAME element in the CreateBasket request to specify the name of the basket.

Full code sample:-

Create Basket cpp Create Basket cs Create Basket vba
Create Basket java Create Basket py

62 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/CreateBasket.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CreateBasket.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/CreateBasket.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/CreateBasket.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CreateBasket.py

emsx_api_doc Documentation, Release 2.1.0

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print("Processing SERVICE_STATUS event")
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print("Service opened...")
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("CreateBasket")
12

13 # define the basket name
14 request.set("EMSX_BASKET_NAME", "TestBasket")
15

16 # add any number of orders
17 request.append("EMSX_SEQUENCE", 4313227)
18 request.append("EMSX_SEQUENCE", 4313228)
19 #request.append("EMSX_SEQUENCE", 4313184)
20

21 print("Request: %s" % request.toString())
22

23 self.requestID = blpapi.CorrelationId()
24

25 session.sendRequest(request, correlationId=self.requestID)
26

27 elif msg.messageType() == SERVICE_OPEN_FAILURE:
28 print("Error: Service failed to open")

Output:-

C:\Users_scripts>py -3 CreateBasket.py
Bloomberg - EMSX API Example - CreateBasket
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: CreateBasket = {

EMSX_BASKET_NAME = "TestBasket"
EMSX_SEQUENCE[] = {

4733961, 4733962
}

}

Processing RESPONSE event
MESSAGE: CreateBasket = {

EMSX_SEQUENCE[] = {

(continues on next page)

3.15. Buy-Side Request/Response Service 63

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

4733961, 4733962
}
MESSAGE = "Orders added to Basket"

}

CORRELATION ID: 3
MESSAGE TYPE: CreateBasket
EMSX_SEQUENCE: 4733961 MESSAGE: Orders added to Basket
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.6 Create Order Request

Creating an order requires the user to create a request from the service object of type CreateOrder and fill in the
required fields before submitting the request.

If the handling instruction is for DMA access or any other non-standard handling instructions, EMSX API will not
allow users to stage the order from the EMSX API unless the broker enables the broker code for EMSX API. This is
also true for custom Time in Force fields. Any non-standard TIF will also be restricted from staging unless the broker
enables the broker code for EMSX API.

Full code sample:-

Create Order cpp Create Order cs Create Order vba
Create Order java Create Order py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("CreateOrder")
12

13 # The fields below are mandatory
14 request.set("EMSX_TICKER", "IBM US Equity")
15 request.set("EMSX_AMOUNT", 1000)
16 request.set("EMSX_ORDER_TYPE", "MKT")
17 request.set("EMSX_TIF", "DAY")
18 request.set("EMSX_HAND_INSTRUCTION", "ANY")

(continues on next page)

64 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/CreateOrder.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CreateOrder.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/CreateOrder.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/CreateOrder.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CreateOrder.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

19 request.set("EMSX_SIDE", "BUY")
20

21 # The fields below are optional
22 #request.set("EMSX_ACCOUNT","TestAccount")
23 #request.set("EMSX_BASKET_NAME", "HedgingBasket")
24 #request.set("EMSX_BROKER", "BMTB")
25 #request.set("EMSX_CFD_FLAG", "1")
26 #request.set("EMSX_CLEARING_ACCOUNT", "ClrAccName")
27 #request.set("EMSX_CLEARING_FIRM", "FirmName")
28 #request.set("EMSX_CUSTOM_NOTE1", "Note1")
29 #request.set("EMSX_CUSTOM_NOTE2", "Note2")
30 #request.set("EMSX_CUSTOM_NOTE3", "Note3")
31 #request.set("EMSX_CUSTOM_NOTE4", "Note4")
32 #request.set("EMSX_CUSTOM_NOTE5", "Note5")
33 #request.set("EMSX_EXCHANGE_DESTINATION", "ExchDest")
34 #request.set("EMSX_EXEC_INSTRUCTIONS", "AnyInst")
35 #request.set("EMSX_GET_WARNINGS", "0")
36 #request.set("EMSX_GTD_DATE", "20170105")
37 #request.set("EMSX_INVESTOR_ID", "InvID")
38 #request.set("EMSX_LIMIT_PRICE", 123.45)
39 #request.set("EMSX_LOCATE_BROKER", "BMTB")
40 #request.set("EMSX_LOCATE_ID", "SomeID")
41 #request.set("EMSX_LOCATE_REQ", "Y")
42 #request.set("EMSX_NOTES", "Some notes")
43 #request.set("EMSX_ODD_LOT", "0")
44 #request.set("EMSX_ORDER_ORIGIN", "")
45 #request.set("EMSX_ORDER_REF_ID", "UniqueID")
46 #request.set("EMSX_P_A", "P")
47 #request.set("EMSX_RELEASE_TIME", 1259)
48 #request.set("EMSX_REQUEST_SEQ", 1001)
49 #request.set("EMSX_SETTLE_CURRENCY", "USD")
50 #request.set("EMSX_SETTLE_DATE", 20170106)
51 #request.set("EMSX_SETTLE_TYPE", "T+2")
52 #request.set("EMSX_STOP_PRICE", 123.5)
53

54 print "Request: %s" % request.toString()
55

56 self.requestID = blpapi.CorrelationId()
57

58 session.sendRequest(request, correlationId=self.requestID)
59

60 elif msg.messageType() == SERVICE_OPEN_FAILURE:
61 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 CreateOrder.py
Bloomberg - EMSX API Example - CreateOrder
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...

(continues on next page)

3.15. Buy-Side Request/Response Service 65

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Processing SERVICE_STATUS event
Service opened...
Request: CreateOrder = {

EMSX_TICKER = "MSFT US Equity"
EMSX_AMOUNT = 1100
EMSX_ORDER_TYPE = MKT
EMSX_TIF = DAY
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_SIDE = BUY

}

Processing RESPONSE event
MESSAGE: CreateOrder = {

EMSX_SEQUENCE = 4733955
MESSAGE = "Order created"

}

CORRELATION ID: 3
MESSAGE TYPE: CreateOrder
EMSX_SEQUENCE: 4733955 MESSAGE: Order created
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.7 Create Order and Route Extended Request

The CreateOrderAndRouteEx request can be used for both strategy and non-strategy broker destinations. Cre-
ating an order and routing with strategy requires the user to create a request from the service object of type ‘‘ Create-
OrderAndRouteEx‘‘ and fill in the required fields before submitting the request.

Note:

The user will first need to use various Get___ requests to obtain all the necessary information to use
the broker strategies the user is enabled for, returned in response. Subsequently, the user can then request
GetBrokerStrategiesWithAssetClass to get all the broker strategies user is enabled for that
particular broker code and asset class.

Lastly, GetBrokerStrategyInfoWithAssetClass will get all the fields for the provided broker strategy in
the particular order in which they need to be submitted in CreateOrderAndRouteEx and RouteEx requests.

Full code sample:-

Create Order And Route Extended
cpp

Create Order And Route Extended
cs

Create Order And Route Extended
vba

Create Order And Route Extended
java

Create Order And Route Extended
py

66 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/CreateOrderAndRouteEx.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/CreateOrderAndRouteEx.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CreateOrderAndRouteEx.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CreateOrderAndRouteEx.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/CreateOrderAndRouteEx.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/CreateOrderAndRouteEx.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/CreateOrderAndRouteEx.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/CreateOrderAndRouteEx.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CreateOrderAndRouteEx.py
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CreateOrderAndRouteEx.py

emsx_api_doc Documentation, Release 2.1.0

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("CreateOrderAndRouteEx")
12

13 # The fields below are mandatory
14 request.set("EMSX_TICKER", "IBM US Equity")
15 request.set("EMSX_AMOUNT", 1000)
16 request.set("EMSX_ORDER_TYPE", "MKT")
17 request.set("EMSX_TIF", "DAY")
18 request.set("EMSX_HAND_INSTRUCTION", "ANY")
19 request.set("EMSX_SIDE", "BUY")
20 request.set("EMSX_BROKER", "BB")
21

22 # The fields below are optional
23 #request.set("EMSX_ACCOUNT","TestAccount")

Output:-

C:\Users_scripts>py -3 CreateOrderAndRouteEx.py
Bloomberg - EMSX API Example - CreateOrderAndRouteEx
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: CreateOrderAndRouteEx = {

EMSX_TICKER = "FB US Equity"
EMSX_AMOUNT = 1000
EMSX_ORDER_TYPE = MKT
EMSX_TIF = DAY
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_SIDE = SELL
EMSX_BROKER = "BMTB"
EMSX_ACCOUNT = "testAccount"
EMSX_NOTES = "blah blah blah"
EMSX_ORDER_REF_ID = "UniqueID"
EMSX_P_A = "A"
EMSX_ROUTE_REF_ID = "UniqueID2"
EMSX_STRATEGY_PARAMS = {

EMSX_STRATEGY_NAME = "VWAP"

(continues on next page)

3.15. Buy-Side Request/Response Service 67

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_STRATEGY_FIELD_INDICATORS[] = {
EMSX_STRATEGY_FIELD_INDICATORS = {

EMSX_FIELD_INDICATOR = 0
}
EMSX_STRATEGY_FIELD_INDICATORS = {

EMSX_FIELD_INDICATOR = 0
}
EMSX_STRATEGY_FIELD_INDICATORS = {

EMSX_FIELD_INDICATOR = 1
}
EMSX_STRATEGY_FIELD_INDICATORS = {

EMSX_FIELD_INDICATOR = 1
}
EMSX_STRATEGY_FIELD_INDICATORS = {

EMSX_FIELD_INDICATOR = 1
}
EMSX_STRATEGY_FIELD_INDICATORS = {

EMSX_FIELD_INDICATOR = 1
}

}
EMSX_STRATEGY_FIELDS[] = {

EMSX_STRATEGY_FIELDS = {
EMSX_FIELD_DATA = "09:30:00"

}
EMSX_STRATEGY_FIELDS = {

EMSX_FIELD_DATA = "10:30:00"
}
EMSX_STRATEGY_FIELDS = {

EMSX_FIELD_DATA = ""
}
EMSX_STRATEGY_FIELDS = {

EMSX_FIELD_DATA = ""
}
EMSX_STRATEGY_FIELDS = {

EMSX_FIELD_DATA = ""
}
EMSX_STRATEGY_FIELDS = {

EMSX_FIELD_DATA = ""
}

}
}

}

Processing RESPONSE event
MESSAGE: CreateOrderAndRouteEx = {

EMSX_SEQUENCE = 4733965
EMSX_ROUTE_ID = 1
MESSAGE = "Order created and routed"

}

CORRELATION ID: 3
MESSAGE TYPE: CreateOrderAndRouteEx
EMSX_SEQUENCE: 4733965 EMSX_ROUTE_ID: 1 MESSAGE: Order created and routed
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

(continues on next page)

68 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.8 Create Order And Route Manually Request

The CreateOrderAndRouteManually request is generally used for phone orders where the placement is exter-
nal to EMSX API. This request creates an order and notifies EMSX<GO> that this order is routed to the execution
venue.

Full code sample:-

Create Order And Route Manually
cpp

Create Order And Route Manually
cs

Create Order And Route Manually
vba

Create Order And Route Manually
java

Create Order And Route Manually
py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("CreateOrderAndRouteManually")
12

13 # The fields below are mandatory
14 request.set("EMSX_TICKER", "IBM US Equity")
15 request.set("EMSX_AMOUNT", 1000)
16 request.set("EMSX_ORDER_TYPE", "MKT")
17 request.set("EMSX_TIF", "DAY")
18 request.set("EMSX_HAND_INSTRUCTION", "ANY")
19 request.set("EMSX_SIDE", "BUY")
20 request.set("EMSX_BROKER", "BB")
21

22 # The fields below are optional
23 #request.set("EMSX_ACCOUNT","TestAccount")
24 #request.set("EMSX_CFD_FLAG", "1")
25 #request.set("EMSX_CLEARING_ACCOUNT", "ClrAccName")
26 #request.set("EMSX_CLEARING_FIRM", "FirmName")
27 #request.set("EMSX_EXCHANGE_DESTINATION", "ExchDest")
28 #request.set("EMSX_EXEC_INSTRUCTIONS", "AnyInst")
29 #request.set("EMSX_GET_WARNINGS", "0")
30 #request.set("EMSX_GTD_DATE", "20170105")
31 #request.set("EMSX_INVESTOR_ID", "InvID")
32 #request.set("EMSX_LIMIT_PRICE", 123.45)

(continues on next page)

3.15. Buy-Side Request/Response Service 69

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/CreateOrderAndRouteManually.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/CreateOrderAndRouteManually.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CreateOrderAndRouteManually.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/CreateOrderAndRouteManually.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/CreateOrderAndRouteManually.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/CreateOrderAndRouteManually.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/CreateOrderAndRouteManually.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/CreateOrderAndRouteManually.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CreateOrderAndRouteManually.py
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/CreateOrderAndRouteManually.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

33 #request.set("EMSX_LOCATE_BROKER", "BMTB")
34 #request.set("EMSX_LOCATE_ID", "SomeID")
35 #request.set("EMSX_LOCATE_REQ", "Y")
36 #request.set("EMSX_NOTES", "Some notes")
37 #request.set("EMSX_ODD_LOT", "0")
38 #request.set("EMSX_ORDER_ORIGIN", "")
39 #request.set("EMSX_ORDER_REF_ID", "UniqueID")
40 #request.set("EMSX_P_A", "P")
41 #request.set("EMSX_RELEASE_TIME", 1259)
42 #request.set("EMSX_REQUEST_SEQ", 1001)
43 #request.set("EMSX_SETTLE_DATE", 20170106)
44 #request.set("EMSX_STOP_PRICE", 123.5)
45

46 print "Request: %s" % request.toString()
47

48 self.requestID = blpapi.CorrelationId()
49

50 session.sendRequest(request, correlationId=self.requestID)
51

52 elif msg.messageType() == SERVICE_OPEN_FAILURE:
53 print >> sys.stderr, "Error: Service failed to open"

3.15.9 Delete Order Request

The DeleteOrder request deletes an existing order in EMSX<GO>. This is not the same action as canceling the
parent order. In fact, EMSX API does not expose Cancel Order status as in EMSX<GO>.

The primary reason behind this is because the cancel rrder in EMSX<GO> really just puts an order in an inoperable
state and doesn’t really serve any meaningful function.

Full code sample:-

Delete Order cpp Delete Order cs Delete Order vba
Delete Order java Delete Order py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("DeleteOrder")
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.getElement("EMSX_SEQUENCE").appendValue(3744363)

(continues on next page)

70 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/DeleteOrder.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/DeleteOrder.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/DeleteOrder.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/DeleteOrder.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/DeleteOrder.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

16 request.getElement("EMSX_SEQUENCE").appendValue(3744364)
17

18

19 print "Request: %s" % request.toString()
20

21 self.requestID = blpapi.CorrelationId()
22

23 session.sendRequest(request, correlationId=self.requestID)
24

25 elif msg.messageType() == SERVICE_OPEN_FAILURE:
26 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 DeleteOrder.py
Bloomberg - EMSX API Example - DeleteOrder
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: DeleteOrder = {

EMSX_SEQUENCE[] = {
4733961

}
}

Processing RESPONSE event
MESSAGE: DeleteOrder = {

STATUS = 0
MESSAGE = "Order deleted"

}

CORRELATION ID: 3
MESSAGE TYPE: DeleteOrder
STATUS: 0 MESSAGE: Order deleted
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.10 Get All Field Metadata Request

The GetAllFiedlMetaData request provides all field metadata in a response message.

Full code sample:-

3.15. Buy-Side Request/Response Service 71

emsx_api_doc Documentation, Release 2.1.0

Get All Field Meta Data cpp Get All Field Meta Data cs Get All Field Meta Data vba
Get All Field Meta Data java Get All Field Meta Data py

Hint: Please right click on the top code sample link to open in a new tab.

def processServiceStatusEvent(self,event,session):
print "Processing SERVICE_STATUS event"

for msg in event:

if msg.messageType() == SERVICE_OPENED:
print "Service opened..."

service = session.getService(d_service)

request = service.createRequest("GetAllFieldMetaData")

#request.set("EMSX_REQUEST_SEQ", 1)

print "Request: %s" % request.toString()

self.requestID = blpapi.CorrelationId()

session.sendRequest(request, correlationId=self.requestID)

elif msg.messageType() == SERVICE_OPEN_FAILURE:
print >> sys.stderr, "Error: Service failed to open"

Process response messages:-

def processResponseEvent(self, event):
print "Processing RESPONSE event"

for msg in event:

print "MESSAGE: %s" % msg.toString()
print "CORRELATION ID: %d" % msg.correlationIds()[0].value()

if msg.correlationIds()[0].value() == self.requestID.value():
print "MESSAGE TYPE: %s" % msg.messageType()

if msg.messageType() == ERROR_INFO:
errorCode = msg.getElementAsInteger("ERROR_CODE")
errorMessage = msg.getElementAsString("ERROR_MESSAGE")
print "ERROR CODE: %d\tERROR MESSAGE: %s" % (errorCode,errorMessage)

elif msg.messageType() == GET_ALL_FIELD_METADATA:

md = msg.getElement("MetaData")

for e in md.values():

emsx_field_name = e.getElementAsString("EMSX_FIELD_NAME")
emsx_disp_name = e.getElementAsString("EMSX_DISP_NAME")
emsx_type = e.getElementAsString("EMSX_TYPE")

(continues on next page)

72 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetAllFieldMetaData.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetAllFieldMetaData.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetAllFieldMetaData.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetAllFieldMetaData.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetAllFieldMetaData.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

emsx_level = e.getElementAsInteger("EMSX_LEVEL")
emsx_len = e.getElementAsInteger("EMSX_LEN")

print "MetaData: %s,%s,%s,%d,%d" % (emsx_field_name, emsx_disp_
→˓name, emsx_type, emsx_level, emsx_len)

global bEnd
bEnd = True

def processMiscEvents(self, event):

print "Processing " + event.eventType() + " event"

for msg in event:

print "MESSAGE: %s" % (msg.tostring())

Output:-

C:\Users_scripts>py -3 GetAllFieldMetaData.py
Bloomberg - EMSX API Example - GetAllFieldMetaData
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: GetAllFieldMetaData = {
}

Processing RESPONSE event
MESSAGE: GetAllFieldMetaData = {

MetaData[] = {
MetaData = {

EMSX_FIELD_NAME = "MSG_TYPE"
EMSX_DISP_NAME = "Msg Type"
EMSX_TYPE = String
EMSX_LEVEL = 0
EMSX_LEN = 1

}
MetaData = {

EMSX_FIELD_NAME = "MSG_SUB_TYPE"
EMSX_DISP_NAME = "Msg Sub Type"
EMSX_TYPE = String
EMSX_LEVEL = 0
EMSX_LEN = 1

}
MetaData = {

EMSX_FIELD_NAME = "EVENT_STATUS"
EMSX_DISP_NAME = "Msg Status"
EMSX_TYPE = Int32
EMSX_LEVEL = 0

(continues on next page)

3.15. Buy-Side Request/Response Service 73

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_LEN = 10
}
MetaData = {

EMSX_FIELD_NAME = "API_SEQ_NUM"
EMSX_DISP_NAME = "Api Sequence"
EMSX_TYPE = Int64
EMSX_LEVEL = 0
EMSX_LEN = 20

}
MetaData = {

EMSX_FIELD_NAME = "EMSX_SEQUENCE"
EMSX_DISP_NAME = "Sequence #"
EMSX_TYPE = Int32
EMSX_LEVEL = 27
EMSX_LEN = 10

}
MetaData = {

EMSX_FIELD_NAME = "EMSX_ROUTE_ID"
EMSX_DISP_NAME = "Tran No"
EMSX_TYPE = Int32
EMSX_LEVEL = 11
EMSX_LEN = 10

}
MetaData = {

EMSX_FIELD_NAME = "EMSX_FILL_ID"
EMSX_DISP_NAME = "Fill Id"
EMSX_TYPE = Int32
EMSX_LEVEL = 2
EMSX_LEN = 10

}
MetaData = {

EMSX_FIELD_NAME = "EMSX_SIDE"
EMSX_DISP_NAME = "B/S"
EMSX_TYPE = String
EMSX_LEVEL = 17
EMSX_LEN = 4

...

...
MetaData = {

EMSX_FIELD_NAME = "EMSX_LEG_FILL_TICKER"
EMSX_DISP_NAME = "Leg Fill Ticker"
EMSX_TYPE = String
EMSX_LEVEL = 2
EMSX_LEN = 32

}
}

}

CORRELATION ID: 3
MESSAGE TYPE: GetAllFieldMetaData
MetaData: MSG_TYPE,Msg Type,String,0,1
MetaData: MSG_SUB_TYPE,Msg Sub Type,String,0,1
MetaData: EVENT_STATUS,Msg Status,Int32,0,10
MetaData: API_SEQ_NUM,Api Sequence,Int64,0,20
MetaData: EMSX_SEQUENCE,Sequence #,Int32,27,10
...

(continues on next page)

74 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

...
MetaData: EMSX_ROUTE_AS_OF_TIME_MICROSEC,Route As of Time,Time,2,20
MetaData: EMSX_AS_OF_DATE,Order/Route As of Date,Date,24,8
MetaData: EMSX_AS_OF_TIME_MICROSEC,Order/Route As of Time,Time,24,20
MetaData: EMSX_LEG_FILL_SIDE,Leg Fill Side,String,2,3
MetaData: EMSX_LEG_FILL_DATE_ADDED,Leg Fill Date Added,Date,2,8
MetaData: EMSX_LEG_FILL_TIME_ADDED,Leg fill Time Added,Time,2,20
MetaData: EMSX_LEG_FILL_SHARES,Leg Fill Shares,Double,2,15
MetaData: EMSX_LEG_FILL_PRICE,Leg Fill Price,Double,2,15
MetaData: EMSX_LEG_FILL_SEQ_NO,Leg Fill Seq No,Int32,2,10
MetaData: EMSX_LEG_FILL_TICKER,Leg Fill Ticker,String,2,32
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.11 Get Broker Strategies with Asset Class Request

The GetBrokerStrategiesWithAssetClass request provides all broker strategy fields with asset class data
in a response message.

Full code sample:-

Get Broker Strategies With Asset
Class cpp

Get Broker Strategies With Asset
Class cs

Get Broker Strategies With Asset
Class vba

Get Broker Strategies With Asset
Class java

Get Broker Strategies With Asset
Class py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GetBrokerStrategiesWithAssetClass")
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.set("EMSX_ASSET_CLASS","EQTY") # one of EQTY, OPT, FUT or
→˓MULTILEG_OPT

16 request.set("EMSX_BROKER","BMTB")
17

(continues on next page)

3.15. Buy-Side Request/Response Service 75

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetBrokerStrategiesWithAssetClass.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetBrokerStrategiesWithAssetClass.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetBrokerStrategiesWithAssetClass.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetBrokerStrategiesWithAssetClass.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetBrokerStrategiesWithAssetClass.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetBrokerStrategiesWithAssetClass.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetBrokerStrategiesWithAssetClass.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetBrokerStrategiesWithAssetClass.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetBrokerStrategiesWithAssetClass.py
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetBrokerStrategiesWithAssetClass.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

18 print "Request: %s" % request.toString()
19

20 self.requestID = blpapi.CorrelationId()
21

22 session.sendRequest(request, correlationId=self.requestID)
23

24 elif msg.messageType() == SERVICE_OPEN_FAILURE:
25 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 GetBrokerStrategiesWithAssetClass.py
Bloomberg - EMSX API Example - GetBrokerStrategiesWithAssetClass
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: GetBrokerStrategiesWithAssetClass = {

EMSX_ASSET_CLASS = EQTY
EMSX_BROKER = "PAIR"

}

Processing RESPONSE event
MESSAGE: GetBrokerStrategiesWithAssetClass = {

EMSX_STRATEGIES[] = {
""

}
}

CORRELATION ID: 3
MESSAGE TYPE: GetBrokerStrategiesWithAssetClass
EMSX_STRATEGY:
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.12 Get Broker Strategy Info with Asset Class Request

The GetBrokerStrategyInfoWithAssetClass request provides all broker strategy information fields with
asset classdata in a response message.

Full code sample:-

76 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

Get Broker Strategy Info With Asset
Class cpp

Get Broker Strategy Info With As-
set Class cs

Get Broker Strategy Info With Asset
Class vba

Get Broker Strategy Info With Asset
Class java

Get Broker Strategy Info With As-
set Class py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GetBrokerStrategyInfoWithAssetClass")
12

13 request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.set("EMSX_ASSET_CLASS","EQTY") # one of EQTY, OPT, FUT or
→˓MULTILEG_OPT

16 request.set("EMSX_BROKER","BMTB")
17 request.set("EMSX_STRATEGY","VWAP")
18

19 print "Request: %s" % request.toString()
20

21 self.requestID = blpapi.CorrelationId()
22

23 session.sendRequest(request, correlationId=self.requestID)
24

25 elif msg.messageType() == SERVICE_OPEN_FAILURE:
26 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 GetBrokerStrategyInfoWithAssetClass.py
Bloomberg - EMSX API Example - GetBrokerStrategyInfoWithAssetClass
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: GetBrokerStrategyInfoWithAssetClass = {

EMSX_REQUEST_SEQ = 1
EMSX_ASSET_CLASS = EQTY
EMSX_BROKER = "BMTB"

(continues on next page)

3.15. Buy-Side Request/Response Service 77

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetBrokerStrategyInfoWithAssetClass.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetBrokerStrategyInfoWithAssetClass.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetBrokerStrategyInfoWithAssetClass.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetBrokerStrategyInfoWithAssetClass.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetBrokerStrategyInfoWithAssetClass.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetBrokerStrategyInfoWithAssetClass.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetBrokerStrategyInfoWithAssetClass.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetBrokerStrategyInfoWithAssetClass.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetBrokerStrategyInfoWithAssetClass.py
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetBrokerStrategyInfoWithAssetClass.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_STRATEGY = "VWAP"
}

Processing RESPONSE event
MESSAGE: GetBrokerStrategyInfoWithAssetClass = {

EMSX_STRATEGY_INFO[] = {
EMSX_STRATEGY_INFO = {

FieldName = "Start Time"
Disable = 0
StringValue = ""

}
EMSX_STRATEGY_INFO = {

FieldName = "End Time"
Disable = 0
StringValue = ""

}
EMSX_STRATEGY_INFO = {

FieldName = "Max % Volume"
Disable = 0
StringValue = ""

}
EMSX_STRATEGY_INFO = {

FieldName = "Discretion"
Disable = 0
StringValue = ""

}
EMSX_STRATEGY_INFO = {

FieldName = "Display Qty"
Disable = 0
StringValue = ""

}
EMSX_STRATEGY_INFO = {

FieldName = "FltLmtType"
Disable = 0
StringValue = ""

}
}

}

CORRELATION ID: 3
MESSAGE TYPE: GetBrokerStrategyInfoWithAssetClass
EMSX_STRATEGY_INFO: Start Time, 0,
EMSX_STRATEGY_INFO: End Time, 0,
EMSX_STRATEGY_INFO: Max % Volume, 0,
EMSX_STRATEGY_INFO: Discretion, 0,
EMSX_STRATEGY_INFO: Display Qty, 0,
EMSX_STRATEGY_INFO: FltLmtType, 0,
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

78 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

3.15.13 Get Brokers with Asset Class Request

The GetBrokersWithAssetClass request provides all broker information with asset class data in a response
message.

Full code sample:-

Get Brokers With Asset Class cpp Get Brokers With Asset Class cs Get Brokers With Asset Class vba
Get Brokers With Asset Class java Get Brokers With Asset Class py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GetBrokersWithAssetClass")
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.set("EMSX_ASSET_CLASS","EQTY") # one of EQTY, OPT, FUT or
→˓MULTILEG_OPT

16

17 print "Request: %s" % request.toString()
18

19 self.requestID = blpapi.CorrelationId()
20

21 session.sendRequest(request, correlationId=self.requestID)
22

23 elif msg.messageType() == SERVICE_OPEN_FAILURE:
24 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 GetBrokersWithAssetClass.py
Bloomberg - EMSX API Example - GetBrokersWithAssetClass
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: GetBrokersWithAssetClass = {

EMSX_ASSET_CLASS = EQTY

(continues on next page)

3.15. Buy-Side Request/Response Service 79

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetBrokersWithAssetClass.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetBrokersWithAssetClass.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetBrokersWithAssetClass.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetBrokersWithAssetClass.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetBrokersWithAssetClass.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

}

Processing RESPONSE event
MESSAGE: GetBrokersWithAssetClass = {

EMSX_BROKERS[] = {
"API", "BB", "BEXE", "BMTB", "EEUE", "EFIX", "RFQ", "TKOR"

}
}

CORRELATION ID: 3
MESSAGE TYPE: GetBrokersWithAssetClass
EMSX_BROKER: API
EMSX_BROKER: BB
EMSX_BROKER: BEXE
EMSX_BROKER: BMTB
EMSX_BROKER: EEUE
EMSX_BROKER: EFIX
EMSX_BROKER: RFQ
EMSX_BROKER: TKOR
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.14 Get Field Metadata Request

The GetFieldMetaData request provides all field metadata in a response message.

Full code sample:-

Get Field Meta Data cpp Get Field Meta Data cs Get Field Meta Data vba
Get Field Meta Data java Get Field Meta Data py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GetFieldMetaData")
12

13 #request.set("EMSX_REQUEST_SEQ", 1)

(continues on next page)

80 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetFieldMetaData.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetFieldMetaData.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetFieldMetaData.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetFieldMetaData.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetFieldMetaData.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

14

15 request.getElement("EMSX_FIELD_NAMES").appendValue("EMSX_TICKER")
16 request.getElement("EMSX_FIELD_NAMES").appendValue("EMSX_P_A")
17

18 print "Request: %s" % request.toString()
19

20 self.requestID = blpapi.CorrelationId()
21

22 session.sendRequest(request, correlationId=self.requestID)
23

24 elif msg.messageType() == SERVICE_OPEN_FAILURE:
25 print >> sys.stderr, "Error: Service failed to open"

3.15.15 Get Teams Request

The GetTeams request provides all the team details in a response message.

Full code sample:-

Get Teams cpp Get Teams cs Get Teams vba
Get Teams java Get Teams py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GetTeams")
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 print "Request: %s" % request.toString()
16

17 self.requestID = blpapi.CorrelationId()
18

19 session.sendRequest(request, correlationId=self.requestID)
20

21 elif msg.messageType() == SERVICE_OPEN_FAILURE:
22 print >> sys.stderr, "Error: Service failed to open"

3.15.16 Get Trade Desks Request

The GetTradeDesks is AIM specific request and provides all the trade desk details in a response message.

Full code sample:-

3.15. Buy-Side Request/Response Service 81

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GetTeams.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetTeams.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GetTeams.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GetTeams.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetTeams.py

emsx_api_doc Documentation, Release 2.1.0

Get Trade Desks cs
Get Trade Desks py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GetTradeDesks")
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 print "Request: %s" % request.toString()
16

17 self.requestID = blpapi.CorrelationId()
18

19 session.sendRequest(request, correlationId=self.requestID)
20

21 elif msg.messageType() == SERVICE_OPEN_FAILURE:
22 print >> sys.stderr, "Error: Service failed to open"

3.15.17 Get Traders Request

The GetTraders is AIM specific request and provides all the traders details in a response message.

Full code sample:-

Get Traders cs
Get Traders py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GetTraders")

(continues on next page)

82 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetTradeDesks.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetTradeDesks.py
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GetTraders.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GetTraders.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 print "Request: %s" % request.toString()
16

17 self.requestID = blpapi.CorrelationId()
18

19 session.sendRequest(request, correlationId=self.requestID)
20

21 elif msg.messageType() == SERVICE_OPEN_FAILURE:
22 print >> sys.stderr, "Error: Service failed to open"

3.15.18 Group Route Extended Request

The GroupRouteEx request submits an entire list as a single route to a basket/program broker strategy destination.

This request should only be used if the intention is to submit an entire list or basket of securities to a single broker
strategy destination. This should not be confused with maintaining a list or a basket from a portfolio perspective.

Currently, this is a three-step process in EMSX API.

The first step is for the user will need to use CreateOrder request to create the order. Once the orders are created, the
user will use CreateBasket request to create the basket or list of orders and use EMSX_BASKET_NAME element
to specify the basket name.

The next step is to submit the list using GroupRouteEx request and include the EMSX_SEQUENCE number inside
the array.

Important: Please remember that the application does need to wait for confirmation of the basket creation to trigger
the the GroupRouteEx request. The GroupRouteEx request is NOT independent of the basket creation for routing
(placements).

Full code sample:-

Group Route Extended cpp Group Route Extended cs Group Route Extended vba
Group Route Extended java Group Route Extended py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("GroupRouteEx")
12

(continues on next page)

3.15. Buy-Side Request/Response Service 83

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/GroupRouteEx.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/GroupRouteEx.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/GroupRoute.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/GroupRouteEx.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/GroupRouteEx.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

13 # Multiple order numbers can be added
14 request.append("EMSX_SEQUENCE", 3745211)
15 request.append("EMSX_SEQUENCE", 3745212)
16 request.append("EMSX_SEQUENCE", 3745213)
17

18 # The fields below are mandatory
19 request.set("EMSX_AMOUNT_PERCENT", 100) # Note the amount here

→˓is %age of order amount
20 request.set("EMSX_BROKER", "BMTB");
21

22 # For GroupRoute, the below values need to be added, but are
→˓taken

23 # from the original order when the route is created.
24 request.set("EMSX_HAND_INSTRUCTION", "ANY")
25 request.set("EMSX_ORDER_TYPE", "MKT")
26 request.set("EMSX_TICKER", "IBM US Equity")
27 request.set("EMSX_TIF", "DAY")
28

29 # The fields below are optional
30 #request.set("EMSX_ACCOUNT","TestAccount")
31 #request.set("EMSX_BOOKNAME","BookName")
32 #request.set("EMSX_CFD_FLAG", "1")
33 #request.set("EMSX_CLEARING_ACCOUNT", "ClrAccName")
34 #request.set("EMSX_CLEARING_FIRM", "FirmName")
35 #request.set("EMSX_EXEC_INSTRUCTIONS", "AnyInst")
36 #request.set("EMSX_GET_WARNINGS", "0")
37 #request.set("EMSX_GTD_DATE", "20170105")
38 #request.set("EMSX_LIMIT_PRICE", 123.45)
39 #request.set("EMSX_LOCATE_BROKER", "BMTB")
40 #request.set("EMSX_LOCATE_ID", "SomeID")
41 #request.set("EMSX_LOCATE_REQ", "Y")
42 #request.set("EMSX_NOTES", "Some notes")
43 #request.set("EMSX_ODD_LOT", "0")
44 #request.set("EMSX_P_A", "P")
45 #request.set("EMSX_RELEASE_TIME", 1259)
46 #request.set("EMSX_REQUEST_SEQ", 1001)
47 #request.set("EMSX_STOP_PRICE", 123.5)
48 #request.set("EMSX_TRADER_UUID", 1234567)
49

50 # Set the Request Type if this is for multi-leg orders
51 # only valid for options
52 '''
53 requestType = request.getElement("EMSX_REQUEST_TYPE")
54 requestType.setChoice("Multileg")
55 multileg = requestType.getElement("Multileg")
56 multileg.setElement("EMSX_AMOUNT",10)
57 multileg.getElement("EMSX_ML_RATIO").appendValue(2)
58 multileg.getElement("EMSX_ML_RATIO").appendValue(3)
59 '''
60

61 # Add the Route Ref ID values
62 routeRefIDPairs = request.getElement("EMSX_ROUTE_REF_ID_PAIRS")
63 route1 = routeRefIDPairs.appendElement()
64 route1.setElement("EMSX_ROUTE_REF_ID","MyRouteRef1")
65 route1.setElement("EMSX_SEQUENCE",3745211)
66

67 route2 = routeRefIDPairs.appendElement();
(continues on next page)

84 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

68 route2.setElement("EMSX_ROUTE_REF_ID","MyRouteRef2")
69 route2.setElement("EMSX_SEQUENCE",3745212)
70

71 route3 = routeRefIDPairs.appendElement()
72 route3.setElement("EMSX_ROUTE_REF_ID","MyRouteRef3")
73 route3.setElement("EMSX_SEQUENCE",3745213)
74

75 # Below we establish the strategy details. Strategy details
76 # are common across all orders in a GroupRoute operation.
77

78 strategy = request.getElement("EMSX_STRATEGY_PARAMS")
79 strategy.setElement("EMSX_STRATEGY_NAME", "VWAP")
80

81 indicator = strategy.getElement("EMSX_STRATEGY_FIELD_INDICATORS")
82 data = strategy.getElement("EMSX_STRATEGY_FIELDS")
83

84 # Strategy parameters must be appended in the correct order. See
→˓the output

85 # of GetBrokerStrategyInfo request for the order. The indicator
→˓value is 0 for

86 # a field that carries a value, and 1 where the field should be
→˓ignored

87

88 data.appendElement().setElement("EMSX_FIELD_DATA", "09:30:00")
→˓# StartTime

89 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 0)
90

91 data.appendElement().setElement("EMSX_FIELD_DATA", "10:30:00")
→˓# EndTime

92 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 0)
93

94 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# Max%Volume

95 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
96

97 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# %AMSession

98 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
99

100 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# OPG

101 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
102

103 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# MOC

104 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
105

106 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# CompletePX

107 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
108

109 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# TriggerPX

110 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
111

112 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# DarkComplete

(continues on next page)

3.15. Buy-Side Request/Response Service 85

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

113 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
114

115 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# DarkCompPX

116 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
117

118 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# RefIndex

119 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
120

121 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# Discretion

122 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
123

124 print "Request: %s" % request.toString()
125

126 self.requestID = blpapi.CorrelationId()
127

128 session.sendRequest(request, correlationId=self.requestID)
129

130 elif msg.messageType() == SERVICE_OPEN_FAILURE:
131 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 GroupRouteEx.py
Bloomberg - EMSX API Example - GroupRouteEx
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: GroupRouteEx = {

EMSX_SEQUENCE[] = {
4747927, 4747928

}
EMSX_AMOUNT_PERCENT = 20
EMSX_BROKER = "BB"
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_ORDER_TYPE = MKT
EMSX_TICKER = "GE US Equity"
EMSX_TIF = DAY
EMSX_ROUTE_REF_ID_PAIRS[] = {

EMSX_ROUTE_REF_ID_PAIRS = {
EMSX_ROUTE_REF_ID = "MyRouteRef1"
EMSX_SEQUENCE = 4747927

}
EMSX_ROUTE_REF_ID_PAIRS = {

EMSX_ROUTE_REF_ID = "MyRouteRef2"
EMSX_SEQUENCE = 4747928

}
(continues on next page)

86 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

}
}

Processing RESPONSE event
MESSAGE: GroupRouteEx = {

EMSX_SUCCESS_ROUTES[] = {
EMSX_SUCCESS_ROUTES = {

EMSX_SEQUENCE = 4747927
EMSX_ROUTE_ID = 1

}
EMSX_SUCCESS_ROUTES = {

EMSX_SEQUENCE = 4747928
EMSX_ROUTE_ID = 1

}
}
EMSX_FAILED_ROUTES[] = {
}
MESSAGE = "2 of 2 Order(s) Routed"
EMSX_ML_ID = "0:0"

}

CORRELATION ID: 3
MESSAGE TYPE: GroupRouteEx
SUCCESS: 4747927,1
SUCCESS: 4747928,1
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.19 Group Route Extended Request - Multi-Leg Options

The multi-leg options can be traded using GroupRouteEx request. The first step is to create the options and if need
be equities leg using CreateOrder request. Once this is completed, create a request object for GroupRouteEx
and submit it to the session with all the fields necessary for the multi-leg options routing.

The overall workflow for multi-leg options is similar to how you create and submit a basket or a list in EMSX.

The CreateOrder request will essentially stage the multi-leg options orders into EMSX. (e.g. B/O on AAPL US
11/20/15 C121 Equity and B/O on AAPL US 11/20/15 P119 Equity.)

The multi-leg request is an array and similar to submitting a basket order, it is important to make
sure the EMSX_SEQUENCE matches in the GroupRouteEx with the orders created using CreateOrder
request. For the subscription services, there will initially be eight elements to subscribe at the
Route level subscription. They are EMSX_ML_ID, EMSX_ML_LEG_QUANTITY, EMSX_ML_NUM_LEGS,
EMSX_ML_PERCENT_FILLED, EMSX_ML_RATIO, EMSX_ML_REMAIN_BALANCE, EMSX_ML_STRATEGY,
and EMSX_ML_TOTAL_QUANTITY.

Please set the EMSX_REQEST_TYPE as Multileg to submit the multi-leg options using GroupRouteEx request.

Note: The Debit and Credit is indicated by the net price. Credit is indicated by using the negative sign in the net price
where the Debit is indicated by the positive net price.

3.15. Buy-Side Request/Response Service 87

emsx_api_doc Documentation, Release 2.1.0

The net price can be specified using the EMSX_LIMIT_PRICE element for the multi-leg options orders.

Debit = positive for the net price

Credit = negative for the net price

3.15.20 Group Route Extended Request - Route As Spread

As of 15th of May, 2017 there also will be an ability to use GroupRouteEx to route two non-ticker as spread ticker in
EMSX.

The underlying concept remains the same and the only difference is to use EMSX_REQUEST_TYPE as a spread
instead of Multileg and for EMSX_TICKER use one of the two tickers that makes the spread ticker. The
EMSX_SEQUENCE inside the array to submit the list remains the same for using GroupRouteEx to route as a
spread.

Note: The EMSX_AMOUNT_PERCENT element for this request is used strictly for the amount in shares.

e.g. EMSX_AMOUNT_PERCENT, 100 means it’ll send 100 shares from each ticker.

Full code sample:-

Route As Spread py

Hint: Please right click on the top code sample link to open in a new tab.

1 def routeSpread(self, session):
2

3 request = self.service.createRequest("GroupRouteEx")
4

5 request.append("EMSX_SEQUENCE", self.buySeqNo)
6 request.append("EMSX_SEQUENCE", self.sellSeqNo)
7 request.set("EMSX_AMOUNT_PERCENT", 100)
8 request.set("EMSX_BROKER", "ETI");
9 request.set("EMSX_HAND_INSTRUCTION", "ANY")

10 request.set("EMSX_ORDER_TYPE", "MKT")
11 request.set("EMSX_TIF", "DAY")
12 request.set("EMSX_TICKER","CLN7 Comdty")
13 request.set("EMSX_RELEASE_TIME",-1)
14 requestType = request.getElement("EMSX_REQUEST_TYPE")
15 requestType.setChoice("Spread")
16

17 print "Request: %s" % request.toString()
18

19 self.requestID = blpapi.CorrelationId()
20

21 session.sendRequest(request, correlationId=self.requestID)

3.15.21 Manual Fill Request

The ManualFill request can be used on the sell-side EMSX<GO> settings to create fills and notifies EMSX<GO>.

Full code sample:-

88 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/RouteAsSpread.py

emsx_api_doc Documentation, Release 2.1.0

Manual Fill cpp Manual Fill cs Manual Fill vba
Manual Fill java Manual Fill py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("ManualFill");
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.set("EMSX_TRADER_UUID", 12109783)
16

17 routeToFill = request.getElement("ROUTE_TO_FILL")
18

19 routeToFill.setElement("EMSX_SEQUENCE", 1234567)
20 routeToFill.setElement("EMSX_ROUTE_ID", 1)
21

22 fills = request.getElement("FILLS")
23

24 fills.setElement("EMSX_FILL_AMOUNT", 1000)
25 fills.setElement("EMSX_FILL_PRICE", 123.4)
26 fills.setElement("EMSX_LAST_MARKET", "XLON")
27

28 fills.setElement("EMSX_INDIA_EXCHANGE","BGL")
29

30 fillDateTime = fills.getElement("EMSX_FILL_DATE_TIME")
31

32 fillDateTime.setChoice("Legacy");
33

34 fillDateTime.setElement("EMSX_FILL_DATE",20172203)
35 fillDateTime.setElement("EMSX_FILL_TIME",17054)
36 fillDateTime.setElement("EMSX_FILL_TIME_FORMAT","SecondsFromMidnight")
37

38 print "Request: %s" % request.toString()
39

40 self.requestID = blpapi.CorrelationId()
41

42 session.sendRequest(request, correlationId=self.requestID)
43

44 elif msg.messageType() == SERVICE_OPEN_FAILURE:
45 print >> sys.stderr, "Error: Service failed to open"

3.15.22 Modify Order Extended Request

The ModifyOrderEx request modifies an existing or previously created order in EMSX<GO> or using EMSX API.

3.15. Buy-Side Request/Response Service 89

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/ManualFill.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/ManualFill.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/ManualFill.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/ManualFill.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/ManualFill.py

emsx_api_doc Documentation, Release 2.1.0

Important: Please note, when modifying an order or route, the limit price can be positive or negative. (e.g. Futures
spreads). There are two special cases for setting the limit price to 0. In the EMSX_LIMIT_PRICE a value of 0 means
to ignore the value. A value of EMSX_LIMIT_PRICE = -99999 means to reset the EMSX_LIMIT_PRICE to 0.

Full code sample:-

Modify Order Extended cpp Modify Order Extended cs Modify Order Extended vba
Modify Order Extended java Modify Order Extended py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("ModifyOrderEx")
12

13 # The fields below are mandatory
14 request.set("EMSX_SEQUENCE", 3834157)
15 request.set("EMSX_AMOUNT", 1300)
16 request.set("EMSX_ORDER_TYPE", "MKT")
17 request.set("EMSX_TIF", "DAY")
18 request.set("EMSX_TICKER", "IBM US Equity")
19

20 # The fields below are optional
21 #request.set("EMSX_HAND_INSTRUCTION", "ANY")
22 #request.set("EMSX_ACCOUNT","TestAccount")
23 #request.set("EMSX_CFD_FLAG", "1")
24 #request.set("EMSX_EXEC_INSTRUCTIONS", "AnyInst")
25 #request.set("EMSX_GET_WARNINGS", "0")
26 #request.set("EMSX_GTD_DATE", "20170105")
27 #request.set("EMSX_INVESTOR_ID", "InvID")
28 #request.set("EMSX_LIMIT_PRICE", 123.45)
29 #request.set("EMSX_NOTES", "Some notes")
30 #request.set("EMSX_REQUEST_SEQ", 1001)
31 #request.set("EMSX_STOP_PRICE", 123.5)
32

33 # Note: When changing order type to a LMT order, you will need to
→˓provide the EMSX_LIMIT_PRICE value.

34 # When changing order type away from LMT order, you will need to
→˓reset the EMSX_LIMIT_PRICE value

35 # by setting the content to -99999
36

37 # Note: To clear down the stop price, set the content to -1
38

39 # If modifying on behalf of another trader, set the order owner's UUID
40 #request.set("EMSX_TRADER_UUID", 1234567)

(continues on next page)

90 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/ModifyOrderEx.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/ModifyOrderEx.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/ModifyOrderEx.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/ModifyOrderEx.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/ModifyOrderEx.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

41

42 print "Request: %s" % request.toString()
43

44 self.requestID = blpapi.CorrelationId()
45

46 session.sendRequest(request, correlationId=self.requestID)
47

48 elif msg.messageType() == SERVICE_OPEN_FAILURE:
49 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 ModifyOrder.py
Bloomberg - EMSX API Example - ModifyOrderEx
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: ModifyOrderEx = {

EMSX_SEQUENCE = 4747927
EMSX_AMOUNT = 6000
EMSX_ORDER_TYPE = MKT
EMSX_TIF = DAY
EMSX_TICKER = "MSFT US Equity"
EMSX_INVESTOR_ID = "InvID"

}

Processing RESPONSE event
MESSAGE: ModifyOrderEx = {

EMSX_SEQUENCE = 4747927
MESSAGE = "Order Modified"

}

CORRELATION ID: 3
MESSAGE TYPE: ModifyOrderEx
EMSX_SEQUENCE: 4747927 MESSAGE: Order Modified
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.23 Modify Route Extended Request

The ModifyRouteEx request modifies an existing or previously created child routes in EMSX<GO> or using EMSX
API.

3.15. Buy-Side Request/Response Service 91

emsx_api_doc Documentation, Release 2.1.0

Important: Please note, when modifying an order or route, the limit price can be positive or negative. (e.g. Futures
spreads). There are two special cases for setting the limit price to 0. In the EMSX_LIMIT_PRICE a value of 0 means
to ignore the value. A value of EMSX_LIMIT_PRICE = -99999 means to reset the EMSX_LIMIT_PRICE to 0.

Full code sample:-

Modify Route Extended cpp Modify Route Extended cs Modify Route Extended vba
Modify Route Extended java Modify Route Extended py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7

8 print "Service opened..."
9

10 service = session.getService(d_service)
11

12 request = service.createRequest("ModifyRouteEx")
13

14 # The fields below are mandatory
15 request.set("EMSX_SEQUENCE", 3834157)
16 request.set("EMSX_ROUTE_ID", 1)
17 request.set("EMSX_AMOUNT", 1000)
18 request.set("EMSX_ORDER_TYPE", "MKT")
19 request.set("EMSX_TIF", "DAY")
20

21 # The fields below are optional
22 #request.set("EMSX_ACCOUNT","TestAccount")
23 #request.set("EMSX_CLEARING_ACCOUNT", "ClearingAcnt")
24 #request.set("EMSX_CLEARING_FIRM", "ClearingFirm")
25 #request.set("EMSX_COMM_TYPE", "Absolute")
26 #request.set("EMSX_EXCHANGE_DESTINATION", "DEST")
27 #request.set("EMSX_GET_WARNINGS", "0")
28 #request.set("EMSX_GTD_DATE", "20170105")
29 #request.set("EMSX_LIMIT_PRICE", 123.45)
30 #request.set("EMSX_LOC_BROKER", "ABCD")
31 #request.set("EMSX_LOC_ID", "1234567")
32 #request.set("EMSX_LOC_REQ", "Y")
33 #request.set("EMSX_NOTES", "Some notes")
34 #request.set("EMSX_ODD_LOT", "")
35 #request.set("EMSX_P_A", "P")
36 #request.set("EMSX_REQUEST_SEQ", 1001)
37 #request.set("EMSX_STOP_PRICE", 123.5)
38 #request.set("EMSX_TRADER_NOTES", "Trader notes")
39 #request.set("EMSX_USER_COMM_RATE", 0.02)
40 #request.set("EMSX_USER_FEES", "1.5")
41

42 # Note: When changing order type to a LMT order, you will need to
→˓provide the EMSX_LIMIT_PRICE value. (continues on next page)

92 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/ModifyRouteEx.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/ModifyRouteEx.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/ModifyRouteEx.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/ModifyRouteEx.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/ModifyRouteEx.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

43 # When changing order type away from LMT order, you will need to
→˓reset the EMSX_LIMIT_PRICE value

44 # by setting the content to -99999
45

46 # Note: To clear down the stop price, set the content to -1
47

48 # Set the strategy parameters, if required
49

50 '''
51 strategy = request.getElement("EMSX_STRATEGY_PARAMS")
52 strategy.setElement("EMSX_STRATEGY_NAME", "VWAP")
53

54 indicator = strategy.getElement("EMSX_STRATEGY_FIELD_INDICATORS")
55 data = strategy.getElement("EMSX_STRATEGY_FIELDS")
56

57 # Strategy parameters must be appended in the correct order. See the
→˓output

58 # of GetBrokerStrategyInfo request for the order. The indicator value is
→˓0 for

59 # a field that carries a value, and 1 where the field should be ignored
60

61 data.appendElement().setElement("EMSX_FIELD_DATA", "09:30:00") #
→˓StartTime

62 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 0)
63

64 data.appendElement().setElement("EMSX_FIELD_DATA", "10:30:00") # EndTime
65 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 0)
66

67 data.appendElement().setElement("EMSX_FIELD_DATA", "") # Max
→˓%Volume

68 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
69

70 data.appendElement().setElement("EMSX_FIELD_DATA", "") #
→˓%AMSession

71 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
72

73 data.appendElement().setElement("EMSX_FIELD_DATA", "") # OPG
74 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
75

76 data.appendElement().setElement("EMSX_FIELD_DATA", "") # MOC
77 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
78

79 data.appendElement().setElement("EMSX_FIELD_DATA", "") #
→˓CompletePX

80 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
81

82 data.appendElement().setElement("EMSX_FIELD_DATA", "") #
→˓TriggerPX

83 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
84

85 data.appendElement().setElement("EMSX_FIELD_DATA", "") #
→˓DarkComplete

86 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
87

88 data.appendElement().setElement("EMSX_FIELD_DATA", "") #
→˓DarkCompPX

89 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
(continues on next page)

3.15. Buy-Side Request/Response Service 93

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

90

91 data.appendElement().setElement("EMSX_FIELD_DATA", "") # RefIndex
92 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
93

94 data.appendElement().setElement("EMSX_FIELD_DATA", "") #
→˓Discretion

95 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
96 '''
97

98 # If modifying on behalf of another trader, set the order owner's UUID
99 #request.set("EMSX_TRADER_UUID", 1234567)

100

101 # If modifying a multi-leg route, indicate the Multileg ID
102 #request.getElement("EMSX_REQUEST_TYPE").setChoice("Multileg").

→˓setElement("EMSX_ML_ID", "123456")
103

104 print "Request: %s" % request.toString()
105

106 self.requestID = blpapi.CorrelationId()
107

108 session.sendRequest(request, correlationId=self.requestID)
109

110 elif msg.messageType() == SERVICE_OPEN_FAILURE:
111 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 ModifyRouteEx.py
Bloomberg - EMSX API Example - ModifyRouteEx
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: ModifyRouteEx = {

EMSX_SEQUENCE = 4747928
EMSX_ROUTE_ID = 1
EMSX_AMOUNT = 500
EMSX_ORDER_TYPE = MKT
EMSX_TIF = DAY

}

Processing RESPONSE event
MESSAGE: ModifyRouteEx = {

EMSX_SEQUENCE = 0
EMSX_ROUTE_ID = 0
MESSAGE = "Route modified"

}

CORRELATION ID: 3
MESSAGE TYPE: ModifyRouteEx

(continues on next page)

94 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

MESSAGE: Route modified
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.24 Route Extended Request

The RouteEx request submits an existing order into various execution veneues. This request is used primarily to
submit a child route based on previously created parent order.

Full code sample:-

Route Extended cpp Route Extended cs Route Extended vba
Route Extended java Route Extended py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("RouteEx")
12

13 # The fields below are mandatory
14 request.set("EMSX_SEQUENCE", 3745217) # Order number
15 request.set("EMSX_AMOUNT", 500)
16 request.set("EMSX_BROKER", "BB")
17 request.set("EMSX_HAND_INSTRUCTION", "ANY")
18 request.set("EMSX_ORDER_TYPE", "MKT")
19 request.set("EMSX_TICKER", "IBM US Equity")
20 request.set("EMSX_TIF", "DAY")
21

22 # The fields below are optional
23 #request.set("EMSX_ACCOUNT","TestAccount")
24 ##request.set("EMSX_CFD_FLAG", "1")
25 #request.set("EMSX_CLEARING_ACCOUNT", "ClrAccName")
26 #request.set("EMSX_CLEARING_FIRM", "FirmName")
27 #request.set("EMSX_EXEC_INSTRUCTIONS", "AnyInst")
28 #request.set("EMSX_GET_WARNINGS", "0")
29 #request.set("EMSX_GTD_DATE", "20170105")
30 #request.set("EMSX_LIMIT_PRICE", 123.45)

(continues on next page)

3.15. Buy-Side Request/Response Service 95

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/RouteEx.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/RouteEx.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/RouteEx.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/RouteEx.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/RouteEx.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

31 #request.set("EMSX_LOCATE_BROKER", "BMTB")
32 #request.set("EMSX_LOCATE_ID", "SomeID")
33 #request.set("EMSX_LOCATE_REQ", "Y")
34 #request.set("EMSX_NOTES", "Some notes")
35 #request.set("EMSX_ODD_LOT", "0")
36 #request.set("EMSX_P_A", "P")
37 #request.set("EMSX_RELEASE_TIME", 1259)
38 #request.set("EMSX_REQUEST_SEQ", 1001)
39 #request.set("EMSX_ROUTE_REF_ID", "UniqueRef")
40 #request.set("EMSX_STOP_PRICE", 123.5)
41 #request.set("EMSX_TRADER_UUID", 1234567)
42

43 print "Request: %s" % request.toString()
44

45 self.requestID = blpapi.CorrelationId()
46

47 session.sendRequest(request, correlationId=self.requestID)
48

49 elif msg.messageType() == SERVICE_OPEN_FAILURE:
50 print >> sys.stderr, "Error: Service failed to open"

Output:-

C:\Users_scripts>py -3 RouteEx.py
Bloomberg - EMSX API Example - RouteWithStrat
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: RouteEx = {

EMSX_SEQUENCE = 4747927
EMSX_AMOUNT = 200
EMSX_BROKER = "BB"
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_ORDER_TYPE = MKT
EMSX_TICKER = "MSFT US Equity"
EMSX_TIF = DAY
EMSX_NOTES = "Some notes"
EMSX_P_A = "P"

}

Processing RESPONSE event
MESSAGE: Route = {

EMSX_SEQUENCE = 4747927
EMSX_ROUTE_ID = 2
MESSAGE = "Order Routed"

}

CORRELATION ID: 3
MESSAGE TYPE: Route

(continues on next page)

96 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_SEQUENCE: 4747927 EMSX_ROUTE_ID: 2 MESSAGE: Order Routed
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

Processing SESSION_STATUS event
SessionTerminated = {
}

3.15.25 Route Manually Extended Request

The RouteManuallyEx requestis generally used for phone orders where the placement is external to EMSX API.
This request creates an order and notifies EMSX<GO> that this order is routed to the execution venue.

Full code sample:-

Route Manually cpp Route Manually cs Route Manually vba
Route Manually java Route Manually py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("RouteManuallyEx")
12

13 # The fields below are mandatory
14 request.set("EMSX_SEQUENCE", 3745218) # Order number
15 request.set("EMSX_AMOUNT", 500)
16 request.set("EMSX_BROKER", "BB")
17 request.set("EMSX_HAND_INSTRUCTION", "ANY")
18 request.set("EMSX_ORDER_TYPE", "MKT")
19 request.set("EMSX_TICKER", "IBM US Equity")
20 request.set("EMSX_TIF", "DAY")
21

22 # The fields below are optional
23 #request.set("EMSX_ACCOUNT","TestAccount")
24 #request.set("EMSX_BOOKNAME","BookName")
25 #request.set("EMSX_CFD_FLAG", "1")
26 #request.set("EMSX_CLEARING_ACCOUNT", "ClrAccName")
27 #request.set("EMSX_CLEARING_FIRM", "FirmName")
28 #request.set("EMSX_EXEC_INSTRUCTIONS", "AnyInst")
29 #request.set("EMSX_GET_WARNINGS", "0")
30 #request.set("EMSX_GTD_DATE", "20170105")

(continues on next page)

3.15. Buy-Side Request/Response Service 97

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/RouteManually.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/RouteManually.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/RouteManually.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/RouteManually.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/RouteManually.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

31 #request.set("EMSX_LIMIT_PRICE", 123.45)
32 #request.set("EMSX_LOCATE_BROKER", "BMTB")
33 #request.set("EMSX_LOCATE_ID", "SomeID")
34 #request.set("EMSX_LOCATE_REQ", "Y")
35 #request.set("EMSX_NOTES", "Some notes")
36 #request.set("EMSX_ODD_LOT", "0")
37 #request.set("EMSX_P_A", "P")
38 #request.set("EMSX_RELEASE_TIME", 1259)
39 #request.set("EMSX_REQUEST_SEQ", 1001)
40 #request.set("EMSX_ROUTE_REF_ID", "UniqueRef")
41 #request.set("EMSX_STOP_PRICE", 123.5)
42 #request.set("EMSX_TRADER_UUID", 1234567)
43

44 # Below we establish the strategy details
45 '''
46 strategy = request.getElement("EMSX_STRATEGY_PARAMS")
47 strategy.setElement("EMSX_STRATEGY_NAME", "VWAP")
48

49 indicator = strategy.getElement("EMSX_STRATEGY_FIELD_INDICATORS")
50 data = strategy.getElement("EMSX_STRATEGY_FIELDS")
51

52 # Strategy parameters must be appended in the correct order. See
→˓the output

53 # of GetBrokerStrategyInfo request for the order. The indicator
→˓value is 0 for

54 # a field that carries a value, and 1 where the field should be
→˓ignored

55

56 data.appendElement().setElement("EMSX_FIELD_DATA", "09:30:00")
→˓# StartTime

57 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 0)
58

59 data.appendElement().setElement("EMSX_FIELD_DATA", "10:30:00")
→˓# EndTime

60 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 0)
61

62 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# Max%Volume

63 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
64

65 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# %AMSession

66 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
67

68 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# OPG

69 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
70

71 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# MOC

72 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
73

74 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# CompletePX

75 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
76

77 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# TriggerPX (continues on next page)

98 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

78 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
79

80 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# DarkComplete

81 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
82

83 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# DarkCompPX

84 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
85

86 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# RefIndex

87 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
88

89 data.appendElement().setElement("EMSX_FIELD_DATA", "")
→˓# Discretion

90 indicator.appendElement().setElement("EMSX_FIELD_INDICATOR", 1)
91 '''
92

93 print "Request: %s" % request.toString()
94

95 self.requestID = blpapi.CorrelationId()
96

97 session.sendRequest(request, correlationId=self.requestID)
98

99 elif msg.messageType() == SERVICE_OPEN_FAILURE:
100 print >> sys.stderr, "Error: Service failed to open"

3.16 Sell-Side Request/Response Service

The sell-side Request/Response service is specifically used for EMSX to EMSX (E2E) setting where the sell-side
EMSX is used to capture order flow from other buy-side EMSX users.

The EMSX API allows developers to use the Request/Response services for order and route creation, modification,
queries related to orders and routes (placements) as well as EMSX Team details. Depending on the type of action
required, the application programmer must create a specific request, populate it with required parameters and send that
request to the EMSX API service, which provides the response. Communication with the request/response service
requires the following steps:

1. Create a session (if session does not yet exist).

2. Connect session to //blp/emapisvc_beta or //blp/emapisvc service and start it.

3. Fetch a service object from the session representing emapisvc.

4. Use the service object from above to create a Request object of the desired type

5. Send request object via sendRequest method of session object, pass object of type EventQueue to the
sendRequest.

6. Loop through the EventQueue object until event of type Event::RESPONSE is read.

These are initialized in the constructor as below and are then available for the life of the application for submission of
various requests.

3.16. Sell-Side Request/Response Service 99

emsx_api_doc Documentation, Release 2.1.0

3.16.1 Manual Fill Request

The ManualFill request can be used on the sell-side EMSX<GO> settings to create fills and notifies EMSX<GO>.

Full code sample:-

Manual Fill cpp Manual Fill cs Manual Fill vba
Manual Fill java Manual Fill py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("ManualFill");
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.set("EMSX_TRADER_UUID", 12109783)
16

17 routeToFill = request.getElement("ROUTE_TO_FILL")
18

19 routeToFill.setElement("EMSX_SEQUENCE", 1234567)
20 routeToFill.setElement("EMSX_ROUTE_ID", 1)
21

22 fills = request.getElement("FILLS")
23

24 fills.setElement("EMSX_FILL_AMOUNT", 1000)
25 fills.setElement("EMSX_FILL_PRICE", 123.4)
26 fills.setElement("EMSX_LAST_MARKET", "XLON")
27

28 fills.setElement("EMSX_INDIA_EXCHANGE","BGL")
29

30 fillDateTime = fills.getElement("EMSX_FILL_DATE_TIME")
31

32 fillDateTime.setChoice("Legacy");
33

34 fillDateTime.setElement("EMSX_FILL_DATE",20172203)
35 fillDateTime.setElement("EMSX_FILL_TIME",17054)
36 fillDateTime.setElement("EMSX_FILL_TIME_FORMAT","SecondsFromMidnight")
37

38 print "Request: %s" % request.toString()
39

40 self.requestID = blpapi.CorrelationId()
41

42 session.sendRequest(request, correlationId=self.requestID)
43

44 elif msg.messageType() == SERVICE_OPEN_FAILURE:

(continues on next page)

100 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/ManualFill.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C#/ManualFill.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/ManualFill.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/ManualFill.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/ManualFill.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

45 print >> sys.stderr, "Error: Service failed to open"

3.16.2 Sell Side Ack Request

The SellSideAck request is used on the sell-side EMSX<GO> settings to create Ack message on incoming orders from
buy-side EMSX<GO>.

Full code sample:-

Sell Side Ack cpp Sell Side Ack cs Sell Side Ack vba
Sell Side Ack java Sell Side Ack py

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("SellSideAck");
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.append("EMSX_SEQUENCE", 1234567)
16

17 # The following Element is currently not being used in this request.
18 #request.set("EMSX_TRADER_UUID", 7654321)
19

20 print "Request: %s" % request.toString()
21

22 self.requestID = blpapi.CorrelationId()
23

24 session.sendRequest(request, correlationId=self.requestID)
25

26 elif msg.messageType() == SERVICE_OPEN_FAILURE:
27 print >> sys.stderr, "Error: Service failed to open"

3.16.3 Sell Side Reject Request

The SellSideReject request is used on the sell-side EMSX<GO> settings to create Reject message on incoming orders
from buy-side EMSX<GO>.

Full code sample:-

Sell Side Reject cpp Sell Side Reject cs Sell Side Reject vba
Sell Side Reject java Sell Side Reject py

3.16. Sell-Side Request/Response Service 101

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/SellSideAck.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/SellSideAck.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/SellSideAck.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/SellSideAck.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/SellSideAck.py
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/SellSideReject.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/SellSideReject.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/SellSideReject.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/SellSideReject.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/SellSideReject.py

emsx_api_doc Documentation, Release 2.1.0

Hint: Please right click on the top code sample link to open in a new tab.

1 def processServiceStatusEvent(self,event,session):
2 print "Processing SERVICE_STATUS event"
3

4 for msg in event:
5

6 if msg.messageType() == SERVICE_OPENED:
7 print "Service opened..."
8

9 service = session.getService(d_service)
10

11 request = service.createRequest("SellSideReject");
12

13 #request.set("EMSX_REQUEST_SEQ", 1)
14

15 request.append("EMSX_SEQUENCE", 1234567)
16

17 # The following Element is currently not being used in this request.
18 #request.set("EMSX_TRADER_UUID", 7654321)
19

20 print "Request: %s" % request.toString()
21

22 self.requestID = blpapi.CorrelationId()
23

24 session.sendRequest(request, correlationId=self.requestID)
25

26 elif msg.messageType() == SERVICE_OPEN_FAILURE:
27 print >> sys.stderr, "Error: Service failed to open"

3.17 EMSX Subscription

EMSX subscription service provides a way of accessing and monitoring real-time updates on orders and routes in the
user’s blotter outside of EMSX<GO> function in your Bloomberg terminal.

EMSX subscription sample illustrates how to use both Order and Route subscription service for EMSX API.

Once the subscription is established all the orders and routes in the user’s blotter are returned via one or more
Bloomberg API events of type SUBSCRIPTION. Each event is further composed of one or more messages where
each message contains all the subscribed fields for a single order or route.

Additionally, any changes to these orders and/or routes will generate events that are passed along as they occur. These
subscriptions can be asynchronous or synchronous but it is best to always approach this with asynchronous event-
driven architecture in mind.

Warning: When implementing subscription service, it’s important to write the code using two separate .sub-
scribe() events for the order and route subscriptions.

Important: It’s important to unsubscribe before starting the Subscription service.

102 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

3.17.1 Description of Subscription Messages

Element Name Description
MSG_TYPE MSG_TYPE=E, this indicates the message is an EMSX API message.
MSG_SUB_TYPE O = Order & R = Route
EVENT_STATUS Event status messages (e.g INIT_PAINT, NEW_ORDER_ROUTE and etc.)
API_SEQ_NUM Unique API sequence number to help detect gaps in the events.
EMSX_SEQUENCE Unique order number in EMSX<GO>.
EMSX_ROUTE_ID Route number, always 0 for order subscription events.
EMSX_FILL_ID Fill number on routess.

3.17.2 Description of Event Status Messages

EVENT_STATUS Message Type / Description
EVENT_STATUS = 1 Heartbeat Message HB_MESSAGE
EVENT_STATUS = 4 Initial Paint Message on all subscription fields INIT_PAINT
EVENT_STATUS = 6 New Order or Route Message on all subscription fields NEW_ORDER_ROUTE
EVENT_STATUS = 7 This field dynamically updates for existing Order and route UPD_ORDER_ROUTE
EVENT_STATUS = 8 Order and route deletion message, DELETION_MESSAGE
EVENT_STATUS = 11 The end of the initial paint message, INIT_PAINT_END

3.17. EMSX Subscription 103

emsx_api_doc Documentation, Release 2.1.0

104 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

3.17.3 Description of Order Status Messages

Order Status Description
ASSIGN The route has been cancelled or rejected without fills.

Applicable Child Route Status: CANCEL or
REJECTED.

CANCEL The order has been cancelled, no shares filled.
Applicable Child Route Status: CANCEL or
REJECTED.

COMPLETED All Shares have been filled and allocated in OAX for
Bloomberg AIM users.
Applicable Child Route Status: CANCEL, FILLED, or
PARTFILLED.

CXL-PEND The Sell-Side EMSX to EMSX (E2E), order pending
cancel acknowledgement.

EXPIRED The order is expired.
Applicable Child Route Status: CANCEL, FILLED, or
PARTFILLED.

FILLED All shares have been filled, no idle quantity.
Applicable Child Route Status: FILLED.

MOD-PEND Only valid for the Sell-Side EMSX to EMSX (E2E) set-
tings. The order modification
pending acknowledgement. Fields that can populate:
Size, Price, Stop, GTDDate,

TIF, Type and instruments. e.g.
EMSX_MOD_PEND_STATUS= “Pending Info|Size:
500.0
-> 200.0|Price 2.0000 -> 4.0000|Instr: -> test instr”

NEW The order has been added/staged; no routes have been
created.

ORD-PEND The Sell-Side EMSX to EMSX (E2E), new order pend-
ing acknowledgement.

PARTFILLED The order has idle or unfilled shares.
Applicable Child Route Status: CANCEL, FILLED, or
PARTFILLED.

SENT The route has been sent to the broker but has not been
acknowledged.
Applicable Child Route Status: SENT.

WORKING The route has been sent and acknowledged by the broker
or the route has been
partially filled or route has a cancel request pending or
rejected.

Applicable Child Route Status: CXLREJ, CXLREQ,
CXLRPRQ, CXLRPRJ,

HOLD, PARTFILLED, or WORKING.

3.17. EMSX Subscription 105

emsx_api_doc Documentation, Release 2.1.0

3.17.4 Description of the Child Route Status Messages

Route Status Description
A-SENT The route has been sent for allocation for Bloomberg STP users.
ALLOCATED The route has been allocated for Bloomberg STP users.
BUST The route fill has been busted by the execution broker.
CANCEL The route has been canceled.
CORRECTED The route fill has been corrected by the execution broker.
CXLREJ The cancel request is rejected by the execution broker.
CXLREP The cancel replace request is accepted by the execution broker.
CXLREQ The cancel request is sent and is pending with the execution broker.
CXLRPRJ The cancel replace request is rejected by the execution broker.
CXLRPRQ The cancel replace request is sent and is pending with the execution broker.
DONE The route has been marked done for the day by the execution broker.
FILLED The route has been completely filled.
HOLD The shared are committed to a dark pool.
OA-SENT The route has been sent for allocation in OAX for Bloomberg AIM users
OMS PEND The route has been sent to buy-side OMS for compliance check, pending acknowledgement.
PARTFILLED The route has been partilly filled.
QUEUED The route is created but not released until the defined time in release time.
REJECTED The route has been rejected by the execution broker.
REPPEN The route replace request is pending with the execution broker.
ROUTE-ERR The route has an error, please check with EMSX trade desk and/or executing broker.
SENT The route has been sent to the broker but have not been acknowledged by the broker.
WORKING The route has been sent and acknowledged by the executing broker.

3.17.5 Description of the Child Route Status Changes

Field Previous Value New Value Definition
EMSX_STATUS null SENT New route (placement) created.
EMSX_STATUS SENT SENT Field update on sent.
EMSX_STATUS SENT WORKING ACK received from the broker.
EMSX_STATUS WORKING PARTFILL First fill or multiple fills.

(<100%)EMSX_WORKING n <n and >0
EMSX_STATUS PARTFILL PARTFILL Middle fill or multiple

fills. (<100%)EMSX_WORKING n <n and >0
EMSX_STATUS PARTFILL FILLED Final fill or multiple fills.

(100%)EMSX_WORKING >0 0
EMSX_STATUS WORKING FILLED Full single fill.
EMSX_WORKING >0 0
EMSX_STATUS null FILLED Historic 100% fill on INIT_PAINT.
EMSX_STATUS null WORKING Working route (placement) on INIT_PAINT.
EMSX_STATUS null PARTFILL Part filled route (placement) on INIT_PAINT.
EMSX_STATUS null CXLREQ Cancel requested on route in INIT_PAINT.
EMSX_STATUS WORKING CXLREQ Cancel route request sent.
EMSX_STATUS CXLREQ WORKING Broker rejected cancel request.
EMSX_STATUS CXLREQ CXLPEN Broker sent ACK for cancel request.
EMSX_STATUS CXLPEN WORKING Broker rejected cancel request.
EMSX_STATUS CXLREQ CANCEL Broker cancelled route from request.

Continued on next page

106 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

Table 1 – continued from previous page
Field Previous Value New Value Definition
EMSX_STATUS CXLPEN CANCEL Broker cancelled route from request.
EMSX_STATUS PARTFILL CXLREQ Cancel requested on part filled route.
EMSX_STATUS CXLREQ PARTFILL Broker rejected cancel request.
EMSX_STATUS CXLPEN PARTFILL Broker rejected cancel request.
EMSX_STATUS WORKING CXLRPRQ Modify (cancel/replace) request sent to broker.
EMSX_STATUS CXLRPRQ REPPEN Broker sent ACK for modify request.
EMSX_STATUS REPPEN WORKING Broker rejected modify

request on working route.EMSX_BROKER_STATUS n/a CXLRPRJ
EMSX_STATUS REPPEN WORKING Broker accepted and ap-

plied the modify request
on working route. (place-
ment)

EMSX_BROKER_STATUS n/a MODIFIED

EMSX_STATUS PARTFILL CXLRPRQ Modify (cancel/replace) request sent to broker.
EMSX_STATUS REPPEN PARTFILL Broker rejected modify

request on part filled
route. (placement)EMSX_BROKER_STATUS n/a CXLRPRJ

EMSX_STATUS REPPEN PARTFILL Broker accepted and
applied the modify re-
quest on part filled route.
(placement)

EMSX_BROKER_STATUS n/a MODIFIED

EMSX_STATUS SENT REJECTED Broker rejected the order from sent status.
EMSX_STATUS null REJECTED INIT_PAINT shows route (placement) rejected.
EMSX_STATUS null CANCEL INIT_PAINT shows route (placement) cancelled.
EMSX_STATUS CXLRPRQ WORKING Modify rejected from request.
EMSX_STATUS PARTFILL CANCEL Part filled route cancelled by broker.
EMSX_STATUS WORKING CANCEL Working route cancelled by broker.
EMSX_STATUS WORKING REJECTED Route rejected from working.

3.17.6 Description of Fills using Route Subscription

The real-time fills in EMSX API are delivered through the route subscription service. However, to capture the full
state of the order, we always recommend the client listens to both the order and route subscription service.

The following elements provide the route updates that can be calculated to obtain the real-time incoming fills for a live
route.

3.17. EMSX Subscription 107

emsx_api_doc Documentation, Release 2.1.0

Field Definition
EMSX_LAST_FILL_DATE

INT32 ROUTE The date of the last fill based on the
user’s
time zone. This field is applicable to trades on a route
level, and
does not populate on a per security basis.

EMSX_LAST_MARKET

STRING ROUTE The last market of execution for a
trade as
returned by the broker.This field is applicable to trades
on a route
level, and does not populate on a per security basis.

EMSX_LAST_PRICE

FLOAT64 ROUTE The last execution price for a trade.
This
field is applicable to trades on a route level, and does
not
populate ona per security basis.

EMSX_LAST_SHARES

INT32 ROUTE The last executed quantity for a trade.
This
field is applicable to trades on a route level, and does
not
populate on a per security basis.

EMSX_LAST_FILL_TIME

INT32 ROUTE The time of the last fill based on
seconds from
midnight in the user’s time zone. This field is
applicable to trades
on a route level, and does not populate on a per security
basis.

The EMSX_FILL_ID is the transaction sequence number to keep track of the individual fills. One thing to keep in
mind is that this is a reflection of the fills and thus you will typically see the EMSX_FILL_ID to show 0, 2, 3, 4,..
8,9,.. 14, and etc. In most cases, the EMSX_FILL_ID = 1 is not reflected as this is an ACK message from the broker.
The EMSX_FILL_ID is a unique ID per fill in sequential order but does not necessarily tie to the actual Fill numbers
and will skip fill events that are not directly tied to a fill.

108 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

Field Definition
EMSX_FILL_ID

INT32 STATIC O,R The fill number associated with
a
route. This field is applicable to trades on an order
and/or route
level, and does not populate on a per security basis.

The EMSX_ROUTE_LAST_UPDATE_TIME is timestamp based on the number of seconds from midnight that reflects
the last update of a route. This can be fill or any other route-based update events.

Field Definition
EMSX_ROUTE_LAST_UPDATE_TIME

INT32 ROUTE The time stamp of the last execution or
cancellation on a route. This field is applicable to
trades on a
route level and does not populate on a per security
basis.

3.17.7 Description of Order Expiration Logic

The parent orders in EMSX follow an expiration logic that first puts orders into view only mode before it gets removed
from EMSX blotter.

Note: TIF = Time in force

h = hours

GT covers both GTC and GTD.

Asset TIF Event Description
Equity Day EXPIRED Exchange close + 8h
Equity Day DELETED Exchange close + 8h + 16h
Equity GT EXPIRED On GTD date it’s same as day order if there are no open routes
Equity GT EXPIRED On GTD date if open routes, then redated to current GTD date + 24h
Future Day EXPIRED Earlier of Exchange close + 4h or start of the next session
Future Day DELETED Earlier of Exchange close + 4h or start of the next session + 20h
Future GT EXPIRED On GTD date it’s same as day order if there are no open routes
Future GT EXPIRED On GTD date if open routes, then redated to current GTD date + 24h
Option Day EXPIRED Exchange close + 4h
Option Day DELETED Exchange close + 4h + 20h
Option GT EXPIRED On GTD date it’s same as day order if there are no open routes.
Option GT EXPIRED On GTD date if open routes, then redated to current GTD date + 24h

3.17. EMSX Subscription 109

emsx_api_doc Documentation, Release 2.1.0

3.17.8 Description of Route Expiration Logic

All equities routes in EMSX will expire 8 hours after the exchange midnight. All futures and options routes in EMSX
will expire 24 hours after exchange close time.

Full code sample:-

EMSX Subscriptions cpp EMSX Subscriptions cs EMSX Subscription vba
EMSX Subscriptions java EMSX Subscriptions py EMSX Subscriptions py2

Hint: Please right click on the top code sample link to open in a new tab.

Specify service name and host/port :-

EMSXSubscriptions.py

import blpapi
import sys

ORDER_ROUTE_FIELDS = blpapi.Name("OrderRouteFields")

SLOW_CONSUMER_WARNING = blpapi.Name("SlowConsumerWarning")
SLOW_CONSUMER_WARNING_CLEARED = blpapi.Name("SlowConsumerWarningCleared")

SESSION_STARTED = blpapi.Name("SessionStarted")
SESSION_TERMINATED = blpapi.Name("SessionTerminated")
SESSION_STARTUP_FAILURE = blpapi.Name("SessionStartupFailure")
SESSION_CONNECTION_UP = blpapi.Name("SessionConnectionUp")
SESSION_CONNECTION_DOWN = blpapi.Name("SessionConnectionDown")

SERVICE_OPENED = blpapi.Name("ServiceOpened")
SERVICE_OPEN_FAILURE = blpapi.Name("ServiceOpenFailure")

SUBSCRIPTION_FAILURE = blpapi.Name("SubscriptionFailure")
SUBSCRIPTION_STARTED = blpapi.Name("SubscriptionStarted")
SUBSCRIPTION_TERMINATED = blpapi.Name("SubscriptionTerminated")

EXCEPTIONS = blpapi.Name("exceptions")
FIELD_ID = blpapi.Name("fieldId")
REASON = blpapi.Name("reason")
CATEGORY = blpapi.Name("category")
DESCRIPTION = blpapi.Name("description")

d_service="//blp/emapisvc_beta"
d_host="localhost"
d_port=8194
orderSubscriptionID=blpapi.CorrelationId(98)
routeSubscriptionID=blpapi.CorrelationId(99)

Process admin events:-

def processAdminEvent(self,event):
print "Processing ADMIN event"

(continues on next page)

110 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/EMSXSubscriptions.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/EMSXSubscriptions.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/EMSXSubscriptions.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/EMSXSubscriptions.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/EMSXSubscriptions.py
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/py2_EMSXSubscriptions.py

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

for msg in event:

if msg.messageType() == SLOW_CONSUMER_WARNING:
print "Warning: Entered Slow Consumer status"

elif msg.messageType() == SLOW_CONSUMER_WARNING_CLEARED:
print "Slow consumer status cleared"

def processSessionStatusEvent(self,event,session):
print "Processing SESSION_STATUS event"

for msg in event:

if msg.messageType() == SESSION_STARTED:
print "Session started..."
session.openServiceAsync(d_service)

elif msg.messageType() == SESSION_STARTUP_FAILURE:
print >> sys.stderr, "Error: Session startup failed"

elif msg.messageType() == SESSION_TERMINATED:
print >> sys.stderr, "Error: Session has been terminated"

elif msg.messageType() == SESSION_CONNECTION_UP:
print "Session connection is up"

elif msg.messageType() == SESSION_CONNECTION_DOWN:
print >> sys.stderr, "Error: Session connection is down"

def processServiceStatusEvent(self,event,session):
print "Processing SERVICE_STATUS event"

for msg in event:

if msg.messageType() == SERVICE_OPENED:
print "Service opened..."
self.createOrderSubscription(session)

elif msg.messageType() == SERVICE_OPEN_FAILURE:
print >> sys.stderr, "Error: Service failed to open"

def processSubscriptionStatusEvent(self, event, session):
print "Processing SUBSCRIPTION_STATUS event"

Start Subscription:-

for msg in event:

if msg.messageType() == SUBSCRIPTION_STARTED:

print "OrderSubID: %s\tRouteSubID: %s" % (orderSubscriptionID.value(),
→˓routeSubscriptionID.value())

if msg.correlationIds()[0].value() == orderSubscriptionID.value():
print "Order subscription started successfully"
self.createRouteSubscription(session)

elif msg.correlationIds()[0].value() == routeSubscriptionID.value():
(continues on next page)

3.17. EMSX Subscription 111

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

print "Route subscription started successfully"

elif msg.messageType() == SUBSCRIPTION_FAILURE:
print >> sys.stderr, "Error: Subscription failed"
print >> sys.stderr, "MESSAGE: %s" % (msg)

reason = msg.getElement("reason");
errorcode = reason.getElementAsInteger("errorCode")
description = reason.getElementAsString("description")

print >> sys.stdout, "Error: (%d) %s" % (errorcode, description)

elif msg.messageType() == SUBSCRIPTION_TERMINATED:
print >> sys.stderr, "Error: Subscription terminated"
print >> sys.stderr, "MESSAGE: %s" % (msg)

Pick and choose the elements and create order subscription:-

def createOrderSubscription(self, session):

print "Create Order subscription"

orderTopic = d_service + "/order?fields="
orderTopic = orderTopic + "API_SEQ_NUM,"
orderTopic = orderTopic + "EMSX_ACCOUNT,"
orderTopic = orderTopic + "EMSX_AMOUNT,"
orderTopic = orderTopic + "EMSX_ASSET_CLASS,"
orderTopic = orderTopic + "EMSX_ASSIGNED_TRADER,"
orderTopic = orderTopic + "EMSX_AVG_PRICE,"
orderTopic = orderTopic + "EMSX_BASKET_NAME,"
orderTopic = orderTopic + "EMSX_BASKET_NUM,"
orderTopic = orderTopic + "EMSX_BROKER,"
orderTopic = orderTopic + "EMSX_BROKER_COMM,"
orderTopic = orderTopic + "EMSX_BSE_AVG_PRICE,"
orderTopic = orderTopic + "EMSX_BSE_FILLED,"
orderTopic = orderTopic + "EMSX_CFD_FLAG,"
orderTopic = orderTopic + "EMSX_COMM_DIFF_FLAG,"
orderTopic = orderTopic + "EMSX_COMM_RATE,"
orderTopic = orderTopic + "EMSX_CURRENCY_PAIR,"
orderTopic = orderTopic + "EMSX_DATE,"
orderTopic = orderTopic + "EMSX_DAY_AVG_PRICE,"

subscriptions = blpapi.SubscriptionList()

subscriptions.add(topic=orderTopic,correlationId=orderSubscriptionID)

session.subscribe(subscriptions)

Pick and choose the elements and create route subscription:-

def createRouteSubscription(self, session):

print "Create Route subscription"

routeTopic = d_service + "/route?fields="
routeTopic = routeTopic + "API_SEQ_NUM,"

(continues on next page)

112 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

routeTopic = routeTopic + "EMSX_AMOUNT,"
routeTopic = routeTopic + "EMSX_AVG_PRICE,"
routeTopic = routeTopic + "EMSX_BROKER,"
routeTopic = routeTopic + "EMSX_BROKER_COMM,"
routeTopic = routeTopic + "EMSX_BSE_AVG_PRICE,"
routeTopic = routeTopic + "EMSX_BSE_FILLED,"
routeTopic = routeTopic + "EMSX_CLEARING_ACCOUNT,"
routeTopic = routeTopic + "EMSX_CLEARING_FIRM,"

subscriptions = blpapi.SubscriptionList()

subscriptions.add(topic=routeTopic,correlationId=routeSubscriptionID)

session.subscribe(subscriptions)

Output:-

C:\Users_scripts>py -3 EMSXSubscriptions_beta.py
Bloomberg - EMSX API Example - EMSXSubscriptions
Connecting to localhost:8194
Press ENTER to quit
Processing SESSION_STATUS event
Session connection is up
Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Create Order subscription
Processing SUBSCRIPTION_STATUS event
Order subscription started successfully
Create Route subscription

ORDER MESSAGE: CorrelationID(98) Status(4)
MESSAGE: OrderRouteFields = {

MSG_TYPE = "E"
MSG_SUB_TYPE = "O"
EMSX_SEQUENCE = 4747927
EMSX_ROUTE_ID = 0
EMSX_FILL_ID = 0
API_SEQ_NUM = 1
EVENT_STATUS = 4
EMSX_ACCOUNT = ""
EMSX_AMOUNT = 6000
EMSX_ASSET_CLASS = "Equity"
EMSX_ASSIGNED_TRADER = ""
EMSX_AVG_PRICE = 161.330000
EMSX_BASKET_NAME = ""
EMSX_BASKET_NUM = 0
EMSX_BLOCK_ID = ""
EMSX_BROKER = ""
EMSX_BROKER_COMM = 0.000000
EMSX_BSE_AVG_PRICE = 0.000000
EMSX_BSE_FILLED = 0
EMSX_BUYSIDE_LEI = ""
EMSX_CFD_FLAG = "N"

(continues on next page)

3.17. EMSX Subscription 113

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_CLIENT_IDENTIFICATION = ""
EMSX_COMM_RATE = 0.000000
EMSX_CURRENCY_PAIR = ""
EMSX_DATE = 20200113
EMSX_DAY_AVG_PRICE = 161.330000
EMSX_DAY_FILL = 360
EMSX_DIR_BROKER_FLAG = "N"
EMSX_EXCHANGE = "US"
EMSX_EXCHANGE_DESTINATION = "ANY"
EMSX_EXEC_INSTRUCTION = ""
EMSX_FILLED = 360
EMSX_GPI = ""
EMSX_GTD_DATE = 0
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_IDLE_AMOUNT = 5580
EMSX_INVESTOR_ID = "InvID"
EMSX_ISIN = "US5949181045"
EMSX_LIMIT_PRICE = 0.000000
EMSX_MIFID_II_INSTRUCTION = ""
EMSX_NOTES = ""
EMSX_NSE_AVG_PRICE = 0.000000
EMSX_NSE_FILLED = 0
EMSX_ORD_REF_ID = ""
EMSX_ORDER_AS_OF_DATE = 20200113
EMSX_ORDER_AS_OF_TIME_MICROSEC = 49794.000000
EMSX_ORDER_TYPE = "MKT"
EMSX_PERCENT_REMAIN = 94.000000
EMSX_PM_UUID = 6767714
EMSX_PORT_MGR = "TKIM94"
EMSX_PORT_NAME = ""
EMSX_PORT_NUM = 9999
EMSX_POSITION = ""
EMSX_PRINCIPAL = 58078.800000
EMSX_PRODUCT = "Equity"
EMSX_QUEUED_DATE = 0
EMSX_QUEUED_TIME = 0
EMSX_QUEUED_TIME_MICROSEC = 0.000000
EMSX_REASON_CODE = ""
EMSX_REASON_DESC = ""
EMSX_REMAIN_BALANCE = 5640.000000
EMSX_ROUTE_PRICE = 0.000000
EMSX_SEC_NAME = "MICROSOFT CORP"
EMSX_SEDOL = "2588173 "
EMSX_SETTLE_AMOUNT = 0.000000
EMSX_SETTLE_DATE = 0
EMSX_SI = "N"
EMSX_SIDE = "BUY"
EMSX_START_AMOUNT = 1100
EMSX_STATUS = "WORKING"
EMSX_STEP_OUT_BROKER = ""
EMSX_STOP_PRICE = 0.000000
EMSX_STRATEGY_END_TIME = 0
EMSX_STRATEGY_PART_RATE1 = 0.000000
EMSX_STRATEGY_PART_RATE2 = 0.000000
EMSX_STRATEGY_STYLE = ""
EMSX_STRATEGY_TYPE = ""
EMSX_TICKER = "MSFT US Equity"

(continues on next page)

114 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_TIF = "DAY"
EMSX_TIME_STAMP = 49794
EMSX_TIME_STAMP_MICROSEC = 49794.341000
EMSX_TRAD_UUID = 6767714
EMSX_TRADE_DESK = ""
EMSX_TRADER = "TKIM94"
EMSX_TRADER_NOTES = ""
EMSX_TS_ORDNUM = -4747927
EMSX_TYPE = "MKT"
EMSX_UNDERLYING_TICKER = "Loading"
EMSX_USER_COMM_AMOUNT = 0.000000
EMSX_USER_COMM_RATE = 0.000000
EMSX_USER_FEES = 0.000000
EMSX_USER_NET_MONEY = 58078.800000
EMSX_WORK_PRICE = 0.000000
EMSX_WORKING = 60
EMSX_YELLOW_KEY = "Equity"
EMSX_STRATEGY_START_TIME = 0
EMSX_CUSTOM_NOTE1 = ""
EMSX_CUSTOM_NOTE2 = ""
EMSX_CUSTOM_NOTE3 = ""
EMSX_CUSTOM_NOTE4 = ""
EMSX_CUSTOM_NOTE5 = ""
EMSX_MOD_PEND_STATUS = ""

}

API_SEQ_NUM: 1
EMSX_ACCOUNT:
EMSX_AMOUNT: 6000
EMSX_ASSET_CLASS: Equity
EMSX_ASSIGNED_TRADER:
EMSX_AVG_PRICE: 161
EMSX_BASKET_NAME:
EMSX_BASKET_NUM: 0
EMSX_BLOCK_ID:
EMSX_BROKER:
EMSX_BROKER_COMM: 0
EMSX_BSE_AVG_PRICE: 0
EMSX_BSE_FILLED: 0
EMSX_BUYSIDE_LEI:
EMSX_CFD_FLAG: N
EMSX_CLIENT_IDENTIFICATION:
EMSX_COMM_DIFF_FLAG:
EMSX_COMM_RATE: 0
EMSX_CUSTOM_NOTE1:
EMSX_CUSTOM_NOTE2:
EMSX_CUSTOM_NOTE3:
EMSX_CUSTOM_NOTE4:
EMSX_CUSTOM_NOTE5:
EMSX_CURRENCY_PAIR:
EMSX_DATE: 20200113
EMSX_DAY_AVG_PRICE: 161
EMSX_DAY_FILL: 360
EMSX_DIR_BROKER_FLAG: N
EMSX_EXCHANGE: US
EMSX_EXCHANGE_DESTINATION: ANY
EMSX_EXEC_INSTRUCTION:

(continues on next page)

3.17. EMSX Subscription 115

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_FILL_ID: 0
EMSX_FILLED: 360
EMSX_GPI:
EMSX_GTD_DATE: 0
EMSX_HAND_INSTRUCTION: ANY
EMSX_IDLE_AMOUNT: 5580
EMSX_INVESTOR_ID: InvID
EMSX_ISIN: US5949181045
EMSX_LIMIT_PRICE: 0.00000000
EMSX_MIFID_II_INSTRUCTION:
EMSX_MOD_PEND_STATUS:
EMSX_NOTES:
EMSX_NSE_AVG_PRICE: 0
EMSX_NSE_FILLED: 0
EMSX_ORD_REF_ID:
EMSX_ORDER_AS_OF_DATE: 20200113
EMSX_ORDER_AS_OF_TIME_MICROSEC: 49794.00000000
EMSX_ORDER_TYPE: MKT
EMSX_ORIGINATE_TRADER:
EMSX_ORIGINATE_TRADER_FIRM:
EMSX_PERCENT_REMAIN: 94
EMSX_PM_UUID: 6767714
EMSX_PORT_MGR: TKIM94
EMSX_PORT_NAME:
EMSX_PORT_NUM: 9999
EMSX_POSITION:
EMSX_PRINCIPAL: 58078
EMSX_PRODUCT: Equity
EMSX_QUEUED_DATE: 0
EMSX_QUEUED_TIME: 0
EMSX_QUEUED_TIME_MICROSEC: 0.00000000
EMSX_REASON_CODE:
EMSX_REASON_DESC:
EMSX_REMAIN_BALANCE: 5640
EMSX_ROUTE_ID: 0
EMSX_ROUTE_PRICE: 0
EMSX_SEC_NAME: MICROSOFT CORP
EMSX_SEDOL: 2588173
EMSX_SEQUENCE: 4747927
EMSX_SETTLE_AMOUNT: 0
EMSX_SETTLE_DATE: 0
EMSX_SI: N
EMSX_SIDE: BUY
EMSX_START_AMOUNT: 1100
EMSX_STATUS: WORKING
EMSX_STEP_OUT_BROKER:
EMSX_STOP_PRICE: 0
EMSX_STRATEGY_END_TIME: 0
EMSX_STRATEGY_PART_RATE1: 0
EMSX_STRATEGY_PART_RATE2: 0
EMSX_STRATEGY_STYLE:
EMSX_STRATEGY_TYPE:
EMSX_TICKER: MSFT US Equity
EMSX_TIF: DAY
EMSX_TIME_STAMP: 49794
EMSX_TIME_STAMP_MICROSEC: 49794.34100000
EMSX_TRAD_UUID: 6767714

(continues on next page)

116 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_TRADE_DESK:
EMSX_TRADER: TKIM94
EMSX_TRADER_NOTES:
EMSX_TS_ORDNUM: -4747927
EMSX_TYPE: MKT
EMSX_UNDERLYING_TICKER: Loading
EMSX_USER_COMM_AMOUNT: 0
EMSX_USER_COMM_RATE: 0
EMSX_USER_FEES: 0
EMSX_USER_NET_MONEY: 58078
EMSX_WORK_PRICE: 0
EMSX_WORKING: 60
EMSX_YELLOW_KEY: Equity
Processing SUBSCRIPTION_STATUS event
Route subscription started successfully

ORDER MESSAGE: CorrelationID(98) Status(4)
MESSAGE: OrderRouteFields = {

MSG_TYPE = "E"
MSG_SUB_TYPE = "O"
EMSX_SEQUENCE = 4747928
EMSX_ROUTE_ID = 0
EMSX_FILL_ID = 0
API_SEQ_NUM = 2
EVENT_STATUS = 4
EMSX_ACCOUNT = ""
EMSX_AMOUNT = 1100
EMSX_ASSET_CLASS = "Equity"
EMSX_ASSIGNED_TRADER = ""
EMSX_AVG_PRICE = 161.330000
EMSX_BASKET_NAME = ""
EMSX_BASKET_NUM = 0
EMSX_BLOCK_ID = ""
EMSX_BROKER = ""
EMSX_BROKER_COMM = 0.000000
EMSX_BSE_AVG_PRICE = 0.000000
EMSX_BSE_FILLED = 0
EMSX_BUYSIDE_LEI = ""
EMSX_CFD_FLAG = "N"
EMSX_CLIENT_IDENTIFICATION = ""
EMSX_COMM_RATE = 0.000000
EMSX_CURRENCY_PAIR = ""
EMSX_DATE = 20200113
EMSX_DAY_AVG_PRICE = 161.330000
EMSX_DAY_FILL = 198
EMSX_DIR_BROKER_FLAG = "N"
EMSX_EXCHANGE = "US"
EMSX_EXCHANGE_DESTINATION = "ANY"
EMSX_EXEC_INSTRUCTION = ""
EMSX_FILLED = 198
EMSX_GPI = ""
EMSX_GTD_DATE = 0
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_IDLE_AMOUNT = 600
EMSX_INVESTOR_ID = ""
EMSX_ISIN = "US5949181045"
EMSX_LIMIT_PRICE = 0.000000

(continues on next page)

3.17. EMSX Subscription 117

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_MIFID_II_INSTRUCTION = ""
EMSX_NOTES = ""
EMSX_NSE_AVG_PRICE = 0.000000
EMSX_NSE_FILLED = 0
EMSX_ORD_REF_ID = ""
EMSX_ORDER_AS_OF_DATE = 20200113
EMSX_ORDER_AS_OF_TIME_MICROSEC = 49797.000000
EMSX_ORDER_TYPE = "MKT"
EMSX_PERCENT_REMAIN = 82.000000
EMSX_PM_UUID = 6767714
EMSX_PORT_MGR = "TKIM94"
EMSX_PORT_NAME = ""
EMSX_PORT_NUM = 9999
EMSX_POSITION = ""
EMSX_PRINCIPAL = 31943.340000
EMSX_PRODUCT = "Equity"
EMSX_QUEUED_DATE = 0
EMSX_QUEUED_TIME = 0
EMSX_QUEUED_TIME_MICROSEC = 0.000000
EMSX_REASON_CODE = ""
EMSX_REASON_DESC = ""
EMSX_REMAIN_BALANCE = 902.000000
EMSX_ROUTE_PRICE = 0.000000
EMSX_SEC_NAME = "MICROSOFT CORP"
EMSX_SEDOL = "2588173 "
EMSX_SETTLE_AMOUNT = 0.000000
EMSX_SETTLE_DATE = 0
EMSX_SI = "N"
EMSX_SIDE = "BUY"
EMSX_START_AMOUNT = 1100
EMSX_STATUS = "WORKING"
EMSX_STEP_OUT_BROKER = ""
EMSX_STOP_PRICE = 0.000000
EMSX_STRATEGY_END_TIME = 0
EMSX_STRATEGY_PART_RATE1 = 0.000000
EMSX_STRATEGY_PART_RATE2 = 0.000000
EMSX_STRATEGY_STYLE = ""
EMSX_STRATEGY_TYPE = ""
EMSX_TICKER = "MSFT US Equity"
EMSX_TIF = "DAY"
EMSX_TIME_STAMP = 49797
EMSX_TIME_STAMP_MICROSEC = 49797.410000
EMSX_TRAD_UUID = 6767714
EMSX_TRADE_DESK = ""
EMSX_TRADER = "TKIM94"
EMSX_TRADER_NOTES = ""
EMSX_TS_ORDNUM = -4747928
EMSX_TYPE = "MKT"
EMSX_UNDERLYING_TICKER = "Loading"
EMSX_USER_COMM_AMOUNT = 0.000000
EMSX_USER_COMM_RATE = 0.000000
EMSX_USER_FEES = 0.000000
EMSX_USER_NET_MONEY = 31943.340000
EMSX_WORK_PRICE = 0.000000
EMSX_WORKING = 302
EMSX_YELLOW_KEY = "Equity"
EMSX_STRATEGY_START_TIME = 0

(continues on next page)

118 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_CUSTOM_NOTE1 = ""
EMSX_CUSTOM_NOTE2 = ""
EMSX_CUSTOM_NOTE3 = ""
EMSX_CUSTOM_NOTE4 = ""
EMSX_CUSTOM_NOTE5 = ""
EMSX_MOD_PEND_STATUS = ""

}

API_SEQ_NUM: 2
EMSX_ACCOUNT:
EMSX_AMOUNT: 1100
EMSX_ASSET_CLASS: Equity
EMSX_ASSIGNED_TRADER:
EMSX_AVG_PRICE: 161
EMSX_BASKET_NAME:
EMSX_BASKET_NUM: 0
EMSX_BLOCK_ID:
EMSX_BROKER:
EMSX_BROKER_COMM: 0
EMSX_BSE_AVG_PRICE: 0
EMSX_BSE_FILLED: 0
EMSX_BUYSIDE_LEI:
EMSX_CFD_FLAG: N
EMSX_CLIENT_IDENTIFICATION:
EMSX_COMM_DIFF_FLAG:
EMSX_COMM_RATE: 0
EMSX_CUSTOM_NOTE1:
EMSX_CUSTOM_NOTE2:
EMSX_CUSTOM_NOTE3:
EMSX_CUSTOM_NOTE4:
EMSX_CUSTOM_NOTE5:
EMSX_CURRENCY_PAIR:
EMSX_DATE: 20200113
EMSX_DAY_AVG_PRICE: 161
EMSX_DAY_FILL: 198
EMSX_DIR_BROKER_FLAG: N
EMSX_EXCHANGE: US
EMSX_EXCHANGE_DESTINATION: ANY
EMSX_EXEC_INSTRUCTION:
EMSX_FILL_ID: 0
EMSX_FILLED: 198
EMSX_GPI:
EMSX_GTD_DATE: 0
EMSX_HAND_INSTRUCTION: ANY
EMSX_IDLE_AMOUNT: 600
EMSX_INVESTOR_ID:
EMSX_ISIN: US5949181045
EMSX_LIMIT_PRICE: 0.00000000
EMSX_MIFID_II_INSTRUCTION:
EMSX_MOD_PEND_STATUS:
EMSX_NOTES:
EMSX_NSE_AVG_PRICE: 0
EMSX_NSE_FILLED: 0
EMSX_ORD_REF_ID:
EMSX_ORDER_AS_OF_DATE: 20200113
EMSX_ORDER_AS_OF_TIME_MICROSEC: 49797.00000000
EMSX_ORDER_TYPE: MKT

(continues on next page)

3.17. EMSX Subscription 119

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_ORIGINATE_TRADER:
EMSX_ORIGINATE_TRADER_FIRM:
EMSX_PERCENT_REMAIN: 82
EMSX_PM_UUID: 6767714
EMSX_PORT_MGR: TKIM94
EMSX_PORT_NAME:
EMSX_PORT_NUM: 9999
EMSX_POSITION:
EMSX_PRINCIPAL: 31943
EMSX_PRODUCT: Equity
EMSX_QUEUED_DATE: 0
EMSX_QUEUED_TIME: 0
EMSX_QUEUED_TIME_MICROSEC: 0.00000000
EMSX_REASON_CODE:
EMSX_REASON_DESC:
EMSX_REMAIN_BALANCE: 902
EMSX_ROUTE_ID: 0
EMSX_ROUTE_PRICE: 0
EMSX_SEC_NAME: MICROSOFT CORP
EMSX_SEDOL: 2588173
EMSX_SEQUENCE: 4747928
EMSX_SETTLE_AMOUNT: 0
EMSX_SETTLE_DATE: 0
EMSX_SI: N
EMSX_SIDE: BUY
EMSX_START_AMOUNT: 1100
EMSX_STATUS: WORKING
EMSX_STEP_OUT_BROKER:
EMSX_STOP_PRICE: 0
EMSX_STRATEGY_END_TIME: 0
EMSX_STRATEGY_PART_RATE1: 0
EMSX_STRATEGY_PART_RATE2: 0
EMSX_STRATEGY_STYLE:
EMSX_STRATEGY_TYPE:
EMSX_TICKER: MSFT US Equity
EMSX_TIF: DAY
EMSX_TIME_STAMP: 49797
EMSX_TIME_STAMP_MICROSEC: 49797.41000000
EMSX_TRAD_UUID: 6767714
EMSX_TRADE_DESK:
EMSX_TRADER: TKIM94
EMSX_TRADER_NOTES:
EMSX_TS_ORDNUM: -4747928
EMSX_TYPE: MKT
EMSX_UNDERLYING_TICKER: Loading
EMSX_USER_COMM_AMOUNT: 0
EMSX_USER_COMM_RATE: 0
EMSX_USER_FEES: 0
EMSX_USER_NET_MONEY: 31943
EMSX_WORK_PRICE: 0
EMSX_WORKING: 302
EMSX_YELLOW_KEY: Equity
Order - End of initial paint

ROUTE MESSAGE: CorrelationID(99) Status(4)
MESSAGE: OrderRouteFields = {

MSG_TYPE = "E"
(continues on next page)

120 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

MSG_SUB_TYPE = "R"
EMSX_SEQUENCE = 4747928
EMSX_ROUTE_ID = 1
EMSX_FILL_ID = 13
API_SEQ_NUM = 1
EVENT_STATUS = 4
EMSX_AMOUNT = 500
EMSX_AVG_PRICE = 161.330000
EMSX_BROKER = "BB"
EMSX_BROKER_COMM = 0.000000
EMSX_BSE_AVG_PRICE = 0.000000
EMSX_BSE_FILLED = 0
EMSX_BUYSIDE_LEI = ""
EMSX_CLIENT_IDENTIFICATION = ""
EMSX_COMM_RATE = 0.000000
EMSX_CURRENCY_PAIR = ""
EMSX_DAY_AVG_PRICE = 161.330000
EMSX_DAY_FILL = 198
EMSX_EXCHANGE_DESTINATION = "ANY"
EMSX_EXEC_INSTRUCTION = ""
EMSX_FILLED = 198
EMSX_GPI = ""
EMSX_GTD_DATE = 0
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_LIMIT_PRICE = 0.000000
EMSX_MIFID_II_INSTRUCTION = ""
EMSX_NOTES = ""
EMSX_NSE_AVG_PRICE = 0.000000
EMSX_NSE_FILLED = 0
EMSX_ORDER_TYPE = "MKT"
EMSX_PERCENT_REMAIN = 60.400000
EMSX_PRINCIPAL = 31943.340000
EMSX_QUEUED_DATE = 0
EMSX_QUEUED_TIME = 0
EMSX_QUEUED_TIME_MICROSEC = 0.000000
EMSX_REASON_CODE = ""
EMSX_REASON_DESC = ""
EMSX_REMAIN_BALANCE = 302.000000
EMSX_ROUTE_PRICE = 162.835000
EMSX_SETTLE_AMOUNT = 0.000000
EMSX_SETTLE_DATE = 20200115
EMSX_STATUS = "REPPEN"
EMSX_STOP_PRICE = 0.000000
EMSX_STRATEGY_END_TIME = 0
EMSX_STRATEGY_PART_RATE1 = 0.000000
EMSX_STRATEGY_PART_RATE2 = 0.000000
EMSX_STRATEGY_STYLE = ""
EMSX_STRATEGY_TYPE = ""
EMSX_TIF = "DAY"
EMSX_TIME_STAMP = 49904
EMSX_TIME_STAMP_MICROSEC = 49904.123000
EMSX_TYPE = "MKT"
EMSX_USER_COMM_AMOUNT = 0.000000
EMSX_USER_COMM_RATE = 0.000000
EMSX_USER_FEES = 0.000000
EMSX_USER_NET_MONEY = 31943.340000
EMSX_WORKING = 302

(continues on next page)

3.17. EMSX Subscription 121

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_APA_MIC = ""
EMSX_BROKER_LEI = ""
EMSX_BROKER_SI = ""
EMSX_BROKER_STATUS = ""
EMSX_CLEARING_ACCOUNT = ""
EMSX_CLEARING_FIRM = ""
EMSX_CUSTOM_ACCOUNT = ""
EMSX_EXECUTE_BROKER = ""
EMSX_IS_MANUAL_ROUTE = 0
EMSX_LAST_CAPACITY = ""
EMSX_LAST_FILL_DATE = 20200113
EMSX_LAST_FILL_TIME = 50074
EMSX_LAST_FILL_TIME_MICROSEC = 50074.215000
EMSX_LAST_MARKET = ""
EMSX_LAST_PRICE = 0.000000
EMSX_LAST_SHARES = 0
EMSX_LEG_FILL_DATE_ADDED = 0
EMSX_LEG_FILL_PRICE = 0.000000
EMSX_LEG_FILL_SEQ_NO = 0
EMSX_LEG_FILL_SHARES = 0.000000
EMSX_LEG_FILL_SIDE = ""
EMSX_LEG_FILL_TICKER = ""
EMSX_MISC_FEES = 0.000000
EMSX_ML_ID = ""
EMSX_ML_LEG_QUANTITY = 500
EMSX_ML_NUM_LEGS = 0
EMSX_ML_PERCENT_FILLED = 39.600000
EMSX_ML_RATIO = 0.000000
EMSX_ML_REMAIN_BALANCE = -198.000000
EMSX_ML_STRATEGY = ""
EMSX_ML_TOTAL_QUANTITY = 0
EMSX_OTC_FLAG = ""
EMSX_P_A = ""
EMSX_ROUTE_AS_OF_DATE = 20200113
EMSX_ROUTE_AS_OF_TIME_MICROSEC = 49904.123000
EMSX_ROUTE_CREATE_DATE = 20200113
EMSX_ROUTE_CREATE_TIME = 49904
EMSX_ROUTE_CREATE_TIME_MICROSEC = 49904.123000
EMSX_ROUTE_LAST_UPDATE_TIME = 50083
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC = 50083.276000
EMSX_ROUTE_REF_ID = "MyRouteRef2"
EMSX_STRATEGY_START_TIME = 0
EMSX_TRADE_REPORTING_INDICATOR = ""
EMSX_TRANSACTION_REPORTING_MIC = ""
EMSX_URGENCY_LEVEL = 0
EMSX_WAIVER_FLAG = ""

}

API_SEQ_NUM: 1
EMSX_AMOUNT: 500
EMSX_APA_MIC:
EMSX_AVG_PRICE: 161
EMSX_BROKER: BB
EMSX_BROKER_COMM: 0
EMSX_BROKER_LEI:
EMSX_BROKER_SI:
EMSX_BROKER_STATUS:

(continues on next page)

122 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_BSE_AVG_PRICE: 0
EMSX_BSE_FILLED: 0
EMSX_BUYSIDE_LEI:
EMSX_CLEARING_ACCOUNT:
EMSX_CLEARING_FIRM:
EMSX_CLIENT_IDENTIFICATION:
EMSX_COMM_DIFF_FLAG:
EMSX_COMM_RATE: 0
EMSX_CURRENCY_PAIR:
EMSX_CUSTOM_ACCOUNT:
EMSX_DAY_AVG_PRICE: 161
EMSX_DAY_FILL: 198
EMSX_EXCHANGE_DESTINATION: ANY
EMSX_EXEC_INSTRUCTION:
EMSX_EXECUTE_BROKER:
EMSX_FILL_ID: 13
EMSX_FILLED: 198
EMSX_GPI:
EMSX_GTD_DATE: 0
EMSX_HAND_INSTRUCTION: ANY
EMSX_IS_MANUAL_ROUTE: 0
EMSX_LAST_CAPACITY:
EMSX_LAST_FILL_DATE: 20200113
EMSX_LAST_FILL_TIME: 50074
EMSX_LAST_FILL_TIME_MICROSEC: 50074.21500000
EMSX_LAST_MARKET:
EMSX_LAST_PRICE: 0
EMSX_LAST_SHARES: 0
EMSX_LEG_FILL_DATE_ADDED: 0
EMSX_LEG_FILL_PRICE: 0.00000000
EMSX_LEG_FILL_SEQ_NO: 0
EMSX_LEG_FILL_SHARES: 0.00000000
EMSX_LEG_FILL_SIDE:
EMSX_LEG_FILL_TICKER:
EMSX_LEG_FILL_TIME_ADDED: 0
EMSX_LIMIT_PRICE: 0.00000000
EMSX_MIFID_II_INSTRUCTION:
EMSX_MISC_FEES: 0
EMSX_ML_ID:
EMSX_ML_LEG_QUANTITY: 500
EMSX_ML_NUM_LEGS: 0
EMSX_ML_PERCENT_FILLED: 39
EMSX_ML_RATIO: 0
EMSX_ML_REMAIN_BALANCE: -198
EMSX_ML_STRATEGY:
EMSX_ML_TOTAL_QUANTITY: 0
EMSX_NOTES:
EMSX_NSE_AVG_PRICE: 0
EMSX_NSE_FILLED: 0
EMSX_ORDER_TYPE: MKT
EMSX_OTC_FLAG:
EMSX_P_A:
EMSX_PERCENT_REMAIN: 60
EMSX_PRINCIPAL: 31943
EMSX_QUEUED_DATE: 0
EMSX_QUEUED_TIME: 0
EMSX_QUEUED_TIME_MICROSEC: 0.00000000

(continues on next page)

3.17. EMSX Subscription 123

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_REASON_CODE:
EMSX_REASON_DESC:
EMSX_REMAIN_BALANCE: 302
EMSX_ROUTE_AS_OF_DATE: 20200113
EMSX_ROUTE_AS_OF_TIME_MICROSEC: 49904.12300000
EMSX_ROUTE_CREATE_DATE: 20200113
EMSX_ROUTE_CREATE_TIME: 49904
EMSX_ROUTE_CREATE_TIME_MICROSEC: 49904.12300000
EMSX_ROUTE_ID: 1
EMSX_ROUTE_LAST_UPDATE_TIME: 50083
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC: 50083.27600000
EMSX_ROUTE_PRICE: 162
EMSX_ROUTE_REF_ID: MyRouteRef2
EMSX_SEQUENCE: 4747928
EMSX_SETTLE_AMOUNT: 0
EMSX_SETTLE_DATE: 20200115
EMSX_STATUS: REPPEN
EMSX_STOP_PRICE: 0
EMSX_STRATEGY_END_TIME: 0
EMSX_STRATEGY_PART_RATE1: 0
EMSX_STRATEGY_PART_RATE2: 0
EMSX_STRATEGY_START_TIME: 0
EMSX_STRATEGY_STYLE:
EMSX_STRATEGY_TYPE:
EMSX_TIF: DAY
EMSX_TIME_STAMP: 49904
EMSX_TIME_STAMP_MICROSEC: 49904.12300000
EMSX_TRADE_REPORTING_INDICATOR:
EMSX_TRANSACTION_REPORTING_MIC:
EMSX_TYPE: MKT
EMSX_URGENCY_LEVEL: 0
EMSX_USER_COMM_AMOUNT: 0
EMSX_USER_COMM_RATE: 0
EMSX_USER_FEES: 0
EMSX_USER_NET_MONEY: 31943
EMSX_WAIVER_FLAG:
EMSX_WORKING: 302
EMSX_ROUTE_AS_OF_DATE: 20200113

ROUTE MESSAGE: CorrelationID(99) Status(4)
MESSAGE: OrderRouteFields = {

MSG_TYPE = "E"
MSG_SUB_TYPE = "R"
EMSX_SEQUENCE = 4747927
EMSX_ROUTE_ID = 2
EMSX_FILL_ID = 9
API_SEQ_NUM = 2
EVENT_STATUS = 4
EMSX_AMOUNT = 200
EMSX_AVG_PRICE = 161.330000
EMSX_BROKER = "BB"
EMSX_BROKER_COMM = 0.000000
EMSX_BSE_AVG_PRICE = 0.000000
EMSX_BSE_FILLED = 0
EMSX_BUYSIDE_LEI = ""
EMSX_CLIENT_IDENTIFICATION = ""
EMSX_COMM_RATE = 0.000000

(continues on next page)

124 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_CURRENCY_PAIR = ""
EMSX_DAY_AVG_PRICE = 161.330000
EMSX_DAY_FILL = 140
EMSX_EXCHANGE_DESTINATION = "ANY"
EMSX_EXEC_INSTRUCTION = "Work"
EMSX_FILLED = 140
EMSX_GPI = ""
EMSX_GTD_DATE = 0
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_LIMIT_PRICE = 0.000000
EMSX_MIFID_II_INSTRUCTION = ""
EMSX_NOTES = "Some notes"
EMSX_NSE_AVG_PRICE = 0.000000
EMSX_NSE_FILLED = 0
EMSX_ORDER_TYPE = "MKT"
EMSX_PERCENT_REMAIN = 30.000000
EMSX_PRINCIPAL = 22586.200000
EMSX_QUEUED_DATE = 0
EMSX_QUEUED_TIME = 0
EMSX_QUEUED_TIME_MICROSEC = 0.000000
EMSX_REASON_CODE = ""
EMSX_REASON_DESC = ""
EMSX_REMAIN_BALANCE = 60.000000
EMSX_ROUTE_PRICE = 162.785000
EMSX_SETTLE_AMOUNT = 0.000000
EMSX_SETTLE_DATE = 20200115
EMSX_STATUS = "PARTFILL"
EMSX_STOP_PRICE = 0.000000
EMSX_STRATEGY_END_TIME = 0
EMSX_STRATEGY_PART_RATE1 = 0.000000
EMSX_STRATEGY_PART_RATE2 = 0.000000
EMSX_STRATEGY_STYLE = ""
EMSX_STRATEGY_TYPE = ""
EMSX_TIF = "DAY"
EMSX_TIME_STAMP = 50313
EMSX_TIME_STAMP_MICROSEC = 50313.841000
EMSX_TYPE = "MKT"
EMSX_USER_COMM_AMOUNT = 0.000000
EMSX_USER_COMM_RATE = 0.000000
EMSX_USER_FEES = 0.000000
EMSX_USER_NET_MONEY = 22586.200000
EMSX_WORKING = 60
EMSX_APA_MIC = ""
EMSX_BROKER_LEI = ""
EMSX_BROKER_SI = ""
EMSX_BROKER_STATUS = ""
EMSX_CLEARING_ACCOUNT = ""
EMSX_CLEARING_FIRM = ""
EMSX_CUSTOM_ACCOUNT = ""
EMSX_EXECUTE_BROKER = ""
EMSX_IS_MANUAL_ROUTE = 0
EMSX_LAST_CAPACITY = ""
EMSX_LAST_FILL_DATE = 20200113
EMSX_LAST_FILL_TIME = 50443
EMSX_LAST_FILL_TIME_MICROSEC = 50443.877000
EMSX_LAST_MARKET = "N"
EMSX_LAST_PRICE = 161.330000

(continues on next page)

3.17. EMSX Subscription 125

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_LAST_SHARES = 20
EMSX_LEG_FILL_DATE_ADDED = 0
EMSX_LEG_FILL_PRICE = 0.000000
EMSX_LEG_FILL_SEQ_NO = 0
EMSX_LEG_FILL_SHARES = 0.000000
EMSX_LEG_FILL_SIDE = ""
EMSX_LEG_FILL_TICKER = ""
EMSX_MISC_FEES = 0.000000
EMSX_ML_ID = ""
EMSX_ML_LEG_QUANTITY = 200
EMSX_ML_NUM_LEGS = 0
EMSX_ML_PERCENT_FILLED = 70.000000
EMSX_ML_RATIO = 0.000000
EMSX_ML_REMAIN_BALANCE = -140.000000
EMSX_ML_STRATEGY = ""
EMSX_ML_TOTAL_QUANTITY = 0
EMSX_OTC_FLAG = ""
EMSX_P_A = ""
EMSX_ROUTE_AS_OF_DATE = 20200113
EMSX_ROUTE_AS_OF_TIME_MICROSEC = 50313.841000
EMSX_ROUTE_CREATE_DATE = 20200113
EMSX_ROUTE_CREATE_TIME = 50313
EMSX_ROUTE_CREATE_TIME_MICROSEC = 50313.841000
EMSX_ROUTE_LAST_UPDATE_TIME = 50443
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC = 50443.877000
EMSX_ROUTE_REF_ID = ""
EMSX_STRATEGY_START_TIME = 0
EMSX_TRADE_REPORTING_INDICATOR = ""
EMSX_TRANSACTION_REPORTING_MIC = ""
EMSX_URGENCY_LEVEL = 0
EMSX_WAIVER_FLAG = ""

}

API_SEQ_NUM: 2
EMSX_AMOUNT: 200
EMSX_APA_MIC:
EMSX_AVG_PRICE: 161
EMSX_BROKER: BB
EMSX_BROKER_COMM: 0
EMSX_BROKER_LEI:
EMSX_BROKER_SI:
EMSX_BROKER_STATUS:
EMSX_BSE_AVG_PRICE: 0
EMSX_BSE_FILLED: 0
EMSX_BUYSIDE_LEI:
EMSX_CLEARING_ACCOUNT:
EMSX_CLEARING_FIRM:
EMSX_CLIENT_IDENTIFICATION:
EMSX_COMM_DIFF_FLAG:
EMSX_COMM_RATE: 0
EMSX_CURRENCY_PAIR:
EMSX_CUSTOM_ACCOUNT:
EMSX_DAY_AVG_PRICE: 161
EMSX_DAY_FILL: 140
EMSX_EXCHANGE_DESTINATION: ANY
EMSX_EXEC_INSTRUCTION: Work
EMSX_EXECUTE_BROKER:

(continues on next page)

126 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_FILL_ID: 9
EMSX_FILLED: 140
EMSX_GPI:
EMSX_GTD_DATE: 0
EMSX_HAND_INSTRUCTION: ANY
EMSX_IS_MANUAL_ROUTE: 0
EMSX_LAST_CAPACITY:
EMSX_LAST_FILL_DATE: 20200113
EMSX_LAST_FILL_TIME: 50443
EMSX_LAST_FILL_TIME_MICROSEC: 50443.87700000
EMSX_LAST_MARKET: N
EMSX_LAST_PRICE: 161
EMSX_LAST_SHARES: 20
EMSX_LEG_FILL_DATE_ADDED: 0
EMSX_LEG_FILL_PRICE: 0.00000000
EMSX_LEG_FILL_SEQ_NO: 0
EMSX_LEG_FILL_SHARES: 0.00000000
EMSX_LEG_FILL_SIDE:
EMSX_LEG_FILL_TICKER:
EMSX_LEG_FILL_TIME_ADDED: 0
EMSX_LIMIT_PRICE: 0.00000000
EMSX_MIFID_II_INSTRUCTION:
EMSX_MISC_FEES: 0
EMSX_ML_ID:
EMSX_ML_LEG_QUANTITY: 200
EMSX_ML_NUM_LEGS: 0
EMSX_ML_PERCENT_FILLED: 70
EMSX_ML_RATIO: 0
EMSX_ML_REMAIN_BALANCE: -140
EMSX_ML_STRATEGY:
EMSX_ML_TOTAL_QUANTITY: 0
EMSX_NOTES: Some notes
EMSX_NSE_AVG_PRICE: 0
EMSX_NSE_FILLED: 0
EMSX_ORDER_TYPE: MKT
EMSX_OTC_FLAG:
EMSX_P_A:
EMSX_PERCENT_REMAIN: 30
EMSX_PRINCIPAL: 22586
EMSX_QUEUED_DATE: 0
EMSX_QUEUED_TIME: 0
EMSX_QUEUED_TIME_MICROSEC: 0.00000000
EMSX_REASON_CODE:
EMSX_REASON_DESC:
EMSX_REMAIN_BALANCE: 60
EMSX_ROUTE_AS_OF_DATE: 20200113
EMSX_ROUTE_AS_OF_TIME_MICROSEC: 50313.84100000
EMSX_ROUTE_CREATE_DATE: 20200113
EMSX_ROUTE_CREATE_TIME: 50313
EMSX_ROUTE_CREATE_TIME_MICROSEC: 50313.84100000
EMSX_ROUTE_ID: 2
EMSX_ROUTE_LAST_UPDATE_TIME: 50443
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC: 50443.87700000
EMSX_ROUTE_PRICE: 162
EMSX_ROUTE_REF_ID:
EMSX_SEQUENCE: 4747927
EMSX_SETTLE_AMOUNT: 0

(continues on next page)

3.17. EMSX Subscription 127

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_SETTLE_DATE: 20200115
EMSX_STATUS: PARTFILL
EMSX_STOP_PRICE: 0
EMSX_STRATEGY_END_TIME: 0
EMSX_STRATEGY_PART_RATE1: 0
EMSX_STRATEGY_PART_RATE2: 0
EMSX_STRATEGY_START_TIME: 0
EMSX_STRATEGY_STYLE:
EMSX_STRATEGY_TYPE:
EMSX_TIF: DAY
EMSX_TIME_STAMP: 50313
EMSX_TIME_STAMP_MICROSEC: 50313.84100000
EMSX_TRADE_REPORTING_INDICATOR:
EMSX_TRANSACTION_REPORTING_MIC:
EMSX_TYPE: MKT
EMSX_URGENCY_LEVEL: 0
EMSX_USER_COMM_AMOUNT: 0
EMSX_USER_COMM_RATE: 0
EMSX_USER_FEES: 0
EMSX_USER_NET_MONEY: 22586
EMSX_WAIVER_FLAG:
EMSX_WORKING: 60
EMSX_ROUTE_AS_OF_DATE: 20200113

ROUTE MESSAGE: CorrelationID(99) Status(4)
MESSAGE: OrderRouteFields = {

MSG_TYPE = "E"
MSG_SUB_TYPE = "R"
EMSX_SEQUENCE = 4747927
EMSX_ROUTE_ID = 1
EMSX_FILL_ID = 12
API_SEQ_NUM = 3
EVENT_STATUS = 4
EMSX_AMOUNT = 220
EMSX_AVG_PRICE = 161.330000
EMSX_BROKER = "BB"
EMSX_BROKER_COMM = 0.000000
EMSX_BSE_AVG_PRICE = 0.000000
EMSX_BSE_FILLED = 0
EMSX_BUYSIDE_LEI = ""
EMSX_CLIENT_IDENTIFICATION = ""
EMSX_COMM_RATE = 0.000000
EMSX_CURRENCY_PAIR = ""
EMSX_DAY_AVG_PRICE = 161.330000
EMSX_DAY_FILL = 220
EMSX_EXCHANGE_DESTINATION = "ANY"
EMSX_EXEC_INSTRUCTION = ""
EMSX_FILLED = 220
EMSX_GPI = ""
EMSX_GTD_DATE = 0
EMSX_HAND_INSTRUCTION = "ANY"
EMSX_LIMIT_PRICE = 0.000000
EMSX_MIFID_II_INSTRUCTION = ""
EMSX_NOTES = ""
EMSX_NSE_AVG_PRICE = 0.000000
EMSX_NSE_FILLED = 0
EMSX_ORDER_TYPE = "MKT"

(continues on next page)

128 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_PERCENT_REMAIN = 0.000000
EMSX_PRINCIPAL = 35492.600000
EMSX_QUEUED_DATE = 0
EMSX_QUEUED_TIME = 0
EMSX_QUEUED_TIME_MICROSEC = 0.000000
EMSX_REASON_CODE = ""
EMSX_REASON_DESC = ""
EMSX_REMAIN_BALANCE = 0.000000
EMSX_ROUTE_PRICE = 162.835000
EMSX_SETTLE_AMOUNT = 0.000000
EMSX_SETTLE_DATE = 20200115
EMSX_STATUS = "FILLED"
EMSX_STOP_PRICE = 0.000000
EMSX_STRATEGY_END_TIME = 0
EMSX_STRATEGY_PART_RATE1 = 0.000000
EMSX_STRATEGY_PART_RATE2 = 0.000000
EMSX_STRATEGY_STYLE = ""
EMSX_STRATEGY_TYPE = ""
EMSX_TIF = "DAY"
EMSX_TIME_STAMP = 49904
EMSX_TIME_STAMP_MICROSEC = 49904.074000
EMSX_TYPE = "MKT"
EMSX_USER_COMM_AMOUNT = 0.000000
EMSX_USER_COMM_RATE = 0.000000
EMSX_USER_FEES = 0.000000
EMSX_USER_NET_MONEY = 35492.600000
EMSX_WORKING = 0
EMSX_APA_MIC = ""
EMSX_BROKER_LEI = ""
EMSX_BROKER_SI = ""
EMSX_BROKER_STATUS = ""
EMSX_CLEARING_ACCOUNT = ""
EMSX_CLEARING_FIRM = ""
EMSX_CUSTOM_ACCOUNT = ""
EMSX_EXECUTE_BROKER = ""
EMSX_IS_MANUAL_ROUTE = 0
EMSX_LAST_CAPACITY = ""
EMSX_LAST_FILL_DATE = 20200113
EMSX_LAST_FILL_TIME = 50104
EMSX_LAST_FILL_TIME_MICROSEC = 50104.210000
EMSX_LAST_MARKET = "N"
EMSX_LAST_PRICE = 161.330000
EMSX_LAST_SHARES = 22
EMSX_LEG_FILL_DATE_ADDED = 0
EMSX_LEG_FILL_PRICE = 0.000000
EMSX_LEG_FILL_SEQ_NO = 0
EMSX_LEG_FILL_SHARES = 0.000000
EMSX_LEG_FILL_SIDE = ""
EMSX_LEG_FILL_TICKER = ""
EMSX_MISC_FEES = 0.000000
EMSX_ML_ID = ""
EMSX_ML_LEG_QUANTITY = 220
EMSX_ML_NUM_LEGS = 0
EMSX_ML_PERCENT_FILLED = 100.000000
EMSX_ML_RATIO = 0.000000
EMSX_ML_REMAIN_BALANCE = -220.000000
EMSX_ML_STRATEGY = ""

(continues on next page)

3.17. EMSX Subscription 129

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_ML_TOTAL_QUANTITY = 0
EMSX_OTC_FLAG = ""
EMSX_P_A = ""
EMSX_ROUTE_AS_OF_DATE = 20200113
EMSX_ROUTE_AS_OF_TIME_MICROSEC = 49904.074000
EMSX_ROUTE_CREATE_DATE = 20200113
EMSX_ROUTE_CREATE_TIME = 49904
EMSX_ROUTE_CREATE_TIME_MICROSEC = 49904.074000
EMSX_ROUTE_LAST_UPDATE_TIME = 50104
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC = 50104.210000
EMSX_ROUTE_REF_ID = "MyRouteRef1"
EMSX_STRATEGY_START_TIME = 0
EMSX_TRADE_REPORTING_INDICATOR = ""
EMSX_TRANSACTION_REPORTING_MIC = ""
EMSX_URGENCY_LEVEL = 0
EMSX_WAIVER_FLAG = ""

}

API_SEQ_NUM: 3
EMSX_AMOUNT: 220
EMSX_APA_MIC:
EMSX_AVG_PRICE: 161
EMSX_BROKER: BB
EMSX_BROKER_COMM: 0
EMSX_BROKER_LEI:
EMSX_BROKER_SI:
EMSX_BROKER_STATUS:
EMSX_BSE_AVG_PRICE: 0
EMSX_BSE_FILLED: 0
EMSX_BUYSIDE_LEI:
EMSX_CLEARING_ACCOUNT:
EMSX_CLEARING_FIRM:
EMSX_CLIENT_IDENTIFICATION:
EMSX_COMM_DIFF_FLAG:
EMSX_COMM_RATE: 0
EMSX_CURRENCY_PAIR:
EMSX_CUSTOM_ACCOUNT:
EMSX_DAY_AVG_PRICE: 161
EMSX_DAY_FILL: 220
EMSX_EXCHANGE_DESTINATION: ANY
EMSX_EXEC_INSTRUCTION:
EMSX_EXECUTE_BROKER:
EMSX_FILL_ID: 12
EMSX_FILLED: 220
EMSX_GPI:
EMSX_GTD_DATE: 0
EMSX_HAND_INSTRUCTION: ANY
EMSX_IS_MANUAL_ROUTE: 0
EMSX_LAST_CAPACITY:
EMSX_LAST_FILL_DATE: 20200113
EMSX_LAST_FILL_TIME: 50104
EMSX_LAST_FILL_TIME_MICROSEC: 50104.21000000
EMSX_LAST_MARKET: N
EMSX_LAST_PRICE: 161
EMSX_LAST_SHARES: 22
EMSX_LEG_FILL_DATE_ADDED: 0
EMSX_LEG_FILL_PRICE: 0.00000000

(continues on next page)

130 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_LEG_FILL_SEQ_NO: 0
EMSX_LEG_FILL_SHARES: 0.00000000
EMSX_LEG_FILL_SIDE:
EMSX_LEG_FILL_TICKER:
EMSX_LEG_FILL_TIME_ADDED: 0
EMSX_LIMIT_PRICE: 0.00000000
EMSX_MIFID_II_INSTRUCTION:
EMSX_MISC_FEES: 0
EMSX_ML_ID:
EMSX_ML_LEG_QUANTITY: 220
EMSX_ML_NUM_LEGS: 0
EMSX_ML_PERCENT_FILLED: 100
EMSX_ML_RATIO: 0
EMSX_ML_REMAIN_BALANCE: -220
EMSX_ML_STRATEGY:
EMSX_ML_TOTAL_QUANTITY: 0
EMSX_NOTES:
EMSX_NSE_AVG_PRICE: 0
EMSX_NSE_FILLED: 0
EMSX_ORDER_TYPE: MKT
EMSX_OTC_FLAG:
EMSX_P_A:
EMSX_PERCENT_REMAIN: 0
EMSX_PRINCIPAL: 35492
EMSX_QUEUED_DATE: 0
EMSX_QUEUED_TIME: 0
EMSX_QUEUED_TIME_MICROSEC: 0.00000000
EMSX_REASON_CODE:
EMSX_REASON_DESC:
EMSX_REMAIN_BALANCE: 0
EMSX_ROUTE_AS_OF_DATE: 20200113
EMSX_ROUTE_AS_OF_TIME_MICROSEC: 49904.07400000
EMSX_ROUTE_CREATE_DATE: 20200113
EMSX_ROUTE_CREATE_TIME: 49904
EMSX_ROUTE_CREATE_TIME_MICROSEC: 49904.07400000
EMSX_ROUTE_ID: 1
EMSX_ROUTE_LAST_UPDATE_TIME: 50104
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC: 50104.21000000
EMSX_ROUTE_PRICE: 162
EMSX_ROUTE_REF_ID: MyRouteRef1
EMSX_SEQUENCE: 4747927
EMSX_SETTLE_AMOUNT: 0
EMSX_SETTLE_DATE: 20200115
EMSX_STATUS: FILLED
EMSX_STOP_PRICE: 0
EMSX_STRATEGY_END_TIME: 0
EMSX_STRATEGY_PART_RATE1: 0
EMSX_STRATEGY_PART_RATE2: 0
EMSX_STRATEGY_START_TIME: 0
EMSX_STRATEGY_STYLE:
EMSX_STRATEGY_TYPE:
EMSX_TIF: DAY
EMSX_TIME_STAMP: 49904
EMSX_TIME_STAMP_MICROSEC: 49904.07400000
EMSX_TRADE_REPORTING_INDICATOR:
EMSX_TRANSACTION_REPORTING_MIC:
EMSX_TYPE: MKT

(continues on next page)

3.17. EMSX Subscription 131

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

EMSX_URGENCY_LEVEL: 0
EMSX_USER_COMM_AMOUNT: 0
EMSX_USER_COMM_RATE: 0
EMSX_USER_FEES: 0
EMSX_USER_NET_MONEY: 35492
EMSX_WAIVER_FLAG:
EMSX_WORKING: 0
EMSX_ROUTE_AS_OF_DATE: 20200113
Route - End of initial paint
O.
R.
O.
R.
Processing SESSION_STATUS event
Error: Session connection is down
Processing SESSION_STATUS event
Error: Session has been terminated
Ctrl+C pressed. Stopping...

3.18 EMSX History Request

EMSX history service provides individual fill information via request/response service. The service name is //blp/
emsx.history for production and //blp/emsx.history.uat for test environment.

Important: This service should not be used as a replacement for route subscription service to capture fills information
in real-time. Anyone found to abuse the service by making constant calls to the history service will be shutdown
permanently by Bloomberg.

A UUID’s fills are only available if any of the following criteria are met:

1. The user has at least one Export Fill profile in EMSI<GO>, or

2. The user belongs to a team that is setup for team fill export, or

3. The user is an EMSX API user and has EMSX API access turned on in EMSS<GO> setting.

Unlike the EMSX API service //blp/emapisvc and //blp/emapisvc_beta, the history service supports
PARTIAL_RESPONSE events. The PARTIAL_RESPONSE event messages will return messages that are a subset of
the information.

The EMSX history service goes back up to 30 days in history.

Note: Please note this service will not be available as part of //blp/emapisvc or //blp/emapisvc_beta
service.

Unlike the //blp/emapisvc and //blp/emapisvc_beta service, //blp/emsx.history and //blp/
emsx.history.uat service uses semi-camel character for the element names.

Important: Please note that the timezone of this service will always be in US EST timezone for the fills regardless
of the TZDF setting for the UUID.

132 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

Please note that EMSX History should never be used as a replacement for route subscription for real-time fills and
updates to routes.

Element Description
Account Trading account used in EMSX<GO>
Amount Total quantity of the order
AssetClass Asset class of the order
BasketId ID of the basket
BasketName Name of the basket
BBGID BBGID field
BlockId Block ID
Broker Executing broker name
BrokerExceId Broker Execution ID
BrokerOrderId Broker Order ID
ClearingAccount Clearing account detail
ClearingFirm Clearing firm detail
ContractExpDate Contract expiration date
CorrectedFillId Corrected fill ID
Currency Currency
Cusip CUSIP
DateTimeOfFill Date and time of the fill
Exchange Exchange details
ExecPrevSeqNo Previous sequence number of execution
ExecType Execution type details (FILL,CANCEL,CORRECT and DFD)
ExecutingBroker Executing broker details
FillId ID of the fill
FillPrice Price of the fill
FillShares Number of share of the fill
InvestorID Investor ID detail
IsCfd CFD flag
Isin ISIN detail
IsLeg Is leg
LastCapacity Last capacity field in EMSX<GO>
LastMarket Last market detail
LimitPrice Limit price detail
Liquidity Last liquidity indicator 1,2,3,M,T,A [definition].
LocalExchangeSymbol Local exchange symbol
LocateBroker Locate broker detail
LocateId Locate ID
LocateRequired Flag to indicate whether or not short locate is required
MifidAggrFlag Aggregation flag for MiFID II
MifidBuysideLei Legal entity identifier in MiFID II for the buy-side
MifidGpi Global personal identifier in MiFID II
MifidIsSi Flag to indiciate systematic internalizer in MiFID II
MifidSellsideApaMic Sell-side Approved Publication Arrangment (APA) Market Identifier Code (MIC)
MifidSellsideLei Legal entity identifier in MiFID II for the sell-side
MifidSellsideOtcFlag Sell-side OTC flag
MifidSellsideSiMic Sell-side systematic internalizer MIC
MifidSellsideTri
MifidSellsideTriMic

Continued on next page

3.18. EMSX History Request 133

emsx_api_doc Documentation, Release 2.1.0

Table 2 – continued from previous page
Element Description
MifidSellsideWaiverFlag Sell-side waiver flag for MiFID II
MifidTradeInstr Trade instruction for MiFID II
Mpid
MultilegId Multileg ID
NyOrderCreateAsOfDateTime NY order create as of datetime
NyTranCreateAsOfDateTime NY transaction create as of datetime
OCCSymbol OCC symbol
OrderExecutionInstruction Order execution instruction detail
OrderHandlingInstruction Order handling instruction detail
OrderId Order ID
OrderInstruction Order instruction detail
OrderOrigin Order origin detail
OrderReferenceId Order reference ID detail
OriginatingTraderUuid UUID of the originating trader
ReroutedBroker Rerouted broker details
RouteCommissionAmount Commission amount of the route
RouteCommissionRate Commission rate of the route
RouteExecutionInstruction Route execution instruction
RouteHandlingInstruction Route handling instruction
RouteId Route ID
RouteNetMoney Route net money
RouteNotes Route instructions
RouteShares Route shares
SecurityName Security name detail
Sedol SEDOL
SettlementDate Settlement date detail
Side Side
StopPrice Stop Price
StrategyType Strategy Type
Ticker Ticker
TIF Time in Force
TraderName Name of the trader
TraderUuid Bloomberg UUID of the trader
Type Order type
UserCommissionAmount User commission amount
UserCommissionRate User commission rate
UserFees User fee detail
UserNetMoney User net money detail
YellowKey Bloomberg yellow key field detail

Full code sample:-

EMSX History cpp EMSX History cs EMSX History vba
EMSX History java EMSX History py

Hint: Please right click on the top code sample link to open in a new tab.

Specify service name and host/port :-

134 Chapter 3. Programmable EMSX API

https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%2B%2B/EMSXHistory.cpp
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_C%23/EMSXHistory.cs
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_VBA/EMSXHistory.cls
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Java/EMSXHistory.java
https://github.com/tkim/emsx_api_repository/blob/master/EMSXFullSet_Python/EMSXHistory.py

emsx_api_doc Documentation, Release 2.1.0

d_service="//blp/emsx.history.uat"
d_host="localhost"
d_port=8194
bEnd=False

Connect and create a session object:-

class SessionEventHandler():

def processEvent(self, event, session):
try:

if event.eventType() == blpapi.Event.SESSION_STATUS:
self.processSessionStatusEvent(event,session)

elif event.eventType() == blpapi.Event.SERVICE_STATUS:
self.processServiceStatusEvent(event,session)

elif event.eventType() == blpapi.Event.RESPONSE or event.eventType() ==
→˓blpapi.Event.PARTIAL_RESPONSE:

self.processResponseEvent(event)

else:
self.processMiscEvents(event)

except blpapi.Exception as e:
print "Exception: %s" % e.description()

return False

Set elements (e.g. UUID, team name, and Date/Time range):-

service = session.getService(d_service)

request = service.createRequest("GetFills")

request.set("FromDateTime", "2017-02-08T00:00:00.000+00:00")
request.set("ToDateTime", "2017-02-11T23:59:00.000+00:00")

scope = request.getElement("Scope")

#scope.setChoice("Team")
#scope.setChoice("TradingSystem")
scope.setChoice("Uuids")

#scope.setElement("Team", "TEAM1")
#scope.setElement("TradingSystem",false)

scope.getElement("Uuids").appendValue(8049857)

'''
scope.getElement("Uuids").appendValue(14348220);
scope.getElement("Uuids").appendValue(8639067);
scope.getElement("Uuids").appendValue(4674574);
'''

Process response events:-

def processResponseEvent(self, event):

(continues on next page)

3.18. EMSX History Request 135

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

print "Processing RESPONSE event"

for msg in event:

if msg.correlationIds()[0].value() == self.requestID.value():
print "MESSAGE TYPE: %s" % msg.messageType()

if msg.messageType() == ERROR_INFO:
errorCode = msg.getElementAsInteger("ERROR_CODE")
errorMessage = msg.getElementAsString("ERROR_MESSAGE")
print "ERROR CODE: %d\tERROR MESSAGE: %s" % (errorCode,errorMessage)

elif msg.messageType() == GET_FILLS_RESPONSE:

Output:-

C:\Users_scripts>py -3 EMSXHistory.py
Bloomberg - EMSX API Example - EMSXHistory
Connecting to localhost:8194
Processing SESSION_STATUS event
SessionConnectionUp = {

server = "localhost:8194"
encryptionStatus = "Clear"

}

Processing SESSION_STATUS event
Session started...
Processing SERVICE_STATUS event
Service opened...
Request: GetFills = {

FromDateTime = 2019-10-01T00:00:00.000+00:00
ToDateTime = 2020-01-13T23:59:00.000+00:00
Scope = {

Uuids[] = {
12345678

}
}

}

Processing RESPONSE event
MESSAGE TYPE: GetFillsResponse
Date: 2019-12-12T11:35:02.674-05:00
Fill ID: 3 OrderId: 4733965 RouteId: 1
Ticker: FB Asset Class: Equity Yellow Key: Equity
Shares: 50 Price: 202.240000 Broker: BMTB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 10112
Basket ID: 0 Currency: USD Multileg ID:
Account: testAccount LocateId: LocateBroker: False
→˓OCCSymbol:
Date: 2019-12-12T11:50:02.717-05:00
Fill ID: 4 OrderId: 4733965 RouteId: 1
Ticker: FB Asset Class: Equity Yellow Key: Equity
Shares: 50 Price: 202.240000 Broker: BMTB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 20224
Basket ID: 0 Currency: USD Multileg ID:
Account: testAccount LocateId: LocateBroker: False
→˓OCCSymbol:
Date: 2019-12-12T12:05:02.758-05:00

(continues on next page)

136 Chapter 3. Programmable EMSX API

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Fill ID: 5 OrderId: 4733965 RouteId: 1
Ticker: FB Asset Class: Equity Yellow Key: Equity
Shares: 50 Price: 202.240000 Broker: BMTB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 30336
Basket ID: 0 Currency: USD Multileg ID:
Account: testAccount LocateId: LocateBroker: False
→˓OCCSymbol:
Date: 2019-12-12T12:20:02.799-05:00
Fill ID: 6 OrderId: 4733965 RouteId: 1
Ticker: FB Asset Class: Equity Yellow Key: Equity
Shares: 50 Price: 202.240000 Broker: BMTB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 40448
Basket ID: 0 Currency: USD Multileg ID:
Account: testAccount LocateId: LocateBroker: False
→˓OCCSymbol:
Date: 2019-12-12T12:35:02.841-05:00
Fill ID: 7 OrderId: 4733965 RouteId: 1
Ticker: FB Asset Class: Equity Yellow Key: Equity
Shares: 50 Price: 202.240000 Broker: BMTB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 50560
Basket ID: 0 Currency: USD Multileg ID:
Account: testAccount LocateId: LocateBroker: False
→˓OCCSymbol:
Date: 2019-12-12T12:50:02.881-05:00
Fill ID: 8 OrderId: 4733965 RouteId: 1
Ticker: FB Asset Class: Equity Yellow Key: Equity
Shares: 50 Price: 202.240000 Broker: BMTB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 60672
Basket ID: 0 Currency: USD Multileg ID:
Account: testAccount LocateId: LocateBroker: False
→˓OCCSymbol:
Date: 2019-12-12T13:05:02.923-05:00
Fill ID: 9 OrderId: 4733965 RouteId: 1
Ticker: FB Asset Class: Equity Yellow Key: Equity
Shares: 50 Price: 202.240000 Broker: BMTB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 70784
Basket ID: 0 Currency: USD Multileg ID:
Account: testAccount LocateId: LocateBroker: False
→˓OCCSymbol:
Date: 2020-01-13T14:01:23.880-05:00
Fill ID: 11 OrderId: 4747927 RouteId: 2
Ticker: MSFT Asset Class: Equity Yellow Key: Equity
Shares: 20 Price: 161.330000 Broker: BB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 29039
Basket ID: 0 Currency: USD Multileg ID:
Account: LocateId: LocateBroker: False OCCSymbol:
Date: 2020-01-13T14:01:53.882-05:00
Fill ID: 12 OrderId: 4747927 RouteId: 2
Ticker: MSFT Asset Class: Equity Yellow Key: Equity
Shares: 20 Price: 161.330000 Broker: BB CFD: False
Commission: 0 Commission Rate: 0 Fees: 0 Net Money: 32266
Basket ID: 0 Currency: USD Multileg ID:
Account: LocateId: LocateBroker: False OCCSymbol:
Processing SESSION_STATUS event
SessionConnectionDown = {

server = "localhost:8194"
}

(continues on next page)

3.18. EMSX History Request 137

emsx_api_doc Documentation, Release 2.1.0

(continued from previous page)

Processing SESSION_STATUS event
SessionTerminated = {
}

138 Chapter 3. Programmable EMSX API

CHAPTER 4

MiFID II

In preparation for the MiFID II, Bloomberg EMSX API is enhancing its workflow to provide clients with the needed
data and solutions to fulfill MiFID II obligations (Trade reporting, Transaction reporting, best execution and order
record keeping). Bloomberg EMSX API as part of Bloomberg EMSX will connect to Bloomberg RHUB to support
client’s regulatory obligations through a centralized access for ARM, APA, ORK (Bvault) and best execution (BTCA).

MiFID II Field Names Type
EMSX_BUYSIDE_LEI String
EMSX_BROKER_LEI String
EMSX_TRADE_REPORTING_INDICATOR String
EMSX_TRANSACTION_REPORTING_MIC String
EMSX_APA_MIC String
EMSX_OTC_FLAG String
EMSX_WAIVER_FLAG String
EMSX_LAST_CAPACITY String
EMSX_CLIENT_IDENTIFICATION String
EMSX_SI Bool
EMSX_MIFID_II_INSTRUCTION String
EMSX_BROKER_SI String
EMSX_ROUTE_CREATE_TIME_MICROSEC Float64
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC Float64
EMSX_TIME_STAMP_MICROSEC Float64
EMSX_QUEUED_TIME_MICROSEC Float64
EMSX_LAST_FILL_TIME_MICROSEC Float64
EMSX_GPI String

New time stamp elements:-

EMSX_ROUTE_CREATE_TIME_MICROSEC EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC
EMSX_TIME_STAMP_MICROSEC EMSX_QUEUED_TIME_MICROSEC
EMSX_LAST_FILL_TIME_MICROSEC

139

emsx_api_doc Documentation, Release 2.1.0

Important: The new timestamps for the new elements are only microseconds if they extend out to full digits. (e.g.
0.000001)

Please note that all microsecond timestamp is in float64 type, [second].[microsecond] format.

From time to time they will be printed to the millisecond precision in cases when the microsecond timestamp from the
back-end is not available. (e.g. 0.001)

New requests with the MiFID II elements:-

CreateOrder CreateOrderAndRouteEx
GroupRouteRequestEx ManualFill
ManualRouteEx ModifyOrderRequestEx
ModifyTheRouteRequestEx RouteOrderRequestsEx

Order subscription with the MiFID II elements:-

EMSX_BUYSIDE_LEI EMSX_CLIENT_IDENTIFICATION
EMSX_GPI EMSX_MIFID_II_INSTRUCTION
EMSX_QUEUED_TIME_MICROSEC EMSX_SI
EMSX_TIME_STAMP_MICROSEC

Route subscription with the MiFID II elements:-

EMSX_APA_MIC EMSX_BUYSIDE_LEI
EMSX_BROKER_LEI EMSX_BROKER_SI
EMSX_CLIENT_IDENTIFICATION EMSX_GPI
EMSX_LAST_CAPACITY EMSX_LAST_FILL_TIME_MICROSEC
EMSX_MIFID_II_INSTRUCTION EMSX_OTC_FLAG
EMSX_QUEUED_TIME_MICROSEC EMSX_ROUTE_CREATE_TIME_MICROSEC
EMSX_ROUTE_LAST_UPDATE_TIME_MICROSEC EMSX_TRADE_REPORTING_INDICATOR
EMSX_TRANSACTION_REPORTING_MIC EMSX_TIME_STAMP_MICROSEC
EMSX_WAIVER_FLAG

Note: MiFID II acrynom definitions can be found in Glossary section of the document.

140 Chapter 4. MiFID II

http://emsx-api-doc.readthedocs.io/en/latest/glossary.html

CHAPTER 5

IOI API Service

The IOI API Server provides Bloomberg users with the ability to both publish and listen to the indication of interest
messages. (IOI)

The IOI API Server allows sell-sides to publish their IOI messages into Bloomberg and for buy-sides and others to
subscribe to the IOI messages from Bloomberg.

The IOIs consists of Equities and Derivatives and this utilizes the same Bloomberg API 3.0 as EMSX API to automate
the publishing and subscribing the indication of interest messages.

More details can be found on the following URL:

http://ioi-api-doc.readthedocs.io/en/latest/

141

http://ioi-api-doc.readthedocs.io/en/latest/

emsx_api_doc Documentation, Release 2.1.0

142 Chapter 5. IOI API Service

CHAPTER 6

FAQ

6.1 General FAQ

• What is a session? Sessions are logical data stream connections and the EMSX API supports failover betweeen
physical connections. During this failover, EMSX API will handle re-subscriptions for the end application.

If you are using multiple bloomberg API services, it is recommended to use separate sessions to avoid
delaying a fast stream with slow one. For most design, it’s best to have separte session for real-time data
vs. EMSX API or reference data service.

• Should I open and close sessions as needed? No, typically opening and closing a session is expensive for both
the client’s application and for Bloomberg back-end and thus unnecessary for most application designs
while using EMSX API.

• How do I specify a ticker? The EMSX_TICKER field should be specified either as a FIGI, or as a full
parsekeyable value, including security, exchange and asset class, e.g.: “IBM US Equity”. Failure to pro-
vide an explicit value can lead to unpredictable behaviour.

• Why can I not subscribe using ticker and fields like other APIs? The EMSX service only allows users to
subscribe to their own Orders and Routes (placements). Most applications will use only two subscrip-
tions, one for Orders and one for Routes (placements). A list of EMSX fields is required when creating the
subscriptions.

• Why can’t I see my orders and or routes in EMSX? The most common cause is that the user is connected to
the BETA machines on the API side, whilst using the PROD machine on the terminal. Switching one of
these will normally resolve the problem.

• What happens when I subscribe to route level element on the topic string of my order subscription and vice versa?
Your subscription will fail and will generate error similar to the following:

reason = {
errorCode = 3
description = "Invalid field passed in: Field=|EMSX_MOD_PEND_STATUS|"
category = "-13"

}

143

emsx_api_doc Documentation, Release 2.1.0

• How do I connect to the BETA machine of the terminal? Use the function DGRT Y087<GO> on the termi-
nal, followed by EMSX<GO>. This will connect that terminal window to the EMSX BETA machine.
Please note that this only applies to that particular terminal window only. To return to PROD system on
the terminal, type DGRT OFF<GO>

• How do I connect to PROD or BETA in the API? Two separate services are provided. These are //blp/
emapisvc (PROD) and //blp/emapisvc_beta (TEST)

• How do I match my requests to responses? This is done in the same was as for other Bloomberg API ser-
vices, with the use of CorrelationID.

• What broker or simulator do I use? When first enabled for BETA access, client will generally be enabled for
BMTB or other internal Bloomberg simulator codes. A new development broker has recently been added
called the API. To be enabled for other brokers in the LIVE environment, clients should contact the EMSX
Help Desk.

• How do I test my application with these simulators? Test brokers (BB, BMTB, EFIX and API) are auto-
mated systems that respond a request in a predetermined way, based on the specified security in the request.
Each test broker has a set of documented behaviors that clients can take advantage of to create test cases.
These documents are currently provided on request.

• Why am I not seeing events that affect my Routes? This is normally caused by only having a subscription
for Orders. A separate subscription is needed for route messages when using our programmable interface.

• Why am I still seeing orders that I deleted or have completed? Orders that were manually deleted, or com-
pleted in a previous session, will continue to transmit on the order. Check the EMSX_STATUS of the
returned message to confirm if this is a live order. These orders will cease to report between 24 and 48
hours after they are deleted depending on the nature of the order.

• Why is the value of a field returned as blank / zero? This normally means that the user has not subscribed to
that field in the original subscription. This can also mean that the user did not subscribe to the filed in the
first place or is requesting for a static field.

• Why is a field not being returned? Some fields are specific to either Orders or Routes. You cannot subscribe
to an Order field in the Route subscription and vice versa.

The type of message will also dictate which fields will be returned. For NEW_ORDER_ROUTE and
INIT_PAINT messages, all fields will be returned. However, for UPD_ORDER_ROUTE, the user will
only receive a small number of static fields along with all those fields deemed to be ‘dynamic’, meaning
they can change during the lifetime of the order or route.

This is one of the reasons as why the user is encouraged to maintain their own image of and order or route
within their application.

• How do I receive Fill messages? Currently, the easiest way to track individual fills is to use the //blp/
emsx.history service using request/response service calls.

However, please do not use this as a replacement for the route subscription. Anyone constantly calling the
history service and abusing the history service will be shut down by Bloomberg.

The other option is to use the route subscription service. Each individual fill events will generate a
UPD_ORDER_ROUTE the message, with the applicable changes to the order and route data.

• I do not see the fill information for one of my team member when I call the history service using team name.
A UUID’s fills are only stored if any of the following criteria are met:

1. The user has at least one Export Fill profile in EMSI<GO>, or

2. The user belongs to a team that is setup for team fill export, or

3. The user is an EMSX API user, i.e., EMSS<GO> internal settings show “Enable EMSX API” to be
true.

144 Chapter 6. FAQ

https://emsx-api-doc.readthedocs.io/en/latest/programmable/emsxSubscription.html#description-of-fills-using-route-subscription

emsx_api_doc Documentation, Release 2.1.0

If the above criteria are not met, there will be no fills data history service can call to export.

• How do I route a complete basket? The term basket here is defined as a way to send the entire group of order
into a single basket to a broker destination or to a broker algorithm, which supports basket. The term
basket here is not intended for those who want to tie a particular group of orders into a trading strategy.

Currently routing a basket is a two-step process in EMSX API. First, the user will need to use
CreateOrder request to create the order and include the EMSX_BASKET_NAME in the field. To
route the order, the user can use either GroupRouteEx or GroupRouteWithStrat and include the
EMSX_SEQUENCE number inside the array.

If the user misses an EMSX_SEQUENCE number inside the specified basket, the particular missing order
will not be sent as part of the basket. This is the same logic used on EMSX<GO> for basket creation and
basket submission.

• How long do DAY orders and complete orders stay on the blotter and in the API?** (Status = 8) In the
old logic, the DAY orders stayed 4 hours after the exchange closed. The new logic is to extend this to 8
hours after the exchange closed. Expired orders are deleted after 2 days. For expired orders, when user
gets INIT_PAINT, the will get updates for those expired orders with status=8.

For partially filled orders delete will modify amount down to the filled amount and that order will not
disappear and will be treated as a filled order. The Excel Add-In currently removes anything in the blotter
with Status=8.

• Why do I get “Internal error. Please contact customer support”? Unfortunately, this is a generic error mes-
sage, which can be caused by a number of reasons. However, the most common is that the user has failed
to provide a mandatory field with a request.

• Why do I get “Customer ABCDE is not validated for ETORSA”? Client must sign a Bloomberg Electronic
Trading & Order Routing Service Agreement before they can be enabled for EMSX API access.

• Why do I get “User ABCDE is not permitted for the API”? EMSX Help Desk must enable users for EMSX
API access via EMSS.

• Why do I get “User NOT Enabled to route to this broker by EOR (ENAB).”? Users must be enabled for
specific brokers. This is done by EMSX Help Desk support for internal simulator codes and by the broker
for their own production codes.

• I am enabled but I get a red bar on the bottom when I click on the EMSX button.

This is usually due to the following issues.

– BBCOMM failed to establish a session. For this please see the next section on restarting BB-
COMM

– The ETORSA/FIET paperwork is not in file. Every EMSX API user’s firm will need to sign
ETORSA and or FIET before using the EMSX API. Please click Help Help in EMSX<GO> and
have the Trade Desk personnel check for this legal check.

– The desktop prevents any third party WPF components from running. This is usually tied into the
PC’s image. This will usually cause an exception in the System.Windows.Media.Composition li-
brary. This will usually require reinstall of .NET 3.5 SP1, hardware display drivers, and DirectX
libraries.

• How do I restart bbcomm?

– Close all instances of Excel, Word and PowerPoint.

– Open task manager and kill bxlaui.exe and bxlartd.exe.

– Open a command prompt and type bbstop

6.1. General FAQ 145

emsx_api_doc Documentation, Release 2.1.0

– In the same command prompt, type the command bbcomm. BBCOMM should report that it is running
successfully and should not return.

• How do I regenerate apiregistry.ini file?

Open regedit from RUN window and Clear the “APIRegistryCRC32” registry value lo-
cated at “HKEY_LOCAL_MACHINESOFTWAREBloomberg L.P.Office ToolsSettings” or
“HKEY_LOCAL_MACHINESOFTWAREWow6432NodeBloomberg L.P.Office ToolsSettings” on
Windows 7.

• How do I modify GTD to day order? Set EMSX_GTD_DATE to “-1” or -1 or any negative GTD date will reset
the order to day order.

• How do I modify or reset the stop price of an order? Set EMSX_STOP_PRICE to “-1” or -1

• How do I reset my order from Limit to Market? EMSX_LIMIT_PRICE = -99999 is only required
when modifying from LMT to something else

• How do I set 0 limit price for futures spread orders? EMSX_LIMIT_PRICE = -99999 needs to be set,
otherwise the 0 limit price will be ignored.

• How is EMSX_RELEASE_TIME used? EMSX_RELEASE_TIME is in HH:MM format. For the API it is de-
faulted to the exchange time. This only works on requests that are routable from EMSX API. Thus, it
will not work on CreateOrder request. Since the field is an integer, it should be forammted as 1101 for
11:01.

• Are EMSX_TICKER and EMSX_SIDE elements always available on the subscription service? No, any
fields that are static are not always returned.

• Can update events come before the INITIAL_PAINT or new event? Yes, this wasn’t the original intention,
however, due to current EMSX back-end, the update Event Status = 7 messages can come before
INITIAL_PAINT Event Status=4 or New Event Status = 6

• Are INITIAL_PAINT messages always first? No, you can receive any route messages before the order mes-
sage with INITIAL_PAINT.

• Is there any downtime for EMSX API service? Yes, generally for EMSX services, it is down during machin
maintenance on Saturday from 1pm to 5pm Eastern Standard Time. For API routers, the routers are turned
from Sunday US between 9am-1pm US Eastern Standard Time. During the weekend turnaround, services
are down during this time time and there will be no access to the service. The dependencies here are on
the the machines the services resides and not the service itself.

• Is there a community project based on EMSX API? Yes, there is a MIT licensed community project. It’s
called EasyMSX.

146 Chapter 6. FAQ

https://easymsx.readthedocs.io/en/latest/

CHAPTER 7

Glossary

AIM Bloomberg Asset and Investment Manager (OMS).

APA Approved Publication Arrangement in MiFID II.

API Application Programming Interface. The definition of the way in which two applicaitons can communciate with
each other.

Authentication The act of identifying and ahtorizing the user when creating their identity.

BAMS The Bloomberg Appliance Management System that enables the real-time monitoring of Bloomberg appli-
ances (servers).

Bloomberg API The Application Programming Interface (API) provided by Bloomberg that allows developers to
access data services from within custom built appliations written in C, C++, Java, .Net languages (C#, VB and
etc.), Python and Excel VBA

Bloomberg App Portal The storefront within the Bloomberg terminal that allows clients to download applications to
run within the Bloomberg launchpad.

COM Control Microsoft Component Object Model (COM) is a platform-independent, distributed, object-oriented
system for creating binary software components that can interact. For EMSX API, this is a style of library used
for Excel.

EMS A generic term for execution management system.

E2E EMSX-to-EMSX. A specific arrangement where both the buy-side and the sell-side are using EMSX<GO>.

EMSX<GO> Bloomberg Execution Management System (EMS) for equities, futures and options.

EMSxNET FIX network offering from Bloomberg that allows clients to transmit data in the FIX protocol across
Bloomberg network infrastructure.

GPI Global Personal Identifier in MiFID II.

LEI Legal Entity Identifier in MiFID II.

LMNU terminal The limited functionality terminal. There are temporary terminals provided to clients for specific
task. For EMSX API, the LMNU needed is 20025.

Market Data The market data service of Bloomberg API: //blp/mktdata

147

emsx_api_doc Documentation, Release 2.1.0

MIC Market Identifier Code.

Non-BPS Any user who does not use a Bloomberg terminal, but has access to the Bloomberg API.

OMS A generic term for order management system.

Placement Creating a route in EMSX<GO> is essentially a buy-side placement to the market. Going forward we will
refer all placement as routes in the documentation.

Reference Data The reference data service of the Bloomberg API: //blp/refdata

Route Technically route refers to orders being submitted from the execution brokers to exchanges. EMSX<GO> uses
the term route to mean placement.

Server-Side Application Server-side refers to operations that are performed by the server and not by the desktop such
as PC.

Service Refers to the different types of data connections available via the Bloomberg API. Each service has its own
schema that describes what can be done, and what data fields are available to the application, For example,
market data, reference data, EMSX API, and etc.

SI Systematic Internalizer in MiFID II.

SLA Service level agreement

WAPI<GO> The Bloomberg terminal function where the user can download the SDK for Bloomberg API.

148 Chapter 7. Glossary

Bibliography

[definition] 1=Added, 2=Removed, 3=Routed out, M=Maker, T=Taker, R=Rerouted, A=Auction

149

	Introduction
	Support
	EMSX API Code Samples
	EMSX API access from Microsoft Excel (COM)
	EMSX API access from MATLAB
	EMSX API access from R

	Server Side EMSX API
	Creating User Identities
	Using User Identities
	Server Side Request/Response
	How to install serverapi.exe
	Linux Environment
	Windows Environment

	Programmable EMSX API
	EMSX Features
	EMSX Teams
	EMSX Element Definitions
	EMSX Element Definition (A to M)
	Multi-Leg Element Definition
	EMSX Element Definition (N to Z)
	Accessing the Test Environment
	API Demo Tool
	Order State Diagram
	Route State Diagram
	EMSX API Schema
	EMSX API History Service Schema
	Session Object
	EMSX API & Correlation ID

	Description of Request/Response Service
	Buy-Side Request/Response Service
	Sell-Side Request/Response Service
	CFD & Odd Lot Flag
	Date & Time Format
	Custom Notes & Free Text Fields

	Buy-Side Request/Response Service
	Assign Trader Request
	Broker Spec Request
	Cancel Order Extended Request
	Cancel Route Extended Request
	Create Basket Request
	Create Order Request
	Create Order and Route Extended Request
	Create Order And Route Manually Request
	Delete Order Request
	Get All Field Metadata Request
	Get Broker Strategies with Asset Class Request
	Get Broker Strategy Info with Asset Class Request
	Get Brokers with Asset Class Request
	Get Field Metadata Request
	Get Teams Request
	Get Trade Desks Request
	Get Traders Request
	Group Route Extended Request
	Group Route Extended Request - Multi-Leg Options
	Group Route Extended Request - Route As Spread
	Manual Fill Request
	Modify Order Extended Request
	Modify Route Extended Request
	Route Extended Request
	Route Manually Extended Request

	Sell-Side Request/Response Service
	Manual Fill Request
	Sell Side Ack Request
	Sell Side Reject Request

	EMSX Subscription
	Description of Subscription Messages
	Description of Event Status Messages
	Description of Order Status Messages
	Description of the Child Route Status Messages
	Description of the Child Route Status Changes
	Description of Fills using Route Subscription
	Description of Order Expiration Logic
	Description of Route Expiration Logic

	EMSX History Request

	MiFID II
	IOI API Service
	FAQ
	General FAQ

	Glossary
	Bibliography

