

EMMAA: Ecosystem of Machine-maintained models with Automated Analysis

	EMMAA Architecture and Approach
	Model Assembly and Updates
	Cancer types of interest

	Model availability

	Defining model scope

	Deriving relevant terms for a given type of cancer

	Updating the network

	Machine-reading

	Automated incremental assembly

	Meta-Model
	Initial specification of annotation guidelines

	EMMAA currently supports “does X…” queries for PySB models

	Annotations required for “what if” queries

	Annotations required for open-ended “relevance” queries

	Model Testing and Analysis
	Model test cycle deployed on AWS

	Test conditions generated automatically

	General EMMAA model testing framework

	Model queries from users

	Pre-registered queries and notifications

	Model Analysis Query Language
	Structural properties with constraints

	Path properties with constraints

	Simple intervention properties

	Comparative intervention properties

	EMMAA Dashboard
	EMMAA Models Page
	Link to statement details

	Model Tab

	Tests Tab

	Papers Tab

	Curation Tab

	Load Previous State of Model

	EMMAA Statement Evidence Page

	EMMAA All Statements Page

	EMMAA Individual Paper Page

	EMMAA Model Queries
	Which query type do I need?

	Source-target paths queries

	Source-target dynamics queries

	Temporal properties queries

	Up/down-stream paths queries

	Waiting for results

	Logging In and Registering a User

	Subscribing to a Query

	Email Notifications of Subscribed Queries

	Failing test/query result interpretation

	EMMAA Detailed Test or Query Results
	Results for Different Model Types

	Non-passing Tests

	Walkthrough tutorial
	1. Visit the EMMAA Dashboard

	2. (Optional) Register and log in

	3. Explore the COVID-19 Model page

	4. Examine and curate statement evidences

	5. Browse all statements in the model

	6. Examine drug-virus effect explanations

	7. Drill-down into explanation results

	8. Browse the model from the perspective of papers

	9. Query the model to find source-target paths

	10. Query the model to find upstream regulator paths

	11. Chat with a machine assistant about the COVID-19 model

	12. Follow the COVID-19 EMMAA model on Twitter

	EMMAA modules reference
	EMMAA Statement (emmaa.statements)

	EMMAA Model (emmaa.model)

	EMMAA Model Test Framework (emmaa.model_tests)

	Analyze model test results (emmaa.analyze_tests_results)

	Query classes (emmaa.queries)

	Process model queries (emmaa.answer_queries)

	Priors (emmaa.priors)
	Literature Prior (emmaa.priors.literature_prior)

	TCGA Cancer Prior (emmaa.priors.cancer_prior)

	Gene List Prior (emmaa.priors.gene_list_prior)

	Reactome Prior (emmaa.priors.reactome_prior)

	Querying Prior Statements (emmaa.priors.prior_stmts)

	Readers (emmaa.readers)
	AWS reader (emmaa.readers.aws_reader)

	INDRA DB client reader (emmaa.readers.db_client_reader)

	EMMAA’s Database (emmaa.db)
	The Database Schema (emmaa.db.schema)

	Database Manager (emmaa.db.manager)

	AWS model update and testing pipeline (emmaa.aws_lambda_functions)

	xDD client

	EMMAA’s Subscription Service (emmaa.subscription)
	Notifications functions (emmaa.subscription.notifications)

	Email Service (emmaa.subscription.email_service)

	Email Utilities (emmaa.subscription.email_util)

	Utilities (emmaa.util)

	Functions for node and edge filtering (emmaa.filter_functions)

	Configuring an EMMAA model
	First level fields of config.json

	Model update configuration

	Model testing configuration

	Model queries configuration

	Making tests from model configuration

	ASKE Reports
	ASKE Month 5 Milestone Report: Lessons Learned
	Automated model assembly: the challenge of defining scope and context

	Automated model analysis: benefits of automated model validation

	Test-driven modeling

	Exploiting the bidirectional relationship between models and tests

	ASKE Month 6 Milestone Report
	Making model analysis and model content fully auditable

	Including new information based on relevance

	Coarse-grained model checking of EMMAA models with directed graphs

	ASKE Month 7 Milestone Report
	Repositioning EMMAA within the ASKE framework of modeling layers

	Use cases for the EMMAA system (and ASKE systems in general)

	ASKE Month 9 Milestone Report
	Generalizing EMMAA: a proof-of-principle model of food insecurity

	Extending model testing and analysis to multiple resolutions

	Implementing an object model for model analysis queries

	Detecting changes in analysis results due to model updates

	ASKE Month 11 Milestone Report
	Deployment of multiple-resolution model testing and analysis

	User-specific query registration and subscription

	An improved food insecurity model

	ASKE Month 13 Milestone Report
	Related work for the EMMAA system

	System performance statistics

	ASKE Month 15 Milestone Report
	EMMAA Knowledge assemblies as alternative test corpora

	Time machine

	Dynamical model simulation and testing

	Towards push science: User notifications of newly-discovered query results

	ASKE Month 18 Milestone Report
	Expert curation of models on the EMMAA dashboard

	Viewing and ranking all statements in a model

	Email notifications

	A model of Covid-19

	Integration of content from UW xDD system

	Configurable model assembly pipeline

	ASKE-E Reports
	ASKE-E Month 1 Milestone Report
	Overall goals and use cases for the Bio Platform

	Integration plan for the Bio Platform

	Progress during the ASKE-E Hackathon

	Open Search model queries and notifications

	ASKE-E Month 2 Milestone Report
	Push science: EMMAA models tweet new discoveries and explanations

	Improving named entity recognition in text mining integrated with EMMAA models

	Making model tests and paths available for use by other applications

	ASKE-E Month 4 Milestone Report
	EMMAA Neurofibromatosis Models and NF Hackathon Prize

	Rapid initialization of EMMAA models from literature for two new diseases

	Downloading EMMAA models in alternative formats

	ASKE-E Month 5 Milestone Report
	Semantic filters to improve model analysis

	Model analysis exploiting ontological relationships

	Improved reading and assembly of protein chains and fragments

	Bio ontology optimized for visualization

	ASKE-E Month 6 Milestone Report
	Reading and assembly with context-aware organism prioritization

	Preparing for the stakeholder meeting

	Reporting curation statistics

	Reporting paper level statistics

	Integrating non-textual evidence with EMMAA models

	ASKE-E Month 7 Milestone Report
	Natural language dialogue interaction with EMMAA models

	Automatically generated text annotations in context

	Demonstrations at the stakeholder meeting

	Developing the EMMAA REST API for flexible integration

	ASKE-E Month 9 Milestone Report
	Integrating the COVID-19 Disease Map community model

	Notifications about general model updates

	Figures and tables from xDD as non-textual evidence for model statements

	Integration with the Uncharted UI

	Semantic separation of model sources for analysis and reporting

	Assembling and analyzing dynamical models

	Creating a training corpus for identifying causal precedence in text

	Knowledge/model curation using BEL annotations

	Formalizing EMMAA model configuration

	ASKE-E Month 10 Milestone Report
	Dynamical model analysis

	Improved EMMAA query UI and REST API

	Network representation learning for EMMAA models

	ASKE-E Month 11 Milestone Report
	Integration with ASKE modeling frameworks

	BioCreative participation

	Improving the EMMAA model query interface

	Improving the EMMAA statement browser

	Using custom belief scorers for EMMAA models

	Developments in relation extraction from text

	ASKE-E Month 12 Milestone Report
	EMMAA and its role in the integrated architecture

	Applying EMMAA model to COVID-19 therapeutics

	Review article on automated modeling

	Progress on inter-sentence causal connective extraction from text

	Integrating belief information in the EMMAA dashboard

	Extending the ontology to epidemiology

	STonKGs

	PyKEEN Updates

	BioCreative participation and new Walkthrough Tutorial

	Index

	Module Index

	Search Page

EMMAA Architecture and Approach

The Ecosystem of Machine-maintained Models with Automated Analysis is
available at http://github.com/indralab/emmaa, with the EMMAA Model Dashboard
at http://emmaa.indra.bio.

The main idea behind EMMAA is to create a set of computational models that are
kept up-to-date using automated machine reading, knowledge-assembly, and model
generation, integrating new discoveries immediately as they become available.

As a key component of the approach, models are automatically tested
against experimental observations (also automatically gathered and associated
with models). Models are also available for automated analysis in which
relevant queries that fall within the scope of each model can be automatically
mapped to structural and dynamical analysis procedures on the model. Currently,
the Dashboard supports running and registering queries with respect to one or
more existing models. In the near future, EMMAA will automatically recognize
and report changes to each model that result in meaningful changes to analysis
results.

[image: ../_images/emmaa_overview.png]

	Model Assembly and Updates
	Cancer types of interest

	Model availability

	Defining model scope

	Deriving relevant terms for a given type of cancer
	Finding disease genes

	Finding relevant entities in a knowledge network

	Assembling a prior network

	Updating the network

	Machine-reading

	Automated incremental assembly

	Meta-Model
	Initial specification of annotation guidelines

	EMMAA currently supports “does X…” queries for PySB models

	Annotations required for “what if” queries

	Annotations required for open-ended “relevance” queries

	Model Testing and Analysis
	Model test cycle deployed on AWS

	Test conditions generated automatically

	General EMMAA model testing framework
	Test conditions mapped to models automatically

	Testing models using static analysis

	Human-readable model test reports

	Model queries from users

	Pre-registered queries and notifications

	Model Analysis Query Language
	Structural properties with constraints
	Specifying topology

	Entity constraints

	Relationship constraints

	Examples

	Ideas for extension

	Path properties with constraints
	Specifying the overall path

	Entity constraints

	Relationship constraints

	Examples

	Simple intervention properties
	Specifying an intervention

	Specifying the reference

	Specifying the intervetion

	Examples

	Comparative intervention properties
	Examples

Model Assembly and Updates

Cancer types of interest

We start with six cancer types that are particularly relevant due to a
combination of frequency of occurrence and lack of adequate treatments. The
cancer types we have initially chosen are as follows.

	Acute Myeloid Leukemia (aml)

	Breast Carcinoma (brca)

	Lung Adenocarcinoma (luad)

	Pancreatic Adenocarcinoma (paad)

	Prostate Adenocarcinoma (prad)

	Skin Cutaneous Melanoma (skcm)

Each type is followed by a “code” in parantheses indicating the identifier
of the model through which models are organized in the cloud, on AWS S3.

Model availability

EMMAA models may be browsed on the EMMAA Dashboard, for more information,
see a tutorial to the dashboard here: EMMAA Dashboard, and the dashboard
itself here: http://emmaa.indra.bio. For example the AML model can be
accessed directly at http://emmaa.indra.bio/dashboard/aml.

Defining model scope

Each model is initiated with a set of prior entities and mechanisms that take
entities as arguments. Search terms to extend each model are derived from the
set of entities.

Deriving relevant terms for a given type of cancer

Our goal is to identify a set of relevant entities (proteins/genes, families,
complexes, small molecules, biological processes and phenotypes) that can be
used to acquire information relevant to a given model. This requires three
components:

	A method to find entities that are specifically relevant to the given cancer
type

	A background knowledge network of interactions between entities

	A method to identify relevant links and entities on the background knowledge
network

These methods, as described in the subsections below, are implemented in
the TcgaCancerPrior (emmaa.priors.cancer_prior.TcgaCancerPrior)
class.

Finding disease genes

To identify genes that are relevant for a given type of cancer, we turn to The
Cancer Genome Atlas (TCGA), a cancer patient genomics data set available via
the cBio Portal [http://www.cbioportal.org].

We implemented a client to the cBio Portal which is documented here [https://indra.readthedocs.io/en/latest/modules/databases/index.html#module-indra.databases.cbio_client].

Through this client, we first curate a list of patient studies for the given
cancer type. These patient studies are tabulated in
emmaa/resources/cancer_studies.json [https://github.com/indralab/emmaa/blob/master/emmaa/resources/cancer_studies.json].

Next, we query each study with a list of genes (the entire human genome, in
batches) to determine which patients have mutations in which genes. From this,
we calculate statistics of mutations per gene across the patient population.

Finding relevant entities in a knowledge network

Finding relevant entities requires a prior network that can be supplied as a
parameter to TcgaCancerPrior. We use a network derived from processing and
assembling the content of the PathwayCommons [http://www.pathwaycommons.org/], SIGNOR [https://signor.uniroma2.it/],
and BEL Large Corpus [https://wiki.openbel.org/display/home/Summary+of+Large+and+Small+BEL+Corpora]
databases, as well as machine reading all biomedical literature (roughly 32%
full text, 68% abstracts) with two machine reading systems: REACH [http://github.com/clulab/reach] and Sparser [http://github.com/ddmcdonald/sparser]. This network has 2.5 million unique
mechanisms (each corresponding to an edge).

Starting from the mutated genes described in the previous section, we use a
heat diffusion algorithm to find other relevant nodes in the knowledge network.
We first normalize the mutation counts by the length of each protein (since
larger proteins are statistically more likely to have random mutations which
can lack functional significance). We then apply the normalized mutation count
as a “heat” on the node in the network corresponding to the gene. When
calculating the diffusion of heat from nodes, we take into account the amount
of evidence for each edge in the network. The number of independent evidences
for the edge (i.e. the number of database entries or extractions from sentences
in publications by reading systems) and use a logistic function with midpoint
set to 20 by default (parameterizable) to set a weight on the edge. We use a
normalized Laplacian matrix-based heat diffusion algorithm on an undirected
version of the network, which can be calculated in a closed form using
scipy.sparse.linalg.expm_multiply [https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.sparse.linalg.expm_multiply.html].

Having calculated the amount of heat on each node, we apply a percentile-based
cutoff to retain the nodes with the most heat.

Assembling a prior network

Given a set of entities of interest, we turn to the INDRA DB and query for all
Statements about these entities. This set of Statements becomes the starting
point from which the model begins a process of incremental extension
and assembly. This is implemented in emmaa.priors.prior_stmts.

Updating the network

Given the search terms associated with the model, we use a client to the
PubMed web service [https://indra.readthedocs.io/en/latest/modules/literature/index.html#module-indra.literature.pubmed_client]
to search for new literature content.

Machine-reading

Given a set of PMIDs, we use our Amazon Web Services (AWS) content acquisition
and high-throughput reading pipeline to collect and read publications using the
REACH [https://github.com/clulab/reach] and Sparser [https://github.com/ddmcdonald/sparser] systems. We then use INDRA’s input
processors to extract INDRA Statements from the reader outputs. We also
associate metadata with each Statement: the date at which it was created and
the search terms which are associated with it. These functionalities are
implemented in the emmaa.readers.aws_reader module.

As an optimized approach to gathering and reading new publications, we
decoupled this step from EMMAA, and it is currently done independently by
a scheduled job of the INDRA DB once a day. EMMAA’s model update jobs
query the DB directly for Statements extracted from the new publications
each day, making the model update cycle significantly faster. These
queries are implemented in emmaa.readers.db_client_reader.

Automated incremental assembly

Each time new “raw” Statements are added to the model from
new literature results, an assembly process is run which involves the following
steps:

	Filter out hypotheses

	Map grounding of entities

	Map sequences of entities

	Filter out Statements with ungrounded entities

	Run preassembly in which exact and partial redundancies are found and
resolved

	Calculate belief score for each Statement

	Filter to statements above a configured belief threshold

	Filter out subsumed Statements with respect to partial redundancy graph

	(In some models) filter out Statements representing indirect mechanisms

The set of Statements obtained this way are considered to be “assembled” at
the knowledge level. It is this assembled set of Statements that are considered
when showing update statistics on the Dashboard.
The newly obtained assembled Statements are also evaluated against Statements
already existing in the model. Note that The Statements below the threshold
still remain in the “raw” model knowledge and can later advance to be included
in the published model if they collect enough evidence to reach the belief
threshold.

A new Statement can relate to the existing model in the following ways:

	Novel: there is no such mechanism yet in the model

	Redundant / Corroborating: the mechanism represented by the Statement
is already in the model, providing new, corroborating evidence
for that Statement

	Generalization: the mechanism is a more general form of one already in the
model

	Subsumption: the mechanism is a more specific form of one already in the model

	Conflicting: the mechanism conflicts with one already in the model

Currently, the dashboard lists new Statements without explicitly
showing what relationship they have to the existing model.

Meta-Model

Analysis of scientific models is typically a manual process in which specific
simulation scenarios are formulated in code, executed, and the results
evaluated. In EMMAA, models will be semantically annotated with concepts
allowing scientific queries to be automatically formulated and executed. The
core component of this process will be a meta-model for associating the
necessary metadata with specific model elements.

[image: ../_images/meta_model_concept.png]
As shown in the figure above, the EMMAA meta-model will allow
the annotation of:

	relevant entities (e.g., specific genes or biological processes)

	relations/processes (e.g., phosphorylation, activation)

	quantities in model-relevant data (e.g., measured values associated with
specific model parameters)

	features of model parameters and observables relevant to subsequent
experimental follow-up (e.g.,for example whether a parameter can be
experimentally altered or whether measurement of a particular observable is
cost-effective)

	higher-level scientific aspects associated with model variables and outcomes,
such as the utility associated with particular model states (e.g., decreased
cell proliferation)

The EMMAA meta-model allows model elements encoded in different formalisms to
be associated with the concepts necessary for automated analysis in EMMAA. For
example, a protein initial condition parameter from an executable PySB [http://pysb.org] model could be linked to the EMMAA concepts for a parameter
that is naturally varying, non-perturbable, and experimentally
measurable.

While several of these concepts have not been previously implemented in
existing ontologies for semantic annotations of biological models, we will
aim to reuse terms and concepts from ontologies developed by
the COMBINE community [http://co.mbine.org/standards] where appropriate.
These may include:

	MIRIAM [https://co.mbine.org/standards/miriam] (Minimimal Information
Required In the Annotation of Models)

	SED-ML [https://sed-ml.github.io/] (Simulation Experiment Description
Markup Language)

	SBO [http://www.ebi.ac.uk/sbo/main/] (Systems Biology Ontology)

	KISAO [http://co.mbine.org/standards/kisao] (Kinetic Simulation Algorithm
Ontology)

	Biomodels.net qualifiers [http://co.mbine.org/specifications/qualifiers]

	MAMO [http://co.mbine.org/standards/mamo] (the Mathematical Modeling
Ontology)

	SBRML [http://precedings.nature.com/documents/6351/version/1]
(Systems Biology Results Markup Language)

	TEDDY [http://co.mbine.org/specifications/teddy] (TErminology for the
Description of DYnamics)

Initial specification of annotation guidelines

The meta-model will be implemented as a specification that can be implemented
in different ways depending on the model type; in this way it will resemble the
MIRIAM [https://co.mbine.org/standards/miriam] standard, which is not itself
a terminology but rather a set of guidelines for using of (subject, predicate,
object) triples to link essential model features to semantic concepts.

The EMMAA meta-model establishes several specific concepts and annotation
guidelines aimed at automating high-level scientific queries. In particular,
the initial specification for model annotation in EMMAA includes the
following requirements to support basic simulation and analysis tasks:

	Model entities (e.g., variables in an ODE model, nodes in a network model)
must be linked to identifiers in external ontologies.

	Entity states (e.g., phosphorylated, mutated, active or inactive proteins)
should be identified semantically using an external ontology or
controlled vocabulary.

	Model processes (e.g., reactions in an ODE model,
edges in a network model) must be linked to a piece of knowledge including
provenance and evidence. In our initial implementation, this will be
accomplished using the has_indra_stmt relation which will link back to
an underlying INDRA statement.

	Entities participating in processes should be identified with
their role (e.g subject or object) for directional analysis.

	(Optional): if it is not already implicit in the modeling formalism, the
model process can be annotated with the sign of the process on its
participants (i.e., positive or negative regulation).

EMMAA currently supports “does X…” queries for PySB models

Annotating a model using the five types of information above supports
high-level queries such as: “Does treatment with drug X cause an increase in
the phosphorylation of protein Y?” Answering this yes-or-no query makes use of
model annotations in the following way:

	Entities in the model representing drug X are identified (#1,
above).

	Entities in the model representing phosphorylated Y are identified
(#1 and 2).

	Processes with drug X as the subject are identified, as are processes
with phosphorylated Y as the object (#4, above).

	The effect of the drug X entities/processes on the phosphorylated protein Y
entities/processes are determined using a model-specific analytical procedure,
making use of sign information if necessary (#5).

	The analysis results are linked back to the knowledge model via
has_indra_stmt annotations (#3).

We currently have an end-to-end implementation that uses model annotations to
answer these types of queries for a single model type: executable dynamical
models implemented in PySB [http://pysb.org]. Model annotations are
generated as part of the PySB model assembly process in INDRA; for instance see
the PySB Assembler code here [https://indra.readthedocs.io/en/latest/_modules/indra/assemblers/pysb/assembler.html#grounded_monomer_patterns]
for an example of how the PySB Annotation class [https://github.com/pysb/pysb/blob/master/pysb/annotation.py] is used to
associate entities with their role (subject/object) in a process (#4).

To answer a “does” query like the one specified above, the ModelChecker [https://github.com/sorgerlab/indra/blob/c5f15dfe9f30f71cc1b8798e7c9042c4d10bd051/indra/explanation/model_checker.py#L144]
makes use of these annotations to search for a path through the model’s
influence map with the appropriate sign.

These types of queries can currently be used to formulate model tests using
the StatementCheckingTest (emmaa.model_tests.StatementCheckingTest),
and triggered automatically upon every model update using the testing pipeline
described in Model Testing and Analysis.

Annotations required for “what if” queries

As opposed to a “does X…” query like the example above, which are used to
determine the connectivity and sign of causal paths in the model at baseline,
a “what if” query indicates a perturbation and involves an open-ended
response. For example, consider the following queries:

	“What happens to protein X if I knock out protein Y?”

	“What happens to protein X if I double the amount of drug Y?”

	“What happens to protein X if I decrease its affinity to drug Y?”

Addressing these queries in general requires designating a model control
condition (e.g., a specific initial state or steady state) that is perturbed
by the manipulation of model structure or parameters. This requires the
following model features to be identified by additional annotations:

	Model parameters governing entity amounts

	Effect of model parameters on the strength of interaction between entities
(for example, the forward and reverse rates of a binding interaction both
affect the affinity of the interaction, but in opposite ways).

Annotations required for open-ended “relevance” queries

Finally, we aim to enable the automation of analysis procedures that are not
based on explicit queries but rather aimed at identifying model characteristics
that have scientific relevance and value. An example would be to “notify me of
mechanistic findings therapeutically relevant to pancreatic cancer.” This type
of query requires additional annotations on the higher-level biological
processes associated with model entities and their scientific relevance. We aim
to implement the following additional three annotations for this purpose:

	Biological processes or phenotypes associated with specific model
entities, and their sign (e.g., phosphorylated MAPK1 is positively
associated with cell proliferation in pancreatic cancer).

	A value criterion associated the biological process (e.g., it is
therapeutically desirable to increase cancer cell apoptosis,
and decrease cancer cell proliferation).

	Entity types that represent actionable perturbations. For example,
it may be of greater interest to identify a chemical perturbation that
yields a desirable affect than a genetic perturbation, because (at least
present) chemical perturbations are more experimentally and therapeutically
tractable.

These ten annotation types represent the initial set for the EMMAA cancer
models.

Model Testing and Analysis

A key benefit of using semantically annotated models is that it allows models
to be automatically validated in a common framework. In addition to
automatically extracting and assembling mechanistic models, EMMAA runs a
set of tests to determine each model’s validity and explanatory scope.
We have implemented an approach to model testing that automates

	the collection of test conditions from a pre-existing observational
knowledge base,

	deciding which test condition is applicable to which model,

	executing the applicable tests on each model, and

	reporting the summary results of the tests on each model.

[image: ../_images/model_testing_concept.png]
The overall concept of automated model testing in EMMAA is shown in this
figure. Each time a model is updated with new findings, the model is tested
against a set of expected observations or properties. The tests themselves
can evolve over time as new observations are collected.

Model test cycle deployed on AWS

Whenever there is a change to a model, a pipeline on Amazon Web Services (AWS)
is triggered to run a set of applicable model tests. When a model is updated
(i.e., with new findings extracted and assembled from novel research
publictions), a snapshot of it is deposited on the S3 storage service. A
Lambda process monitors changes on S3 and when a change occurs, triggers
a Batch job. The Batch job accesses the Dockerized EMMAA codebase and runs the
automated test suite on the model. The test results are then deposited on
S3. Finally, the new test results are propagated onto the EMMAA Dashboard
website. This process is summarized in the figure below.

[image: ../_images/testing_pipeline.png]
The code implemented here is available in the following places:

	The Lambda implementation is documented at: emmaa.aws_lambda_functions.

	The EMMAA Docker image is available here [https://hub.docker.com/r/labsyspharm/emmaa] .

Test conditions generated automatically

EMMAA implements a novel approach to collecting observations with respect to
which models can be tested. Given a set of INDRA Statements, which can be
obtained either from human-curated databases or literature extractions,
EMMAA selects ones that represent experimental observations (which relate a
perturbation to a potentially indirect downstream readout) from direct
physical interaction-like mechanisms. We treat these observational Statements
as constraints on mechanistic paths in a model. For instance, the observation
“treatment with Vemurafenib leads to decreased phosphorylation of MAPK1”, could
be satisfied if the model contained a sequence of mechanisms connecting
Vemurafenib with the phosphorylation state of MAPK1 such that the aggregate
polarity of the path is positive.

As a proof of principle, we created a script which generates such a set of
test conditions from the BEL Small Corpus, a corpus of experimental
observations and molecular mechanisms extracted by human experts from the
scientific literature. Going forward, we will also rely on observations
collected directly from the literature for automated model testing.

The code to generate and run this corpus of test statements is available
here [https://github.com/indralab/emmaa/blob/master/scripts/run_bel_tests.py].

General EMMAA model testing framework

EMMMA contains a test framework in emmaa.model_tests with an abtract
class interface to connect models with applicable tests and then execute
each applicable test with respect to each applicable model. One strength of
this abstract class architecture is that it is agnostic to

	the specific content and implementation of each model and test,

	the criteria by which a test is determined to be applicable to a model,

	the procedure by which a test is determined to be satisfied by a model.

It therefore supports a variety of specific realizations of models and tests.
The classes providing this interface are the
TestManager (emmaa.model_tests.TestManager),
TestConnector (emmaa.model_tests.TestConnector)
and EmmaaTest (emmaa.model_tests.EmmaaTest).

Test conditions mapped to models automatically

EMMAA currently implements a specific set of testing classes that are adequate
for our cancer models. This implementation uses the ScopeTestConnector
(emmaa.model_tests.ScopeTestConnector) and StatementCheckingTest
(emmaa.model_tests.StatementCheckingTest) classes in EMMAA. The
ScopeTestConnector class uses our meta-model annotations to determine the
identity of the concepts in the model as well as in the test, and deems the
test to be applicable to the model if all the concepts (i.e. the perturbation
and the readout) in the test are also contained in the model.

Testing models using static analysis

The StatementCheckingTest class takes a pair of a model and an applicable
tests, and determines whether the model satisfies the test as follows. The
model is first assembled into a rule-based PySB model object using INDRA’s PySB
Assembler. The model is then exported into the Kappa framework, which provides
static analysis methods, including generating an influence map (a signed,
directed graph) over the set of rules in the model. EMMAA then uses INDRA’s
Model Checker [https://indra.readthedocs.io/en/latest/modules/explanation/index.html#module-indra.explanation.model_checker]
to find paths in this influence map that match the test condition (itself
expressed as an INDRA Statement). If one or more such paths are found, the test
is assumed to be satisfied, and the results are reported and stored. Otherwise,
the model is assumed to to satisfy the test.

An end-to-end model building and testing example is available here [https://github.com/indralab/emmaa/blob/master/scripts/generate_simple_model_test.py].

Going forward, the testing methodology will involve multiple modes of
simulation and analysis including also dynamic testing.

Human-readable model test reports

A snippet of the test report for a Ras signaling pathway model (see
http://emmaa.indra.bio/dashboard/rasmodel) as of 4/1/2019 is
shown below, where each “Observation” is expressed in terms of an expectation
of model behavior (e.g., “IFG1R phosphorylated on Y1166 activates IRS1”)
along with a
determination of whether the constraint was satisfied (green tick mark if yes,
red cross if not), along with a description of the specific way in which the
model satisfies the test condition (as human-interpretable English language
summary) or the reason for why the model could not satsfy the test condition.

[image: ../_images/rasmodel_test_report.png]
In a manner analogous to continuous integration for software, EMMAA model
testing is automatically triggered on AWS anytime the model or its associated
constraints are updated.

Model queries from users

Through the EMMAA Dashboard Query page at http://emmaa.indra.bio/query,
users can submit specific queries to one or more
models simultaneously, that are evaluated immediately by a web service, and
the results of the analysis are summarized in a table.
For more information, see: EMMAA Model Queries.

EMMAA currently supports “Path property” queries on its models in a templated
form through the Dashboard. However,
the types of analysis queries will be extended, and we imagine later supporting
natural language-based querying as well. The types of queries EMMAA will
support are as follows. We developed a
Model Analysis Query Language which specifies these types of properties,
see Model Analysis Query Language.

	Structural properties with constraints: e.g., “What drugs bind PIK3CA but not
PIK3CB?”

	Path properties with constraints: e.g., “How does treatment with
PD-325901 lead to EGFR activation?”

	Simple intervention properties: e.g., “What is the effect of Selumatinib
on ERK activation by EGF?”

	Comparative intervention properties: e.g., “How is the effect of targeting
MEK different from targeting PI3K on the activation of ERK by EGF?”

Each such property maps onto a specific model analysis task that can be run on
an EMMAA model, for instance, causal path finding with semantic constraints, or
dynamical simulations under differential initial conditions.

Pre-registered queries and notifications

Each query can also be “registered” by EMMAA, and evaluated again whenever the
model is updated. Currently these registered queries are shared by all users.
Going forward, individual users will be able to register their own, personal
queries for one or more models of interest. The result of analysis for each
property on a given version of the model will be saved. This will then allow
comparing any changes to the result of analysis with previous states of the
model. If a meaningful change occurs, a notification will be generated to the
user who registered the query.

[image: ../_images/user_queries_concept.png]

Model Analysis Query Language

This is v1.0 of a specification for a machine-readable description format for
the analysis and querying of EMMAA models. The specification uses a JSON
format that is easily generated and processed, and is also human-readable
and editable.

The specification extends to four, increasingly complex query types:

	Structural properties with constraints

	Path properties with constraints

	Simple intervention properties

	Comparative intervention properties

Note that this specification for defining queries does not explcitly specify
the method by which the query is executed, though some query specifications are
defined with a certain type of analysis method in mind.

Structural properties with constraints

Structural properties of models are evaluated directly at the knowledge-level,
in our case at the level of INDRA Statements. Each Statement has a type
(Activation, Dephosphorylation, etc.), refers to one or more entities (Agents)
as arguments, which themselves can have different types are determined by
grounding to an ontology. At an abstract level

Structural property queries can have different “topologies” in terms of the
entities they reference including

	unary queries referring to a single Agent alone,

	queries referring to a single Agent and its neighborhood,

	binary queries that refer to two Agents.

Structural property queries may also constrain the type of the Statement and
Agent.

Specifying topology

Structural queries have multiple subtypes based on the topology of the query:

	binary_directed: specifies two Agents, a source and a target, between
which, a directed relationship is queried.

	binary_undirected: specifies two Agents in an agents list, in arbitrary
order, and relationship direction is of interest in the query.

	neighborhood: specifies a single agent around which a relationship in
any direction (incoming, outgoing, undirected) is of interest.

	to_target: specifies a single Agent as a target and only incoming
relationships are of interest.

	from_source: specifies a single Agent as a source and only outgoing
relationships are of interest.

	single_agent: specifies a single agent with the query focusing on a
property of the Agent itself rather than any relationships.

Each Agent is defined via its name, and optionally, groundings, for more
information, see the relevant entry of the INDRA JSON Schema:
https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json#L77

Entity constraints

Entity constraints (entity_constraints) can be added to the query,
these can constrain the type (protein, chemical, biological process, etc.)
and subtype (kinase, transcription factor, etc.) of the Agents of interest.

Relationship constraints

Relationship constraints can be specified by describing the type of Statement
establishing the relatonship.

Examples

Example: “What kinases does BRAF phosphorylate?”

{"type": "structural_property",
 "subtype": "from_source",
 "source": {
 "type": "agent",
 "name": "BRAF"
 },
 "entity_constraints": [
 {"type": "protein",
 "subtype": "kinase"}
],
 "relationship_constraints": [
 {"type": "Phosphorylation"}
]
}

Ideas for extension

The constraints could be generalized to allow logical formulae over entity
types and relations.

Path properties with constraints

Path properites of models are evaluated at a lower level than simple
structural properties due to the fact that mechanistic paths need to
be causally consistent (i.e., each step of the path needs to be causally
linked to the next step).

Specifying the overall path

The overall path specification can be done using the JSON Schema developed
for INDRA Statements (see https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json).
The path is specified via an overall type, and, depending on the type,
the appropriate Agent arguments.

Entity constraints

It is possible to specify constraints on the entities (entity_constraints)
appearing along the path, for instance, whether to include or exclude
certain Agents. The keys for these specifications are include and
exclude respectively.

Relationship constraints

It is also possible to specify constraints on relationships along the path
(relationship_constraints) with the include and
exclude keys.

Examples

Example: “How does EGFR lead to ERK phosphorylation without including
PI3K or any transcriptional regulation?”

{"type": "path_property",
 "path": {
 "type": "Phosphorylation",
 "enz": {
 "type": "Agent",
 "name": "EGFR"
 },
 "sub": {
 "type": "Agent",
 "name": "ERK"
 }
 },
 "entity_constraints": {
 "exclude": [
 {"type": "Agent",
 "name": "PI3K"}
]
 },
 "relationship_constratints": {
 "exclude": [
 {"type": "IncreaseAmount"},
 {"type": "DecreaseAmount"}
]
 }
 }

Simple intervention properties

Simple intervention properties focus on the effects of targeted interventions
on one or more entities in the model without considering comparisons or
optimization across multiple interventions.

Specifying an intervention

An intervention can be specified either on a single entity readout or on a
path-level effect (we call this a reference, i.e., something that the
intervention is meant to change). In the first case, the readout is
represented, again, as an INDRA Agent, with name, grounding and state. In the
second case, a path is represented as and INDRA Statement with type and Agent
arguments. The intervention itself is represented as a list of Agents with
additional parameters to specify the type of intervetion.

Specifying the reference

The reference can either have type of relationship or entity. In case
of a relationship, the specification is an INDRA Statement JSON. In case
of an entity, the specificaton is an INDRA Agent JSON (see references above).

Specifying the intervetion

The intervention consists of a list of intervening entities (specified as
INDRA Agent JSONs) and the perturbation by which the intervention applies to
these entities (i.e., increase, decrease).

Examples

Example: “How does Selumetinib affect phosphorylated MAPK1?”

{"type": "simple_intervention_property",
 "reference": {
 "type": "Agent",
 "name": "MAPK1",
 "mods": [
 {"mod_type": "phosphorylation"}
]
 },
"intervention": [
 {"entity": {
 "type": "Agent",
 "name": "Selumetinib"
 },
 "perturbation": "increase"
 }
]
 }

Comparative intervention properties

Comparative intervention properties are similar to simple intervention
properties but are more general in that they can be used to express
comparisons or optimality among a set of possible intervetions.
The specification consists, again, of a reference, but this time, a list
of interventions rather than a single intervention. The comparison
also needs to be specified, i.e., whether the intervetion is meant to
increase or decrease the reference.

For comparative intervention properties, the reference and each possible
intervention is specified as above.

Examples

Example: “Is Selumetinib or Vemurafenib optimal in decreasing ERK activation by
EGF?”

{"type": "comparative_intervention_property",
 "reference": {
 "type": "Activation",
 "subj": {
 "name": "EGF",
 },
 "obj": {
 "name": "ERK",
 }
 },
"interventions": [
 [{"entity": {
 "type": "Agent",
 "name": "Selumetinib"
 },
 "perturbation": "increase"
 }],
 [{"entity": {
 "type": "Agent",
 "name": "Vemurafenib"
 },
 "perturbation": "increase"
 }]
],
 "comparison": "increase"
 }

EMMAA Dashboard

The EMMAA Dashboard is accessible at
http://emmaa.indra.bio.

The EMMAA Dashboard is the main entrypoint for users to interact
with models. Each card on the dashboard represents a model. Currently, users can
browse and link out to interactive, searchable network views of multiple
disease and pathways models, as well as details of
the latest tests applied to the models. The user can also navigate to a
queries page where queries about the models can be answered. Users are able
to sign up for specific notifications about one or more automatically
built, tested and analyzed models. Some models also have a Twitter account and
a link to it is provided on the dashboard if available

[image: ../_images/dashboard_top.png]
Please read the sections below to learn how different EMMAA pages work.

	EMMAA Models Page
	Link to statement details

	Model Tab

	Tests Tab

	Papers Tab

	Curation Tab

	Load Previous State of Model

	EMMAA Statement Evidence Page

	EMMAA All Statements Page

	EMMAA Individual Paper Page

	EMMAA Model Queries
	Which query type do I need?

	Source-target paths queries
	Submitting a Query

	Viewing the results

	Source-target dynamics queries
	Submitting a Query

	Viewing the results

	Temporal properties queries
	Submitting a Query

	Viewing the results

	Up/down-stream paths queries
	Submitting a Query

	Viewing the results

	Waiting for results

	Logging In and Registering a User

	Subscribing to a Query

	Email Notifications of Subscribed Queries
	Unsubscribing From Query Notifications

	Failing test/query result interpretation

	EMMAA Detailed Test or Query Results
	Results for Different Model Types

	Non-passing Tests

EMMAA Models Page

The models page contains detailed information about the selected model in four
tabs: Model, Tests, Papers, and Curation. At the top of the page the
selected model is shown in a drop-down menu. Another model can also be selected
and loaded from the menu.

Link to statement details

To see further details regarding a mechanism, links to a separate page are
generated for all statements where possible. To read more about that page, see:
EMMAA Statement Evidence Page.

[image: ../_images/linkout.png]

Link to statement evidence page

Model Tab

The model tab contains model info with the model description, the date the
model was last updated and the date when the displayed state of the model was
generated. By default the latest available state of the model is displayed but
the user has an option to explore earlier states by clicking on an earlier time
point on any of the time plots across the tabs
(for more details see: Load Previous State of Model).
Links to the NDEx website where a network view of the
model can be examined and to the Twitter account if available are provided.
It is possible to download the models in various formats and the corresponding
buttons are placed next.

The page also displays properties of the current state of the model, namely,
the distribution of statement types, the top 10 agents in the model, the
distribution of knowledge sources (reading systems and databases) of model
statements and the statements with the most support from various knowledge bases.
The table with most supported statements also has a button “All statements”
clicking on which a user can be redirected to a page showing all statements in
the model: EMMAA All Statements Page.
Further, the page shows how the number of statements in the model has evolved
over time, and which statements were added to the model during the most recent
update.

[image: ../_images/aml_model_tab.png]

The top of the model tab

Tests Tab

At the top of the tests tab, a drop down menu displays which test corpus was
used for the currently displayed test results. Clicking on the drop down menu
will display all available test corpora for the current model. Clicking
“Load Test Results” will load the test results for the selected test corpus.

[image: ../_images/test_corpus_selection_cropped.png]

The results from different test corpora can be loaded. Here “Rasmodel Tests”,
“Skcm tests”, “Rasmachine Tests”, and “Large Corpus Tests” are available.

The tests tab contains two related plots: one showing the evolution over time
of the percentage of applicable tests that passed, and another showing the
absolute number of tests that were applied to the model and the number of tests
that passed in each of supported model types. For the first few months of the
project, the tests were only run on a PySB model assembled from EMMAA model
statements. Later three additional model types were added, namely, PyBEL
graph, signed directed graph and unsigned directed graph.

[image: ../_images/rasmachine_tests_tab_top.png]

The top of the tests tab showing the percentage of tests passed together
with applied and passed tests in different model types

If any new tests were applied in the latest test run of the model
they are shown under New Applied Tests. A green check mark is shown for
tests that passed and a red cross is shown for the tests that did not. The
marks can be clicked on and link to a detailed test results page where the
detailed path(s) or a reason for the model not having passed the test will be
shown. To read more about the detailed test results page, see:
EMMAA Detailed Test or Query Results.

[image: ../_images/new_applied_tests.png]

If new tests were applied, they will be shown together with a breakdown of
a test status per each model type

New tests that passed for any of the model types are shown under
New Passed Tests along with the top path found. The statements supporting
the path are can be seen by clicking on a path which links out to the detailed
test results page for the test.

[image: ../_images/new_passed_tests.png]

If new tests were passed, they will be shown together with a top path

Further down, all tests applied to the model are shown. Similarly to new
applied tests, this table also contains green and red marks indicating the test
status, linking to detailed test results page.

[image: ../_images/all_test_results.png]

Part of the list showing all applied tests with a status indicator for
passed/failed

Papers Tab

The Papers tab shows statistics for both processed papers and papers that support
assembled model statements. At the top of the Papers tab the time series plot
shows the changes in the counts of both paper groups over time.

[image: ../_images/papers_over_time.png]

Number of processed papers and papers with assembled model statements over time

Further down, papers with the largest number of assembled statements are shown.
The statements extracted for each paper can be viewed by clicking on a paper
title (see: EMMAA Individual Paper Page).

Finally, a list of papers processed after the previos update is displayed. The
table is sorted first by the number of assembled statements and then by the
number of raw statements extracted from the paper. One or both of these numbers
can be zero. Zero assembled statements with a positive number of raw statements
means that the raw statements were filtered from the model during the assembly
process. Two zeros mean that the paper was processed but no statements were
extracted from it. The second column in this table provides a link to the
original publication as an external resource.

[image: ../_images/new_papers.png]

Example of new processed papers table

Curation Tab

The Curation tab summarizes statistics related to curations for statements
that are part of the model. At the top of the tab two barplots
show the counts of evidences and assembled statements curated by individual
curators.

[image: ../_images/curators.png]

Counts of evidences and statements curated by individual curators

The next plot shows the number of curations grouped by type.

[image: ../_images/curation_types.png]

Curations grouped by type

Finally, the number of curated statements and evidences over time is shown.

[image: ../_images/curation_over_time.png]

Curations over time

Load Previous State of Model

To view the state of the selected model together with the test results for a
particualar date, click on any data point for the desired date in any of the
time series shown on either the Model tab, the Tests tab or the Papers tab.

[image: ../_images/time_machine_selection_cropped.png]

Clicking on a data point in any time series will link to the state of the
model and the test results for the associated date.

Clicking the data point will link back to the same models page with data
loaded for the selected date. The model info section displays the selected
date as well as the date for the most recent data. Any time series show data
up to the selected date. Any section showing new updates, such as “New
Passed Tests”, shows what was new on the selected date while “All Test
Results” shows the state of the results were in. Clicking on “Go To Latest”
on the top panel will link back to the most recent state of the model.

[image: ../_images/previous_date_cropped.png]

When the state of the model for a previous date is shown, the date is
diplayed in “Data Displayed”. Clicking on “Go To Latest” on the top panel
will link back to the most recent state of the model

EMMAA Statement Evidence Page

Any statement displayed on any of the other pages (model page, detailed test or
query results) is linked to a statement evidence page where evidences from
different sources can be browsed and curated.

[image: ../_images/stmt_evidence.png]

Statement evidence view

At the top of the table, the statement itself is presented followed by a list
of sentences supporting this statement. There are several badges that represent
additional information about the statement. The blue badge with a flag in the example
above shows have many paths this statement is a part of. A green or a red badge with
a pencil shows how many times this statement was curated as correct or incorrect
respectively. The grey badge shows the number of loaded evidence and the total
number of evidences supporting this statement. Clicking on the JSON badge opens a
new page containing the JSON representation of the statement. For each evidence the
knowledge source and external link to the publication is given.
Clicking on the pencil badge to the left of the evidence, a user can curate
this evidence.

EMMAA All Statements Page

The All statements page allows to browse and curate statement evidences
similar to the statement evidence page but in this case all statements in the
model are listed. By clicking on any statement, a user can open its evidences.
By default the statements are sorted by the number of supporting evidence they
have, but it is possible to sort them by the number of paths they contribute to.
The “Previous” and “Next” buttons allow to page through the full list of statements
(only 1000 statements per page are loaded). The “Filter Curated” button allows to
filter out the statements that have been already curated. It’s also possible
to download all statements in JSON format by clicking on “Download Statements.”
Each statement can have multiple badges that have the same meaning as in the
statement evidence page. A blue badge with a flag shows how many paths this
statement is a part of. A green or red badge with a pencil shows how many times
this statement was curated as correct or incorrect respectively. A grey badge
shows the number of loaded evidences and the total number of evidences
supporting this statement. Clicking on the JSON badge opens a new page containing
the JSON representation of the statement.

[image: ../_images/all_statements.png]

All statements page view

EMMAA Individual Paper Page

By clicking on a paper title on the Papers tab on model page, a user is redirected to
an individual paper page that contains model statements from this paper. The
view here is similar to the statement evidence or the all statements page with the
exception that the statements and evidences are filtered to only those that
are extracted from a given paper. To browse and curate the evidences, a user
needs to click on a statement. Each statement can have multiple badges that
have the same meaning as in the statement evidence page. A blue badge with a flag
shows have many paths this statement is a part of. A green or a red badge with a
pencil shows how many times this statement was curated as correct or incorrect
respectively. The grey badge shows the number of loaded evidences and the total
number of evidences supporting this statement. Clicking on the JSON badge opens a
new page containing the JSON representation of the statement.

[image: ../_images/paper_stmts.png]

Individual paper page view

EMMAA Model Queries

The Queries page can be accessed by clicking the “Queries” link at the top
of the Dashboard website. The page contains the forms to submit queries and
results of queries in four tabs Source-target paths, Source-target dynamics,
Temporal properties, and Up/down-stream paths
corresponding to three currently supported query types.

Each tab has the following boxes:

	Description - a brief description of selected query mode, what questions
can it answer and how to specify it properly.

	Query specification - a form to select which models the query should be run
on and to specify query parameters.

	Query results - here the immediate results for the recently run query will
be displayed.

	Subscribed queries - if a user is logged in and has previously subscribed to
any queries of a given type, these queries are rerun every time the models are
updated and the latest results will be displayed in this box.

Which query type do I need?

	If you want to explain an effect between two entities, read more about
Source-target paths queries

	If you want to observe the effect of intervention in dynamical simulation,
read more about Source-target dynamics queries

	If you want to observe the baseline dynamics of an entity in the model in
dynamical simulation, read more about Temporal properties queries

	If you want to find the downstream targets or upstream regulators of an
entity, read more about Up/down-stream paths queries

Source-target paths queries

This query mode uses causal path finding to explain an effect between a source
and a target. It allows to answer questions like “How does EGF lead
to the phosphorylation of MAPK1”? Depending on
which EMMAA model is selected, multiple modeling formalisms
(unsigned graph, signed graph, PyBEL model, PySB model) are used to find paths,
each with different causal constraint assumptions, potentially resulting
in different results.

Submitting a Query

Specifying the query involves providing names for a source and a target and
selecting a statement type (e.g., Phosphorylation, Inhibition, IncreaseAmount).
It is possible to run the queries against one or more EMMAA models to see the
results in different contexts. At least one model needs to be selected for the
query submission to be valid.

[image: ../_images/query_filled.png]

The query ready to be submitted that asks if BRAF activates ERK in the AML
and BRCA cancer models.

If the query is badly formatted or missing information, an error will be
shown stating the type of error.

Viewing the results

The query service will receive the query and return a response which is
displayed in the Query Results table below. Query results are presented as a
grid of green, red and grey marks. A green check mark is shown for queries
that passed and a red cross is shown for the queries that did not. Grey cirlce
will be shown for queries not applicable for selected model.
The marks can be clicked on and link to a EMMAA Detailed Test or Query Results page
where the detailed path(s) or a reason for the model not having passed
the query will be shown.

[image: ../_images/path_query_result.png]

The above query resolved, showing the result per model and model type.
Detailed results can be viewed by clicking on a green/red mark.

Source-target dynamics queries

This query mode uses dynamical simulation to describe the effect of an
intervention from a given source on a given target. An example question that
can be answered using this query type is “If the initial amount of BRAF is
increased, does the phosphorylation of MAP2K1 increase?”.
The results provide a yes/no answer to the query as well as the time course
results of simulations of the target readout (phosphorylated MAP2K1 in the
above example) to compare the effect of two different initial amounts of the source.

Submitting a Query

Source-target dynamics query requires the user to specify the model, a source
and a target by name, and select a statement type(e.g., Phosphorylation,
Inhibition, IncreaseAmount) which represents the effect of the
intervention on the target. It is possible to run the queries
against one or more EMMAA models to see the results in different contexts.
At least one model needs to be selected for the query submission to be valid.

[image: ../_images/interv_query_filled.png]

The query ready to be submitted that asks whether SOS1 leads to the
activation of KRAS in simulation of RAS model.

If the query is badly formatted or missing information, an error will be
shown stating the type of error.

Viewing the results

Results include a green/red mark showing whether the expected intervention
effect was oserved in the simulation and a plot of the observable’s time course
during the simulation with and without the intervention.

[image: ../_images/dynamical_intervention_sos_kras.png]

The above query resolved, showing that active KRAS is substantially higher
when SOS1 is present at a high level

Temporal properties queries

This query mode uses dynamical simulation to verify if the baseline dynamics
(i.e., no intervention) of the model meets a given qualitative pattern.
To answer these queries simulations are run on a PySB-assembled EMMAA model.
Temporal properties query allows answering questions like
“Is the amount of phosphorylated BRAF at any point in time high?”.
The result provides a yes/no answer to the query as well as the time course
results of simulations of the given agent state.

Submitting a Query

Temporal properties query requires the user to specify the model, provide an
agent state description (e.g., “active KRAS”, “phosphorylated BRAF”,
“DUSP6 bound to MAPK1”), a pattern type (e.g., sometime_value) and in some
pattern types, a value (e.g., low/high). It is possible to run the queries
against one or more EMMAA models to see the results in different contexts.
At least one model needs to be selected for the query submission to be valid.

[image: ../_images/dynamic_query.png]

The query ready to be submitted that asks whether phosphorylated MAP2K1 is
eventually high in the MARM model.

If the query is badly formatted or missing information, an error will be
shown stating the type of error.

Viewing the results

Results of the dynamical queries include a green/red mark showing whether the
required condition was satisfied in more than a half of simulations and a plot
of the observable’s time course during the simulation.

[image: ../_images/dynamic_result.png]

The above query resolved, showing how the amount of phosphorylated MAP2K1
changes during the simulation

Up/down-stream paths queries

This query mode allows finding causal paths to or from a given agent to
identify its upstream regulators and its downstream targets. A user can
optionally limit the up/downstream entities to genes/proteins, small molecules
or biological processes. It allows expressing questions such as
“What small molecules inhibit the phosphorylation of JAK2?”
or “What biological process does TNF activate?”.
The result returns not only the entities but also the specific causal paths
that are consistent with the query specification. Depending on which EMMAA
model is selected, multiple modeling formalisms (unsigned graph, signed graph,
PyBEL model, PySB model) are used to find paths, each with different causal
constraint assumptions, potentially resulting in different results.

Submitting a Query

The query specification involves specifying the agent by name and role
(subject or object corresponding to finding its downstream targets or upstream
regulators, respectively), a statement type representing the effect of the
regulations (e.g., Phosphorylation, Inhibition), and optional constraints on
the types of up/downstream entities that are of interest.
Together with the query, at least one model needs to be selected for the query
submission to be valid.

[image: ../_images/open_query.png]

The query ready to be submitted that asks what small molecules inhibit
ACE2 in Covid-19 model

If the query is badly formatted or is missing information, an error will be
shown stating the type of error.

Viewing the results

The query service will receive the query and return a response which is
displayed in the Query Results table below. Query results are presented as a
grid of green, red and grey marks. A green check mark is shown for queries
that passed and a red cross is shown for the queries that did not. Grey cirlce
will be shown for queries not applicable for selected model.
The marks can be clicked on and link to a EMMAA Detailed Test or Query Results page
where the detailed path(s) or a reason for the model not having passed
the query will be shown.

[image: ../_images/open_query_result.png]

The above query resolved, showing the result per model and model type.
Detailed results can be viewed by clicking on a green/red mark. Grey circles
mean that these model types are not available for a selected model.

Waiting for results

For either of the query types the page displays “Waiting for server response”
and a loader bar while the query is being executed. The typical response time
can be up to a minute so please be patient when posting queries.

[image: ../_images/waiting_for_response.png]

While the query resolves, a small animation is shown.

Logging In and Registering a User

A user can log in by clicking the “Login” button to the right on the
navigation bar. When clicking the login button, an overlay shows up asking
for credentials. A user can also create an account by clicking “Register” if
they don’t already have an account.

[image: p1] [image: p2]

The login and registration tabs of the login overlay.

Subscribing to a Query

When logged in, a user can register a query for subscription. To register a
subscription to a query, the tick box for “Subscribe To Query” has to be
ticked when the query is submitted. Both static and dynamic queries can be
subscribed to. After submission, the query is associated with the logged in
user. When returning to the page, the subscribed queries will be loaded
together with their latest results.

[image: ../_images/subscribed_queries.png]

The table for subscribed queries, here for the query Activation(FLT3, KRAS)
of the AML cancer model.

Email Notifications of Subscribed Queries

If a user subscribes to a query, they are also signed up for daily email
updates that will be sent out if there is an update to any of the subscribed
queries. An update to a query is defined as there being a change in the
associated model that answers the query. The email lists the updates by
query type, query, model and model type. If are no updates for one of the
query types, only the query type that has any updates will be shown. For
static queries, a direct link to the detailed query results is provided.

[image: ../_images/email_notification.png]

An example of an email notification for a query. Here, an update to the
query Activation(FLT3, KRAS) of the Ras Machine model of the PyBEL model
type is shown under “static queries”. The unsubscribe link at the bottom
links out to the unsubscribe page (see below).

Unsubscribing From Query Notifications

In every email notification there is an unsubscribe link in the footer of
the email. To unsubscribe from queries, follow the link to the unsubscribe
page. On the unsubscribe page, all active subscriptions for the associated
email are shown with tick boxes for each subscription and one tick box for
unsubscribing from all subscribe queries. After ticking the appropriate
boxes and submitting the unsubscribe request, a message will be shown
describing the status of the request once it resolves.

[image: ../_images/unsubscribe_page.png]

An example of how the unsubscribe page looks like. All subscribed queries
for a given user is shown. Each query can be individually marked for
unsubscription. All queries can be unsubscribed simultaneously by ticking
the box for “unsubscribe from all”

Failing test/query result interpretation

Model tests and queries can sometimes fail to produce an explicit result (i.e.,
a sequence of mechanisms constituting an answer to a query). There are several
possible reasons for this. Below, we explain the various result “codes” that
can appear on the model tests and query pages.

	Path found but exceeds search depth - Path is found, but the search
depth is reached. Search depth is the maximum number of steps taken to
reach the object from the subject in the graph representation of the model.

	Statement subject not in model - The subject of the query or
statement doesn’t exist in the model.

	Statement object state not in model - The object state of the
query or statement does not exist in the model.

	Query is not applicable for this model - Only used for queries.

	No path found that satisfies the test statement - Only used for tests.

	Statement type not handled - The statement type is not valid.
Currently supported types:

	Activation

	Inhibition

	IncreaseAmount

	DecreaseAmount

	Acetylation

	Farnesylation

	Geranylgeranylation

	Glycosylation

	Hydroxylation

	Methylation

	Myristoylation

	Palmitoylation

	Phosphorylation

	Ribosylation

	Sumoylation

	Ubiquitination

	Deacetylation

	Defarnesylation

	Degeranylgeranylation

	Deglycosylation

	Dehydroxylation

	Demethylation

	Demyristoylation

	Depalmitoylation

	Dephosphorylation

	Deribosylation

	Desumoylation

	Deubiquitination

EMMAA Detailed Test or Query Results

The detailed test results page shows a test result at in high detail for a
specific model and model type. The left column describes the paths found that
satisfies the test. Note that the same test/query can be explained with
multiple different paths. The right column contains a detailed description of
each edge in the path with a list of english representation of the statements
supporting the edge. If a test did not pass, a message explaining why it did
not pass is shown.

[image: ../_images/detailed_results.png]

The detailed test results for “FLT3 activates KRAS”. The
left column displays the two paths that satisfy the test for the model and
model type. The right column gives detailed information for each of the
edges, including its support, for each path.

Results for Different Model Types

The navigation bar contains a drop down menu where another model type can be
selected. After selecting the model type to switch to, click on “Load Type”
to load the same model test with the selected model type. Note that only
model types available for the specific model are available in the menu.

[image: ../_images/detailed_results_dropdown.png]

The drop down menu shows the other available model types for the test on
the model.

Non-passing Tests

When a test fails, the detailed test page show a message that describes why
the test failed instead of results. For more details see Failing test/query result interpretation

[image: ../_images/detailed_results_fail.png]

The test did not pass and a message is shown describing why.

Walkthrough tutorial

This tutorial demonstrates the use of EMMAA through a scientifically
interesting example related to COVID-19, involving the drug sitagliptin.

In each section, the Background block provides a description of some part
of the EMMAA dashboard and explains the key concepts behind it. The Action
block tells you what specifically to do at each step. Finally, the Science
block provides insights and observations gained along the way about our
scientific use case of interest.

Each section also contains a short (less than one minute) video that you can
watch to guide your exploration.

Note: This tutorial uses webm videos. Not all versions of Safari support
webm. We recommend using Chrome or Firefox to play the videos in this tutorial.

1. Visit the EMMAA Dashboard

Background: The EMMAA dashboard is at https://emmaa.indra.bio. The landing page
shows all of the self-updating models available in EMMAA including the COVID-19
model (top right). The landing page also links to Help and Demo videos, and
documentation on the EMMAA REST API for programmatic access.

Action: Open your browser and go to emmaa.indra.bio. Then find the Covid-19
model and click on the Details button to explore the model.

 EMMAA modules reference

EMMAA modules reference

	EMMAA Statement (emmaa.statements)

	EMMAA Model (emmaa.model)

	EMMAA Model Test Framework (emmaa.model_tests)

	Analyze model test results (emmaa.analyze_tests_results)

	Query classes (emmaa.queries)

	Process model queries (emmaa.answer_queries)

	Priors (emmaa.priors)
	Literature Prior (emmaa.priors.literature_prior)

	TCGA Cancer Prior (emmaa.priors.cancer_prior)

	Gene List Prior (emmaa.priors.gene_list_prior)

	Reactome Prior (emmaa.priors.reactome_prior)

	Querying Prior Statements (emmaa.priors.prior_stmts)

	Readers (emmaa.readers)
	AWS reader (emmaa.readers.aws_reader)

	INDRA DB client reader (emmaa.readers.db_client_reader)

	EMMAA’s Database (emmaa.db)
	The Database Schema (emmaa.db.schema)

	Database Manager (emmaa.db.manager)

	AWS model update and testing pipeline (emmaa.aws_lambda_functions)

	xDD client

	EMMAA’s Subscription Service (emmaa.subscription)
	Notifications functions (emmaa.subscription.notifications)

	Email Service (emmaa.subscription.email_service)

	Email Utilities (emmaa.subscription.email_util)

	Utilities (emmaa.util)

	Functions for node and edge filtering (emmaa.filter_functions)

 EMMAA Statement (emmaa.statements)

EMMAA Statement (emmaa.statements)

	
class emmaa.statements.EmmaaStatement(stmt, date, search_terms, metadata=None)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents an EMMAA Statement.

	Parameters

	
	stmt (indra.statements.Statement) – An INDRA Statement

	date (datetime) – A datetime object that is attached to the Statement. Typically
represents the time at which the Statement was created.

	search_terms (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.priors.SearchTerm]) – The list of search terms that led to the creation of the Statement.

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional metadata for the statement.

	
emmaa.statements.add_emmaa_annotations(indra_stmt, annotation)[source]

	Add EMMAA annotations to inner INDRA statement.

	
emmaa.statements.check_stmt(stmt, conditions, evid_policy='any')[source]

	Decide whether a statement meets the conditions.

	Parameters

	
	stmt (indra.statements.Statement) – INDRA Statement that should be checked for conditions.

	conditions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Conditions represented as key-value pairs that statements’
metadata can be compared to. NOTE if there are multiple conditions
provided, the function will require that all conditions are met to
return True.

	evid_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Policy for checking statement’s evidence objects. If ‘all’, then the
function returns True only if all of statement’s evidence objects meet
the conditions. If ‘any’, the function returns True as long as at
least one of statement’s evidences meets the conditions.

	Returns

	meets_conditions – Whether the Statement meets the conditions.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
emmaa.statements.filter_emmaa_stmts_by_metadata(estmts, conditions)[source]

	Filter EMMAA statements to those where conditions are met.

	Parameters

	
	estmts (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.statements.EmmaaStatement]) – A list of EMMAA Statements to filter.

	conditions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Conditions to filter on represented as key-value pairs that statements’
metadata can be compared to. NOTE if there are multiple conditions
provided, the function will require that all conditions are met
to keep a statement.

	Returns

	estmts_out – A list of EMMAA Statements which meet the conditions.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.statements.EmmaaStatement]

	
emmaa.statements.filter_indra_stmts_by_metadata(stmts, conditions, evid_policy='any')[source]

	Filter INDRA statements to those where conditions are met.

	Parameters

	
	stmts (list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]) – A list of INDRA Statements to filter.

	conditions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Conditions to filter on represented as key-value pairs that statements’
metadata can be compared to. NOTE if there are multiple conditions
provided, the function will require that all conditions are met
to keep a statement.

	evid_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Policy for checking statement’s evidence objects. If ‘all’, then the
statement is kept only if all of it’s evidence objects meet the
conditions. If ‘any’, the statement is kept as long as at least one
of its evidences meets the conditions.

	Returns

	stmts_out – A list of INDRA Statements which meet the conditions.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

	
emmaa.statements.is_internal(stmt)[source]

	Check if statement has any internal evidence.

	
emmaa.statements.to_emmaa_stmts(stmt_list, date, search_terms, metadata=None)[source]

	Make EMMAA statements from INDRA Statements with the given metadata.

 EMMAA Model (emmaa.model)

EMMAA Model (emmaa.model)

	
class emmaa.model.EmmaaModel(name, config, paper_ids=None)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents an EMMAA model.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A configuration dict that is typically loaded from a YAML file.

	paper_ids (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str]) or None [https://docs.python.org/3/library/constants.html#None]) – A list of paper IDs used to get statements for the current state of the
model. With new reading results, new paper IDs will be added. If not
provided, initial set will be derived from existing statements.

	
stmts

	A list of EmmaaStatement objects representing the model

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.EmmaaStatement]

	
assembly_config

	Configurations for assembling the model.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
test_config

	Configurations for running tests on the model.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
reading_config

	Configurations for reading the content.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
query_config

	Configurations for running queries on the model.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
search_terms

	A list of SearchTerm objects containing the search terms used in the
model.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.priors.SearchTerm]

	
ndex_network

	The identifier of the NDEx network corresponding to the model.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
assembled_stmts

	A list of assembled INDRA Statements

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

	
add_paper_ids(initial_ids, id_type='pmid')[source]

	Convert if needed and save paper IDs.

	Parameters

	
	initial_ids (set [https://docs.python.org/3/library/stdtypes.html#set](str [https://docs.python.org/3/library/stdtypes.html#str])) – A set of paper IDs.

	id_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – What type the given IDs are (e.g. pmid, doi, pii). All IDs except
for PIIs will be converted into TextRef IDs before saving.

	
add_statements(stmts)[source]

	Add a set of EMMAA Statements to the model

	Parameters

	stmts (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.EmmaaStatement]) – A list of EMMAA Statements to add to the model

	
assemble_dynamic_pysb(mode='local', bucket='emmaa')[source]

	Assemble a version of a PySB model for dynamic simulation.

	
assemble_pybel(mode='local', bucket='emmaa')[source]

	Assemble the model into PyBEL and return the assembled model.

	
assemble_pysb(mode='local', bucket='emmaa')[source]

	Assemble the model into PySB and return the assembled model.

	
assemble_signed_graph(mode='local', bucket='emmaa')[source]

	Assemble the model into signed graph and return the assembled graph.

	
assemble_unsigned_graph(**kwargs)[source]

	Assemble the model into unsigned graph and return the assembled
graph.

	
eliminate_copies()[source]

	Filter out exact copies of the same Statement.

	
extend_unique(estmts)[source]

	Extend model statements only if it is not already there.

	
get_assembled_entities()[source]

	Return a list of Agent objects that the assembled model contains.

	
get_entities()[source]

	Return a list of Agent objects that the model contains.

	
get_indra_stmts()[source]

	Return the INDRA Statements contained in the model.

	Returns

	The list of INDRA Statements that are extracted from the EMMAA
Statements.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

	
get_new_readings(date_limit=10)[source]

	Search new literature, read, and add to model statements

	
get_paper_ids_from_stmts(stmts)[source]

	Get initial set of paper IDs from a list of statements.

	Parameters

	stmts (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.statements.EmmaaStatement]) – A list of EMMAA statements to create the mappings from.

	
classmethod load_from_s3(model_name, bucket='emmaa')[source]

	Load the latest model state from S3.

	Parameters

	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of model to load. This function expects the latest model
to be found on S3 in the emmaa bucket with key
‘models/{model_name}/model_{date_string}’, and the model config
file at ‘models/{model_name}/config.json’.

	Returns

	Latest instance of EmmaaModel with the given name, loaded from S3.

	Return type

	emmaa.model.EmmaaModel

	
run_assembly()[source]

	Run INDRA’s assembly pipeline on the Statements.

	
save_to_s3(bucket='emmaa')[source]

	Dump the model state to S3.

	
static search_biorxiv(collection_id, date_limit)[source]

	Search BioRxiv within date_limit.

	Parameters

	
	date_limit (int [https://docs.python.org/3/library/functions.html#int]) – The number of days to search back from today.

	collection_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of a collection to search BioArxiv for.

	Returns

	terms_to_dois – A dict representing biorxiv collection ID as key and DOIs returned
by search as values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
static search_elsevier(search_terms, date_limit)[source]

	Search Elsevier for given search terms.

	Parameters

	
	search_terms (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.priors.SearchTerm]) – A list of SearchTerm objects to search PubMed for.

	date_limit (int [https://docs.python.org/3/library/functions.html#int]) – The number of days to search back from today.

	Returns

	terms_to_piis – A dict representing given search terms as keys and PIIs returned
by searches as values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
search_literature(lit_source, date_limit=None)[source]

	Search for the model’s search terms in the literature.

	Parameters

	date_limit (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The number of days to search back from today.

	Returns

	ids_to_terms – A dict representing all the literature source IDs (e.g.,
PMIDs or PIIS) returned by the searches as keys,
and the search terms for which the given ID was produced as
values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
static search_pubmed(search_terms, date_limit)[source]

	Search PubMed for given search terms.

	Parameters

	
	search_terms (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.priors.SearchTerm]) – A list of SearchTerm objects to search PubMed for.

	date_limit (int [https://docs.python.org/3/library/functions.html#int]) – The number of days to search back from today.

	Returns

	terms_to_pmids – A dict representing given search terms as keys and PMIDs returned
by searches as values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
to_json()[source]

	Convert the model into a json dumpable dictionary

	
update_from_disease_map(disease_map_config)[source]

	Update model by processing MINERVA Disease Map.

Relevant part of reading config should look similar to:

	{“disease_map”: {

	“map_name”: “covid19map”,
“filenames” : “all”, # or a list of filenames
“metadata”: {

“internal”: true
}

}

}

	
update_from_files(files_config)[source]

	Add custom statements from files.

Relevant part of reading config should look similar to:

	{“other_files”: [

	
	{

	“bucket”: “indra-covid19”,
“filename”: “ctd_stmts.pkl”,
“metadata”: {“internal”: true, “curated”: true}

}

	
update_to_ndex()[source]

	Update assembled model as CX on NDEx, updates existing network.

	
update_with_cord19(cord19_config)[source]

	Update model with new CORD19 dataset statements.

Relevant part of reading config should look similar to:

	{“cord19_update”: {

	
	“metadata”: {

	“internal”: true,
“curated”: false
},

“date_limit”: 5
}

}

	
upload_to_ndex()[source]

	Upload the assembled model as CX to NDEx, creates new network.

	
emmaa.model.get_assembled_statements(model, date=None, bucket='emmaa')[source]

	Load and return a list of assembled statements.

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a model.

	date (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Date in “YYYY-MM-DD” format for which to load the statements. If None,
loads the latest available statements.

	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of S3 bucket to look for a file. Defaults to ‘emmaa’.

	Returns

	
	stmts (list[indra.statements.Statement]) – A list of assembled statements.

	latest_file_key (str) – Key of a file with statements on s3.

	
emmaa.model.get_model_stats(model, mode, tests=None, date=None, extension='.json', n=0, bucket='emmaa')[source]

	Gets the latest statistics for the given model

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Model name to look for

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of stats to generate (model or test)

	tests (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a test corpus. Default is large_corpus_tests.

	date (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Date for which the stats will be returned in “YYYY-MM-DD” format.

	extension (str [https://docs.python.org/3/library/stdtypes.html#str]) – Extension of the file.

	n (int [https://docs.python.org/3/library/functions.html#int]) – Index of the file in list of S3 files sorted by date (0-indexed).

	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of bucket on S3.

	Returns

	model_data – The json formatted data containing the statistics for the model

	Return type

	json

	
emmaa.model.last_updated_date(model, file_type='model', date_format='date', tests='large_corpus_tests', extension='.pkl', n=0, bucket='emmaa')[source]

	Find the most recent or the nth file of given type on S3 and return its
creation date.

Example file name:
models/aml/model_2018-12-13-18-11-54.pkl

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Model name to look for

	file_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of a file to find the latest file for. Accepted values: ‘model’,
‘test_results’, ‘model_stats’, ‘test_stats’.

	date_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format of the returned date. Accepted values are ‘datetime’ (returns a
date in the format “YYYY-MM-DD-HH-mm-ss”) and ‘date’ (returns a date
in the format “YYYY-MM-DD”). Default is ‘date’.

	extension (str [https://docs.python.org/3/library/stdtypes.html#str]) – The extension the model file needs to have. Default is ‘.pkl’

	n (int [https://docs.python.org/3/library/functions.html#int]) – Index of the file in list of S3 files sorted by date (0-indexed).

	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of bucket on S3.

	Returns

	last_updated – A string of the selected format.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
emmaa.model.load_config_from_s3(model_name, bucket='emmaa')[source]

	Return a JSON dict of config settings for a model from S3.

	Parameters

	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model whose config should be loaded.

	Returns

	config – A JSON dictionary of the model configuration loaded from S3.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
emmaa.model.load_extra_evidence(stmts, method='db_query', ev_limit=1000, batch_size=3000)[source]

	Load additional evidence for statements from database.

	Parameters

	
	stmts (list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]) – A list of statements to load evidence for.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – What method to use to load evidence (accepted values: db_query and
rest_api). Default: db_query.

	ev_limit (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – How many evidences to load from the database for each statement.
Default: 1000.

	batch_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Batch size used for querying. Default: 3000.

	Returns

	stmts – A list of statements with additional evidence.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

	
emmaa.model.load_stmts_from_s3(model_name, bucket='emmaa')[source]

	Return the list of EMMAA Statements constituting the latest model.

	Parameters

	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model whose config should be loaded.

	Returns

	stmts – The list of EMMAA Statements in the latest model version.

	Return type

	list of emmaa.statements.EmmaaStatement

	
emmaa.model.pysb_to_gromet(pysb_model, model_name, statements=None, fname=None)[source]

	Convert PySB model to GroMEt object and save it to a JSON file.

	Parameters

	
	pysb_model (pysb.Model) – PySB model object.

	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of EMMAA model.

	statements (Optional[list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]]) – A list of INDRA Statements a PySB model was assembled from. If
provided the statement hashes will be propagated into GroMEt metadata.

	fname (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If given, the GroMEt will be dumped into JSON file.

	Returns

	g – A GroMEt object built from PySB model.

	Return type

	automates.script.gromet.gromet.Gromet

	
emmaa.model.save_config_to_s3(model_name, config, bucket='emmaa')[source]

	Upload config settings for a model to S3.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model whose config should be saved to S3.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A JSON dict of configurations for the model.

 EMMAA Model Test Framework (emmaa.model_tests)

EMMAA Model Test Framework (emmaa.model_tests)

This module implements the object model for EMMAA model testing.

	
class emmaa.model_tests.EmmaaTest[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represent an EMMAA test condition

	
get_entities()[source]

	Return a list of entities that the test checks for.

	
class emmaa.model_tests.ModelManager(model, mode='local')[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manager to generate and store properties of a model and relevant tests.

	Parameters

	
	model (emmaa.model.EmmaaModel) – EMMAA model

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – If ‘local’ (default), does not save any exports/images to S3. It is
only set to ‘s3’ mode in update_model_manager.py script.

	
mc_mapping

	A dictionary mapping a ModelChecker type to a corresponding method
for assembling the model and a ModelChecker class.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mc_types

	A dictionary in which each key is a type of a ModelChecker and value is
a dictionary containing an instance of a model, an instance of a
ModelChecker and a list of test results.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
entities

	A list of entities of EMMAA model.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.agent.Agent]

	
applicable_tests

	A list of EMMAA tests applicable for given EMMAA model.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.model_tests.EmmaaTest]

	
date_str

	Time when this object was created.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
path_stmt_types

	A dictionary mapping statement hashes to a count of paths they are in.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
add_result(mc_type, result)[source]

	Add a result to a list of results.

	
add_test(test)[source]

	Add a test to a list of applicable tests.

	
answer_dynamic_query(query, bucket='emmaa')[source]

	Answer user query by simulating a PySB model.

	
answer_intervention_query(query, bucket='emmaa')[source]

	Answer user intervention query by simulating a PySB model.

	
answer_open_query(query)[source]

	Answer user open search query with found paths.

	
answer_path_query(query)[source]

	Answer user query with a path if it is found.

	
answer_queries(queries, **kwargs)[source]

	Answer all queries registered for this model.

	Parameters

	queries (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.queries.Query]) – A list of queries to run.

	Returns

	responses – A list of tuples each containing a query, mc_type and result json.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple](json, json)]

	
get_updated_mc(mc_type, stmts, add_ns=False, edge_filter_func=None)[source]

	Update the ModelChecker and graph with stmts for tests/queries.

	
hash_response_list(response)[source]

	Return a dictionary mapping a hash with a response in a response
list.

	
process_response(mc_type, result)[source]

	Return a dictionary in which every key is a hash and value is a list
of tuples. Each tuple contains a sentence describing either a step in a
path (if it was found) or result code (if a path was not found) and a
link leading to a webpage with more information about corresponding
sentence.

	
results_to_json(test_data=None)[source]

	Put test results to json format.

	
run_all_tests(filter_func=None, edge_filter_func=None)[source]

	Run all applicable tests with all available ModelCheckers.

	
run_tests_per_mc(mc_type, max_path_length, max_paths, filter_func=None, edge_filter_func=None)[source]

	Run all applicable tests with one ModelChecker.

	
save_assembled_statements(bucket='emmaa')[source]

	Upload assembled statements jsons to S3 bucket.

	
upload_results(test_corpus='large_corpus_tests', test_data=None, bucket='emmaa')[source]

	Upload results to s3 bucket.

	
class emmaa.model_tests.RefinementTestConnector[source]

	Bases: emmaa.model_tests.TestConnector

Determines applicability of a test to a model by checking if test
entities or their refinements are in the model.

	
static applicable(model, test)[source]

	Return True of all test entities are in the set of model entities

	
class emmaa.model_tests.ScopeTestConnector[source]

	Bases: emmaa.model_tests.TestConnector

Determines applicability of a test to a model by overlap in scope.

	
static applicable(model, test)[source]

	Return True of all test entities are in the set of model entities

	
class emmaa.model_tests.StatementCheckingTest(stmt, configs=None)[source]

	Bases: emmaa.model_tests.EmmaaTest

Represent an EMMAA test condition that checks a PySB-assembled model
against an INDRA Statement.

	
check(model_checker, pysb_model)[source]

	Use a model checker to check if a given model satisfies the test.

	
get_entities()[source]

	Return a list of entities that the test checks for.

	
class emmaa.model_tests.TestConnector[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Determines if a given test is applicable to a given model.

	
static applicable(model, test)[source]

	Return True if the test is applicable to the given model.

	
class emmaa.model_tests.TestManager(model_managers, tests)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manager to generate and run a set of tests on a set of models.

	Parameters

	
	model_managers (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.model_tests.ModelManager]) – A list of ModelManager objects

	tests (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.model_tests.EmmaaTest]) – A list of EMMAA tests

	
make_tests(test_connector)[source]

	Generate a list of applicable tests for each model with a given test
connector.

	Parameters

	test_connector (emmaa.model_tests.TestConnector) – A TestConnector object to use for connecting models to tests.

	
run_tests(filter_func=None, edge_filter_func=None)[source]

	Run tests for a list of model-test pairs

	
emmaa.model_tests.load_tests_from_s3(test_name, bucket='emmaa')[source]

	Load Emmaa Tests with the given name from S3.

	Parameters

	test_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Looks for a test file in the emmaa bucket on S3 with key
‘tests/{test_name}’.

	Returns

	List of EmmaaTest objects loaded from S3.

	Return type

	list of EmmaaTest

	
emmaa.model_tests.model_to_tests(model_name, upload=True, bucket='emmaa')[source]

	Create StatementCheckingTests from model statements.

	
emmaa.model_tests.run_model_tests_from_s3(model_name, test_corpus='large_corpus_tests', upload_results=True, bucket='emmaa')[source]

	Run a given set of tests on a given model, both loaded from S3.

After loading both the model and the set of tests, model/test overlap
is determined using a ScopeTestConnector and tests are run.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of EmmaaModel to load from S3.

	test_corpus (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file containing tests on S3.

	upload_results (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Whether to upload test results to S3 in JSON format. Can be set
to False when running tests. Default: True

	Returns

	Instance of ModelManager containing the model data, list of applied
tests and the test results.

	Return type

	emmaa.model_tests.ModelManager

	
emmaa.model_tests.save_tests_to_s3(tests, bucket, key, save_format='pkl')[source]

	Save tests in pkl, json or jsonl format.

 Analyze model test results (emmaa.analyze_tests_results)

Analyze model test results (emmaa.analyze_tests_results)

	
class emmaa.analyze_tests_results.ModelRound(statements, date_str, paper_ids=None, paper_id_type='TRID', emmaa_statements=None)[source]

	Bases: emmaa.analyze_tests_results.Round

Analyzes the results of one model update round.

	Parameters

	
	statements (list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]) – A list of INDRA Statements used to assemble a model.

	date_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – Time when ModelManager responsible for this round was created.

	paper_ids (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – A list of paper IDs used to get raw statements for this round.

	paper_id_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of paper ID used.

	
stmts_by_papers

	A dictionary mapping the paper IDs to sets of hashes of assembled
statements with evidences retrieved from these papers.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_agent_distribution()[source]

	Return a sorted list of tuples containing an agent name and a number
of times this agent occured in statements of a model.

	
get_all_raw_paper_ids()[source]

	Return all paper IDs used in this round.

	
get_assembled_stmts_by_paper(id_type='TRID')[source]

	Get a mapping of paper IDs (TRID or PII) to assembled statements.

	
get_english_statements_by_hash()[source]

	Return a dictionary mapping a statement and its English description.

	
get_number_raw_papers()[source]

	Return a total number of papers in this round.

	
get_paper_titles_and_links(trids)[source]

	Return a dictionary mapping paper IDs to their titles.

	
get_papers_distribution()[source]

	Return a sorted list of tuples containing a paper ID and a number
of unique statements extracted from that paper.

	
get_statement_types()[source]

	Return a sorted list of tuples containing a statement type and a
number of times a statement of this type occured in a model.

	
get_statements_by_evidence()[source]

	Return a sorted list of tuples containing a statement hash and a
number of times this statement occured in a model.

	
get_stmt_hashes()[source]

	Return a list of hashes for all statements in a model.

	
get_total_statements()[source]

	Return a total number of statements in a model.

	
class emmaa.analyze_tests_results.ModelStatsGenerator(model_name, latest_round=None, previous_round=None, previous_json_stats=None, bucket='emmaa')[source]

	Bases: emmaa.analyze_tests_results.StatsGenerator

Generates statistic for a given model update round.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a model the tests were run against.

	latest_round (emmaa.analyze_tests_results.ModelRound) – An instance of a ModelRound to generate statistics for. If not given,
will be generated by loading model data from s3.

	previous_round (emmaa.analyze_tests_results.ModelRound) – A different instance of a ModelRound to find delta between two rounds.
If not given, will be generated by loading model data from s3.

	previous_json_stats (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A JSON-formatted dictionary containing model statistics for previous
update round.

	
json_stats

	A JSON-formatted dictionary containing model statistics.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
make_changes_over_time()[source]

	Add changes to model over time to json_stats.

	
make_curation_summary()[source]

	Add latest curation summary to json_stats.

	
make_model_delta()[source]

	Add model delta between two latest model states to json_stats.

	
make_model_summary()[source]

	Add latest model state summary to json_stats.

	
make_paper_delta()[source]

	Add paper delta between two latest model states to json_stats.

	
make_paper_summary()[source]

	Add latest paper summary to json_stats.

	
make_stats()[source]

	Check if two latest model rounds were found and add statistics to
json_stats dictionary. If both latest round and previous round
were passed or found on s3, a dictionary will have three key-value
pairs: model_summary, model_delta, and changes_over_time.

	
class emmaa.analyze_tests_results.Round(date_str)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Parent class for classes analyzing one round of something (model or
tests).

	Parameters

	date_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – Time when ModelManager responsible for this round was created.

	
function_mapping

	A dictionary of strings mapping a type of content to a tuple of
functions necessary to find delta for this type of content. First
function in a tuple gets a list of all hashes for a given content type,
while the second returns an English description of a given content type
for a single hash.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
find_delta_hashes(other_round, content_type, **kwargs)[source]

	Return a dictionary of changed hashes of a given content type. This
method makes use of self.function_mapping dictionary.

	Parameters

	
	other_round (emmaa.analyze_tests_results.TestRound) – A different instance of a TestRound

	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A type of the content to find delta. Accepted values:
- statements
- applied_tests
- passed_tests
- paths

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – For some of content types, additional arguments must be
provided sych as mc_type.

	Returns

	hashes – A dictionary containing lists of added and removed hashes of a
given content type between two test rounds.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class emmaa.analyze_tests_results.StatsGenerator(model_name, latest_round=None, previous_round=None, previous_json_stats=None, bucket='emmaa')[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Parent class for classes generating statistic for a given round of
tests or model update.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a model the tests were run against.

	latest_round (ModelRound or TestRound or None [https://docs.python.org/3/library/constants.html#None]) – An instance of a ModelRound or TestRound to generate statistics for.
If not given, will be generated by loading json from s3.

	previous_round (ModelRound or TestRound or None [https://docs.python.org/3/library/constants.html#None]) – A different instance of a ModelRound or TestRound to find delta
between two rounds. If not given, will be generated by loading json
from s3.

	previous_json_stats (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A JSON-formatted dictionary containing model or test statistics for
the previous round.

	
json_stats

	A JSON-formatted dictionary containing model or test statistics.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
make_changes_over_time()[source]

	Add changes to model and tests over time to json_stats.

	
class emmaa.analyze_tests_results.TestRound(json_results, date_str)[source]

	Bases: emmaa.analyze_tests_results.Round

Analyzes the results of one test round.

	Parameters

	
	json_results (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of JSON formatted dictionaries to store information about the
test results. The first dictionary contains information about the
model. Each consecutive dictionary contains information about a single
test applied to the model and test results.

	date_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – Time when ModelManager responsible for this round was created.

	
mc_types_results

	A dictionary mapping a type of a ModelChecker to a list of test
results generated by this ModelChecker

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
tests

	A list of INDRA Statements used to make EMMAA tests.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

	
english_test_results

	A dictionary mapping a test hash and a list containing its English
description, result in Pass/Fail/n_a form and either a path if it
was found or a result code if it was not.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_applied_test_hashes()[source]

	Return a list of hashes for all applied tests.

	
get_number_passed_tests(mc_type='pysb')[source]

	Return a number of all passed tests.

	
get_passed_test_hashes(mc_type='pysb')[source]

	Return a list of hashes for passed tests.

	
get_total_applied_tests()[source]

	Return a number of all applied tests.

	
passed_over_total(mc_type='pysb')[source]

	Return a ratio of passed over total tests.

	
class emmaa.analyze_tests_results.TestStatsGenerator(model_name, test_corpus_str='large_corpus_tests', latest_round=None, previous_round=None, previous_json_stats=None, bucket='emmaa')[source]

	Bases: emmaa.analyze_tests_results.StatsGenerator

Generates statistic for a given test round.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a model the tests were run against.

	test_corpus_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a test corpus the model was tested against.

	latest_round (emmaa.analyze_tests_results.TestRound) – An instance of a TestRound to generate statistics for. If not given,
will be generated by loading test results from s3.

	previous_round (emmaa.analyze_tests_results.TestRound) – A different instance of a TestRound to find delta between two rounds.
If not given, will be generated by loading test results from s3.

	previous_json_stats (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A JSON-formatted dictionary containing test statistics for previous
test round.

	
json_stats

	A JSON-formatted dictionary containing test statistics.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
make_changes_over_time()[source]

	Add changes to tests over time to json_stats.

	
make_stats()[source]

	Check if two latest test rounds were found and add statistics to
json_stats dictionary. If both latest round and previous round
were passed or found on s3, a dictionary will have three key-value
pairs: test_round_summary, tests_delta, and changes_over_time.

	
make_test_summary()[source]

	Add latest test round summary to json_stats.

	
make_tests_delta()[source]

	Add tests delta between two latest test rounds to json_stats.

	
emmaa.analyze_tests_results.generate_stats_on_s3(model_name, mode, test_corpus_str='large_corpus_tests', upload_stats=True, bucket='emmaa')[source]

	Generate statistics for latest round of model update or tests.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of EmmaaModel.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of stats to generate (model or tests)

	test_corpus_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a test corpus.

	upload_stats (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Whether to upload latest statistics about model and a test.
Default: True

 Query classes (emmaa.queries)

Query classes (emmaa.queries)

	
class emmaa.queries.ComparativeInterventionProperty[source]

	Bases: emmaa.queries.Query

	
class emmaa.queries.DynamicProperty(entity, pattern_type, quant_value=None, quant_type='qualitative')[source]

	Bases: emmaa.queries.Query

This type of query requires dynamic simulation of the model to check
whether the queried temporal pattern is satisfied.

	Parameters

	
	entity (indra.statements.Agent) – An entity to simulate the model for.

	pattern_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of temporal pattern. Accepted values: ‘always_value’, ‘no_change’,
‘eventual_value’, ‘sometime_value’, ‘sustained’, ‘transient’.

	quant_value (str [https://docs.python.org/3/library/stdtypes.html#str] or float [https://docs.python.org/3/library/functions.html#float]) – Value of molecular quantity of entity of interest. Can be ‘high’ or
‘low’ or a specific number.

	quant_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of molecular quantity of entity of interest. Default: qualitative.

	
get_temporal_pattern(time_limit=None)[source]

	Return TemporalPattern object created with query properties.

	
exception emmaa.queries.GroundingError[source]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
class emmaa.queries.OpenSearchQuery(entity, stmt_type, entity_role, terminal_ns=None)[source]

	Bases: emmaa.queries.Query

This type of query requires doing an open ended breadth-first search
to find paths satisfying the query.

	Parameters

	
	entity (indra.statements.Agent) – An entity to simulate the model for.

	stmt_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of statement type.

	entity_role (str [https://docs.python.org/3/library/stdtypes.html#str]) – What role entity should play in statement (subject or object).

	terminal_ns (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Force a path to terminate when any of the namespaces in this list
are encountered and only yield paths that terminate at these
namepsaces

	
path_stmt

	An INDRA statement having its subject or object set to None to
represent open search query.

	Type

	indra.statements.Statement

	
class emmaa.queries.PathProperty(path_stmt, entity_constraints=None, relationship_constraints=None)[source]

	Bases: emmaa.queries.Query

This type of query requires finding a mechanistic causally consistent
path that satisfies query statement.

	Parameters

	
	path_stmt (indra.statements.Statement) – A path to look for in the model represented as INDRA statement.

	entity_constraints (dict [https://docs.python.org/3/library/stdtypes.html#dict](list [https://docs.python.org/3/library/stdtypes.html#list](indra.statements.Agent))) – A dictionary containing lists of Agents to be included in or excluded
from the path.

	relationship_constraints (dict [https://docs.python.org/3/library/stdtypes.html#dict](list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str]))) – A dictionary containing lists of Statement types to include in or
exclude from the path.

	
get_entities()[source]

	Return entities from the path statement and the inclusion list.

	
class emmaa.queries.Query[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The parent class of all query types.

	
class emmaa.queries.SimpleInterventionProperty(condition_entity, target_entity, direction)[source]

	Bases: emmaa.queries.Query

This type of query requires dynamic simulation of the model to observe
the behavior under perturbation.

	
class emmaa.queries.StructuralProperty[source]

	Bases: emmaa.queries.Query

	
emmaa.queries.get_agent_from_gilda(ag_name)[source]

	Return an INDRA Agent object by grounding its entity text with Gilda.

	
emmaa.queries.get_agent_from_text(ag_text)[source]

	Return an INDRA Agent object by grounding its entity text with either
Gilda or TRIPS.

	
emmaa.queries.get_agent_from_trips(ag_text, service_host='http://34.230.33.149:8002/cgi/')[source]

	Return an INDRA Agent object by grounding its entity text with TRIPS.

 Process model queries (emmaa.answer_queries)

Process model queries (emmaa.answer_queries)

	
class emmaa.answer_queries.QueryManager(db=None, model_managers=None)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manager to run queries and interact with the database.

	Parameters

	
	db (emmaa.db.EmmaaDatabaseManager) – An instance of a database manager to use.

	model_managers (list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.model_tests.ModelManager]) – Optional list of ModelManagers to use for running queries. If not
given, the methods will load ModelManager from S3 when needed.

	
answer_immediate_query(user_email, user_id, query, model_names, subscribe, bucket='emmaa')[source]

	This method first tries to find saved result to the query in the
database and if not found, runs ModelManager method to answer query.

	
answer_registered_queries(model_name, bucket='emmaa')[source]

	Retrieve and asnwer registered queries

Retrieve queries registered on database for a given model,
answer them, calculate delta between results and put results to a
database.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model

	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – The bucket to save the results to

	
get_registered_queries(user_email, query_type='path_property')[source]

	Get formatted results to queries registered by user.

	
retrieve_results_from_hashes(query_hashes, query_type='path_property', latest_order=1)[source]

	Retrieve results from a db given a list of query-model hashes.

	
emmaa.answer_queries.answer_queries_from_s3(model_name, db=None, bucket='emmaa')[source]

	Answer registered queries with model manager on s3.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of EmmaaModel to answer queries for.

	db (Optional[emmaa.db.manager.EmmaaDatabaseManager]) – If given over-rides the default primary database.

	
emmaa.answer_queries.format_results(results, query_type='path_property')[source]

	Format db output to a standard json structure.

 Priors (emmaa.priors)

Priors (emmaa.priors)

This module contains classes to generate prior networks.

	
class emmaa.priors.SearchTerm(type, name, db_refs, search_term)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a search term to be used in a model configuration.

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of search term, e.g. gene, bioprocess, other

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the search term, is equivalent to an Agent name

	db_refs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict of database references for the given term, is similar
to an Agent db_refs dict

	search_term (str [https://docs.python.org/3/library/stdtypes.html#str]) – The actual search term to us for searching PubMed

	
classmethod from_json(jd)[source]

	Return a SearchTerm object from JSON.

	
to_json()[source]

	Return search term as JSON.

	
emmaa.priors.get_drugs_for_gene(stmts, hgnc_id)[source]

	Get list of drugs that target a gene

	Parameters

	
	stmts (list of indra.statements.Statement) – List of INDRA statements with a drug as subject

	hgnc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – HGNC id for a gene

	Returns

	drugs_for_gene – List of search terms for drugs targeting the input gene

	Return type

	list of emmaa.priors.SearchTerm

Literature Prior (emmaa.priors.literature_prior)

This module implements the LiteraturePrior class which automates
some of the steps involved in starting a model around a set of
literature searches. Example:

lp = LiteraturePrior('some_disease', 'Some Disease',
 'This is a self-updating model of Some Disease',
 search_strings=['some disease'],
 assembly_config_template='nf')
estmts = lp.get_statements()
model = lp.make_model(estmts, upload_to_s3=True)

	
emmaa.priors.literature_prior.get_raw_statements_for_pmids(pmids, mode='all', batch_size=100)[source]

	Return EmmaaStatements based on extractions from given PMIDs.

	Parameters

	
	pmids (set [https://docs.python.org/3/library/stdtypes.html#set] or list of str) – A set of PMIDs to find raw INDRA Statements for in the INDRA DB.

	mode ('all' or 'distilled') – The ‘distilled’ mode makes sure that the “best”, non-redundant
set of raw statements are found across potentially redundant text
contents and reader versions. The ‘all’ mode doesn’t do such
distillation but is significantly faster.

	batch_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Determines how many PMIDs to fetch statements for in each
iteration. Default: 100.

	Returns

	A dict keyed by PMID with values INDRA Statements obtained
from the given PMID.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
emmaa.priors.literature_prior.make_search_terms(search_strings, mesh_ids)[source]

	Return EMMAA SearchTerms based on search strings and MeSH IDs.

	Parameters

	
	search_strings (list of str) – A list of search strings e.g., “diabetes” to find papers in the
literature.

	mesh_ids (list of str) – A list of MeSH IDs that are used to search the literature as headings
associated with papers.

	Returns

	A list of EMMAA SearchTerm objects constructed from the search strings
and the MeSH IDs.

	Return type

	list of emmmaa.prior.SearchTerm

TCGA Cancer Prior (emmaa.priors.cancer_prior)

	
class emmaa.priors.cancer_prior.TcgaCancerPrior(tcga_study_prefix, sif_prior, diffusion_service=None, mutation_cache=None)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prior network generation using TCGA mutations for a given cancer type.

This class implements building a prior network using a generic underlying
prior, and TCGA data for a specific cancer type. Mutations for the given
cancer type are extracted from TCGA studies and heat diffusion from the
corresponding nodes in the prior is used to identify a set of relevant
nodes.

	
static find_drugs_for_genes(node_list)[source]

	Return list of drugs targeting gene nodes.

	
get_mutated_genes()[source]

	Return dict of gene mutation frequencies based on TCGA studies.

	
get_relevant_nodes(pct_heat_threshold)[source]

	Return a list of the relevant nodes in the prior.

Heat diffusion is applied to the prior network based on initial
heat on nodes that are mutated according to patient statistics.

	
load_sif_prior(fname, e50=20)[source]

	Return a Graph based on a SIF file describing a prior.

	Parameters

	
	fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the SIF file.

	e50 (int [https://docs.python.org/3/library/functions.html#int]) – Parameter for converting evidence counts into weights over the
interval [0, 1) according to hyperbolic function
weight = (count / (count + e50)).

	
make_prior(pct_heat_threshold=99)[source]

	Run the prior node list generation and return relevant nodes.

	
static search_terms_from_nodes(node_list)[source]

	Build a list of Pubmed search terms from the nodes returned by
make_prior.

Gene List Prior (emmaa.priors.gene_list_prior)

	
class emmaa.priors.gene_list_prior.GeneListPrior(gene_list, name, human_readable_name)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class to manage the construction of a model from a list of genes.

	Parameters

	
	gene_list (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of HGNC gene symbols

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model (all lower case, no spaces or special characters)

	human_readable_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The human readable name (display name) of the model

	
make_config()[source]

	Generate a configuration based on attributes.

	
make_gene_statements()[source]

	Generate Statements from the gene list.

	
make_model()[source]

	Make an EmmaaModel and upload it along with the config to S3.

	
make_search_terms(drug_gene_stmts=None)[source]

	Generate search terms from the gene list.

	
emmaa.priors.gene_list_prior.agent_from_gene_name(gene_name)[source]

	Return an Agent based on a gene name.

Reactome Prior (emmaa.priors.reactome_prior)

	
emmaa.priors.reactome_prior.find_drugs_for_genes(search_terms, drug_gene_stmts=None)[source]

	Return list of drugs targeting at least one gene from a list of genes

	Parameters

	search_terms (list of emmaa.priors.SearchTerm) – List of search terms for genes

	Returns

	drug_terms – List of search terms of drugs targeting at least one of the input genes

	Return type

	list of emmaa.priors.SearchTerm

	
emmaa.priors.reactome_prior.get_genes_contained_in_pathway[source]

	Get all genes contained in a given pathway

	Parameters

	reactome_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reactome id for a pathway

	Returns

	genes – List of uniprot ids for all unique genes contained in input pathway

	Return type

	list of str

	
emmaa.priors.reactome_prior.get_pathways_containing_gene[source]

	“Get all ids for reactom pathways containing some form of an entity

	Parameters

	reactome_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reactome id for a gene

	Returns

	pathway_ids – List of reactome ids for pathways containing the input gene

	Return type

	list of str

	
emmaa.priors.reactome_prior.make_prior_from_genes(gene_list)[source]

	Return reactome prior based on a list of genes

	Parameters

	gene_list (list of str) – List of HGNC symbols for genes

	Returns

	res – List of search terms corresponding to all genes found in any reactome
pathway containing one of the genes in the input gene list

	Return type

	list of emmaa.priors.SearchTerm

	
emmaa.priors.reactome_prior.rx_id_from_up_id[source]

	Return the Reactome Stable IDs for a given Uniprot ID.

	
emmaa.priors.reactome_prior.up_id_from_rx_id[source]

	Get the Uniprot ID (referenceEntity) for a given Reactome Stable ID.

Querying Prior Statements (emmaa.priors.prior_stmts)

	
emmaa.priors.prior_stmts.get_stmts_for_gene(gene)[source]

	Return all existing Statements for a given gene from the DB.

	Parameters

	gene (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HGNC symbol of a gene to query.

	Returns

	A list of INDRA Statements in which the given gene is involved.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

	
emmaa.priors.prior_stmts.get_stmts_for_gene_list(gene_list, other_entities)[source]

	Return all Statements between genes in a given list.

	Parameters

	
	gene_list (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of HGNC symbols for genes to query.

	other_entities (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of other entities to keep as part of the set of Statements.

	Returns

	A list of INDRA Statements between the given list of genes and other
entities specified.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

 Readers (emmaa.readers)

Readers (emmaa.readers)

AWS reader (emmaa.readers.aws_reader)

	
emmaa.readers.aws_reader.read_pmid_search_terms(pmid_search_terms)[source]

	Return extracted EmmaaStatements given a PMID-search term dict.

	Parameters

	pmid_search_terms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict representing a set of PMIDs pointing to search terms that
produced them.

	Returns

	A list of EmmaaStatements extracted from the given PMIDs.

	Return type

	list[emmaa.model.EmmaaStatement]

	
emmaa.readers.aws_reader.read_pmids(pmids, date)[source]

	Return extracted INDRA Statements per PMID after running reading on AWS.

	Parameters

	
	pmids (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of PMIDs to read.

	date (datetime) – The date and time associated with the reading, typically the
current time.

	Returns

	A dict of PMIDs and the list of Statements extracted for the given
PMID by reading.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][indra.statements.Statement]

INDRA DB client reader (emmaa.readers.db_client_reader)

	
emmaa.readers.db_client_reader.read_db_doi_search_terms(doi_search_terms)[source]

	Return extracted EmmaaStatements from INDRA database given a
DOI-search term dict.

	Parameters

	doi_search_terms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict representing a set of DOIs pointing to search terms that
produced them.

	Returns

	A list of EmmaaStatements extracted from the given DOIs.

	Return type

	list[emmaa.model.EmmaaStatement]

	
emmaa.readers.db_client_reader.read_db_ids_search_terms(id_search_terms, id_type)[source]

	Return extracted EmmaaStatements from INDRA database given an
ID-search term dict.

	Parameters

	id_search_terms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict representing a set of IDs pointing to search terms that
produced them.

	Returns

	A list of EmmaaStatements extracted from the given IDs.

	Return type

	list[emmaa.model.EmmaaStatement]

	
emmaa.readers.db_client_reader.read_db_pmid_search_terms(pmid_search_terms)[source]

	Return extracted EmmaaStatements from INDRA database given a
PMID-search term dict.

	Parameters

	pmid_search_terms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict representing a set of PMIDs pointing to search terms that
produced them.

	Returns

	A list of EmmaaStatements extracted from the given PMIDs.

	Return type

	list[emmaa.model.EmmaaStatement]

 EMMAA’s Database (emmaa.db)

EMMAA’s Database (emmaa.db)

The Database Schema (emmaa.db.schema)

	
class emmaa.db.schema.User(**kwargs)[source]

	Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

A table containing users of EMMAA: User(_id_, email)

	Parameters

	
	id (int [https://docs.python.org/3/library/functions.html#int]) – (from indralab_auth_tools.src.models.User.id, primary key)
A database-generated integer from the User table in indralab
auth tools.

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email of the user (must be unique)

	
class emmaa.db.schema.Query(**kwargs)[source]

	Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

Queries run on each model: Query(_hash_, model_id, json, qtype)

The hash column is a hash generated from the json and model_id columns
that can be derived from the

	Parameters

	
	hash (big-int) – (primary key) A 32 bit integer generated from the json and model_id.

	model_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (20 character) The short id/acronym for the given model.

	json (json) – A json dict containing the relevant parameters defining the query.

	
class emmaa.db.schema.UserQuery(**kwargs)[source]

	Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

A table linking users to queries:

UserQuery(_id_, user_id, query_hash, date, subscription, count)

	Parameters

	
	id (int [https://docs.python.org/3/library/functions.html#int]) – (auto, primary key) A database-assigned integer id.

	user_id (int [https://docs.python.org/3/library/functions.html#int]) – (foreign key -> User.id) The id of the user related to this query.

	query_hash (big-int) – (foreign key -> Query.hash) The hash of the query json, which can be
directly generated.

	date (datetime) – (auto) The date that this entry was added to the database.

	subscription (bool [https://docs.python.org/3/library/functions.html#bool]) – Record whether the user has subscribed to see results of this model.

	count (int [https://docs.python.org/3/library/functions.html#int]) – Record the number of times the user associated with user id has done
this query

	
class emmaa.db.schema.Result(**kwargs)[source]

	Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

Results of queries to models:

Result(_id_, query_hash, date, result_json, mc_type, all_result_hashes,
delta)

	Parameters

	
	id (int [https://docs.python.org/3/library/functions.html#int]) – (auto, primary key) A database-assigned integer id.

	query_hash (big-int) – (foreign key -> Query.hash) The hash of the query json, which can be
directly generated.

	date (datetime) – (auto) The date the result was entered into the database.

	result_json (json) – A json dict containing the results for the query.

	mc_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a ModelChecker used to answer the query.

	
class emmaa.db.schema.UserModel(**kwargs)[source]

	Bases: sqlalchemy.orm.decl_api.Base, emmaa.db.schema.EmmaaTable

A table linking users to models:

UserModel(_id_, user_id, model_id, date, subscription)

	Parameters

	
	id (int [https://docs.python.org/3/library/functions.html#int]) – (auto, primary key) A database-assigned integer id.

	user_id (int [https://docs.python.org/3/library/functions.html#int]) – (foreign key -> User.id) The id of the user related to this query.

	model_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – (20 character) The short id/acronym for the given model.

	date (datetime) – (auto) The date that this entry was added to the database.

	subscription (bool [https://docs.python.org/3/library/functions.html#bool]) – Record whether the user has subscribed to see results of this model.

Database Manager (emmaa.db.manager)

	
class emmaa.db.manager.EmmaaDatabaseManager(host, label=None)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class used to manage sessions with EMMAA’s database.

	
add_user(user_id, email)[source]

	Add a new user’s email and id to Emmaa’s User table.

	
create_tables(tables=None)[source]

	Create the tables from the EMMAA database

Optionally specify tables to be created. List may contain either
table objects or the string names of the tables.

	
drop_tables(tables=None, force=False)[source]

	Drop the tables from the EMMAA database given in tables.

If tables is None, all tables will be dropped. Note that if force
is False, a warning prompt will be raised to asking for confirmation,
as this action will remove all data from that table.

	
get_all_result_hashes(qhash, mc_type)[source]

	Get a set of all result hashes for a given query and mc_type.

	
get_model_users(model_id)[source]

	Get all users who are subscribed to a given model.

	Parameters

	model_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – A standard name of a model to get users for.

	Returns

	A list of email addresses corresponding to all users who are
subscribed to this model.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_queries(model_id)[source]

	Get queries that refer to the given model_id.

	Parameters

	model_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The short, standard model ID.

	Returns

	queries – A list of queries retrieved from the database.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][emmaa.queries.Query]

	
get_results(user_email, latest_order=1, query_type=None)[source]

	Get the results for which the user has registered.

	Parameters

	
	user_email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email of a user.

	latest_order (int [https://docs.python.org/3/library/functions.html#int]) – Which result in the order from the latest to get. Default: 1 (
latest).

	query_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter results to specific query type. Default: None (all query
types will be returned).

	Returns

	results – A list of tuples, each of the form: (model_id, query, mc_type,
result_json, delta, date) representing the result of a query run
on a model on a given date.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]

	
get_subscribed_queries(email)[source]

	Get a list of (query object, model id, query hash) for a user

	Parameters

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email address to check subscribed queries for

	Returns

	

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](tuple [https://docs.python.org/3/library/stdtypes.html#tuple](emmaa.queries.Query, str [https://docs.python.org/3/library/stdtypes.html#str], query_hash))

	
get_subscribed_users()[source]

	Get all users who have subscriptions
:returns: A list of email addresses corresponding to all users who have

any subscribed query

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_user_models(email)[source]

	Get all models a user is subscribed to.

	
put_queries(user_email, user_id, query, model_ids, subscribe=True)[source]

	Add queries to the database for a given user.

	Parameters

	
	user_email (str [https://docs.python.org/3/library/stdtypes.html#str]) – the email of the user that entered the queries.

	user_id (int [https://docs.python.org/3/library/functions.html#int]) – the user id of the user that entered the queries. Corresponds to
the user id in the User table in indralab_auth_tools

	query (emmaa.queries.Query) – A query object containing all necessary information.

	model_ids (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of the short, standard model IDs to which the user wishes
to apply these queries.

	subscribe (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the user wishes to subscribe to this query.

	
put_results(model_id, query_results)[source]

	Add new results for a set of queries tested on a model_id.

	Parameters

	
	model_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The short, standard model ID.

	query_results (list of tuples) – A list of tuples of the form (query, mc_type, result_json), where
the query is the query object run against the model, mc_type is
the model type for the result, and the result_json is the json
containing corresponding result.

	
subscribe_to_model(user_email, user_id, model_id)[source]

	Subsribe a user to model updates.

	Parameters

	
	user_email (str [https://docs.python.org/3/library/stdtypes.html#str]) – the email of the user that entered the queries.

	user_id (int [https://docs.python.org/3/library/functions.html#int]) – the user id of the user that entered the queries. Corresponds to
the user id in the User table in indralab_auth_tools

	model_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Standard model ID to which the user wishes to subscribe.

	
update_email_subscription(email, queries, models, subscribe)[source]

	Update email subscriptions for user queries

NOTE:
For now this method simply unsubscribes to the given queries but
should in the future differentiated into recieving email
notifications or not and subscribing to queries or not.

	Parameters

	
	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email assocaited with the query

	queries (list [https://docs.python.org/3/library/stdtypes.html#list](int [https://docs.python.org/3/library/functions.html#int])) – A list of query hashes.

	" list[str] (models) – A list of models.

	subscribe (bool [https://docs.python.org/3/library/functions.html#bool]) – The subscription status for all matching query hashes

	Returns

	Return True if the update was successful, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
exception emmaa.db.manager.EmmaaDatabaseError[source]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

 AWS model update and testing pipeline (emmaa.aws_lambda_functions)

AWS model update and testing pipeline (emmaa.aws_lambda_functions)

The AWS Lambda emmaa-update-pipeline definition.

This file contains the function that starts model update cycle. It must be
placed on AWS Lambda, which can either be done manually (not recommended) or by
running:

$ python update_lambda.py update_pipeline.py emmaa-update-pipeline

in this directory.

	
emmaa.aws_lambda_functions.update_pipeline.lambda_handler(event, context)[source]

	Invoke individual model update functions.

This function iterates through all models contained on S3 bucket and calls
a different Lambda function to run model update for the models configured
to be updated daily. It is expected that models have ‘run_model_update’
parameter in their config.json files.

This function is designed to be placed on AWS Lambda, taking the event and
context arguments that are passed. Note that this function must always have
the same parameters, even if any or all of them are unused, because we do
not have control over what Lambda sends as parameters. Parameters are
unused in this function.

Lambda is configured to automatically run this script every day.

See the top of the page for the Lambda update procedure.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A response returned by the latest call to emmaa-model-update function.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-model-update definition.

This file contains the function that starts model update cycle. It must be
placed on AWS Lambda, which can either be done manually (not recommended) or by
running:

$ python update_lambda.py model_updates.py emmaa-model-update

in this directory.

	
emmaa.aws_lambda_functions.model_updates.lambda_handler(event, context)[source]

	Create a batch job to update models on s3 and NDEx.

This function is designed to be placed on AWS Lambda, taking the event and
context arguments that are passed. Note that this function must always have
the same parameters, even if any or all of them are unused, because we do
not have control over what Lambda sends as parameters. Event parameter is
used to pass model_name argument.

This Lambda function is configured to be invoked by emmaa-update-pipeline
Lambda function.

See the top of the page for the Lambda update procedure.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case the dictionary contains model name.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, ‘result’,
and ‘job_id’ to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-mm-update definition.

This file contains the function that updates model manager object in S3. It
must be placed on AWS Lambda, which can either be done manually (not
recommended) or by running:

$ python update_lambda.py model_manager_update.py emmaa-mm-update

in this directory.

	
emmaa.aws_lambda_functions.model_manager_update.lambda_handler(event, context)[source]

	Create a batch job to update model manager on s3.

This function is designed to be placed on AWS Lambda, taking the event and
context arguments that are passed. Note that this function must always have
the same parameters, even if any or all of them are unused, because we do
not have control over what Lambda sends as parameters. This Lambda
function is configured to be triggered when the model is updated on S3.

See the top of the page for the Lambda update procedure.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case, we are expecting ‘Records’, each of which contains a record
of a file that was added (or changed) on s3.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, ‘result’,
and ‘job_id’ to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-after-update definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py after_update.py emmaa-after-update

in this directory.

	
emmaa.aws_lambda_functions.after_update.lambda_handler(event, context)[source]

	Submit model tests, model and test stats, and query batch jobs.

This function is designed to be placed on AWS Lambda, taking the event and
context arguments that are passed. Note that this function must always have
the same parameters, even if any or all of them are unused, because we do
not have control over what Lambda sends as parameters. Event parameter is
used here to pass which model manager was updated.

Lambda is configured to run this script when ModelManager object is
updated.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case, we are expecting ‘Records’, each of which contains a record
of a file that was added (or changed) on s3.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any
other data to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-test-pipeline definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py test_pipeline.py emmaa-test-pipeline

in this directory.

	
emmaa.aws_lambda_functions.test_pipeline.lambda_handler(event, context)[source]

	Invoke individual test corpus functions.

This function is designed to be placed on lambda, taking the event and
context arguments that are passed. Event parameter is used here to pass
name of the model.

This Lambda function is configured to be invoked by emmaa-after-update
Lambda function.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case the dictionary contains ‘model’ key.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A response returned by the latest call to emmaa-model-test function.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-model-test definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py model_tests.py emmaa-model-test

in this directory.

	
emmaa.aws_lambda_functions.model_tests.lambda_handler(event, context)[source]

	Create a batch job to run model tests.

This function is designed to be placed on lambda, taking the event and
context arguments that are passed. Event parameter is used here to pass
names of the model and of the test corpus.

This Lambda function is configured to be invoked by emmaa-test-pipeline
Lambda function.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case the dictionary contains ‘model’ and ‘tests’ keys.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any
other data to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-test-stats definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py test_stats.py emmaa-test-stats

in this directory.

	
emmaa.aws_lambda_functions.test_stats.lambda_handler(event, context)[source]

	Create a batch job to generate model statistics.

This function is designed to be placed on lambda, taking the event and
context arguments that are passed, and extracting the names of the
uploaded (which includes changed) model or test definitions on s3.
Lambda is configured to be triggered by any such changes, and will
automatically run this script.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case, we are expecting ‘Records’, each of which contains a record
of a file that was added (or changed) on s3.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any
other data to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-model-stats definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py model_stats.py emmaa-model-stats

in this directory.

	
emmaa.aws_lambda_functions.model_stats.lambda_handler(event, context)[source]

	Create a batch job to generate model statistics.

This function is designed to be placed on lambda, taking the event and
context arguments that are passed. Event parameter is used here to pass
name of the model.

This Lambda function is configured to be invoked by emmaa-after-update
Lambda function.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case the dictionary contains ‘model’ key.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any
other data to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-queries definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py model_queries.py emmaa-queries

in this directory.

	
emmaa.aws_lambda_functions.model_queries.lambda_handler(event, context)[source]

	Create a batch job to run queries for model.

This function is designed to be placed on lambda, taking the event and
context arguments that are passed. Event parameter is used here to pass
name of the model.

This Lambda function is configured to be invoked by emmaa-after-update
Lambda function.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case the dictionary contains ‘model’ key.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, and any
other data to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-test-update-pipeline definition.

This file contains the function that starts model update cycle. It must be
placed on AWS Lambda, which can either be done manually (not recommended) or by
running:

$ python update_lambda.py test_update_pipeline.py emmaa-test-update-pipeline

in this directory.

	
emmaa.aws_lambda_functions.test_update_pipeline.lambda_handler(event, context)[source]

	Invoke individual model update functions.

This function iterates through all models contained on S3 bucket and calls
a different Lambda function to turn the model into tests if the model is
configured to do so. It is expected that models have ‘make_tests’
parameter in their config.json files.

This function is designed to be placed on AWS Lambda, taking the event and
context arguments that are passed. Note that this function must always have
the same parameters, even if any or all of them are unused, because we do
not have control over what Lambda sends as parameters. Parameters are
unused in this function.

Lambda is configured to automatically run this script every day.

See the top of the page for the Lambda update procedure.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A response returned by the latest call to emmaa-test-update function.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The AWS Lambda emmaa-test-update definition.

This file contains the function that updates tests created from model. It must
be placed on AWS Lambda, which can either be done manually (not recommended)
or by running:

$ python update_lambda.py test_update.py emmaa-test-update

in this directory.

	
emmaa.aws_lambda_functions.test_update.lambda_handler(event, context)[source]

	Create a batch job to update tests on s3.

This function is designed to be placed on AWS Lambda, taking the event and
context arguments that are passed. Note that this function must always have
the same parameters, even if any or all of them are unused, because we do
not have control over what Lambda sends as parameters. Event parameter is
used to pass model_name argument.

See the top of the page for the Lambda update procedure.

	Parameters

	
	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing metadata regarding the triggering event. In
this case the dictionary contains model name.

	context (object [https://docs.python.org/3/library/functions.html#object]) – This is an object containing potentially useful context provided by
Lambda. See the documentation cited above for details.

	Returns

	ret – A dict containing ‘statusCode’, with a valid HTTP status code, ‘result’,
and ‘job_id’ to be returned to Lambda.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
emmaa.aws_lambda_functions.update_lambda.upload_function(script_name, function_name)[source]

	Upload the lambda function by pushing a zip file to Lambda.

This function pre-supposes you are running from the same directory that
contains the lambda script.

	Parameters

	
	script_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a script containing lambda function.

	function_name (object [https://docs.python.org/3/library/functions.html#object]) – Name of a lambda function as specified on AWS Lambda.

 xDD client

xDD client

This modules provides an interface to query xDD content for figures and
tables.

	
emmaa.xdd.xdd_client.get_document_figures(paper_id, paper_id_type)[source]

	Get figures and tables from a given paper.

	Parameters

	
	paper_id (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – ID of a paper.

	paper_id_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of a paper ID type (PMID, PMCID, DOI, TRID).

	Returns

	figures – A list of tuples where each tuple is a figure title and bytes content.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]

	
emmaa.xdd.xdd_client.get_document_objects(doi)[source]

	Get a list of figure/table object dictionaries for a given DOI.

	
emmaa.xdd.xdd_client.get_figures_from_objects(objects, paper_links=False)[source]

	Get a list of paper links, figure titles and their content bytes from
a list of object dictionaries (returned from query or document api).

	
emmaa.xdd.xdd_client.get_figures_from_query(query, limit=None)[source]

	Get figures and tables from a query.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – An entity name or comma-separated entity names to query for.

	limit (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – A number of figures and tables to return.

	Returns

	figures – A list of tuples where each tuple is a link to the paper, a figure
title and bytes content.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]

	
emmaa.xdd.xdd_client.send_document_search_request(doi, page)[source]

	Send a request to get one page of results for a DOI.

	
emmaa.xdd.xdd_client.send_query_search_request(query, page)[source]

	Send a request to get one page of results for a query.

	
emmaa.xdd.xdd_client.send_request(url, params)[source]

	Send a request and handle potential errors.

 EMMAA’s Subscription Service (emmaa.subscription)

EMMAA’s Subscription Service (emmaa.subscription)

Notifications functions (emmaa.subscription.notifications)

	
class emmaa.subscription.notifications.EmailHtmlBody(template_path)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Parent class for email body.

	
class emmaa.subscription.notifications.ModelDeltaEmailHtmlBody(template_path='email_unsub/model_email_body.html')[source]

	Bases: emmaa.subscription.notifications.EmailHtmlBody

Email body for model updates.

	
render(msg_dicts, unsub_link)[source]

	Provided pregenerated msg_dicts render HTML to put in email body.

	Parameters

	
	msg_dicts (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries containing parts of messages to be added to
email. Each dictionary has the following keys: ‘url’, ‘start’,
‘delta_part’, ‘middle’, ‘message’.

	unsub_link (str [https://docs.python.org/3/library/stdtypes.html#str]) – A link to unsubscribe page.

	Returns

	An html string rendered from the associated jinja2 template

	Return type

	html

	
class emmaa.subscription.notifications.QueryEmailHtmlBody(domain='emmaa.indra.bio', template_path='email_unsub/email_body.html')[source]

	Bases: emmaa.subscription.notifications.EmailHtmlBody

Email body for query notifications.

	
render(static_query_deltas, open_query_deltas, dynamic_query_deltas, unsub_link)[source]

	Provided the delta json objects, render HTML to put in email body.

	Parameters

	
	static_query_deltas (json) – A list of lists that names which queries have updates. Expected
structure:
[(english_query, detailed_query_link, model, model_type)]

	dynamic_query_deltas (list [https://docs.python.org/3/library/stdtypes.html#list][) – A list of lists that names which queries have updates. Expected
structure:
[(english_query, model, model_type)]

	unsub_link (str [https://docs.python.org/3/library/stdtypes.html#str]) – A link to unsubscribe page.

	Returns

	An html string rendered from the associated jinja2 template

	Return type

	html

	
emmaa.subscription.notifications.get_all_update_messages(deltas, is_tweet=False)[source]

	Get all messages for model deltas that can be further used in tweets and
email notifications.

	Parameters

	
	deltas (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing deltas for a model and its test results
returned by get_model_deltas function.

	is_tweet (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether messages are generated for Twitter (used to determine the
formatting of model types).

	Returns

	msg_dicts – A list of individual message dictionaries that can be used for tweets
or email notifications.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
emmaa.subscription.notifications.get_model_deltas(model_name, test_corpora, date, bucket='emmaa')[source]

	Get deltas from model and test stats for further use in tweets and
email notifications.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of the model to get the updates for.

	test_corpora (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of test corpora names to get the test updates for.

	date (str [https://docs.python.org/3/library/stdtypes.html#str]) – A date for which the updates should be generated.

	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of S3 bucket where the stats files are stored.

	Returns

	deltas – A dictionary containing the deltas for the given model and test
corpora.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
emmaa.subscription.notifications.get_user_query_delta(db, user_email, domain='emmaa.indra.bio')[source]

	Produce a report for all query results per user in a given format

	Parameters

	
	db (emmaa.db.EmmaaDatabaseManager) – An instance of a database manager to use.

	user_email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email of the user for which to get the report for

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – The domain name for the unsubscibe link in the html
report. Default: “emmaa.indra.bio”.

	Returns

	A tuple with (str report, html report)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str], html_str)

	
emmaa.subscription.notifications.make_html_report_per_user(static_results_delta, open_results_delta, dynamic_results_delta, email, domain='emmaa.indra.bio')[source]

	Produce a report for all query results per user in an html file.

	Parameters

	
	static_results_delta (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tuples of query deltas for static queries. Each tuple
has a format (english_query, link, model, mc_type)

	open_results_delta (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tuples of query deltas for open queries. Each tuple
has a format (english_query, link, model, mc_type)

	dynamic_results_delta (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tuples of query deltas for dynamic queries. Each tuple
has a format (english_query, link, model, mc_type)

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email of the user to get the results for.

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – The domain name for the unsubscibe link in the report. Default:
“emmaa.indra.bio”.

	Returns

	A string containing an html document

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
emmaa.subscription.notifications.make_model_html_email(msg_dicts, email, domain='emmaa.indra.bio')[source]

	Render html file for model notification email.

	
emmaa.subscription.notifications.make_reports_from_results(new_results, domain='emmaa.indra.bio')[source]

	Make a report given latest results and queries the results are for.

	Parameters

	new_results (list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]) – Latest results as a list of tuples where each tuple has the format
(model_name, query, mc_type, result_json, date, delta).

	Returns

	reports – A list of reports on changes for each of the queries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
emmaa.subscription.notifications.make_str_report_per_user(static_results_delta, open_results_delta, dynamic_results_delta)[source]

	Produce a report for all query results per user as a string.

	Parameters

	
	static_results_delta (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tuples of query deltas for static queries. Each tuple
has a format (english_query, link, model, mc_type)

	open_results_delta (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tuples of query deltas for open queries. Each tuple
has a format (english_query, link, model, mc_type)

	dynamic_results_delta (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tuples of query deltas for dynamic queries. Each tuple
has a format (english_query, link, model, mc_type) (no link in
dynamic_results_delta tuples).

	Returns

	msg – A message about query deltas.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
emmaa.subscription.notifications.model_update_notify(model_name, test_corpora, date, db, bucket='emmaa')[source]

	This function finds delta for a given model and sends updates via
Twitter posts and email notifications.

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of EMMAA model.

	test_corpora (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of test corpora names to get test stats.

	date (str [https://docs.python.org/3/library/stdtypes.html#str]) – A date for which to get stats for.

	db (emmaa.db.EmmaaDatabaseManager) – An instance of a database manager to use.

	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of S3 bucket where corresponding stats files are stored.

	
emmaa.subscription.notifications.tweet_deltas(deltas, twitter_cred)[source]

	Tweet the model updates.

	Parameters

	
	deltas (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing deltas for a model and its test results
returned by get_model_deltas function.

	twitter_cred (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing consumer_token, consumer_secret, access_token,
and access_secret for a model Twitter account.

Email Service (emmaa.subscription.email_service)

	
emmaa.subscription.email_service.close_to_quota_max(used_quota=0.95, region='us-east-1')[source]

	Check if the send quota is close to be exceeded

If the total quota for the 24h cycle is Q, the currently used quota is q
and ‘used_quota’ is r, return True if q/Q > r, otherwise return False.

	Parameters

	
	used_quota (float [https://docs.python.org/3/library/functions.html#float]) – A float between 0 and 1.0. This number specifies the fraction of
send quota currently used. Default: 0.95

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid AWS region. The region to check the quota in.
Default: us-east-1.

	Returns

	True if the quota is close to be exceeded with respect to the
provided ratio ‘used’.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
emmaa.subscription.email_service.get_send_statistics(region='us-east-1')[source]

	Return the sending statistics, like bounce and complaint rates

See
https://boto3.amazonaws.com/v1/documentation/api/latest/
reference/services/ses.html#SES.Client.get_send_statistics
for more info

	Parameters

	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Specify AWS region

	Returns

	
	Response syntax:

	
	{

	
	‘SendDataPoints’: [

	
	{

	‘Timestamp’: datetime(2015, 1, 1),
‘DeliveryAttempts’: 123,
‘Bounces’: 123,
‘Complaints’: 123,
‘Rejects’: 123

},

]

}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
emmaa.subscription.email_service.send_email(sender, recipients, subject, body_text, body_html, source_arn=None, return_email=None, return_arn=None, region='us-east-1')[source]

	Wrapper function for the send_email method of the boto3 SES client

IMPORTANT: sending is limited to 14 emails per second.

See more at:
https://boto3.amazonaws.com/v1/documentation/api/latest/reference +
/services/ses.html#SES.Client.send_email
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
and python example at
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/ +
sending-authorization-delegate-sender-tasks-email.html

	Parameters

	
	sender (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid email address to use in the Source field

	recipients (iterable[str [https://docs.python.org/3/library/stdtypes.html#str]] or str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid email address or a list of valid email addresses. This will
fill out the Recipients field.

	subject (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email subject

	body_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text body of the email

	body_html (str [https://docs.python.org/3/library/stdtypes.html#str]) – The html body of the email. Must be a valid html body (starting
with <html>, ending with </html>).

	source_arn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source ARN of the sender. Should be of the format
“arn:aws:ses:us-east-1:123456789012:identity/user@example.com” or
“arn:aws:ses:us-east-1:123456789012:identity/example.com”.
Used only for sending authorization. It is the ARN of the identity
that is associated with the sending authorization policy that
permits the sender to send using the email address specified as the
sender. Example: the owner of the domain “example.com” can send an
email from any address using @example.com, as long as the associated
source_arn is
“arn:aws:ses:us-east-1:123456789012:identity/example.com”

	return_email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email to which complaints and bounces are sent. Can be the same
as the sender.

	return_arn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The return path ARN for the sender. This is the ARN associated
with the return email. Can be the same as the source_arn if return
email is the same as the sender.

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – AWS region to use for the SES client. Default: us-east-1

	Returns

	The API response object in the form of a dict is returned. The
structure is:

>>> response = { 'MessageId': 'EXAMPLE78603177f-7a5433e7-8edb-42ae-af10' + '-f0181f34d6ee-000000', 'ResponseMetadata': { '...': '...', }, }

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Email Utilities (emmaa.subscription.email_util)

	
emmaa.subscription.email_util.generate_signature(email, expire_str, digestmod=<built-in function openssl_sha256>)[source]

	Return an HMAC signature based on email and expire_str

From documentation of HMAC in python:
key is a bytes or bytearray object giving the secret key.
If msg is present, the method call update(msg) is made.
digestmod is the digest name, digest constructor or module for the HMAC
object to use. It supports any name suitable to hashlib.new().

	Parameters

	
	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid email address. Should not be URL encoded.

	expire_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – A timestamp string in seconds

	digestmod (str|digest constructor|module) – digest name, digest constructor or module for the HMAC object to
use. Default: hashlib.sha256

	Returns

	A hexadecimal string representing the signature

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
emmaa.subscription.email_util.generate_unsubscribe_link(email, days=7, domain='emmaa.indra.bio')[source]

	Generate an unsubscribe link for the provided email address

Given an email address, generate an unsubscribe link using that email
address. Optionally provide the number of days into the future the link
should be valid until and the domain name. The domain name is expeceted
to be of the format “some.domain.com”. The appropriate path and prefixes
will be added together with the query string. Example:

>>> generate_unsubscribe_link('user@email.com', domain='some.domain.com')
>>> 'https://some.domain.com/query/unsubscribe?email=user%40email.com' +
 '&expiration=1234567890&signature=1234567890abcdef'

	Parameters

	
	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – An email address.

	days (int [https://docs.python.org/3/library/functions.html#int]) – The number of days into the future the link should be valid until.
Default: 7.

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – A domain name to prefix the query string with. Expected format is:
“some.domain.com”. Default: ‘emmaa.indra.bio’

	Returns

	An unsubscribe link for the provided email and (optionally) domain

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
emmaa.subscription.email_util.generate_unsubscribe_qs(email, days=7)[source]

	Generate an unsubscribe query string for a url

	Parameters

	
	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid email address

	days (int [https://docs.python.org/3/library/functions.html#int]) – The number of days the query string should be valid. Default: 7.

	Returns

	A query string of the format ‘email=<urlenc
email>&expiration=<timestamp>&signature=<sha256 hex>’

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
emmaa.subscription.email_util.get_email_subscriptions(email)[source]

	Verifies which email subsciptions exist for the provided email

	Parameters

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email to the check subscriptions for

	Returns

	

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], query_hash))

	
emmaa.subscription.email_util.register_email_unsubscribe(email, queries, models)[source]

	Executes an email unsubscribe request

	
emmaa.subscription.email_util.verify_email_signature(signature, email, expiration, digestmod=<built-in function openssl_sha256>)[source]

	Verify HMAC signature

 Utilities (emmaa.util)

Utilities (emmaa.util)

	
exception emmaa.util.NotAClassName[source]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
emmaa.util.does_exist(bucket, prefix, extension=None)[source]

	Check if the file with exact key or starting with prefix and/or with
extension exist in a bucket.

	
emmaa.util.find_latest_emails(email_type, time_delta=None, w_dt=False)[source]

	Return a list of keys of the latest emails delivered to s3

	Parameters

	
	email_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The email type to look for, e.g. ‘feedback’ if listing bounce and
complaint emails sent to the ReturnPath address.

	time_delta (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) – The timedelta to look backwards for listing emails.

	w_dt (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return a list of (key, datetime.datetime) tuples.

	Returns

	A list of keys to the emails of the specified type. If w_dt is True,
each item is a tuple of (key, datetime.datetime) of the LastModified
date.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Keys]

	
emmaa.util.find_latest_s3_file(bucket, prefix, extension=None)[source]

	Return the key of the file with latest date string on an S3 path

	
emmaa.util.find_latest_s3_files(number_of_files, bucket, prefix, extension=None)[source]

	Return the keys of the specified number of files with latest date strings
on an S3 path sorted by date starting with the earliest one.

	
emmaa.util.find_nth_latest_s3_file(n, bucket, prefix, extension=None)[source]

	Return the key of the file with nth (0-indexed) latest date string on
an S3 path

	
emmaa.util.get_s3_client(unsigned=True)[source]

	Return a boto3 S3 client with optional unsigned config.

	Parameters

	unsigned (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If True, the client will be using unsigned mode in which public
resources can be accessed without credentials. Default: True

	Returns

	A client object to AWS S3.

	Return type

	botocore.client.S3

	
emmaa.util.make_date_str(date=None)[source]

	Return a date string in a standardized format.

	Parameters

	date (Optional[datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]]) – A date object to get the standardized string for. If not provided,
utcnow() is used to construct the date. (Note: using UTC is important
because this code may run in multiple contexts).

	Returns

	The datetime string in a standardized format.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
emmaa.util.sort_s3_files_by_date_str(bucket, prefix, extension=None)[source]

	Return the list of keys of the files on an S3 path sorted by date starting
with the most recent one.

	
emmaa.util.sort_s3_files_by_last_mod(bucket, prefix, time_delta=None, extension=None, unsigned=True, reverse=False, w_dt=False)[source]

	Return a list of s3 object keys sorted by their LastModified date on S3

	Parameters

	
	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – s3 bucket to look for keys in

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – The prefix to use for the s3 keys

	time_delta (Optional[datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]]) – If used, should specify how far back the to look for files on s3.
Default: None

	extension (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If used, limit keys to those with the matching file extension.
Default: None.

	unsigned (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use unsigned s3 client. Default: True.

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – Reverse the sort order of the returned s3 files. Default: False.

	w_dt (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return list with datetime object along with key as tuple
(key, datetime.datetime). Default: False.

	Returns

	A list of s3 keys. If w_dt is True, each item is a tuple of
(key, datetime.datetime) of the LastModified date.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
emmaa.util.strip_out_date(keystring, date_format='datetime')[source]

	Strips out datestring of selected date_format from a keystring

 Functions for node and edge filtering (emmaa.filter_functions)

Functions for node and edge filtering (emmaa.filter_functions)

	
emmaa.filter_functions.filter_chem_mesh_go(agent)[source]

	Filter ungrounded agents and agents grounded to MESH, CHEBI, GO unless
also grounded to HMDB.

	
emmaa.filter_functions.filter_to_internal_edges(g, u, v, *args)[source]

	Return True if an edge is internal. NOTE it returns True if any of the
statements associated with an edge is internal.

	
emmaa.filter_functions.register_filter(filter_type)[source]

	Decorator to register node or edge filter functions.

A node filter function should take an agent as an argument and return True
if the agent is allowed to be in a path and False otherwise.

An edge filter function should take three (graph, source, target - for
DiGraph) or three (graph, source, target, key - for MultiDiGraph)
parameters and return True if the edge should be in the graph and False
otherwise.

 Configuring an EMMAA model

Configuring an EMMAA model

Each EmmaaModel has to be initiated with a config.json file. Config files can
be generated manually or automatically with relevant methods in Priors (emmaa.priors)
module (e.g. see Literature Prior (emmaa.priors.literature_prior) to start a model with default config
from literature).
This document describes the structure of the config.

First level fields of config.json

	
	namestr

	A short name of a model.

	Example: aml

	
	search_termslist

	A list of jsonified SearchTerms (see emmaa.priors) to search the
literature for.

	Example:

[{"type": "gene",
 "name": "PRKCA",
 "db_refs": {"HGNC": "9393", "UP": "P17252"},
 "search_term": "'PRKCA'"},
 {"type": "drug",
 "name": "SB 239063",
 "db_refs": {"HMS-LINCS": "10036",
 "PUBCHEM": "5166",
 "LINCS": "LSM-44951",
 "CHEBI": "CHEBI:91347"},
 "search_term": "'SB 239063'"}]

	
	human_readable_namestr

	A human readable name of the model that will be displayed on the dashboard.

	Example: Acute Myeloid Leukemia

	
	ndexdict, optional

	Configuration for NDEx network formatted as {“network”: <NDEx network ID>}

	Example:

{"network": "ef58f76d-f6a2-11e8-aaa6-0ac135e8bacf"}

	
	description: str

	Description of a model (will be displayed on EMMAA dashboard).

	Example: A model of molecular mechanisms governing AML, focusing on
frequently mutated genes, and the pathways in which they are involved.

	
	dev_onlybool, optional

	Set to True if this model is still in development mode and should not be
displayed on the main emmaa.indra.bio dashboard. Default: False.

	
	twitterstr, optional

	If the model has Twitter account, this field should provide a key to
retrieve Twitter secret keys stored on AWS SSM.

	Example: covid19

	
	twitter_linkstr, optional

	URL to model’s Twitter account if it exists.

	Example: https://twitter.com/covid19_emmaa

	
	run_daily_updatebool

	Whether the model should be updated with new literature daily.

	
	export_formatslist[str], optional

	A list of formats the model can be exported to. Accepted values include:
indranet, pybel, sbml, kappa, kappa_im, kappa_cm, gromet,
bngl, sbgn, pysb_flat, kappa_ui. Note that kappa_ui option does
not generate a separate export file but adds a link to Kappa interactive
UI that uses model’s kappa export (generated if kappa is in this list).

	
	assemblydict or list[dict]

	Configuration of model assembly represented as a dictionary where each
key is a type of assembly (main for general purpose assembly steps and
dynamic for additional steps to assemble a simulatable model) and
values should contain corresponding jsonified steps to pass into the INDRA
AssemblyPipeline class. Each step should have a function key and, if
appropriate, args and kwargs keys.
For more information on AssemblyPipeline, see
https://indra.readthedocs.io/en/latest/modules/pipeline.html
For backward compatibility, if a model has only one type of assembly
(main), assembly configuration can be a list of steps instead of a
dictionary with assembly types.

	Example:

{"main": [
 {"function": "map_grounding",
 "kwargs": {"grounding_map": {
 "Viral replication": {"MESH": "D014779"},
 "viral replication cycle": {"MESH": "D014779"}}}},
 {"function": "run_preassembly",
 "kwargs": {"return_toplevel": false,
 "belief_scorer": {
 "function": "load_belief_scorer",
 "kwargs": {"bucket": "indra-belief",
 "key": "1.20.0/default_scorer.pkl"}
 }
 }},
 {"function": "filter_by_curation",
 "args": [{"function": "get_curations"},
 "any",
 ["correct", "act_vs_amt", "hypothesis"]],
 "kwargs": {"update_belief": true}}
],
 "dynamic": [
 {"function": "filter_by_type",
 "args": [{"stmt_type": "Complex"}],
 "kwargs": {"invert": true}},
 {"function": "filter_direct"},
 {"function": "filter_belief", "args": [0.95]}
]
}

	
	readingdict, optional

	Configuration of model update process. For more details see
Model update configuration

	
	testdict

	Configuration of model testing. For more details see
Model testing configuration

	
	querydict, optional

	Configuration of model queries. For more details see
Model queries configuration

	
	make_testsbool or dict, optional

	It is possible to create tests from model assembled statements to test
other models against them. If set to True, then tests will be created
from all assembled statements. For details on filtering the statements
to a specific subset, see Making tests from model configuration

Model update configuration

Model update configuration is the value mapped to the key reading in the
model config. It defines the model update process. It can include the
following fields:

	
	readerlist[str], optional

	A list of readers to process the literature. Accepted elements are:
indra_db_pmid, indra_db_doi, elsevier_eidos, aws. See
Readers (emmaa.readers) for more information about readers.
Default: [“indra_db_pmid”]

	
	literature_sourcelist[str], optional

	A list of sources to search the literature. Accepted elements are:
pubmed, biorxiv, elsevier. Default: [“pubmed”]. Note that literature
sources should be provided in the same order as the readers to read them.

	
	cord19_updatedict, optional

	COVID-19 specific configuration to update model from the CORD19 corpus. The
dictionary should have the following fields:

	
	metadatadict

	Metadata to pass to new EmmaaStatements.

	
	date_limit: int

	Number of days to search back.

	Example:

{"cord19_update": {
 "metadata": {
 "internal": true,
 "curated": false
 },
 "date_limit": 5
 }
}

	
	disease_mapdict, optional

	A configuration to update a model from MINERVA Disease Map. It should have
the following fields:

	
	map_namestr

	A name of a disease_map.

	
	filenameslist[str] or str

	A list of SIF filenames from the disease map to process or all to
process all filenames.

	
	metadatadict

	Metadata to pass to new EmmaaStatements.

	Example:

{"disease_map": {
 "map_name": "covid19map",
 "filenames" : "all",
 "metadata": {
 "internal": true
 }
 }
}

	
	other_files: list[dict]

	A list of configurations to load statements from existing pickle files on
S3. Each dictionary in the list should have the following fields:

	
	bucketstr

	A name of S3 bucket.

	
	filenamestr

	A name of a pickle file.

	
	metadatastr

	Metadata to pass to new EmmaaStatements loaded from this file.

	Example:

{"other_files": [
 {
 "bucket": "indra-covid19",
 "filename": "ctd_stmts.pkl",
 "metadata": {"internal": true, "curated": true}
 }
]
}

	
	filterdict, optional

	Configuration of a statement filter used for statistics generation (e.g.
to not include external statements into statistics).
The filter dictionary should have the following fields:

	
	conditionsdict

	Conditions represented as key-value pairs that statements’
metadata can be compared to.

	
	evid_policy: str

	Policy for checking statement’s evidence objects. If “all”, then the
function returns True only if all of statement’s evidence objects meet
the conditions. If “any”, the function returns True as long as at
least one of statement’s evidences meets the conditions.

	Example:

{"filter": {
 "conditions": {"internal": true},
 "evid_policy": "any"
 }
}

Model testing configuration

Model testing configuration is the value mapped to the key test in the
model config. It defines the model testing process. It can include the
following fields:

	
	test_corpuslist[str]

	A list of test corpora names that the model will be tested against daily.

	Example : [“covid19_curated_tests”, “covid19_mitre_tests”]

	
	default_test_corpusstr

	The name of the test corpus that will be loaded by default on the model
page on the EMMAA dashboard.

	Example : “large_corpus_tests”

	
	mc_typeslist[str]

	A list of network types a model should be assembled into. For each of the
model types, a ModelChecker instance will be created and used to find
explanations to tests. Accepted elements are: pysb, pybel,
signed_graph, unsigned_graph, dynamic.

	
	statement_checkingdict, optional

	Maximum paths and maximum path length to limit test results. In the most
general case the dictionary should have only two keys (max_path_length
and max_paths) but it is also possible to set a custom configuration for
one model type. In this case, a nested dictionary can be added with
model type as a key and a simple dictionary with the same two keys as a
value. Default: {“max_path_length”: 5, “max_paths”: 1}.

	Example (adding a custom config to a model type):

{"statement_checking": {
 "max_paths": 1,
 "max_path_length": 4,
 "pybel": {
 "max_paths": 1,
 "max_path_length": 10
 }
 }
}

	
	filtersdict

	Configuration for applying semantic filters to the model checking process.
It is represented as a dictionary mapping a test corpus name to a filter
function name. The filter function should be defined in
Functions for node and edge filtering (emmaa.filter_functions) and registered with @register_filter(‘node’)
decorator.

	Example:

{"filters": {
 "covid19_mitre_tests" : "filter_chem_mesh_go"
 }
}

	
	edge_filtersdict

	Configuration to apply edge filters to the model checking process.
It is represented as a dictionary mapping a test corpus name to an edge
filter function name. Filter function should be defined in
Functions for node and edge filtering (emmaa.filter_functions) and registered with @register_filter(‘edge’)
decorator.

	Example:

{"edge_filters": {
 "covid19_tests" : "filter_to_internal_edges"
 }
}

Model queries configuration

Configuration for model queries represented as a dictionary keyed by the type
of query: statement_checking (source-target paths), open_search
(up/down-stream paths), dynamic (temporal properties), and intervention
(source-target dynamics). Configuration for statement_checking and
open_search queries is similar to the model test statement_checking format.
Same as in test config, it is possible to set different values for different
model types.

Configuration for dynamic and intervention queries has different fields
(all optional):

	
	use_kappabool

	Determines the mode of the simulation. If True, uses kappa, otherwise,
runs the ODE simulations. Default: False.

	
	time_limitint

	Number of seconds to run the simulation for. Default: 200000.

	
	num_timesint

	Number of time points in the simulation plot. Default: 100.

	
	num_simint

	Number of simulations to run. This should be only provided if
hypothesis_tester is not set. Default: 2.

	
	hypothesis_testerdict; currently only for dynamic, not intervention.

	Configuration to test a hypothesis using random samples with adaptive size.
If this is given, num_sim should not be provided. The hypothesis_tester
dictionary should include the following keys: alpha (Type-I error limit,
between 0 and 1), beta (Type-II error limit, between 0 and 1), delta
(indifference parameter for interval around prob in both directions),
prob (probability threshold for the hypothesis, between 0 and 1).

Having dynamic and intervention key in query config is required for a
model to be listed as an option for model selection on temporal properties
and source-target dynamics queries pages (for path-based queries all models
will be listed).

	Example (all query types):

{"statement_checking": {
 "max_paths": 5,
 "max_path_length": 4,
 "pybel": {
 "max_paths": 10,
 "max_path_length": 10
 }
 },
 "open_search": {
 "max_paths": 50,
 "max_path_length": 2
 },
 "dynamic": {
 "use_kappa": true,
 "time_limit": 100,
 "num_times": 100,
 "hypothesis_tester": {"alpha": 0.1,
 "beta": 0.1,
 "delta": 0.05,
 "prob": 0.8}
 },
 "intervention": {
 "use_kappa": true,
 "time_limit": 1000,
 "num_times": 100,
 "num_sim": 1
 },
}

Making tests from model configuration

Configuration to filter the statements before creating the tests (e.g. to make
tests from literature derived statements and skip curated). It is the value
mapped to the key make_tests in the model config (if you do not need to filter
the statements and want to make tests from all assembled statements, it is
enough to set make_tests to True).
To filter statements, the make_tests should be set to dictionary with the
key filter and the value should be another dictionary with the following fields:

	
	conditionsdict

	Conditions represented as key-value pairs that statements’
metadata can be compared to.

	
	evid_policy: str

	Policy for checking statement’s evidence objects. If “all”, then the
function returns True only if all of statement’s evidence objects meet
the conditions. If “any”, the function returns True as long as at
least one of statement’s evidences meets the conditions.

{"make_tests":
 {"filter": {
 "conditions": {"curated": false},
 "evid_policy": "any"
 }
 }
}

 ASKE Reports

ASKE Reports

This section contains reports on the EMMAA project as part of the DARPA
Automating Scientific Knowledge Extraction (ASKE) program.

	ASKE Month 5 Milestone Report: Lessons Learned
	Automated model assembly: the challenge of defining scope and context

	Automated model analysis: benefits of automated model validation

	Test-driven modeling

	Exploiting the bidirectional relationship between models and tests

	ASKE Month 6 Milestone Report
	Making model analysis and model content fully auditable

	Including new information based on relevance

	Coarse-grained model checking of EMMAA models with directed graphs

	ASKE Month 7 Milestone Report
	Repositioning EMMAA within the ASKE framework of modeling layers

	Use cases for the EMMAA system (and ASKE systems in general)
	Push Science

	Monitoring reproducibility

	Automated scientific discovery

	ASKE Month 9 Milestone Report
	Generalizing EMMAA: a proof-of-principle model of food insecurity

	Extending model testing and analysis to multiple resolutions

	Implementing an object model for model analysis queries

	Detecting changes in analysis results due to model updates

	ASKE Month 11 Milestone Report
	Deployment of multiple-resolution model testing and analysis

	User-specific query registration and subscription

	An improved food insecurity model

	ASKE Month 13 Milestone Report
	Related work for the EMMAA system

	System performance statistics
	References

	ASKE Month 15 Milestone Report
	EMMAA Knowledge assemblies as alternative test corpora

	Time machine

	Dynamical model simulation and testing

	Towards push science: User notifications of newly-discovered query results

	ASKE Month 18 Milestone Report
	Expert curation of models on the EMMAA dashboard

	Viewing and ranking all statements in a model

	Email notifications

	A model of Covid-19

	Integration of content from UW xDD system

	Configurable model assembly pipeline

ASKE-E Reports

This section contains reports on the EMMAA project as part of the DARPA
Automating Scientific Knowledge Extraction (ASKE) program extension.

	ASKE-E Month 1 Milestone Report
	Overall goals and use cases for the Bio Platform

	Integration plan for the Bio Platform

	Progress during the ASKE-E Hackathon

	Open Search model queries and notifications

	ASKE-E Month 2 Milestone Report
	Push science: EMMAA models tweet new discoveries and explanations

	Improving named entity recognition in text mining integrated with EMMAA models

	Making model tests and paths available for use by other applications

	ASKE-E Month 4 Milestone Report
	EMMAA Neurofibromatosis Models and NF Hackathon Prize

	Rapid initialization of EMMAA models from literature for two new diseases

	Downloading EMMAA models in alternative formats

	ASKE-E Month 5 Milestone Report
	Semantic filters to improve model analysis

	Model analysis exploiting ontological relationships

	Improved reading and assembly of protein chains and fragments

	Bio ontology optimized for visualization

	ASKE-E Month 6 Milestone Report
	Reading and assembly with context-aware organism prioritization

	Preparing for the stakeholder meeting

	Reporting curation statistics

	Reporting paper level statistics

	Integrating non-textual evidence with EMMAA models

	ASKE-E Month 7 Milestone Report
	Natural language dialogue interaction with EMMAA models

	Automatically generated text annotations in context

	Demonstrations at the stakeholder meeting

	Developing the EMMAA REST API for flexible integration

	ASKE-E Month 9 Milestone Report
	Integrating the COVID-19 Disease Map community model

	Notifications about general model updates

	Figures and tables from xDD as non-textual evidence for model statements

	Integration with the Uncharted UI

	Semantic separation of model sources for analysis and reporting

	Assembling and analyzing dynamical models

	Creating a training corpus for identifying causal precedence in text

	Knowledge/model curation using BEL annotations

	Formalizing EMMAA model configuration

	ASKE-E Month 10 Milestone Report
	Dynamical model analysis
	Extended automated assembly for model simulation

	Supporting network-free simulation

	Adaptive sample-size dynamical property checking

	Intervention-based dynamical queries

	Integration with the Kappa dynamical modeling and analysis UI

	Improved EMMAA query UI and REST API

	Network representation learning for EMMAA models
	Building a preliminary NRL pipeline

	Comparing EMMAA models with background knowledge

	Identification of context-specific nodes

	Towards an automated recommendation engine

	Improvements to pykeen

	ASKE-E Month 11 Milestone Report
	Integration with ASKE modeling frameworks

	BioCreative participation

	Improving the EMMAA model query interface

	Improving the EMMAA statement browser

	Using custom belief scorers for EMMAA models

	Developments in relation extraction from text

	ASKE-E Month 12 Milestone Report
	EMMAA and its role in the integrated architecture
	The current state of EMMAA

	Applying EMMAA model to COVID-19 therapeutics

	Review article on automated modeling

	Progress on inter-sentence causal connective extraction from text

	Integrating belief information in the EMMAA dashboard

	Extending the ontology to epidemiology

	STonKGs

	PyKEEN Updates
	Improvements to Link Prediction Evaluation Metrics

	Improvements to Loss Functions

	Non-Parametric Baseline Models

	BioCreative participation and new Walkthrough Tutorial

 ASKE Month 5 Milestone Report: Lessons Learned

ASKE Month 5 Milestone Report: Lessons Learned

Here we summarize some of the high-level lessons we learned about large-scale
machine-assisted model assembly and analysis over the course of developing
EMMAA. Overall, we strongly believe that through an attempt to automate
scientific modeling, we can gain substantial insight into the way human
experts work with models of complex systems.

Automated model assembly: the challenge of defining scope and context

The initial development of EMMAA focused on deploying an automated model
assembly pipeline to generate models specific to the various cancer types
catalogued in the cancer genome atlas (TCGA). Collectively these models would
constitute an “Ecosystem” of self-updating, context-specific models that could
be used to answer mechanistic queries relevant to specific diseases. Context
specificity was necessary because the answer to queries (e.g. “What is the
effect of EGFR inhibition on cell growth?”) differ depending on the specific
gene expression pattern and mutation profile of a particular cancer type.

Our initial approach to enforce the context-specificity of automatically
assembled models is described here and is centered on the genetics of specific
cancer types. Frequently mutated genes in specific cancers were used as search
terms to query Pubmed for publications which were then processed with
machine reading tools and assembled into models along with information from
curated databases.

Subsequent model testing highlighted a key shortcoming of this approach: tests
of well-known biochemical pathways would fail in nearly all models because the
limitations imposed on model scope (in the interest of context specificity)
resulted in many key genes being omitted.

In an effort to expand models to incorporate key “backbone” genes while still
retaining context specifity we then implemented two alternative approaches.

	Run heat diffusion over our biological knowledge network to identify genes
that were highly connected to the cancer-specific genes;

	Query Reactome, a high quality database of biological pathways, for
pathways containing the disease genes, and incorporate all genes
from these pathways into the model.

We found that the latter approach involving Reactome was more effective at
eliminating mechanistic gaps than heat diffusion, which tended to highlight
irrelevant genes based peculiarities of the knowledge network structure.
However, even with the automated Reactome-based approach we found that models
had a very low ratio of passing tests, and glaring mechanistic gaps: for
example, the melanoma model passed only 4% of tests [http://emmaa.indra.bio/dashboard/skcm] from the BEL Large Corpus, and
omitted MAP2K1, a protein immediately downstream of (the frequently mutated
gene) BRAF and a validated target in melanoma.

We therefore explored an alternative approach, in which models would be made
specific to biochemical pathways rather than cancer types, a la the original
Ras Machine. We found that the first iteration of this model had a much
higher pass ratio of 34%, suggesting that models built and limited in scope
in this way were more likely to have the internal integrity required for
answering mechanistic queries.

Despite this improvement, the central problem of capturing model context
remains: even if an automatically assembled model contains the genes relevant
to a specific disease does not imply that it can answer a mechanistic query in
a context specific way. For example, the Ras pathway is involved in many cancer
types, not least in lung cancer and melanoma, yet the effects of intervening in
the pathways differ between the two diseases. A key remaining challenge is to
develop a system that can pull in the relevant data (e.g., gene expression,
mutations) to contextualize structurally identical models, and make use of this
data during analysis to reach context-specific conclusions.

Automated model analysis: benefits of automated model validation

With respect to model analysis, the first key lesson learned is how valuable
the process of automated testing is for developing model assembly systems
such as INDRA and EMMAA. By coupling large-scale automated reading and assembly
with automated testing and analysis, the strengths and weaknesses of the
reading/assembly machinery itself are clearly exposed. Over the course
of monitoring daily updates to the disease models and browsing test results,
we were able to identify bugs and other opportunities for improvement in a
highly efficient and targeted way. The image below illustrates the effect
of some of these improvements as they affected the number of applied and passed
tests:

[image: ../_images/aml_tests_annot.png]

Test-driven modeling

A key observation that we have made during the development of EMMAA is of the
value of automated model testing not only as a means of post-hoc model validation,
but also to support test-driven modeling. That is, the construction (in
part manual) of scientific models based on a corpus of qualitative experimental
constraints. This is by analogy with test-driven development [https://en.wikipedia.org/wiki/Test-driven_development] in software
engineering in which the tests are written first, and program features are only
added to satisfy the tests.

During this reporting period, we have explored test-driven modeling by manually
building a model of a core subset of the Ras signaling pathway [https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2015/ras-pathway-v2].
The model is built using natural language via INDRA and TRIPS as described
here [http://msb.embopress.org/content/13/11/954.long]; the automated
assembly of the natural language sentences yields a model with semantic
annotations enabling subsequent testing and analysis. The model is exposed in
the EMMAA dashboard as the “Ras Model” [http://emmaa.indra.bio/dashboard/rasmodel]. The initial model consisted of a
set of roughly 60 natural language sentences and was roughly doubled in size
through an iterative process of expansion and refinement that was driven by
model testing.

We have found that the test-driven modeling approach has a number of advantages
for the construction of scientific models. First, the approach to scientific
modeling in many fields is to use a formal model to encode a specific
hypothesis about a particular phenomenon. These “fit-to-purpose” models are
useful tools for answering specific scientific questions but they are rarely
reusable and are biased toward a particular explanation. With test-driven
modeling, the growth of the model is empirically driven by the observations
that match the scope of the model, independent of any specific problem. In
extending the Ras model to satisfy tests from the BEL Large Corpus, we
repeatedly found it necessary to add in underappreciated or noncanonical
mechanisms. For example, it is well known that EGFR activation leads to the
phosphorylation and activation of SRC; but it is also the case that SRC
phosphorylates and potentiates the activation of EGFR. Similarly, AKT1 both
phosphorylates and is phosphorylated by MTOR. In typical practice, a modeler
would not incorporate all of these influences unless it was their specific
intention to investigate crosstalk, feedback, or other aspects of the
overall mechanism that deviate from a simple linear pathway. The process of
test-driven modeling brought to the forefront how common these processes are.

Second, just as in software development, test-driven modeling helps the modeler
avoid decorating a model with details that are not essential to improving
overall performance. This helps to avoid modeling quagmires in which a
modeler attempts to encode everything known about a process in maximum detail.
The existence of a set of tests, and the iterative development process that
EMMAA enables (serving here as a tool for continuous integration of models),
dramatically improves the efficiency of building high quality, reusable models.

Third, test-driven modeling helps build insight into how a model works, as well
as highlighting serendipitous and potentially unexpected implications of
particular mechanisms. During the test-driven development of the Ras Model,
there were several instances where adding a small extension to the model to
address an issue that appeared to be local to the two proteins resulted in
several additional tests passing, that involved long-range causal influences.
For example, fixing a reaction involving MTOR and PPP2CA resulted in three
tests passing, each highlighting the negative feedback from MTOR back to
upstream IGF1R signaling via IRS-1.

[image: ../_images/new_passed_tests1.png]
The screenshot of the EMMAA dashboard test results page for the curated Ras
Model, shown below, highlights the iterative process of test-driven
model refinement and expansion.

[image: ../_images/ras_tests_annot.png]
The bottom plot shows the total number of applied tests over time, along with
the number of passing tests; the top plot tracks changes in the percentage of
passing tests. The initial process of model refinement is shown by (1), in
which the initial model was subject to testing and then progressively refined
over time. During this process the pass ratio grew from roughly 20% to 67%. At
this point, the model was expanded to include the well studied signaling
proteins EGF and EGFR. This nearly doubled the number of applied tests (2,
bottom plot), but since relatively few of these new tests passed, the pass
ratio dropped to ~35%. Importantly, these new tests were applied
automatically by EMMAA as a consequence of the expansion in model scope.
Inspection of the model highlighted the fact that EGFR was disconnected from
many of its downstream effectors; addition of only a single statement
(connecting EGFR to SOS1, which was already in the model for its role
downstream of IGF1R) led to a large number of the new tests passing, boosting
the pass ratio back to over 50% (3, both plots).

Exploiting the bidirectional relationship between models and tests

During the development of EMMAA we have come to appreciate the benefits of
treating the information flow between models and tests as symmetric
and bidirectional.

For example, manually curated tests can be used to validate automatically
assembled models, or the other way around: curated models validating
automatically extracted observations. In our initial work, we focused on the
application of curated experimental observations (from the BEL large corpus) to
automatically assembled mechanistic models. We described above how applying
these tests to the Ras Machine model helped us to identify issues in our
automatic model assembly pipeline that had been latent for years. We now also
see the value in automatically collecting tests and using high-quality curated
models to evaluate the plausibility of the test observations themselves. For
example, in the development of the Ras Model, we found that a surprising
proportion (over 15%) of the tests in the BEL Large Corpus were incorrectly
curated. These test errors were inadvertently highlighted when the model
failed to pass them. We imagine that observations derived from a noisy source
(such as machine reading) could be subjected to checking by one or more
high-quality models, with the model establishing the likelihood that a finding
resulted from a machine reading error. It is also possible to imagine that in
fields where models are mature, new scientific findings could be
automatically subjected to model-driven evaluation, highlighting the ways in
which they either support or contradict established models.

 ASKE Month 6 Milestone Report

ASKE Month 6 Milestone Report

Making model analysis and model content fully auditable

When browsing the results of model tests, it is often of interest to inspect
the specific provenance of each modeled mechanisms that contributed to the
result. EMMAA models are built automatically from primary knowledge
sources (databases and literature), and model components are annotated such
that given the result, we can link back to the original sources.

Links to browse evidence are available in all of the following contexts:

	New statements added to the model

	Most supported statements in the model

	New tests applicable to the model

	Passed/failed tests and the mechanisms constituting paths by which tests
passed

[image: ../_images/akt_mtor_linkout.png]
[image: ../_images/akt_mtor_curation.png]

Including new information based on relevance

EMMAA models self-update by searching relevant litearture each day and adding
mechanisms described in new publications. However, event publications that are
relevant often contain pieces of information that aren’t directly relevant for
the model. We therefore created a relevance filter which can take one of
several policies and determine if a new statement is relevant to the given
model or not. The strictest policy is called prior_all which only considers
statements in which all participants are prior search terms of interest for the
model as relevant. A less strict policy, prior_one requires that at least one
participant of a statement is a prior search term for the model. Currently,
EMMAA models are running with the prior_one policy.

Coarse-grained model checking of EMMAA models with directed graphs

To determine whether a model can satisfy a particular test, EMMAA currently
assembles sets of INDRA Statements into mechanistic PySB/Kappa models. The
INDRA ModelChecker is then used to determine whether there is a causal path in
the Kappa influence map linking the subject and object of the test with the
appropriate causal constraints. These constraints include the polarity of the
path, the detailed attributes of the subject and object (for example, a
particular modified form of the object protein), and the type of regulation
(e.g., regulation of activity vs. regulation of amount). Because the assembled
PySB/Kappa models make maximum use of available mechanistic information, this
approach to model checking yields results with high precision, in that the
existence of a path indicates that the strict semantics of the test are
satisfied.

The high precision of this approach comes at the expense of recall and
robustness, in that tests may not pass due to subtle aspects of the test or
model statements. For example, if a machine reading system incorrectly extracts
a positive regulation statement linking genes A and B as a regulation of
amount rather than a regulation of activity, this can lead to the test “A
activates B” failing and yielding no paths.

To help scientists using EMMAA to generate scientific insight, it would be
ideal for models to be verified against tests with different degrees of causal
constraints. If a model fails to satisfy a test using the high-precision
approach, the scientist user could also inspect causal paths produced by model
assembly and checking procedures with a more generous interpretation of
causality.

A key advantage of using INDRA as the model assembly engine within EMMAA is
that a single knowledge representation (INDRA Statements) can be used to
assemble multiple types of causal models. In the context of EMMAA, INDRA
can be used to assemble at least four different types of models, listed
in increasing order of causal precision:

	Directed networks

	Signed directed networks

	Boolean networks

	Biological Expression Language (BEL) networks

	PySB model/Kappa influence maps

During this reporting period, we investigated the use of the most
coarse-grained of these representations, directed networks, to check EMMAA
models against tests. Code and results are available in an iPython notebook
accompanying this report available on Github here [https://github.com/indralab/emmaa/blob/report/notebooks/Graph-based%20model%20checking%20for%20EMMAA.ipynb].
Using the most recent model and test results from the EMMAA Ras Machine 2.0 [http://emmaa.indra.bio/dashboard/rasmachine], we built a simple directed
graph among agents using networkx and checked for paths between pairs of genes
in the applied tests.

We found that, as expected, many more tests passed in the directed graph model
(509 tests, 58.7%) than the detailed PySB/Kappa model (165 tests, 19.0%). All
tests passed by the PySB/Kappa model also passed in the directed graph model,
indicating that the latter is a strict subset of the former. Roughly half
(52%) of the tests that failed in the PySB/Kappa model yielded paths in the
directed graph. Inspection of the discrepancies highlighted some
characteristics of these types of tests (see iPython notebook [https://github.com/indralab/emmaa/blob/report/notebooks/Graph-based%20model%20checking%20for%20EMMAA.ipynb].)
A key point is that the proportion of tests passed by the directed graph model
represent an upper bound of the mechanistic coverage of the model that is
independent of the particular modeling formalism involved. While many of the
paths found in the directed graph do not satisfy the strictest interpretation
of the tests, they are nevertheless useful for a human scientist to better
understand relevant processes contained in the model and to generate
hypotheses.

In the upcoming reporting period we aim to extend this approach further by
using EMMAA to assemble multiple types of models at different levels of causal
resolution. A scientist will then be able to explore a range of explanations
for a given observation depending on the precision-recall tradeoffs of their
use case.

 ASKE Month 7 Milestone Report

ASKE Month 7 Milestone Report

Repositioning EMMAA within the ASKE framework of modeling layers

[image: ../_images/emmaa_aske_architecture.png]
Based on discussions at the ASKE 6-month PI meeting we have been reformulating
how our approach in EMMAA relates to the three proposed modeling representation
levels. One outcome of the meeting was an emerging consensus that the middle
“model” level represents domain-independent model representations that are not
yet executable. Examples discussed included linear regression models,
polynomial functions, ordinary differential equations, etc. Prior to this
discussion we had considered this layer, representing classes of mathematical
models, to be the “bottom”; however, we now recognize that a model at this
level is not yet executable because it must first be coupled to a particular
simulation or inference procedure.

With this in mind, we feel that our approach requires the definition of an
additional layer, sitting between the topmost (level 1,
“formulations/constraints”) and the mathematical modeling layer (now level 3).
This layer corresponds to networks of EMMAA/INDRA Statements: representations
of a particular subset of domain knowledge. A knowledge network at this layer
may be formulated based on requirements/constraints specified in level 1
(e.g., “a knowledge model of breast cancer”, or “all signaling pathways with a
bowtie architecture”). In turn, this knowledge network can be used to generate
different analytical/mathematical models at level 3 (boolean networks,
rule-based models, analytical/mathematical model ODEs, etc.).

One focus of the discussion during the PI meeting was on the potential for
integration of ASKE modeling frameworks via the domain-independent level 3.
Integration at this level would allow tools for model analysis, simulation,
expansion, etc. to be reused between teams. At this layer domain-specific
considerations may still apply but they will have been converted into syntactic
constraints expressed in the language of the particular modeling formalism. One
example relevant to biology is the formulation of ODE models: while in a
domain-independent sense the class of all ordinary differential equation models
is quite large, biological models typically make use of a highly restricted
subset of mathematical functions. In a “mass-action” reaction model, for
example, the right hand side function consists strictly of a linear combination
of products of the concentration variables. This (semantic) biochemical
constraint could be expressed in the (syntactic) language of mathematical
functions to allow the application of tools for model expansion, simulation,
etc.

Since the PI meeting we have also concluded that important model inference and
transformation procedures can occur at layers other than level 3, and that
these operations can occur within, not just across layers. For example, in
INDRA there are a set of related procedures that we collectively refer to as
“knowledge assembly” or “pre-assembly”: identifying subsumption relationships,
inferring and applying belief scores, identifying statement relationships, etc.
Both the information considered in these operations, and the operations
themselves explicitly make use of domain-specific knowledge, and all take INDRA
Statements as input and produce INDRA Statements as output. These steps are
referred to as “pre-assembly” to differentiate them from the step of
assembly, which denotes the transformation of knowledge-level information
(level 2) from model-level information (level 3).

Use cases for the EMMAA system (and ASKE systems in general)

Push Science

In 2015, Paul Cohen defined “push scholarship” as: “[…] instead of
pulling results into our heads, we push results into machine-maintained big
mechanisms, where they can be examined by anyone. This could change science
profoundly.”

ASKE systems have the potential to go beyond this ambitious goal by:

	actively searching for new discoveries and data,

	autonomously updating a set of models by integrating new discoveries,

	designing model analysis experiments to understand the effect of this new
knowledge

	reporting the effect of new discoveries on scientific questions
relevant to the user

In other words, novel, relevant implications of discoveries, as soon as they
appear, are “pushed” to scientists.

Monitoring reproducibility

About 3,600 new publications appear each day on PubMed, in biomedicine alone.
Using automated model extension and analysis, ASKE systems can evaluate newly
reported mechanisms against experimental observations (data) and vice versa.
Reported mechanisms that aren’t supported by prior observations, as well as
observations that don’t make sense with respect to existing models can be
detected. This technology can help address some aspects of the reproducibility
crisis in a principled way.

Automated scientific discovery

There is a large body of unexplained observations (i.e., open scientific
questions for which no underlying mechanistic explanation is known) appearing
in the biomedical literature and in data stores An ASKE system that immediately
aggregates and models new knowledge and evaluates its implications with respect
to unexplained observations, is likely to be the first to notice that a
previously unexplained observation can now be explained. Novel candidate
explanations to observations constructed automatically using ASKE systems can
be experimentally confirmed and published.

 ASKE Month 9 Milestone Report

ASKE Month 9 Milestone Report

Generalizing EMMAA: a proof-of-principle model of food insecurity

Until recently, all models in EMMAA represented molecular mechanisms for a
given disease or pathway. However, the EMMAA approach can be applied to
models in other domains. Conceptually, the EMMAA framework is a good fit for
domains where there is a constant flow of novel causal information between
interacting “agents” or “concepts” appearing in a structured or unstructured
form. To demonstrate the generalizability of EMMAA, we created a model
of causal factors influencing food insecurity.

In principle, setting up a new EMMAA model only requires creating a new
configuration file that specifies a name, a description, as well as a
list of search terms, and any optional arguments used to configure the
model building process. In applying EMMAA to a new domain, we extended the set
of options that can be specified in the configuration file, including the
following:

	The literature catalogue to use to search for new content. Biology models
use PubMed (specific to biomedicine), whereas other domain models can now
use ScienceDirect (general purpose) to search for new articles.

	The reading system to use to read new text content. The biology models
in EMMAA query the INDRA Database each day to search for machine reading
extractions for new publications. The Database contains outputs for two
biology-specific reading systems (REACH and Sparser) for new daily
literature content. Models in other domains can be configured to use the
Eidos reading system (via its INDRA interface) to extract a general set of
causal relationships between concepts of interest.

	The assembly steps to perform during model extension. We added more
granularity to configuration options for the model assembly process, making
it possible to apply biology-specific INDRA assembly steps (e.g., protein
sequence mapping) only to models where they are relevant.

	The test corpus to use for validating the model. So far, each biology
model used the same BEL Large Corpus as a source of test statements to
validate against. We made it possible to configure what test corpus to
use for a given model, allowing a custom set of relevant tests to be applied
to the food insecurity moddel.

To set up the initial, proof-of-principle model of food insecurity, we
first identified a set of core concepts of interest: food security, conflict,
flooding, food production, human migration, drought, and markets. We then
filtered a set of extractions by Eidos on a corpus of 500 documents to
causal influences among these concepts. We also set these core concepts as
search terms in the model’s configuration file. Finally, we defined a set of
common sense statements as test conditions, for instance, “droughts cause a
decrease in food availability” to check the model against. The model is now
included on the EMMAA dashboard where it can be examined
(http://emmaa.indra.bio/dashboard/food_insecurity).

While this initial food insecurity model serves as a proof of principle for the
generality of the EMMAA concept and the underlying technologies, there are
several challenging aspects of building a good model for this domain.

	The identification of relevant sources of information. So far, the food
insecurity model uses ScienceDirect to search for scientific publications.
However, it is likely that a significant amount of timely new information is
available in reports (by governments, NGOs, etc.) and news stories. In the
longer term, this would require implementing ways to query and collect text
content from such sources.

	Querying for relevant text content. We found that certain search terms
(e.g., food insecurity) result in mostly relevant publications, while
others, wuch as “conflict” or “markets” are too broad and ambiguous, and
result in many irrelevant publications being picked up. This suggests that
one has to constrain the domain, in addition to the specific concepts
used as search terms when finding novel literature content.

	Machine reading infrastructure. The biology EMMAA models rely on a
parallelized AWS infrastructure in which multiple instances of machine
reading systems can process hundreds or thousands of new publications
each day. In contrast, the food insecurity model currently relies
on a single reader instance running as a service, and therefore has
much lower throughput. Before a comparable infrastructure of readers is
implemented for this domain, we had to limit the number of new publications
that are processed each day to update the model.

	Reading with corroboration. While biology models in EMMAA rely on
knowledge assembled from multiple machine reading systems as well as
structured (often human curated) knowledge bases, the food insecurity model
currently relies on a single reading system, Eidos. This means that any
systematic errors specific to the reading system are prone to propagate
into the assembled model. In the longer term, integrating more reading
systems or knowledge sources could improve on this.

	Indirect relations. As shown by the initial test set for the food
insecurity model, all test statements are satisfied by a single
causal influence statement, even ones where one might reasonably
expect the test to be satisfied via a chain of causal influences, e.g.,
“droughts cause a decrease in food availability”. We believe that this
is due to the fact that authors routinely report indirect causal
influences, and the reading/assembly systems currently aren’t set up
to effectively differentiate between direct and indirect effects.

Extending model testing and analysis to multiple resolutions

In our Month 6 Milestone Report, we described an initial experiment to
investigate the value of coarse-grained model testing using simple directed
graphs. In this reporting period we have extended this concept further by
developing a generalized framework for model checking using networks
assembled at different levels of granularity and specificity. In particular,
we are expanding the range of models assembled from a set of EMMAA Statements
to include:

	Directed networks

	Signed directed networks

	PyBEL networks (includes nodes with state information)

	PySB models/Kappa influence maps

For each of these model representations, model checking can be formulated as
a process consisting of three steps:

	Given a (source, target) statement for checking, identify the nodes
associated with the source and target. Note that a source or target agent in
the test statement may correspond to multiple nodes in the give network
representation.

	Identify causal paths linking one or more source nodes to one or more target
nodes. If such a path exists, the test statement is satisfied.

	Collect paths from the network representation and map them back to the
knowledge-level (EMMAA statements) for reporting.

The second step in this process, pathfinding over the causal network, is common
to all four of the network representations listed above. However, the first and
third steps–identifying mappings between knowledge-level statements and the
nodes and edges in the network–are specific to each network representation.

To support multi-resolution model checking we have restructured the INDRA model
checker to support multiple model types, with the common code refactored out
into a parent class. In addition we have created an assembler that assembles
INDRA Statements into a new network representation with a metadata model that
can capture the full provenance information from the source INDRA Statements.
This network representation, a multi-digraph called the IndraNet, will be
used to generate multiple coarse-grained “views” (digraph, signed digraph),
while preserving statement metadata.

In the upcoming reporting period we will complete this refactoring procedure
and extend the EMMAA web application to generate and display test results for
alternative realizations of each individual knowledge model.

Implementing an object model for model analysis queries

We have previously specified a Model Analysis Query Language (MAQL) used
to represent various analysis tasks that can be performed on EMMAA
models, in either a user or machine-initiated way (see Model Analysis Query Language).

In this reporting period, we implemented a Python object model corresponding
to MAQL. The object model provides a structure for all the attributes needed
to represent a query, and methods to serialize and deserialize it
into JSON. This allows linking the web front-end, the query execution engine,
and the back-end query storage database in a principled way through a single
standardized format. In particular, we have implemented the PathProperty
query class (emmaa.queries.PathProperty), and plan to extend to
the other three query types specified in MAQL in the coming months.

Detecting changes in analysis results due to model updates

One of the fundamental ideas of the EMMAA framework is to be able to detect
meaningful changes to analyses of interest as model updates happen. We have
implemented an initial solution to this in the QueryManager
(emmaa.answer_queries.QueryManager)
whereby the previous results of each registered query are compared to the new
result. Any detected changes are reported in the model update logs (currently
not exposed in the user-facing web front-end yet). A limitation of the current
approach is that the result of a registered query is a single “top” mechanistic
path that satisfies the query conditions, rather than all possible paths. This
means that in some cases, when a new path is created by a new piece of
knowledge, it would not be detected as a change in the query results, unless
the “top” path happens to change. We are planning to improve the change
detection method in this direction.

Further, we are working on adding a user registration functionality. Once
user accounts and user-specific registered queries are created, the next step
will be to create a notification system that exposes the detected changes
in analysis results with respect to a query of interest to the user.

 ASKE Month 11 Milestone Report

ASKE Month 11 Milestone Report

Deployment of multiple-resolution model testing and analysis

We have previously described our progress towards developing a capability to
check EMMAA models using causal representations at different levels of
resolution. During this reporting period we have deployed multiple-resolution
model checking for all models hosted in the EMMAA web application. After
processing new literature and assembling the corpus of relevant EMMAA
statements, the system assembles the knowledge-level information into the
following types of causal representations:

	Unsigned directed networks. This model type is a simple directed graph with
unsigned, directed edges between entities (molecular entities and biological
processes in the case of biological networks).

	Signed directed networks. Similar to the unsigned, directed network, in
that it is a directed graph over entities and processes, but each edge is
associated with a sign indicating whether it represents a positive or
negative regulation of activity or amount.

	PyBEL networks. A PyBEL network is a particular network representation of
causal information encoded in the Biological Expression Language (see
https://pybel.readthedocs.io). PyBEL networks are also signed and directed,
but the nodes in the network have state: for a given protein X, the
mutated, modified, or active forms of X are represented by distinct nodes.
The inclusion of state information allows the network to represent more
specific preconditions for causal influences.

	PySB models/Kappa influence maps. In this representation, the EMMAA
Statements are used to instantiate a rule-based model using PySB/Kappa, and
the Kappa framework is used to analyze the causal structure of the rules in
the model. In a Kappa influence map, the nodes are reaction rules rather
than entities, and each edge reflects the positive or negative influence one
reaction rule has on another (for example, if rule A produces P as its
product, and P is a precondition for the firing of rule B, the influence map
will contain a positive edge between rules A and B). Each rule in the
PySB/Kappa model is subject to specific preconditions for activity and hence
this representation is the most causally constrained. Until this reporting
period, PySB/Kappa models were the only form of model representation subject
to automatic testing EMMAA.

Each of these four causal network representations represent entities and causal
influences differently; the first step in automated checking of causal queries
is therefore to ground the entities in the query to nodes in the particular
network representation. For example, in the causal query “How does
phosphorylated BRAF increase MAPK1 activity”, the subject node is
“phosphorylated BRAF” and the object node is “MAPK1 activity” (Figure 1). In
the unsigned and signed directed networks, these two concepts map simply to the
nodes for BRAF and MAPK1, because these networks do not distinguish based on
entity state. In the PyBEL network, there are multiple nodes consistent with
“phosphorylated BRAF”, including p(BRAF, pmod(P, S, 602)) (representing BRAF
phosphorylated at serine 602) and p(BRAF, pmod(P)) representing BRAF
phosphorylated at an unknown site; similarly, there are multiple nodes
corresponding to “MAPK1 activity”, including act(MAPK1) and kin(MAPK1),
representing the generic molecular and specific kinase activity of MAPK1,
respectively. For the PySB/Kappa influence map, there are multiple rules
consistent with phosphorylated BRAF as source nodes, and multiple observables
corresponding to MAPK1 being in a state consistent with its activity. Checking
the model involves identifying these subject and object nodes and then
searching for paths linking any subject node to any object node. If any such
path is found, then this represents a candidate causal explanation in that
representation.

[image: ../_images/multi_model_node_table.png]
Figure 1: Network nodes associated with the subject and object of the causal
query “How does phosphorylated BRAF increase MAPK1 activity?” using the four
causal representations deployed in this reporting period.

In addition to generating the model testing results on the back end, the EMMAA
web application now presents the results of multi-resolution model checking to
the user. The Tests tab of the model landing page now highlights the
proportion of passed tests for each model type (Figure 2). As expected, the
least stringent causal representation (unsigned graph) generally yields the
highest proportion of passing tests, while the most stringent (PySB) yields the
lowest.

[image: ../_images/rasmachine_tests_tab_top1.png]
Figure 2: Test report graph highlighting the percentage of applied
tests passed in each of the four causal representations.

In addition, the test report page now displays tests results as a matrix rather
than a simple list (Figure 3). Each icon is hyperlinked to a test details page
showing information about the test and the causal paths found to explain the
causal query.

[image: ../_images/test_matrix.png]
Figure 3: Test result matrix with the green and red icons indicating whether
the given test passed or failed in the specific model representation,
respectively.

User-specific query registration and subscription

We implemented a user registration and login feature in the EMMAA dashboard
which allows registering and subscribing to user-specific queries.
After registering an account and logging in, users can now subscribe to
a query of their interest on the EMMAA Dashboard’s Queries page
(https://emmaa.indra.bio/query). Queries submitted by users are stored
in EMMAA’s database, and are executed daily with the latest version
of the corresponding models. The results of the new analysis are then
displayed for the user who subscribed to the query on the query page.
This allows users to come back to the EMMAA website daily, and observe how
updates to models result in new analysis results. Later, we are planning
to report any relevant change to the analysis results directly to the user
by sending a notification via email or Slack.

This capability is one important step towards achieving “push science”
in which users are notified about relevant new discoveries if
the inclusion of these discoveries result in meaningful changes in
the context of prior knowledge (i.e., a model) with respect to a
scientific question.

An improved food insecurity model

This month we migrated the food insecurity model to use the new World Modelers
ontology (https://github.com/WorldModelers/Ontologies), and expanded its
set of search terms. This significantly increased the models’ size and the
granularity of concepts over which it represents causal influences:

[image: ../_images/food_insec_model_size.png]
Figure 4: Size of the food insecurity model over time.

Below is a snapshot of the network view of the model on NDEx
(https://ndexbio.org/#/network/478a3ed6-b3b7-11e9-8bb4-0ac135e8bacf):

[image: ../_images/food_insec_model_ndex.png]
Figure 5: Snapshot of the food insecurity model as of 9/27/2019.

 ASKE Month 13 Milestone Report

ASKE Month 13 Milestone Report

Related work for the EMMAA system

We are not aware of any meta-modeling systems coupling machine-assembled models
to automated analysis, in molecular biology or other fields. To the best of our
knowledge, the EMMAA system is the first of its kind. Despite the fact that
EMMAA is unique as an integrated system, there does exist a body of
pre-existing work related to individual component technologies of the system.

Mathematical and causal modeling has been widely applied in systems biology,
where a multitude of model types (ordinary and partial differential equations,
Boolean and logical models, probabilistic graphical models, etc.) have been
used to represent the behavior of biochemical mechanisms (Aldridge et al.,
2006). However, such models are difficult and time consuming to build, and
require special mathematical and computational expertise. To address this,
EMMAA draws on novel tools allowing the automated assembly of mathematical
models directly from text (INDRA; Gyori et al., 2017).

There also exists a large body of work in text mining in biomedicine (Ananiadou
et al., 2006), motivated by the fact that around 3,200 new publications appear
every day - too much for any human expert to keep up with. However, the output
of these systems have thus far not been combined (EMMAA currently integrates
and aligns output from 4 different text mining systems: REACH
(Valenzuela-Escárcega et al., 2019), Sparser (McDonald et al., 2016),
TRIPS/DRUM (Allen et. al., 2015) and RLIMS-P (Torii et al., 2015)) and made
available for natural language querying by users. Recently, a graphical user
interface was proposed to explore causal relations extracted by a single
reading system (Barbosa et al., 2019). However, the causal networks built using
this system do not make use of the knowledge assembly procedures built into
EMMAA, including correction of systematic reading errors, and assessment of
redundance, relevance, and believability.

Further, several large human-curated knowledge-bases for molecular mechanisms
have been developed (Cerami et al, 2010, Croft et al., 2013), and can be
queried through their respective websites through standard web forms. Finally,
large repositories of experimental and clinical data are routinely used in
biomedicine (Keenan et al., 2018, Tomczak et al., 2015). However, while such
repositories exist, they grow only through manual curation and are often out of
date.

Finally, while the concept of model testing and validation, either static or
dynamic, is not new, this has (to our knowledge) only been applied to specific
models in isolated modeling studies. There exists no framework for the
systematic evaluation of domain models with respect to relevant tests; nor are
there any previous demonstrations of the use of text mining to automatically
grow a body of observations for use in model evaluation.

System performance statistics

EMMAA currenty manages a total of 11 models. Eight of these models are
fully machine-maintained and represent various diseases (7 models) and
pathways (1 model). Two models are based on expert-curated natural language,
then linked to literature evidence and tested automatically. Finally, one model
represents a set of causal factors affecting food insecurity, i.e., is
outside the domain of molecular biology.

To quantify the performance of the system in terms of extending and testing/
analyzing models, we plotted the distribution of (1) number of new statements
added (2) number of new tests applied and (3) change in the test pass ratio
for each of the machine-maintained biology models each day.

Histogram of the number of new statements added to each model each day. As
we can see, the change in the number of statements is often zero (i.e.,
no new mechanisms were found relevant to the given model), but otherwise
is between 1-15 new statements per day. In some cases, the assembly procedure
removes previously existing mechanisms from the model, thereby making the
number of statements added negative.

[image: ../_images/model_stmt_added_per_day.png]
Histogram of the number of new applied tests each day. Typically, if new
statements are added to a model, the number of applied tests can increase.
As shown in the histogram, new mechanisms added to a model often result in
dozens of new test being applicable to the model.

[image: ../_images/model_tests_new_applied_per_day.png]
Histogram of the change in the fraction of tests that pass (across all
four modeling formalisms, PySB, PyBEL, signed graph, unsigned graph)
each day compared to the previous day. While small fractional changes are
more common, in some cases, model extensions (or changes to model assembly)
resulted in large jumps in test pass ratio of 5-25%.

[image: ../_images/model_tests_new_passed_per_day.png]

References

Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., & Sorger, P. K. (2006). Physicochemical modelling of cell signalling pathways. Nature cell biology, 8(11), 1195.

Gyori, B. M., Bachman, J. A., Subramanian, K., Muhlich, J. L., Galescu, L., & Sorger, P. K. (2017). From word models to executable models of signaling networks using automated assembly. Molecular systems biology, 13(11).

Ananiadou, S., & McNaught, J. (2005). Text mining for biology and biomedicine (pp. 1-12). London: Artech House.

Valenzuela-Escárcega, M. A., Babur, Ö., Hahn-Powell, G., Bell, D., Hicks, T., Noriega-Atala, E., … & Morrison, C. T. (2018). Large-scale automated machine reading discovers new cancer-driving mechanisms. Database, 2018.

McDonald, D., Friedman, S., Paullada, A., Bobrow, R., & Burstein, M. (2016, March). Extending biology models with deep NLP over scientific articles. In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.

Allen, J., de Beaumont, W., Galescu, L., & Teng, C. M. (2015, July). Complex Event Extraction using DRUM. In Proceedings of BioNLP 15 (pp. 1-11).

Torii, M., Arighi, C. N., Li, G., Wang, Q., Wu, C. H., & Vijay-Shanker, K. (2015). RLIMS-P 2.0: a generalizable rule-based information extraction system for literature mining of protein phosphorylation information. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 12(1), 17-29.

Barbosa, G. C., Wong, Z., Hahn-Powell, G., Bell, D., Sharp, R., Valenzuela-Escárcega, M. A., & Surdeanu, M. (2019, June). Enabling Search and Collaborative Assembly of Causal Interactions Extracted from Multilingual and Multi-domain Free Text. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations) (pp. 12-17).

Cerami, E. G., Gross, B. E., Demir, E., Rodchenkov, I., Babur, Ö., Anwar, N., … & Sander, C. (2010). Pathway Commons, a web resource for biological pathway data. Nucleic acids research, 39, D685-D690.

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., … & Jassal, B. (2013). The Reactome pathway knowledgebase. Nucleic acids research, 42(D1), D472-D477.

Keenan, A. B., Jenkins, S. L., Jagodnik, K. M., Koplev, S., He, E., Torre, D., … & Kuleshov, M. V. (2018). The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell systems, 6(1), 13-24.

Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary oncology, 19(1A), A68.

 ASKE Month 15 Milestone Report

ASKE Month 15 Milestone Report

EMMAA Knowledge assemblies as alternative test corpora

During this reporting period we have made two significant updates to our
approach to static analysis of models against observations. First, we have
implemented a prototype capability to generalize EMMMAA knowledge assemblies
for use as either models or as tests. Second, we have implemented the
capability to test a single model against multiple corpora, which involved
changes to both the back-end test execution as well as the user interface for
displaying test results.

In EMMAA, daily machine reading is used to update a set of causal relations
relevant to a specific domain, such as a disease, signaling pathway, or
phenomenon (e.g., food insecurity). Up until this point, these (possibly
noisy) knowledge assemblies have been used to build causal models that are
checked against a set of manually-curated observations. We have now also
implemented the converse procedure, whereby the knowledge assemblies are
treated as sets of observations, used to check manually curated models.

A prerequisite for this approach is the ability to run a single model against
alternative test suites, which required significant refactoring of our back-end
procedures for triggering testing and results generation, and new user
interfaces to display multiple test results. This feature is described in the
documentation for the Tests Tab.

As a proof of concept, we converted the EMMAA Statements used to generate the
Ras Machine 2.0 (rasmachine) and Melanoma (skcm) models into sets of EMMAA
Tests, and checked the manually-curated Ras Model (rasmodel) against each set
independently. The user can now choose between these alternative test corpora
in the EMMAA user interface:

[image: ../_images/test_corpus_selection_cropped1.png]

Selecting test results to view among “Large Corpus Tests”, “Rasmachine
Tests” and “Skcm tests”.

Examining the performance of the curated Ras Model against these three
different corpora reveals striking differences. The PySB implementation of the
Ras Model has a passing rate of 55% for the BEL Large Corpus (100/182 tests),
but only 16% (120/730 tests) for the Ras Machine test corpus and 7% (6/86
tests) for the Melanoma test corpus. We inspected a handful of the tests from
the Ras Machine that the Ras Model did not pass. Many of these failed tests
highlighted aspects of the Ras Model that were failing either for minor
technical reasons (e.g., “CCND1 activates CDK4”, which failed due to the active
form of CDK4 being defined explicitly in the model); others represented
knowledge gaps that could guide additions to the model (e.g., “RPS6KA1
activates RPTOR”). This latter category represent an opportunity for
test-driven modeling as we described in an earlier report, with the
additional feature that here the system is automatically providing guidance
for model extension based on ongoing mining of the literature.

In addition, we also found a number of cases where the failure of the Ras Model
to pass a test highlighted errors in the underlying machine reading underlying
the test. For example, the Melanoma Model included the test “PTEN ubiquitinates
PTEN”, which was derived from jointly incorrect extractions from three distinct
sentences. As the Ras Model is extended to cover more of the true biology of
the Ras pathway, we anticipate that failed tests will be increasingly likely to
be erroneous. From a larger perspective, we believe that this approach
highlights the prospect of using causal models to determine the a priori
plausibility of a newly-reported finding extracted by text mining.

Time machine

When EMMAA performs daily updates, it reports which new statements were newly
added to each model, the new tests that were applied based on the these
statements, and whether these new tests passed or failed. Until this point the
user could only see the change in statements and tests from the most recent
update. This prevented the user from investigating the changes at earlier
points in time, for example at points where there were large changes in the
number of tests passing. During this reporting period we have added a “time
machine” feature to the user interface to allow the user to inspect changes
in the model statements and tests at specific previous timepoints.

For example, the history of the Ras Machine model
shows that on 11/26/2019, there was a dramatic change in the pass ratio of
PyBEL model tests, as shown below:

[image: ../_images/ras_machine_pybel_delta.jpeg]

Substantial change in the PyBEL pass ratio for the Ras Machine model on
November 26, 2019.

Clicking on the timepoint after the change refreshes the interface to display
which tests were newly passed at this point:

[image: ../_images/ras_machine_pybel_delta_tests.jpeg]

Inspection of these newly passed tests along with the changes in model
statements can help the user understand changes in the causal structure
of the model over time.

This feature is described in the documentation section
Load Previous State of Model.

Dynamical model simulation and testing

Initially, the EMMAA project focused on a single mode of model analysis:
finding mechanistic paths between a source (e.g., a perturbed protein) and
a readout. This mode of analysis is static in that it relies on
the causal connectivity structure of the model to characterize its behavior.

We have generalized EMMAA model analysis to dynamical properties in which
model simulation is performed. First, EMMAA Statements are assembled into a
PySB model - a rule-based representation from which a reaction network, and
subsequently, a set of coupled ordinary differential equations (ODEs) can be
generated. Given suitable parameters and initial conditions, this set of ODEs
can be solved numerically to reconstruct the temporal profile of observables
of interest.

Our goal was to design a simple specification language that allows a user to
choose an observable, and determine whether it follows a given dynamical
profile of interest. An example could be: “In the RAS model, is
phosphorylated ERK transient?”. Here “phosphorylated ERK”
is the observable, and “transient” is the dynamical profile. The user can
choose from the following dynamical profiles:

	always value (low/high): the observable is always at a given level

	sometime value (low/high): at some point in time, the observable reaches the
given level

	eventual value (low/high): the observable eventually reaches a given level
and then stays there

	no change: the observable’s level never changes

	transient: the observable’s level first goes up and then goes back down

	sustained: the observable’s level goes up and then stays at a high level

Internally, EMMAA uses a bounded linear-time temporal logic (BLTL) model
checking framework to evaluate these properties. BLTL is defined over discrete
time and so we choose a suitable sampling rate at which the observable’s time
course profile is reconstructed. A temporal logic formula is then
constructed around atomic propositions to represent the query. Each
atomic proposition has the form [observable,level] and evaluates to True
if the observable is at the given level at the current time point. Atomic
propositions are then embedded in formulae using standard BLTL operators
including X, F, G and U, combined with standard logical operators (~, ^, v).
For instance,
“is phosphorylated ERK transient?” would be turned into the BLTL property
[pERK,low]^F([pERK,high])^F(G([pERK,low])), which can informally be
interpreted as: “pERK is initially low, after which at some point it reaches
a high level, after which is goes to a low level and remains there.”

Given a model simulation, a generic BLTL model checker takes the simulation
output (for the observable) and determines whether it satisfies the given
formula. The result (pass/fail) is then displayed on the dashboard along
with a plot of the actual simulation.

In the future, we plan to account for the parameteric (and potentially the
structural) uncertainty of each model using sampling, and use statistical
model checking techniques with given false positive and false negative
guarantees to produce a pass/fail result.

This feature is described in Temporal properties queries.

Towards push science: User notifications of newly-discovered query results

The system of user notifications is an important component of the EMMAA
concept. As a first approach, we implemented a registration system for users
so that when a registered user logs in, they can register specific queries
that they are interested in monitoring over time.

Currently, the Query
page allows users to browse the results of their registered queries given
the current state of each model for which the query is registered.
Independently, EMMAA’s answer_queries module can detect if the result of
a registered query changes due to a model update. Putting these two
capabilities together, we developed a user notification system in EMMAA.
If a specific model update changes the result of a registered user query,
the user receives an email notifying them about the change. Importantly,
the change to model behavior is attributable to the most recent model update
(in which a new discovery from literature was assembled into the model).
This creates a system in which new research results, as soon as they are
published, are integrated into models that are then evaluated with respect
to specific analyses, and their effect on model behavior is assessed and
exposed to users whose research it affects. The email notification system
is currently being tested internally, and will be exposed on the public
interface in the next reporting period.

 ASKE Month 18 Milestone Report

ASKE Month 18 Milestone Report

Expert curation of models on the EMMAA dashboard

Previously, statements constituting each EMMAA model were linked to an outside
website (the INDRA DB) where they could be curated by users as correct or
incorrect. However, this feature was not convenient for at least two reasons:
the curation required moving to an external website, and the specific scope and
state of each individual EMMAA model was not always correctly reflected on the
more generic INDRA DB site.

Therefore, we implemented several new features in EMMAA that allow curating
model statements (and model tests) directly on the dashboard. Some of the key
places that allow curation include

	The list of most supported statements on the Model tab.

	The list of new added statements on the Model tab.

	The page where all statements in a model can be browsed.

	Each model’s Test tab allows curating tests themselves (which in some cases
are also prone to errors) and also the results of test, i.e., paths of
mechanisms satisfying the test.

	Results of new queries and registered queries on the Queries page.

Existing curations for all of the above content are also accessible within the
dashboard.

The figure below shows an example of the interface for entering new curations.
as well as the visual annotations used to show existing curations and their
properties for each statement or evidence.

[image: ../_images/all_statements_curation.png]

Viewing and ranking all statements in a model

We also recognized the importance of being able to inspect the contents of the
model as a whole, in a view which exposes all the literature evidence and also
enables in-place curation (as opposed to the NDEx network view). Therefore, we
added a “View All Statements” button to each Model page which allows browsing
all statements in the model. To overcome the challenge of the model potentially
containing a very large number of statements, the page uses an auto-expand
feature which loads statements in real time as the user scrolls further down on
the page. Similarly, evidences for each statement are loaded during runtime,
and only when requested by the user.

The default view on the All Statements page ranks statements by the number of
evidence that support them. This allows curators to focus on statements that
are prominently discussed in the subset of literature corresponding to the
scope of the model. However, this ranking doesn’t necessarily correspond to a
statement’s importance in terms of functionally affecting a model’s behavior.
Therefore, we added another option to sort statements by the number of model
tests whose result rely on the statement. In other words, if a given mechanism
is essential for many tests passing, it will be ranked high on this page. This
view is particularly useful if a user intends to curate the model in a way that
they focus on identifying incorrect statements that have the biggest functional
effect on model behavior, without spending time on statements that do not play
an important role in this sense.

Email notifications

The system of user notifications for registered queries is now in place and
available to any registered user. On the Query page, when a query is
registered, the user is also signed up for email notifications. This means that
each time a relevant new result is available for the query, the user receives
an email informing them what the new result is, and linking them to the page on
which the new result and its effect on model behavior can be inspected.

A representative use case for this is a query about a drug and an indirect
downstream effect that could be explained by many possible parallel paths of
mechanisms (e.g., “how does quercetin inhibit TMPRSS2?”). Each day, as a model
is updated, new mechanisms that were extracted from the latest literature may
provide links between previously unconnected concepts that can contribute to
new results for a query.

The figure below shows an example notification email that an EMMAA user
would receive:

[image: ../_images/email_notification1.png]

A model of Covid-19

Before starting the project, we had planned to set up at least one EMMAA model
of a relevant public health-related process. As the Covid-19 crisis emerged, we
set up an EMMAA model (https://emmaa.indra.bio/dashboard/covid19/?tab=model) to
capture the relevant existing literature (by building on the CORD-19 corpus).
The model also self-updates each day with new literature on Covid-19, which is
now appearing at a pace of ~500 papers a day, and accelerating.

[image: ../_images/covid19_model_card.png]

We have made a number of enhancements to the underlying reading and assembly
pipelines to:

	Incorporate full text content from the CORD-19 corpus alongside our other
sources (PubMed Central, MEDLINE, Elsevier, xDD)

	Improve grounding of viral proteins, e.g., “SARS-CoV-2 Spike protein”

	Use GILDA (https://github.com/indralab/gilda) to ground named entities
identified by the University of Arizona open-domain reading system Eidos
to extract and integrate high-level causal relations (e.g., viruses
cause respiratory inf.

In addition, we have added curated tests describing empirically observed
inhibitors of SARS-CoV-2 (e.g., “Imatinib methanesulfonate inhibits severe
acute respiratory syndrome coronavirus 2”) to determine whether the model can
identify mechanistic explanations for the effectiveness of these drugs.

Integration of content from UW xDD system

During this reporting period we have continued to develop our pipeline to
integrate content from the University of Wisconsin xDD platform. To support
the pipeline we have created new command-line endpoints to run machine reading
and statement extraction within our Dockerized system. INDRA Statements
extracted from the xDD content are posted to a shared private AWS S3 bucket
along with associated document metadata. In five successive pilot runs we have
refined metadata formats and adapted the schema of the INDRA DB to allow INDRA
Statements to be linked to article metadata in the absence of article content
(we only obtain INDRA Statements from xDD, while xDD retains the articles
themselves). Next steps include:

	Determining relevance of xDD documents to specific EMMAA models by linking
documents to specific xDD-indexed terms/keywords

	Scaling up to larger document runs focusing on Pubmed-indexed documents
for which we do not have full texts available from other sources.

Configurable model assembly pipeline

Each EMMAA model is defined by a configuration file which determines what
search terms the model is built around, other metadata (name, description
etc.), and other settings specific to the model. Building on the new Pipeline
feature in INDRA, EMMAA models can now define the assembly pipeline applied to
each model in a fully declarative way, as part of the configuration file. This
simplifies the EMMAA codebase, and makes the instantiation of new models much
easier, in a way that is decoupled from code. This could open up exciting
possibilities such as instantiating EMMAA models on-demand, potentially through
a UI.

 ASKE-E Month 1 Milestone Report

ASKE-E Month 1 Milestone Report

Overall goals and use cases for the Bio Platform

The goal of the Bio Platform is to provide an automated modeling and
model analysis platform (with appropriate interfaces for user-in-the-loop
interaction) around the molecular basis of diseases and their therapies.
The initial disease focus for the platform is COVID-19. In this context,
the use cases we aim to work towards are as follows:

	Explain drug mechanisms based on existing experimental observations

	Example: through what mechanism does E64-D decrease SARS-CoV-2 replication?

	Propose new drugs that haven’t yet been tested

	Example: Leupeptin should be investigated since through protease
inhibition, it is expected to decrease SARS-CoV-2 entry.

	Causally/mechanistically explain high-level/clinical associations
that are unexplained

	Example: What is the mechanistic basis for men being susceptible to more
severe COVID-19 compared to women?

	Construct reports on the implication of therapeutics on clinical outcomes,
optimize course of therapy

	Example: Find the optimal course of interferon treatment using modeling
and simulation.

Integration plan for the Bio Platform

The following diagram shows the integration architecture for the Bio
Platform:

[image: ../_images/bio_platform.png]
The main components of this integration are as follows. The HMS team’s INDRA
system integrates multiple knowledge sources, including the Reach and Eidos
machine-reading systems developed by the UA team. INDRA is also integrated with
UW’s xDD system where it is run on a subset of published papers and preprints
to produce statements that INDRA doesn’t otherwise have access to. xDD will
also provide provenance information for relevant figures and tables coupled
to statement evidences.

INDRA produces statements daily that are picked up by EMMAA (each EMMAA model
gets only statements that are specifically relevant to its use case as
controlled by a definition of model scope). Each EMMAA model then assembles
its statements in a use-case-specific way to produce an assembled knowledge
base. This is then the basis of generating multiple executable / analyzable
model types (unsigned graph, signed graph, PyBEL, PySB) and applying these
models to automatically explain a set of observations (note that this process
can also be thought of as “testing” or “validation” of the model).

EMMAA integrates with the MITRE Therapeutics Information Portal by pulling
in observations about drug-virus relationships that it then explains.
The resulting explanations (typically mechanistic paths) will be linked
back to the MITRE portal. The portal will also link to INDRA-assembled
information on specific drugs and their targets.

EMMAA models will also link back to UW’s COSMOS system to provide additional
annotations for documents they index.

EMMAA will integrate with the Uncharted UI both at the level of
the knowledge base that each model constitutes, and the explanations
produced by each model.

Finally, the COVID-19 EMMAA model will also attempt to form links with the
Epi Platform by using causal relations between molecular and high-level
(e.g., clinical, epidemiological) factors to connect therapeutic interventions
to epidemiology.

Progress during the ASKE-E Hackathon

Our teams made progress on multiple fronts during the first ASKE-E
Hackathon.

First, with the UA team, we identified relevant resources for the
lexicalization of protein fragments. The initial goal was to identify and
extract relevant terms from the Protein Ontology (https://proconsortium.org/).
Due to the diversity of features by which protein fragments are annotated
in this ontology, identifying the right subset of terms has turned out to
be challenging, but we produced an initial set of terms that are now in
the process of being added to the Reach system’s bioresources.

From the MITRE team, we received an updated export of drug-virus relations
from the Therapeutics Information Protal which we ingested as a set
of observations against the COVID-19 EMMAA model
(see https://emmaa.indra.bio/dashboard/covid19?tab=tests&test_corpus=covid19_mitre_tests).
The set of applied tests (i.e., observations) went up from 1,839 to 2,641, and
the number of explanatory paths found by EMMAA went up from 1,643 to 2,398.
In other words, we now produce explanations for an additional 755 drug-virus
relationships.

With the UW team, we made technical specifications for how INDRA/EMMAA
can provide annotations back to COSMOS that it can use for enhanced
document indexing and retrieval. The two options (each with different
advantages) are to (1) integrate additional INDRA processing steps with the
reading infrastructure running on xDD and allow COSMOS to ingest these outputs
directly or (2) use assembled EMMAA knowledge and map these back (via document
identifiers) to COSMOS as annotations. We also discussed approaches to
access relevant figures and tables connected to statement evidence. UW will
implement an API which takes a set of keywords, and optionally, a set of
DOIs and returns a ranked list of figures and tables.

As for the integration with Uncharted, we implemented a new JSON-L format for
exporting and sharing EMMAA models and made this available. We also
provided ongoing help with accessing and interpreting the content
of EMMAA models as well as the results of EMMAA explanations. In support
of the latter, we developed a new JSON-L based representation format for
tests that provide a list of node names, a list of Statement hashes
representing edges, and other metadata necessary to identify the test for
which the explanatory path was produced. We also provided an export of
all assembled knowledge potentially relevant to any of the EMMAA models, as
well as access to a query API for the same knowledge.

Open Search model queries and notifications

During this reporting period, we added a new “Open Search” capability to
EMMAA’s model queries and notifications feature. Until now, EMMAA’s
notification tools have been focused on identifying new explanations for
observed cause-effect relationships. The primary use case for this feature is
to support scientists who are interested in understanding possible mechanisms
for a known biological effect.

With Open Search, users can specify a target and get updates on newly
discovered regulators of the target (e.g., drugs), or downstream effects (e.g.,
phenotypes). The motivation for this feature was to allow users to be notified
of new discoveries suggesting repurposable drugs for COVID-19. Not only can the
user specify the type of target they are searching from (e.g., the disease
“COVID-19” or the viral co-receptor protein “TMPRSS2”), but also class of
entities they are searching for (e.g., chemicals, proteins, or phenotypes).

The figure below illustrates an EMMAA notification email for a variety of
different open searches, including chemicals affecting diseases (“COVID-19”),
viruses (“Middle East Respiratory Syndrome Coronavirus”) and proteins (“ACE2”,
“TMPRSS2”, “CTSB”). In addition, it includes a search for new downstream
effects of a particular drug, “leupeptin”:

[image: ../_images/open_search_email.png]
As with notifications for causal paths, EMMAA keeps track of the previously
reported results for the query and generates updates for new results. The
following image shows the initial set of paths returned for the query “What
inhibits COVID-19” in the unsigned network model:

[image: ../_images/open_search_paths.png]
The paths show that EMMAA identifies drugs linked to COVID-19 via an
intermediate node, the viral receptor ACE2: both of the paths highlighted
pointed to ACE2 inhibitors as possibly relevant drugs. While losartan entered
clinical trials early on as a potential COVID-19 therapeutic, piaglitazone was
discussed only recently as potentially relevant (see the paper “Can
pioglitazone be potentially useful therapeutically in treating patients with
COVID-19?” [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175844/]). With
this initial baseline established, we will be monitoring the results of these
open searches for findings with implications for new drug repurposing
candidates.

 ASKE-E Month 2 Milestone Report

ASKE-E Month 2 Milestone Report

Push science: EMMAA models tweet new discoveries and explanations

This month we implemented and deployed Twitter integration for multiple
EMMAA models. We have previously developed a proof of concept for Twitter
integration, however, that framework had significant limitations. First,
tweets only described structural updates to a model (i.e., the number of
new statements that were added) and did not report on any functional changes
or non-trivial new insights that were gained from the model update.
Second, the tweets did not point to any landing page where users could
examine the specific changes to the model. In the new Twitter integration
framework, we addressed both of these crucial limitations.

Twitter updates are now generated for three distinct types of events triggered
by the appearance of new discoveries in the literature:

	New (note that “new” here means that a statement is meaningfully distinct
from any other statement that the model previously contained) statements
added to a model.

	The model becoming structurally capable to make a set of new explanations
with respect to a set of tests (e.g., experimental findings). This typically
happens if a new entity is added to the model that was previously not
part of it.

	The model explaining a previously unexplained observation (in other words,
passing a previously failing “test”). These notifications are particularly
important conceptually, since they indicate that the model learned
something from the newly ingested literature that changed it such that
it could explain something it previously couldn’t.

The image below shows the first tweet from the
[EMMAA COVID-19 model](https://twitter.com/covid19_emmaa).

[image: ../_images/covid19_twitter.png]
Crucially, each of the tweets above include a link to a specific landing page
where the new results can be examined and curated (in case there are any
issues).

Overall, this framework constitutes a new paradigm for scientists to monitor
the evolving literature around a given scientific topic. For instance,
scientists who follow the EMMAA COVID-19 model Twitter account get
targeted updates on specific new pieces of knowledge that were just published
that enable new explanations of drug-virus effects.

Improving named entity recognition in text mining integrated with EMMAA models

Having evaluated the performance of integrating protein cleavage product
names from the Protein Ontology with the Reach reading system’s resources,
we found that the space of protein fragments covered and the quality
of synonyms was insufficient. We therefore implemented an alternative
approach that involves extracting protein chain and fragment names from
UniProt and using these as synonyms for grounding purposes
(see [Pull request](https://github.com/clulab/bioresources/pull/42)).
We found that this approach adds around 50 thousand new, high-quality
lexicalizations for protein fragments, including a large number of human
proteins (e.g., Angiotensin-2) and viral proteins (e.g., Nsp1) that are
of interest for COVID-19 and many other applications in biology. The UA
team is currently working on finalizing these updates and we hope to run an
updated version of Reach on the COVID-19 literature next month.

Making model tests and paths available for use by other applications

To facilitate integration of EMMAA test results with other applications we made
data on model tests and causal paths available for programmatic download. This
feature was requested by the Uncharted team, who is exploring approaches to
visualize and interact with EMMAA results. The test and path data are stored in
public JSON-L files on Amazon S3 and are updated daily. Model test files
contain a JSON representation of the EMMAA test statements; test path files
list the path nodes, the statement hashes supporting each edge in the path, the
hash of the corresponding test, and the type of causal network used to evaluate
the test. Downstream applications can get the latest results from each
model-test corpus pair from stable Amazon S3 links.

 ASKE-E Month 4 Milestone Report

ASKE-E Month 4 Milestone Report

EMMAA Neurofibromatosis Models and NF Hackathon Prize

During this reporting period we won one of the top prizes in the “Hack for NF”,
a six-week event sponsored by the Children’s Tumor Foundation to develop novel
software relevant to neurofibromatosis (NF), a set of cancer syndromes
that affect children.

Our submission consisted of two causal models of NF deployed in EMMAA.
The first model was built directly from text mining the 18,000 PubMed articles
about NF; it contains approximately 9,000 statements about the functions and
interactions of NF1, NF2, and other entities mentioned in those articles.
Unlike the other cancer-related models in EMMAA, the NF model does not specify
an explicit list of disease-relevant proteins: the scope of the model is defined
strictly by neurofibromatosis keyword search terms. This keeps the content of
the model as disease-specific as possible, with the model serving as a
comprehensive representation of what is known about NF.

For the second part of our submission, we substantially expanded our curated
Ras signaling model to include mechanisms relevant to NF1 and NF2 signaling.
The model is transparent even for non-modelers because it is built from ~200
declarative English sentences and automaticalaly assembled by INDRA. In an
iterative, test-driven process, we used the reported causal relationships from
the literature-based NF model that were unexplainable by the curated model to
both 1) identify errors in the literature derived model and 2) discover
necessary extensions to the curated model.

As an example, the literature-based model contains the observation that NF2
inhibits PAK1. The extended curated model shows that this this finding can be
explained by a mechanistic path whereby NF2 competes Angiomotin (AMOT) away
from inhibiting ARHGAP17, allowing ARHGAP17 to inhibit CDC42, which would
otherwise activate PAK1.

As a further demonstration of the scientific value of automated model analysis,
we converted drug screening data from NF1 and NF2 cell lines into EMMAA tests
and checked the literature-derived model against them. Interestingly, we found
that while the causal paths identified by the models were typically short,
involving paths with a single intermediate node (i.e., drug->protein->cell
proliferation) the explanatory nodes were highly context-specific, in some
cases having been previously identified in the literature as therapeutic
vulnerabilities for NF cell lines.

We see the two types of models (curated and literature-derived) as working
synergistically to explain experimental results and accumulate actionable
knowledge, as shown in the diagram below.

[image: ../_images/emmaa_nf_model_cycle.png]
For this hackathon entry, we won one of three top prizes. The press
release from the Children’s Tumor Foundation can be found
here, [https://www.ctf.org/news/hack-for-nf-2020-winning-projects]
and a video presentation describing our project can be found
here. [https://www.youtube.com/watch?v=WI-NnFEXY_Y]

Rapid initialization of EMMAA models from literature for two new diseases

The new Literature Prior module [https://emmaa.readthedocs.io/en/latest/modules/priors.html#literature-prior-emmaa-priors-literature-prior] module makes
the instantion of EMMAA models based on a subset of the scientific
literature straightforward. As input, the class takes a list of PubMed
search terms and optionally a list of Medical Subject Headings. It then
automatically identifies relevant publications, and collects all statements
from text mining that were extracted from these papers. The model is then
uploaded to AWS and is available for daily updates and access via the
dashboard. We used this method to start two new EMMAA models, for
vitiligo [https://emmaa.indra.bio/dashboard/vitiligo?tab=model] and
multiple sclerosis [https://emmaa.indra.bio/dashboard/ms?tab=model].

Downloading EMMAA models in alternative formats

The knowledge assembly approach in EMMAA allows exporting each model
in multiple different modeling formalisms. In fact, EMMAA internally uses
four different modeling formalisms (PySB, PyBEL, signed graph and
unsigned graph) for querying and analysis. However, these formats, and
other community standards have not been made available to users through the
EMMAA dashboard.

We added multiple exports for each model that are generated during each
model update (typically daily) and are available through the EMMAA dashboard.
Each model has the following export formats available:

	json.gz: A gzipped INDRA Statement JSON dump.

	jsonl: An uncompressed dump of INDRA Statement JSONs with one statement
per line.

	indranet: A tabular (tsv) file where each row represents a single
binary interaction between two entities. This format is ideal for building
networks from an EMMAA model.

Models that support PyBEL analysis provide a pybel export. In addition,
models that support analysis at the rule-based executable
level are exported into the following formats:

	bngl: BioNetGen model representation (http://bionetgen.org/)

	kappa: Kappa model representation (https://kappalanguage.org/)

Finally, models that support reaction-network based analysis are exported
into these formats:

	sbml: Systems Biology Markup Language (http://sbml.org/)

	sbgn: Systems Biology Graphical Notation (https://sbgn.github.io/)

 ASKE-E Month 5 Milestone Report

ASKE-E Month 5 Milestone Report

Semantic filters to improve model analysis

Examining the explanations produced by the COVID-19 EMMAA model for
in-vitro drug screening experiments, we found that some of the explanations
included causal mechanisms that were not consistent with the nature of
the experimental context being studied. For instance, in an experiment
where a single drug is added in a controlled manner, a mechanism that involves
another drug (for instance via a drug-drug interaction) is not appropriate.
Similarly, for an in-vitro experiment, higher-level societal factors are
semantically not appropriate as intermediate concepts on a causal path.

Motivated by this, we implemented an approach to applying semantic filters
to mechanistic paths that allow encoding constraints on what is and isn’t
allowed on paths when explaining a given observation. These
constraints derive from what is known about the experimental context in which
that observation was made. For the observations used as test conditions
for the COVID-19 model, we created constraints to exclude small molecules
other than the drug that is used in the given experiment and higher level
concepts including phenotypes, organisms and diseases. We found that the
quality of explanations found improved substantially and is now more
appropriate semantically with respect to the experimental context.

Model analysis exploiting ontological relationships

During this reporting period we extended the way EMMAA models are tested
against experimental observations. Previously, we applied tests to models based
on a strict match between the entities in the test and the set of entities in
the model. However we noticed that in many cases models tended to consist of
highly specific entities (e.g., individual proteins like KRAS, HRAS, and NRAS),
whereas literature mining often picked up tests involving higher-level
ontological concepts (e.g., the RAS protein family). The limitation of this
approach was that we could only return a path based on exact matches between
test and model entities, even when the model contained a path among more
specific entities that would serve as a test explanation.

In the new approach we allow relations among more specific concepts to serve as
explanations for relations among more general concepts (but not the reverse).
Specificity is determined not only by hierarchical levels in the ontology (e.g.
a member of a protein family is more specific than the family entity), but also
by the amount of contextual information supplied for an entity (e.g., a protein
with a phosphorylation is a more specific version of the same entity without a
phosphorylation). This information is used to determine which tests can be
applied to the model and also to find explanatory paths. To make this
relationship explicit in our explanations, when a path found starts or ends
with a more specific version of a test entity, we add a special “is a
refinement of” or “has a refinement” edge to the path.

We applied this new testing approach to the EMMAA COVID-19 model. For the tests
from the MITRE Therapeutic Information Browser Corpus (“MITRE Tests”), 174 new
tests were determined to be relevant to the model when taking refinements into
account. For these tests, which generally take the form “drug X inhibits virus
Y”, we found relevant, more specific agents both for drugs (e.g.,
“rifampicin” is a type of “RNA polymerase inhibitor”) and viruses (e.g.,
“infectious bronchitis virus” is a type of “gammacoronavirus”). Of these new
tests, 95 passed in the signed graph network.

An example new passing test is shown in the figure below for the test condition
“anticoagulant inhibits SARS-CoV-2”, which was previously determined to not be
relevant to the model due to the fact that the model did not contain the
specific entity for “anticoagulant” (CHEBI:50249). The model contains
the information that heparin (CHEBI:28304), a type of anticoagulant, inhibits
SARS-CoV-2, and the system now returns the explanation that “anticoagulant has
refinement heparin; heparin inhibits SARS-CoV-2.”

[image: ../_images/covid_test_refinement.png]

Improved reading and assembly of protein chains and fragments

Protein chains and fragments are important both for human and
viral biology. In ASKE-E month 2, we reported having extended the Reach reading
system with lexicalizations of these entities from UniProt and the Protein
Ontology (PR). This month, we made a number of extensions to our software
stack to propagate these extensions in a useful way.

First, UniProt and PR have a large number of overlapping entries but neither
source provides mappings to the other at the level of protein chains (only full
protein entries). We developed a semi-automated approach to find and curate
these mappings. We used Gilda [https://github.com/indralab/gilda] to find
lexical overlaps between the two ontologies and put these as predictions into
the Biomappings repository and curation tool [https://github.com/biomappings/biomappings]. We then curated these mappings
to confirm correct ones and remove incorrect ones. These mappings were then
propagated into the INDRA Ontology graph to be used for standardization.

Second, we found that the names of protein chains (similar to the names
of full proteins) are ambiguous across organisms. This is especially
problematic with the large number of viral species and strains that contain
protein chains with identical or similar names. Current machine reading systems
including Reach typically cannot disambiguate across these choices and produce
highly ambiguous groundings for these viral proteins. Therefore, contextual
information needs to be brought in externally to decide which organism
to prioritize when selecting a grounding produced by Reach. To this end,
we implemented an organism prioritization scheme whereby the user (or some
external automated process) can supply a ranked list of organism identifiers
to represent priority. This list is then used to guide how to the
grounding of proteins and protein chains is selected. For example, if a paper
is known to describe SARS-CoV-2 and human biology, one can supply an organism
priority list including the identifiers of these two organisms to exclude or
de-prioritize any spurious groundings from e.g., other viral strains that are
irrelevant in the given context. Further, the organisms which a paper describes
can be obtained from annotations that are either provided directly with the
paper in PubMed or can be obtained using dedicated NLP systems set up for this
task e.g, the MTI system.

Going forward, we will re-process the COVID-19 papers with these features
in place and expect that the quality of reading, extraction and assembly for
virus-host interactions will improve significantly.

Bio ontology optimized for visualization

We implemented a custom export of the INDRA BioOntology graph that is optimized
for organizing nodes in a UI. The idea is to create top-level groups of
entities that correspond to an intuitive category (e.g., human genes/proteins,
non-human genes/proteins, small molecules, diseases, etc.). EMMAA models
don’t contain this information about their entities directly, rather, they
are inferred from identifiers assigned to each entity in a given set of
name spaces. However, some name spaces contain multiple types of entities
(e.g., MESH contains small molecules as well as diseases) and some entity
types are distributed across multiple name spaces (e.g., human genes/proteins
can be grounded to HGNC, UniProt, FamPlex, etc.). In this custom export,
we split some name spaces and merged others to create a more ideal resolution
and shared this export with the Uncharted team.

 ASKE-E Month 6 Milestone Report

ASKE-E Month 6 Milestone Report

Reading and assembly with context-aware organism prioritization

A key challenge in monitoring the COVID-19 literature and modeling the effect
of new discoveries is that descriptions of mechanisms span multiple organisms.
First, we need to be able to recognize both viral proteins and human (or other
mammalian) proteins in text and find possible database identifiers for them.
Second, we need to deal with substantial ambiguity in protein naming between
viral species.

By default, the Reach reading system’s named entity recognition module is
configured to tag only human proteins in text. This month, our team developed
a script which cross-references UniProt protein synonyms with the NCBI
Taxonomy to allow generating customized named entity resources which include
protein synonyms for custom sub-trees of the Taxonomy. We used this script
to generate named entity resources that include all human proteins as well
as protein synonyms for all different viral species. We then compiled a custom
version of Reach including these resources.

Next, we implemented a new feature in INDRA which allows processing Reach
output with context-dependent organism prioritization. For a given paper with
a PubMed ID, we can draw on Medical Subject Headings (MeSH) annotations to find
out about organisms that are being discussed. For instance, papers about
Ebola are (typically) tagged with the MeSH heading D029043
(https://meshb.nlm.nih.gov/record/ui?ui=D029043), and papers about SARS-CoV-2
with MeSH heading D000086402
(https://meshb.nlm.nih.gov/record/ui?ui=D000086402). Once we have a
pre-defined or paper-specific list of relevant organisms, we can process Reach
output with this order in place to choose the highest priority UniProt entry
for each ambiguous entry having been matched.

While our focus here is on coronaviruses (and in particular on SARS-CoV-2),
these new capabilities can be applied to studying other types of existing
viruses, or monitoring the literature on future emerging viral outbreaks.
We have tested the above grounding approach locally but haven’t yet
re-processed the entire body of literature (~100k papers) underlying the
EMMAA COVID-19 model. We plan to do this in the next reporting period.

Preparing for the stakeholder meeting

The EMMAA COVID-19 model is considerably large since it is configured to
monitor all of the COVID-19 literature without any further restrictions on
model scope. Consequently, for more focused (e.g., pathway-specific) studies,
it makes sense to start with subsets of this overall knowledge, and
demonstrating this type of more focused model-driven analysis is one of the
goals at the upcoming stakeholder meeting. To prepare for this, we defined six
distinct ways in which our models and REST services can be used to obtain
subsets of knowledge on COVID-19 mechanisms, and to extend them using expert
knowledge.

First, the EMMAA COVID-19 model can be queried in at least two ways: using a
paper-oriented or an entity-oriented approach. In the paper-oriented case, one
searches for elements of the EMMAA COVID-19 model that have support from one or
more specific publications. In the entity-oriented case, one defines a list of
entities of interest, and queries for all model statements that involve one or
more of those entities. The advantage of the paper-oriented approach is that
one does not need to curate a specific entity list up front, but due to
potential recall issues with automated reading, there is no guarantee that a
mechanism of interest will have been extracted from any specific paper. In
contrast, the entity-oriented approach provides more reliable coverage for the
given set of entities while potentially, inadvertently ignoring other relevant
mechanisms.

Second, the general INDRA DB can be used to query for information. The REST API
supports both entity-oriented and paper-oriented queries here as well. The
main difference compared to querying the EMMAA model is that the INDRA DB
results are unfiltered (they can statements that have been marked as incorrect,
ungrounded entities, statements out of scope, etc.) and may require
post-processing to get good quality results for a focused modeling study.

Finally, we provide features for experts to build models from scratch or
extend automatically initialized models. For instance, the INDRA API provides an
endpoint to run a machine-reading system on a given span of text (e.g.,
one describing mechanisms for a given pathway in simple English sentences)
and process these into INDRA Statements.

We provided pointers to the Uncharted team for invoking all of these service
endpoints.

Reporting curation statistics

While the update and assembly of EMMAA models is automated, users can manually
curate model statements to remove any incorrect extractions and provide better
mechanistic explanations. Previously, the EMMAA dashboard allowed submitting
and browsing individual curations, but we did not have UI support for users to
see statistics on curations at the model level. To address this, we added a new
“Curation” tab on the EMMAA model dashboard. In this tab we show the number of
curations submitted by individual curators for statements that are part of a
given model. We display the counts for both individual evidences and unique
assembled statements. This differentiation is important because each assembled
statement may be supported by multiple evidences. In addition, curation
information affects the assembly process: all statements that have been curated
as incorrect and do not have any evidences curated as correct are filtered out
from the model.

[image: ../_images/curators1.png]

Curators of COVID19 EMMAA model

We also report the number of curations grouped by their type. This shows what
errors are the most frequent and helps prioritize further development.

[image: ../_images/curation_types1.png]

Curations grouped by type

Another aspect of curations we report is how the number of curated statements
and evidence changed over time. The figure below shows the time series plot of
the number of curations for the COVID-19 model. The first few points here
predate the pandemic and the model creation. This is due to the fact the
COVID-19 model also integrates a set of older papers on coronaviruses, and some
statements from those papers were curated earlier.

[image: ../_images/curation_over_time1.png]

Curations over time

Reporting paper level statistics

INDRA processes thousands of publications daily and different EMMAA models
make use of different subsets of these. Previously, the EMMAA dashboard
didn’t provide a dedicated interface for examining the papers that have
contributed to each model. In particular, some of the limitations were:
1) It was only possible to see evidences/links to publications for statements
that were included in the model after assembly.
2) The evidences/links to publications were grouped by interaction and not
by paper.
3) It was not possible to view the papers that produced statements
that were filtered out during assembly or papers from which no statements were
extracted at all.

In this reporting period we added a new “Papers” tab on each EMMAA model
page, and also created a new “statements from paper” service endpoint.

On the “Papers” tab we show the changes in the number of processed papers and
the number of papers we get assembled statements from over time.

[image: ../_images/papers_over_time1.png]

Number of processed papers and papers with assembled model statements over time

We also show the list of papers with the largest number of statements as well
as the list of newly processed papers.

[image: ../_images/new_papers1.png]

Example of new processed papers table

Each paper title here links out to a new page that shows the model statements
extracted from that given paper. This provides a way to explore statements that
were all extracted from the same paper. The second column in this table
provides a link to the original publication as an external resource.

Integrating non-textual evidence with EMMAA models

An important goal in extending EMMAA is to tie the causal mechanisms models are
built of to evidence not only in text but also figures and tables. The xDD
platform developed at UW provides multiple entry points for querying figures
and tables. One approach is to search by entities (e.g., “ACE2, TMPRSS2”) to
find relevant figures from multiple papers relevant for these entities.
Another approach is to search for any figures and tables available for a given
paper.

As a proof of principle or integration, we created a client for the second
query approach (i.e., find figures and tables by paper identifier) in EMMAA.
When displaying the set of statements in an EMMAA model from a given paper,
the “Statements” tab allows examining the individual EMMAA statements with
their supporting (textual) evidence. A new “Figures” tab contains relevant
figures fetched from xDD that can provide additional context and evidence
for the model statements.

[image: ../_images/xdd_figure_integration.png]
The figure above shows an initial proof of principle for the paper
“Investigating Ketone Bodies as Immunometabolic Countermeasures against
Respiratory Viral Infections”. On the left, the Statements tab highlights
the statement “NFkappaB binds HCAR2” and an evidence sentence describing
“…BHB interaction with HCAR2 and Nf-kB…”. On the right, the Figures
tab shows a directly relevant figure of the interaction between NF-kappaB,
HCAR2, and BHB. The visual nature of the figure clearly complements the
textual evidence here and may provide users with a richer overall
understanding of mechanisms of interest.

This feature is not yet deployed on the main EMMAA dashboard. We are continuing
to work on the modes in which figure/table information is integrated with EMMAA
and are exploring the possibility of making use of entity-oriented queries to
connect figures/tables to EMMAA models.

 ASKE-E Month 7 Milestone Report

ASKE-E Month 7 Milestone Report

Natural language dialogue interaction with EMMAA models

This month we developed a new feature that allows users to directly “chat” with
an EMMAA model. The main idea is to make use of the CLARE dialogue system we
have previously developed, and create custom instances of it, on demand, that
load a given EMMAA model and conduct dialogue with respect to that model. An
instance of the CLARE system is running on a remote server and can handle
multiple independent user sessions simultaneously. Chat sessions are
orchestrated through the Pusher framework (https://pusher.com/) which handles
the real-time aspects of the chat interaction (initialize new user session,
asynchronously listen to messages, deliver messages to connected clients,
etc.). In EMMAA, we implemented a Pusher chat client which integrates into the
main EMMAA dashboard. When clicking on the “Chat” button on the card
representing a model on the EMMAA dashboard, a new page opens up where the user
can put in their email (this is automatically populated if the user is logged
in) and start the chat session. They can then talk about a variety of topics,
including mechanisms represented in the given EMMAA model.

The image below shows the new “Chat” buttons on the EMMAA dashboard:

[image: ../_images/chat_button.png]
The screenshots below show dialogues with two different EMMAA models: the
MARM model above and the RAS model below. The first question “what does
BRAF interact with?” highlights the fact that in the two sessions, these
questions are answered with respect to two different model contexts. In the
MARM model, we find that “BRAF can interact with BRAF, RAF1, KRAS, MAPK1,
and vemurafenib”, whereas in the RAS model, we find that “BRAF can interact
with MAP2K1, SRC, KRAS, and BAD”.

Chat with the MARM model:

[image: ../_images/emmaa_chat_marm_model.png]
Chat with the RAS model:

[image: ../_images/emmaa_chat_ras_model.png]
A key feature of human-machine dialogue as implemented by CLARE is that it
maintains dialogue context and can interpret and answer follow-up questions
using co-references that refer to previous questions or answers. This allows
exploring complex mechanisms, such as ones represented by EMMAA models,
sequentially. This kind of sequential exploration with intuitive co-reference
resolution would be difficult to implement using traditional form-based web
interfaces.

The two dialogues above also demonstrate this context-aware co-reference
resolution feature. For instance, the questions “are any of those small
molecules?”, “are any of those kinases?” or “are there any drugs for any of
those?” are all questions making use of this feature.

We plan to improve the rendering of some answers (bulleted lists, HTML
formatting, etc.) in the coming weeks. We will also improve session management
on the back-end to allow terminating sessions explicitly thereby freeing up
resources. Finally, we plan to make more tutorials and demos available for this
dialogue integration to help users make best use of it.

Automatically generated text annotations in context

We implemented a new integration with the hypothes.is that allows taking
statements extracted from a given paper, and annotating the website
for that paper (a PubMed or PubMed Central landing page, or
publisher-specific page) with these statements. First, we implemented
an approach to deriving annotation objects from statements. Each hypothes.is
annotation consists of a URI (i.e., the address of the page to be annotated),
annotation text (i.e., the actual content of the annotation), and a target (a
specific text span on the web page that the annotation applies to). The
annotation text represets a human-readable English sentence derived from the
statement with the names of entities rendered as links to outside ontologies
representing them. The target of the annotation is the evidence sentence
from which the statement was originally extracted. We can then use the
hypothes.is API, for which we implemented a new and extended client, to
upload these annotations on demand for a given paper.

We then integrated with new feature with EMMAA. As an extension of the
paper-centered view of model statements reported last month, we added a new
“hypothes.is button” which allows annotating a given paper on demand and
then looking at the annotations in the context of the actual paper. The figure
below illustrates the relevant part of the updated “Paper” tab on the EMMAA
dashboard.

[image: ../_images/hypothesis_badge.png]
For each paper from which statements were extracted, a small hypothesis (“h.”)
badge is now displayed. Clicking on this badge starts the process of uploading
the annotations for statements extracted from this paper. After all annotations
are added, an external page with this paper opens up in a new tab. In addition,
a link to this page is displayed on the EMMAA website.

[image: ../_images/annotations_added.png]
Viewing the uploaded annotations requires the user to install the hypothes.is
extension in their browser. The figure below shows how annotations can be
viewed and edited on the newly opened page. In this example, a paper on PubMed
Central was automatically annotated. The sentences supporting each of the
extracted statements are highlighted in the paper and the statements can be
viewed in the annotations panel on the right. For instance, this image shows
the highlighted sentence mentioning “FGF1–heparin complex” and the extracted
“heparin binds FGF1” INDRA statement.

[image: ../_images/annotations_displayed.png]
Currently, these annotations are only visible by members of a closed group
on hypothes.is, however, we have requested that hypothes.is make annotations
in the group publicly visible, and hope that this will be done soon.

Demonstrations at the stakeholder meeting

The February 2021 stakeholder meeting focused on system integration: we
demonstrated how EMMAA models can be displayed and interacted with in the HMI
developed by Uncharted. First, we showed how a keyword search for an entity of
interest can lead a user to “discover” a relevant paper and then an EMMAA model
which contains mechanisms surrounding the given entity. The user can then
interact with a network view of the model, highlighting interactions derived
from the paper of interst in the context of all concepts organized by their
ontological categories (for instance, a search for IL6 connects the node
representing it in the “Human proteins” category with the node representing
SARS in the “Infections” category). The HMI is also able to visualize the
subnetwork corresponding to the specific paper on a separate tab. The user can
then click on a node to see additional incoming or outgoing interactions and
click ont them to add them to this view. The figure below shows interactions
highlighted in the context of ontology-based categories on the left, and the
separate view of interactions derived from a given paper on the right.

[image: ../_images/askee_hmi_1.png]
We also showed how the results of model queries can be displayed in the HMI.
Here we focused on small molecules that can inhibit the replication of
SARS-CoV-2 through an intermediary of interest: the Nrf-2 (NFE2L2) protein.
Based on the ontology-guided grouping, the HMI provides an intuitive overview
of what types of entties are on each mechanistic path from a drug to
SARS-CoV-2. For instance, sildenafil, which is grouped under “vasodilator
agents” is shown to regulate the activity of NFE2L2 which in turn can regulate
SARS-CoV-2 replication. We also showed examples of drugs inhibiting SARS-CoV-2
via cathepsins. The figure below shows mechanisms by which drugs regulate
SARS-CoV-2 via NFE2L2. More detail can be seen by zooming and panning in the
HMI.

[image: ../_images/askee_hmi_2.png]

Developing the EMMAA REST API for flexible integration

We continued working on extending the EMMAA REST API to support integration
with other teams. One of the key goals was to allow dynamic retrieval of EMMAA
models and tests metadata. To enable this, we implemented four new endpoints in
the EMMAA REST API that support the retrieval of the following data:

	A list of all available EMMAA models;

	Model metadata (short name, human readable name, description, links to
the NDEx landing page and to the model’s Twitter account) for a given
model;

	A list of test corpora that a given model is tested against;

	Test corpus metadata (name and description) for a given test corpus.

Another important extension of the EMMAA API we implemented is the support for
running queries programmatically. Previously it was only possible to submit
queries through a web form on the Query page of the EMMAA dashboard and then
browse the displayed results. The new approach allows sending programmatic
requests to the API and receive the results in JSON format. Similar to the
interactive interface on the dashboard, the programmatic endpoint supports
three types of queries: static (find directed paths between two entities), open
search (find upstream regulators or downstream targets of an entity), and
dynamic (confirm dynamical model properties by simulating the model) queries.

 ASKE-E Month 9 Milestone Report

ASKE-E Month 9 Milestone Report

Integrating the COVID-19 Disease Map community model

One of our goals in this project is to demonstrate the capability to take an
existing model constructed by others in the community and instantiate it as an
EMMAA model. One approach for doing this is to take the model in its original
form and extend it with some meta-data to allow running it for the purposes of
validation and analysis within EMMAA. Another approach is to process the
original model into knowledge-level assertions - in our case INDRA Statements -
and instantiate this set of statements as an EMMAA model. As the first proof of
principle, we decided to take the latter approach since it results in a more
transparent model with all necessary annotations available to display model
statistics, testing and query results on the EMMAA dashboard. Due to its direct
relevance to our applications and its interesting connection with our existing
automatically assembled COVID-19 EMMAA model, we decided to work with the
COVID-19 Disease Map model.

The COVID-19 Disease Map (C19DM) is a large model of molecular mechanisms
related to SARS-CoV-2 infection and COVID-19 curated collaboratively by a
consortium of experts. It models all known SARS-CoV-2 protein interactions with
human host proteins, and multiple pathways that are triggered by these
interactions. It also models phenotypic outcomes associated with COVID-19, for
instance, cytokine storm, thrombosis, vascular inflammation, ARDS, etc.

The C19DM is being built using CellDesigner and can be explored or
programmatically obtained through the MINERVA platform. Using the CASQ tool,
the model has also been transformed into a Simple Interaction Format (SIF) that
can be used as the basis for causal analysis or Boolean/logical modeling.

We implemented a new client and processor in INDRA to process the C19DM SIF
files in conjunction with metadata (entity grounding, literature
references, etc.) from MINERVA into INDRA Statements. We then initialized an
EMMAA model with these statements (see model card below).

[image: ../_images/c19dm_card.png]
The next step was to set up the model for automated analysis against a set of
relevant empirical observations. We chose three sets of observations to analyze
the model against: (1) a set of in-vitro drug screening experiments, (2) a set
of empirical assertions on drugs inhibiting SARS-CoV-2 infection or adverse
outcomes associated with COVID-19 (aka the MITRE test corpus), and (3) text
mining statements automatically collected by the existing EMMAA COVID-19 model.
We used both signed graph and unsigned graph instantiations of the C19DM EMMAA
model for analysis.

In case of the in-vitro drug screening data, each data point can be interpreted
as “Drug X inhibits SARS-CoV-2 replication”. Viral replication appears as a
concept in the C19DM model and can be used as a readout in this case. However,
most drugs that appear in the screening data aren’t modeled in the C19DM. We
therefore extended the EMMAA C19DM model with these drugs and their known
targets within the C19DM using statements independently assembled by INDRA from
multiple sources. The in-vitro drug screening corpus is relatively small and
the EMMAA C19DM model (instantiated as a signed graph model) could explain 10
such observations, including how “nafamostat inhibits viral replication”. The
explanation in this case involved nafamostat inhibiting TMPRSS2’s activation of
ACE2 which enables viral replication:

[image: ../_images/c19dm_invitro.png]
As for the second corpus, these empirical assertions aren’t necessarily
associated with SARS-CoV-2 replication per se, rather, they imply that a given
drug is beneficial in inhibiting some COVID-19-associated adverse outcome.
While there are several phenotypic nodes that could be considered readouts for
this purpose in the C19DM (e.g., thrombosis, cytokine storm, ARDS, etc.), we
don’t want to assert up front which one of these a given drug affects.
Therefore, we added a new readout concept to the model called “COVID-19 adverse
outcome” and added positive regulation relations between each specific adverse
outcome concept and this new one. Similar to the case of in-vitro drug
screening as described above, we also added external drug-target statements
relevant for this corpus.

The sketch below illustrates the two types of model extensions done to make the
model applicable to these analysis tasks.

[image: ../_images/c19dm_extension.png]
For this corpus the C19DM EMMAA model, instantiated as a signed graph was able
to explain 463 test statements. It is particularly interesting to observe which
specific phenotypic outcome the explanation involves as a “COVID-19 adverse
outcome”. For example, for the observation that “aliskiren inhibits COVID-19
adverse outcomes”, EMMAA finds an explanation in the C19DM in which aliskiren
inhibits angiotensin which - through some intermediaries - leads to reduced
vascular inflammation, one of the adverse outcomes associated with COVID-19:

[image: ../_images/c19dm_mitre.png]
Finally, we set up the existing EMMAA COVID-19 model (which aggregates
knowledge about COVID-19 largely via text mining the existing and emerging
literature) as a set of assertions to be explained by the C19DM. Conceptually
this is an interesting analysis task since the EMMAA COVID-19 model contains
many assertions about indirect effects (e.g., “azythromycin activates
autophagy”, see below) that were reported in the literature but not necessarily
explained mechanistically, while the C19DM is a detailed, mechanistic and
high-precision (in that it is human curated rather than automatically
assembled) model that is likely to contain mechanistic paths that can serve as
interesting explanations. As an example, below is the explanation constructed
for the “azythromycin activates autophagy” example.

[image: ../_images/c19dm_text_mining_test.png]
Another example involves the observation that “viral N protein downregulates
interferon” which the EMMAA C19DM model explains through the SARS-CoV-2 N
protein’s inhibition of human IRF3.

[image: ../_images/c19dm_text_mining_test2.png]
Going forward, we will work on instantiating the C19DM as a simulatable
Boolean network within EMMAA and will also work towards importing other
existing models into EMMAA for automated analysis.

Notifications about general model updates

One of the key concepts of EMMAA is “push science” - notifying
users of new discoveries relevant to their research. Previously reported
developments in this direction included subscribing to query results and
tweeting about new findings. We recently made a new step towards this goal and
added a feature allowing users to subscribe to a model of their interest.

[image: ../_images/model_subscribe_button.png]
To subscribe to model notifications, a user needs to click the “Subscribe”
button on the model dashboard. The models are updated and tested daily and
every time there are any new findings, a subscribed user will receive an email
with updates. New findings can include new mechanisms added to the model
from the literature, new tests applied to a model, or new explanations found
for the tested observations.

[image: ../_images/model_subscribe_email.png]
We refactored our code base to separate all code related to notifications
(tweets and emails about model updates and emails about new query results)
into a subscription.notifications submodule. This allows sharing and reusing
relevant parts of code.

Figures and tables from xDD as non-textual evidence for model statements

We previously reported on displaying figures and tables from a given paper
through the integration with the xDD platform developed by UW. That approach
supports an exploration of different mechanisms described in the context of a
single paper by viewing both their text description and visual representation.

In this reporting period we added support for displaying figures and tables
relevant for a given mechanism rather than for a particular paper. To enable
this we used xDD entity based search mode that allows searching for objects
associated with one or more entities across their knowledge base. For our use
case we are searching for figures and tables where both statement subject and
object are involved. As a result, we can display both textual and non-textual
evidence for a given statement coming from different papers.

[image: ../_images/xdd_stmt_figures.png]
In the image above the text evidence and figures for the statement “ACE2 binds
SARS-CoV-2” are shown. Both text and figures are from different papers and have
links to the original publications.

Integration with the Uncharted UI

We continued working on the integration of EMMAA with the Uncharted UI and
made progress on several fronts. Model exploration in the UI is divided into
two parts, a large-scale network overview, and a more focused drill-down view.

For the network overview, our concept was to use the INDRA ontology - which is
assembled from third-party ontologies in a standardized form - to
hierarchically organize nodes in the network (each node represents a biological
entity or concept) into clusters. This visualization is most effective and
clear if the hierarchical structure of the ontology is fully defined, i.e.,
every entity is organized into an appropriate cluster, and the hierarchy is
organized into an appropriate number of levels. Motivated by this, we spent
considerable effort on improving the INDRA ontology’s inherent structure, as
well as creating a custom export script which makes further changes to the
ontology graph specifically to improve the visual layout in the UI.

We also added multiple new features to the EMMAA REST API to support UI
integration. For example, we added an endpoint to load all curations
for a given model, categorizing curated statement into correct, incorrect and
partial labels. Another important feature is providing general information
about entities in each model, including a description, and links to outside
resources describing the entity. To this end, we implemented a new service
called Biolookup (which will be separately deployed) that provides such
information for terms across a large number of ontologies in a standardized
form. We then added an endpoint in the EMMAA REST API which uses Biolookup
to get general entity information and can also add model-specific entity
information to the response.

Our teams have also been involved in many ongoing discussions. These included
deciding on use cases, visual styles, and all aspects of the interpretation of
EMMAA models in order to present them to users in an appropriate way.

Semantic separation of model sources for analysis and reporting

When creating a model of a specific disease or pathway, it often makes sense
to add a set of “external” statements to the model to make it applicable to
a specific data set. A typical example is adding a set of drug-target
statements or a set of phenotypic “readout” statements to a model to connect
it to a data set of drug-phenotype effects. These external statements should
ideally not appear in model statistics. For example, for the COVID-19 Disease
Map model, we marked all drug-target and penotype-readout statements as
external since these were not part of the original model.

Another categorization of statements in models is “curated” vs
“text mined”. For instance, the COVID-19 model combines statements mined from
the literature with statements coming from curated sources such as CTD or
DrugBank. Given that we use the COVID-19 Disease Map Model to automatically
explain observations that appear in the COVID-19 Model, it makes sense to
restrict these explanations to statements that aren’t “curated”.

To achieve this, we extended the EmmaaStatement representation to contain
metadata on each statement that then allows the statements to be triaged
during statistics generation and model analysis.

Assembling and analyzing dynamical models

During this period, we aimed to strengthen EMMAA’s capability to execute and
analyze dynamical models. Previously, EMMAA’s dynamical queries supported
checking “unconditional” properties, for instance, whether in a model
“phosphorylated BRAF is ever high”. This captures a model’s baseline
dynamical behavior without any specific perturbation condition. Further,
EMMAA only supported deterministic and continuoys ODE-based simulation of
models.

We added support for a new simulation mode, namely continuous-time,
discrete-space stochastic simulation using the Kappa framework. One
important advantage of this approach is that - unlike the ODE-based approach -
it does not rely on enumerating all molecular species that can exist in the
system ahead of simulation. Instead, an initial mixture of molecular species
is evolved, through a set of reaction rules, and new species can be created
during simulation if any reaction rules produce them. However, stochastic
simulation is typically slower than ODE-based simulation.

Further, we also implemented a new query mode for dynamical models that
can be used to observe model behavior under perturbations. For instance,
it allows answering the query “does EGF increase phosphorylated ERK?” in
a model by setting up a pair of simulation experiments in which EGF is either
at a low or a high level, and then quantifying the difference in the temporal
profile of phosphorylated ERK between the two condition (the outcome is either
“increase”, “decrease” or “no change”). This is useful for interactive
user-driven queries but can also be used for model testing/validation against
a specific set of observations.

There are numerous challenges involved in evaluating the dynamics of
automatically assembled EMMAA models. For very large models such as the
COVID-19 model, it makes sense to think of “executable subnetworks” that are
assembled to answer a specific set of queries instead of attempting to
simulate the entire model. We began implementing an assembly pipeline that
performs additional filtering, reasoning and processing on assembled knowledge
to prepare if for execution. These steps involve filtering to “direct”
statements to remove indirect/bypass effects, rewriting molecular states
in statements to improve the causal connectivity of the model, and filtering
out “inconsequential” statements to cut down on the size of the model.
We also implemented a new analysis feature that can detect potential
polymerization (where molecular species can form arbitrarily large complexes
as the system evolves) in a model which precludes ODE-based simulation and
can result in slower stochastic simulation. For now, these detected
polymerizations can help manually patch models, however, it might be possible
to automate the addition of constraints to a model to avoid polymerization.
Another problem is that of model parameterization. EMMAA models could be
connected to relevant expression profiles to set total protein amounts as
initial conditions, while reasonable priors can be chosen for reaction rate
constants. Beyond that, the uncertainty in model parameters can be resolved
by any combination of (1) fitting the model to data, (2) performing
ensemble analysis that “integrates” over the model uncertainty, and (3)
user interaction to set parameter values manually.

Creating a training corpus for identifying causal precedence in text

One of our goals during this period (in collaboration with the UA team) was to
extend the Reach reading system with the ability to recognize causal precedence
in text. An example of causal precedence expressed in text is the following
sentence: “insulin binding of the insulin receptor (IR) at the cell surface
activates IRS-1 intracellularly, which in turn activates PI3K”. This sentence
not only implies that (a) IR activates IRS-1 and (b) IRS-1 activates PI3K but
also speficically suggests that (a) is a causal precedent of (b). Given that
not all A->B and B->C relationships that are independently collected
necessarily imply A->B->C in any specific context, explicit descriptions of
such knowledge are extremely valuable for understanding complex causal systems.

One challenge is collecting a large corpus of training data which consists of
sentences with causal precedences descrbing some A->B->C causal chain without
manual curation effort. Our idea was to start from curated databases to
identify causal A->B->C sequences. Knowledge bases such as Reactome, KEGG and
SIGNOR are organized into pathways, and the same molecular entity may appear in
multiple pathways and be involved in different interaction in each pathway.
This implies that to find relevant causal precedence examples, it makes sense
to search for A->B and B->C relationships within the scope/context of a single
curated pathway (instead of all curated knowledge combined). We ran this search
on both Reactome and SIGNOR pathways and found that results from SIGNOR were
higher quality and consistent with expected positive and negative controls.

Next, we searched all existing outputs from Reach to find instances of A->B and
B->C relationships (from the set identified from SIGNOR) extracted from a
single paper, and either a single sentence or two neighboring sentences. We
found a total of 782 such sentences automatically. These sentences will become
the training set for learning to recognize causal precedence.

We made our code available at
https://github.com/indralab/causal_precedence_training and will continue to
extend it to find further opportunities for automated training data collection.

Knowledge/model curation using BEL annotations

We have previously described an integration with hypothes.is. This integration
has supported two usage modes: (1) users can select sentences on any website and
add annotations in simple English language that can be processed into
statements automatically, and (2) text mined statements can be exported and
uploaded as annotations onto the websites (for instance PubMedCentral) where
they were originally extracted from.

Though usage mode (1) is convenient, NLP on even simple sentences can sometimes
be unreliable and therefore we decided to implement support other intuitive but
formal syntaxes for annotation. Our preferred choice was the Biological
Expression Language (BEL) which allows expressing a wide range of causal
relationships relevant for biology. For instance, the BEL statement
“kin(p(FPLX:MEK)) => kin(p(FPLX:ERK))” expresses that the kinase activity of
the protein family MEK directly increases the kinase activity of the protein
family ERK. Building on the PyBEL package and the existing BEL-INDRA
integration we added support for parsing BEL statements from hypothes.is
annotations into INDRA Statements. We plan to use this capability to build
new human-curated models or extend existing ones in EMMAA.

Formalizing EMMAA model configuration

Each EMMAA model has to be set up with its own configuration settings in a
JSON file. The settings allow to store model specific metadata (e.g. short and
human readable name, links to NDEx visualization and Twitter accounts) that
are displayed on the model dashboard as well as to configure the methods to
update and assemble the model, run test and queries and generate statistics
reports. With the number and diversity of EMMAA models growing we felt the
need to document the requirements to the model configuration. The detailed
instruction on what information the configuration file should contain with
examples can be found at Configuring an EMMAA model

 ASKE-E Month 10 Milestone Report

ASKE-E Month 10 Milestone Report

Dynamical model analysis

We made several developments that significantly extend the ways in which
EMMAA models can be analyzed using simulation.

Extended automated assembly for model simulation

As described previously, EMMAA contains models built using several different
approaches ranging from small human-defined models written in simple English to
large fully automatically assembled models from up to hundreds of thousands
of publications. There is a special set of challenges associated with models
built automatically from source knowledge as follows:

	Several EMMAA models are very large, making simulation impractical.

	EMMAA models that are automatically assembled from literature and
pathway databases can by default include “bypass edges”, i.e., relationships
that are reported in some source which are not direct physical interactions
but indirect effects.

	There are complicated redundancies at the level of individual mechanisms,
for instance a model can simultaneously contain “A activates B”, and
“A phosphorylates B”, without an explicit relationship between the two.
This can create inconsistent “parallel” pathways over different states
of B.

	Models that include text mining output are naturally subject to some amount
of incorrect information due to various random and systematic errors.

	Any mechanisms not explicitly stated in text (or in pathway databases) are
not represented. One common set of mechanisms are “reverse effects”. For
instance, there may be several known mechanisms for the positive regulation
of the amount of a given protein, but no explicit mention of the protein
naturally degrading.

To address these challenges, we have developed a number of assembly procedures
and implemented support for running an additional assembly pipeline consisting
of these steps for EMMAA models, specifically to support dynamical simulation.
Similar to the generic knowledge assembly pipeline that is applied to
each EMMAA model, these assembly steps are still applied at the
knowledge/statement level before generating a rule-base dynamical model
from the statements using the PySB model assembler.

To demonstrate this, we chose The Ras Machine model and configured
an extended assembly pipeline with the following steps:

	Filter out complex formation statements, since they can lead to unconstrained
polymerization unless additional conditions are supplied.

	Filter to statements that are known to be direct, either based on annotations
from pathway databases or determined from linguistic cues during text mining.

	Filter to high-confidence statements that have belief score > 0.95.

	Filter to the most specific version of statements in case a statement appears
at multiple refinement levels.

	Filter strictly to genes in the Ras pathway (which are also the prior search
terms around which The Ras Machine is built).

	Apply a set of semantic filters: filter phosphorylations to ones where the
subject is a kinase, filter to amount regulation statements where the
subject is a transcription factor, etc.

	Run the “Mechanism Linker” which applies logic over sets of statements
to fill in missing information and remove certain redundancies as follows:

	Find the most specific activity type known for each protein and “reduce”
all active forms to that activity type. For example, if a protein is
known to have generic “activity”, but also “kinase” activity, and “kinase”
activity is the only known specific activity type, then all the generic
“activity” states will be reduced to “kinase” activity.

	Find the most specific modifications known for each protein and “reduce”
all modifications to that form.

	Remove any activation statements that are redundant with respect to
a modification and an active form statement. (For instance, if we know
that A activates B, and also that A phosphorylates B, and Phosphorylated
B is active, then we can remove the redundant A activates B statement.

	Rewrite all agents that appear in an active position in a statement (
e.g., A in the statement A activates B) to be in one of their known
active forms. For example, if we have the statement A activates B,
and we know that A is active when it’s bound to C, then the statement
is rewritten to A bound to C activates B.

	Filter out inconsequential modifications and activations, in other words,
remove any statements that modify the state of an agent in a way that
doesn’t have any further downstream effect and is therefore
inconsequential.

Having performed these steps, we were able to simulate the model using
network-free stochastic simulation. Below is an example simulation trace
for the amount of MAP2K1 phosphorylated on the S222 site:

[image: ../_images/rasmachine_map2k1_phos.png]

Supporting network-free simulation

Until recently, EMMAA only supported deterministic ODE-based simulation for
models. The main limitation is that ODE-based simulation requires fully
defining the set of variables and equations representing system behavior up
front. This implies that a reaction network (from which ODEs can be derived)
needs to be generated, where the reaction network describes all biochemical
reactions that change the amount or state of entities (typically proteins and
small molecules). However, reaction networks can be very large (and potentially
infinitely large) due to the combinatorial complexity of entities interacting
with each other. (Consider for instance the trivial polymerization reaction
where some entity X has two binding sites each of which can bind X, resulting
in chains of X of unlimited length).

Network-free, agent-based simulation overcomes this challenge since
it doesn’t require enumerating all states up front, rather, one can
provide an initial mixture from which the state of the system evolves
as reaction events happen over time. To support this simulation mode,
we integrated the Kappa simulator with EMMAA via the kappy Python package.
We implemented the API to the Kappa simulator such that it is consistent with
the previous ODE-based simulator.

One specific example of a model which - due to combinatorial complexity -
cannot be generated into a reaction network but can be simulated using this
network-free approach is the Ras Model. The example below shows simulations of
MAPK1 phosphorylated on T185.

[image: ../_images/rasmodel_mapk1_phos.png]

Adaptive sample-size dynamical property checking

One property of stochastic network-free simulation is that each simulation
trace is different, and given any qualitative property, whether a trace
satisfies that property or not can differ due to this stochasticity. So the
question arises: how many simulations should one do to conclude - assuming
pre-specified statistical error bounds - that a given property holds with
at least a given probability. We integrated a sequential hypothesis testing
algorithm with the property checking surrounding network-free simulation
which can decide (after each simulation) whether to stop or to perform
another simulation to determine the satisfaction of the property. This way,
sample sizes are chosen adaptively and automatically in a principled way.

In the future, we will work on integrating parametric uncertainty in EMMAA
model analysis. In that case, even deterministic ODE-based simulations will
be subject to uncertainty, and the same sequential hypothesis testing
approach will be applicable in that simulation mode too.

Intervention-based dynamical queries

One of the query modes we have planned to support involves interventions
where the amount of a given entity is modulated and the effect on a specific
readout is examined. We implemented a query specification schema to describe
such queries, implemented a new EMMAA Query UI tab for specifying these
queries in and intuitive way, and integrated the back-end simulation
engine supporting setting up, running, and then evaluating the results
of such queries.

In the example below, we asked whether SOS1 leads to the activation of
KRAS in a dynamical sense. This is evaluated by modulating the total amount
of SOS1 between a high level (which can loosely model “overexpression”)
and a low level (which can loosely model “knock out”), and comparing
the time course of active KRAS between the two conditions. In this case,
we find that active KRAS is substantially higher when SOS1 is present
at a high level, therefore the property is satisfied:

[image: ../_images/dynamical_intervention_sos_kras1.png]

Integration with the Kappa dynamical modeling and analysis UI

The team behind the Kappa language and tool set has developed a
powerful integrated development environment for Kappa models
using an easy-to-use web inteface which integrates panels for
defining and modifying the model, and examining static analysis and
simulation-based dynamical analysis results: https://tools.kappalanguage.org/try.

The Kappa UI supports loading models directly from URLs which allows
straightforward integration with EMMAA. Namely, each EMMAA model (where
this makes sense) is generated into a Kappa export after each daily
model update, and these exports come with a stable URL. We now added a link
out to the Kappa UI for each model where such an export is available, allowing
users to perform analysis on that interface.

The screenshot below shows the Ras Model in the Kappa UI. On the left, the
Kappa export of the model can be edited directly. On the right, the contact
map (one of the static analysis outputs) is shown, and in the bottom, warning
messages about “dead rules” (rules that are inconsequential from a dynamical
perspective) can be browsed. Numerous further tabs support a variety of other
analysis modes.

[image: ../_images/rasmodel_kappa_ui.png]

Improved EMMAA query UI and REST API

This month we made various changes to the EMMAA service to improve user
experience for both users querying models via the interactive web interface and
through the REST API programmatically.

Having added intervention-based dynamical queries as described in the previous
section, we now support four types of queries. We updated the names of the
query types to be more descriptive and added instructions on how to submit and
interpret the results for each of the query types using the EMMAA interactive
query tool.

[image: ../_images/query_page_4_types.png]

Query page showing four types of queries, description and the form

Over the last several months we reported adding various endpoints to the EMMAA REST
API to facilitate integration with the Uncharted UI. During this reporting period
we extended and improved the REST API and added an automatically rendered Swagger documentation that
describes the methods, input requirements, and expected responses for each
endpoint. We grouped the endpoints into three categories corresponding to the
goals for which they can be used (retrieving EMMAA models’ metadata, getting
latest models’ updates, and running EMMAA queries). The previous /run_query
endpoint that allowed running any type of query was replaced with four
separate endpoints for each of the query types for convinience and better
validation of user input.

[image: ../_images/rest_api.png]

EMMAA REST API endpoints

The documentation contains the descriptions and example values for each
parameter that a given endpoint can accept. The interactive Swagger
documentation also allows manually modifying the example input and trying out the
endpoints.

[image: ../_images/endpoint_input.png]

Example input and parameters description for Up/down-stream query endpoint

In addition, we provide examples and descriptions for responses to
validate the output and facilitate the interpretation of results.

[image: ../_images/endpoint_response.png]

Example response and interpretation

Network representation learning for EMMAA models

Sets of INDRA statements such as those associated with each EMMAA model can be assembled into
graph-like data structures of decreasing granularity: directed graphs with typed edges,
directed graphs without typed edges, and ultimately, undirected graphs. Different network
representation learning methods can be used for each data structure to assign dense vectors
to nodes (and edges, if applicable). These are useful for downstream machine learning tasks
(e.g., clustering, classification, regression), link prediction, and entity disambiguation.
Our goal is to use the representations to investigate the similarities between nodes’ representations
between the full INDRA database and each EMMAA model to identify context-specific nodes as well
as to make recommendations for including or removing nodes from each EMMAA model.

Building a preliminary NRL pipeline

There are both practical and theoretical considerations for using the highest granular directed
graphs with typed edges (i.e., knowledge graphs). Most of the associated methods, called
knowledge graph embedding models (KGEMs), suffer from issues in scalability. Because most useful
biological networks are larger than the size supported, there is still minimal theoretical insight
into how the methods perform on biological networks, which have very different topology to the
semantic web datasets to which they are typically applied and evaluated.

Instead, we built a reproducible pipeline for assembling the full INDRA database and each EMMAA model
into directed graphs without typed edges at varying belief levels for application of the node2vec
random walk embedding model to generate 64-dimensional vectors in Euclidean space for each node.

Later, we will automate this pipeline to run automatically upon each update to the full INDRA
Database and each EMMAA model such that the latest information can be incorporated. Further, the
results could be included in EMMAA API endpoint that returns model-specific metadata for each node.

Comparing EMMAA models with background knowledge

We first investigated where nodes from each EMMAA model appear in the embedding space generated from the full INDRA
database with a belief greater than 60%. We used principal component analysis to project into 2-dimensional space
for visualization. Because of the formulation of the node2vec method, each features’ contributions to the overall
variance are more homogenous than typical feature sets. The first two principle components only explained ~35% of
the variance. Background nodes are shown with low opacity in blue while EMMAA nodes are shown with high opacity in
orange.

[image: ../_images/nrl_comparison.png]
Interestingly, there are some regions that are not covered by any EMMAA model. While this could be because of a
bias in the contexts covered by current EMMAA models, it might also lead to insight in underrepresented biology.

Identification of context-specific nodes

Next, we wanted to identify nodes with the most similar and most dissimilar topologies in the INDRA database
and a given EMMAA model. We hypothesize that the most similar nodes represent the most generic biology and
the most dissimilar nodes represent context-specific biology. We investigated the overlap between the k-nearest
neighbors in embedding space for each node in the INDRA Database with the k-nearest neighbors in the embedding
space for each EMMAA model. To account for the size differences in the INDRA database and much smaller EMMAA
models, we used a fractional k=0.05 and the set overlap coefficient, which is more appropriate for sets of different
sizes. We performed the same task on the embeddings generated based on several belief cutoffs.

The following chart shows that when the belief cutoff is increased, the shape of the overlap coefficient rank
distribution typically shifts towards higher overlap coefficients. Darker lines correspond to higher belief.
Notably, this pattern does not hold for the literature derived models (e.g., Pain Model). The RAS Model results
should also be disregarded since the statements there should have an axiomatic belief of 1.0, but are tagged via
TRIPS so have a lower belief.

[image: ../_images/nrl_belief_plot.png]
The nodes in the long tail of these distributions hold the most potential for novelty but also the most liability
for irrelevance. Our next step is to build a minimal browser for looking into these nodes as having a human in the
loop for the investigation of these nodes at the boundaries of EMMAA models could be useful.

Towards an automated recommendation engine

Our ongoing work towards an automated recommendation looks at the neighbors of nodes in the EMMAA models within
the embedding space from the full INDRA Database to identify potential additions. We are investigate several clustering
algorithms and their classification counterparts as potential methods for scoring nodes for inclusion. Similarly, we
are investigating anomaly detection methods at can be used in reverse towards the same goal.

Later, we will return to the k-nearest neighbors analysis to identify nodes that could potentially be removed from
a given EMMAA model.

Improvements to pykeen [https://pykeen.readthedocs.io/en/latest/index.html#module-pykeen]

While node2vec performs well on biological networks due to the symmetry in the model formulation and the important
property of local community structure common to biological networks, we would still like to use more powerful methods
for network representation learning. We are making improvements to the pykeen [https://pykeen.readthedocs.io/en/latest/index.html#module-pykeen] package for knowledge graph
embeddings in order to make it more scalable and applicable for the directed graph with typed edges assembly of
INDRA statements. So far, we have made several improvements to its memory management on large graphs and begun work
integrating the accelerate for scaling across multiple GPUs.

 ASKE-E Month 11 Milestone Report

ASKE-E Month 11 Milestone Report

Integration with ASKE modeling frameworks

We collaborated with other teams to decide on a unified modeling framework to
simulate and visualize different models built in ASKE the same way.
As a result we designed a process to convert PySB reaction networks of EMMAA
models into the PetriNet Classic GroMEt format developed by University of
Arizona team. The GroMEt structure includes State and Rate junctions connected
by wires. In the context of EMMAA models, State and Rate junctions are
represented by model species and reaction rates respectively. Wires include the
connections from reactants to the rates and from rates to products. After
discussions with the University of Arizona and Uncharted teams on what metadata
is necessary for meaningful visualizations, we added custom metadata to GroMEts
generated from EMMAA models that includes mappings from State junctions to
INDRA Agents and from Rate junctions to INDRA Statements and PySB rules.

Generation of GroMEts is now deployed as a part of automated update pipeline
and their daily updated JSON exports are available for download on S3 and on
the EMMAA dashboard. We also uploaded GroMEt exports for two different EMMAA
models (the MARM model and the Ras Machine 2.0 model) to the shared GitHub repo
maintained by the Galois team for the upcoming ASKE-E final demo.

BioCreative participation

The BioCreative challenge is a longstanding community effort to evaluate text
mining systems applied to biology. This year, BioCreative includes a special
track for COVID-19 text mining tool interactive demos which focuses on text
mining-based tools specifically developed to support COVID-19 research efforts.
We registered for this track with a proposal on the EMMAA COVID-19 model titled
“A self-updating causal model of COVID-19 mechanisms built from the scientific
literature”, and our proposal was accepted for participation. We also received
some useful feedback on how to improve the EMMAA model query interface and the
statement browser interface which we subsequently implemented (as described in
this report). Going forward, we will continue to improve the EMMAA COVID-19
model and surrounding features, and aim to highlight ways in which EMMAA goes
significantly beyond just text mining and knowledge assembly, encompassing also
automated modeling and data analysis based on text mining results.

Improving the EMMAA model query interface

In the previous report we shared the updates on the addition of new query types
and improvements in the interactive query interface. This month we extended the
tutorial on using the query UI. We added sections about navigating different
parts of query page and selecting the correct query type based on the
scientific question and updated the descriptions and examples for all supported
types of queries.

[image: ../_images/query_tutorial.png]

Part of updated query tutorial

We exposed the links to both written tutorials and video demonstations of the
tool on the query page.

[image: ../_images/query_links.png]

Links to demos and tutorials from query page

Improving the EMMAA statement browser

We extended the set of features for browsing all statements in a given EMMAA
model. It can be often useful to focus on one type of interaction when
browsing or curating statements. To enable this, we added a filter by statement
type that is shown in the image below.

[image: ../_images/stmts_by_type.png]

COVID-19 model statements filtered to Inhibition

In addition to filtering statements by type from the all statements view, users
can also click on any of the horizontal bars on the statement types
distribution plot on the EMMAA model dashboard to be redirected to a page
displaying statements filtered down to that type.

[image: ../_images/stmt_types_chart.png]

Statement types distribution chart before clicking to open statements view

Previously we supported sorting the statements by the number of unique
evidences they have and by the number of paths they support. Recently we also
added an option to sort statements by their belief score.

Using custom belief scorers for EMMAA models

During this period we have developed an approach to deploying custom
probability models to estimate the reliability (“belief”) of statements in
EMMAA models. As part of our ongoing efforts to validate and improve the
accuracy of these belief estimates, we have developed and validated several
machine learning models (e.g. logistic regression, random forest) to
empirically estimate belief based on a dataset of roughly 5,000 statements that
we have manually curated. A valuable feature of these models is that they can
capture the role of features other than reader evidence counts in estimating
belief; for example, we have found that statement type and number of unique
supporting PMIDs are also informative. We have also extended this approach to
include “hybrid” models that incorporate machine learning for estimating
reliability from text mining sources and a set of priors for curated databases.

We created a framework for deploying versioned, alternative belief models to S3
after training and subsequently making use of them during the assembly of EMMAA
models. The EMMAA model configuration now takes a user-configurable parameter
specifying which belief model to load and use. Statement belief estimates are
now also displayed in the front-end and can be used to sort statements in the
All Statements view (see screenshot below).

[image: ../_images/belief_badge_screenshot.png]

All statements view for the BRCA model, showing the orange belief badges on
the right

We are working to draw on additional statement evidences that are in the INDRA
Database (but outside the scope of the EMMAA model) to enhance estimates of
belief. This way, a statement that may appear rarely in text for a specific
disease context can be corroborated by information appearing outside that
context, such as in a pathway database or in papers not incorporated by the
EMMAA model. This will separate the technical estimate of a statement’s
reliability from its canonicalness in a specific context, allowing users to
identify high-confidence extractions that may be novel in the context of a
particular disease.

To demonstrate these new developments, we computed belief estimates for the
neurofibromatosis model in four different configurations: with the default
belief model vs. a new, partly machine-learned “hybrid” model, and with
EMMAA-only evidences vs. evidences from both EMMAA and the INDRA DB. As shown
in the figure below, the inclusion of additional evidence from the INDRA DB
shifts belief estimates to the right due to the addition of extra evidence,
while the hybrid model provides a more continuous stratification of belief than the default belief model. In the upcoming period we will evaluate the use of
this approach in other models and determine whether the new belief estimates are well-calibrated.

[image: ../_images/hybrid_db_belief.png]

Belief scores of statements in the EMMAA model, using the default belief
model (left plots) or random-forest-based hybrid model (right plots); and
using only EMMAA evidence (top plots) or including evidences from the
INDRA DB (bottom plots).

Developments in relation extraction from text

We have previously reported on completing our goals to enable named entity
recognition and grounding in the Reach reading system for (1) viral proteins
(2) human and non-human (including viral) protein chains and fragments, and
have developed new algorithms in INDRA for organism disambiguation for proteins
in the context of a given publication.

This month, we continued our work on creating a training data set for
recognizing causal precedence in text. The goal is to find a set of positive
and negative examples where a paper describes an A-B interaction and also
a B-C interaction, and an A->B->C causal chain is implied (in the positive
case) or not implied (in the negative case). This labeled data can then be
used to train a classifier that can be run on elementary relation extractions
to reconstruct causal precedence relations. We have previously reported on
our approach to automatically finding positive examples. Since then, we have
worked on an alternative approach to finding negative examples. First, we
searched for papers in which both the A-B and the B-C relationship could be
found within a specified distance of each other. To improve the
quality/reliability of each example, we also implemented a filter to
retain only A-B, B-C pairs where each is supported by additional background
evidence beyond the given paper (this helps eliminate text mining errors).
We then reviewed the results to curate positive vs negative examples.
We found that the vast majority of examples remaining were positive
for causal precedence. This imples that proximity in text may often be
sufficient to infer causal precedence across A-B, B-C relations. We are
investigating this further while continuing to develop an improved method
for finding negative examples.

 ASKE-E Month 12 Milestone Report

ASKE-E Month 12 Milestone Report

EMMAA and its role in the integrated architecture

By the end of this reporting period we completed our original integration plan
for EMMAA with other systems developed in ASKE-E. We have reported on the
technical details of each of these integrations in previous reports, here we
summarize key points. The integration architecture is shown in the following
diagram:

[image: ../_images/bio_platform.png]

First, INDRA is integrated with (in addition to dozens of other knowledge
sources) the Reach and Eidos machine reading systems developed by the
University of Arizona team and we have made significant improvements to the
utility of these systems tailored to ASKE use cases of interest such as
modeling COVID-19 disease mechanisms.

We integrated INDRA and EMMAA with the xDD and COSMOS systems developed by the
University of Wisconsin team. Machine reading systems integrated with INDRA are
deployed to xDD and read new literature content each day such that this content
complement the open-access content processed each day on our team’s compute
infrastructure. Results are propagated back to INDRA and made use of by EMMAA
for daily model updates. EMMAA is also integrated with COSMOS in several ways,
first, it can access and integrated figures and tables extracted from a given
publication through the COSMOS API; second, it can query for figures and tables
relevant for a given pair of entities to provide figure/table context for
statements in a given EMMAA model.

The EMMAA COVID-19 model is also integrated with the MITRE Therapeutics
Information Portal, namely, EMMAA constructs model-based mechanistic
explanations for observations on drug-coronavirus effects collected by TIP and
makes these explanations browsable and auditable on the EMMAA dashboard.

EMMAA and all its models are also integrated with the Uncharted UI
which draws on the data and APIs exposed by EMMAA, as well as the INDRA
Ontology graph to render large networks, and drill down into smaller
subnetworks in an integrated graphical interface.

EMMAA’s integration with the epidemiology platform centers around model
representations: EMMAA supports executable model export into the GroMET
format which is supported by the same simulation and analysis tools developed
for epidemiology models. This integration at the executable model level is
also compatible with the Uncharted UI, complementing EMMAA’s contributions
at the larger-scale causal network level. Finally, another connection
with epidemiological models is through the causal relations
the COVID-19 EMMAA model collects, namely, EMMAA now also integrates
causal relations between high-level concepts (diseases, phenotypes, etc.)
in addition to molecular entities and cellular processes.

The current state of EMMAA

EMMAA currently makes 16 models available covering a wide range of scopes and
conceptual modeling approaches. Some models are fully automatically assembled
and center around a given disease area (e.g., Melanoma, Vitiligo,
Neurofibromatosis) with their scope defined by a set of search terms (genes,
etc.) into the scientific literature. Other models are pathway focused such as
the Ras Model which cuts across multiple biological contexts and focuses on
pathway mechanisms, its scope defined by members of the pathway. Several
models are built using expert input where an expert defines mechanisms in the
model using natural language which is interpreted and then assembled into an
executable form, namely, the Ras Model and the MARM model. These models are
particularly interesting as companions to the literature-derived models (e.g.,
the Ras Machine or the Neurofibromatosis model) in several ways, including the
ability to diagnose issues with large-scale reading and assembly, and also
relying on the literature-derived models to detect gaps in the expert-defined
model based on limitations of its explanatory capabilities.

The COVID-19 model is currently the largest model in EMMAA - hardly surprising
given the pace and quantity of publications on the topic - and is an example of
a literature-derived model whose scope is defined fully based on the topic, not
on specific entities or pathways. Meanwhile, the COVID-19 Disease Map model is
an example of an expert-curated model that is imported into EMMAA, and then
analyzed in EMMAA’s testing and query frameworks, demonstrating its
capabilities to integrate community models.

Though somewhat of an outlier, the EMMAA Food Insecurity model serves to
demonstrate the generalizability of EMMAA both conceptually and at a practical,
working level. Namely, it uses a different literature source, different reading
system, and a different assembly approach compared to the biology-oriented
models to keep a model centered around scientific publications on food
insecurity self-updating.

It is also important to discuss the robustness and accuracy of EMMAA
models. While text mining and automated assembly of the scientific literature
directly and in an automated fashion is inevitably imperfect, there
are several strategies employed by INDRA/EMMAA to manage this. First, EMMAA
models draw on multiple text mining systems as well as high-quality
structured resources to aggregate evidence and corroborate statements
from multiple sources. This is also the basis of establishing the belief
score associated with each statement: the key metric for quantifying
the underlying uncertainty for components of EMMAA models. We have now
created a dedicated tab for browsing EMMAA models from the perspective of
belief scores, and display belief scores for statements in all the relevant
pages (see more details below). Ultimately, the transparency of these models,
i.e., the ability of users to examine textual evidence and link back
to original publications as provenance for every piece of knowledge integrated
into models is crucial and sets this approach apart from classic expert-guided
modeling.

In recent months, we have reported on sevaral approaches to strengthen EMMAA’s
capabilities for dynamical modeling and simulation, including extended
automated assembly pipelines, better integration with Kappa and BioNetGen, new
dynamical property checking functionalities, and implementing support for the
GroMET format (thereby connecting EMMAA to simulation frameworks developed for
epidemiology models in ASKE-E). Going forward, we envision strengthening EMMAA
further in this direction, working towards machine-assisted detailed analysis
of models to gain insights about the underlying mechanisms.

Applying EMMAA model to COVID-19 therapeutics

The COVID-19 EMMAA model has continued monitoring and processing the literature
being published - currently at a pace of around 315 papers per day -
surrounding COVID-19. Since the beginning of 2021 the model has increased by
56% in terms of the number of papers processed. During this period, it also
identified over 30,000 new unique causal statements, an increase of around 8%.
Interestingly, while new relationships are still being frequently mentioned
in the literature, the rate of new, unique, causal knowledge being published
appears to be decreasing.

In terms of the model’s explanatory capability, the number of drug effects on
coronaviruses it is able to explain (with the signed graph model) has grown
from 1,814 to 2,132 this year, in other words, it has explained over 300 new
drug effects based on new knowledge collected and assembled so far this year.

Review article on automated modeling

This month we submitted and revised a review article “From knowledge to models:
automated modeling in systems and synthetic biology” which was accepted for
publication, and is now available online at https://www.sciencedirect.com/science/article/pii/S2452310021000561.

The review introduces a conceptual framework for discussing levels of
modeling automation with each level implying different roles for the human and
the machine in the modeling process. The review discusses existing tools and
approaches at each level of automation and provides. It also outlines the
strengths and weaknesses of current modeling approaches at the different levels
and discuss the prospect of fully automated fit-to-purpose modeling of
biological systems.

Progress on inter-sentence causal connective extraction from text

We expanded our approach to generating a dataset of causally connected events
in text. Our initial approach (described in last month’s report) involved
finding sequential sentences in a paper that described paired directed
interactions A->B and B->C and overwhelmingly produced positive examples,
suggesting that sentence proximity alone could be used to deterministically
identify causally transitive relationships. The lack of negative examples in
the training data was a problem for development of a classifier.

During this period we expanded our search for relevant training examples
(including negative examples) in three ways. First, we included undirected
relationships (e.g., binding) in addition to directed relationships (e.g.,
activation or modification). Second, we considered multi-sentence relationships
not only where the textually preceding event E1 causally preceded the textually
subsequent event E2 (e.g., E1 causes E2) but also the reverse, where the
causally downstream event was described first (E2 causes E1). Third, we
searched for events up to three sentences apart.

This search produced a number of different types of examples not found
previously. We manually curated 320 pairs of events and found 251 sentences
where both events were correctly extracted; of these 148 were causally
connected (positive examples) and 103 were not (negative examples). Pairs of
events involving at least one undirected event were much more likely to be
negative: for example, we found many cases where the binding of two proteins A
and B was not causally connected to the activation of C by B, despite these
events appearing closely in text. Interestingly, we also noticed examples of
causal transitivity where a pair of events did not share a common node but were
nevertheless causally connected. This can happen when an upstream event (e.g.,
the binding of EGF to EGFR) indirectly affects a downstream event (e.g.,
activation of ERK by MEK). The expanded dataset is being used by the University
of Arizona team to develop a classifier to identify causal connections in text.

Integrating belief information in the EMMAA dashboard

We recently added a new tab on model dashboard to display belief statistics and
browse statements based on their belief scores.

The following plot shows the distribution of belief scores in the COVID-19
EMMAA model. Having it visualized is useful for understanding the effect of
using different belief scorers described in the previous report and of applying
belief filters in the model assembly.

[image: ../_images/belief_distr.png]

Belief scores distribution in RasMachine EMMAA model.

The next section in the belief tab shows the slider displaying the range of
belief scores in a given model. A user can select a belief range and load the
statements with the belief scores in that range. This gives a new way to
prioritize the statements for the curation.

[image: ../_images/belief_range.png]

Belief scores range slider.

It is also possible to filter the statements to a given belief score range
from the all statements page.

[image: ../_images/belief_filter.png]

EMMAA model statements filtered to a given belief range.

Extending the ontology to epidemiology

To allow the Uncharted UI to use a single ontology covering both biology and
epidemiology models, we aimed to extend the INDRA ontology with terms relevant
for epi models. We found that the Infectious Disease Ontology (IDO) was an
appropriate ontology to integrate since it contains terms such as “susceptible
population” which correspond to commonly modeled nodes in epi models. However,
in order to integrate IDO, we needed to implement a new module in INDRA to
ingest ontologies in OWL format and expose their structure through an
appropriate interface. Using this new OWL-ingestion module, we added nodes and
relations from IDO to the INDRA Ontology graph and created a new export for use
in the Uncharted UI.

STonKGs

The transformers and attention architectures have reinvigorated large scale
language models through BERT [https://arxiv.org/abs/1810.04805] and its
derivatives. We are part of a collaboration with the Fraunhofer Institute to
develop a Sophisticated Transformer trained on biomedical text and Kknowledge
Graphs (STonKGs), a joint knowledge graph and language model that relies on the
following cross-modal attention mechanism:

[image: ../_images/stonkgs_cross_modal_attention.png]

The cross-modal attention mechanism in the STonKGs model enables joint learning over INDRA statements and their associated textual evidences

This model is able to take an INDRA statement and its associated text then
generate a dense Euclidean vector representation that can be used for
downstream machine learning tasks. We have prepared a dump of the INDRA
database in order to pre-train this model and suggested several downstream
“fine-tuning” binary/multi-class classification tasks on which STonKGs could be
evaluated:

	Task

	Description

	Example

	Polarity

	Directionality effect of the source node on the target node

	“HSP70 […] increases ENPP1 transcript and protein levels” (PMID:19083193)

	Interaction Type

	Whether it is known to be a physical interaction between the source and target node

	“SHP repressed […] transcription of PEPCK through direct interaction with C/EBPalpha protein” (PMID:17094771)

	Cell Line

	Cell line in which the given relation has been described

	“We show that upon stimulation of HeLa cells by CXCL12, CXCR4 becomes tyrosine phosphorylated” (PMID:15819887)

	Disease

	Disease context in which the particular relation occurs

	“ […] nicotine […] activates the MAPK signaling pathway in lung cancer” (PMID:14729617)

	Location

	Cellular location in which the particular relation occurs

	“The activated MSK1 translocates to the nucleus and activates CREB […].” (PMID:9687510)

	Species

	Species in which the particular relation has been described

	“Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice” (PMID:24719095)

Ultimately, the model showed ability to learn and predict within the
training/testing split across all tasks better than only using purely
network-based prediction methods or purely text-based prediction methods.

Further investigation is necessary to assess its overfitting to the underlying
text mining systems, such as REACH, by generating additional curated corpora
for each task that had not already been read by REACH.

PyKEEN Updates

Improvements to Link Prediction Evaluation Metrics

The common evaluation metrics used in the link prediction task for knowledge
graph embeddings (e.g., mean rank (MR), mean reciprocal rank (MRR), and hits at
k) are not comparable for knowledge graphs of varying number of entities,
relations, and triples. This poses a problem a as we move to apply knowledge
graph embedding models to biomedical knowledge graphs because we are interested
in comparing different formulations (e.g., using just knowledge from databases
vs. INDRA’s entire knowledge graph).

Berrendorf et al. (2020) [https://arxiv.org/abs/2002.06914] proposed the
adjusted mean rank, which normalized the value based on the expected value. We
have derived closed form expectations for the mean reciprocal rank and hits at
k and implemented their corresponding adjustments in PyKEEN.

Further we developed an alternative metric to the hits at k that uses a
smooth logistic sigmoid instead of a discrete step function in order to
mitigate some of its biases, including its applicability to graphs of varying
sizes.

Improvements to Loss Functions

The binary cross entropy loss, softplus loss, margin ranking loss, and non-self
adversarial negative sampling loss have proven to be the most popular in
knowledge graph embedding models. However, there are deep theoretical
relationships between them, such as the alleged equivalence between the
softplus loss and binary cross entropy loss with sigmoids, that have been
relatively unexplored. We improved the programmatic design to generalize and
identify some of these concepts, as well as provide implementations of the
double margin loss and focal loss which we believe might be more valuable for
applications to biological networks.

The double loss is given as:

\[h(\bar{\lambda} + \bar{k}) + h(\lambda - k)\]

The focal loss is given as

\[FL(p_t) = -(1 - p_t)^\gamma \log (p_t)\]

with \(p_t = y \cdot p + (1 - y) \cdot (1 - p)\), where \(p\) refers to
the predicted probability, and y to the ground truth label in \({0, 1}\).

Non-Parametric Baseline Models

Many supervised machine learning methods use y-scrambling or similar methods
for generating null models against which the true model can be compared.
Because knowledge graph embedding models are so time-consuming to train,
comparison to a null model is often omitted in both theoretical and practical
work. We have developed two non-parametric baseline models based solely on
entity and relation co-occurrence that require no training.

For the marginal distribution model, to predict scores for the tails, we make
the following simplification of \(P(t | h, r)\):

\[P(t | h, r) \sim P(t | h) * P(t | r)\]

Surprisingly these perform very well, and ultimately provide a minimum
threshold that any more knowledge graph embedding model must surpass. The
results are available here [https://pykeen.github.io/nonparametric-baseline-benchmark/].

BioCreative participation and new Walkthrough Tutorial

We continued working on the BioCreative challenge on interactive COVID-19 text
mining tools. Our proposal “A self-updating causal model of COVID-19 mechanisms
built from the scientific literature” was accepted for participation. This
month, we prepared a system description document, recruited test users, and
created a new tutorial for using EMMAA’s COVID-19 model.

This “Walkthrough tutorial” illustrates EMMAA’s key features through the
COVID-19 model using a series of short videos, descriptions, and to-do actions.
Each section also describes relevant background. The tutorial can be found
here: https://emmaa.readthedocs.io/en/latest/tutorial/index.html.

 Python Module Index

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 emmaa	

 	
 	
 emmaa.analyze_tests_results	

 	
 	
 emmaa.answer_queries	

 	
 	
 emmaa.aws_lambda_functions	

 	
 	
 emmaa.aws_lambda_functions.after_update	

 	
 	
 emmaa.aws_lambda_functions.model_manager_update	

 	
 	
 emmaa.aws_lambda_functions.model_queries	

 	
 	
 emmaa.aws_lambda_functions.model_stats	

 	
 	
 emmaa.aws_lambda_functions.model_tests	

 	
 	
 emmaa.aws_lambda_functions.model_updates	

 	
 	
 emmaa.aws_lambda_functions.test_pipeline	

 	
 	
 emmaa.aws_lambda_functions.test_stats	

 	
 	
 emmaa.aws_lambda_functions.test_update	

 	
 	
 emmaa.aws_lambda_functions.test_update_pipeline	

 	
 	
 emmaa.aws_lambda_functions.update_lambda	

 	
 	
 emmaa.aws_lambda_functions.update_pipeline	

 	
 	
 emmaa.db	

 	
 	
 emmaa.db.manager	

 	
 	
 emmaa.db.schema	

 	
 	
 emmaa.filter_functions	

 	
 	
 emmaa.model	

 	
 	
 emmaa.model_tests	

 	
 	
 emmaa.priors	

 	
 	
 emmaa.priors.cancer_prior	

 	
 	
 emmaa.priors.gene_list_prior	

 	
 	
 emmaa.priors.literature_prior	

 	
 	
 emmaa.priors.prior_stmts	

 	
 	
 emmaa.priors.reactome_prior	

 	
 	
 emmaa.queries	

 	
 	
 emmaa.readers	

 	
 	
 emmaa.readers.aws_reader	

 	
 	
 emmaa.readers.db_client_reader	

 	
 	
 emmaa.statements	

 	
 	
 emmaa.subscription	

 	
 	
 emmaa.subscription.email_service	

 	
 	
 emmaa.subscription.email_util	

 	
 	
 emmaa.subscription.notifications	

 	
 	
 emmaa.util	

 	
 	
 emmaa.xdd	

 	
 	
 emmaa.xdd.xdd_client	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_emmaa_annotations() (in module emmaa.statements)

 	add_paper_ids() (emmaa.model.EmmaaModel method)

 	add_result() (emmaa.model_tests.ModelManager method)

 	add_statements() (emmaa.model.EmmaaModel method)

 	add_test() (emmaa.model_tests.ModelManager method)

 	add_user() (emmaa.db.manager.EmmaaDatabaseManager method)

 	agent_from_gene_name() (in module emmaa.priors.gene_list_prior)

 	answer_dynamic_query() (emmaa.model_tests.ModelManager method)

 	answer_immediate_query() (emmaa.answer_queries.QueryManager method)

 	answer_intervention_query() (emmaa.model_tests.ModelManager method)

 	answer_open_query() (emmaa.model_tests.ModelManager method)

 	answer_path_query() (emmaa.model_tests.ModelManager method)

 	answer_queries() (emmaa.model_tests.ModelManager method)

 	
 	answer_queries_from_s3() (in module emmaa.answer_queries)

 	answer_registered_queries() (emmaa.answer_queries.QueryManager method)

 	applicable() (emmaa.model_tests.RefinementTestConnector static method)

 	(emmaa.model_tests.ScopeTestConnector static method)

 	(emmaa.model_tests.TestConnector static method)

 	applicable_tests (emmaa.model_tests.ModelManager attribute)

 	assemble_dynamic_pysb() (emmaa.model.EmmaaModel method)

 	assemble_pybel() (emmaa.model.EmmaaModel method)

 	assemble_pysb() (emmaa.model.EmmaaModel method)

 	assemble_signed_graph() (emmaa.model.EmmaaModel method)

 	assemble_unsigned_graph() (emmaa.model.EmmaaModel method)

 	assembled_stmts (emmaa.model.EmmaaModel attribute)

 	assembly_config (emmaa.model.EmmaaModel attribute)

C

 	
 	check() (emmaa.model_tests.StatementCheckingTest method)

 	check_stmt() (in module emmaa.statements)

 	
 	close_to_quota_max() (in module emmaa.subscription.email_service)

 	ComparativeInterventionProperty (class in emmaa.queries)

 	create_tables() (emmaa.db.manager.EmmaaDatabaseManager method)

D

 	
 	date_str (emmaa.model_tests.ModelManager attribute)

 	does_exist() (in module emmaa.util)

 	
 	drop_tables() (emmaa.db.manager.EmmaaDatabaseManager method)

 	DynamicProperty (class in emmaa.queries)

E

 	
 	eliminate_copies() (emmaa.model.EmmaaModel method)

 	EmailHtmlBody (class in emmaa.subscription.notifications)

 	emmaa.analyze_tests_results (module)

 	emmaa.answer_queries (module)

 	emmaa.aws_lambda_functions (module)

 	emmaa.aws_lambda_functions.after_update (module)

 	emmaa.aws_lambda_functions.model_manager_update (module)

 	emmaa.aws_lambda_functions.model_queries (module)

 	emmaa.aws_lambda_functions.model_stats (module)

 	emmaa.aws_lambda_functions.model_tests (module)

 	emmaa.aws_lambda_functions.model_updates (module)

 	emmaa.aws_lambda_functions.test_pipeline (module)

 	emmaa.aws_lambda_functions.test_stats (module)

 	emmaa.aws_lambda_functions.test_update (module)

 	emmaa.aws_lambda_functions.test_update_pipeline (module)

 	emmaa.aws_lambda_functions.update_lambda (module)

 	emmaa.aws_lambda_functions.update_pipeline (module)

 	emmaa.db (module)

 	emmaa.db.manager (module)

 	emmaa.db.schema (module)

 	emmaa.filter_functions (module)

 	emmaa.model (module)

 	emmaa.model_tests (module)

 	emmaa.priors (module)

 	
 	emmaa.priors.cancer_prior (module)

 	emmaa.priors.gene_list_prior (module)

 	emmaa.priors.literature_prior (module)

 	emmaa.priors.prior_stmts (module)

 	emmaa.priors.reactome_prior (module)

 	emmaa.queries (module)

 	emmaa.readers (module)

 	emmaa.readers.aws_reader (module)

 	emmaa.readers.db_client_reader (module)

 	emmaa.statements (module)

 	emmaa.subscription (module)

 	emmaa.subscription.email_service (module)

 	emmaa.subscription.email_util (module)

 	emmaa.subscription.notifications (module)

 	emmaa.util (module)

 	emmaa.xdd (module)

 	emmaa.xdd.xdd_client (module)

 	EmmaaDatabaseError

 	EmmaaDatabaseManager (class in emmaa.db.manager)

 	EmmaaModel (class in emmaa.model)

 	EmmaaStatement (class in emmaa.statements)

 	EmmaaTest (class in emmaa.model_tests)

 	english_test_results (emmaa.analyze_tests_results.TestRound attribute)

 	entities (emmaa.model_tests.ModelManager attribute)

 	extend_unique() (emmaa.model.EmmaaModel method)

F

 	
 	filter_chem_mesh_go() (in module emmaa.filter_functions)

 	filter_emmaa_stmts_by_metadata() (in module emmaa.statements)

 	filter_indra_stmts_by_metadata() (in module emmaa.statements)

 	filter_to_internal_edges() (in module emmaa.filter_functions)

 	find_delta_hashes() (emmaa.analyze_tests_results.Round method)

 	find_drugs_for_genes() (emmaa.priors.cancer_prior.TcgaCancerPrior static method)

 	(in module emmaa.priors.reactome_prior)

 	
 	find_latest_emails() (in module emmaa.util)

 	find_latest_s3_file() (in module emmaa.util)

 	find_latest_s3_files() (in module emmaa.util)

 	find_nth_latest_s3_file() (in module emmaa.util)

 	format_results() (in module emmaa.answer_queries)

 	from_json() (emmaa.priors.SearchTerm class method)

 	function_mapping (emmaa.analyze_tests_results.Round attribute)

G

 	
 	GeneListPrior (class in emmaa.priors.gene_list_prior)

 	generate_signature() (in module emmaa.subscription.email_util)

 	generate_stats_on_s3() (in module emmaa.analyze_tests_results)

 	generate_unsubscribe_link() (in module emmaa.subscription.email_util)

 	generate_unsubscribe_qs() (in module emmaa.subscription.email_util)

 	get_agent_distribution() (emmaa.analyze_tests_results.ModelRound method)

 	get_agent_from_gilda() (in module emmaa.queries)

 	get_agent_from_text() (in module emmaa.queries)

 	get_agent_from_trips() (in module emmaa.queries)

 	get_all_raw_paper_ids() (emmaa.analyze_tests_results.ModelRound method)

 	get_all_result_hashes() (emmaa.db.manager.EmmaaDatabaseManager method)

 	get_all_update_messages() (in module emmaa.subscription.notifications)

 	get_applied_test_hashes() (emmaa.analyze_tests_results.TestRound method)

 	get_assembled_entities() (emmaa.model.EmmaaModel method)

 	get_assembled_statements() (in module emmaa.model)

 	get_assembled_stmts_by_paper() (emmaa.analyze_tests_results.ModelRound method)

 	get_document_figures() (in module emmaa.xdd.xdd_client)

 	get_document_objects() (in module emmaa.xdd.xdd_client)

 	get_drugs_for_gene() (in module emmaa.priors)

 	get_email_subscriptions() (in module emmaa.subscription.email_util)

 	get_english_statements_by_hash() (emmaa.analyze_tests_results.ModelRound method)

 	get_entities() (emmaa.model.EmmaaModel method)

 	(emmaa.model_tests.EmmaaTest method)

 	(emmaa.model_tests.StatementCheckingTest method)

 	(emmaa.queries.PathProperty method)

 	get_figures_from_objects() (in module emmaa.xdd.xdd_client)

 	get_figures_from_query() (in module emmaa.xdd.xdd_client)

 	get_genes_contained_in_pathway (in module emmaa.priors.reactome_prior)

 	get_indra_stmts() (emmaa.model.EmmaaModel method)

 	get_model_deltas() (in module emmaa.subscription.notifications)

 	get_model_stats() (in module emmaa.model)

 	
 	get_model_users() (emmaa.db.manager.EmmaaDatabaseManager method)

 	get_mutated_genes() (emmaa.priors.cancer_prior.TcgaCancerPrior method)

 	get_new_readings() (emmaa.model.EmmaaModel method)

 	get_number_passed_tests() (emmaa.analyze_tests_results.TestRound method)

 	get_number_raw_papers() (emmaa.analyze_tests_results.ModelRound method)

 	get_paper_ids_from_stmts() (emmaa.model.EmmaaModel method)

 	get_paper_titles_and_links() (emmaa.analyze_tests_results.ModelRound method)

 	get_papers_distribution() (emmaa.analyze_tests_results.ModelRound method)

 	get_passed_test_hashes() (emmaa.analyze_tests_results.TestRound method)

 	get_pathways_containing_gene (in module emmaa.priors.reactome_prior)

 	get_queries() (emmaa.db.manager.EmmaaDatabaseManager method)

 	get_raw_statements_for_pmids() (in module emmaa.priors.literature_prior)

 	get_registered_queries() (emmaa.answer_queries.QueryManager method)

 	get_relevant_nodes() (emmaa.priors.cancer_prior.TcgaCancerPrior method)

 	get_results() (emmaa.db.manager.EmmaaDatabaseManager method)

 	get_s3_client() (in module emmaa.util)

 	get_send_statistics() (in module emmaa.subscription.email_service)

 	get_statement_types() (emmaa.analyze_tests_results.ModelRound method)

 	get_statements_by_evidence() (emmaa.analyze_tests_results.ModelRound method)

 	get_stmt_hashes() (emmaa.analyze_tests_results.ModelRound method)

 	get_stmts_for_gene() (in module emmaa.priors.prior_stmts)

 	get_stmts_for_gene_list() (in module emmaa.priors.prior_stmts)

 	get_subscribed_queries() (emmaa.db.manager.EmmaaDatabaseManager method)

 	get_subscribed_users() (emmaa.db.manager.EmmaaDatabaseManager method)

 	get_temporal_pattern() (emmaa.queries.DynamicProperty method)

 	get_total_applied_tests() (emmaa.analyze_tests_results.TestRound method)

 	get_total_statements() (emmaa.analyze_tests_results.ModelRound method)

 	get_updated_mc() (emmaa.model_tests.ModelManager method)

 	get_user_models() (emmaa.db.manager.EmmaaDatabaseManager method)

 	get_user_query_delta() (in module emmaa.subscription.notifications)

 	GroundingError

H

 	
 	hash_response_list() (emmaa.model_tests.ModelManager method)

I

 	
 	is_internal() (in module emmaa.statements)

J

 	
 	json_stats (emmaa.analyze_tests_results.ModelStatsGenerator attribute)

 	(emmaa.analyze_tests_results.StatsGenerator attribute)

 	(emmaa.analyze_tests_results.TestStatsGenerator attribute)

L

 	
 	lambda_handler() (in module emmaa.aws_lambda_functions.after_update)

 	(in module emmaa.aws_lambda_functions.model_manager_update)

 	(in module emmaa.aws_lambda_functions.model_queries)

 	(in module emmaa.aws_lambda_functions.model_stats)

 	(in module emmaa.aws_lambda_functions.model_tests)

 	(in module emmaa.aws_lambda_functions.model_updates)

 	(in module emmaa.aws_lambda_functions.test_pipeline)

 	(in module emmaa.aws_lambda_functions.test_stats)

 	(in module emmaa.aws_lambda_functions.test_update)

 	(in module emmaa.aws_lambda_functions.test_update_pipeline)

 	(in module emmaa.aws_lambda_functions.update_pipeline)

 	
 	last_updated_date() (in module emmaa.model)

 	load_config_from_s3() (in module emmaa.model)

 	load_extra_evidence() (in module emmaa.model)

 	load_from_s3() (emmaa.model.EmmaaModel class method)

 	load_sif_prior() (emmaa.priors.cancer_prior.TcgaCancerPrior method)

 	load_stmts_from_s3() (in module emmaa.model)

 	load_tests_from_s3() (in module emmaa.model_tests)

M

 	
 	make_changes_over_time() (emmaa.analyze_tests_results.ModelStatsGenerator method)

 	(emmaa.analyze_tests_results.StatsGenerator method)

 	(emmaa.analyze_tests_results.TestStatsGenerator method)

 	make_config() (emmaa.priors.gene_list_prior.GeneListPrior method)

 	make_curation_summary() (emmaa.analyze_tests_results.ModelStatsGenerator method)

 	make_date_str() (in module emmaa.util)

 	make_gene_statements() (emmaa.priors.gene_list_prior.GeneListPrior method)

 	make_html_report_per_user() (in module emmaa.subscription.notifications)

 	make_model() (emmaa.priors.gene_list_prior.GeneListPrior method)

 	make_model_delta() (emmaa.analyze_tests_results.ModelStatsGenerator method)

 	make_model_html_email() (in module emmaa.subscription.notifications)

 	make_model_summary() (emmaa.analyze_tests_results.ModelStatsGenerator method)

 	make_paper_delta() (emmaa.analyze_tests_results.ModelStatsGenerator method)

 	make_paper_summary() (emmaa.analyze_tests_results.ModelStatsGenerator method)

 	make_prior() (emmaa.priors.cancer_prior.TcgaCancerPrior method)

 	make_prior_from_genes() (in module emmaa.priors.reactome_prior)

 	make_reports_from_results() (in module emmaa.subscription.notifications)

 	
 	make_search_terms() (emmaa.priors.gene_list_prior.GeneListPrior method)

 	(in module emmaa.priors.literature_prior)

 	make_stats() (emmaa.analyze_tests_results.ModelStatsGenerator method)

 	(emmaa.analyze_tests_results.TestStatsGenerator method)

 	make_str_report_per_user() (in module emmaa.subscription.notifications)

 	make_test_summary() (emmaa.analyze_tests_results.TestStatsGenerator method)

 	make_tests() (emmaa.model_tests.TestManager method)

 	make_tests_delta() (emmaa.analyze_tests_results.TestStatsGenerator method)

 	mc_mapping (emmaa.model_tests.ModelManager attribute)

 	mc_types (emmaa.model_tests.ModelManager attribute)

 	mc_types_results (emmaa.analyze_tests_results.TestRound attribute)

 	model_to_tests() (in module emmaa.model_tests)

 	model_update_notify() (in module emmaa.subscription.notifications)

 	ModelDeltaEmailHtmlBody (class in emmaa.subscription.notifications)

 	ModelManager (class in emmaa.model_tests)

 	ModelRound (class in emmaa.analyze_tests_results)

 	ModelStatsGenerator (class in emmaa.analyze_tests_results)

N

 	
 	ndex_network (emmaa.model.EmmaaModel attribute)

 	
 	NotAClassName

O

 	
 	OpenSearchQuery (class in emmaa.queries)

P

 	
 	passed_over_total() (emmaa.analyze_tests_results.TestRound method)

 	path_stmt (emmaa.queries.OpenSearchQuery attribute)

 	path_stmt_types (emmaa.model_tests.ModelManager attribute)

 	PathProperty (class in emmaa.queries)

 	
 	process_response() (emmaa.model_tests.ModelManager method)

 	put_queries() (emmaa.db.manager.EmmaaDatabaseManager method)

 	put_results() (emmaa.db.manager.EmmaaDatabaseManager method)

 	pysb_to_gromet() (in module emmaa.model)

Q

 	
 	Query (class in emmaa.db.schema)

 	(class in emmaa.queries)

 	
 	query_config (emmaa.model.EmmaaModel attribute)

 	QueryEmailHtmlBody (class in emmaa.subscription.notifications)

 	QueryManager (class in emmaa.answer_queries)

R

 	
 	read_db_doi_search_terms() (in module emmaa.readers.db_client_reader)

 	read_db_ids_search_terms() (in module emmaa.readers.db_client_reader)

 	read_db_pmid_search_terms() (in module emmaa.readers.db_client_reader)

 	read_pmid_search_terms() (in module emmaa.readers.aws_reader)

 	read_pmids() (in module emmaa.readers.aws_reader)

 	reading_config (emmaa.model.EmmaaModel attribute)

 	RefinementTestConnector (class in emmaa.model_tests)

 	register_email_unsubscribe() (in module emmaa.subscription.email_util)

 	register_filter() (in module emmaa.filter_functions)

 	render() (emmaa.subscription.notifications.ModelDeltaEmailHtmlBody method)

 	(emmaa.subscription.notifications.QueryEmailHtmlBody method)

 	
 	Result (class in emmaa.db.schema)

 	results_to_json() (emmaa.model_tests.ModelManager method)

 	retrieve_results_from_hashes() (emmaa.answer_queries.QueryManager method)

 	Round (class in emmaa.analyze_tests_results)

 	run_all_tests() (emmaa.model_tests.ModelManager method)

 	run_assembly() (emmaa.model.EmmaaModel method)

 	run_model_tests_from_s3() (in module emmaa.model_tests)

 	run_tests() (emmaa.model_tests.TestManager method)

 	run_tests_per_mc() (emmaa.model_tests.ModelManager method)

 	rx_id_from_up_id (in module emmaa.priors.reactome_prior)

S

 	
 	save_assembled_statements() (emmaa.model_tests.ModelManager method)

 	save_config_to_s3() (in module emmaa.model)

 	save_tests_to_s3() (in module emmaa.model_tests)

 	save_to_s3() (emmaa.model.EmmaaModel method)

 	ScopeTestConnector (class in emmaa.model_tests)

 	search_biorxiv() (emmaa.model.EmmaaModel static method)

 	search_elsevier() (emmaa.model.EmmaaModel static method)

 	search_literature() (emmaa.model.EmmaaModel method)

 	search_pubmed() (emmaa.model.EmmaaModel static method)

 	search_terms (emmaa.model.EmmaaModel attribute)

 	search_terms_from_nodes() (emmaa.priors.cancer_prior.TcgaCancerPrior static method)

 	SearchTerm (class in emmaa.priors)

 	send_document_search_request() (in module emmaa.xdd.xdd_client)

 	
 	send_email() (in module emmaa.subscription.email_service)

 	send_query_search_request() (in module emmaa.xdd.xdd_client)

 	send_request() (in module emmaa.xdd.xdd_client)

 	SimpleInterventionProperty (class in emmaa.queries)

 	sort_s3_files_by_date_str() (in module emmaa.util)

 	sort_s3_files_by_last_mod() (in module emmaa.util)

 	StatementCheckingTest (class in emmaa.model_tests)

 	StatsGenerator (class in emmaa.analyze_tests_results)

 	stmts (emmaa.model.EmmaaModel attribute)

 	stmts_by_papers (emmaa.analyze_tests_results.ModelRound attribute)

 	strip_out_date() (in module emmaa.util)

 	StructuralProperty (class in emmaa.queries)

 	subscribe_to_model() (emmaa.db.manager.EmmaaDatabaseManager method)

T

 	
 	TcgaCancerPrior (class in emmaa.priors.cancer_prior)

 	test_config (emmaa.model.EmmaaModel attribute)

 	TestConnector (class in emmaa.model_tests)

 	TestManager (class in emmaa.model_tests)

 	TestRound (class in emmaa.analyze_tests_results)

 	
 	tests (emmaa.analyze_tests_results.TestRound attribute)

 	TestStatsGenerator (class in emmaa.analyze_tests_results)

 	to_emmaa_stmts() (in module emmaa.statements)

 	to_json() (emmaa.model.EmmaaModel method)

 	(emmaa.priors.SearchTerm method)

 	tweet_deltas() (in module emmaa.subscription.notifications)

U

 	
 	up_id_from_rx_id (in module emmaa.priors.reactome_prior)

 	update_email_subscription() (emmaa.db.manager.EmmaaDatabaseManager method)

 	update_from_disease_map() (emmaa.model.EmmaaModel method)

 	update_from_files() (emmaa.model.EmmaaModel method)

 	update_to_ndex() (emmaa.model.EmmaaModel method)

 	update_with_cord19() (emmaa.model.EmmaaModel method)

 	
 	upload_function() (in module emmaa.aws_lambda_functions.update_lambda)

 	upload_results() (emmaa.model_tests.ModelManager method)

 	upload_to_ndex() (emmaa.model.EmmaaModel method)

 	User (class in emmaa.db.schema)

 	UserModel (class in emmaa.db.schema)

 	UserQuery (class in emmaa.db.schema)

V

 	
 	verify_email_signature() (in module emmaa.subscription.email_util)

 Overview: module code

 All modules for which code is available

	emmaa.analyze_tests_results

	emmaa.answer_queries

	emmaa.aws_lambda_functions.after_update

	emmaa.aws_lambda_functions.model_manager_update

	emmaa.aws_lambda_functions.model_queries

	emmaa.aws_lambda_functions.model_stats

	emmaa.aws_lambda_functions.model_tests

	emmaa.aws_lambda_functions.model_updates

	emmaa.aws_lambda_functions.test_pipeline

	emmaa.aws_lambda_functions.test_stats

	emmaa.aws_lambda_functions.test_update

	emmaa.aws_lambda_functions.test_update_pipeline

	emmaa.aws_lambda_functions.update_lambda

	emmaa.aws_lambda_functions.update_pipeline

	emmaa.db.manager

	emmaa.db.schema

	emmaa.filter_functions

	emmaa.model

	emmaa.model_tests

	emmaa.priors

	emmaa.priors.cancer_prior

	emmaa.priors.gene_list_prior

	emmaa.priors.literature_prior

	emmaa.priors.prior_stmts

	emmaa.priors.reactome_prior

	emmaa.queries

	emmaa.readers.aws_reader

	emmaa.readers.db_client_reader

	emmaa.statements

	emmaa.subscription.email_service

	emmaa.subscription.email_util

	emmaa.subscription.notifications

	emmaa.util

	emmaa.xdd.xdd_client

 emmaa.analyze_tests_results

 Source code for emmaa.analyze_tests_results

import logging
import jsonpickle
from collections import defaultdict
from emmaa.model import load_stmts_from_s3
from emmaa.statements import filter_emmaa_stmts_by_metadata, \
 filter_indra_stmts_by_metadata
from emmaa.model_tests import load_model_manager_from_s3
from emmaa.util import find_latest_s3_file, find_nth_latest_s3_file, \
 strip_out_date, EMMAA_BUCKET_NAME, load_json_from_s3, save_json_to_s3, \
 _make_delta_msg
from indra.statements.statements import Statement
from indra.assemblers.english.assembler import EnglishAssembler
from indra.literature import pubmed_client, crossref_client, pmc_client
from indra_db import get_db
from indra_db.client.principal.curation import get_curations
from indra_db.util import unpack

logger = logging.getLogger(__name__)

CONTENT_TYPE_FUNCTION_MAPPING = {
 'statements': 'get_stmt_hashes',
 'applied_tests': 'get_applied_test_hashes',
 'passed_tests': 'get_passed_test_hashes',
 'paths': 'get_passed_test_hashes',
 'raw_papers': 'get_all_raw_paper_ids',
 'assembled_papers': 'get_all_assembled_paper_ids'}

[docs]class Round(object):
 """Parent class for classes analyzing one round of something (model or
 tests).

 Parameters

 date_str : str
 Time when ModelManager responsible for this round was created.

 Attributes

 function_mapping : dict
 A dictionary of strings mapping a type of content to a tuple of
 functions necessary to find delta for this type of content. First
 function in a tuple gets a list of all hashes for a given content type,
 while the second returns an English description of a given content type
 for a single hash.
 """
 def __init__(self, date_str):
 self.date_str = date_str
 self.function_mapping = CONTENT_TYPE_FUNCTION_MAPPING

 @classmethod
 def load_from_s3_key(cls, key):
 raise NotImplementedError("Method must be implemented in child class.")

 def get_english_statement(self, stmt):
 ea = EnglishAssembler([stmt])
 sentence = ea.make_model()
 return ('', sentence, '')

[docs] def find_delta_hashes(self, other_round, content_type, **kwargs):
 """Return a dictionary of changed hashes of a given content type. This
 method makes use of self.function_mapping dictionary.

 Parameters

 other_round : emmaa.analyze_tests_results.TestRound
 A different instance of a TestRound
 content_type : str
 A type of the content to find delta. Accepted values:
 - statements
 - applied_tests
 - passed_tests
 - paths
 **kwargs : dict
 For some of content types, additional arguments must be
 provided sych as mc_type.
 Returns

 hashes : dict
 A dictionary containing lists of added and removed hashes of a
 given content type between two test rounds.
 """
 logger.info(f'Finding a hashes delta for {content_type}.')
 latest_hashes = getattr(
 self, self.function_mapping[content_type])(**kwargs)
 logger.info(f'Found {len(latest_hashes)} hashes in current round.')
 previous_hashes = getattr(
 other_round,
 other_round.function_mapping[content_type])(**kwargs)
 logger.info(f'Found {len(previous_hashes)} hashes in other round.')
 # Find hashes unique for each of the rounds - this is delta
 added_hashes = list(set(latest_hashes) - set(previous_hashes))
 removed_hashes = list(set(previous_hashes) - set(latest_hashes))
 hashes = {'added': added_hashes, 'removed': removed_hashes}
 return hashes

[docs]class ModelRound(Round):
 """Analyzes the results of one model update round.

 Parameters

 statements : list[indra.statements.Statement]
 A list of INDRA Statements used to assemble a model.
 date_str : str
 Time when ModelManager responsible for this round was created.
 paper_ids : list(str)
 A list of paper IDs used to get raw statements for this round.
 paper_id_type : str
 Type of paper ID used.

 Attributes

 stmts_by_papers : dict
 A dictionary mapping the paper IDs to sets of hashes of assembled
 statements with evidences retrieved from these papers.
 """
 def __init__(self, statements, date_str, paper_ids=None,
 paper_id_type='TRID', emmaa_statements=None):
 super().__init__(date_str)
 self.statements = statements
 self.paper_ids = paper_ids if paper_ids else []
 self.paper_id_type = paper_id_type
 self.emmaa_statements = emmaa_statements if emmaa_statements else []
 self.stmts_by_papers = self.get_assembled_stmts_by_paper(paper_id_type)

 @classmethod
 def load_from_s3_key(cls, key, bucket=EMMAA_BUCKET_NAME,
 load_estmts=False):
 mm = load_model_manager_from_s3(key=key, bucket=bucket)
 if not mm:
 return
 statements = mm.model.assembled_stmts
 date_str = mm.date_str
 try:
 paper_ids = list(mm.model.paper_ids)
 except AttributeError:
 paper_ids = None
 paper_id_type = mm.model.reading_config.get('main_id_type', 'TRID')
 estmts = None
 if load_estmts:
 estmts, _ = load_stmts_from_s3(mm.model.name, bucket)
 if mm.model.reading_config.get('filter'):
 conditions = mm.model.reading_config['filter']['conditions']
 evid_policy = mm.model.reading_config['filter']['evid_policy']
 statements = filter_indra_stmts_by_metadata(
 statements, conditions, evid_policy)
 if estmts:
 estmts = filter_emmaa_stmts_by_metadata(estmts, conditions)
 return cls(statements, date_str, paper_ids, paper_id_type, estmts)

[docs] def get_total_statements(self):
 """Return a total number of statements in a model."""
 total = len(self.statements)
 logger.info(f'An assembled model has {total} statements.')
 return total

[docs] def get_stmt_hashes(self):
 """Return a list of hashes for all statements in a model."""
 return [str(stmt.get_hash(refresh=True)) for stmt in self.statements]

[docs] def get_statement_types(self):
 """Return a sorted list of tuples containing a statement type and a
 number of times a statement of this type occured in a model.
 """
 statement_types = defaultdict(int)
 logger.info('Finding a distribution of statements types.')
 for stmt in self.statements:
 statement_types[type(stmt).__name__] += 1
 return sorted(statement_types.items(), key=lambda x: x[1], reverse=True)

[docs] def get_agent_distribution(self):
 """Return a sorted list of tuples containing an agent name and a number
 of times this agent occured in statements of a model."""
 logger.info('Finding agent distribution among model statements.')
 agent_count = defaultdict(int)
 for stmt in self.statements:
 for agent in stmt.agent_list():
 if agent is not None:
 agent_count[agent.name] += 1
 return sorted(agent_count.items(), key=lambda x: x[1], reverse=True)

[docs] def get_statements_by_evidence(self):
 """Return a sorted list of tuples containing a statement hash and a
 number of times this statement occured in a model."""
 stmts_evidence = {}
 for stmt in self.statements:
 stmts_evidence[str(stmt.get_hash(refresh=True))] = len(stmt.evidence)
 logger.info('Sorting statements by evidence count.')
 return sorted(stmts_evidence.items(), key=lambda x: x[1], reverse=True)

[docs] def get_english_statements_by_hash(self):
 """Return a dictionary mapping a statement and its English description."""
 stmts_by_hash = {}
 for stmt in self.statements:
 stmts_by_hash[str(stmt.get_hash(refresh=True))] = (
 self.get_english_statement(stmt))
 return stmts_by_hash

 def get_sources_distribution(self):
 logger.info('Finding distribution of sources of statement evidences.')
 sources_count = defaultdict(int)
 for stmt in self.statements:
 for evid in stmt.evidence:
 if evid.source_api:
 sources_count[evid.source_api] += 1
 return sorted(sources_count.items(), key=lambda x: x[1], reverse=True)

[docs] def get_all_raw_paper_ids(self):
 """Return all paper IDs used in this round."""
 return self.paper_ids

[docs] def get_number_raw_papers(self):
 """Return a total number of papers in this round."""
 return len(self.paper_ids)

[docs] def get_assembled_stmts_by_paper(self, id_type='TRID'):
 """Get a mapping of paper IDs (TRID or PII) to assembled statements."""
 logger.info('Mapping papers to statements')
 stmts_by_papers = {}
 for stmt in self.statements:
 stmt_hash = stmt.get_hash(refresh=True)
 for evid in stmt.evidence:
 paper_id = None
 if id_type == 'pii':
 paper_id = evid.annotations.get('pii')
 if evid.text_refs:
 paper_id = evid.text_refs.get(id_type)
 if not paper_id:
 paper_id = evid.text_refs.get(id_type.lower())
 if paper_id:
 if paper_id in stmts_by_papers:
 stmts_by_papers[paper_id].add(stmt_hash)
 else:
 stmts_by_papers[paper_id] = {stmt_hash}
 for k, v in stmts_by_papers.items():
 stmts_by_papers[k] = list(v)
 return stmts_by_papers

 def get_all_assembled_paper_ids(self):
 return list(self.stmts_by_papers.keys())

 def get_number_assembled_papers(self):
 return len(self.stmts_by_papers)

[docs] def get_papers_distribution(self):
 """Return a sorted list of tuples containing a paper ID and a number
 of unique statements extracted from that paper."""
 logger.info('Finding paper distribution')
 paper_stmt_count = {paper_id: len(stmts) for (paper_id, stmts) in
 self.stmts_by_papers.items()}
 return sorted(paper_stmt_count.items(), key=lambda x: x[1],
 reverse=True)

 def get_raw_paper_counts(self):
 logger.info('Finding raw statement count per paper')
 if not self.emmaa_statements:
 logger.info('Did not load raw EMMAA statements')
 return {}
 raw_by_papers = defaultdict(int)
 for estmt in self.emmaa_statements:
 for evid in estmt.stmt.evidence:
 paper_id = None
 id_type = self.paper_id_type
 if id_type == 'pii':
 paper_id = evid.annotations.get('pii')
 if evid.text_refs:
 paper_id = evid.text_refs.get(id_type)
 if not paper_id:
 paper_id = evid.text_refs.get(id_type.lower())
 if paper_id:
 raw_by_papers[paper_id] += 1
 return raw_by_papers

[docs] def get_paper_titles_and_links(self, trids):
 """Return a dictionary mapping paper IDs to their titles."""
 if self.paper_id_type == 'pii':
 return {}, {}
 db = get_db('primary')
 trs = db.select_all(db.TextRef, db.TextRef.id.in_(trids))
 ref_dicts = [tr.get_ref_dict() for tr in trs]
 trid_to_title = {}
 trid_to_link = {}
 trid_to_pmids = {}
 trid_to_pmcids = {}
 trid_to_dois = {}
 check_in_db = []
 # Map TRIDs to available PMIDs, DOIs, PMCIDs in this order
 for ref_dict in ref_dicts:
 link = _get_publication_link(ref_dict)
 trid_to_link[str(ref_dict['TRID'])] = link
 if ref_dict.get('PMID'):
 trid_to_pmids[ref_dict['TRID']] = ref_dict['PMID']
 elif ref_dict.get('PMCID'):
 trid_to_pmcids[ref_dict['TRID']] = ref_dict['PMCID']
 elif ref_dict.get('DOI'):
 trid_to_dois[ref_dict['TRID']] = ref_dict['DOI']

 logger.info(f'From {len(trids)} TRIDs got {len(trid_to_pmids)} PMIDs,'
 f' {len(trid_to_pmcids)} PMCIDs, {len(trid_to_dois)} DOIs')

 # First get titles for available PMIDs
 if trid_to_pmids:
 logger.info(f'Getting titles for {len(trid_to_pmids)} PMIDs')
 pmids = list(trid_to_pmids.values())
 pmids_to_titles = _get_pmid_titles(pmids)

 for trid, pmid in trid_to_pmids.items():
 if pmid in pmids_to_titles:
 trid_to_title[str(trid)] = pmids_to_titles[pmid]
 else:
 check_in_db.append(trid)

 # Then get titles for available PMCIDs
 if trid_to_pmcids:
 logger.info(f'Getting titles for {len(trid_to_pmcids)} PMCIDs')
 for trid, pmcid in trid_to_pmcids.items():
 title = _get_pmcid_title(pmcid)
 if title:
 trid_to_title[str(trid)] = title
 else:
 check_in_db.append(trid)

 # Then get titles for available DOIs
 if trid_to_dois:
 logger.info(f'Getting titles for {len(trid_to_dois)} DOIs')
 for trid, doi in trid_to_dois.items():
 title = _get_doi_title(doi)
 if title:
 trid_to_title[str(trid)] = title
 else:
 check_in_db.append(trid)

 # Try getting remaining titles from db
 if check_in_db:
 logger.info(f'Getting titles for {len(check_in_db)} remaining '
 'TRIDs from DB')
 tcs = db.select_all(db.TextContent,
 db.TextContent.text_ref_id.in_(check_in_db),
 db.TextContent.text_type == 'title')
 for tc in tcs:
 title = unpack(tc.content)
 trid_to_title[str(tc.text_ref_id)] = title

 return trid_to_title, trid_to_link

 def get_curation_stats(self):
 if not self.emmaa_statements:
 logger.info('Did not load raw EMMAA statements')
 return
 curations = get_curations()
 curators_ev = defaultdict(set)
 curators_stmt = defaultdict(set)
 curators_ev_counts = {}
 curators_stmt_counts = {}
 curs_by_tags = defaultdict(int)
 curs_by_hash = defaultdict(list)
 cur_ev_dates = defaultdict(set)
 cur_stmt_dates = defaultdict(set)
 cur_ev_date_sum = []
 cur_stmt_date_sum = []
 for cur in curations:
 curs_by_hash[cur['source_hash']].append(cur)
 df = '%Y-%m-%d-00-00-00'
 for estmt in self.emmaa_statements:
 for ev in estmt.stmt.evidence:
 source_hash = ev.get_source_hash()
 curs_for_hash = curs_by_hash.get(source_hash)
 if curs_for_hash:
 for cur in curs_for_hash:
 curators_ev[cur['curator']].add(cur['source_hash'])
 curators_stmt[cur['curator']].add(cur['pa_hash'])
 curs_by_tags[cur['tag']] += 1
 cur_ev_dates[cur['date'].strftime(df)].add(
 cur['source_hash'])
 cur_stmt_dates[cur['date'].strftime(df)].add(
 cur['pa_hash'])
 for cur, entries in curators_ev.items():
 curators_ev_counts[cur] = len(entries)
 for cur, entries in curators_stmt.items():
 curators_stmt_counts[cur] = len(entries)
 current_ev_sum = 0
 current_stmt_sum = 0
 for date, entries in sorted(cur_ev_dates.items()):
 current_ev_sum += len(entries)
 cur_ev_date_sum.append((date, current_ev_sum))
 for date, entries in sorted(cur_stmt_dates.items()):
 current_stmt_sum += len(entries)
 cur_stmt_date_sum.append((date, current_stmt_sum))

 cur_stats = {
 'curators_ev_counts': sorted(
 curators_ev_counts.items(), key=lambda x: x[1], reverse=True),
 'curators_stmt_counts': sorted(
 curators_stmt_counts.items(), key=lambda x: x[1], reverse=True),
 'curs_by_tags': sorted(
 curs_by_tags.items(), key=lambda x: x[1], reverse=True),
 'cur_ev_dates': cur_ev_date_sum,
 'cur_stmt_dates': cur_stmt_date_sum
 }
 return cur_stats

 def get_beliefs(self):
 return [stmt.belief for stmt in self.statements]

[docs]class TestRound(Round):
 """Analyzes the results of one test round.

 Parameters

 json_results : list[dict]
 A list of JSON formatted dictionaries to store information about the
 test results. The first dictionary contains information about the
 model. Each consecutive dictionary contains information about a single
 test applied to the model and test results.
 date_str : str
 Time when ModelManager responsible for this round was created.

 Attributes

 mc_types_results : dict
 A dictionary mapping a type of a ModelChecker to a list of test
 results generated by this ModelChecker
 tests : list[indra.statements.Statement]
 A list of INDRA Statements used to make EMMAA tests.
 english_test_results : dict
 A dictionary mapping a test hash and a list containing its English
 description, result in Pass/Fail/n_a form and either a path if it
 was found or a result code if it was not.
 """
 def __init__(self, json_results, date_str):
 super().__init__(date_str)
 self.json_results = json_results
 mc_types = self.json_results[0].get('mc_types', ['pysb'])
 self.mc_types_results = {}
 for mc_type in mc_types:
 self.mc_types_results[mc_type] = self._get_results(mc_type)
 self.tests = self._get_tests()
 self.english_test_results = self._get_applied_tests_results()

 @classmethod
 def load_from_s3_key(cls, key, bucket=EMMAA_BUCKET_NAME):
 logger.info(f'Loading json from {key}')
 json_results = load_json_from_s3(bucket, key)
 date_str = json_results[0].get('date_str', strip_out_date(key))
 return cls(json_results, date_str)

[docs] def get_applied_test_hashes(self):
 """Return a list of hashes for all applied tests."""
 return list(self.english_test_results.keys())

[docs] def get_passed_test_hashes(self, mc_type='pysb'):
 """Return a list of hashes for passed tests."""
 return [test_hash for test_hash in self.english_test_results.keys() if
 self.english_test_results[test_hash][mc_type][0] == 'Pass']

[docs] def get_total_applied_tests(self):
 """Return a number of all applied tests."""
 total = len(self.tests)
 logger.info(f'{total} tests were applied.')
 return total

[docs] def get_number_passed_tests(self, mc_type='pysb'):
 """Return a number of all passed tests."""
 total = len(self.get_passed_test_hashes(mc_type))
 logger.info(f'{total} tests passed.')
 return total

[docs] def passed_over_total(self, mc_type='pysb'):
 """Return a ratio of passed over total tests."""
 total = self.get_total_applied_tests()
 if total == 0:
 return 0
 return self.get_number_passed_tests(mc_type)/total

 def _get_applied_tests_results(self):
 """Return a dictionary mapping a test hash and a list containing its
 English description, result in Pass/Fail form and either a path if it
 was found or a result code if it was not."""
 tests_by_hash = {}
 logger.info('Retrieving test hashes, english tests and test results.')

 def get_pass_fail(res):
 # Here use result.path_found because we care if the path was found
 # and do not care about path length
 if res.path_found:
 return 'Pass'
 elif res.result_code == 'STATEMENT_TYPE_NOT_HANDLED':
 return 'n_a'
 else:
 return 'Fail'

 def get_path_or_code(ix, res, mc_type):
 path_or_code = None
 # Here use result.paths because we care about actual path (i.e.
 # we can't get a path exceeding max path length)
 if res.paths:
 try:
 path_or_code = (
 self.json_results[ix+1][mc_type]['path_json'])
 # if json doesn't contain some of the fields
 except KeyError:
 pass
 # If path wasn't found or presented in json
 if not path_or_code:
 try:
 path_or_code = (
 self.json_results[ix+1][mc_type]['result_code'])
 except KeyError:
 pass
 # Couldn't get either path or code description from json
 if not path_or_code:
 path_or_code = res.result_code
 return path_or_code

 for ix, test in enumerate(self.tests):
 test_hash = str(test.get_hash(refresh=True))
 tests_by_hash[test_hash] = {
 'test': self.get_english_statement(test)}
 for mc_type in self.mc_types_results:
 result = self.mc_types_results[mc_type][ix]
 tests_by_hash[test_hash][mc_type] = [
 get_pass_fail(result),
 get_path_or_code(ix, result, mc_type)]
 return tests_by_hash

 def get_path_stmt_counts(self):
 path_stmt_counts = self.json_results[0].get('path_stmt_counts')
 if path_stmt_counts:
 return sorted(
 path_stmt_counts.items(), key=lambda x: x[1], reverse=True)
 return []

 def _get_results(self, mc_type):
 unpickler = jsonpickle.unpickler.Unpickler()
 test_results = [unpickler.restore(result[mc_type]['result_json'])
 for result in self.json_results[1:]]
 return test_results

 def _get_tests(self):
 tests = [Statement._from_json(res['test_json'])
 for res in self.json_results[1:]]
 return tests

[docs]class StatsGenerator(object):
 """Parent class for classes generating statistic for a given round of
 tests or model update.

 Parameters

 model_name : str
 A name of a model the tests were run against.
 latest_round : ModelRound or TestRound or None
 An instance of a ModelRound or TestRound to generate statistics for.
 If not given, will be generated by loading json from s3.
 previous_round : ModelRound or TestRound or None
 A different instance of a ModelRound or TestRound to find delta
 between two rounds. If not given, will be generated by loading json
 from s3.
 previous_json_stats : dict
 A JSON-formatted dictionary containing model or test statistics for
 the previous round.
 Attributes

 json_stats : dict
 A JSON-formatted dictionary containing model or test statistics.
 """

 def __init__(self, model_name, latest_round=None, previous_round=None,
 previous_json_stats=None, bucket=EMMAA_BUCKET_NAME):
 self.model_name = model_name
 self.bucket = bucket
 self.previous_date_str = None
 if not latest_round:
 self.latest_round = self._get_latest_round()
 else:
 self.latest_round = latest_round
 if not previous_json_stats:
 self.previous_json_stats = self._get_previous_json_stats()
 else:
 self.previous_json_stats = previous_json_stats
 if not previous_round:
 self.previous_round = self._get_previous_round()
 else:
 self.previous_round = previous_round
 self.json_stats = {}

[docs] def make_changes_over_time(self):
 """Add changes to model and tests over time to json_stats."""
 raise NotImplementedError("Method must be implemented in child class.")

 def get_over_time(self, section, metrics, **kwargs):
 raise NotImplementedError("Method must be implemented in child class.")

 def get_dates(self):
 if not self.previous_json_stats:
 previous_dates = []
 else:
 previous_dates = (
 self.previous_json_stats['changes_over_time']['dates'])
 previous_dates.append(self.latest_round.date_str)
 return previous_dates

 def save_to_s3_key(self, stats_key):
 if self.json_stats:
 logger.info(f'Uploading statistics to {stats_key}')
 save_json_to_s3(self.json_stats, self.bucket, stats_key)

 def save_to_s3(self):
 raise NotImplementedError("Method must be implemented in child class.")

 def _get_latest_round(self):
 raise NotImplementedError("Method must be implemented in child class.")

 def _get_previous_round(self):
 raise NotImplementedError("Method must be implemented in child class.")

 def _get_previous_json_stats(self):
 raise NotImplementedError("Method must be implemented in child class.")

[docs]class ModelStatsGenerator(StatsGenerator):
 """Generates statistic for a given model update round.

 Parameters

 model_name : str
 A name of a model the tests were run against.
 latest_round : emmaa.analyze_tests_results.ModelRound
 An instance of a ModelRound to generate statistics for. If not given,
 will be generated by loading model data from s3.
 previous_round : emmaa.analyze_tests_results.ModelRound
 A different instance of a ModelRound to find delta between two rounds.
 If not given, will be generated by loading model data from s3.
 previous_json_stats : list[dict]
 A JSON-formatted dictionary containing model statistics for previous
 update round.

 Attributes

 json_stats : dict
 A JSON-formatted dictionary containing model statistics.
 """

 def __init__(self, model_name, latest_round=None, previous_round=None,
 previous_json_stats=None, bucket=EMMAA_BUCKET_NAME):
 super().__init__(model_name, latest_round, previous_round,
 previous_json_stats, bucket)

[docs] def make_stats(self):
 """Check if two latest model rounds were found and add statistics to
 json_stats dictionary. If both latest round and previous round
 were passed or found on s3, a dictionary will have three key-value
 pairs: model_summary, model_delta, and changes_over_time.
 """
 if not self.latest_round:
 logger.info(f'Latest round for {self.model_name} is not found.')
 return
 if self.previous_json_stats and not self.previous_round:
 logger.info(f'Latest stats are found but latest round is not.')
 return
 logger.info(f'Generating stats for {self.model_name}.')
 self.make_model_summary()
 self.make_model_delta()
 self.make_paper_delta()
 self.make_paper_summary()
 self.make_curation_summary()
 self.make_changes_over_time()

[docs] def make_model_summary(self):
 """Add latest model state summary to json_stats."""
 logger.info(f'Generating model summary for {self.model_name}.')
 self.json_stats['model_summary'] = {
 'model_name': self.model_name,
 'number_of_statements': self.latest_round.get_total_statements(),
 'stmts_type_distr': self.latest_round.get_statement_types(),
 'agent_distr': self.latest_round.get_agent_distribution(),
 'stmts_by_evidence': self.latest_round.get_statements_by_evidence(),
 'sources': self.latest_round.get_sources_distribution(),
 'assembled_beliefs': self.latest_round.get_beliefs(),
 'all_stmts': self.latest_round.get_english_statements_by_hash()
 }

[docs] def make_model_delta(self):
 """Add model delta between two latest model states to json_stats."""
 logger.info(f'Generating model delta for {self.model_name}.')
 if not self.previous_round:
 self.json_stats['model_delta'] = {
 'statements_hashes_delta': {'added': [], 'removed': []}}
 else:
 stmts_delta = self.latest_round.find_delta_hashes(
 self.previous_round, 'statements')
 self.json_stats['model_delta'] = {
 'statements_hashes_delta': stmts_delta}
 msg = _make_delta_msg(self.model_name, 'stmts', stmts_delta,
 self.latest_round.date_str[:10])
 if msg:
 logger.info(msg['message'])

[docs] def make_paper_summary(self):
 """Add latest paper summary to json_stats."""
 logger.info(f'Generating model summary for {self.model_name}.')
 self.json_stats['paper_summary'] = {
 'raw_paper_ids': self.latest_round.get_all_raw_paper_ids(),
 'number_of_raw_papers': self.latest_round.get_number_raw_papers(),
 'assembled_paper_ids': (
 self.latest_round.get_all_assembled_paper_ids()),
 'number_of_assembled_papers': (
 self.latest_round.get_number_assembled_papers()),
 'stmts_by_paper': self.latest_round.stmts_by_papers,
 'paper_distr': self.latest_round.get_papers_distribution(),
 'raw_paper_counts': self.latest_round.get_raw_paper_counts()
 }
 freq_trids = [pair[0] for pair in
 self.json_stats['paper_summary']['paper_distr'][:10]]
 new_trids = self.json_stats['paper_delta']['raw_paper_ids_delta'][
 'added']
 trids = list(set(freq_trids).union(set(new_trids)))
 titles, links = self.latest_round.get_paper_titles_and_links(trids)
 self.json_stats['paper_summary']['paper_titles'] = titles
 self.json_stats['paper_summary']['paper_links'] = links

[docs] def make_paper_delta(self):
 """Add paper delta between two latest model states to json_stats."""
 logger.info(f'Generating paper delta for {self.model_name}.')
 if not self.previous_round or not self.previous_round.paper_ids:
 self.json_stats['paper_delta'] = {
 'raw_paper_ids_delta': {'added': [], 'removed': []},
 'assembled_paper_ids_delta': {'added': [], 'removed': []}}
 else:
 raw_paper_delta = self.latest_round.find_delta_hashes(
 self.previous_round, 'raw_papers')
 assembled_paper_delta = self.latest_round.find_delta_hashes(
 self.previous_round, 'assembled_papers')
 self.json_stats['paper_delta'] = {
 'raw_paper_ids_delta': raw_paper_delta,
 'assembled_paper_ids_delta': assembled_paper_delta}
 logger.info(f'Read {len(raw_paper_delta["added"])} new papers.')
 logger.info(f'Got assembled statements from '
 f'{len(assembled_paper_delta["added"])} new papers.')

[docs] def make_curation_summary(self):
 """Add latest curation summary to json_stats."""
 logger.info(f'Generating curation summary for { self.model_name}.')
 cur_stats = self.latest_round.get_curation_stats()
 self.json_stats['curation_summary'] = cur_stats

[docs] def make_changes_over_time(self):
 """Add changes to model over time to json_stats."""
 logger.info(f'Comparing changes over time for {self.model_name}.')
 self.json_stats['changes_over_time'] = {
 'number_of_statements': self.get_over_time(
 'model_summary', 'number_of_statements'),
 'number_of_raw_papers': self.get_over_time(
 'paper_summary', 'number_of_raw_papers'),
 'number_of_assembled_papers': self.get_over_time(
 'paper_summary', 'number_of_assembled_papers'),
 'dates': self.get_dates()}

 def get_over_time(self, section, metrics, mc_type='pysb'):
 logger.info(f'Getting changes over time in {metrics} '
 f'for {self.model_name}.')
 # First available stats
 if not self.previous_json_stats:
 previous_data = []
 else:
 previous_data = (
 self.previous_json_stats['changes_over_time'].get(metrics, []))
 previous_data.append(self.json_stats[section][metrics])
 return previous_data

 def save_to_s3(self):
 date_str = self.latest_round.date_str
 stats_key = (
 f'model_stats/{self.model_name}/model_stats_{date_str}.json')
 super().save_to_s3_key(stats_key)

 def _get_latest_round(self):
 latest_key = find_latest_s3_file(
 self.bucket, f'results/{self.model_name}/model_manager_',
 extension='.pkl')
 if latest_key is None:
 logger.info(f'Could not find a key to the latest model manager '
 f'for {self.model_name} model.')
 return
 logger.info(f'Loading latest round from {latest_key}')
 mr = ModelRound.load_from_s3_key(latest_key, bucket=self.bucket,
 load_estmts=True)
 return mr

 def _get_previous_round(self):
 if not self.previous_json_stats:
 logger.info('Not loading previous round without previous stats')
 return
 previous_key = (f'results/{self.model_name}/model_manager_'
 f'{self.previous_date_str}.pkl')
 if previous_key is None:
 logger.info(f'Could not find a key to the previous model manager '
 f'for {self.model_name} model.')
 return
 logger.info(f'Loading previous round from {previous_key}')
 mr = ModelRound.load_from_s3_key(previous_key, bucket=self.bucket)
 return mr

 def _get_previous_json_stats(self):
 key = find_latest_s3_file(
 self.bucket, f'model_stats/{self.model_name}/model_stats_', '.json')
 # This is the first time statistics is generated for this model
 if key is None:
 logger.info(f'Could not find a key to the previous statistics ')
 return
 # If stats for this date exists, previous stats is the second latest
 if strip_out_date(key) == self.latest_round.date_str:
 logger.info(f'Statistics for latest round already exists')
 key = find_nth_latest_s3_file(
 1, self.bucket, f'model_stats/{self.model_name}/model_stats_',
 '.json')
 # Store the date string to find previous round with it
 self.previous_date_str = strip_out_date(key)
 logger.info(f'Loading earlier statistics from {key}')
 previous_json_stats = load_json_from_s3(self.bucket, key)
 return previous_json_stats

[docs]class TestStatsGenerator(StatsGenerator):
 """Generates statistic for a given test round.

 Parameters

 model_name : str
 A name of a model the tests were run against.
 test_corpus_str : str
 A name of a test corpus the model was tested against.
 latest_round : emmaa.analyze_tests_results.TestRound
 An instance of a TestRound to generate statistics for. If not given,
 will be generated by loading test results from s3.
 previous_round : emmaa.analyze_tests_results.TestRound
 A different instance of a TestRound to find delta between two rounds.
 If not given, will be generated by loading test results from s3.
 previous_json_stats : list[dict]
 A JSON-formatted dictionary containing test statistics for previous
 test round.

 Attributes

 json_stats : dict
 A JSON-formatted dictionary containing test statistics.
 """

 def __init__(self, model_name, test_corpus_str='large_corpus_tests',
 latest_round=None, previous_round=None,
 previous_json_stats=None, bucket=EMMAA_BUCKET_NAME):
 self.test_corpus = test_corpus_str
 super().__init__(model_name, latest_round, previous_round,
 previous_json_stats, bucket)

[docs] def make_stats(self):
 """Check if two latest test rounds were found and add statistics to
 json_stats dictionary. If both latest round and previous round
 were passed or found on s3, a dictionary will have three key-value
 pairs: test_round_summary, tests_delta, and changes_over_time.
 """
 if not self.latest_round:
 logger.info(f'Latest round for {self.model_name} is not found.')
 return
 if self.previous_json_stats and not self.previous_round:
 logger.info(f'Latest stats are found but latest round is not.')
 return
 logger.info(f'Generating stats for {self.model_name}.')
 self.make_test_summary()
 self.make_tests_delta()
 self.make_changes_over_time()

[docs] def make_test_summary(self):
 """Add latest test round summary to json_stats."""
 logger.info(f'Generating test summary for {self.model_name}.')
 self.json_stats['test_round_summary'] = {
 'test_data': self.latest_round.json_results[0].get('test_data'),
 'number_applied_tests': self.latest_round.get_total_applied_tests(),
 'all_test_results': self.latest_round.english_test_results,
 'path_stmt_counts': self.latest_round.get_path_stmt_counts()}
 for mc_type in self.latest_round.mc_types_results:
 self.json_stats['test_round_summary'][mc_type] = {
 'number_passed_tests': (
 self.latest_round.get_number_passed_tests(mc_type)),
 'passed_ratio': self.latest_round.passed_over_total(mc_type)}

[docs] def make_tests_delta(self):
 """Add tests delta between two latest test rounds to json_stats."""
 logger.info(f'Generating tests delta for {self.model_name}.')
 date = self.latest_round.date_str[:10]
 test_name = None
 test_data = self.latest_round.json_results[0].get('test_data')
 if test_data:
 test_name = test_data.get('name')
 if not self.previous_round:
 tests_delta = {
 'applied_hashes_delta': {'added': [], 'removed': []}}
 else:
 applied_delta = self.latest_round.find_delta_hashes(
 self.previous_round, 'applied_tests')
 tests_delta = {
 'applied_hashes_delta': applied_delta}
 msg = _make_delta_msg(
 self.model_name, 'applied_tests', applied_delta, date,
 test_corpus=self.test_corpus, test_name=test_name)
 if msg:
 logger.info(msg['message'])

 for mc_type in self.latest_round.mc_types_results:
 if not self.previous_round or mc_type not in \
 self.previous_round.mc_types_results:
 tests_delta[mc_type] = {
 'passed_hashes_delta': {'added': [], 'removed': []}}
 else:
 passed_delta = self.latest_round.find_delta_hashes(
 self.previous_round, 'passed_tests', mc_type=mc_type)
 tests_delta[mc_type] = {
 'passed_hashes_delta': passed_delta}
 msg = _make_delta_msg(
 self.model_name, 'passed_tests', passed_delta, date,
 mc_type, test_corpus=self.test_corpus, test_name=test_name)
 if msg:
 logger.info(msg['message'])
 self.json_stats['tests_delta'] = tests_delta

[docs] def make_changes_over_time(self):
 """Add changes to tests over time to json_stats."""
 logger.info(f'Comparing changes over time for {self.model_name}.')
 self.json_stats['changes_over_time'] = {
 'number_applied_tests': self.get_over_time(
 'test_round_summary', 'number_applied_tests'),
 'dates': self.get_dates()}
 for mc_type in self.latest_round.mc_types_results:
 self.json_stats['changes_over_time'][mc_type] = {
 'number_passed_tests': self.get_over_time(
 'test_round_summary', 'number_passed_tests', mc_type),
 'passed_ratio': self.get_over_time(
 'test_round_summary', 'passed_ratio', mc_type)}

 def get_over_time(self, section, metrics, mc_type='pysb'):
 logger.info(f'Getting changes over time in {metrics} '
 f'for {self.model_name}.')
 # Not mc_type relevant data
 if metrics == 'number_applied_tests':
 # First available stats
 if not self.previous_json_stats:
 previous_data = []
 else:
 previous_data = (
 self.previous_json_stats['changes_over_time'][metrics])
 previous_data.append(self.json_stats[section][metrics])
 # Mc_type relevant data
 else:
 # First available stats
 if not self.previous_json_stats:
 previous_data = []
 else:
 # This mc_type wasn't available in previous stats
 if mc_type not in \
 self.previous_json_stats['changes_over_time']:
 previous_data = []
 else:
 previous_data = (
 self.previous_json_stats[
 'changes_over_time'][mc_type][metrics])
 previous_data.append(self.json_stats[section][mc_type][metrics])
 return previous_data

 def save_to_s3(self):
 date_str = self.latest_round.date_str
 stats_key = (f'stats/{self.model_name}/test_stats_{self.test_corpus}_'
 f'{date_str}.json')
 super().save_to_s3_key(stats_key)

 def _get_latest_round(self):
 latest_key = find_latest_s3_file(
 self.bucket,
 f'results/{self.model_name}/results_{self.test_corpus}',
 extension='.json')
 if latest_key is None:
 logger.info(f'Could not find a key to the latest test results '
 f'for {self.model_name} model.')
 return
 logger.info(f'Loading latest round from {latest_key}')
 tr = TestRound.load_from_s3_key(latest_key, bucket=self.bucket)
 return tr

 def _get_previous_round(self):
 if not self.previous_json_stats:
 logger.info('Not loading previous round without previous stats')
 return
 previous_key = (f'results/{self.model_name}/results_{self.test_corpus}'
 f'_{self.previous_date_str}.json')
 if previous_key is None:
 logger.info(f'Could not find a key to the previous test results '
 f'for {self.model_name} model.')
 return
 logger.info(f'Loading previous round from {previous_key}')
 tr = TestRound.load_from_s3_key(previous_key, bucket=self.bucket)
 return tr

 def _get_previous_json_stats(self):
 key = find_latest_s3_file(
 self.bucket,
 f'stats/{self.model_name}/test_stats_{self.test_corpus}_', '.json')
 # This is the first time statistics is generated for this model
 if key is None:
 logger.info(f'Could not find a key to the previous statistics ')
 return
 # If stats for this date exists, previous stats is the second latest
 if strip_out_date(key) == self.latest_round.date_str:
 logger.info(f'Statistics for latest round already exists')
 key = find_nth_latest_s3_file(
 1, self.bucket,
 f'stats/{self.model_name}/test_stats_{self.test_corpus}_',
 '.json')
 # Store the date string to find previous round with it
 self.previous_date_str = strip_out_date(key)
 logger.info(f'Loading earlier statistics from {key}')
 previous_json_stats = load_json_from_s3(self.bucket, key)
 return previous_json_stats

[docs]def generate_stats_on_s3(
 model_name, mode, test_corpus_str='large_corpus_tests',
 upload_stats=True, bucket=EMMAA_BUCKET_NAME):
 """Generate statistics for latest round of model update or tests.

 Parameters

 model_name : str
 A name of EmmaaModel.
 mode : str
 Type of stats to generate (model or tests)
 test_corpus_str : str
 A name of a test corpus.
 upload_stats : Optional[bool]
 Whether to upload latest statistics about model and a test.
 Default: True
 """
 if mode == 'model':
 sg = ModelStatsGenerator(model_name, bucket=bucket)
 elif mode == 'tests':
 sg = TestStatsGenerator(model_name, test_corpus_str, bucket=bucket)
 else:
 raise TypeError('Mode must be either model or tests')
 sg.make_stats()
 # Optionally upload stats to S3
 if upload_stats:
 sg.save_to_s3()
 return sg

def _get_pmid_titles(pmids):
 pmids_to_titles = {}
 n = 200
 n_batches = len(pmids) // n
 if len(pmids) % n:
 n_batches += 1
 for i in range(n_batches):
 start = n * i
 end = start + n
 batch = pmids[start: end]
 m = pubmed_client.get_metadata_for_ids(batch)
 for pmid, metadata in m.items():
 pmids_to_titles[pmid] = metadata['title']
 return pmids_to_titles

def _get_doi_title(doi):
 m = crossref_client.get_metadata(doi)
 if m:
 title = m.get('title')
 if title:
 return title[0]

def _get_pmcid_title(pmcid):
 title = pmc_client.get_title(pmcid)
 return title

def _get_trid_title(trid):
 db = get_db('primary')
 tc = db.select_one(db.TextContent,
 db.TextContent.text_ref_id == trid,
 db.TextContent.text_type == 'title')
 if tc:
 title = unpack(tc.content)
 return title
 tr = db.select_one(db.TextRef, db.TextRef.id == trid)
 ref_dict = tr.get_ref_dict()
 if 'PMID' in ref_dict:
 pmid = ref_dict['PMID']
 pmids_to_titles = _get_pmid_titles([pmid])
 if pmid in pmids_to_titles:
 return pmids_to_titles[pmid]
 if 'PMCID' in ref_dict:
 title = _get_pmcid_title(ref_dict['PMCID'])
 if title:
 return title
 if 'DOI' in ref_dict:
 title = _get_doi_title(ref_dict['DOI'])
 if title:
 return title

def _get_publication_link(text_refs):
 if text_refs.get('PMCID'):
 name = 'PMC'
 link = f'https://www.ncbi.nlm.nih.gov/pmc/articles/{text_refs["PMCID"]}'
 elif text_refs.get('PMID'):
 name = 'PubMed'
 link = f'https://pubmed.ncbi.nlm.nih.gov/{text_refs["PMID"]}'
 elif text_refs.get('DOI'):
 name = 'DOI'
 link = f'https://dx.doi.org/{text_refs["DOI"]}'
 elif text_refs.get('URL'):
 name = 'other'
 link = text_refs['URL']
 return (link, name)

 emmaa.answer_queries

 Source code for emmaa.answer_queries

import logging
from datetime import datetime
from copy import deepcopy

from emmaa.model_tests import load_model_manager_from_s3
from emmaa.db import get_db
from emmaa.util import make_date_str, find_latest_s3_file, EMMAA_BUCKET_NAME, \
 FORMATTED_TYPE_NAMES

logger = logging.getLogger(__name__)

model_manager_cache = {}

[docs]class QueryManager(object):
 """Manager to run queries and interact with the database.

 Parameters

 db : emmaa.db.EmmaaDatabaseManager
 An instance of a database manager to use.
 model_managers : list[emmaa.model_tests.ModelManager]
 Optional list of ModelManagers to use for running queries. If not
 given, the methods will load ModelManager from S3 when needed.
 """
 def __init__(self, db=None, model_managers=None):
 self.db = db
 if db is None:
 self.db = get_db('primary')
 self.model_managers = model_managers if model_managers else []

[docs] def answer_immediate_query(
 self, user_email, user_id, query, model_names, subscribe,
 bucket=EMMAA_BUCKET_NAME):
 """This method first tries to find saved result to the query in the
 database and if not found, runs ModelManager method to answer query."""
 query_type = query.get_type()
 # Retrieve query-model hashes
 query_hashes = [
 query.get_hash_with_model(model) for model in model_names]
 # Store query in the database for future reference.
 self.db.put_queries(user_email, user_id, query, model_names, subscribe)
 # Check if the query has already been answered for any of given models
 # and retrieve the results from database.
 saved_results = self.db.get_results_from_query(query, model_names)
 if not saved_results:
 saved_results = []
 checked_models = {res[0] for res in saved_results}
 # If the query was answered for all models before, return the hashes.
 if checked_models == set(model_names):
 return {query_type: query_hashes}
 # Run queries mechanism for models for which result was not found.
 new_results = []
 new_date = datetime.now()
 for model_name in model_names:
 if model_name not in checked_models:
 results_to_store = []
 mm = self.get_model_manager(model_name)
 response_list = mm.answer_query(query, bucket=bucket)
 for (mc_type, response, paths) in response_list:
 results_to_store.append((query, mc_type, response))
 self.db.put_results(model_name, results_to_store)
 return {query_type: query_hashes}

[docs] def answer_registered_queries(self, model_name, bucket=EMMAA_BUCKET_NAME):
 """Retrieve and asnwer registered queries

 Retrieve queries registered on database for a given model,
 answer them, calculate delta between results and put results to a
 database.

 Parameters

 model_name : str
 The name of the model
 bucket : str
 The bucket to save the results to
 """
 model_manager = self.get_model_manager(model_name)
 queries = self.db.get_queries(model_name)
 logger.info(f'Found {len(queries)} queries for {model_name} model.')
 # Only do the following steps if there are queries for this model
 if queries:
 results = model_manager.answer_queries(queries, bucket=bucket)
 new_results = [(model_name, result[0], result[1], result[2], '')
 for result in results]
 self.db.put_results(model_name, results)

[docs] def get_registered_queries(self, user_email, query_type='path_property'):
 """Get formatted results to queries registered by user."""
 results = self.db.get_results(user_email, query_type=query_type)
 return format_results(results, query_type)

[docs] def retrieve_results_from_hashes(
 self, query_hashes, query_type='path_property', latest_order=1):
 """Retrieve results from a db given a list of query-model hashes."""
 results = self.db.get_results_from_hashes(
 query_hashes, latest_order=latest_order)
 return format_results(results, query_type)

 def get_model_manager(self, model_name):
 # Try get model manager from class attributes or load from s3.
 for mm in self.model_managers:
 if mm.model.name == model_name:
 return mm
 return load_model_manager_from_cache(model_name)

[docs]def format_results(results, query_type='path_property'):
 """Format db output to a standard json structure."""
 model_types = ['pysb', 'pybel', 'signed_graph', 'unsigned_graph']
 formatted_results = {}
 for result in results:
 model = result[0]
 query = result[1]
 query_hash = query.get_hash_with_model(model)
 if query_hash not in formatted_results:
 formatted_results[query_hash] = {
 'query': query.to_english(),
 'model': model,
 'date': make_date_str(result[5])}
 mc_type = result[2]
 response_json = result[3]
 delta = result[4]
 response = []
 for k, v in response_json.items():
 if isinstance(v, str):
 response = v
 elif isinstance(v, dict):
 if k in delta:
 new_v = deepcopy(v)
 new_v['path'] = ('new', new_v['path'])
 response.append(new_v)
 else:
 response.append(v)
 if query_type in ['path_property', 'open_search_query']:
 if mc_type == '' and \
 response == 'Query is not applicable for this model':
 for mt in model_types:
 formatted_results[query_hash][mt] = ['n_a', response]
 elif isinstance(response, str) and \
 response == 'Statement type not handled':
 formatted_results[query_hash][mc_type] = ['n_a', response]
 elif isinstance(response, str) and \
 not response == 'Path found but exceeds search depth':
 formatted_results[query_hash][mc_type] = ['Fail', response]
 else:
 formatted_results[query_hash][mc_type] = ['Pass', response]
 elif query_type == 'simple_intervention_property':
 if response == 'Query is not applicable for this model':
 formatted_results[query_hash]['result'] = ['n_a', response]
 else:
 res = response[0]['result']
 if res == 'no_change':
 action = 'did not change'
 elif res.endswith('increase'):
 action = 'increased'
 elif res.endswith('decrease'):
 action = 'decreased'
 if res.startswith('no'):
 expl = f'No, the amount of target entity {action}.'
 formatted_results[query_hash]['result'] = ['Fail', expl]
 else:
 expl = f'Yes, the amount of target entity {action}.'
 formatted_results[query_hash]['result'] = ['Pass', expl]
 formatted_results[query_hash]['image'] = (
 response[0]['fig_path'])
 elif query_type == 'dynamic_property':
 if response == 'Query is not applicable for this model':
 formatted_results[query_hash]['result'] = ['n_a', response]
 else:
 res = int(response[0]['sat_rate'] * 100)
 expl = (f'Satisfaction rate is {res}% after '
 f'{response[0]["num_sim"]} simulations.')
 if res > 50:
 formatted_results[query_hash]['result'] = ['Pass', expl]
 else:
 formatted_results[query_hash]['result'] = ['Fail', expl]
 formatted_results[query_hash]['image'] = (
 response[0]['fig_path'])
 if query_type in ['path_property', 'open_search_query']:
 # Loop through the results again to make sure all model types are there
 for qh in formatted_results:
 for mt in model_types:
 if mt not in formatted_results[qh]:
 formatted_results[qh][mt] = [
 'n_a', 'Model type not supported']
 return formatted_results

def load_model_manager_from_cache(model_name, bucket=EMMAA_BUCKET_NAME):
 model_manager = model_manager_cache.get(model_name)
 if model_manager:
 latest_on_s3 = find_latest_s3_file(
 bucket, f'results/{model_name}/model_manager_', '.pkl')
 cached_date = model_manager.date_str
 logger.info(f'Found model manager cached on {cached_date} and '
 f'latest file on S3 is {latest_on_s3}')
 if cached_date in latest_on_s3:
 logger.info(f'Loaded model manager for {model_name} from cache.')
 return model_manager
 logger.info(f'Loading model manager for {model_name} from S3.')
 model_manager = load_model_manager_from_s3(
 model_name=model_name, bucket=bucket)
 model_manager_cache[model_name] = model_manager
 return model_manager

[docs]def answer_queries_from_s3(model_name, db=None, bucket=EMMAA_BUCKET_NAME):
 """Answer registered queries with model manager on s3.

 Parameters

 model_name : str
 Name of EmmaaModel to answer queries for.
 db : Optional[emmaa.db.manager.EmmaaDatabaseManager]
 If given over-rides the default primary database.
 """
 mm = load_model_manager_from_s3(model_name=model_name, bucket=bucket)
 qm = QueryManager(db=db, model_managers=[mm])
 qm.answer_registered_queries(model_name)

 emmaa.filter_functions

 Source code for emmaa.filter_functions

from indra.tools import assemble_corpus as ac

node_filter_functions = {}
edge_filter_functions = {}

[docs]def register_filter(filter_type):
 """Decorator to register node or edge filter functions.

 A node filter function should take an agent as an argument and return True
 if the agent is allowed to be in a path and False otherwise.

 An edge filter function should take three (graph, source, target - for
 DiGraph) or three (graph, source, target, key - for MultiDiGraph)
 parameters and return True if the edge should be in the graph and False
 otherwise.
 """
 def register(function):
 if filter_type == 'node':
 func_dict = node_filter_functions
 elif filter_type == 'edge':
 func_dict = edge_filter_functions
 func_dict[function.__name__] = function
 return function
 return register

[docs]@register_filter('node')
def filter_chem_mesh_go(agent):
 """Filter ungrounded agents and agents grounded to MESH, CHEBI, GO unless
 also grounded to HMDB.
 """
 gr = agent.get_grounding()
 return gr[0] not in {'MESH', 'CHEBI', 'GO', None}

[docs]@register_filter('edge')
def filter_to_internal_edges(g, u, v, *args):
 """Return True if an edge is internal. NOTE it returns True if any of the
 statements associated with an edge is internal.
 """
 if args:
 edge = g[u][v][args[0]]
 else:
 edge = g[u][v]
 for stmts_dict in edge['statements']:
 if stmts_dict['internal']:
 return True
 return False

 emmaa.model

 Source code for emmaa.model

from collections import defaultdict
from copy import deepcopy
import time
import logging
import datetime
import pybel
from botocore.exceptions import ClientError
from sqlalchemy.sql.functions import mode
from indra.databases import ndex_client
from indra.databases.identifiers import parse_identifiers_url
from indra.literature import pubmed_client, elsevier_client, biorxiv_client
from indra.assemblers.cx import CxAssembler
from indra.assemblers.pysb import PysbAssembler
from indra.assemblers.pysb.sites import states
from indra.assemblers.pybel import PybelAssembler
from indra.assemblers.indranet import IndraNetAssembler
from indra.statements import stmts_from_json, Agent, ModCondition
from indra.pipeline import AssemblyPipeline, register_pipeline
from indra.tools.assemble_corpus import filter_grounded_only, run_preassembly
from indra.sources.indra_db_rest import get_statements_by_hash
from indra.sources.minerva import process_from_web
from indra.explanation.reporting import stmt_from_rule
from indra_db.client.principal.curation import get_curations
from indra_db.client import HasHash
from indra_db.util import get_db, _get_trids
from emmaa.priors import SearchTerm
from emmaa.readers.aws_reader import read_pmid_search_terms
from emmaa.readers.db_client_reader import read_db_pmid_search_terms, \
 read_db_doi_search_terms
from emmaa.readers.elsevier_eidos_reader import \
 read_elsevier_eidos_search_terms
from emmaa.util import make_date_str, find_latest_s3_file, strip_out_date, \
 EMMAA_BUCKET_NAME, find_nth_latest_s3_file, load_pickle_from_s3, \
 save_pickle_to_s3, load_json_from_s3, save_json_to_s3, \
 load_gzip_json_from_s3, get_s3_client
from emmaa.statements import to_emmaa_stmts, is_internal

logger = logging.getLogger(__name__)
register_pipeline(get_curations)

[docs]class EmmaaModel(object):
 """Represents an EMMAA model.

 Parameters

 name : str
 The name of the model.
 config : dict
 A configuration dict that is typically loaded from a YAML file.
 paper_ids : list(str) or None
 A list of paper IDs used to get statements for the current state of the
 model. With new reading results, new paper IDs will be added. If not
 provided, initial set will be derived from existing statements.

 Attributes

 stmts : list[emmaa.EmmaaStatement]
 A list of EmmaaStatement objects representing the model
 assembly_config : dict
 Configurations for assembling the model.
 test_config : dict
 Configurations for running tests on the model.
 reading_config : dict
 Configurations for reading the content.
 query_config : dict
 Configurations for running queries on the model.
 search_terms : list[emmaa.priors.SearchTerm]
 A list of SearchTerm objects containing the search terms used in the
 model.
 ndex_network : str
 The identifier of the NDEx network corresponding to the model.
 assembled_stmts : list[indra.statements.Statement]
 A list of assembled INDRA Statements
 """
 def __init__(self, name, config, paper_ids=None):
 self.name = name
 self.stmts = []
 self.assembly_config = {}
 self.test_config = {}
 self.reading_config = {}
 self.query_config = {}
 self.search_terms = []
 self.ndex_network = None
 self.human_readable_name = None
 self.export_formats = []
 self._load_config(config)
 self.assembled_stmts = []
 self.dynamic_assembled_stmts = []
 if paper_ids:
 self.paper_ids = set(paper_ids)
 else:
 self.paper_ids = set()
 self.date_str = make_date_str()

[docs] def add_statements(self, stmts):
 """Add a set of EMMAA Statements to the model

 Parameters

 stmts : list[emmaa.EmmaaStatement]
 A list of EMMAA Statements to add to the model
 """
 self.stmts += stmts

[docs] def get_indra_stmts(self):
 """Return the INDRA Statements contained in the model.

 Returns

 list[indra.statements.Statement]
 The list of INDRA Statements that are extracted from the EMMAA
 Statements.
 """
 return [es.stmt for es in self.stmts]

 def _load_config(self, config):
 self.search_terms = [SearchTerm.from_json(s) for s in
 config['search_terms']]
 if 'ndex' in config:
 self.ndex_network = config['ndex']['network']
 else:
 self.ndex_network = None
 if 'reading' in config:
 self.reading_config = config['reading']
 if 'assembly' in config:
 if isinstance(config['assembly'], list):
 self.assembly_config = {'main': config['assembly']}
 else:
 self.assembly_config = config['assembly']
 if 'test' in config:
 self.test_config = config['test']
 if 'query' in config:
 self.query_config = config['query']
 if 'human_readable_name' in config:
 self.human_readable_name = config['human_readable_name']
 self.export_formats = config.get('export_formats', [])

[docs] def search_literature(self, lit_source, date_limit=None):
 """Search for the model's search terms in the literature.

 Parameters

 date_limit : Optional[int]
 The number of days to search back from today.

 Returns

 ids_to_terms : dict
 A dict representing all the literature source IDs (e.g.,
 PMIDs or PIIS) returned by the searches as keys,
 and the search terms for which the given ID was produced as
 values.
 """
 if lit_source == 'pubmed':
 terms_to_ids = self.search_pubmed(self.search_terms, date_limit)
 elif lit_source == 'biorxiv':
 collection_id = self.reading_config.get('collection_id', '181')
 terms_to_ids = self.search_biorxiv(collection_id, date_limit)
 elif lit_source == 'elsevier':
 terms_to_ids = self.search_elsevier(self.search_terms, date_limit)
 else:
 raise ValueError('Unknown literature source: %s' % lit_source)
 ids_to_terms = {}
 for term, ids in terms_to_ids.items():
 for id in ids:
 try:
 ids_to_terms[id].append(term)
 except KeyError:
 ids_to_terms[id] = [term]
 return ids_to_terms

[docs] @staticmethod
 def search_pubmed(search_terms, date_limit):
 """Search PubMed for given search terms.

 Parameters

 search_terms : list[emmaa.priors.SearchTerm]
 A list of SearchTerm objects to search PubMed for.
 date_limit : int
 The number of days to search back from today.

 Returns

 terms_to_pmids : dict
 A dict representing given search terms as keys and PMIDs returned
 by searches as values.
 """
 terms_to_pmids = {}
 for term in search_terms:
 pmids = pubmed_client.get_ids(term.search_term, reldate=date_limit)
 logger.info(f'{len(pmids)} PMIDs found for {term.search_term}')
 terms_to_pmids[term] = pmids
 time.sleep(1)
 return terms_to_pmids

[docs] @staticmethod
 def search_elsevier(search_terms, date_limit):
 """Search Elsevier for given search terms.

 Parameters

 search_terms : list[emmaa.priors.SearchTerm]
 A list of SearchTerm objects to search PubMed for.
 date_limit : int
 The number of days to search back from today.

 Returns

 terms_to_piis : dict
 A dict representing given search terms as keys and PIIs returned
 by searches as values.
 """
 start_date = (
 datetime.datetime.utcnow() - datetime.timedelta(days=date_limit))
 start_date = start_date.isoformat(timespec='seconds') + 'Z'
 terms_to_piis = {}
 for term in search_terms:
 # NOTE for now limiting the search to only 5 PIIs
 piis = elsevier_client.get_piis_for_date(
 term.search_term, loaded_after=start_date)[:5]
 logger.info(f'{len(piis)} PIIs found for {term.search_term}')
 terms_to_piis[term] = piis
 time.sleep(1)
 return terms_to_piis

[docs] @staticmethod
 def search_biorxiv(collection_id, date_limit):
 """Search BioRxiv within date_limit.

 Parameters

 date_limit : int
 The number of days to search back from today.
 collection_id : str
 ID of a collection to search BioArxiv for.
 Returns

 terms_to_dois : dict
 A dict representing biorxiv collection ID as key and DOIs returned
 by search as values.
 """
 start_date = (
 datetime.datetime.utcnow() - datetime.timedelta(days=date_limit))
 dois = biorxiv_client.get_collection_dois(collection_id, start_date)
 logger.info(f'{len(dois)} DOIs found')
 term = SearchTerm('other', f'biorxiv: {collection_id}', {}, None)
 terms_to_dois = {term: dois}
 return terms_to_dois

[docs] def get_new_readings(self, date_limit=10):
 """Search new literature, read, and add to model statements"""
 readers = self.reading_config.get('reader', ['indra_db_pmid'])
 lit_sources = self.reading_config.get('literature_source', ['pubmed'])
 if isinstance(lit_sources, str):
 lit_sources = [lit_sources]
 if isinstance(readers, str):
 readers = [readers]
 # First get statements from literature and extend existing statements
 # Some models are not updated from literature
 if lit_sources is not None and readers is not None:
 estmts = []
 for lit_source, reader in zip(lit_sources, readers):
 ids_to_terms = self.search_literature(lit_source, date_limit)
 if reader == 'aws':
 new_estmts = read_pmid_search_terms(
 ids_to_terms)
 self.add_paper_ids(ids_to_terms.keys(), 'pmid')
 elif reader == 'indra_db_pmid':
 new_estmts = read_db_pmid_search_terms(
 ids_to_terms)
 self.add_paper_ids(ids_to_terms.keys(), 'pmid')
 elif reader == 'indra_db_doi':
 new_estmts = read_db_doi_search_terms(
 ids_to_terms)
 self.add_paper_ids(ids_to_terms.keys(), 'doi')
 elif reader == 'elsevier_eidos':
 new_estmts = read_elsevier_eidos_search_terms(
 ids_to_terms)
 self.add_paper_ids(ids_to_terms.keys(), 'pii')
 else:
 raise ValueError('Unknown reader: %s' % reader)
 estmts += new_estmts
 logger.info('Got a total of %d new EMMAA Statements from reading' %
 len(estmts))
 self.extend_unique(estmts)
 # The following methods get subsets of statements from other sources
 # and overwrite existing statements
 estmts = []
 if self.reading_config.get('cord19_update'):
 new_estmts = self.update_with_cord19(
 self.reading_config['cord19_update'])
 estmts += new_estmts
 if self.reading_config.get('disease_map'):
 new_estmts = self.update_from_disease_map(
 self.reading_config['disease_map'])
 estmts += new_estmts
 if self.reading_config.get('other_files'):
 new_estmts = self.update_from_files(
 self.reading_config['other_files'])
 estmts += new_estmts
 if estmts:
 self.stmts = estmts
 self.eliminate_copies()

[docs] def extend_unique(self, estmts):
 """Extend model statements only if it is not already there."""
 source_hashes = {est.stmt.get_hash(shallow=False, refresh=True)
 for est in self.stmts}
 len_before = len(self.stmts)
 for estmt in estmts:
 if estmt.stmt.get_hash(shallow=False, refresh=True) not in \
 source_hashes:
 self.stmts.append(estmt)
 len_after = len(self.stmts)
 logger.info('Extended EMMAA Statements by %d new Statements' %
 (len_after - len_before))

[docs] def update_with_cord19(self, cord19_config):
 """Update model with new CORD19 dataset statements.

 Relevant part of reading config should look similar to:

 {"cord19_update": {
 "metadata": {
 "internal": true,
 "curated": false
 },
 "date_limit": 5
 }
 }
 """
 # Using local import to avoid dependency
 from covid_19.emmaa_update import make_model_stmts
 current_stmts = self.get_indra_stmts()
 metadata = cord19_config['metadata']
 date_limit = cord19_config['date_limit']
 new_stmts, paper_ids = make_model_stmts(
 current_stmts, date_limit=date_limit)
 new_estmts = to_emmaa_stmts(
 new_stmts, datetime.datetime.now(), [], metadata=metadata)
 self.add_paper_ids(paper_ids, 'TRID')
 return new_estmts

[docs] def update_from_disease_map(self, disease_map_config):
 """Update model by processing MINERVA Disease Map.

 Relevant part of reading config should look similar to:

 {"disease_map": {
 "map_name": "covid19map",
 "filenames" : "all", # or a list of filenames
 "metadata": {
 "internal": true
 }
 }
 }
 """
 filenames = disease_map_config['filenames']
 map_name = disease_map_config['map_name']
 metadata = disease_map_config['metadata']
 logger.info('Loading Statements from %s Disease Map' % map_name)
 sp = process_from_web(filenames=filenames, map_name=map_name)
 new_estmts = to_emmaa_stmts(
 sp.statements, datetime.datetime.now(), [], metadata)
 logger.info('Got %d EMMAA Statements from %s Disease Map' %
 (len(new_estmts), map_name))
 return new_estmts

[docs] def update_from_files(self, files_config):
 """Add custom statements from files.

 Relevant part of reading config should look similar to:

 {"other_files": [
 {
 "bucket": "indra-covid19",
 "filename": "ctd_stmts.pkl",
 "metadata": {"internal": true, "curated": true}
 }
]
 }
 """
 new_estmts = []
 for file_dict in files_config:
 bucket = file_dict['bucket']
 fname = file_dict['filename']
 metadata = file_dict['metadata']
 file_stmts = load_pickle_from_s3(bucket, fname)
 logger.info(f'Loaded {len(file_stmts)} statements from {fname}.')
 file_estmts = to_emmaa_stmts(
 file_stmts, datetime.datetime.now(), [], metadata)
 new_estmts += file_estmts
 return new_estmts

[docs] def add_paper_ids(self, initial_ids, id_type='pmid'):
 """Convert if needed and save paper IDs.

 Parameters

 initial_ids : set(str)
 A set of paper IDs.
 id_type : str
 What type the given IDs are (e.g. pmid, doi, pii). All IDs except
 for PIIs will be converted into TextRef IDs before saving.
 """
 logger.info(f'Adding new paper IDs from {len(initial_ids)} {id_type}s')
 if id_type in {'pii', 'TRID'}:
 self.paper_ids.update(set(initial_ids))
 else:
 db = get_db('primary')
 for paper_id in initial_ids:
 trids = _get_trids(db, paper_id, id_type)
 # Some papers might be not in the database yet
 if trids:
 self.paper_ids.add(trids[0])

[docs] def get_paper_ids_from_stmts(self, stmts):
 """Get initial set of paper IDs from a list of statements.

 Parameters

 stmts : list[emmaa.statements.EmmaaStatement]
 A list of EMMAA statements to create the mappings from.
 """
 main_id_type = self.reading_config.get('main_id_type', 'TRID')
 logger.info(f'Extracting {main_id_type}s from statements')
 paper_ids = set()
 for estmt in stmts:
 for evid in estmt.stmt.evidence:
 if main_id_type == 'pii':
 paper_id = evid.annotations.get('pii')
 else:
 paper_id = evid.text_refs.get(main_id_type)
 # In some TextRefs the keys might be lowercase
 if not paper_id:
 paper_id = evid.text_refs.get(main_id_type.lower())
 if paper_id:
 paper_ids.add(paper_id)
 logger.info(f'Got {len(paper_ids)} {main_id_type}s from statements')
 return paper_ids

[docs] def eliminate_copies(self):
 """Filter out exact copies of the same Statement."""
 logger.info('Starting with %d raw EmmaaStatements' % len(self.stmts))
 self.stmts = list({estmt.stmt.get_hash(shallow=False, refresh=True):
 estmt for estmt in self.stmts}.values())
 logger.info(('Continuing with %d raw EmmaaStatements'
 ' that are not exact copies') % len(self.stmts))

[docs] def run_assembly(self):
 """Run INDRA's assembly pipeline on the Statements."""
 from indra_world.belief import get_eidos_scorer
 from indra_world.ontology import load_world_ontology
 self.eliminate_copies()
 stmts = self.get_indra_stmts()
 stnames = {s.name for s in self.search_terms}
 ap = AssemblyPipeline(self.assembly_config['main'])
 self.assembled_stmts = ap.run(stmts, stnames=stnames)

[docs] def update_to_ndex(self):
 """Update assembled model as CX on NDEx, updates existing network."""
 if not self.assembled_stmts:
 self.run_assembly()
 cxa = CxAssembler(self.assembled_stmts, network_name=self.name)
 cxa.make_model()
 cx_str = cxa.print_cx()
 ndex_client.update_network(cx_str, self.ndex_network)

[docs] def upload_to_ndex(self):
 """Upload the assembled model as CX to NDEx, creates new network."""
 if not self.assembled_stmts:
 self.run_assembly()
 cxa = CxAssembler(self.assembled_stmts, network_name=self.name)
 cxa.make_model()
 model_uuid = cxa.upload_model()
 self.ndex_network = model_uuid
 return model_uuid

[docs] def save_to_s3(self, bucket=EMMAA_BUCKET_NAME):
 """Dump the model state to S3."""
 fname = f'models/{self.name}/model_{self.date_str}'
 # Dump as pickle
 save_pickle_to_s3(self.stmts, bucket, key=fname+'.pkl')
 # Save ids to stmt hashes mapping as json
 id_fname = f'papers/{self.name}/paper_ids_{self.date_str}.json'
 save_json_to_s3(list(self.paper_ids), bucket, key=id_fname)

 # Dump as json
 # save_json_to_s3(self.to_json(), bucket, key=fname+'.json')

[docs] @classmethod
 def load_from_s3(klass, model_name, bucket=EMMAA_BUCKET_NAME):
 """Load the latest model state from S3.

 Parameters

 model_name : str
 Name of model to load. This function expects the latest model
 to be found on S3 in the emmaa bucket with key
 'models/{model_name}/model_{date_string}', and the model config
 file at 'models/{model_name}/config.json'.

 Returns

 emmaa.model.EmmaaModel
 Latest instance of EmmaaModel with the given name, loaded from S3.
 """
 config = load_config_from_s3(model_name, bucket=bucket)
 stmts, stmts_key = load_stmts_from_s3(model_name, bucket=bucket)
 date = strip_out_date(stmts_key)
 # Stmts and papers should be from the same date
 key = f'papers/{model_name}/paper_ids_{date}.json'
 try:
 paper_ids = load_json_from_s3(bucket, key)
 except ClientError as e:
 logger.warning(f'Could not find paper IDs mapping due to: {e}')
 paper_ids = None
 em = klass(model_name, config, paper_ids)
 em.stmts = stmts
 if not paper_ids:
 em.paper_ids = em.get_paper_ids_from_stmts(stmts)
 return em

[docs] def get_entities(self):
 """Return a list of Agent objects that the model contains."""
 istmts = self.get_indra_stmts()
 agents = []
 for stmt in istmts:
 agents += [a for a in stmt.agent_list() if a is not None]
 return agents

[docs] def get_assembled_entities(self):
 """Return a list of Agent objects that the assembled model contains."""
 if not self.assembled_stmts:
 self.run_assembly()
 agents = []
 for stmt in self.assembled_stmts:
 agents += [a for a in stmt.agent_list() if a is not None]
 return agents

[docs] def assemble_pysb(self, mode='local', bucket=EMMAA_BUCKET_NAME):
 """Assemble the model into PySB and return the assembled model."""
 if not self.assembled_stmts:
 self.run_assembly()
 pa = PysbAssembler()
 pa.add_statements(self.assembled_stmts)
 pysb_model = pa.make_model()
 if mode == 's3':
 for exp_f in self.export_formats:
 if exp_f not in {'sbml', 'kappa', 'kappa_im', 'kappa_cm',
 'bngl', 'sbgn', 'pysb_flat', 'gromet'}:
 continue
 elif exp_f == 'gromet':
 # Export gromet here if there's no separate "dynamic" pysb
 if 'dynamic' not in self.assembly_config:
 fname = f'gromet_{self.date_str}.json'
 try:
 pysb_to_gromet(pysb_model, self.name,
 self.assembled_stmts, fname)
 except Exception as e:
 logger.info(e)
 logger.info('Could not export to GroMEt')
 continue
 else:
 fname = f'{exp_f}_{self.date_str}.{exp_f}'
 pa.export_model(exp_f, fname)
 logger.info(f'Uploading {fname}')
 client = get_s3_client(unsigned=False)
 client.upload_file(fname, bucket,
 f'exports/{self.name}/{fname}')
 return pysb_model

[docs] def assemble_pybel(self, mode='local', bucket=EMMAA_BUCKET_NAME):
 """Assemble the model into PyBEL and return the assembled model."""
 if not self.assembled_stmts:
 self.run_assembly()
 pba = PybelAssembler(self.assembled_stmts)
 pybel_model = pba.make_model()
 if mode == 's3' and 'pybel' in self.export_formats:
 fname = f'pybel_{self.date_str}.bel.nodelink.json.gz'
 pybel.dump(pybel_model, fname)
 logger.info(f'Uploading {fname}')
 client = get_s3_client(unsigned=False)
 client.upload_file(fname, bucket, f'exports/{self.name}/{fname}')
 return pybel_model

[docs] def assemble_signed_graph(self, mode='local', bucket=EMMAA_BUCKET_NAME):
 """Assemble the model into signed graph and return the assembled graph.
 """
 if not self.assembled_stmts:
 self.run_assembly()
 ia = IndraNetAssembler(self.assembled_stmts)
 signed_graph = ia.make_model(
 graph_type='signed',
 extra_columns=[('internal', is_internal)])
 if mode == 's3' and 'indranet' in self.export_formats:
 fname = f'indranet_{self.date_str}.tsv'
 df = ia.make_df()
 df.to_csv(fname, sep='\t', index=False)
 logger.info(f'Uploading {fname}')
 client = get_s3_client(unsigned=False)
 client.upload_file(fname, bucket, f'exports/{self.name}/{fname}')
 return signed_graph

[docs] def assemble_unsigned_graph(self, **kwargs):
 """Assemble the model into unsigned graph and return the assembled
 graph."""
 if not self.assembled_stmts:
 self.run_assembly()
 ia = IndraNetAssembler(self.assembled_stmts)
 unsigned_graph = ia.make_model(
 graph_type='digraph',
 extra_columns=[('internal', is_internal)])
 return unsigned_graph

[docs] def assemble_dynamic_pysb(self, mode='local', bucket=EMMAA_BUCKET_NAME):
 """Assemble a version of a PySB model for dynamic simulation."""
 # First need to run regular assembly
 if not self.assembled_stmts:
 self.run_assembly()
 if 'dynamic' in self.assembly_config:
 logger.info('Assembling dynamic PySB model')
 ap = AssemblyPipeline(self.assembly_config['dynamic'])
 # Not overwrite assembled stmts
 stmts = deepcopy(self.assembled_stmts)
 self.dynamic_assembled_stmts = ap.run(stmts)
 pa = PysbAssembler()
 pa.add_statements(self.dynamic_assembled_stmts)
 pysb_model = pa.make_model()
 if mode == 's3' and 'gromet' in self.export_formats:
 fname = f'gromet_{self.date_str}.json'
 try:
 pysb_to_gromet(pysb_model, self.name,
 self.dynamic_assembled_stmts, fname)
 logger.info(f'Uploading {fname}')
 client = get_s3_client(unsigned=False)
 client.upload_file(fname, bucket,
 f'exports/{self.name}/{fname}')
 except Exception as e:
 logger.info(e)
 logger.info('Could not export to GroMEt')
 return pysb_model
 logger.info('Did not find dynamic assembly steps')

[docs] def to_json(self):
 """Convert the model into a json dumpable dictionary"""
 logger.info('Converting a model to JSON')
 json_output = {'name': self.name,
 'ndex_network': self.ndex_network,
 'search_terms': [st.to_json() for st
 in self.search_terms],
 'stmts': [st.to_json() for st in self.stmts]}
 return json_output

 def __repr__(self):
 return "EmmaModel(%s, %d stmts, %d search terms)" % \
 (self.name, len(self.stmts), len(self.search_terms))

@register_pipeline
def filter_relevance(stmts, stnames, policy=None):
 """Filter a list of Statements to ones matching a search term."""
 logger.info('Filtering %d statements for relevance...' % len(stmts))
 stmts_out = []
 for stmt in stmts:
 agnames = {a.name for a in stmt.agent_list() if a is not None}
 if policy == 'prior_one' and (agnames & stnames):
 stmts_out.append(stmt)
 elif policy == 'prior_all' and agnames.issubset(stnames):
 stmts_out.append(stmt)
 elif policy is None:
 stmts_out.append(stmt)
 logger.info('%d statements after filter...' % len(stmts_out))
 return stmts_out

@register_pipeline
def filter_eidos_ungrounded(stmts):
 """Filter out statements from Eidos with ungrounded agents."""
 logger.info(
 'Filtering out ungrounded Eidos statements from %d statements...'
 % len(stmts))
 stmts_out = []
 eidos_stmts = []
 for stmt in stmts:
 if stmt.evidence[0].source_api == 'eidos':
 eidos_stmts.append(stmt)
 else:
 stmts_out.append(stmt)
 eidos_grounded = filter_grounded_only(eidos_stmts)
 stmts_out += eidos_grounded
 logger.info('%d statements after filter...' % len(stmts_out))
 return stmts_out

[docs]def load_config_from_s3(model_name, bucket=EMMAA_BUCKET_NAME):
 """Return a JSON dict of config settings for a model from S3.

 Parameters

 model_name : str
 The name of the model whose config should be loaded.

 Returns

 config : dict
 A JSON dictionary of the model configuration loaded from S3.
 """
 base_key = f'models/{model_name}'
 config_key = f'{base_key}/config.json'
 logger.info(f'Loading model config from {config_key}')
 config = load_json_from_s3(bucket, config_key)
 return config

[docs]def save_config_to_s3(model_name, config, bucket=EMMAA_BUCKET_NAME):
 """Upload config settings for a model to S3.

 Parameters

 model_name : str
 The name of the model whose config should be saved to S3.
 config : dict
 A JSON dict of configurations for the model.
 """
 base_key = f'models/{model_name}'
 config_key = f'{base_key}/config.json'
 logger.info(f'Saving model config to {config_key}')
 save_json_to_s3(config, bucket, config_key)

[docs]def load_stmts_from_s3(model_name, bucket=EMMAA_BUCKET_NAME):
 """Return the list of EMMAA Statements constituting the latest model.

 Parameters

 model_name : str
 The name of the model whose config should be loaded.

 Returns

 stmts : list of emmaa.statements.EmmaaStatement
 The list of EMMAA Statements in the latest model version.
 """
 base_key = f'models/{model_name}'
 latest_model_key = find_latest_s3_file(bucket, f'{base_key}/model_',
 extension='.pkl')
 logger.info(f'Loading model state from {latest_model_key}')
 stmts = load_pickle_from_s3(bucket, latest_model_key)
 return stmts, latest_model_key

def _default_test(model, config=None, bucket=EMMAA_BUCKET_NAME):
 if config:
 return config['test']['default_test_corpus']
 else:
 config = load_config_from_s3(model, bucket=bucket)
 return _default_test(model, config, bucket=bucket)

[docs]def last_updated_date(model, file_type='model', date_format='date',
 tests='large_corpus_tests', extension='.pkl', n=0,
 bucket=EMMAA_BUCKET_NAME):
 """Find the most recent or the nth file of given type on S3 and return its
 creation date.

 Example file name:
 models/aml/model_2018-12-13-18-11-54.pkl

 Parameters

 model : str
 Model name to look for
 file_type : str
 Type of a file to find the latest file for. Accepted values: 'model',
 'test_results', 'model_stats', 'test_stats'.
 date_format : str
 Format of the returned date. Accepted values are 'datetime' (returns a
 date in the format "YYYY-MM-DD-HH-mm-ss") and 'date' (returns a date
 in the format "YYYY-MM-DD"). Default is 'date'.
 extension : str
 The extension the model file needs to have. Default is '.pkl'
 n : int
 Index of the file in list of S3 files sorted by date (0-indexed).
 bucket : str
 Name of bucket on S3.

 Returns

 last_updated : str
 A string of the selected format.
 """
 if file_type == 'model':
 folder_name = 'models'
 prefix_new = prefix_old = f'models/{model}/model_'
 elif file_type == 'test_results':
 prefix_new = f'results/{model}/results_{tests}'
 prefix_old = f'results/{model}/results_'
 elif file_type == 'model_stats':
 prefix_new = f'model_stats/{model}/model_stats_'
 prefix_old = f'stats/{model}/stats_'
 elif file_type == 'test_stats':
 prefix_new = f'stats/{model}/test_stats_{tests}'
 prefix_old = f'stats/{model}/stats_'
 else:
 raise TypeError(f'Files of type {file_type} are not supported')
 try:
 return strip_out_date(
 find_nth_latest_s3_file(
 n=n,
 bucket=bucket,
 prefix=prefix_new,
 extension=extension),
 date_format=date_format)
 except TypeError:
 try:
 return strip_out_date(
 find_nth_latest_s3_file(
 n=n,
 bucket=bucket,
 prefix=prefix_old,
 extension=extension),
 date_format=date_format)
 except TypeError:
 logger.info('Could not find latest update date')
 return ''

[docs]def get_model_stats(model, mode, tests=None, date=None,
 extension='.json', n=0, bucket=EMMAA_BUCKET_NAME):
 """Gets the latest statistics for the given model

 Parameters

 model : str
 Model name to look for
 mode : str
 Type of stats to generate (model or test)
 tests : str
 A name of a test corpus. Default is large_corpus_tests.
 date : str or None
 Date for which the stats will be returned in "YYYY-MM-DD" format.
 extension : str
 Extension of the file.
 n : int
 Index of the file in list of S3 files sorted by date (0-indexed).
 bucket : str
 Name of bucket on S3.
 Returns

 model_data : json
 The json formatted data containing the statistics for the model
 """
 if not tests:
 tests = _default_test(model, bucket=bucket)
 # If date is not specified, get the latest or the nth
 if not date:
 if mode == 'model':
 date = last_updated_date(model, 'model_stats', 'date',
 extension=extension, n=n, bucket=bucket)
 elif mode == 'test':
 date = last_updated_date(model, 'test_stats', 'date', tests=tests,
 extension=extension, n=n, bucket=bucket)
 else:
 raise TypeError('Mode must be either model or tests')

 # Try find new formatted stats (separate for model and tests)
 if mode == 'model':
 # File name example:
 # model_stats/skcm/model_stats_2019-08-20-17-34-40.json
 prefix = f'model_stats/{model}/model_stats_{date}'
 latest_file_key = find_latest_s3_file(bucket=bucket,
 prefix=prefix,
 extension=extension)
 elif mode == 'test':
 # File name example:
 # stats/skcm/test_stats_large_corpus_tests_2019-08-20-17-34-40.json
 prefix = f'stats/{model}/test_stats_{tests}_{date}'
 latest_file_key = find_latest_s3_file(bucket=bucket,
 prefix=prefix,
 extension=extension)
 else:
 raise TypeError('Mode must be either model or tests')
 # This might be an older file with model and test stats combined.
 # File name example: stats/skcm/stats_2019-08-20-17-34-40.json
 if not latest_file_key and (
 mode == 'model' or (
 mode == 'test' and tests == _default_test(model))):
 prefix = f'stats/{model}/stats_{date}'
 latest_file_key = find_latest_s3_file(bucket=bucket,
 prefix=prefix,
 extension=extension)
 # If we still didn't filnd the file it probably does not exist
 if not latest_file_key:
 return None, None
 return (load_json_from_s3(bucket, latest_file_key),
 latest_file_key)

[docs]def get_assembled_statements(model, date=None, bucket=EMMAA_BUCKET_NAME):
 """Load and return a list of assembled statements.

 Parameters

 model : str
 A name of a model.
 date : str or None
 Date in "YYYY-MM-DD" format for which to load the statements. If None,
 loads the latest available statements.
 bucket : str
 Name of S3 bucket to look for a file. Defaults to 'emmaa'.

 Returns

 stmts : list[indra.statements.Statement]
 A list of assembled statements.
 latest_file_key : str
 Key of a file with statements on s3.
 """
 if not date:
 prefix = f'assembled/{model}/statements_'
 else:
 prefix = f'assembled/{model}/statements_{date}'
 # Try loading gzip file
 latest_file_key = find_latest_s3_file(bucket, prefix, '.gz')
 if not latest_file_key:
 # Could be saved with .zip extension
 latest_file_key = find_latest_s3_file(bucket, prefix, '.zip')
 if latest_file_key:
 stmt_jsons = load_gzip_json_from_s3(bucket, latest_file_key)
 else:
 # Try loading json file
 latest_file_key = find_latest_s3_file(bucket, prefix, '.json')
 if latest_file_key:
 stmt_jsons = load_json_from_s3(bucket, latest_file_key)
 # Didn't get gzip, zip or json
 else:
 logger.info(f'No assembled statements found for {model}.')
 return None, None
 stmts = stmts_from_json(stmt_jsons)
 return stmts, latest_file_key

@register_pipeline
def load_custom_grounding_map(model, bucket=EMMAA_BUCKET_NAME):
 key = f'models/{model}/grounding_map.json'
 gr_map = load_json_from_s3(bucket, key)
 return gr_map

@register_pipeline
def get_search_term_names(model, bucket=EMMAA_BUCKET_NAME):
 config = load_config_from_s3(model, bucket=bucket)
 return [st['name'] for st in config['search_terms']]

@register_pipeline
def load_belief_scorer(bucket, key):
 logger.info(f'Loading the belief model from {key}')
 scorer = load_pickle_from_s3(bucket, key)
 return scorer

[docs]def load_extra_evidence(stmts, method='db_query', ev_limit=1000,
 batch_size=3000):
 """Load additional evidence for statements from database.

 Parameters

 stmts : list[indra.statements.Statement]
 A list of statements to load evidence for.
 method : str
 What method to use to load evidence (accepted values: db_query and
 rest_api). Default: db_query.
 ev_limit : Optional[int]
 How many evidences to load from the database for each statement.
 Default: 1000.
 batch_size : Optional[int]
 Batch size used for querying. Default: 3000.

 Returns

 stmts : list[indra.statements.Statement]
 A list of statements with additional evidence.
 """
 stmt_hashes = [stmt.get_hash() for stmt in stmts]
 # get stmts from database
 logger.info(f'Loading additional evidences for {len(stmts)} stmts from db'
 f' using {method} method')
 new_stmts = []
 offset = 0
 while True:
 if batch_size:
 hashes_batch = stmt_hashes[offset:(offset + batch_size)]
 else:
 hashes_batch = stmt_hashes
 if method == 'rest_api':
 proc = get_statements_by_hash(hashes_batch, ev_limit=ev_limit)
 batch_stmts = proc.statements
 elif method == 'db_query':
 q = HasHash(hashes_batch)
 res = q.get_statements(ev_limit=ev_limit)
 batch_stmts = res.statements()
 new_stmts += batch_stmts
 offset += batch_size
 if offset >= len(stmt_hashes):
 break
 logger.info(f'Found {len(new_stmts)} stmts in the database')
 evid_by_hash = {stmt.get_hash(): stmt.evidence for stmt in new_stmts}
 # add db evidence to emmaa stmts evidence
 # this can create duplicates but they are handled by preassembly
 for stmt in stmts:
 stmt.evidence += evid_by_hash.get(stmt.get_hash(), [])
 return stmts

@register_pipeline
def run_preassembly_with_extra_evidence(stmts_in, return_toplevel=True,
 belief_scorer=None,
 query_method='db_query', ev_limit=1000,
 batch_size=3000, **kwargs):
 """Run preassembly on a list of statements.

 Parameters

 stmts_in : list[indra.statements.Statement]
 A list of statements to preassemble.
 return_toplevel : Optional[bool]
 If True, only the top-level statements are returned. If False,
 all statements are returned irrespective of level of specificity.
 Default: True
 belief_scorer : Optional[indra.belief.BeliefScorer]
 Instance of BeliefScorer class to use in calculating Statement
 probabilities. If None is provided (default), then the default
 scorer is used.
 query_method : str
 What method to use to load evidence (accepted values: db_query and
 rest_api). Default: db_query.
 ev_limit : Optional[int]
 How many evidences to load from the database for each statement.
 Default: 1000.
 batch_size : Optional[int]
 Batch size used for querying. Default: 3000.
 kwargs : dict
 Other keyword arguments to pass to run_preassembly.

 Returns

 stmts_out : list[indra.statements.Statement]
 A list of preassembled top-level statements.
 """
 temp_stmts = deepcopy(stmts_in)
 temp_stmts = load_extra_evidence(
 temp_stmts, query_method, ev_limit=ev_limit, batch_size=batch_size)
 preassembled_stmts = run_preassembly(
 temp_stmts, return_toplevel=return_toplevel,
 belief_scorer=belief_scorer, **kwargs)
 belief_by_hash = {stmt.get_hash(): stmt.belief
 for stmt in preassembled_stmts}
 logger.info('Assigning new beliefs to original statements')
 stmts_out = []
 for stmt in stmts_in:
 stmt_hash = stmt.get_hash()
 if stmt_hash in belief_by_hash:
 stmt.belief = belief_by_hash[stmt_hash]
 stmts_out.append(stmt)
 return stmts_out

[docs]def pysb_to_gromet(pysb_model, model_name, statements=None, fname=None):
 """Convert PySB model to GroMEt object and save it to a JSON file.

 Parameters

 pysb_model : pysb.Model
 PySB model object.
 model_name : str
 A name of EMMAA model.
 statements : Optional[list[indra.statements.Statement]]
 A list of INDRA Statements a PySB model was assembled from. If
 provided the statement hashes will be propagated into GroMEt metadata.
 fname : Optional[str]
 If given, the GroMEt will be dumped into JSON file.

 Returns

 g : automates.script.gromet.gromet.Gromet
 A GroMEt object built from PySB model.
 """
 from gromet import Gromet, gromet_to_json, \
 Junction, Wire, UidJunction, UidType, UidWire, Relation, \
 UidBox, UidGromet, Literal, Val
 from gromet_metadata import IndraAgent, IndraAgentReferenceSet, \
 ReactionReference, UidMetadatum, MetadatumMethod, Provenance, \
 get_current_datetime, ModelInterface
 from pysb import Parameter, WILD
 from pysb.bng import generate_equations

 logger.info('Generating equations ...')
 generate_equations(pysb_model)

 logger.info('Creating GroMEt')
 junctions = []
 wires = []
 # Get all species values
 species_values = {}
 for initial in pysb_model.initials:
 ix = pysb_model.get_species_index(initial.pattern)
 if initial.value:
 species_values[ix] = Literal(
 uid=None, type=UidType("Integer"),
 value=Val(initial.value.value),
 name=None, metadata=None)

 # Get groundings for monomers
 groundings_by_monomer = {}
 # Build up db_refs for each monomer object
 for ann in pysb_model.annotations:
 if ann.predicate == 'is':
 m = ann.subject
 db_name, db_id = parse_identifiers_url(ann.object)
 if m in groundings_by_monomer:
 groundings_by_monomer[m][db_name] = db_id
 else:
 groundings_by_monomer[m] = {db_name: db_id}
 # Store species names to refer later
 species_nodes = [str(sp) for sp in pysb_model.species]
 # Add all species junctions
 for ix, sp in enumerate(pysb_model.species):
 # Map to a list of agents
 agents = []
 for mp in sp.monomer_patterns:
 mods = []
 if hasattr(mp.monomer, 'site_annotations'):
 for site, state in mp.site_conditions.items():
 if isinstance(state, tuple) and state[1] == WILD:
 state = state[0]
 mod, mod_type, res, pos = None, None, None, None
 for ann in mp.monomer.site_annotations:
 if ann.subject == (site, state):
 mod_type = ann.object
 elif ann.subject == site and \
 ann.predicate == 'is_residue':
 res = ann.object
 if ann.subject == site and \
 ann.predicate == 'is_position':
 pos = ann.object
 if mod_type:
 not_mod, mod = states[mod_type]
 if state == mod:
 is_mod = True
 elif state == not_mod:
 is_mod = False
 else:
 logger.warning('Unknown state %s for %s, '
 'setting as not modified' % (
 state, mod_type))
 is_mod = False
 mod = ModCondition(mod_type, res, pos, is_mod)
 if mod:
 mods.append(mod)
 if not mods:
 mods = None
 ag = Agent(mp.monomer.name, mods=mods,
 db_refs=groundings_by_monomer.get(mp.monomer))
 agents.append(ag)
 agent_metadata = IndraAgentReferenceSet(
 uid=UidMetadatum(f'{species_nodes[ix]}_metadata'),
 provenance=Provenance(method=MetadatumMethod('from_emmaa_model'),
 timestamp=get_current_datetime()),
 indra_agent_references=[IndraAgent(ag.to_json()) for ag in agents])
 junctions.append(Junction(uid=UidJunction(f'J:{species_nodes[ix]}'),
 type=UidType('State'),
 name=species_nodes[ix],
 value=species_values.get(ix),
 value_type=UidType('Integer'),
 metadata=[agent_metadata]))
 # Add wires for each reaction
 rate_counts = defaultdict(int)
 for rxn in pysb_model.reactions:
 rate_params = [rate_term for rate_term in rxn['rate'].args
 if isinstance(rate_term, Parameter)]
 assert len(rate_params) == 1
 rate = rate_params[0].name
 rate_counts[rate] += 1
 rate_node = f'{rate}:{rate_counts[rate]}'
 # Get metadata for rate node
 assert len(rxn['rule']) == 1
 assert len(rxn['reverse']) == 1
 rule = rxn['rule'][0]
 reverse = rxn['reverse'][0]
 if statements:
 stmt = stmt_from_rule(rule, pysb_model, statements)
 # Add rate junction for a reaction (uid and name are the same for now)
 reaction_metadata = ReactionReference(
 uid=UidMetadatum(f'{rate_node}_metadata'),
 provenance=Provenance(method=MetadatumMethod('from_emmaa_model'),
 timestamp=get_current_datetime()),
 indra_stmt_hash=stmt.get_hash(),
 reaction_rule=rule,
 is_reverse=reverse)
 wire_count = defaultdict(int)
 junctions.append(Junction(uid=UidJunction(f'J:{rate_node}'),
 type=UidType('Rate'),
 name=rate,
 value=Literal(uid=None,
 type=UidType("Float"),
 value=Val(rate_params[0].value),
 name=None,
 metadata=None),
 value_type=UidType('Float'),
 metadata=[reaction_metadata]))
 # Add wires from reactant to rate
 for reactant_ix in rxn['reactants']:
 reactant = species_nodes[reactant_ix]
 wire = f'{reactant}_{rate_node}'
 wire_count[wire] += 1
 wires.append(Wire(uid=UidWire(f'W:{wire}:w{wire_count[wire]}'),
 type=None,
 value_type=None,
 name=None,
 value=None,
 metadata=None,
 src=UidJunction(f'J:{reactant}'),
 tgt=UidJunction(f'J:{rate_node}')))
 # Add wires from rate to product
 for prod_ix in rxn['products']:
 prod = species_nodes[prod_ix]
 wire = f'{rate_node}_{prod}'
 wire_count[wire] += 1
 wires.append(Wire(uid=UidWire(f'W:{wire}:w{wire_count[wire]}'),
 type=None,
 value_type=None,
 name=None,
 value=None,
 metadata=None,
 src=UidJunction(f'J:{rate_node}'),
 tgt=UidJunction(f'J:{prod}')))
 # Create relation
 pnc = Relation(uid=UidBox(model_name),
 type=UidType("PetriNetClassic"),
 name=model_name,
 ports=None,
 # contents
 junctions=[j.uid for j in junctions],
 wires=[w.uid for w in wires],
 boxes=None,
 metadata=None)
 boxes = [pnc]

 # Create model interface metadata
 model_interface = \
 ModelInterface(
 uid=UidMetadatum(f'{model_name}_model_interface'),
 provenance=Provenance(method=MetadatumMethod('from_emmaa_model'),
 timestamp=get_current_datetime()),
 variables=[j.uid for j in junctions],
 parameters=[j.uid for j in junctions if j.type == 'Rate'],
 initial_conditions=[j.uid for j in junctions if j.type == 'State'])
 # Create Gromet object
 g = Gromet(
 uid=UidGromet(f'{model_name}_pnc'),
 name=model_name,
 type=UidType("PetriNetClassic"),
 root=pnc.uid,
 types=None,
 literals=None,
 junctions=junctions,
 ports=None,
 wires=wires,
 boxes=boxes,
 variables=None,
 metadata=[model_interface]
)
 logger.info('Created GroMEt')
 # Optionally save Gromet to JSON file
 if fname:
 gromet_to_json(g, fname)
 return g

 emmaa.model_tests

 Source code for emmaa.model_tests

"""This module implements the object model for EMMAA model testing."""
import logging
import itertools
import jsonpickle
import os
import sys
from collections import defaultdict
from fnvhash import fnv1a_32
from urllib import parse
from copy import deepcopy
from indra.explanation.model_checker import PysbModelChecker, \
 PybelModelChecker, SignedGraphModelChecker, UnsignedGraphModelChecker
from indra.explanation.reporting import stmts_from_pysb_path, \
 stmts_from_pybel_path, stmts_from_indranet_path, PybelEdge, \
 pybel_edge_to_english, RefEdge
from indra.explanation.pathfinding import bfs_search_multiple_nodes
from indra.assemblers.english.assembler import EnglishAssembler
from indra.statements import Statement, Agent, stmts_to_json
from indra.util.statement_presentation import group_and_sort_statements, \
 make_string_from_relation_key
from indra.ontology.bio import bio_ontology
from bioagents.tra.tra import TRA, MissingMonomerError, MissingMonomerSiteError
from emmaa.model import EmmaaModel, get_assembled_statements, \
 load_config_from_s3
from emmaa.statements import filter_indra_stmts_by_metadata
from emmaa.queries import PathProperty, DynamicProperty, OpenSearchQuery, \
 SimpleInterventionProperty
from emmaa.util import make_date_str, get_s3_client, \
 EMMAA_BUCKET_NAME, find_latest_s3_file, load_pickle_from_s3, \
 save_pickle_to_s3, load_json_from_s3, save_json_to_s3, strip_out_date, \
 save_gzip_json_to_s3
from emmaa.filter_functions import node_filter_functions, edge_filter_functions

logger = logging.getLogger(__name__)
sys.setrecursionlimit(50000)

result_codes_link = ('https://emmaa.readthedocs.io/en/latest/dashboard/'
 'response_codes.html')
RESULT_CODES = {
 'STATEMENT_TYPE_NOT_HANDLED': 'Statement type not handled',
 'SUBJECT_MONOMERS_NOT_FOUND': 'Statement subject not in model',
 'SUBJECT_NOT_FOUND': 'Statement subject not in model',
 'OBSERVABLES_NOT_FOUND': 'Statement object state not in model',
 'OBJECT_NOT_FOUND': 'Statement object state not in model',
 'NO_PATHS_FOUND': 'No path found that satisfies the test statement',
 'MAX_PATH_LENGTH_EXCEEDED': 'Path found but exceeds search depth',
 'PATHS_FOUND': 'Path found which satisfies the test statement',
 'INPUT_RULES_NOT_FOUND': 'No rules with test statement subject',
 'MAX_PATHS_ZERO': 'Path found but not reconstructed',
 'QUERY_NOT_APPLICABLE': 'Query is not applicable for this model',
 'NODE_NOT_FOUND': 'Node not in model'
}
ARROW_DICT = {'Complex': u"\u2194",
 'Inhibition': u"\u22A3",
 'DecreaseAmount': u"\u22A3"}

This mapping configures the use of different model types
path: regular tests and path-based queries will be run against these models
simulation: priority list for running simulation based queries (only first
available model type will be used)
MODEL_TYPES = {'path': ['pysb', 'pybel', 'signed_graph', 'unsigned_graph'],
 'simulation': ['dynamic', 'pysb']}

[docs]class ModelManager(object):
 """Manager to generate and store properties of a model and relevant tests.

 Parameters

 model : emmaa.model.EmmaaModel
 EMMAA model
 mode : str
 If 'local' (default), does not save any exports/images to S3. It is
 only set to 's3' mode in update_model_manager.py script.

 Attributes

 mc_mapping : dict
 A dictionary mapping a ModelChecker type to a corresponding method
 for assembling the model and a ModelChecker class.
 mc_types : dict
 A dictionary in which each key is a type of a ModelChecker and value is
 a dictionary containing an instance of a model, an instance of a
 ModelChecker and a list of test results.
 entities : list[indra.statements.agent.Agent]
 A list of entities of EMMAA model.
 applicable_tests : list[emmaa.model_tests.EmmaaTest]
 A list of EMMAA tests applicable for given EMMAA model.
 date_str : str
 Time when this object was created.
 path_stmt_types : dict
 A dictionary mapping statement hashes to a count of paths they are in.
 """
 def __init__(self, model, mode='local'):
 self.model = model
 self.mode = mode
 self.mc_mapping = {
 'pysb': (self.model.assemble_pysb, PysbModelChecker,
 stmts_from_pysb_path),
 'pybel': (self.model.assemble_pybel, PybelModelChecker,
 stmts_from_pybel_path),
 'signed_graph': (self.model.assemble_signed_graph,
 SignedGraphModelChecker,
 stmts_from_indranet_path),
 'unsigned_graph': (self.model.assemble_unsigned_graph,
 UnsignedGraphModelChecker,
 stmts_from_indranet_path),
 'dynamic': (self.model.assemble_dynamic_pysb, None, None)}
 self.mc_types = {}
 for mc_type in model.test_config.get('mc_types', ['pysb']):
 self.mc_types[mc_type] = {}
 assembled_model = self.mc_mapping[mc_type][0](mode=mode)
 self.mc_types[mc_type]['model'] = assembled_model
 if mc_type in MODEL_TYPES['path']:
 self.mc_types[mc_type]['model_checker'] = (
 self.mc_mapping[mc_type][1](assembled_model))
 self.mc_types[mc_type]['test_results'] = []
 self.entities = self.model.get_assembled_entities()
 self.applicable_tests = []
 self.date_str = self.model.date_str
 self.path_stmt_counts = defaultdict(int)

 @classmethod
 def load_from_statements(cls, model_name, mode='local', date=None,
 bucket=EMMAA_BUCKET_NAME):
 config = load_config_from_s3(model_name, bucket=bucket)
 if date:
 prefix = f'papers/{model_name}/paper_ids_{date}'
 else:
 prefix = f'papers/{model_name}/paper_ids_'
 paper_key = find_latest_s3_file(bucket, prefix, 'json')
 if paper_key:
 paper_ids = load_json_from_s3(bucket, paper_key)
 else:
 paper_ids = None
 model = EmmaaModel(model_name, config, paper_ids)
 # Loading assembled statements to avoid reassembly
 stmts, fname = get_assembled_statements(model_name, date, bucket)
 model.assembled_stmts = stmts
 model.date_str = strip_out_date(fname, 'datetime')
 mm = cls(model, mode=mode)
 return mm

[docs] def get_updated_mc(self, mc_type, stmts, add_ns=False,
 edge_filter_func=None):
 """Update the ModelChecker and graph with stmts for tests/queries."""
 mc = self.mc_types[mc_type]['model_checker']
 mc.statements = stmts
 if mc_type == 'pysb':
 mc.graph = None
 mc.model_stmts = self.model.assembled_stmts
 mc.get_graph(prune_im=True, prune_im_degrade=True,
 add_namespaces=add_ns,
 edge_filter_func=edge_filter_func)
 else:
 mc.graph = None
 mc.get_graph(edge_filter_func=edge_filter_func)
 if mc_type in ('signed_graph', 'unsigned_graph'):
 mc.nodes_to_agents = {ag.name: ag for ag in self.entities}
 return mc

[docs] def add_test(self, test):
 """Add a test to a list of applicable tests."""
 self.applicable_tests.append(test)

[docs] def add_result(self, mc_type, result):
 """Add a result to a list of results."""
 self.mc_types[mc_type]['test_results'].append(result)

[docs] def run_all_tests(self, filter_func=None, edge_filter_func=None):
 """Run all applicable tests with all available ModelCheckers."""
 max_path_length, max_paths = self._get_test_configs()
 for mc_type in self.mc_types:
 if mc_type not in MODEL_TYPES['path']:
 continue
 self.run_tests_per_mc(mc_type, max_path_length, max_paths,
 filter_func, edge_filter_func)

[docs] def run_tests_per_mc(self, mc_type, max_path_length, max_paths,
 filter_func=None, edge_filter_func=None):
 """Run all applicable tests with one ModelChecker."""
 mc = self.get_updated_mc(
 mc_type, [test.stmt for test in self.applicable_tests],
 edge_filter_func=edge_filter_func)
 logger.info(f'Running the tests with {mc_type} ModelChecker.')
 if filter_func:
 logger.info(f'Applying {filter_func.__name__}')
 results = mc.check_model(
 max_path_length=max_path_length, max_paths=max_paths,
 agent_filter_func=filter_func, edge_filter_func=edge_filter_func)
 for (stmt, result) in results:
 self.add_result(mc_type, result)

 def make_path_json(self, mc_type, result_paths):
 paths = []
 json_lines = []
 for path in result_paths:
 path_nodes = []
 edge_list = []
 path_node_list = []
 hashes = []
 report_function = self.mc_mapping[mc_type][2]
 model = self.mc_types[mc_type]['model']
 stmts = self.model.assembled_stmts
 if mc_type == 'pysb':
 report_stmts = report_function(path, model, stmts)
 path_stmts = [[st] for st in report_stmts]
 merge = False
 elif mc_type == 'pybel':
 path_stmts = report_function(path, model, False, stmts)
 merge = False
 elif mc_type == 'signed_graph':
 path_stmts = report_function(path, model, True, False, stmts)
 merge = True
 elif mc_type == 'unsigned_graph':
 path_stmts = report_function(path, model, False, False, stmts)
 merge = True
 for i, step in enumerate(path_stmts):
 edge_nodes = []
 if len(step) < 1:
 continue
 stmt_type = type(step[0]).__name__
 # Skip reporting has component edges
 if stmt_type == 'PybelEdge' and step[0].relation == 'partOf' \
 and step[0].reverse:
 continue
 elif stmt_type in ('PybelEdge', 'RefEdge'):
 source, target = step[0].source, step[0].target
 edge_nodes.append(source.name)
 edge_nodes.append(u"\u2192")
 edge_nodes.append(target.name)
 hashes.append({'type': stmt_type})
 else:
 step_hashes = []
 for stmt in step:
 self.path_stmt_counts[stmt.get_hash()] += 1
 step_hashes.append(stmt.get_hash())
 hashes.append({'type': 'statements',
 'hashes': step_hashes})
 agents = [ag.name if ag is not None else None
 for ag in step[0].agent_list()]
 # For complexes make sure that the agent from the
 # previous edge goes first
 if stmt_type == 'Complex' and len(path_nodes) > 0:
 agents = sorted(
 [ag for ag in agents if ag is not None],
 key=lambda x: x != path_nodes[-1])
 for j, ag in enumerate(agents):
 if ag is not None:
 edge_nodes.append(ag)
 if j == (len(agents) - 1):
 break
 if stmt_type in ARROW_DICT:
 edge_nodes.append(ARROW_DICT[stmt_type])
 else:
 edge_nodes.append(u"\u2192")
 if i == 0:
 for n in edge_nodes:
 path_nodes.append(n)
 path_node_list.append(edge_nodes[0])
 path_node_list.append(edge_nodes[-1])
 else:
 for n in edge_nodes[1:]:
 path_nodes.append(n)
 path_node_list.append(edge_nodes[-1])
 step_sentences = self._make_path_stmts(step, merge=merge)
 edge_dict = {'edge': ' '.join(edge_nodes),
 'stmts': step_sentences}
 edge_list.append(edge_dict)
 path_json = {'path': ' '.join(path_nodes),
 'edge_list': edge_list}
 one_line_path_json = {'nodes': path_node_list, 'edges': hashes,
 'graph_type': mc_type}
 paths.append(path_json)
 json_lines.append(one_line_path_json)
 return paths, json_lines

 def _make_path_stmts(self, stmts, merge=False):
 sentences = []
 date = strip_out_date(self.date_str, 'date')
 if merge and isinstance(stmts[0], Statement):
 groups = group_and_sort_statements(stmts, grouping_level='relation')
 for _, rel_key, group_stmts, _ in groups:
 sentence = make_string_from_relation_key(rel_key) + '.'
 stmt_hashes = [gr_st.get_hash()
 for _, _, gr_st, _ in group_stmts]
 url_param = parse.urlencode(
 {'stmt_hash': stmt_hashes, 'source': 'model_statement',
 'model': self.model.name, 'date': date}, doseq=True)
 link = f'/evidence?{url_param}'
 sentences.append((link, sentence, ''))
 else:
 for stmt in stmts:
 if isinstance(stmt, PybelEdge):
 sentence = pybel_edge_to_english(stmt)
 sentences.append(('', sentence, ''))
 elif isinstance(stmt, RefEdge):
 sentence = stmt.to_english()
 sentences.append(('', sentence, ''))
 else:
 ea = EnglishAssembler([stmt])
 sentence = ea.make_model()
 stmt_hashes = [stmt.get_hash()]
 url_param = parse.urlencode(
 {'stmt_hash': stmt_hashes, 'source': 'model_statement',
 'model': self.model.name, 'date': date}, doseq=True)
 link = f'/evidence?{url_param}'
 sentences.append((link, sentence, ''))
 return sentences

 def make_result_code(self, result):
 result_code = result.result_code
 return RESULT_CODES[result_code]

 def answer_query(self, query, **kwargs):
 if isinstance(query, DynamicProperty):
 return self.answer_dynamic_query(query, **kwargs)
 if isinstance(query, PathProperty):
 return self.answer_path_query(query)
 if isinstance(query, OpenSearchQuery):
 return self.answer_open_query(query)
 if isinstance(query, SimpleInterventionProperty):
 return self.answer_intervention_query(query)

[docs] def answer_path_query(self, query):
 """Answer user query with a path if it is found."""
 if ScopeTestConnector.applicable(self, query):
 results = []
 for mc_type in self.mc_types:
 if mc_type not in MODEL_TYPES['path']:
 continue
 mc = self.get_updated_mc(mc_type, [query.path_stmt])
 max_path_length, max_paths = self._get_test_configs(
 mode='query', mc_type=mc_type, default_paths=5)
 result = mc.check_statement(
 query.path_stmt, max_paths, max_path_length)
 hashed_res, path_lines = self.process_response(mc_type, result)
 results.append((mc_type, hashed_res, path_lines))
 return results
 else:
 return [('', self.hash_response_list(
 RESULT_CODES['QUERY_NOT_APPLICABLE']),
 [{'fail_reason': RESULT_CODES['QUERY_NOT_APPLICABLE']}])]

[docs] def answer_dynamic_query(self, query, bucket=EMMAA_BUCKET_NAME):
 """Answer user query by simulating a PySB model."""
 pysb_model, use_kappa, time_limit, num_times, num_sim, hyp_tester = \
 self._get_dynamic_components('dynamic')
 tra = TRA(use_kappa=use_kappa)
 tp = query.get_temporal_pattern(time_limit)
 try:
 sat_rate, num_sim, kpat, pat_obj, fig_path = tra.check_property(
 pysb_model, tp, num_times=num_times, num_sim=num_sim,
 hypothesis_tester=hyp_tester)
 if self.mode == 's3':
 fig_name, ext = os.path.splitext(os.path.basename(fig_path))
 date_str = make_date_str()
 s3_key = (f'query_images/{self.model.name}/{fig_name}_'
 f'{date_str}{ext}')
 s3_path = f'https://{bucket}.s3.amazonaws.com/{s3_key}'
 client = get_s3_client(unsigned=False)
 logger.info(f'Uploading image to {s3_path}')
 client.upload_file(fig_path, Bucket=bucket, Key=s3_key)
 fig_path = s3_path
 resp_json = {'sat_rate': sat_rate, 'num_sim': num_sim,
 'kpat': kpat, 'fig_path': fig_path}
 return [('pysb', self.hash_response_list(resp_json),resp_json)]
 except (MissingMonomerError, MissingMonomerSiteError):
 resp_json = RESULT_CODES['QUERY_NOT_APPLICABLE']
 return [('pysb', self.hash_response_list(resp_json),
 {'fail_reason': RESULT_CODES['QUERY_NOT_APPLICABLE']})]

[docs] def answer_intervention_query(self, query, bucket=EMMAA_BUCKET_NAME):
 """Answer user intervention query by simulating a PySB model."""
 pysb_model, use_kappa, time_limit, num_times, num_sim, _ = \
 self._get_dynamic_components('intervention')
 tra = TRA(use_kappa=use_kappa)
 try:
 res, fig_path = tra.compare_conditions(pysb_model,
 query.condition_entity,
 query.target_entity,
 query.direction,
 time_limit, num_times)
 if self.mode == 's3':
 fig_name, ext = os.path.splitext(os.path.basename(fig_path))
 date_str = make_date_str()
 s3_key = (f'query_images/{self.model.name}/{fig_name}_'
 f'{date_str}{ext}')
 s3_path = f'https://{bucket}.s3.amazonaws.com/{s3_key}'
 client = get_s3_client(unsigned=False)
 logger.info(f'Uploading image to {s3_path}')
 client.upload_file(fig_path, Bucket=bucket, Key=s3_key)
 fig_path = s3_path
 resp_json = {'result': res, 'fig_path': fig_path}
 return [('pysb', self.hash_response_list(resp_json), resp_json)]
 except (MissingMonomerError, MissingMonomerSiteError):
 resp_json = RESULT_CODES['QUERY_NOT_APPLICABLE']
 return [('pysb', self.hash_response_list(resp_json),
 {'fail_reason': RESULT_CODES['QUERY_NOT_APPLICABLE']})]

[docs] def answer_open_query(self, query):
 """Answer user open search query with found paths."""
 if ScopeTestConnector.applicable(self, query):
 results = []
 for mc_type in self.mc_types:
 if mc_type not in MODEL_TYPES['path']:
 continue
 max_path_length, max_paths = self._get_test_configs(
 mode='query', qtype='open_search', mc_type=mc_type,
 default_paths=50, default_length=2)
 add_ns = False
 if query.terminal_ns:
 add_ns = True
 mc = self.get_updated_mc(mc_type, [query.path_stmt], add_ns)
 res, paths = self.open_query_per_mc(
 mc_type, mc, query, max_path_length, max_paths)
 results.append((mc_type, res, paths))
 return results
 else:
 return [('', self.hash_response_list(
 RESULT_CODES['QUERY_NOT_APPLICABLE']),
 [{'fail_reason': RESULT_CODES['QUERY_NOT_APPLICABLE']}])]

 def open_query_per_mc(self, mc_type, mc, query, max_path_length,
 max_paths):
 g = mc.get_graph()
 subj_nodes, obj_nodes, res_code = mc.process_statement(query.path_stmt)
 if res_code:
 return self.hash_response_list(RESULT_CODES[res_code]), \
 [{'fail_reason': RESULT_CODES[res_code]}]
 else:
 if query.entity_role == 'subject':
 reverse = False
 assert subj_nodes.all_nodes
 nodes = subj_nodes.all_nodes
 else:
 reverse = True
 assert obj_nodes
 nodes = obj_nodes.all_nodes
 sign = query.get_sign(mc_type)
 if mc_type == 'pysb':
 terminal_ns = None
 else:
 terminal_ns = query.terminal_ns
 paths_gen = bfs_search_multiple_nodes(
 g, nodes, reverse=reverse, terminal_ns=terminal_ns,
 depth_limit=max_path_length, path_limit=max_paths, sign=sign)
 paths = []
 for p in paths_gen:
 if reverse:
 paths.append(p[::-1])
 else:
 paths.append(p)
 return self.process_open_query_response(mc_type, paths)

[docs] def answer_queries(self, queries, **kwargs):
 """Answer all queries registered for this model.

 Parameters

 queries : list[emmaa.queries.Query]
 A list of queries to run.

 Returns

 responses : list[tuple(json, json)]
 A list of tuples each containing a query, mc_type and result json.
 """
 responses = []
 applicable_queries = []
 applicable_stmts = []
 applicable_open_queries = []
 applicable_open_stmts = []
 for query in queries:
 # Dynamic queries need to be answered individually, while for
 # path and open queries some parts can be shared
 if isinstance(query, DynamicProperty):
 mc_type, response, resp_json = self.answer_dynamic_query(
 query, **kwargs)[0]
 responses.append((query, mc_type, response))
 if isinstance(query, SimpleInterventionProperty):
 mc_type, response, resp_json = self.answer_intervention_query(
 query, **kwargs)[0]
 responses.append((query, mc_type, response))
 elif isinstance(query, PathProperty):
 if ScopeTestConnector.applicable(self, query):
 applicable_queries.append(query)
 applicable_stmts.append(query.path_stmt)
 else:
 responses.append(
 (query, '', self.hash_response_list(
 RESULT_CODES['QUERY_NOT_APPLICABLE'])))
 elif isinstance(query, OpenSearchQuery):
 if ScopeTestConnector.applicable(self, query):
 applicable_open_queries.append(query)
 applicable_open_stmts.append(query.path_stmt)
 else:
 responses.append(
 (query, '', self.hash_response_list(
 RESULT_CODES['QUERY_NOT_APPLICABLE'])))

 # Only do the following steps if there are applicable queries
 # Path queries
 if applicable_queries:
 for mc_type in self.mc_types:
 if mc_type not in MODEL_TYPES['path']:
 continue
 mc = self.get_updated_mc(mc_type, applicable_stmts)
 max_path_length, max_paths = self._get_test_configs(
 mode='query', mc_type=mc_type, default_paths=5)
 results = mc.check_model(
 max_path_length=max_path_length, max_paths=max_paths)
 for ix, (_, result) in enumerate(results):
 resp, paths = self.process_response(mc_type, result)
 responses.append(
 (applicable_queries[ix], mc_type, resp))

 # Open queries
 if applicable_open_queries:
 for mc_type in self.mc_types:
 if mc_type not in MODEL_TYPES['path']:
 continue
 max_path_length, max_paths = self._get_test_configs(
 mode='query', qtype='open_search', mc_type=mc_type,
 default_paths=50, default_length=2)
 mc = self.get_updated_mc(mc_type, applicable_open_stmts, True)
 for query in applicable_open_queries:
 res, paths = self.open_query_per_mc(
 mc_type, mc, query, max_path_length, max_paths)
 responses.append((query, mc_type, res))

 return sorted(responses, key=lambda x: x[0].matches_key())

 def _get_test_configs(self, mode='test', qtype='statement_checking',
 mc_type=None, default_length=5, default_paths=1):
 if mode == 'test':
 config = self.model.test_config
 elif mode == 'query':
 config = self.model.query_config
 try:
 max_path_length = \
 config[qtype][mc_type]['max_path_length']
 except KeyError:
 try:
 max_path_length = \
 config[qtype]['max_path_length']
 except KeyError:
 max_path_length = default_length
 try:
 max_paths = \
 config[qtype][mc_type]['max_paths']
 except KeyError:
 try:
 max_paths = \
 config[qtype]['max_paths']
 except KeyError:
 max_paths = default_paths
 logger.info('Parameters for model checking: %d, %d' %
 (max_path_length, max_paths))
 return (max_path_length, max_paths)

 def _get_dynamic_components(self, qtype='dynamic'):
 # Get simulation mode (kappa or ODE) from query config
 use_kappa = False
 time_limit = None
 num_times = 100
 num_sim = 2
 hyp_tester = None
 if qtype in self.model.query_config:
 qc = self.model.query_config[qtype]
 use_kappa = qc.get('use_kappa', False)
 time_limit = qc.get('time_limit')
 num_times = qc.get('num_times', 100)
 # If we have a fixed number of simulations, we use that
 if 'num_sim' in qc:
 num_sim = qc['num_sim']
 hyp_tester = None
 # If we have parameters for a hypothesis tester, we use that
 elif 'hypothesis_tester' in qc:
 from bioagents.tra.model_checker import HypothesisTester
 num_sim = 0
 hyp_tester = HypothesisTester(**qc['hypothesis_tester'])
 # If we don't have any specification, we fall back on 2 fixed
 # simulations
 else:
 num_sim = 2
 hyp_tester = None
 # Either use specially assembled or regular PySB depending on model
 for mc_type in MODEL_TYPES['simulation']:
 if mc_type in self.mc_types:
 logger.info(f'Using {mc_type} model for simulation')
 pysb_model = deepcopy(self.mc_types[mc_type]['model'])
 break
 return pysb_model, use_kappa, time_limit, num_times, num_sim, hyp_tester

[docs] def process_response(self, mc_type, result):
 """Return a dictionary in which every key is a hash and value is a list
 of tuples. Each tuple contains a sentence describing either a step in a
 path (if it was found) or result code (if a path was not found) and a
 link leading to a webpage with more information about corresponding
 sentence.
 """
 if result.paths:
 response, path_lines = self.make_path_json(mc_type, result.paths)
 return self.hash_response_list(response), path_lines
 else:
 response = self.make_result_code(result)
 return self.hash_response_list(response), [{'fail_reason': response}]

 def process_open_query_response(self, mc_type, paths):
 if paths:
 response, path_lines = self.make_path_json(mc_type, paths)
 return self.hash_response_list(response), path_lines
 else:
 response = 'No paths found that satisfy this query'
 return self.hash_response_list(response), [{'fail_reason': response}]

[docs] def hash_response_list(self, response):
 """Return a dictionary mapping a hash with a response in a response
 list.
 """
 response_dict = {}
 if isinstance(response, str):
 response_hash = str(fnv1a_32(response.encode('utf-8')))
 response_dict[response_hash] = response
 elif isinstance(response, list):
 for resp in response:
 sentences = []
 for edge in resp['edge_list']:
 for (_, sentence, _) in edge['stmts']:
 sentences.append(sentence)
 response_str = ' '.join(sentences)
 response_hash = str(fnv1a_32(response_str.encode('utf-8')))
 response_dict[response_hash] = resp
 elif isinstance(response, dict):
 if 'sat_rate' in response:
 results = [str(response.get('sat_rate')),
 str(response.get('num_sim'))]
 response_str = ' '.join(results)
 else:
 response_str = response.get('result')
 response_hash = str(fnv1a_32(response_str.encode('utf-8')))
 response_dict[response_hash] = response
 else:
 raise TypeError('Response should be a string or a list.')
 return response_dict

[docs] def results_to_json(self, test_data=None):
 """Put test results to json format."""
 pickler = jsonpickle.pickler.Pickler()
 results_json = []
 results_json.append({
 'model_name': self.model.name,
 'mc_types': [mc_type for mc_type in self.mc_types
 if mc_type in MODEL_TYPES['path']],
 'path_stmt_counts': self.path_stmt_counts,
 'date_str': self.date_str,
 'test_data': test_data})
 json_lines = []
 for ix, test in enumerate(self.applicable_tests):
 test_ix_results = {'test_type': test.__class__.__name__,
 'test_json': test.to_json()}
 for mc_type in self.mc_types:
 if mc_type not in MODEL_TYPES['path']:
 continue
 result = self.mc_types[mc_type]['test_results'][ix]
 path_json, test_json_lines = self.make_path_json(
 mc_type, result.paths)
 test_ix_results[mc_type] = {
 'result_json': pickler.flatten(result),
 'path_json': path_json,
 'result_code': self.make_result_code(result)}
 for line in test_json_lines:
 # Only include lines with paths
 if line:
 line.update({'test': test.stmt.get_hash()})
 json_lines.append(line)
 results_json.append(test_ix_results)
 return results_json, json_lines

[docs] def upload_results(self, test_corpus='large_corpus_tests',
 test_data=None, bucket=EMMAA_BUCKET_NAME):
 """Upload results to s3 bucket."""
 json_dict, json_lines = self.results_to_json(test_data)
 result_key = (f'results/{self.model.name}/results_'
 f'{test_corpus}_{self.date_str}.json')
 paths_key = (f'paths/{self.model.name}/paths_{test_corpus}_'
 f'{self.date_str}.jsonl')
 latest_paths_key = (f'paths/{self.model.name}/{test_corpus}'
 '_latest_paths.jsonl')
 logger.info(f'Uploading test results to {result_key}')
 save_json_to_s3(json_dict, bucket, result_key)
 logger.info(f'Uploading test paths to {paths_key}')
 save_json_to_s3(json_lines, bucket, paths_key, save_format='jsonl')
 save_json_to_s3(json_lines, bucket, latest_paths_key, 'jsonl')

[docs] def save_assembled_statements(self, bucket=EMMAA_BUCKET_NAME):
 """Upload assembled statements jsons to S3 bucket."""
 def save_stmts(stmts, model_name):
 stmts_json = stmts_to_json(stmts)
 # Save a timestapmed version and a generic latest version of files
 dated_key = f'assembled/{model_name}/statements_{self.date_str}'
 latest_key = f'assembled/{model_name}/' \
 f'latest_statements_{model_name}'
 for ext in ('json', 'jsonl'):
 latest_obj_key = latest_key + '.' + ext
 logger.info('Uploading assembled statements to '
 f'{latest_obj_key}')
 save_json_to_s3(stmts_json, bucket, latest_obj_key, ext)
 dated_jsonl = dated_key + '.jsonl'
 dated_zip = dated_key + '.gz'
 logger.info(f'Uploading assembled statements to {dated_jsonl}')
 save_json_to_s3(stmts_json, bucket, dated_jsonl, 'jsonl')
 logger.info(f'Uploading assembled statements to {dated_zip}')
 save_gzip_json_to_s3(stmts_json, bucket, dated_zip, 'json')

 save_stmts(self.model.assembled_stmts, self.model.name)
 if hasattr(self.model, 'dynamic_assembled_stmts') and \
 self.model.dynamic_assembled_stmts:
 save_stmts(self.model.dynamic_assembled_stmts,
 f'{self.model.name}_dynamic')

[docs]class TestManager(object):
 """Manager to generate and run a set of tests on a set of models.

 Parameters

 model_managers : list[emmaa.model_tests.ModelManager]
 A list of ModelManager objects
 tests : list[emmaa.model_tests.EmmaaTest]
 A list of EMMAA tests
 """
 def __init__(self, model_managers, tests):
 self.model_managers = model_managers
 self.tests = tests

[docs] def make_tests(self, test_connector):
 """Generate a list of applicable tests for each model with a given test
 connector.

 Parameters

 test_connector : emmaa.model_tests.TestConnector
 A TestConnector object to use for connecting models to tests.
 """
 logger.info(f'Checking applicability of {len(self.tests)} tests to '
 f'{len(self.model_managers)} models')
 for model_manager, test in itertools.product(self.model_managers,
 self.tests):
 if test_connector.applicable(model_manager, test):
 model_manager.add_test(test)
 logger.debug(f'Test {test.stmt} is applicable')
 else:
 logger.debug(f'Test {test.stmt} is not applicable')
 logger.info(f'Created tests for {len(self.model_managers)} models.')
 for model_manager in self.model_managers:
 logger.info(f'Created {len(model_manager.applicable_tests)} tests '
 f'for {model_manager.model.name} model.')

[docs] def run_tests(self, filter_func=None, edge_filter_func=None):
 """Run tests for a list of model-test pairs"""
 for model_manager in self.model_managers:
 model_manager.run_all_tests(filter_func, edge_filter_func)

[docs]class TestConnector(object):
 """Determines if a given test is applicable to a given model."""
 def __init__(self):
 pass

[docs] @staticmethod
 def applicable(model, test):
 """Return True if the test is applicable to the given model."""
 return True

[docs]class ScopeTestConnector(TestConnector):
 """Determines applicability of a test to a model by overlap in scope."""
[docs] @staticmethod
 def applicable(model, test):
 """Return True of all test entities are in the set of model entities"""
 model_entities = model.entities
 test_entities = test.get_entities()
 return ScopeTestConnector._overlap(model_entities, test_entities)

 @staticmethod
 def _overlap(model_entities, test_entities):
 me_names = {e.name for e in model_entities}
 te_names = {e.name for e in test_entities}
 # If all test entities are in model entities, we get an empty set here
 # so we return True
 return not te_names - me_names

[docs]class RefinementTestConnector(TestConnector):
 """Determines applicability of a test to a model by checking if test
 entities or their refinements are in the model.
 """
[docs] @staticmethod
 def applicable(model, test):
 """Return True of all test entities are in the set of model entities"""
 model_entities = model.entities
 test_entities = test.get_entities()
 test_entity_groups = []
 for te in test_entities:
 te_group = [te]
 ns, gr = te.get_grounding()
 children = bio_ontology.get_children(ns, gr)
 for ns, gr in children:
 name = bio_ontology.get_name(ns, gr)
 ag = Agent(name, db_refs={ns: gr})
 te_group.append(ag)
 test_entity_groups.append(te_group)
 return RefinementTestConnector._overlap(model_entities,
 test_entity_groups)

 @staticmethod
 def _ref_group_overlap(model_entities, test_entity_group):
 me_names = {e.name for e in model_entities}
 te_names = {e.name for e in test_entity_group}
 # We need at least one intersection between these groups
 return me_names.intersection(te_names)

 @staticmethod
 def _overlap(model_entities, test_entity_groups):
 # We need to get overlap with each test entity group
 return all([RefinementTestConnector._ref_group_overlap(
 model_entities, te_group) for te_group in test_entity_groups])

[docs]class EmmaaTest(object):
 """Represent an EMMAA test condition"""
[docs] def get_entities(self):
 """Return a list of entities that the test checks for."""
 raise NotImplementedError()

[docs]class StatementCheckingTest(EmmaaTest):
 """Represent an EMMAA test condition that checks a PySB-assembled model
 against an INDRA Statement."""
 def __init__(self, stmt, configs=None):
 self.stmt = stmt
 self.configs = {} if not configs else configs
 # TODO
 # Add entities as a property if we can reload tests on s3.
 # self.entities = self.get_entities()

[docs] def check(self, model_checker, pysb_model):
 """Use a model checker to check if a given model satisfies the test."""
 max_path_length = self.configs.get('max_path_length', 5)
 max_paths = self.configs.get('max_paths', 1)
 logger.info('Parameters for model checking: %s, %d' %
 (max_path_length, max_paths))
 res = model_checker.check_statement(
 self.stmt,
 max_path_length=max_path_length,
 max_paths=max_paths)
 return res

[docs] def get_entities(self):
 """Return a list of entities that the test checks for."""
 return self.stmt.agent_list()

 def to_json(self):
 return self.stmt.to_json()

 def __repr__(self):
 return "%s(stmt=%s)" % (self.__class__.__name__, repr(self.stmt))

[docs]def load_tests_from_s3(test_name, bucket=EMMAA_BUCKET_NAME):
 """Load Emmaa Tests with the given name from S3.

 Parameters

 test_name : str
 Looks for a test file in the emmaa bucket on S3 with key
 'tests/{test_name}'.

 Return

 list of EmmaaTest
 List of EmmaaTest objects loaded from S3.
 """
 prefix = f'tests/{test_name}'
 try:
 test_key = find_latest_s3_file(bucket, prefix, '.pkl')
 except ValueError:
 test_key = f'tests/{test_name}.pkl'
 logger.info(f'Loading tests from {test_key}')
 tests = load_pickle_from_s3(bucket, test_key)
 return tests, test_key

def save_model_manager_to_s3(model_name, model_manager,
 bucket=EMMAA_BUCKET_NAME):
 logger.info(f'Saving a model manager for {model_name} model to S3.')
 date_str = model_manager.date_str
 model_manager.model.stmts = []
 model_manager.model.assembled_stmts = []
 model_manager.model.dynamic_assembled_stmts = []
 save_pickle_to_s3(model_manager, bucket,
 f'results/{model_name}/model_manager_{date_str}.pkl')

def load_model_manager_from_s3(model_name=None, key=None,
 bucket=EMMAA_BUCKET_NAME):
 # First try find the file from specified key
 if key:
 try:
 model_manager = load_pickle_from_s3(bucket, key)
 if not model_manager.model.assembled_stmts:
 stmts, _ = get_assembled_statements(
 model_manager.model.name,
 strip_out_date(model_manager.date_str, 'date'),
 bucket=bucket)
 model_manager.model.assembled_stmts = stmts
 return model_manager
 except Exception as e:
 logger.info('Could not load the model manager directly')
 logger.info(e)
 if not model_name:
 model_name = key.split('/')[1]
 date = strip_out_date(key, 'date')
 logger.info('Trying to load model manager from statements')
 try:
 model_manager = ModelManager.load_from_statements(
 model_name, date=date, bucket=bucket)
 return model_manager
 except Exception as e:
 logger.info('Could not load the model manager from '
 'statements')
 logger.info(e)
 return None
 # Now try find the latest key for given model
 if model_name:
 # Versioned
 key = find_latest_s3_file(
 bucket, f'results/{model_name}/model_manager_', '.pkl')
 if key is None:
 # Non-versioned
 key = f'results/{model_name}/latest_model_manager.pkl'
 return load_model_manager_from_s3(model_name=model_name, key=key,
 bucket=bucket)
 # Could not find either from key or from model name.
 logger.info('Could not find the model manager.')
 return None

def update_model_manager_on_s3(model_name, bucket=EMMAA_BUCKET_NAME):
 model = EmmaaModel.load_from_s3(model_name, bucket=bucket)
 mm = ModelManager(model)
 save_model_manager_to_s3(model_name, mm, bucket=bucket)
 return mm

[docs]def model_to_tests(model_name, upload=True, bucket=EMMAA_BUCKET_NAME):
 """Create StatementCheckingTests from model statements."""
 stmts, _ = get_assembled_statements(model_name, bucket=bucket)
 config = load_config_from_s3(model_name, bucket=bucket)
 # Filter statements if needed
 if isinstance(config.get('make_tests'), dict):
 conditions = config['make_tests']['filter']['conditions']
 evid_policy = config['make_tests']['filter']['evid_policy']
 stmts = filter_indra_stmts_by_metadata(stmts, conditions, evid_policy)
 tests = [StatementCheckingTest(stmt) for stmt in stmts if
 all(stmt.agent_list())]
 date_str = make_date_str()
 test_description = (
 f'These tests were generated from the '
 f'{config.get("human_readable_name")} on {date_str[:10]}')
 test_name = f'{config.get("human_readable_name")} model test corpus'
 test_dict = {'test_data': {'description': test_description,
 'name': test_name},
 'tests': tests}
 if upload:
 save_tests_to_s3(test_dict, bucket,
 f'tests/{model_name}_tests_{date_str}.pkl', 'pkl')
 return test_dict

[docs]def save_tests_to_s3(tests, bucket, key, save_format='pkl'):
 """Save tests in pkl, json or jsonl format."""
 if save_format == 'pkl':
 save_pickle_to_s3(tests, bucket, key)
 elif save_format in ['json', 'jsonl']:
 if isinstance(tests, list):
 stmts = [test.stmt for test in tests]
 elif isinstance(tests, dict):
 stmts = [test.stmt for test in tests['tests']]
 stmts_json = stmts_to_json(stmts)
 save_json_to_s3(stmts_json, bucket, key, save_format)

[docs]def run_model_tests_from_s3(model_name, test_corpus='large_corpus_tests',
 upload_results=True, bucket=EMMAA_BUCKET_NAME):
 """Run a given set of tests on a given model, both loaded from S3.

 After loading both the model and the set of tests, model/test overlap
 is determined using a ScopeTestConnector and tests are run.

 Parameters

 model_name : str
 Name of EmmaaModel to load from S3.
 test_corpus : str
 Name of the file containing tests on S3.
 upload_results : Optional[bool]
 Whether to upload test results to S3 in JSON format. Can be set
 to False when running tests. Default: True

 Returns

 emmaa.model_tests.ModelManager
 Instance of ModelManager containing the model data, list of applied
 tests and the test results.
 """
 mm = load_model_manager_from_s3(model_name=model_name, bucket=bucket)
 test_dict, _ = load_tests_from_s3(test_corpus, bucket=bucket)
 if isinstance(test_dict, dict):
 tests = test_dict['tests']
 test_data = test_dict['test_data']
 elif isinstance(test_dict, list):
 tests = test_dict
 test_data = None
 tm = TestManager([mm], tests)
 tc = mm.model.test_config.get('test_connector', 'refinement')
 if tc == 'scope':
 test_connector = ScopeTestConnector()
 elif tc == 'refinement':
 test_connector = RefinementTestConnector()
 tm.make_tests(test_connector)
 filter_func = None
 edge_filter_func = None
 if mm.model.test_config.get('filters'):
 filter_func_name = mm.model.test_config['filters'].get(test_corpus)
 if filter_func_name:
 filter_func = node_filter_functions.get(filter_func_name)
 if mm.model.test_config.get('edge_filters'):
 edge_filter_func_name = mm.model.test_config['edge_filters'].get(
 test_corpus)
 edge_filter_func = edge_filter_functions.get(edge_filter_func_name)
 tm.run_tests(filter_func, edge_filter_func)
 # Optionally upload test results to S3
 if upload_results:
 mm.upload_results(test_corpus, test_data, bucket=bucket)
 return mm

 emmaa.priors

 Source code for emmaa.priors

"""This module contains classes to generate prior networks."""

[docs]class SearchTerm(object):
 """Represents a search term to be used in a model configuration.

 Parameters

 type : str
 The type of search term, e.g. gene, bioprocess, other
 name : str
 The name of the search term, is equivalent to an Agent name
 db_refs : dict
 A dict of database references for the given term, is similar
 to an Agent db_refs dict
 search_term : str
 The actual search term to us for searching PubMed
 """
 def __init__(self, type, name, db_refs, search_term):
 self.type = type
 self.name = name
 self.db_refs = db_refs
 self.search_term = search_term

 def __str__(self):
 return f'SearchTerm({self.type}, {self.name})'

 def __repr__(self):
 return str(self)

 def __hash__(self):
 return hash((self.type, self.name, tuple(sorted(self.db_refs.items())),
 self.search_term))

[docs] def to_json(self):
 """Return search term as JSON."""
 jd = {'type': self.type,
 'name': self.name,
 'db_refs': self.db_refs,
 'search_term': self.search_term}
 return jd

[docs] @classmethod
 def from_json(cls, jd):
 """Return a SearchTerm object from JSON."""
 return SearchTerm(**jd)

 def __eq__(self, other):
 return self.type == other.type and self.name == other.name and \
 self.db_refs == other.db_refs and \
 self.search_term == other.search_term

[docs]def get_drugs_for_gene(stmts, hgnc_id):
 """Get list of drugs that target a gene

 Parameters

 stmts : list of :py:class:`indra.statements.Statement`
 List of INDRA statements with a drug as subject
 hgnc_id : str
 HGNC id for a gene

 Returns

 drugs_for_gene : list of :py:class:`emmaa.priors.SearchTerm`
 List of search terms for drugs targeting the input gene
 """
 drugs_for_gene = []
 for stmt in stmts:
 if stmt.obj.db_refs.get('HGNC') == hgnc_id:
 term = SearchTerm(type='drug', name=stmt.subj.name,
 db_refs=stmt.subj.db_refs,
 search_term=f'"{stmt.subj.name}"')
 drugs_for_gene.append(term)
 return drugs_for_gene

 emmaa.queries

 Source code for emmaa.queries

import logging
from inflection import underscore
from collections import OrderedDict as _o
import gilda
from indra.sources import trips
from indra.ontology.standardize import \
 standardize_agent_name
from indra.statements.statements import *
from indra.assemblers.english.assembler import _assemble_agent_str, \
 EnglishAssembler, statement_base_verb, statement_present_verb
from indra.explanation.model_checker.pysb import _add_activity_to_agent, \
 _add_modification_to_agent
from bioagents.tra.tra import MolecularQuantity, TemporalPattern, TimeInterval
from .util import get_class_from_name

logger = logging.getLogger(__name__)

[docs]class Query(object):
 """The parent class of all query types."""
 @classmethod
 def _from_json(cls, json_dict):
 query_type = json_dict.get('type')
 query_cls = get_class_from_name(query_type, Query)
 query = query_cls._from_json(json_dict)
 return query

 def matches(self, other):
 return self.matches_key() == other.matches_key()

 def matches_key(self):
 pass

 def get_hash(self):
 return make_hash(self.matches_key(), 14)

 def get_hash_with_model(self, model_name):
 key = (self.matches_key(), model_name)
 return make_hash(mk_str(key), 14)

 def get_type(self):
 return underscore(type(self).__name__)

[docs]class StructuralProperty(Query):
 pass

[docs]class PathProperty(Query):
 """This type of query requires finding a mechanistic causally consistent
 path that satisfies query statement.

 Parameters

 path_stmt : indra.statements.Statement
 A path to look for in the model represented as INDRA statement.
 entity_constraints : dict(list(indra.statements.Agent))
 A dictionary containing lists of Agents to be included in or excluded
 from the path.
 relationship_constraints : dict(list(str))
 A dictionary containing lists of Statement types to include in or
 exclude from the path.
 """
 def __init__(self, path_stmt, entity_constraints=None,
 relationship_constraints=None):
 self.path_stmt = path_stmt
 if entity_constraints:
 self.include_entities = entity_constraints.get('include', [])
 self.exclude_entities = entity_constraints.get('exclude', [])
 else:
 self.include_entities = []
 self.exclude_entities = []
 if relationship_constraints:
 self.include_rels = relationship_constraints.get('include', [])
 self.exclude_rels = relationship_constraints.get('exclude', [])
 else:
 self.include_rels = []
 self.exclude_rels = []
 self.entities = self.get_entities()

 def to_json(self):
 query_type = self.get_type()
 json_dict = _o(type=query_type)
 json_dict['path'] = self.path_stmt.to_json()
 json_dict['entity_constraints'] = {}
 if self.include_entities:
 json_dict['entity_constraints']['include'] = [
 ec.to_json() for ec in self.include_entities]
 if self.exclude_entities:
 json_dict['entity_constraints']['exclude'] = [
 ec.to_json() for ec in self.exclude_entities]
 json_dict['relationship_constraints'] = {}
 if self.include_rels:
 json_dict['relationship_constraints']['include'] = [
 {'type': rel} for rel in self.include_rels]
 if self.exclude_rels:
 json_dict['relationship_constraints']['exclude'] = [
 {'type': rel} for rel in self.exclude_rels]
 return json_dict

 @classmethod
 def _from_json(cls, json_dict):
 path_stmt_json = json_dict.get('path')
 path_stmt = Statement._from_json(path_stmt_json)
 ent_constr_json = json_dict.get('entity_constraints')
 entity_constraints = None
 if ent_constr_json:
 entity_constraints = {}
 for key, value in ent_constr_json.items():
 entity_constraints[key] = [Agent._from_json(ec) for ec
 in value]
 rel_constr_json = json_dict.get('relationship_constraints')
 relationship_constraints = None
 if rel_constr_json:
 relationship_constraints = {}
 for key, value in rel_constr_json.items():
 relationship_constraints[key] = [
 rel_type['type'] for rel_type in value]
 query = cls(path_stmt, entity_constraints, relationship_constraints)
 return query

[docs] def get_entities(self):
 """Return entities from the path statement and the inclusion list."""
 path_entities = self.path_stmt.agent_list()
 return path_entities + self.include_entities

 def matches_key(self):
 key = self.path_stmt.matches_key()
 if self.include_entities:
 for ent in sorted(self.include_entities,
 key=lambda x: x.matches_key()):
 key += ent.matches_key()
 if self.exclude_entities:
 for ent in sorted(self.exclude_entities,
 key=lambda x: x.matches_key()):
 key += ent.matches_key()
 if self.include_rels:
 for rel in sorted(self.include_rels):
 key += rel
 if self.exclude_rels:
 for rel in sorted(self.exclude_rels):
 key += rel
 return mk_str(key)

 def __str__(self):
 parts = [f'PathPropertyQuery(stmt={str(self.path_stmt)}.']
 if self.include_entities:
 inents = ', '.join([str(e) for e in self.include_entities])
 parts.append(f' Include entities: {inents}.')
 if self.exclude_entities:
 exents = ', '.join([str(e) for e in self.exclude_entities])
 parts.append(f' Exclude entities: {exents}.')
 if self.include_rels:
 inrels = ', '.join(self.include_rels)
 parts.append(f' Include relations: {inrels}.')
 if self.exclude_rels:
 exrels = ', '.join(self.exclude_rels)
 parts.append(f' Exclude relations: {exrels}.')
 return ''.join(parts)

 def __repr__(self):
 return str(self)

 def to_english(self):
 ea = EnglishAssembler([self.path_stmt])
 return ea.make_model()

[docs]class SimpleInterventionProperty(Query):
 """This type of query requires dynamic simulation of the model to observe
 the behavior under perturbation.
 """
 def __init__(self, condition_entity, target_entity, direction):
 self.condition_entity = condition_entity
 self.target_entity = target_entity
 self.direction = direction

 @classmethod
 def from_stmt(cls, stmt):
 if not isinstance(stmt, (Modification, RegulateAmount,
 RegulateActivity, Influence)):
 logger.info('Statement type %s not handled' %
 stmt.__class__.__name__)
 return
 # Get the polarity for the statement
 if isinstance(stmt, Modification):
 dir = 'dn' if isinstance(stmt, RemoveModification) else 'up'
 elif isinstance(stmt, RegulateActivity):
 dir = 'up' if stmt.is_activation else 'dn'
 elif isinstance(stmt, RegulateAmount):
 dir = 'dn' if isinstance(stmt, DecreaseAmount) else 'up'
 elif isinstance(stmt, Influence):
 dir = 'dn' if stmt.overall_polarity() == -1 else 'up'

 # Get condition and target agents
 # Modification
 if isinstance(stmt, Modification):
 # TODO use Modification's _get_mod_condition when
 # _add_modification_to_agent is refactored in INDRA
 condition_entity = stmt.enz
 # Add the mod for the agent
 mod_condition_name = modclass_to_modtype[stmt.__class__]
 if isinstance(stmt, RemoveModification):
 mod_condition_name = modtype_to_inverse[
 mod_condition_name]
 # Add modification to substrate agent
 target_entity = _add_modification_to_agent(
 stmt.sub, mod_condition_name, stmt.residue, stmt.position)
 # Activation/Inhibition
 elif isinstance(stmt, RegulateActivity):
 condition_entity = stmt.subj
 # Add activity to object agent
 target_entity = _add_activity_to_agent(
 stmt.obj, stmt.obj_activity, stmt.is_activation)
 # Increase/Decrease amount
 elif isinstance(stmt, (RegulateAmount, Influence)):
 condition_entity, target_entity = stmt.agent_list()

 query = cls(condition_entity, target_entity, dir)
 return query

 def matches_key(self):
 condition_key = self.condition_entity.matches_key()
 target_key = self.target_entity.matches_key()
 key = (condition_key, self.direction, target_key)
 return str(key)

 def to_json(self):
 query_type = self.get_type()
 json_dict = _o(type=query_type)
 json_dict['condition_entity'] = self.condition_entity.to_json()
 json_dict['target_entity'] = self.target_entity.to_json()
 json_dict['direction'] = self.direction
 return json_dict

 @classmethod
 def _from_json(cls, json_dict):
 cond_ent_json = json_dict.get('condition_entity')
 condition_entity = Agent._from_json(cond_ent_json)
 target_ent_json = json_dict.get('target_entity')
 target_entity = Agent._from_json(target_ent_json)
 direction = json_dict.get('direction')
 query = cls(condition_entity, target_entity, direction)
 return query

 def __str__(self):
 descr = (f'SimpleInterventionPropertyQuery'
 f'(condition={self.condition_entity}, '
 f'target={self.target_entity}, '
 f'direction={self.direction})')
 return descr

 def __repr__(self):
 return str(self)

 def to_english(self):
 cond = _assemble_agent_str(self.condition_entity).agent_str
 target = _assemble_agent_str(self.target_entity).agent_str
 if self.direction == 'up':
 dir_verb = 'increases'
 else:
 dir_verb = 'decreases'
 return f'{cond} {dir_verb} {target}.'

[docs]class ComparativeInterventionProperty(Query):
 pass

[docs]class DynamicProperty(Query):
 """This type of query requires dynamic simulation of the model to check
 whether the queried temporal pattern is satisfied.

 Parameters

 entity : indra.statements.Agent
 An entity to simulate the model for.
 pattern_type : str
 Type of temporal pattern. Accepted values: 'always_value', 'no_change',
 'eventual_value', 'sometime_value', 'sustained', 'transient'.
 quant_value : str or float
 Value of molecular quantity of entity of interest. Can be 'high' or
 'low' or a specific number.
 quant_type : str
 Type of molecular quantity of entity of interest. Default: qualitative.
 """
 def __init__(self, entity, pattern_type, quant_value=None,
 quant_type='qualitative'):
 self.entity = entity
 self.pattern_type = pattern_type
 self.quant_value = quant_value
 self.quant_type = quant_type

[docs] def get_temporal_pattern(self, time_limit=None):
 """Return TemporalPattern object created with query properties."""
 mq = None
 if self.quant_value:
 mq = MolecularQuantity(self.quant_type, self.quant_value)
 t = None
 if time_limit:
 t = TimeInterval(0, time_limit, 'second')
 tp = TemporalPattern(self.pattern_type, [self.entity], t, value=mq)
 return tp

 def matches_key(self):
 ent_matches_key = self.entity.matches_key()
 key = (ent_matches_key, self.pattern_type, self.quant_type,
 str(self.quant_value))
 return str(key)

 def to_json(self):
 query_type = self.get_type()
 json_dict = _o(type=query_type)
 json_dict['entity'] = self.entity.to_json()
 json_dict['pattern_type'] = self.pattern_type
 json_dict['quantity'] = {}
 json_dict['quantity']['type'] = self.quant_type
 json_dict['quantity']['value'] = self.quant_value
 return json_dict

 @classmethod
 def _from_json(cls, json_dict):
 ent_json = json_dict.get('entity')
 entity = Agent._from_json(ent_json)
 pattern_type = json_dict.get('pattern_type')
 quant_json = json_dict.get('quantity')
 quant_type = quant_json.get('type')
 quant_value = quant_json.get('value')
 query = cls(entity, pattern_type, quant_value, quant_type)
 return query

 def __str__(self):
 descr = (f'DynamicPropertyQuery(entity={self.entity}, '
 f'pattern={self.pattern_type}, '
 f'molecular quantity={(self.quant_type, self.quant_value)})')
 return descr

 def __repr__(self):
 return str(self)

 def to_english(self):
 agent = _assemble_agent_str(self.entity).agent_str
 agent = agent[0].upper() + agent[1:]
 if self.pattern_type == 'always_value':
 pattern = 'always'
 elif self.pattern_type == 'eventual_value':
 pattern = 'eventually'
 elif self.pattern_type == 'sometime_value':
 pattern = 'sometimes'
 elif self.pattern_type == 'no_change':
 pattern = 'not changing'
 else:
 pattern = self.pattern_type
 if self.quant_value:
 return f'{agent} is {pattern} {self.quant_value}.'
 return f'{agent} is {pattern}.'

[docs]class OpenSearchQuery(Query):
 """This type of query requires doing an open ended breadth-first search
 to find paths satisfying the query.

 Parameters

 entity : indra.statements.Agent
 An entity to simulate the model for.
 stmt_type : str
 Name of statement type.
 entity_role : str
 What role entity should play in statement (subject or object).
 terminal_ns : list[str]
 Force a path to terminate when any of the namespaces in this list
 are encountered and only yield paths that terminate at these
 namepsaces

 Attributes

 path_stmt : indra.statements.Statement
 An INDRA statement having its subject or object set to None to
 represent open search query.
 """
 def __init__(self, entity, stmt_type, entity_role, terminal_ns=None):
 self.entity = entity
 self.stmt_type = stmt_type
 self.entity_role = entity_role
 self.terminal_ns = [ns.lower() for ns in terminal_ns] if terminal_ns \
 else None
 self.path_stmt = self.make_stmt()

 def make_stmt(self):
 stmt_type = self.stmt_type
 if self.entity_role == 'subject':
 if self.stmt_type == 'IncreaseAmount':
 stmt_type = 'Activation'
 elif self.stmt_type == 'DecreaseAmount':
 stmt_type = 'Inhibition'
 stmt_class = get_statement_by_name(stmt_type)
 if self.entity_role == 'subject':
 subj = self.entity
 obj = None
 elif self.entity_role == 'object':
 subj = None
 obj = self.entity
 stmt = stmt_class(subj, obj)
 return stmt

 def get_sign(self, mc_type):
 if mc_type == 'unsigned_graph' or self.entity_role == 'object':
 sign = 0
 elif isinstance(self.path_stmt, RegulateActivity):
 sign = 0 if self.path_stmt.is_activation else 1
 elif isinstance(self.path_stmt, RegulateAmount):
 sign = 1 if isinstance(self.path_stmt, DecreaseAmount) else 0
 else:
 raise ValueError('Could not determine sign')
 return sign

 def matches_key(self):
 key = self.entity.matches_key()
 key += self.stmt_type
 key += self.entity_role
 if self.terminal_ns:
 for ns in self.terminal_ns:
 key += ns
 return mk_str(key)

 def to_json(self):
 query_type = self.get_type()
 json_dict = _o(type=query_type)
 json_dict['entity'] = self.entity.to_json()
 json_dict['stmt_type'] = self.stmt_type
 json_dict['entity_role'] = self.entity_role
 json_dict['terminal_ns'] = self.terminal_ns
 return json_dict

 @classmethod
 def _from_json(cls, json_dict):
 ent_json = json_dict.get('entity')
 entity = Agent._from_json(ent_json)
 stmt_type = json_dict.get('stmt_type')
 entity_role = json_dict.get('entity_role')
 terminal_ns = json_dict.get('terminal_ns')
 query = cls(entity, stmt_type, entity_role, terminal_ns)
 return query

 def __str__(self):
 parts = [f'OpenSearchQuery(stmt={self.path_stmt}.']
 if self.terminal_ns:
 parts.append(f' Terminal namespace={self.terminal_ns}')
 return ''.join(parts)

 def __repr__(self):
 return str(self)

 def to_english(self):
 agent = _assemble_agent_str(self.entity).agent_str
 if self.entity_role == 'subject':
 verb = statement_base_verb(self.stmt_type.lower())
 verb = verb[0].lower() + verb[1:]
 sentence = f'What does {agent} {verb}?'
 elif self.entity_role == 'object':
 verb = statement_present_verb(self.stmt_type.lower())
 verb = verb[0].lower() + verb[1:]
 sentence = f'What {verb} {agent}?'
 sentence = sentence[0].upper() + sentence[1:]
 if self.terminal_ns:
 sentence += f' ({", ".join(self.terminal_ns).upper()})'
 return sentence

 def get_entities(self):
 return [self.entity]

This is the general method to get a grounding agent from text but it doesn't
handle agent state which is required for dynamic queries
[docs]def get_agent_from_gilda(ag_name):
 """Return an INDRA Agent object by grounding its entity text with Gilda."""
 matches = gilda.ground(ag_name)
 if not matches:
 raise GroundingError(
 f"Could not find grounding for {ag_name} with Gilda.")
 agent = Agent(ag_name,
 db_refs={'TEXT': ag_name,
 matches[0].term.db: matches[0].term.id})
 standardize_agent_name(agent, standardize_refs=True)
 return agent

This is the method that dynamical queries use to represent agents with
state
[docs]def get_agent_from_trips(ag_text, service_host='http://34.230.33.149:8002/cgi/'):
 """Return an INDRA Agent object by grounding its entity text with TRIPS."""
 tp = trips.process_text(ag_text, service_host=service_host)
 agent_list = tp.get_agents()
 if not agent_list:
 raise GroundingError(
 f"Could not find grounding for {ag_text} with TRIPS.")
 return agent_list[0]

[docs]def get_agent_from_text(ag_text):
 """
 Return an INDRA Agent object by grounding its entity text with either
 Gilda or TRIPS.
 """
 try:
 agent = get_agent_from_gilda(ag_text)
 logger.info('Got agent from Gilda')
 except GroundingError:
 try:
 agent = get_agent_from_trips(ag_text)
 logger.info('Got agent from TRIPS')
 except GroundingError:
 raise GroundingError(f'Could not find grounding for {ag_text}.')
 return agent

[docs]class GroundingError(Exception):
 pass

 emmaa.statements

 Source code for emmaa.statements

import logging

logger = logging.getLogger(__name__)

[docs]class EmmaaStatement(object):
 """Represents an EMMAA Statement.

 Parameters

 stmt : indra.statements.Statement
 An INDRA Statement
 date : datetime
 A datetime object that is attached to the Statement. Typically
 represents the time at which the Statement was created.
 search_terms : list[emmaa.priors.SearchTerm]
 The list of search terms that led to the creation of the Statement.
 metadata : dict
 Additional metadata for the statement.
 """
 def __init__(self, stmt, date, search_terms, metadata=None):
 ann = emmaa_metadata_json(search_terms, metadata)
 add_emmaa_annotations(stmt, ann)
 self.stmt = stmt
 self.date = date
 self.search_terms = search_terms
 self.metadata = metadata if metadata else {}

 def __repr__(self):
 return '%s(%s, %s, %s)' % (self.__class__.__name__, self.stmt,
 self.date, self.search_terms)

 def to_json(self):
 output_json = emmaa_metadata_json(self.search_terms, self.metadata)
 output_json['date'] = self.date.strftime('%Y-%m-%d-%H-%M-%S')
 # Get json representation of statement
 json_stmt = self.stmt.to_json(use_sbo=False)
 # Stringify source hashes: JavaScript can't handle int's of length > 16
 for ev in json_stmt['evidence']:
 ev['source_hash'] = str(ev['source_hash'])
 output_json['stmt'] = json_stmt
 return output_json

[docs]def to_emmaa_stmts(stmt_list, date, search_terms, metadata=None):
 """Make EMMAA statements from INDRA Statements with the given metadata."""
 emmaa_stmts = []
 logger.info(f'Making {len(stmt_list)} EMMAA statements with metadata: '
 f'{metadata}')
 for indra_stmt in stmt_list:
 es = EmmaaStatement(indra_stmt, date, search_terms, metadata)
 emmaa_stmts.append(es)
 return emmaa_stmts

def emmaa_metadata_json(search_terms, metadata):
 if not metadata:
 metadata = {}
 return {'search_terms': [st.to_json() for st in search_terms],
 'metadata': metadata}

[docs]def add_emmaa_annotations(indra_stmt, annotation):
 """Add EMMAA annotations to inner INDRA statement."""
 for evid in indra_stmt.evidence:
 evid.annotations['emmaa'] = annotation

[docs]def filter_emmaa_stmts_by_metadata(estmts, conditions):
 """Filter EMMAA statements to those where conditions are met.

 Parameters

 estmts : list[emmaa.statements.EmmaaStatement]
 A list of EMMAA Statements to filter.
 conditions : dict
 Conditions to filter on represented as key-value pairs that statements'
 metadata can be compared to. NOTE if there are multiple conditions
 provided, the function will require that all conditions are met
 to keep a statement.

 Returns

 estmts_out : list[emmaa.statements.EmmaaStatement]
 A list of EMMAA Statements which meet the conditions.
 """
 logger.info(f'Filtering {len(estmts)} EMMAA Statements with the following'
 f' conditions: {conditions}')
 estmts_out = []
 for estmt in estmts:
 # Not filter out "old version" statements without metadata
 if not hasattr(estmt, 'metadata'):
 estmts_out.append(estmt)
 continue
 checks = []
 # Collect results for all conditions
 for key, value in conditions.items():
 checks.append(estmt.metadata.get(key) == value)
 # Only keep statements meeting all conditions
 if all(checks):
 estmts_out.append(estmt)
 logger.info(f'Got {len(estmts_out)} EMMAA Statements after filtering')
 return estmts_out

[docs]def filter_indra_stmts_by_metadata(stmts, conditions, evid_policy='any'):
 """Filter INDRA statements to those where conditions are met.

 Parameters

 stmts : list[indra.statements.Statement]
 A list of INDRA Statements to filter.
 conditions : dict
 Conditions to filter on represented as key-value pairs that statements'
 metadata can be compared to. NOTE if there are multiple conditions
 provided, the function will require that all conditions are met
 to keep a statement.
 evid_policy : str
 Policy for checking statement's evidence objects. If 'all', then the
 statement is kept only if all of it's evidence objects meet the
 conditions. If 'any', the statement is kept as long as at least one
 of its evidences meets the conditions.

 Returns

 stmts_out : list[indra.statements.Statement]
 A list of INDRA Statements which meet the conditions.
 """
 logger.info(f'Filtering {len(stmts)} INDRA Statements with the following'
 f' conditions: {conditions} in {evid_policy} evidence')
 stmts_out = []
 for stmt in stmts:
 add = check_stmt(stmt, conditions, evid_policy)
 if add:
 stmts_out.append(stmt)
 logger.info(f'Got {len(stmts_out)} INDRA Statements after filtering')
 return stmts_out

[docs]def check_stmt(stmt, conditions, evid_policy='any'):
 """Decide whether a statement meets the conditions.

 Parameters

 stmt : indra.statements.Statement
 INDRA Statement that should be checked for conditions.
 conditions : dict
 Conditions represented as key-value pairs that statements'
 metadata can be compared to. NOTE if there are multiple conditions
 provided, the function will require that all conditions are met to
 return True.
 evid_policy : str
 Policy for checking statement's evidence objects. If 'all', then the
 function returns True only if all of statement's evidence objects meet
 the conditions. If 'any', the function returns True as long as at
 least one of statement's evidences meets the conditions.

 Return

 meets_conditions : bool
 Whether the Statement meets the conditions.
 """
 evid_checks = []
 for evid in stmt.evidence:
 emmaa_anns = evid.annotations.get('emmaa')
 if emmaa_anns:
 metadata = emmaa_anns.get('metadata')
 checks = []
 for key, value in conditions.items():
 checks.append(metadata[key] == value)
 evid_checks.append(all(checks))
 if all(checks) and evid_policy == 'any':
 break
 # There are no evidence checks if stmt doesn't have emmaa annotations,
 # in this case we say it meets conditions by default
 if not evid_checks:
 return True
 # Make decision based on the evidence policy
 if evid_policy == 'any':
 return any(evid_checks)
 elif evid_policy == 'all':
 return all(evid_checks)

[docs]def is_internal(stmt):
 """Check if statement has any internal evidence."""
 return check_stmt(stmt, {'internal': True}, evid_policy='any')

 emmaa.util

 Source code for emmaa.util

import os
import re
import boto3
import logging
import json
import pickle
import zlib
import tweepy
from flask import Flask
from pathlib import Path
from datetime import datetime, timedelta
from botocore import UNSIGNED
from botocore.client import Config
from inflection import camelize
from zipfile import ZipFile
from indra.util.aws import get_s3_file_tree, get_date_from_str, iter_s3_keys
from indra.statements import get_all_descendants
from indra.literature.s3_client import gzip_string
from emmaa.subscription.email_service import email_bucket

FORMAT = '%Y-%m-%d-%H-%M-%S'
RE_DATETIMEFORMAT = r'\d{4}\-\d{2}\-\d{2}\-\d{2}\-\d{2}\-\d{2}'
RE_DATEFORMAT = r'\d{4}\-\d{2}\-\d{2}'
EMMAA_BUCKET_NAME = 'emmaa'
logger = logging.getLogger(__name__)

FORMATTED_TYPE_NAMES = {'pysb': 'PySB',
 'pybel': 'PyBEL',
 'signed_graph': 'Signed Graph',
 'unsigned_graph': 'Unsigned Graph'}

TWITTER_MODEL_TYPES = {'pysb': '@PySysBio',
 'pybel': '@pybelbio',
 'signed_graph': 'Signed Graph',
 'unsigned_graph': 'Unsigned Graph'}

[docs]def strip_out_date(keystring, date_format='datetime'):
 """Strips out datestring of selected date_format from a keystring"""
 if date_format == 'datetime':
 re_format = RE_DATETIMEFORMAT
 elif date_format == 'date':
 re_format = RE_DATEFORMAT
 try:
 return re.search(re_format, keystring).group()
 except AttributeError:
 logger.warning(f'Can\'t parse string {keystring} for date')
 return None

[docs]def make_date_str(date=None):
 """Return a date string in a standardized format.

 Parameters

 date : Optional[datetime.datetime]
 A date object to get the standardized string for. If not provided,
 utcnow() is used to construct the date. (Note: using UTC is important
 because this code may run in multiple contexts).

 Returns

 str
 The datetime string in a standardized format.
 """
 if not date:
 date = datetime.utcnow()
 return date.strftime(FORMAT)

def list_s3_files(bucket, prefix, extension=None):
 client = get_s3_client()
 files = iter_s3_keys(client, bucket, prefix)
 if extension:
 keys = [f for f in files if f.endswith(extension)]
 else:
 keys = list(files)
 return keys

[docs]def sort_s3_files_by_date_str(bucket, prefix, extension=None):
 """
 Return the list of keys of the files on an S3 path sorted by date starting
 with the most recent one.
 """
 def process_key(key):
 fname_with_extension = os.path.basename(key)
 fname = os.path.splitext(fname_with_extension)[0]
 date_str = fname.split('_')[-1]
 return get_date_from_str(date_str)
 keys = list_s3_files(bucket, prefix, extension=extension)
 if len(keys) < 2:
 return keys
 keys = sorted(keys, key=lambda k: process_key(k), reverse=True)
 return keys

[docs]def sort_s3_files_by_last_mod(bucket, prefix, time_delta=None,
 extension=None, unsigned=True, reverse=False,
 w_dt=False):
 """Return a list of s3 object keys sorted by their LastModified date on S3

 Parameters

 bucket : str
 s3 bucket to look for keys in
 prefix : str
 The prefix to use for the s3 keys
 time_delta : Optional[datetime.timedelta]
 If used, should specify how far back the to look for files on s3.
 Default: None
 extension : Optional[str]
 If used, limit keys to those with the matching file extension.
 Default: None.
 unsigned : bool
 If True, use unsigned s3 client. Default: True.
 reverse : bool
 Reverse the sort order of the returned s3 files. Default: False.
 w_dt : bool
 If True, return list with datetime object along with key as tuple
 (key, datetime.datetime). Default: False.

 Returns

 list
 A list of s3 keys. If w_dt is True, each item is a tuple of
 (key, datetime.datetime) of the LastModified date.
 """
 if time_delta is None:
 time_delta = timedelta() # zero timedelta
 s3 = get_s3_client(unsigned)
 n_hours_ago = datetime.utcnow() - time_delta
 file_tree = get_s3_file_tree(s3, bucket, prefix,
 date_cutoff=n_hours_ago,
 with_dt=True)
 key_list = sorted(list(file_tree.get_leaves()), key=lambda t: t[1],
 reverse=reverse)
 if extension:
 return [t if w_dt else t[0] for t in key_list
 if t[0].endswith(extension)]
 else:
 return key_list if w_dt else [t[0] for t in key_list]

[docs]def find_nth_latest_s3_file(n, bucket, prefix, extension=None):
 """Return the key of the file with nth (0-indexed) latest date string on
 an S3 path"""
 files = sort_s3_files_by_date_str(bucket, prefix, extension)
 try:
 latest = files[n]
 return latest
 except IndexError:
 logger.debug('File is not found.')

[docs]def find_latest_s3_file(bucket, prefix, extension=None):
 """Return the key of the file with latest date string on an S3 path"""
 return find_nth_latest_s3_file(0, bucket, prefix, extension)

[docs]def find_latest_s3_files(number_of_files, bucket, prefix, extension=None):
 """
 Return the keys of the specified number of files with latest date strings
 on an S3 path sorted by date starting with the earliest one.
 """
 files = sort_s3_files_by_date_str(bucket, prefix, extension)
 keys = []
 for ix in range(number_of_files):
 keys.append(files[ix])
 keys.reverse()
 return keys

def find_number_of_files_on_s3(bucket, prefix, extension=None):
 files = sort_s3_files_by_date_str(bucket, prefix, extension)
 return len(files)

[docs]def find_latest_emails(email_type, time_delta=None, w_dt=False):
 """Return a list of keys of the latest emails delivered to s3

 Parameters

 email_type : str
 The email type to look for, e.g. 'feedback' if listing bounce and
 complaint emails sent to the ReturnPath address.
 time_delta : datetime.timedelta
 The timedelta to look backwards for listing emails.
 w_dt : bool
 If True, return a list of (key, datetime.datetime) tuples.

 Returns

 list[Keys]
 A list of keys to the emails of the specified type. If w_dt is True,
 each item is a tuple of (key, datetime.datetime) of the LastModified
 date.
 """
 email_list = sort_s3_files_by_last_mod(email_bucket, email_type,
 time_delta, unsigned=False,
 w_dt=w_dt)
 ignore = 'AMAZON_SES_SETUP_NOTIFICATION'
 if w_dt:
 return [s for s in email_list if ignore not in s[0]]
 return [s for s in email_list if ignore not in s]

def get_email_content(key):
 s3 = get_s3_client(unsigned=False)
 email_obj = s3.get_object(Bucket=email_bucket, Key=key)
 return email_obj['Body'].read().decode()

def find_index_of_s3_file(key, bucket, prefix, extension=None):
 files = sort_s3_files_by_date_str(bucket, prefix, extension)
 ix = files.index(key)
 return ix

[docs]def does_exist(bucket, prefix, extension=None):
 """Check if the file with exact key or starting with prefix and/or with
 extension exist in a bucket.
 """
 all_files = list_s3_files(bucket, prefix, extension)
 if any(fname.startswith(prefix) for fname in all_files):
 return True
 return False

[docs]def get_s3_client(unsigned=True):
 """Return a boto3 S3 client with optional unsigned config.

 Parameters

 unsigned : Optional[bool]
 If True, the client will be using unsigned mode in which public
 resources can be accessed without credentials. Default: True

 Returns

 botocore.client.S3
 A client object to AWS S3.
 """
 if unsigned:
 return boto3.client('s3', config=Config(signature_version=UNSIGNED))
 else:
 return boto3.client('s3')

def get_class_from_name(cls_name, parent_cls):
 classes = get_all_descendants(parent_cls)
 for cl in classes:
 if cl.__name__.lower() == camelize(cls_name).lower():
 return cl
 raise NotAClassName(f'{cls_name} is not recognized as a '
 f'{parent_cls.__name__} type!')

def _get_flask_app():
 emmaa_service_dir = Path(__file__).parent.parent.joinpath(
 'emmaa_service', 'templates')
 app = Flask('Static app', template_folder=emmaa_service_dir.as_posix())
 return app

def load_pickle_from_s3(bucket, key):
 client = get_s3_client()
 try:
 logger.info(f'Loading object from {key}')
 obj = client.get_object(Bucket=bucket, Key=key)
 content = pickle.loads(obj['Body'].read())
 return content
 except Exception as e:
 logger.info(f'Could not load the pickle from {key}')
 logger.info(e)

def save_pickle_to_s3(obj, bucket, key):
 client = get_s3_client(unsigned=False)
 logger.info('Pickling object')
 obj_str = pickle.dumps(obj, protocol=4)
 logger.info(f'Saving object to {key}')
 client.put_object(Body=obj_str, Bucket=bucket, Key=key)

def load_json_from_s3(bucket, key):
 client = get_s3_client()
 logger.info(f'Loading object from {key}')
 obj = client.get_object(Bucket=bucket, Key=key)
 content = json.loads(obj['Body'].read().decode('utf8'))
 return content

def save_json_to_s3(obj, bucket, key, save_format='json'):
 client = get_s3_client(unsigned=False)
 json_str = _get_json_str(obj, save_format=save_format)
 logger.info(f'Uploading the {save_format} object to S3')
 client.put_object(Body=json_str.encode('utf8'),
 Bucket=bucket, Key=key)

def load_gzip_json_from_s3(bucket, key):
 client = get_s3_client()
 # Newer files are zipped with gzip while older with zipfile
 try:
 logger.info(f'Loading zipped object from {key}')
 gz_obj = client.get_object(Bucket=bucket, Key=key)
 content = json.loads(zlib.decompress(
 gz_obj['Body'].read(), 16+zlib.MAX_WBITS).decode('utf8'))
 except Exception as e:
 logger.info(e)
 logger.info('Could not load with gzip, using zipfile')
 logger.info(f'Loading zipfile from {key}')
 client.download_file(bucket, key, 'temp.zip')
 with ZipFile('temp.zip', 'r') as zipf:
 content = json.loads(zipf.read(zipf.namelist()[0]))
 return content

def save_gzip_json_to_s3(obj, bucket, key, save_format='json'):
 client = get_s3_client(unsigned=False)
 json_str = _get_json_str(obj, save_format=save_format)
 gz_str = gzip_string(json_str, f'assembled_stmts.{save_format}')
 client.put_object(Body=gz_str, Bucket=bucket, Key=key)

def _get_json_str(json_obj, save_format='json'):
 logger.info(f'Dumping the {save_format} into a string')
 if save_format == 'json':
 json_str = json.dumps(json_obj, indent=1)
 elif save_format == 'jsonl':
 json_str = '\n'.join(
 [json.dumps(item) for item in json_obj])
 return json_str

[docs]class NotAClassName(Exception):
 pass

def get_credentials(key):
 client = boto3.client('ssm')
 auth_dict = {}
 for par in ['consumer_token', 'consumer_secret', 'access_token',
 'access_secret']:
 name = f'/twitter/{key}/{par}'
 try:
 response = client.get_parameter(Name=name, WithDecryption=True)
 val = response['Parameter']['Value']
 auth_dict[par] = val
 except Exception as e:
 print(e)
 break
 return auth_dict

def get_oauth_dict(auth_dict):
 oauth = tweepy.OAuthHandler(auth_dict.get('consumer_token'),
 auth_dict.get('consumer_secret'))
 oauth.set_access_token(auth_dict.get('access_token'),
 auth_dict.get('access_secret'))
 return oauth

def update_status(msg, twitter_cred):
 twitter_auth = get_oauth_dict(twitter_cred)
 if twitter_auth is None:
 return
 twitter_api = tweepy.API(twitter_auth)
 twitter_api.update_status(msg)

def _make_delta_msg(model_name, msg_type, delta, date, mc_type=None,
 test_corpus=None, test_name=None, new_papers=None,
 is_tweet=False):
 if is_tweet:
 model_type_dict = TWITTER_MODEL_TYPES
 else:
 model_type_dict = FORMATTED_TYPE_NAMES
 if len(delta['added']) == 0:
 logger.info(f'No {msg_type} delta found')
 return
 if not test_name:
 test_name = test_corpus
 plural = 's' if len(delta['added']) > 1 else ''
 if msg_type == 'stmts':
 if not new_papers:
 logger.info(f'No new papers found')
 return
 else:
 paper_plural = 's' if new_papers > 1 else ''
 url = (f'https://emmaa.indra.bio/dashboard/{model_name}'
 f'?tab=model&date={date}#addedStmts')
 start = (f'Today I read {new_papers} new publication{paper_plural}'
 ' and learned ')
 delta_part = f'{len(delta["added"])} new mechanism{plural}'
 middle = ''
 elif msg_type == 'applied_tests':
 url = (f'https://emmaa.indra.bio/dashboard/{model_name}?tab=tests'
 f'&test_corpus={test_corpus}&date={date}#newAppliedTests')
 start = 'Today I applied '
 delta_part = f'{len(delta["added"])} new test{plural}'
 middle = f' in the {test_name}'
 elif msg_type == 'passed_tests' and mc_type:
 url = (f'https://emmaa.indra.bio/dashboard/{model_name}?tab=tests'
 f'&test_corpus={test_corpus}&date={date}#newPassedTests')
 start = 'Today I explained '
 delta_part = f'{len(delta["added"])} new observation{plural}'
 middle = (f' in the {test_name} with my {model_type_dict[mc_type]} '
 'model')
 else:
 raise TypeError(f'Invalid message type: {msg_type}.')
 msg = f'{start}{delta_part}{middle}. See {url} for more details.'
 return {'url': url, 'start': start, 'delta_part': delta_part,
 'middle': middle, 'message': msg}

 emmaa.aws_lambda_functions.after_update

 Source code for emmaa.aws_lambda_functions.after_update

"""The AWS Lambda emmaa-after-update definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py after_update.py emmaa-after-update

in this directory.
"""

import boto3
import json

batch = boto3.client('batch')
JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-after-update'
PROJECT = 'aske'
BRANCH = 'origin/master'

def submit_batch_job(script_command, purpose, job_name, wait_for=None,
 job_def=JOB_DEF):
 print(f'Submitting job {job_name}')
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH}'
 core_command += script_command
 print(core_command)
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', purpose,
 core_command]
 }
 kwargs = {}
 if wait_for:
 kwargs['dependsOn'] = [{'jobId': job_id, 'type': 'SEQUENTIAL'}
 for job_id in wait_for]
 ret = batch.submit_job(
 jobName=job_name,
 jobQueue=QUEUE, jobDefinition=job_def,
 containerOverrides=cont_overrides, **kwargs)
 job_id = ret['jobId']
 print(f"Result from job submission: {job_id}")
 return job_id

[docs]def lambda_handler(event, context):
 """Submit model tests, model and test stats, and query batch jobs.

 This function is designed to be placed on AWS Lambda, taking the event and
 context arguments that are passed. Note that this function must always have
 the same parameters, even if any or all of them are unused, because we do
 not have control over what Lambda sends as parameters. Event parameter is
 used here to pass which model manager was updated.

 Lambda is configured to run this script when ModelManager object is
 updated.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case, we are expecting 'Records', each of which contains a record
 of a file that was added (or changed) on s3.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, and any
 other data to be returned to Lambda.
 """
 s3 = boto3.client('s3')
 records = event['Records']
 for rec in records:
 try:
 model_key = rec['s3']['object']['key']
 except KeyError:
 pass
 model_name = model_key.split('/')[1]
 now_str = model_key.split('model_manager_')[1][:-4]
 date = now_str[:10]
 # Store all stats jobs IDs
 stats_job_ids = []

 # Submit model stats job
 model_stats_command = (' python scripts/run_model_stats_from_s3.py'
 f' --model {model_name} --stats_mode model')
 model_stats_id = submit_batch_job(
 model_stats_command, 'update-emmaa-model-stats',
 f'{model_name}_model_stats_{now_str}')
 stats_job_ids.append(model_stats_id)

 # Find all test corpora for daily runi
 config_key = f'models/{model_name}/config.json'
 obj = s3.get_object(Bucket='emmaa', Key=config_key)
 config = json.loads(obj['Body'].read().decode('utf8'))
 tests = config['test'].get('test_corpus', 'large_corpus_tests')
 if isinstance(tests, str):
 tests = [tests]

 # For each test run the test and test stats
 for test_corpus in tests:
 test_command = (' python scripts/run_model_tests_from_s3.py'
 f' --model {model_name} --tests {test_corpus}')
 test_id = submit_batch_job(
 test_command, 'update-emmaa-results',
 f'{model_name}_{test_corpus}_tests_{now_str}')
 test_stats_command = (' python scripts/run_model_stats_from_s3.py'
 f' --model {model_name} --stats_mode tests'
 f' --tests {test_corpus}')
 test_stats_id = submit_batch_job(
 test_stats_command, 'update-emmaa-test-stats',
 f'{model_name}_{test_corpus}_stats_{now_str}', [test_id])
 stats_job_ids.append(test_stats_id)

 # Submit notification job
 notify_command = (
 f' python scripts/model_notifications.py --model {model_name} '
 f'--test_corpora {" ".join(tc for tc in tests)} --date {date}')
 submit_batch_job(notify_command, 'model-notify',
 f'{model_name}_notification_{now_str}', stats_job_ids,
 job_def='emmaa-email-notifications')
 # Run queries
 query_command = (' python scripts/answer_queries_from_s3.py'
 f' --model {model_name}')
 submit_batch_job(query_command, 'update-emmaa-queries',
 f'{model_name}_queries_{now_str}')

 # Make tests if configured
 if config.get('make_tests', False):
 test_update_command = (' python scripts/model_to_tests.py'
 f' --model {model_name}')
 submit_batch_job(test_update_command, 'update-emmaa-tests',
 f'{model_name}_test_update_{now_str}')

 return 'All jobs sumbitted'

 emmaa.aws_lambda_functions.model_manager_update

 Source code for emmaa.aws_lambda_functions.model_manager_update

"""The AWS Lambda emmaa-mm-update definition.

This file contains the function that updates model manager object in S3. It
must be placed on AWS Lambda, which can either be done manually (not
recommended) or by running:

$ python update_lambda.py model_manager_update.py emmaa-mm-update

in this directory.
"""

import boto3
from datetime import datetime

JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-models-update-test'
PROJECT = 'aske'
PURPOSE = 'update-emmaa-model-manager'
BRANCH = 'origin/master'

[docs]def lambda_handler(event, context):
 """Create a batch job to update model manager on s3.

 This function is designed to be placed on AWS Lambda, taking the event and
 context arguments that are passed. Note that this function must always have
 the same parameters, even if any or all of them are unused, because we do
 not have control over what Lambda sends as parameters. This Lambda
 function is configured to be triggered when the model is updated on S3.

 See the top of the page for the Lambda update procedure.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case, we are expecting 'Records', each of which contains a record
 of a file that was added (or changed) on s3.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, 'result',
 and 'job_id' to be returned to Lambda.
 """
 batch = boto3.client('batch')
 records = event['Records']
 for rec in records:
 try:
 model_key = rec['s3']['object']['key']
 except KeyError:
 pass
 model_name = model_key.split('/')[1]
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH}'
 core_command += (' python scripts/update_model_manager.py'
 f' --model {model_name}')
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', PURPOSE,
 core_command]
 }
 now_str = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
 ret = batch.submit_job(jobName=f'{model_name}_mm_update_{now_str}',
 jobQueue=QUEUE, jobDefinition=JOB_DEF,
 containerOverrides=cont_overrides)
 job_id = ret['jobId']

 return {'statusCode': 200, 'result': 'SUCCESS', 'job_id': job_id}

 emmaa.aws_lambda_functions.model_queries

 Source code for emmaa.aws_lambda_functions.model_queries

"""The AWS Lambda emmaa-queries definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py model_queries.py emmaa-queries

in this directory.
"""

import boto3
from datetime import datetime

JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-models-update-test'
PROJECT = 'aske'
PURPOSE = 'update-emmaa-queries'
BRANCH = 'origin/master'

[docs]def lambda_handler(event, context):
 """Create a batch job to run queries for model.

 This function is designed to be placed on lambda, taking the event and
 context arguments that are passed. Event parameter is used here to pass
 name of the model.

 This Lambda function is configured to be invoked by emmaa-after-update
 Lambda function.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case the dictionary contains 'model' key.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, and any
 other data to be returned to Lambda.
 """
 batch = boto3.client('batch')
 model_name = event['model']
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH}'
 core_command += (' python scripts/answer_queries_from_s3.py'
 f' --model {model_name}')
 print(core_command)
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', PURPOSE,
 core_command]
 }
 now_str = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
 ret = batch.submit_job(jobName=f'{model_name}_queries_{now_str}',
 jobQueue=QUEUE, jobDefinition=JOB_DEF,
 containerOverrides=cont_overrides)
 job_id = ret['jobId']

 return {'statusCode': 200, 'result': 'SUCCESS', 'job_id': job_id}

 emmaa.aws_lambda_functions.model_stats

 Source code for emmaa.aws_lambda_functions.model_stats

"""The AWS Lambda emmaa-model-stats definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py model_stats.py emmaa-model-stats

in this directory.
"""

import boto3
from datetime import datetime

JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-models-update-test'
PROJECT = 'aske'
PURPOSE = 'update-emmaa-model-stats'
BRANCH = 'origin/master'

[docs]def lambda_handler(event, context):
 """Create a batch job to generate model statistics.

 This function is designed to be placed on lambda, taking the event and
 context arguments that are passed. Event parameter is used here to pass
 name of the model.

 This Lambda function is configured to be invoked by emmaa-after-update
 Lambda function.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case the dictionary contains 'model' key.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, and any
 other data to be returned to Lambda.
 """
 batch = boto3.client('batch')
 model_name = event['model']
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH}'
 core_command += (' python scripts/run_model_stats_from_s3.py'
 f' --model {model_name} --stats_mode model')
 print(core_command)
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', PURPOSE,
 core_command]
 }
 now_str = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
 ret = batch.submit_job(
 jobName=f'{model_name}_model_stats_{now_str}',
 jobQueue=QUEUE, jobDefinition=JOB_DEF,
 containerOverrides=cont_overrides)
 job_id = ret['jobId']

 return {'statusCode': 200, 'result': 'SUCCESS', 'job_id': job_id}

 emmaa.aws_lambda_functions.model_tests

 Source code for emmaa.aws_lambda_functions.model_tests

"""The AWS Lambda emmaa-model-test definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py model_tests.py emmaa-model-test

in this directory.
"""

import boto3
from datetime import datetime

JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-models-update-test'
PROJECT = 'aske'
PURPOSE = 'update-emmaa-results'
BRANCH = 'origin/master'

[docs]def lambda_handler(event, context):
 """Create a batch job to run model tests.

 This function is designed to be placed on lambda, taking the event and
 context arguments that are passed. Event parameter is used here to pass
 names of the model and of the test corpus.

 This Lambda function is configured to be invoked by emmaa-test-pipeline
 Lambda function.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case the dictionary contains 'model' and 'tests' keys.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, and any
 other data to be returned to Lambda.
 """
 batch = boto3.client('batch')
 model_name = event['model']
 test_corpus = event['tests']
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH}'
 core_command += (' python scripts/run_model_tests_from_s3.py'
 f' --model {model_name} --tests {test_corpus}')
 print(core_command)
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', PURPOSE,
 core_command]
 }
 now_str = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
 ret = batch.submit_job(
 jobName=f'{model_name}_{test_corpus}_tests_{now_str}',
 jobQueue=QUEUE, jobDefinition=JOB_DEF,
 containerOverrides=cont_overrides)
 job_id = ret['jobId']

 return {'statusCode': 200, 'result': 'SUCCESS', 'job_id': job_id}

 emmaa.aws_lambda_functions.model_updates

 Source code for emmaa.aws_lambda_functions.model_updates

"""The AWS Lambda emmaa-model-update definition.

This file contains the function that starts model update cycle. It must be
placed on AWS Lambda, which can either be done manually (not recommended) or by
running:

$ python update_lambda.py model_updates.py emmaa-model-update

in this directory.
"""

import boto3
from datetime import datetime

JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-models-update-test'
PROJECT = 'aske'
PURPOSE = 'update-emmaa-models'
BRANCH = 'origin/master'

[docs]def lambda_handler(event, context):
 """Create a batch job to update models on s3 and NDEx.

 This function is designed to be placed on AWS Lambda, taking the event and
 context arguments that are passed. Note that this function must always have
 the same parameters, even if any or all of them are unused, because we do
 not have control over what Lambda sends as parameters. Event parameter is
 used to pass model_name argument.

 This Lambda function is configured to be invoked by emmaa-update-pipeline
 Lambda function.

 See the top of the page for the Lambda update procedure.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case the dictionary contains model name.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, 'result',
 and 'job_id' to be returned to Lambda.
 """
 model_name = event['model']
 batch = boto3.client('batch')
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH} '
 core_command += (f'python scripts/run_model_update.py --model {model_name}')
 print(core_command)
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', PURPOSE,
 core_command]
 }
 now_str = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
 ret = batch.submit_job(jobName=f'{model_name}_update_{now_str}',
 jobQueue=QUEUE, jobDefinition=JOB_DEF,
 containerOverrides=cont_overrides)
 job_id = ret['jobId']

 return {'statusCode': 200, 'result': 'SUCCESS', 'job_id': job_id}

 emmaa.aws_lambda_functions.test_pipeline

 Source code for emmaa.aws_lambda_functions.test_pipeline

"""The AWS Lambda emmaa-test-pipeline definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py test_pipeline.py emmaa-test-pipeline

in this directory.
"""

import boto3
import json

[docs]def lambda_handler(event, context):
 """Invoke individual test corpus functions.

 This function is designed to be placed on lambda, taking the event and
 context arguments that are passed. Event parameter is used here to pass
 name of the model.

 This Lambda function is configured to be invoked by emmaa-after-update
 Lambda function.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case the dictionary contains 'model' key.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A response returned by the latest call to emmaa-model-test function.
 """
 s3 = boto3.client('s3')
 lam = boto3.client('lambda')
 model_name = event['model']
 config_key = f'models/{model_name}/config.json'
 obj = s3.get_object(Bucket='emmaa', Key=config_key)
 config = json.loads(obj['Body'].read().decode('utf8'))
 tests = config['test'].get('test_corpus', 'large_corpus_tests')
 if isinstance(tests, str):
 resp = lam.invoke(FunctionName='emmaa-model-test',
 InvocationType='RequestResponse',
 Payload=json.dumps({"model": model_name,
 "tests": tests}))
 elif isinstance(tests, list):
 for test in tests:
 resp = lam.invoke(FunctionName='emmaa-model-test',
 InvocationType='RequestResponse',
 Payload=json.dumps({"model": model_name,
 "tests": test}))
 print(resp['Payload'].read())
 return {'statusCode': 200, 'result': 'SUCCESS'}

 emmaa.aws_lambda_functions.test_stats

 Source code for emmaa.aws_lambda_functions.test_stats

"""The AWS Lambda emmaa-test-stats definition.

This file contains the function that will be run when Lambda is triggered. It
must be placed on s3, which can either be done manually (not recommended) or
by running:

$ python update_lambda.py test_stats.py emmaa-test-stats

in this directory.
"""

import boto3
from datetime import datetime

JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-models-update-test'
PROJECT = 'aske'
PURPOSE = 'update-emmaa-test-stats'
BRANCH = 'origin/master'

[docs]def lambda_handler(event, context):
 """Create a batch job to generate model statistics.

 This function is designed to be placed on lambda, taking the event and
 context arguments that are passed, and extracting the names of the
 uploaded (which includes changed) model or test definitions on s3.
 Lambda is configured to be triggered by any such changes, and will
 automatically run this script.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case, we are expecting 'Records', each of which contains a record
 of a file that was added (or changed) on s3.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, and any
 other data to be returned to Lambda.
 """
 batch = boto3.client('batch')
 records = event['Records']
 for rec in records:
 try:
 model_key = rec['s3']['object']['key']
 except KeyError:
 pass
 model_name = model_key.split('/')[1]
 test_corpus = model_key.split('/')[-1][8:-25]
 if not test_corpus:
 test_corpus = 'large_corpus_tests'
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH}'
 core_command += (' python scripts/run_model_stats_from_s3.py'
 f' --model {model_name} --stats_mode tests'
 f' --tests {test_corpus}')
 print(core_command)
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', PURPOSE,
 core_command]
 }
 now_str = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
 ret = batch.submit_job(
 jobName=f'{model_name}_{test_corpus}_stats_{now_str}',
 jobQueue=QUEUE, jobDefinition=JOB_DEF,
 containerOverrides=cont_overrides)
 job_id = ret['jobId']

 return {'statusCode': 200, 'result': 'SUCCESS', 'job_id': job_id}

 emmaa.aws_lambda_functions.test_update

 Source code for emmaa.aws_lambda_functions.test_update

"""The AWS Lambda emmaa-test-update definition.

This file contains the function that updates tests created from model. It must
be placed on AWS Lambda, which can either be done manually (not recommended)
or by running:

$ python update_lambda.py test_update.py emmaa-test-update

in this directory.
"""

import boto3
from datetime import datetime

JOB_DEF = 'emmaa_jobdef'
QUEUE = 'emmaa-models-update-test'
PROJECT = 'aske'
PURPOSE = 'update-emmaa-tests'
BRANCH = 'origin/master'

[docs]def lambda_handler(event, context):
 """Create a batch job to update tests on s3.

 This function is designed to be placed on AWS Lambda, taking the event and
 context arguments that are passed. Note that this function must always have
 the same parameters, even if any or all of them are unused, because we do
 not have control over what Lambda sends as parameters. Event parameter is
 used to pass model_name argument.

 See the top of the page for the Lambda update procedure.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event. In
 this case the dictionary contains model name.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A dict containing 'statusCode', with a valid HTTP status code, 'result',
 and 'job_id' to be returned to Lambda.
 """
 model_name = event['model']
 batch = boto3.client('batch')
 core_command = 'bash scripts/git_and_run.sh'
 if BRANCH is not None:
 core_command += f' --branch {BRANCH} '
 core_command += (f'python scripts/model_to_tests.py --model {model_name}')
 print(core_command)
 cont_overrides = {
 'command': ['python', '-m', 'indra.util.aws', 'run_in_batch',
 '--project', PROJECT, '--purpose', PURPOSE,
 core_command]
 }
 now_str = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
 ret = batch.submit_job(jobName=f'{model_name}_test_update_{now_str}',
 jobQueue=QUEUE, jobDefinition=JOB_DEF,
 containerOverrides=cont_overrides)
 job_id = ret['jobId']

 return {'statusCode': 200, 'result': 'SUCCESS', 'job_id': job_id}

 emmaa.aws_lambda_functions.test_update_pipeline

 Source code for emmaa.aws_lambda_functions.test_update_pipeline

"""The AWS Lambda emmaa-test-update-pipeline definition.

This file contains the function that starts model update cycle. It must be
placed on AWS Lambda, which can either be done manually (not recommended) or by
running:

$ python update_lambda.py test_update_pipeline.py emmaa-test-update-pipeline

in this directory.
"""

import boto3
import json

[docs]def lambda_handler(event, context):
 """Invoke individual model update functions.

 This function iterates through all models contained on S3 bucket and calls
 a different Lambda function to turn the model into tests if the model is
 configured to do so. It is expected that models have 'make_tests'
 parameter in their config.json files.

 This function is designed to be placed on AWS Lambda, taking the event and
 context arguments that are passed. Note that this function must always have
 the same parameters, even if any or all of them are unused, because we do
 not have control over what Lambda sends as parameters. Parameters are
 unused in this function.

 Lambda is configured to automatically run this script every day.

 See the top of the page for the Lambda update procedure.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A response returned by the latest call to emmaa-test-update function.
 """
 s3 = boto3.client('s3')
 lam = boto3.client('lambda')
 objs = s3.list_objects_v2(Bucket='emmaa', Prefix='models/', Delimiter='/')
 prefixes = objs['CommonPrefixes']
 for prefix_dict in prefixes:
 prefix = prefix_dict['Prefix']
 config_key = f'{prefix}config.json'
 obj = s3.get_object(Bucket='emmaa', Key=config_key)
 config = json.loads(obj['Body'].read().decode('utf8'))
 if config.get('make_tests', False):
 model_name = prefix[7:-1]
 payload = {"model": model_name}
 resp = lam.invoke(FunctionName='emmaa-test-update',
 InvocationType='RequestResponse',
 Payload=json.dumps(payload))
 print(resp['Payload'].read())
 return {'statusCode': 200, 'result': 'SUCCESS'}

 emmaa.aws_lambda_functions.update_lambda

 Source code for emmaa.aws_lambda_functions.update_lambda

import boto3
import sys
from os import path
from zipfile import ZipFile

HERE = path.dirname(path.abspath(__file__))

[docs]def upload_function(script_name, function_name):
 """Upload the lambda function by pushing a zip file to Lambda.

 This function pre-supposes you are running from the same directory that
 contains the lambda script.

 Parameters

 script_name : str
 Name of a script containing lambda function.
 function_name : object
 Name of a lambda function as specified on AWS Lambda.
 """
 lamb = boto3.client('lambda')
 with ZipFile(path.join(HERE, 'lambda.zip'), 'w') as zf:
 zf.write(path.join(HERE, script_name),
 f'emmaa/{path.basename(HERE)}/{script_name}')
 zf.write(path.join(HERE, '__init__.py'),
 f'emmaa/{path.basename(HERE)}/__init__.py')
 zf.write(path.join(HERE, path.pardir, '__init__.py'),
 'emmaa/__init__.py')

 with open(path.join(HERE, 'lambda.zip'), 'rb') as zf:
 ret = lamb.update_function_code(ZipFile=zf.read(),
 FunctionName=function_name)
 print(ret)
 return

def main():
 script_name = sys.argv[1]
 function_name = sys.argv[2]
 upload_function(script_name, function_name)

if __name__ == '__main__':
 main()

 emmaa.aws_lambda_functions.update_pipeline

 Source code for emmaa.aws_lambda_functions.update_pipeline

"""The AWS Lambda emmaa-update-pipeline definition.

This file contains the function that starts model update cycle. It must be
placed on AWS Lambda, which can either be done manually (not recommended) or by
running:

$ python update_lambda.py update_pipeline.py emmaa-update-pipeline

in this directory.
"""

import boto3
import json

[docs]def lambda_handler(event, context):
 """Invoke individual model update functions.

 This function iterates through all models contained on S3 bucket and calls
 a different Lambda function to run model update for the models configured
 to be updated daily. It is expected that models have 'run_model_update'
 parameter in their config.json files.

 This function is designed to be placed on AWS Lambda, taking the event and
 context arguments that are passed. Note that this function must always have
 the same parameters, even if any or all of them are unused, because we do
 not have control over what Lambda sends as parameters. Parameters are
 unused in this function.

 Lambda is configured to automatically run this script every day.

 See the top of the page for the Lambda update procedure.

 Parameters

 event : dict
 A dictionary containing metadata regarding the triggering event.
 context : object
 This is an object containing potentially useful context provided by
 Lambda. See the documentation cited above for details.

 Returns

 ret : dict
 A response returned by the latest call to emmaa-model-update function.
 """
 s3 = boto3.client('s3')
 lam = boto3.client('lambda')
 objs = s3.list_objects_v2(Bucket='emmaa', Prefix='models/', Delimiter='/')
 prefixes = objs['CommonPrefixes']
 for prefix_dict in prefixes:
 prefix = prefix_dict['Prefix']
 config_key = f'{prefix}config.json'
 obj = s3.get_object(Bucket='emmaa', Key=config_key)
 config = json.loads(obj['Body'].read().decode('utf8'))
 model_name = prefix[7:-1]
 if model_name == 'test':
 continue
 elif config.get('run_daily_update', False):
 payload = {"model": model_name}
 resp = lam.invoke(FunctionName='emmaa-model-update',
 InvocationType='RequestResponse',
 Payload=json.dumps(payload))
 print(resp['Payload'].read())
 else:
 payload = {"Records": [{"s3": {"object": {
 "key": f"models/{model_name}/model_2020-01-01-00-00-00.pkl"}}}]}
 resp = lam.invoke(FunctionName='emmaa-mm-update',
 InvocationType='RequestResponse',
 Payload=json.dumps(payload))
 return {'statusCode': 200, 'result': 'SUCCESS'}

 emmaa.db.manager

 Source code for emmaa.db.manager

from collections import defaultdict

from fnvhash import fnv1a_32
from sqlalchemy.exc import IntegrityError

__all__ = ['EmmaaDatabaseManager', 'EmmaaDatabaseError']

import logging

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

from .schema import EmmaaTable, User, Query, Base, Result, UserQuery, UserModel
from emmaa.queries import Query as QueryObject

logger = logging.getLogger(__name__)

[docs]class EmmaaDatabaseError(Exception):
 pass

class EmmaaDatabaseSessionManager(object):
 """A Database session context manager that is used by EmmaaDatabaseManager.
 """
 def __init__(self, host, engine):
 logger.debug(f"Grabbing a session to {host}...")
 DBSession = sessionmaker(bind=engine)
 logger.debug("Session grabbed.")
 self.session = DBSession()
 if self.session is None:
 raise EmmaaDatabaseError("Could not acquire session.")
 return

 def __enter__(self):
 return self.session

 def __exit__(self, exception_type, exception_value, traceback):
 if exception_type:
 logger.exception(exception_value)
 logger.info("Got exception: rolling back.")
 self.session.rollback()
 else:
 logger.debug("Committing changes...")
 self.session.commit()

 # Close the session.
 self.session.close()

[docs]class EmmaaDatabaseManager(object):
 """A class used to manage sessions with EMMAA's database."""
 table_order = ['user', 'query', 'user_query', 'user_model', 'result']

 def __init__(self, host, label=None):
 self.host = host
 self.label = label
 self.engine = create_engine(host)
 self.tables = {tbl.__tablename__: tbl
 for tbl in EmmaaTable.__subclasses__()}
 self.session = None
 return

 def get_session(self):
 return EmmaaDatabaseSessionManager(self.host, self.engine)

[docs] def create_tables(self, tables=None):
 """Create the tables from the EMMAA database

 Optionally specify `tables` to be created. List may contain either
 table objects or the string names of the tables.
 """
 # Regularize the type of input to name strings.
 if tables is not None:
 tables = [tbl.__tablename__ if isinstance(tbl, EmmaaTable) else tbl
 for tbl in tables]

 if tables is None:
 tables = set(self.tables.keys())
 else:
 tables = set(tables)

 for tbl_name in self.table_order:
 if tbl_name in tables:
 logger.info(f"Creating {tbl_name} table")
 if not self.tables[tbl_name].__table__.exists(self.engine):
 self.tables[tbl_name].__table__.create(bind=self.engine)
 logger.debug("Table created!")
 else:
 logger.warning(f"Table {tbl_name} already exists! "
 f"No action taken.")
 return

[docs] def drop_tables(self, tables=None, force=False):
 """Drop the tables from the EMMAA database given in `tables`.

 If `tables` is None, all tables will be dropped. Note that if `force`
 is False, a warning prompt will be raised to asking for confirmation,
 as this action will remove all data from that table.
 """
 # Regularize the type of input to table objects.
 if tables is not None:
 tables = [tbl if isinstance(tbl, EmmaaTable) else self.tables[tbl]
 for tbl in tables]

 if not force:
 # Build the message
 if tables is None:
 msg = ("Do you really want to clear the %s database? [y/N]: "
 % self.label)
 else:
 msg = "You are going to clear the following tables:\n"
 msg += '\n'.join(['\t-' + tbl.__tablename__ for tbl in tables])
 msg += '\n'
 msg += ("Do you really want to clear these tables from %s? "
 "[y/N]: " % self.label)

 # Check to make sure.
 resp = input(msg)
 if resp != 'y' and resp != 'yes':
 logger.info('Aborting drop.')
 return False

 if tables is None:
 logger.info("Removing all tables...")
 Base.metadata.drop_all(self.engine)
 logger.debug("All tables removed.")
 else:
 for tbl in tables:
 logger.info("Removing %s..." % tbl.__tablename__)
 if tbl.__table__.exists(self.engine):
 tbl.__table__.drop(self.engine)
 logger.debug("Table removed.")
 else:
 logger.debug("Table doesn't exist.")
 return True

[docs] def add_user(self, user_id, email):
 """Add a new user's email and id to Emmaa's User table."""
 try:
 new_user = User(id=user_id, email=email)
 with self.get_session() as sess:
 sess.add(new_user)
 except IntegrityError as e:
 logger.warning(f"A user with email {email} already exists.")
 return user_id

[docs] def put_queries(self, user_email, user_id, query, model_ids,
 subscribe=True):
 """Add queries to the database for a given user.

 Parameters

 user_email : str
 the email of the user that entered the queries.
 user_id : int
 the user id of the user that entered the queries. Corresponds to
 the user id in the User table in indralab_auth_tools
 query : emmaa.queries.Query
 A query object containing all necessary information.
 model_ids : list[str]
 A list of the short, standard model IDs to which the user wishes
 to apply these queries.
 subscribe : bool
 True if the user wishes to subscribe to this query.
 """
 logger.info(f"Got request to put query {query} for {user_email} "
 f"for {model_ids} with subscribe={subscribe}")

 # Make sure model_ids is a list.
 if not isinstance(model_ids, list) and not isinstance(model_ids, set):
 raise TypeError("Invalid type: %s. Must be list or set."
 % type(model_ids))

 if not subscribe:
 logger.info("Not subscribing...")

 # Check if anonymous user
 if not user_email and not user_id:
 logger.info(f'User {user_email} is not registered in the user '
 'database. Query will be stored as anonymous query.')
 # Make sure user_id is a None and not any other object
 # evaluating to False (only None register as NULL in table)
 user_email = 'anonymous@emmaa.bio'
 user_id = None

 # Open database session
 with self.get_session() as sess:
 # Get existing hashes, user's id and user's subscriptions
 existing_hashes = {h for h, in sess.query(Query.hash).all()}
 existing_user_queries = {h for h, in sess.query(
 UserQuery.query_hash).filter(UserQuery.user_id == user_id)}

 # Check if logged in user is in the emmaa user table
 if user_email and user_id:
 res = \
 sess.query(User.id).filter(User.id == user_id).first()
 if res:
 logger.info(f'User {user_email} is registered in the '
 f'user table.')
 else:
 logger.info(f'{user_email} not in user table. Adding...')
 self.add_user(user_id=user_id, email=user_email)

 new_queries = []
 new_user_queries = []
 for model_id in model_ids:
 qh = query.get_hash_with_model(model_id)

 # Add to queries if not present
 if qh not in existing_hashes:
 logger.info(f"Adding query on {model_id} to the db.")
 new_queries.append(Query(model_id=model_id,
 json=query.to_json(),
 qtype=query.get_type(),
 hash=qh))
 else:
 logger.info(f"Query for {model_id} already in db.")

 # Add query to UserQuery table or update existing one
 if qh not in existing_user_queries:
 new_user_queries.append(UserQuery(user_id=user_id,
 query_hash=qh,
 subscription=subscribe,
 count=1))
 logger.info(f'Registering query on {model_id} for user '
 f'{user_email}')
 # Update existing query
 else:
 user_query = sess.query(UserQuery).filter(
 UserQuery.user_id == user_id,
 UserQuery.query_hash == qh
).first()
 logger.info(f'Updating existing query for {user_email} '
 f'on {model_id} ({qh})')
 # Update subscription
 # Set subscribe to True, handle un-subscribe elsewhere
 if subscribe:
 user_query = update_subscription(user_query, subscribe)

 # Update query count
 user_query.count += 1

 # Add new queries and register them for the user
 sess.add_all(new_queries)
 sess.add_all(new_user_queries)
 return

[docs] def get_queries(self, model_id):
 """Get queries that refer to the given model_id.

 Parameters

 model_id : str
 The short, standard model ID.

 Returns

 queries : list[emmaa.queries.Query]
 A list of queries retrieved from the database.
 """
 with self.get_session() as sess:
 q = sess.query(Query.json).filter(
 Query.model_id == model_id,
 Query.hash == UserQuery.query_hash,
 UserQuery.subscription).distinct()
 queries = [QueryObject._from_json(q) for q, in q.all()]
 return queries

[docs] def put_results(self, model_id, query_results):
 """Add new results for a set of queries tested on a model_id.

 Parameters

 model_id : str
 The short, standard model ID.
 query_results : list of tuples
 A list of tuples of the form (query, mc_type, result_json), where
 the query is the query object run against the model, mc_type is
 the model type for the result, and the result_json is the json
 containing corresponding result.
 """
 results = []
 for query, mc_type, result_json in query_results:
 query_hash = query.get_hash_with_model(model_id)
 all_result_hashes = self.get_all_result_hashes(query_hash, mc_type)
 if all_result_hashes is not None:
 delta = set(result_json.keys()) - all_result_hashes
 new_all_hashes = all_result_hashes.union(delta)
 else: # this is the first result
 delta = set()
 new_all_hashes = set(result_json.keys())
 if delta:
 logger.info('New results:')
 for key in delta:
 logger.info(result_json[key])
 results.append(Result(query_hash=query_hash,
 mc_type=mc_type,
 result_json=result_json,
 all_result_hashes=new_all_hashes,
 delta=delta))

 with self.get_session() as sess:
 sess.add_all(results)
 return

 def get_results_from_query(self, query, model_ids, latest_order=1):
 logger.info(f"Got request for results of {query} on {model_ids}.")
 hashes = {query.get_hash_with_model(model_id)
 for model_id in model_ids}
 return self.get_results_from_hashes(hashes, latest_order=latest_order)

 def get_results_from_hashes(self, query_hashes, latest_order=1):
 logger.info(f"Got request for results of queries with hashes "
 f"{query_hashes}")
 with self.get_session() as sess:
 q = (sess.query(Query.model_id, Query.json, Result.mc_type,
 Result.result_json, Result.delta, Result.date)
 .filter(Result.query_hash.in_(query_hashes),
 Query.hash == Result.query_hash)).distinct()
 results = _make_queries_in_results(q.all())
 results = _weed_results(results, latest_order=latest_order)
 logger.info(f"Found {len(results)} results.")
 return results

[docs] def get_all_result_hashes(self, qhash, mc_type):
 """Get a set of all result hashes for a given query and mc_type."""
 with self.get_session() as sess:
 q = (sess.query(Result.all_result_hashes)
 .filter(Result.query_hash == qhash,
 Result.mc_type == mc_type)
 .order_by(Result.date.desc()).limit(1))
 all_sets = [q for q in q.all()]
 if all_sets:
 return set(all_sets[0][0])
 return None

[docs] def get_results(self, user_email, latest_order=1, query_type=None):
 """Get the results for which the user has registered.

 Parameters

 user_email : str
 The email of a user.
 latest_order : int
 Which result in the order from the latest to get. Default: 1 (
 latest).
 query_type : str
 Filter results to specific query type. Default: None (all query
 types will be returned).

 Returns

 results : list[tuple]
 A list of tuples, each of the form: (model_id, query, mc_type,
 result_json, delta, date) representing the result of a query run
 on a model on a given date.
 """
 logger.info(f"Got request for results for {user_email}")
 with self.get_session() as sess:
 q = (sess.query(Query.model_id, Query.json, Result.mc_type,
 Result.result_json, Result.delta, Result.date)
 .filter(Query.hash == Result.query_hash,
 Query.hash == UserQuery.query_hash,
 UserQuery.user_id == User.id,
 UserQuery.subscription,
 User.email == user_email))
 if query_type:
 q = q.filter(Query.qtype == query_type)
 results = _make_queries_in_results(q.all())
 results = _weed_results(results, latest_order=latest_order)
 logger.info(f"Found {len(results)} results.")
 return results

 def get_users(self, query, model_id):
 logger.info(f"Got request for users for {query} in {model_id}.")
 with self.get_session() as sess:
 q = (sess.query(User.email).filter(
 User.id == UserQuery.user_id,
 Query.hash == query.get_hash_with_model(model_id)))
 users = [q for q, in q.all()]
 return users

[docs] def get_subscribed_queries(self, email):
 """Get a list of (query object, model id, query hash) for a user

 Parameters

 email : str
 The email address to check subscribed queries for

 Returns

 list(tuple(emmaa.queries.Query, str, query_hash))
 """
 logger.info(f"Got request to list user queries for {email}")
 # Get the query json for which email is subscribed
 with self.get_session() as sess:
 q = sess.query(Query.json, Query.model_id, Query.hash).filter(
 Query.hash == UserQuery.query_hash,
 UserQuery.user_id == User.id,
 User.email == email,
 UserQuery.subscription
)
 # Returns list of (query json, query hash) tuples
 return [(QueryObject._from_json(qj), mid, qh)
 for qj, mid, qh in q.all()] if q.all() else []

[docs] def get_subscribed_users(self):
 """Get all users who have subscriptions
 Returns

 list[str]
 A list of email addresses corresponding to all users who have
 any subscribed query
 """
 logger.info('Got request to gather all users with subscription')
 # Get db session
 with self.get_session() as sess:
 q = sess.query(User.email).filter(
 User.id == UserQuery.user_id,
 UserQuery.subscription
).distinct()
 return [e for e, in q.all()] if q.all() else []

[docs] def get_user_models(self, email):
 """Get all models a user is subscribed to."""
 logger.info(f"Got request to list subscribed models for {email}")
 with self.get_session() as sess:
 q = sess.query(UserModel.model_id).filter(
 UserModel.user_id == User.id,
 User.email == email,
 UserModel.subscription
).distinct()
 return [m for m, in q.all()] if q.all() else []

[docs] def update_email_subscription(self, email, queries, models, subscribe):
 """Update email subscriptions for user queries

 NOTE:
 For now this method simply unsubscribes to the given queries but
 should in the future differentiated into recieving email
 notifications or not and subscribing to queries or not.

 Parameters

 email : str
 The email assocaited with the query
 queries : list(int)
 A list of query hashes.
 models " list[str]
 A list of models.
 subscribe : bool
 The subscription status for all matching query hashes

 Returns

 bool
 Return True if the update was successful, False otherwise
 """
 logger.info(f'Got request to update email subscription for {email} '
 f'on {len(queries)} queries and {len(models)} models')
 try:
 updated_queries = 0
 updated_models = 0
 with self.get_session() as sess:
 # First unsubscribe queries
 for qhash in queries:
 # Update subscription status for each provided hash
 user_query = sess.query(UserQuery).filter(
 User.email == email,
 UserQuery.user_id == User.id,
 UserQuery.query_hash == qhash
)
 uq = user_query.all()[0] if len(user_query.all()) > 0 \
 else None

 # If entry exists and subscription status is different
 # from new status
 if uq and uq.subscription != subscribe:
 uq = update_subscription(uq, subscribe)
 updated_queries += 1
 else:
 continue
 if updated_queries:
 logger.info(f'Changed subscription status for '
 f'{updated_queries} queries to {subscribe}. '
 f'The other {len(queries) - updated_queries} '
 f'queries already had their subscription '
 f'status set to {subscribe}.')
 # Then unsubscribe models
 for model_id in models:
 user_model = sess.query(UserModel).filter(
 User.email == email,
 UserModel.user_id == User.id,
 UserModel.model_id == model_id
)
 um = user_model.all()[0] if len(user_model.all()) > 0 \
 else None
 # If entry exists and subscription status is different
 # from new status
 if um and um.subscription != subscribe:
 um = update_model_subscription(um, subscribe)
 updated_models += 1
 else:
 continue
 if updated_models:
 logger.info(f'Changed subscription status for '
 f'{updated_models} models to {subscribe}. '
 f'The other {len(models) - updated_models} '
 f'models already had their subscription '
 f'status set to {subscribe}.')
 return True
 except Exception as e:
 logger.warning(f'Could not change subscription status for query '
 f'hashes {queries} and models {models}.')
 logger.exception(e)
 return False

 def get_number_of_results(self, query_hash, mc_type):
 with self.get_session() as sess:
 q = (sess.query(Result.id).filter(Result.query_hash == query_hash,
 Query.hash == Result.query_hash,
 Result.mc_type == mc_type))
 return len(q.all())

[docs] def subscribe_to_model(self, user_email, user_id, model_id):
 """Subsribe a user to model updates.

 Parameters

 user_email : str
 the email of the user that entered the queries.
 user_id : int
 the user id of the user that entered the queries. Corresponds to
 the user id in the User table in indralab_auth_tools
 model_id : str
 Standard model ID to which the user wishes to subscribe.
 """
 if not user_email or not user_id or not model_id:
 raise TypeError('User email, user id and model id are required')
 with self.get_session() as sess:
 # Check if user is in the emmaa user table
 res = sess.query(User.id).filter(User.id == user_id).first()
 if res:
 logger.info(f'User {user_email} is registered in the '
 f'user table.')
 else:
 logger.info(f'{user_email} not in user table. Adding...')
 self.add_user(user_id=user_id, email=user_email)
 all_user_models = {m for m, in sess.query(
 UserModel.model_id).filter(UserModel.user_id == user_id)}
 if model_id in all_user_models:
 user_model = sess.query(UserModel).filter(
 UserModel.user_id == user_id,
 UserModel.model_id == model_id).first()
 user_model = update_model_subscription(user_model, True)
 else:
 logger.info(
 f'Subscribing user {user_email} to {model_id} model')
 user_model = UserModel(user_id=user_id,
 model_id=model_id,
 subscription=True)
 sess.add(user_model)
 return

[docs] def get_model_users(self, model_id):
 """Get all users who are subscribed to a given model.

 Parameters

 model_id : str
 A standard name of a model to get users for.

 Returns

 list[str]
 A list of email addresses corresponding to all users who are
 subscribed to this model.
 """
 logger.info(f'Got request to gather users subscribed to {model_id}')
 # Get db session
 with self.get_session() as sess:
 q = sess.query(User.email).filter(
 User.id == UserModel.user_id,
 UserModel.model_id == model_id,
 UserModel.subscription
).distinct()
 return [e for e, in q.all()] if q.all() else []

def _weed_results(result_iter, latest_order=1):
 # Each element of result_iter:
 # (model_id, query(object), result_json, delta, date)
 result_dict = defaultdict(list)
 for res in result_iter:
 result_dict[(res[1].get_hash_with_model(res[0]), res[2])].append(
 tuple(res))
 sorted_results = [sorted(res_list, key=lambda r: r[-1])
 for res_list in result_dict.values()]
 results = [result[-latest_order] for result in sorted_results]
 return results

def _make_queries_in_results(result_iter):
 # Each element of result_iter:
 # (model_id, query_json, result_json, delta, date)
 # Replace query_json with Query object
 results = []
 for res in result_iter:
 query = QueryObject._from_json(res[1])
 results.append((res[0], query, res[2], res[3], res[4], res[5]))
 return results

def sorted_json_string(json_thing):
 """Produce a string that is unique to a json's contents."""
 if isinstance(json_thing, str):
 return json_thing
 elif isinstance(json_thing, list):
 return '[%s]' % (','.join(sorted(sorted_json_string(s)
 for s in json_thing)))
 elif isinstance(json_thing, dict):
 return '{%s}' % (','.join(sorted(k + sorted_json_string(v)
 for k, v in json_thing.items())))
 elif isinstance(json_thing, float):
 return str(json_thing)
 else:
 raise TypeError(f"Invalid type: {type(json_thing)}")

def hash_query(query_json, model_id):
 """Create an FNV-1a 32-bit hash from the query json and model_id."""
 unique_string = model_id + ':' + sorted_json_string(query_json)
 return fnv1a_32(unique_string.encode('utf-8'))

def update_subscription(user_query, new_sub_status):
 """Update a UserQuery object's subscription status

 user_query : `emmaa.db.schema.UserQuery`
 The UserQuery object to be updated
 new_sub_status : Bool
 The subscription status to change to

 Returns

 user_query : UserQuery(object)
 The updated UserQuery object
 """
 if new_sub_status is not user_query.subscription:
 user_query.subscription = new_sub_status
 logger.info(f'Updated subscription status to '
 f'{new_sub_status} for query {user_query.query_hash}')
 return user_query

def update_model_subscription(user_model, new_sub_status):
 """Update a UserQuery object's subscription status

 user_query : `emmaa.db.schema.UserModel`
 The UserModel object to be updated
 new_sub_status : Bool
 The subscription status to change to

 Returns

 user_model : UserModel(object)
 The updated UserModel object
 """
 if new_sub_status is not user_model.subscription:
 user_model.subscription = new_sub_status
 logger.info(f'Updated subscription status to '
 f'{new_sub_status} for model {user_model.model_id}')
 return user_model

 emmaa.db.schema

 Source code for emmaa.db.schema

__all__ = ['User', 'Query', 'UserQuery', 'Result', 'UserModel']

import logging

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, UniqueConstraint, ForeignKey, \
 Boolean, DateTime, func, BigInteger
from sqlalchemy.orm import relationship
from sqlalchemy.dialects.postgresql import JSONB, ARRAY

logger = logging.getLogger(__name__)

Base = declarative_base()

class EmmaaTable(object):
 _skip_disp = []

 def _content_strings(self):
 ret = []
 for k, v in self.__dict__.items():
 if not k.startswith('_'):
 if k in self._skip_disp:
 ret.append(f'{k}=[not shown]')
 else:
 ret.append(f'{k}={v}')
 return ret

 def _make_str(self):
 s = self.__tablename__ + ':\n'
 s += '\n'.join(f'\t{line}' for line in self._content_strings())
 return s

 def display(self):
 """Display the values of this entry."""
 print(self._make_str())

 def __str__(self):
 return self._make_str()

 def __repr__(self):
 return f'{self.__class__.__name__}' \
 f'({", ".join(self._content_strings())})'

[docs]class User(Base, EmmaaTable):
 """A table containing users of EMMAA: ``User(_id_, email)``

 Parameters

 id : int
 (from indralab_auth_tools.src.models.User.id, primary key)
 A database-generated integer from the User table in indralab
 auth tools.
 email : str
 The email of the user (must be unique)
 """
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 email = Column(String, unique=True)

[docs]class Query(Base, EmmaaTable):
 """Queries run on each model: ``Query(_hash_, model_id, json, qtype)``

 The hash column is a hash generated from the json and model_id columns
 that can be derived from the

 Parameters

 hash : big-int
 (primary key) A 32 bit integer generated from the json and model_id.
 model_id : str
 (20 character) The short id/acronym for the given model.
 json : json
 A json dict containing the relevant parameters defining the query.
 """
 __tablename__ = 'query'
 hash = Column(BigInteger, primary_key=True)
 model_id = Column(String(20), nullable=False)
 json = Column(JSONB, nullable=False)
 qtype = Column(String(40), default='path_property')
 __table_args__ = (
 UniqueConstraint('model_id', 'json', name='query-uniqueness'),
)

[docs]class UserQuery(Base, EmmaaTable):
 """A table linking users to queries:

 ``UserQuery(_id_, user_id, query_hash, date, subscription, count)``

 Parameters

 id : int
 (auto, primary key) A database-assigned integer id.
 user_id : int
 (foreign key -> User.id) The id of the user related to this query.
 query_hash : big-int
 (foreign key -> Query.hash) The hash of the query json, which can be
 directly generated.
 date : datetime
 (auto) The date that this entry was added to the database.
 subscription : bool
 Record whether the user has subscribed to see results of this model.
 count : int
 Record the number of times the user associated with user id has done
 this query
 """
 __tablename__ = 'user_query'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'), nullable=True)
 user = relationship(User)
 query_hash = Column(BigInteger, ForeignKey('query.hash'), nullable=False)
 query = relationship(Query)
 date = Column(DateTime, default=func.now())
 subscription = Column(Boolean, nullable=False)
 count = Column(Integer, nullable=False)

[docs]class UserModel(Base, EmmaaTable):
 """A table linking users to models:

 ``UserModel(_id_, user_id, model_id, date, subscription)``

 Parameters

 id : int
 (auto, primary key) A database-assigned integer id.
 user_id : int
 (foreign key -> User.id) The id of the user related to this query.
 model_id : str
 (20 character) The short id/acronym for the given model.
 date : datetime
 (auto) The date that this entry was added to the database.
 subscription : bool
 Record whether the user has subscribed to see results of this model.
 """
 __tablename__ = 'user_model'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'), nullable=False)
 user = relationship(User)
 model_id = Column(String(20), nullable=False)
 date = Column(DateTime, default=func.now())
 subscription = Column(Boolean, nullable=False)

[docs]class Result(Base, EmmaaTable):
 """Results of queries to models:

 ``Result(_id_, query_hash, date, result_json, mc_type, all_result_hashes,
 delta)``

 Parameters

 id : int
 (auto, primary key) A database-assigned integer id.
 query_hash : big-int
 (foreign key -> Query.hash) The hash of the query json, which can be
 directly generated.
 date : datetime
 (auto) The date the result was entered into the database.
 result_json : json
 A json dict containing the results for the query.
 mc_type : str
 A name of a ModelChecker used to answer the query.
 """
 __tablename__ = 'result'
 id = Column(Integer, primary_key=True)
 query_hash = Column(BigInteger, ForeignKey('query.hash'), nullable=False)
 query = relationship(Query)
 date = Column(DateTime, default=func.now())
 result_json = Column(JSONB, nullable=False)
 mc_type = Column(String(20), default='pysb')
 all_result_hashes = Column(ARRAY(String), default=[])
 delta = Column(ARRAY(String), default=[])

 emmaa.priors.cancer_prior

 Source code for emmaa.priors.cancer_prior

import os
import csv
import json
import logging
import numpy as np
import networkx as nx
from scipy.sparse.linalg import expm_multiply
from indra.util import batch_iter
from indra.sources import tas
from indra.databases import cbio_client, uniprot_client
from indra.databases.hgnc_client import hgnc_ids, get_hgnc_id, get_hgnc_name, \
 get_uniprot_id
from emmaa.priors import get_drugs_for_gene, SearchTerm

logger = logging.getLogger(__name__)

[docs]class TcgaCancerPrior(object):
 """Prior network generation using TCGA mutations for a given cancer type.

 This class implements building a prior network using a generic underlying
 prior, and TCGA data for a specific cancer type. Mutations for the given
 cancer type are extracted from TCGA studies and heat diffusion from the
 corresponding nodes in the prior is used to identify a set of relevant
 nodes.
 """
 def __init__(self, tcga_study_prefix, sif_prior, diffusion_service=None,
 mutation_cache=None):
 if tcga_study_prefix not in tcga_studies:
 raise ValueError('TCGA study prefix must be one of %s' %
 (', '.join(tcga_studies.keys())))
 # e.g. paad
 self.tcga_study_prefix = tcga_study_prefix
 self.mutations = None
 self.norm_mutations = None
 self.prior_graph = None
 self.sif_prior = sif_prior
 if diffusion_service is None:
 self.diffusion_service = 'http://v3.heat-diffusion.cytoscape.io:80'
 else:
 self.diffusion_service = diffusion_service
 self.mutation_cache = mutation_cache

[docs] def make_prior(self, pct_heat_threshold=99):
 """Run the prior node list generation and return relevant nodes."""
 self.get_mutated_genes()
 self.load_sif_prior(self.sif_prior)
 res = self.get_relevant_nodes(pct_heat_threshold)
 return res

[docs] def get_mutated_genes(self):
 """Return dict of gene mutation frequencies based on TCGA studies."""
 if self.mutation_cache:
 logger.info('Loading mutations from %s' % self.mutation_cache)
 with open(self.mutation_cache, 'r') as fh:
 self.mutations = json.load(fh)
 else:
 logger.info('Getting mutations from cBio web service')
 mutations = {}
 for tcga_study_name in tcga_studies[self.tcga_study_prefix]:
 for idx, hgnc_name_batch in \
 enumerate(batch_iter(hgnc_ids.keys(), 200)):
 logger.info('Fetching mutations for %s and gene batch %s' %
 (tcga_study_name, idx))
 patient_mutations = \
 cbio_client.get_profile_data(tcga_study_name,
 hgnc_name_batch,
 'mutation')
 # e.g. 'ICGC_0002_TD': {'BRAF': None, 'KRAS': 'G12D'}
 for patient, gene_mut_dict in patient_mutations.items():
 # 'BRAF': None
 for gene, mutated in gene_mut_dict.items():
 if mutated is not None:
 try:
 mutations[gene] += 1
 except KeyError:
 mutations[gene] = 1
 self.mutations = mutations

 # Normalize mutations by length
 self.norm_mutations = {}
 for gene_name, num_muts in self.mutations.items():
 self.norm_mutations[gene_name] = \
 self.normalize_mutation_count(gene_name, num_muts)

 return self.mutations, self.norm_mutations

 @staticmethod
 def normalize_mutation_count(gene_name, num_muts):
 hgnc_id = get_hgnc_id(gene_name)
 up_id = get_uniprot_id(hgnc_id)
 if not up_id:
 logger.warning("Could not get Uniprot ID for HGNC symbol %s "
 "with HGNC ID %s" % (gene_name, hgnc_id))
 length = 500 # a guess at a default
 else:
 length = uniprot_client.get_length(up_id)
 if not length:
 logger.warning("Could not get length for Uniprot "
 "ID %s" % up_id)
 length = 500 # a guess at a default
 norm_mutations = num_muts / float(length)
 return norm_mutations

[docs] def load_sif_prior(self, fname, e50=20):
 """Return a Graph based on a SIF file describing a prior.

 Parameters

 fname : str
 Path to the SIF file.
 e50 : int
 Parameter for converting evidence counts into weights over the
 interval [0, 1) according to hyperbolic function
 `weight = (count / (count + e50))`.
 """
 # Format
 # agA_ns,agA_id,agA_name,agB_ns,agB_id,agB_name,stmt_type,
 # evidence_count
 # FPLX,9_1_1,9_1_1,HGNC,3511,EXO1,Activation,7
 G = nx.Graph()
 logger.info('Loading SIF prior from %s' % fname)
 with open(fname, 'r') as fh:
 csv_reader = csv.reader(fh, delimiter=',')
 header = next(csv_reader)
 for row in csv_reader:
 agA_ns, agA_id, agA_name, agB_ns, agB_id, agB_name, \
 stmt_type, evidence_count = row
 A_key = '%s:%s' % (agA_ns, agA_id)
 B_key = '%s:%s' % (agB_ns, agB_id)
 weight = (float(evidence_count) /
 (e50 + float(evidence_count)))
 G.add_edge(A_key, B_key, weight=weight)
 self.prior_graph = G
 logger.info('Finished loading SIF prior')
 return G

[docs] def get_relevant_nodes(self, pct_heat_threshold):
 """Return a list of the relevant nodes in the prior.

 Heat diffusion is applied to the prior network based on initial
 heat on nodes that are mutated according to patient statistics.
 """
 logger.info('Setting heat for relevant nodes in prior network')
 heats = np.zeros(len(self.prior_graph))
 mut_nodes = {}
 for gene_name, muts in self.norm_mutations.items():
 if muts:
 hgnc_id = get_hgnc_id(gene_name)
 node_key = 'HGNC:%s' % hgnc_id
 mut_nodes[node_key] = muts

 for idx, node in enumerate(self.prior_graph.nodes()):
 if node in mut_nodes:
 heats[idx] = mut_nodes[node]

 gamma = -0.1
 logger.info('Calculating Laplacian matrix')
 lp_mx = nx.normalized_laplacian_matrix(self.prior_graph,
 weight='weight')
 logger.info('Diffusing heat')
 Df = expm_multiply(gamma * lp_mx, heats)
 heat_thresh = np.percentile(Df, pct_heat_threshold)
 logger.info('Filtering to relevant nodes with heat threshold %.2f '
 '(%s percentile)' % (heat_thresh, pct_heat_threshold))
 # Zip the nodes with their heats and sort
 node_heats = sorted(list(zip(self.prior_graph.nodes(), Df)),
 key=lambda x: x[1], reverse=True)
 relevant_nodes = [n for n, heat in node_heats if heat >= heat_thresh]
 return relevant_nodes

[docs] @staticmethod
 def search_terms_from_nodes(node_list):
 """Build a list of Pubmed search terms from the nodes returned by
 make_prior."""
 terms = []
 for node in node_list:
 if node.startswith('HGNC:'):
 hgnc_id = node.split(':')[1]
 hgnc_name = get_hgnc_name(hgnc_id)
 if hgnc_name is None:
 logger.log(f'{node} is not a valid HGNC ID')
 else:
 term = SearchTerm(type='gene', name=hgnc_name,
 search_term=f'"{hgnc_name}"',
 db_refs={'HGNC': hgnc_id})
 terms.append(term)
 elif node.startswith('MESH:'):
 mesh_id = node.split(':')[1]
 # TODO: get actual process name here
 term = SearchTerm(type='bioprocess', name=mesh_id,
 search_term=f'{mesh_id}[MeSH Terms]',
 db_refs={'MESH': mesh_id})
 terms.append(term)
 # TODO: handle GO here
 else:
 logger.warning(f'Could not create search term from {node}')
 return sorted(terms, key=lambda x: x.name)

[docs] @staticmethod
 def find_drugs_for_genes(node_list):
 """Return list of drugs targeting gene nodes."""
 tas_statements = tas.process_from_web().statements
 already_added = set()
 drug_terms = []
 for node in node_list:
 if node.startswith('HGNC:'):
 hgnc_id = node.split(':')[1]
 drugs = get_drugs_for_gene(tas_statements, hgnc_id)
 for drug in drugs:
 if drug.name not in already_added:
 drug_terms.append(drug)
 already_added.add(drug.name)
 return sorted(drug_terms, key=lambda x: x.name)

def _load_tcga_studies():
 """Return a list of TCGA studies by prefix.

 Note that the resource file read here ensures that studies are
 non-redundant, which wouldn't be guaranteed by the web service.
 """
 here = os.path.dirname(os.path.abspath(__file__))
 resources = os.path.join(here, os.pardir, 'resources')
 studies_file = os.path.join(resources, 'cancer_studies.json')
 with open(studies_file, 'r') as fh:
 studies = json.load(fh)
 return studies

tcga_studies = _load_tcga_studies()

 emmaa.priors.gene_list_prior

 Source code for emmaa.priors.gene_list_prior

from indra.sources import tas
from indra.statements import Agent
from indra.databases import hgnc_client
from . import SearchTerm, get_drugs_for_gene
from . prior_stmts import get_stmts_for_gene_list
import datetime
from emmaa.statements import EmmaaStatement
from emmaa.model import EmmaaModel, save_config_to_s3

[docs]class GeneListPrior(object):
 """Class to manage the construction of a model from a list of genes.

 Parameters

 gene_list : list[str]
 A list of HGNC gene symbols
 name : str
 The name of the model (all lower case, no spaces or special characters)
 human_readable_name : str
 The human readable name (display name) of the model
 """
 def __init__(self, gene_list, name, human_readable_name):
 self.name = name
 self.gene_list = gene_list
 self.human_readable_name = human_readable_name
 self.stmts = []
 self.search_terms = []

[docs] def make_search_terms(self, drug_gene_stmts=None):
 """Generate search terms from the gene list."""
 if not drug_gene_stmts:
 drug_gene_stmts = tas.process_from_web().statements
 already_added = set()
 terms = []
 for gene in self.gene_list:
 # Gene search term
 agent = agent_from_gene_name(gene)
 term = SearchTerm(type='gene', name=agent.name,
 search_term=f'"{agent.name}"',
 db_refs={'HGNC': agent.db_refs['HGNC'],
 'UP': agent.db_refs['UP']})
 terms.append(term)

 # Drug search term
 drug_terms = get_drugs_for_gene(drug_gene_stmts,
 agent.db_refs['HGNC'])
 for drug_term in drug_terms:
 if drug_term.name not in already_added:
 terms.append(drug_term)
 already_added.add(drug_term.name)
 self.search_terms = terms
 return terms

[docs] def make_gene_statements(self):
 """Generate Statements from the gene list."""
 drug_names = [st.name for st in self.search_terms if
 st.type == 'drug']
 indra_stmts = get_stmts_for_gene_list(self.gene_list, drug_names)
 estmts = [EmmaaStatement(stmt, datetime.datetime.now(), [])
 for stmt in indra_stmts]
 self.stmts = estmts

[docs] def make_config(self):
 """Generate a configuration based on attributes."""
 if not self.search_terms:
 self.make_search_terms()
 if not self.stmts:
 self.make_gene_statements()
 config = dict()
 config['name'] = self.name
 config['human_readable_name'] = self.human_readable_name
 config['search_terms'] = [st.to_json() for st in self.search_terms]
 config['assembly'] = {
 'belief_cutoff': 0.8,
 'filter_ungrounded': True
 }
 return config

[docs] def make_model(self):
 """Make an EmmaaModel and upload it along with the config to S3."""
 config = self.make_config()
 em = EmmaaModel(self.name, config)
 em.stmts = self.stmts
 ndex_uuid = em.upload_to_ndex()
 config['ndex'] = {'network': ndex_uuid}
 save_config_to_s3(self.name, config)
 em.save_to_s3()

[docs]def agent_from_gene_name(gene_name):
 """Return an Agent based on a gene name."""
 hgnc_id = hgnc_client.get_hgnc_id(gene_name)
 up_id = hgnc_client.get_uniprot_id(hgnc_id)
 agent = Agent(gene_name, db_refs={'HGNC': hgnc_id,
 'UP': up_id})
 return agent

 emmaa.priors.literature_prior

 Source code for emmaa.priors.literature_prior

"""This module implements the LiteraturePrior class which automates
some of the steps involved in starting a model around a set of
literature searches. Example:

.. code:: python

 lp = LiteraturePrior('some_disease', 'Some Disease',
 'This is a self-updating model of Some Disease',
 search_strings=['some disease'],
 assembly_config_template='nf')
 estmts = lp.get_statements()
 model = lp.make_model(estmts, upload_to_s3=True)

"""
import tqdm
import logging
import datetime
from collections import defaultdict
from indra.util import batch_iter
from indra_db import get_db
from indra_db.util import distill_stmts
from indra_db.client.principal import get_raw_stmt_jsons_from_papers
from indra.databases import mesh_client
from indra.statements import stmts_from_json
from . import SearchTerm
from emmaa.model import EmmaaModel
from emmaa.statements import EmmaaStatement

logger = logging.getLogger(__name__)

class LiteraturePrior:
 def __init__(self, name, human_readable_name, description,
 search_strings=None, mesh_ids=None,
 assembly_config_template=None):
 """A class to construct a literture-based prior for an EMMAA model.

 Parameters

 name : str
 The model name by which the model will be identified on S3.
 human_readable_name : str
 The human-readable display name for the model.
 description : str
 A human-readable description for the model.
 search_strings : list of str
 A list of search strings e.g., "diabetes" to find papers in the
 literature.
 mesh_ids : list of str
 A list of MeSH IDs that are used to search the literature as
 headings associated with papers.
 assembly_config_template : Optional[str]
 The name of another model from which the initial assembly
 configuration should be adopted.
 """
 self.name = name
 self.human_readable_name = human_readable_name
 self.description = description
 self.search_terms = \
 make_search_terms(search_strings, mesh_ids)
 if assembly_config_template:
 self.assembly_config = \
 self.get_config_from(assembly_config_template)
 else:
 self.assembly_config = {}

 def get_statements(self, mode='all', batch_size=100):
 """Return EMMAA Statements for this prior's literature set.

 Parameters

 mode : 'all' or 'distilled'
 The 'distilled' mode makes sure that the "best", non-redundant
 set of raw statements are found across potentially redundant text
 contents and reader versions. The 'all' mode doesn't do such
 distillation but is significantly faster.
 batch_size : Optional[int]
 Determines how many PMIDs to fetch statements for in each
 iteration. Default: 100.

 Returns

 list of EmmaaStatement
 A list of EMMAA Statements corresponding to extractions from
 the subset of literature defined by this prior's search terms.
 """
 terms_to_pmids = \
 EmmaaModel.search_pubmed(search_terms=self.search_terms,
 date_limit=None)
 pmids_to_terms = defaultdict(list)
 for term, pmids in terms_to_pmids.items():
 for pmid in pmids:
 pmids_to_terms[pmid].append(term)
 pmids_to_terms = dict(pmids_to_terms)
 all_pmids = set(pmids_to_terms.keys())
 raw_statements_by_pmid = \
 get_raw_statements_for_pmids(all_pmids, mode=mode,
 batch_size=batch_size)
 timestamp = datetime.datetime.now()
 estmts = []
 for pmid, stmts in raw_statements_by_pmid.items():
 for stmt in stmts:
 estmts.append(EmmaaStatement(stmt, timestamp,
 pmids_to_terms[pmid]))
 return estmts

 def get_config_from(self, assembly_config_template):
 """Return assembly config given a template model's name.

 Parameters

 assembly_config_template : str
 The name of a model whose assembly config should be adopted.

 Returns

 dict
 The assembly config of the given template model.
 """
 from emmaa.model import load_config_from_s3
 config = load_config_from_s3(assembly_config_template)
 return config.get('assembly')

 def make_config(self, upload_to_s3=False):
 """Return a config dict fot the model, optionally upload to S3.

 Parameters

 upload_to_s3 : Optional[bool]
 If True, the config is uploaded to S3 in the EMMAA bucket.
 Default: False

 Returns

 dict
 A config data structure.
 """
 config = {
 # These are provided by the user upon initialization
 'name': self.name,
 'human_readable_name': self.human_readable_name,
 'description': self.description,
 # We don't make tests by default
 'make_tests': False,
 # We run daily upates by default
 'run_daily_update': True,
 # We first show the model just on dev
 'dev_only': True,
 # These are the search terms constructed upon
 # initialization
 'search_terms': [st.to_json()
 for st in self.search_terms],
 # This is adopted from the template specified upon
 # initialization
 'assembly': self.assembly_config,
 # We configure the large corpus tests by default
 'test': {
 'statement_checking': {
 'max_path_length': 10,
 'max_paths': 1
 },
 'mc_types': [
 'signed_graph', 'unsigned_graph'
],
 'make_links': True,
 'test_corpus': ['large_corpus_tests'],
 'default_test_corpus': 'large_corpus_tests',
 'filters': {
 'large_corpus_tests': 'filter_chem_mesh_go'
 }
 }
 }
 if upload_to_s3:
 from emmaa.model import save_config_to_s3
 save_config_to_s3(self.name, config)
 return config

 def make_model(self, estmts, upload_to_s3=False):
 """Return, and optionally upload to S3 an initial EMMAA Model.

 Parameters

 estmts : list of emmaa.statement.EmmaaStatement
 A list of prior EMMAA Statements to initialize the model with.
 upload_to_s3 : Optional[bool]
 If True, the model and the config are uploaded to S3, otherwise
 the model object is just returned without upload. Default: False

 Returns

 emmaa.model.EmmaaModel
 The EMMAA Model object constructed from the generated config
 and the given EMMAA Statements.
 """
 from emmaa.model import EmmaaModel
 config = self.make_config(upload_to_s3=upload_to_s3)
 model = EmmaaModel(name=self.name, config=config)
 model.add_statements(estmts)
 if upload_to_s3:
 model.save_to_s3()
 return model

[docs]def get_raw_statements_for_pmids(pmids, mode='all', batch_size=100):
 """Return EmmaaStatements based on extractions from given PMIDs.

 Parameters

 pmids : set or list of str
 A set of PMIDs to find raw INDRA Statements for in the INDRA DB.
 mode : 'all' or 'distilled'
 The 'distilled' mode makes sure that the "best", non-redundant
 set of raw statements are found across potentially redundant text
 contents and reader versions. The 'all' mode doesn't do such
 distillation but is significantly faster.
 batch_size : Optional[int]
 Determines how many PMIDs to fetch statements for in each
 iteration. Default: 100.

 Returns

 dict
 A dict keyed by PMID with values INDRA Statements obtained
 from the given PMID.
 """
 db = get_db('primary')
 logger.info(f'Getting raw statements for {len(pmids)} PMIDs')
 all_stmts = defaultdict(list)
 for pmid_batch in tqdm.tqdm(batch_iter(pmids, return_func=set,
 batch_size=batch_size),
 total=len(pmids)/batch_size):
 if mode == 'distilled':
 clauses = [
 db.TextRef.pmid.in_(pmid_batch),
 db.TextContent.text_ref_id == db.TextRef.id,
 db.Reading.text_content_id == db.TextContent.id,
 db.RawStatements.reading_id == db.Reading.id]
 distilled_stmts = distill_stmts(db, get_full_stmts=True,
 clauses=clauses)
 for stmt in distilled_stmts:
 all_stmts[stmt.evidence[0].pmid].append(stmt)
 else:
 id_stmts = \
 get_raw_stmt_jsons_from_papers(pmid_batch, id_type='pmid',
 db=db)
 for pmid, stmt_jsons in id_stmts.items():
 all_stmts[pmid] += stmts_from_json(stmt_jsons)
 all_stmts = dict(all_stmts)
 return all_stmts

[docs]def make_search_terms(search_strings, mesh_ids):
 """Return EMMAA SearchTerms based on search strings and MeSH IDs.

 Parameters

 search_strings : list of str
 A list of search strings e.g., "diabetes" to find papers in the
 literature.
 mesh_ids : list of str
 A list of MeSH IDs that are used to search the literature as headings
 associated with papers.

 Returns

 list of emmmaa.prior.SearchTerm
 A list of EMMAA SearchTerm objects constructed from the search strings
 and the MeSH IDs.
 """
 search_terms = []
 for search_string in search_strings:
 search_term = SearchTerm(type='other', name=search_string,
 db_refs={}, search_term=search_string)
 search_terms.append(search_term)
 for mesh_id in mesh_ids:
 mesh_name = mesh_client.get_mesh_name(mesh_id)
 suffix = 'mh' if mesh_id.startswith('D') else 'nm'
 search_term = SearchTerm(type='mesh', name=mesh_name,
 db_refs={'MESH': mesh_id},
 search_term=f'{mesh_name} [{suffix}]')
 search_terms.append(search_term)
 return search_terms

 emmaa.priors.prior_stmts

 Source code for emmaa.priors.prior_stmts

import logging
from indra_db import client
from indra.tools import assemble_corpus as ac

logger = logging.getLogger(__name__)

[docs]def get_stmts_for_gene(gene):
 """Return all existing Statements for a given gene from the DB.

 Parameters

 gene : str
 The HGNC symbol of a gene to query.

 Returns

 list[indra.statements.Statement]
 A list of INDRA Statements in which the given gene is involved.
 """
 return client.get_statements_by_gene_role_type(gene, preassembled=False,
 count=100000)

[docs]def get_stmts_for_gene_list(gene_list, other_entities):
 """Return all Statements between genes in a given list.

 Parameters

 gene_list : list[str]
 A list of HGNC symbols for genes to query.
 other_entities : list[str]
 A list of other entities to keep as part of the set of Statements.

 Returns

 list[indra.statements.Statement]
 A list of INDRA Statements between the given list of genes and other
 entities specified.
 """
 stmts = []
 for gene in gene_list:
 logger.info(f'Querying {gene}')
 st = get_stmts_for_gene(gene)
 logger.info(f'Got {len(st)} statements for {gene}')
 stmts += st
 stmts = ac.filter_gene_list(stmts, gene_list + other_entities, policy='all')
 return stmts

 emmaa.priors.reactome_prior

 Source code for emmaa.priors.reactome_prior

import re
import logging
import requests
from functools import lru_cache

from indra.sources import tas
from indra.databases.uniprot_client import get_gene_name
from indra.databases.hgnc_client import get_hgnc_id, get_uniprot_id

from emmaa.priors import get_drugs_for_gene, SearchTerm

logger = logging.getLogger('reactome_prior')

[docs]def make_prior_from_genes(gene_list):
 """Return reactome prior based on a list of genes

 Parameters

 gene_list : list of str
 List of HGNC symbols for genes

 Returns

 res : list of :py:class:`emmaa.priors.SearchTerm`
 List of search terms corresponding to all genes found in any reactome
 pathway containing one of the genes in the input gene list
 """
 all_reactome_ids = set([])
 for gene_name in gene_list:
 hgnc_id = get_hgnc_id(gene_name)
 uniprot_id = get_uniprot_id(hgnc_id)
 if not uniprot_id:
 logger.warning('Could not get Uniprot ID for HGNC symbol'
 f' {gene_name}')
 continue
 reactome_ids = rx_id_from_up_id(uniprot_id)
 if not reactome_ids:
 logger.warning('Could not get Reactome ID for Uniprot ID'
 f' {uniprot_id} with corresonding HGNC symbol'
 f' {gene_name}')
 continue
 all_reactome_ids.update(reactome_ids)

 all_pathways = set([])
 for reactome_id in all_reactome_ids:
 if not re.match('^R-HSA-[0-9]', reactome_id):
 # skip non-human genes
 continue
 additional_pathways = get_pathways_containing_gene(reactome_id)
 if additional_pathways is not None:
 all_pathways.update(additional_pathways)

 all_genes = set([])
 for pathway in all_pathways:
 additional_genes = get_genes_contained_in_pathway(pathway)
 if additional_genes is not None:
 all_genes.update(additional_genes)

 gene_terms = []
 for uniprot_id in all_genes:
 hgnc_name = get_gene_name(uniprot_id)
 if hgnc_name is None:
 logger.warning('Could not get HGNC name for UniProt ID'
 f' {uniprot_id}')
 continue
 hgnc_id = get_hgnc_id(hgnc_name)
 if not hgnc_id:
 logger.warning('Could not find HGNC ID for HGNC symbol'
 f' {hgnc_name} with corresonding Uniprot ID'
 f' {uniprot_id}')
 continue
 term = SearchTerm(type='gene', name=hgnc_name,
 search_term=f'"{hgnc_name}"',
 db_refs={'HGNC': hgnc_id,
 'UP': uniprot_id})
 gene_terms.append(term)
 return sorted(gene_terms, key=lambda x: x.name)

[docs]def find_drugs_for_genes(search_terms, drug_gene_stmts=None):
 """Return list of drugs targeting at least one gene from a list of genes

 Parameters

 search_terms : list of :py:class:`emmaa.priors.SearchTerm`
 List of search terms for genes

 Returns

 drug_terms : list of :py:class:`emmaa.priors.SearchTerm`
 List of search terms of drugs targeting at least one of the input genes
 """
 if not drug_gene_stmts:
 drug_gene_stmts = tas.process_from_web().statements
 drug_terms = []
 already_added = set()
 for search_term in search_terms:
 if search_term.type == 'gene':
 hgnc_id = search_term.db_refs['HGNC']
 drugs = get_drugs_for_gene(drug_gene_stmts, hgnc_id)
 for drug in drugs:
 if drug.name not in already_added:
 drug_terms.append(drug)
 already_added.add(drug.name)
 return sorted(drug_terms, key=lambda x: x.name)

[docs]@lru_cache(10000)
def rx_id_from_up_id(up_id):
 """Return the Reactome Stable IDs for a given Uniprot ID."""
 react_search_url = 'http://www.reactome.org/ContentService/search/query'
 params = {'query': up_id, 'cluster': 'true', 'species': 'Homo sapiens'}
 headers = {'Accept': 'application/json'}
 res = requests.get(react_search_url, headers=headers, params=params)
 if not res.status_code == 200:
 logger.debug(f'Reactome request to {react_search_url} failed')
 return None
 json = res.json()
 results = json.get('results')
 if not results:
 logger.warning(f'No results for {up_id}')
 return None
 stable_ids = []
 for result in results:
 entries = result.get('entries')
 for entry in entries:
 stable_id = entry.get('stId')
 if not stable_id:
 continue
 stable_ids.append(stable_id)
 return stable_ids

[docs]@lru_cache(100000)
def up_id_from_rx_id(reactome_id):
 """Get the Uniprot ID (referenceEntity) for a given Reactome Stable ID."""
 react_url = 'http://www.reactome.org/ContentService/data/query/' \
 + reactome_id + '/referenceEntity'
 res = requests.get(react_url)
 if not res.status_code == 200:
 return None
 _, entry, entry_type = res.text.split('\t')
 if entry_type != 'ReferenceGeneProduct':
 return None
 id_entry = entry.split(' ')[0]
 db_ns, db_id = id_entry.split(':')
 if db_ns != 'UniProt':
 return None
 return db_id

[docs]@lru_cache(1000)
def get_pathways_containing_gene(reactome_id):
 """"Get all ids for reactom pathways containing some form of an entity

 Parameters

 reactome_id : str
 Reactome id for a gene

 Returns

 pathway_ids : list of str
 List of reactome ids for pathways containing the input gene
 """
 react_url = ('http://www.reactome.org/ContentService/data/pathways/low'
 f'/entity/{reactome_id}/allForms')
 params = {'species': 'Homo sapiens'}
 headers = {'Accept': 'application/json'}
 res = requests.get(react_url, headers=headers, params=params)
 if not res.status_code == 200:
 logger.warning(f'Request failed for reactome_id {reactome_id}')
 return None
 results = res.json()
 if not results:
 logger.info(f'No results for {reactome_id}')
 return None
 pathway_ids = [pathway['stIdVersion'] for pathway in results]
 return pathway_ids

[docs]@lru_cache(1000)
def get_genes_contained_in_pathway(reactome_id):
 """Get all genes contained in a given pathway

 Parameters

 reactome_id : str
 Reactome id for a pathway

 Returns

 genes : list of str
 List of uniprot ids for all unique genes contained in input pathway
 """
 react_url = ('http://www.reactome.org/ContentService/data'
 f'/participants/{reactome_id}')
 params = {'species': 'Homo species'}
 headers = {'Accept': 'application/json'}
 res = requests.get(react_url, headers=headers, params=params)
 results = res.json()
 if not res.status_code == 200:
 return None
 if not results:
 logger.info(f'No results for {reactome_id}')
 genes = [entity['identifier'] for result in results
 for entity in result['refEntities']
 if entity.get('schemaClass') == 'ReferenceGeneProduct']
 return list(set(genes))

 emmaa.readers.aws_reader

 Source code for emmaa.readers.aws_reader

import datetime
from indra.sources import reach
from indra.literature.s3_client import get_reader_json_str, get_full_text
from indra_reading.scripts.submit_reading_pipeline import \
 submit_reading
from indra_reading.batch.monitor import BatchMonitor
from emmaa.statements import to_emmaa_stmts

[docs]def read_pmid_search_terms(pmid_search_terms):
 """Return extracted EmmaaStatements given a PMID-search term dict.

 Parameters

 pmid_search_terms : dict
 A dict representing a set of PMIDs pointing to search terms that
 produced them.

 Returns

 list[:py:class:`emmaa.model.EmmaaStatement`]
 A list of EmmaaStatements extracted from the given PMIDs.
 """
 pmids = list(pmid_search_terms.keys())
 date = datetime.datetime.utcnow()
 pmid_stmts = read_pmids(pmids, date)
 estmts = []
 for pmid, stmts in pmid_stmts.items():
 pmid_estmts = to_emmaa_stmts(stmts, date, pmid_search_terms[pmid],
 {'internal': True})
 estmts += pmid_estmts
 return estmts

[docs]def read_pmids(pmids, date):
 """Return extracted INDRA Statements per PMID after running reading on AWS.

 Parameters

 pmids : list[str]
 A list of PMIDs to read.
 date : datetime
 The date and time associated with the reading, typically the
 current time.

 Returns

 dict[str, list[indra.statements.Statement]
 A dict of PMIDs and the list of Statements extracted for the given
 PMID by reading.
 """
 date_str = date.strftime('%Y-%m-%d-%H-%M-%S')
 pmid_fname = 'pmids-%s.txt' % date_str
 with open(pmid_fname, 'wt') as fh:
 fh.write('\n'.join(pmids))
 job_list = submit_reading('emmaa', pmid_fname, ['reach'])
 monitor = BatchMonitor('run_reach_queue', job_list)
 monitor.watch_and_wait(idle_log_timeout=600, kill_on_log_timeout=True)
 pmid_stmts = {}
 for pmid in pmids:
 reach_json_str = get_reader_json_str('reach', pmid)
 if reach_json_str is None:
 pmid_stmts[pmid] = []
 continue
 rp = reach.process_json_str(reach_json_str)
 if not rp:
 pmid_stmts[pmid] = []
 else:
 pmid_stmts[pmid] = rp.statements
 return pmid_stmts

 emmaa.readers.db_client_reader

 Source code for emmaa.readers.db_client_reader

import datetime
from indra_db.client.principal.raw_statements import \
 get_raw_stmt_jsons_from_papers
from indra_db.util import get_db
from indra.statements import stmts_from_json
from emmaa.statements import to_emmaa_stmts

[docs]def read_db_ids_search_terms(id_search_terms, id_type):
 """Return extracted EmmaaStatements from INDRA database given an
 ID-search term dict.

 Parameters

 id_search_terms : dict
 A dict representing a set of IDs pointing to search terms that
 produced them.

 Returns

 list[:py:class:`emmaa.model.EmmaaStatement`]
 A list of EmmaaStatements extracted from the given IDs.
 """
 ids = list(id_search_terms.keys())
 date = datetime.datetime.utcnow()
 db = get_db('primary')
 id_stmts = get_raw_stmt_jsons_from_papers(ids, id_type=id_type, db=db)
 estmts = []
 for _id, stmt_jsons in id_stmts.items():
 stmts = stmts_from_json(stmt_jsons)
 id_estmts = to_emmaa_stmts(
 stmts, date, id_search_terms[_id], {'internal': True})
 estmts += id_estmts
 return estmts

[docs]def read_db_pmid_search_terms(pmid_search_terms):
 """Return extracted EmmaaStatements from INDRA database given a
 PMID-search term dict.

 Parameters

 pmid_search_terms : dict
 A dict representing a set of PMIDs pointing to search terms that
 produced them.

 Returns

 list[:py:class:`emmaa.model.EmmaaStatement`]
 A list of EmmaaStatements extracted from the given PMIDs.
 """
 return read_db_ids_search_terms(pmid_search_terms, 'pmid')

[docs]def read_db_doi_search_terms(doi_search_terms):
 """Return extracted EmmaaStatements from INDRA database given a
 DOI-search term dict.

 Parameters

 doi_search_terms : dict
 A dict representing a set of DOIs pointing to search terms that
 produced them.

 Returns

 list[:py:class:`emmaa.model.EmmaaStatement`]
 A list of EmmaaStatements extracted from the given DOIs.
 """
 return read_db_ids_search_terms(doi_search_terms, 'doi')

 emmaa.subscription.email_service

 Source code for emmaa.subscription.email_service

import os
import logging
import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)

email_profile = 'indralabs-email'
email_bucket = 'emmaa-notifications'
notifications_sender_default = 'emmaa_notifications@indra.bio'
notifications_return_default = 'feedback@indra.bio'
indra_bio_ARN_id = os.environ.get('INDRA_BIO_ARN')

def _get_ses_client(region='us-east-1'):
 # First look for keys in environ:
 ACCESS_KEY = os.environ.get('AWS_ACCESS_KEY_ID')
 SECRET_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY')
 if ACCESS_KEY and SECRET_KEY:
 logger.info('Using access keys from environment variables to get '
 'ses client.')
 ses = boto3.session.Session(
 aws_access_key_id=ACCESS_KEY,
 aws_secret_access_key=SECRET_KEY).client(
 'ses', region_name=region)
 # If not, try to get the email_profile from the AWS credentials file
 else:
 ses = boto3.session.Session(
 profile_name=email_profile).client(
 'ses', region_name=region)
 logger.info('Using AWS credentials file to get ses client.')
 return ses

[docs]def send_email(sender, recipients, subject, body_text, body_html,
 source_arn=indra_bio_ARN_id, return_email=None,
 return_arn=None, region='us-east-1'):
 """Wrapper function for the send_email method of the boto3 SES client

 IMPORTANT: sending is limited to 14 emails per second.

 See more at:
 https://boto3.amazonaws.com/v1/documentation/api/latest/reference +
 /services/ses.html#SES.Client.send_email
 https://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
 and python example at
 https://docs.aws.amazon.com/ses/latest/DeveloperGuide/ +
 sending-authorization-delegate-sender-tasks-email.html

 Parameters

 sender : str
 A valid email address to use in the Source field
 recipients : iterable[str] or str
 A valid email address or a list of valid email addresses. This will
 fill out the Recipients field.
 subject : str
 The email subject
 body_text : str
 The text body of the email
 body_html : str
 The html body of the email. Must be a valid html body (starting
 with <html>, ending with </html>).
 source_arn : str
 The source ARN of the sender. Should be of the format
 "arn:aws:ses:us-east-1:123456789012:identity/user@example.com" or
 "arn:aws:ses:us-east-1:123456789012:identity/example.com".
 Used only for sending authorization. It is the ARN of the identity
 that is associated with the sending authorization policy that
 permits the sender to send using the email address specified as the
 sender. Example: the owner of the domain "example.com" can send an
 email from any address using @example.com, as long as the associated
 source_arn is
 "arn:aws:ses:us-east-1:123456789012:identity/example.com"
 return_email : str
 The email to which complaints and bounces are sent. Can be the same
 as the sender.
 return_arn : str
 The return path ARN for the sender. This is the ARN associated
 with the return email. Can be the same as the source_arn if return
 email is the same as the sender.
 region : str
 AWS region to use for the SES client. Default: us-east-1

 Returns

 dict
 The API response object in the form of a dict is returned. The
 structure is:

 >>> response = {\
 'MessageId': 'EXAMPLE78603177f-7a5433e7-8edb-42ae-af10' +\
 '-f0181f34d6ee-000000',\
 'ResponseMetadata': {\
 '...': '...',\
 },\
 }
 """
 # Check if there is any source ARN
 if not source_arn:
 source_arn = os.environ.get('INDRA_BIO_ARN')
 if source_arn is None:
 logger.error('No SourceArn found, please set it using '
 'the environment variable INDRA_BIO_ARN or '
 'provided source_arn in arguments.')
 raise ValueError('source_arn must be provided or specified in '
 'environment.')
 logger.info('Found SourceArn in os environment variable'
 'INDRA_BIO_ARN')

 # The character encoding for the email.
 charset = "UTF-8"

 # Create a new SES client with the email profile
 ses = _get_ses_client(region)

 if return_arn is None:
 return_arn = source_arn

 if return_email is None:
 return_email = sender

 to_addresses = [rec for rec in recipients] if isinstance(
 recipients, (list, tuple, set)) else [recipients]

 # Try to send the email.
 try:
 # Provide the contents of the email.
 response = ses.send_email(
 Destination={
 'ToAddresses': to_addresses,
 },
 Message={
 'Body': {
 'Html': {
 'Charset': charset,
 'Data': body_html,
 },
 'Text': {
 'Charset': charset,
 'Data': body_text,
 },
 },
 'Subject': {
 'Charset': charset,
 'Data': subject,
 },
 },
 Source=sender,
 ReturnPath=return_email,
 SourceArn=source_arn,
 ReturnPathArn=return_arn
)
 # Log error if something goes wrong.
 except ClientError as e:
 logger.error(f'Failed to send email to {", ".join(to_addresses)}')
 logger.error(e.response['Error']['Message'])
 response = e.response
 else:
 logger.info(f'Email sent to {", ".join(to_addresses)} successfully'),
 return response

def _get_max_24h_send(ses_client):
 res = ses_client.get_send_quota()
 return int(res['Max24HourSend'])

def _get_sent_last_24h(ses_client):
 res = ses_client.get_send_quota()
 return int(res['SentLast24Hours'])

def _get_quota_sent_max_ratio(ses_client):
 res = ses_client.get_send_quota()
 return res['SentLast24Hours']/res['Max24HourSend']

[docs]def close_to_quota_max(used_quota=0.95, region='us-east-1'):
 """Check if the send quota is close to be exceeded

 If the total quota for the 24h cycle is Q, the currently used quota is q
 and 'used_quota' is r, return True if q/Q > r, otherwise return False.

 Parameters

 used_quota : float
 A float between 0 and 1.0. This number specifies the fraction of
 send quota currently used. Default: 0.95
 region : str
 A valid AWS region. The region to check the quota in.
 Default: us-east-1.

 Returns

 bool
 True if the quota is close to be exceeded with respect to the
 provided ratio 'used'.
 """
 ses = boto3.session.Session(
 profile_name=email_profile).client('ses', region_name=region)
 ratio_used = _get_quota_sent_max_ratio(ses)
 return ratio_used > used_quota

[docs]def get_send_statistics(region='us-east-1'):
 """Return the sending statistics, like bounce and complaint rates

 See
 https://boto3.amazonaws.com/v1/documentation/api/latest/
 reference/services/ses.html#SES.Client.get_send_statistics
 for more info

 Parameters

 region : Optional[str]
 Specify AWS region

 Returns

 dict
 Response syntax:
 {
 'SendDataPoints': [
 {
 'Timestamp': datetime(2015, 1, 1),
 'DeliveryAttempts': 123,
 'Bounces': 123,
 'Complaints': 123,
 'Rejects': 123
 },
]
 }
 """
 ses = _get_ses_client(region)
 return ses.get_send_statistics()

if __name__ == '__main__':
 logger.info('Running base case test of email')
 email_subj = input('Email subject line: ')
 msg = input('Provide a personalized message for the email body: ')
 ses_options = {
 'sender': notifications_sender_default,
 'recipients': input('email recipients (space separated): ').split(),
 'subject': email_subj,
 'body_text': f'{email_subj}\r\n'
 'This email was sent with Amazon SES using the AWS SDK '
 'for Python (Boto). Personal message: %s' % msg,
 'body_html': '''<html>
<head></head>
<body>
 <h1>%s</h1>
 <p>This email was sent with
 Amazon SES using the

 AWS SDK for Python (Boto). Personal message: %s</p>
</body>
</html>''' % (email_subj, msg),
 'source_arn': input('Provide source (sender) arn: '),
 'return_email': input('Specify ReturnPath: '),
 'return_arn': input('Specify ReturnPathArn: ')
 }
 resp = send_email(**ses_options)
 print(repr(resp))

 emmaa.subscription.email_util

 Source code for emmaa.subscription.email_util

import os
import hmac
import hashlib
import logging
from urllib import parse
from datetime import datetime, timedelta

from emmaa.db import get_db
from emmaa.model import load_config_from_s3

db = get_db('primary')

logger = logging.getLogger(__name__)

EMAIL_SIGNATURE_KEY = os.environ.get('EMAIL_SIGN_SECRET')

def __sign_str_concat(email, expiration_str):
 """This is the method to concatenate strings that are to be used in HMAC
 signature generation.

 Email should NOT be url encoded.
 """
 return ' '.join([email, expiration_str])

[docs]def generate_unsubscribe_qs(email, days=7):
 """Generate an unsubscribe query string for a url

 Parameters

 email : str
 A valid email address
 days : int
 The number of days the query string should be valid. Default: 7.

 Returns

 str
 A query string of the format 'email=<urlenc
 email>&expiration=<timestamp>&signature=<sha256 hex>'
 """
 if days < 1:
 logger.warning('Expiration date is less than one day into the '
 'future. Link will likely already be expired.')
 future = datetime.utcnow() + timedelta(days=days)
 expiration = str(future.timestamp()).split('.')[0]
 signature = generate_signature(email=email, expire_str=expiration)
 return parse.urlencode({'email': email,
 'expiration': expiration,
 'signature': signature})

[docs]def generate_unsubscribe_link(email, days=7, domain='emmaa.indra.bio'):
 """Generate an unsubscribe link for the provided email address

 Given an email address, generate an unsubscribe link using that email
 address. Optionally provide the number of days into the future the link
 should be valid until and the domain name. The domain name is expeceted
 to be of the format "some.domain.com". The appropriate path and prefixes
 will be added together with the query string. Example:

 >>> generate_unsubscribe_link('user@email.com', domain='some.domain.com')
 >>> 'https://some.domain.com/query/unsubscribe?email=user%40email.com' +
 '&expiration=1234567890&signature=1234567890abcdef'

 Parameters

 email : str
 An email address.
 days : int
 The number of days into the future the link should be valid until.
 Default: 7.
 domain : str
 A domain name to prefix the query string with. Expected format is:
 "some.domain.com". Default: 'emmaa.indra.bio'

 Returns

 str
 An unsubscribe link for the provided email and (optionally) domain
 """
 qs = generate_unsubscribe_qs(email, days)
 link = f'https://{domain}/query/unsubscribe?{qs}'
 return link

[docs]def generate_signature(email, expire_str, digestmod=hashlib.sha256):
 """Return an HMAC signature based on email and expire_str

 From documentation of HMAC in python:
 key is a bytes or bytearray object giving the secret key.
 If msg is present, the method call update(msg) is made.
 digestmod is the digest name, digest constructor or module for the HMAC
 object to use. It supports any name suitable to hashlib.new().

 Parameters

 email : str
 A valid email address. Should not be URL encoded.
 expire_str : str
 A timestamp string in seconds
 digestmod : str|digest constructor|module
 digest name, digest constructor or module for the HMAC object to
 use. Default: hashlib.sha256

 Returns

 str
 A hexadecimal string representing the signature
 """
 if not EMAIL_SIGNATURE_KEY:
 raise ValueError('No secret key set for email signature. '
 'Cannot generate signature')

 digester = hmac.new(key=EMAIL_SIGNATURE_KEY.encode(encoding='utf-8'),
 msg=__sign_str_concat(
 email, expire_str).encode(encoding='utf-8'),
 digestmod=digestmod)
 return digester.hexdigest()

[docs]def verify_email_signature(signature, email, expiration,
 digestmod=hashlib.sha256):
 """Verify HMAC signature"""
 if not EMAIL_SIGNATURE_KEY:
 logger.error('No secret key set for email signature. '
 'Cannot verify signature')
 return False
 actual_digest = hmac.new(
 key=EMAIL_SIGNATURE_KEY.encode(encoding='utf-8'),
 msg=__sign_str_concat(email, expiration).encode(encoding='utf-8'),
 digestmod=digestmod).hexdigest()

 if len(signature) != len(actual_digest):
 return False
 try:
 return hmac.compare_digest(actual_digest, signature)
 except Exception:
 return False

[docs]def get_email_subscriptions(email):
 """Verifies which email subsciptions exist for the provided email

 Parameters

 email : str
 The email to the check subscriptions for

 Returns

 list(tuple(str, str, query_hash))
 """
 user_queries = db.get_subscribed_queries(email)
 user_models = db.get_user_models(email)
 model_full_names = {}
 for qo, mid, dh in user_queries:
 if mid not in model_full_names:
 config = load_config_from_s3(mid)
 model_full_names[mid] = config.get('human_readable_name', mid)
 for mid in user_models:
 if mid not in model_full_names:
 config = load_config_from_s3(mid)
 model_full_names[mid] = config.get('human_readable_name', mid)
 results = {
 'queries': [(qo.to_english() + f' for model {model_full_names[mid]}',
 f'{qo.get_type()}'.replace('_', ' '), qh)
 for qo, mid, qh in user_queries],
 'models': [(mid, model_full_names[mid]) for mid in user_models]
 }
 return results

[docs]def register_email_unsubscribe(email, queries, models):
 """Executes an email unsubscribe request"""
 success = db.update_email_subscription(email, queries, models, False)
 return success

 emmaa.subscription.notifications

 Source code for emmaa.subscription.notifications

import logging
import time
import os
from emmaa.util import _get_flask_app, _make_delta_msg, EMMAA_BUCKET_NAME, \
 get_credentials, update_status, FORMATTED_TYPE_NAMES
from emmaa.subscription.email_util import generate_unsubscribe_link
from emmaa.subscription.email_service import send_email, \
 notifications_sender_default, notifications_return_default
from emmaa.model import load_config_from_s3, get_model_stats

logger = logging.getLogger(__name__)
indra_bio_ARN = os.environ.get('INDRA_BIO_ARN')

[docs]class EmailHtmlBody(object):
 """Parent class for email body."""
 app = _get_flask_app()

 def __init__(self, template_path):
 self.template = self.app.jinja_env.get_template(template_path)

[docs]class QueryEmailHtmlBody(EmailHtmlBody):
 """Email body for query notifications."""
 def __init__(self, domain='emmaa.indra.bio',
 template_path='email_unsub/email_body.html'):
 super().__init__(template_path)
 self.domain = domain
 self.static_tab_link = f'https://{domain}/query?tab=static'
 self.dynamic_tab_link = f'https://{domain}/query?tab=dynamic'
 self.open_tab_link = f'https://{domain}/query?tab=open'

[docs] def render(self, static_query_deltas, open_query_deltas,
 dynamic_query_deltas, unsub_link):
 """Provided the delta json objects, render HTML to put in email body.

 Parameters

 static_query_deltas : json
 A list of lists that names which queries have updates. Expected
 structure:
 [(english_query, detailed_query_link, model, model_type)]
 dynamic_query_deltas : list[
 A list of lists that names which queries have updates. Expected
 structure:
 [(english_query, model, model_type)]
 unsub_link : str
 A link to unsubscribe page.

 Returns

 html
 An html string rendered from the associated jinja2 template
 """
 if not static_query_deltas and not open_query_deltas and \
 not dynamic_query_deltas:
 raise ValueError('No query deltas provided')
 # Todo consider generating unsubscribe link here, will probably have
 # to solve import loops for that though
 return self.template.render(
 static_tab_link=self.static_tab_link,
 static_query_deltas=static_query_deltas,
 open_tab_link=self.open_tab_link,
 open_query_deltas=open_query_deltas,
 dynamic_tab_link=self.dynamic_tab_link,
 dynamic_query_deltas=dynamic_query_deltas,
 unsub_link=unsub_link
).replace('\n', '')

[docs]class ModelDeltaEmailHtmlBody(EmailHtmlBody):
 """Email body for model updates."""
 def __init__(self, template_path='email_unsub/model_email_body.html'):
 super().__init__(template_path)

[docs] def render(self, msg_dicts, unsub_link):
 """Provided pregenerated msg_dicts render HTML to put in email body.

 Parameters

 msg_dicts : list[dict]
 A list of dictionaries containing parts of messages to be added to
 email. Each dictionary has the following keys: 'url', 'start',
 'delta_part', 'middle', 'message'.
 unsub_link : str
 A link to unsubscribe page.

 Returns

 html
 An html string rendered from the associated jinja2 template
 """
 return self.template.render(
 msg_dicts=msg_dicts,
 unsub_link=unsub_link
)

[docs]def get_user_query_delta(db, user_email, domain='emmaa.indra.bio'):
 """Produce a report for all query results per user in a given format

 Parameters

 db : emmaa.db.EmmaaDatabaseManager
 An instance of a database manager to use.
 user_email : str
 The email of the user for which to get the report for
 domain : str
 The domain name for the unsubscibe link in the html
 report. Default: "emmaa.indra.bio".

 Returns

 tuple(str, html_str)
 A tuple with (str report, html report)
 """
 logger.info(f'Finding query delta for {user_email}')
 # Get results of user's query
 results = db.get_results(user_email, latest_order=1)

 # Get the query deltas
 static_results_delta, open_results_delta, dynamic_results_delta = \
 make_reports_from_results(results, domain=domain)
 # Make text report
 str_report = make_str_report_per_user(static_results_delta,
 open_results_delta,
 dynamic_results_delta)
 str_report = str_report if str_report else ''

 # Make html report
 html_report = make_html_report_per_user(static_results_delta,
 open_results_delta,
 dynamic_results_delta,
 user_email,
 domain=domain)
 html_report = html_report if html_report else None

 if html_report:
 logger.info(f'Found query delta for {user_email}')
 else:
 logger.info(f'No query delta to report for {user_email}')
 return str_report, html_report

[docs]def make_reports_from_results(new_results, domain='emmaa.indra.bio'):
 """Make a report given latest results and queries the results are for.

 Parameters

 new_results : list[tuple]
 Latest results as a list of tuples where each tuple has the format
 (model_name, query, mc_type, result_json, date, delta).

 Returns

 reports : list
 A list of reports on changes for each of the queries.
 """
 processed_query_mc = []
 static_reports = []
 open_reports = []
 dynamic_reports = []
 for model_name, query, mc_type, result_json, delta, _ in new_results:
 if (model_name, query, mc_type) in processed_query_mc:
 continue
 if delta:
 model_type_name = FORMATTED_TYPE_NAMES[
 mc_type] if mc_type else mc_type
 rep = [
 query.to_english(),
 _detailed_page_link(
 domain,
 model_name,
 mc_type,
 query.get_hash_with_model(
 model_name)),
 model_name,
 model_type_name
]
 # static
 if query.get_type() == 'path_property':
 static_reports.append(rep)
 # open
 elif query.get_type() == 'open_search_query':
 open_reports.append(rep)
 # dynamic
 else:
 # Remove link for dynamic
 _ = rep.pop(1)
 dynamic_reports.append(rep)
 processed_query_mc.append((model_name, query, mc_type))
 return static_reports, open_reports, dynamic_reports

def _detailed_page_link(domain, model_name, model_type, query_hash):
 # example:
 # https://emmaa.indra.bio/query/aml/?model_type=pysb&query_hash
 # =4911955502409811&order=1
 return f'https://{domain}/query/{model_name}?model_type=' \
 f'{model_type}&query_hash={query_hash}&order=1'

[docs]def make_str_report_per_user(static_results_delta, open_results_delta,
 dynamic_results_delta):
 """Produce a report for all query results per user as a string.

 Parameters

 static_results_delta : list
 A list of tuples of query deltas for static queries. Each tuple
 has a format (english_query, link, model, mc_type)
 open_results_delta : list
 A list of tuples of query deltas for open queries. Each tuple
 has a format (english_query, link, model, mc_type)
 dynamic_results_delta : list
 A list of tuples of query deltas for dynamic queries. Each tuple
 has a format (english_query, link, model, mc_type) (no link in
 dynamic_results_delta tuples).

 Returns

 msg : str
 A message about query deltas.
 """
 if not static_results_delta and not open_results_delta and not \
 dynamic_results_delta:
 logger.info('No delta provided')
 return None
 msg = ''
 if static_results_delta:
 msg += 'Updates to your static queries:\n'
 for english_query, _, model, mc_type in static_results_delta:
 msg += f'{english_query} in {model} using the {mc_type}.\n'
 if open_results_delta:
 msg += 'Updates to your open queries:\n'
 for english_query, _, model, mc_type in open_results_delta:
 msg += f'{english_query} in {model} using the {mc_type}.\n'
 if dynamic_results_delta:
 msg += 'Updates to your dynamic queries:\n'
 for english_query, model, mc_type in dynamic_results_delta:
 msg += f'{english_query} in {model} using the {mc_type}.\n'
 return msg

[docs]def make_html_report_per_user(static_results_delta, open_results_delta,
 dynamic_results_delta, email,
 domain='emmaa.indra.bio'):
 """Produce a report for all query results per user in an html file.

 Parameters

 static_results_delta : list
 A list of tuples of query deltas for static queries. Each tuple
 has a format (english_query, link, model, mc_type)
 open_results_delta : list
 A list of tuples of query deltas for open queries. Each tuple
 has a format (english_query, link, model, mc_type)
 dynamic_results_delta : list
 A list of tuples of query deltas for dynamic queries. Each tuple
 has a format (english_query, link, model, mc_type)
 email : str
 The email of the user to get the results for.
 domain : str
 The domain name for the unsubscibe link in the report. Default:
 "emmaa.indra.bio".

 Returns

 str
 A string containing an html document
 """
 # Generate unsubscribe link
 link = generate_unsubscribe_link(email=email, domain=domain)
 email_html = QueryEmailHtmlBody()
 if static_results_delta or open_results_delta or dynamic_results_delta:
 return email_html.render(
 static_query_deltas=static_results_delta,
 open_query_deltas=open_results_delta,
 dynamic_query_deltas=dynamic_results_delta,
 unsub_link=link
)
 else:
 return ''

[docs]def get_model_deltas(model_name, test_corpora, date, bucket=EMMAA_BUCKET_NAME):
 """Get deltas from model and test stats for further use in tweets and
 email notifications.

 Parameters

 model_name : str
 A name of the model to get the updates for.
 test_corpora : list[str]
 A list of test corpora names to get the test updates for.
 date : str
 A date for which the updates should be generated.
 bucket : str
 A name of S3 bucket where the stats files are stored.

 Returns

 deltas : dict
 A dictionary containing the deltas for the given model and test
 corpora.
 """
 deltas = {}
 model_stats, _ = get_model_stats(model_name, 'model', date=date)
 test_stats_by_corpus = {}
 for test_corpus in test_corpora:
 test_stats, _ = get_model_stats(model_name, 'test', tests=test_corpus,
 date=date)
 if not test_stats:
 logger.info(f'Could not find test stats for {test_corpus}')
 test_stats_by_corpus[test_corpus] = test_stats
 if not model_stats or not test_stats_by_corpus:
 logger.warning('Stats are not found, cannot generate deltas')
 return deltas
 deltas['model_name'] = model_name
 deltas['date'] = date
 # Model deltas
 stmts_delta = model_stats['model_delta']['statements_hashes_delta']
 paper_delta = model_stats['paper_delta']['raw_paper_ids_delta']
 new_papers = len(paper_delta['added'])
 deltas['stmts_delta'] = stmts_delta
 deltas['new_papers'] = new_papers
 # Test deltas
 deltas['tests'] = {}
 for test_corpus, test_stats in test_stats_by_corpus.items():
 test_deltas = {}
 test_name = None
 test_data = test_stats['test_round_summary'].get('test_data')
 if test_data:
 test_name = test_data.get('name')
 test_deltas['name'] = test_name
 test_deltas['passed'] = {}
 for k, v in test_stats['tests_delta'].items():
 if k == 'applied_hashes_delta':
 applied_delta = v
 test_deltas['applied_tests'] = applied_delta
 else:
 mc_type = k
 passed_delta = v['passed_hashes_delta']
 test_deltas['passed'][mc_type] = passed_delta
 deltas['tests'][test_corpus] = test_deltas
 return deltas

[docs]def get_all_update_messages(deltas, is_tweet=False):
 """Get all messages for model deltas that can be further used in tweets and
 email notifications.

 Parameters

 deltas : dict
 A dictionary containing deltas for a model and its test results
 returned by get_model_deltas function.

 is_tweet : bool
 Whether messages are generated for Twitter (used to determine the
 formatting of model types).

 Returns

 msg_dicts : list[dict]
 A list of individual message dictionaries that can be used for tweets
 or email notifications.
 """
 msg_dicts = []
 model_name = deltas['model_name']
 date = deltas['date']
 # Model message
 stmts_delta = deltas.get('stmts_delta')
 new_papers = deltas.get('new_papers')
 stmts_msg = _make_delta_msg(model_name, 'stmts', stmts_delta,
 date, new_papers=new_papers, is_tweet=is_tweet)
 if stmts_msg:
 logger.info(stmts_msg['message'])
 msg_dicts.append(stmts_msg)
 # Tests messages
 for test_corpus, test_delta in deltas['tests'].items():
 applied_delta = test_delta.get('applied_tests')
 test_name = test_delta.get('name')
 applied_msg = _make_delta_msg(
 model_name, 'applied_tests', applied_delta, date,
 test_corpus=test_corpus, test_name=test_name, is_tweet=is_tweet)
 if applied_msg:
 logger.info(applied_msg['message'])
 msg_dicts.append(applied_msg)
 for mc_type in test_delta.get('passed', {}):
 passed_delta = test_delta['passed'][mc_type]
 passed_msg = _make_delta_msg(
 model_name, 'passed_tests', passed_delta,
 date, mc_type, test_corpus=test_corpus,
 test_name=test_name, is_tweet=is_tweet)
 if passed_msg:
 logger.info(passed_msg['message'])
 msg_dicts.append(passed_msg)
 return msg_dicts

[docs]def tweet_deltas(deltas, twitter_cred):
 """Tweet the model updates.

 Parameters

 deltas : dict
 A dictionary containing deltas for a model and its test results
 returned by get_model_deltas function.
 twitter_cred : dict
 A dictionary containing consumer_token, consumer_secret, access_token,
 and access_secret for a model Twitter account.
 """
 msgs = get_all_update_messages(deltas, is_tweet=True)
 for msg in msgs:
 update_status(msg['message'], twitter_cred)
 time.sleep(1)
 logger.info('Done tweeting')

[docs]def make_model_html_email(msg_dicts, email, domain='emmaa.indra.bio'):
 """Render html file for model notification email."""
 unsub_link = generate_unsubscribe_link(email=email, domain=domain)
 email_html = ModelDeltaEmailHtmlBody()
 return email_html.render(msg_dicts, unsub_link=unsub_link)

[docs]def model_update_notify(model_name, test_corpora, date, db,
 bucket=EMMAA_BUCKET_NAME):
 """This function finds delta for a given model and sends updates via
 Twitter posts and email notifications.

 Parameters

 model_name : str
 A name of EMMAA model.
 test_corpora : list[str]
 A list of test corpora names to get test stats.
 date : str
 A date for which to get stats for.
 db : emmaa.db.EmmaaDatabaseManager
 An instance of a database manager to use.
 bucket : str
 A name of S3 bucket where corresponding stats files are stored.
 """
 # Find where to send notifications (Twitter, user emails)
 config = load_config_from_s3(model_name, bucket)
 twitter_cred = None
 twitter_key = config.get('twitter')
 if twitter_key:
 twitter_cred = get_credentials(twitter_key)

 users = db.get_model_users(model_name)

 if not twitter_cred and not users:
 logger.info('No Twitter account and no users subscribed '
 'to this model, not generating deltas')
 return

 # Get deltas
 deltas = get_model_deltas(
 model_name, test_corpora, date, bucket=bucket)

 # Tweet if configured
 if twitter_cred:
 tweet_deltas(deltas, twitter_cred)

 # Send emails if there are subscribed users
 if users:
 msg_dicts = get_all_update_messages(deltas, is_tweet=False)
 if msg_dicts:
 str_email = '\n'.join([msg['message'] for msg in msg_dicts])
 full_name = config.get('human_readable_name', model_name)
 subject_line = f'Updates to the {full_name} EMMAA model'
 for user_email in users:
 html_email = make_model_html_email(msg_dicts, user_email)
 res = send_email(sender=notifications_sender_default,
 recipients=[user_email],
 subject=subject_line,
 body_text=str_email,
 body_html=html_email,
 source_arn=indra_bio_ARN,
 return_email=notifications_return_default,
 return_arn=indra_bio_ARN
)

 emmaa.xdd.xdd_client

 Source code for emmaa.xdd.xdd_client

import os
import requests
import logging
from indra_db import get_db

logger = logging.getLogger(__name__)
api_key = os.environ.get('XDD_API_KEY')
doc_url = 'https://xdddev.chtc.io/sets/xdd-covid-19/cosmos/api/document'
query_url = 'https://xdd.wisc.edu/sets/xdd-covid-19/cosmos/api/search'

[docs]def get_document_objects(doi):
 """Get a list of figure/table object dictionaries for a given DOI."""
 logger.info(f'Got a request to get figures for DOI {doi}')
 # Get first batch of results and find the total number of results
 rj = send_document_search_request(doi, page=0)
 if not rj:
 return []
 total = rj.get('total', 0)
 logger.info(f'Got a total of {total} objects')
 objects = rj['objects']
 page = 0
 while len(objects) < total:
 page += 1
 rj = send_document_search_request(doi, page=page)
 if not rj:
 logger.warning(f'Did not get results for {doi} page {page}')
 break
 objects += rj['objects']
 return objects

[docs]def get_document_figures(paper_id, paper_id_type):
 """Get figures and tables from a given paper.

 Parameters

 paper_id : str or int
 ID of a paper.
 paper_id_type : str
 A name of a paper ID type (PMID, PMCID, DOI, TRID).

 Returns

 figures : list[tuple]
 A list of tuples where each tuple is a figure title and bytes content.
 """
 paper_id_type = paper_id_type.upper()
 if paper_id_type == 'DOI':
 doi = paper_id
 else:
 db = get_db('primary')
 if paper_id_type == 'TRID':
 tr = db.select_one(db.TextRef, db.TextRef.id == paper_id)
 elif paper_id_type == 'PMID':
 tr = db.select_one(db.TextRef, db.TextRef.pmid == paper_id)
 elif paper_id_type == 'PMCID':
 tr = db.select_one(db.TextRef, db.TextRef.pmcid == paper_id)
 ref_dict = tr.get_ref_dict()
 doi = ref_dict.get('DOI')
 if not doi:
 logger.warning(f'Could not get DOI from {paper_id_type} {paper_id}, '
 'returning 0 figures and tables')
 return []
 objects = get_document_objects(doi)
 if not objects:
 return []
 figures = get_figures_from_objects(objects)
 logger.info(f'Returning {len(figures)} figures and tables.')
 return figures

[docs]def get_figures_from_query(query, limit=None):
 """Get figures and tables from a query.

 Parameters

 query : str
 An entity name or comma-separated entity names to query for.
 limit : int or None
 A number of figures and tables to return.

 Returns

 figures : list[tuple]
 A list of tuples where each tuple is a link to the paper, a figure
 title and bytes content.
 """
 logger.info(f'Got a request for query {query} with limit {limit}')
 # Get first batch of results and find the total number of results
 rj = send_query_search_request(query, page=0)
 if not rj:
 return []
 total = rj.get('total', 0)
 logger.info(f'Got a total of {total} objects')
 objects = rj['objects']
 page = 0
 # If there's a limit of number of figures so we can stop when we reach it
 # or when we run out of objects
 if limit:
 figures = get_figures_from_objects(objects, True)
 while len(figures) < limit and len(objects) < total:
 page += 1
 rj = send_query_search_request(query, page)
 if not rj:
 logger.warning(f'Did not get results for {query}, page {page}')
 break
 new_figures = get_figures_from_objects(rj['objects'], True)
 figures += new_figures
 objects += rj['objects']
 figures = figures[: limit]
 logger.info(f'Returning {len(figures)} figures and tables.')
 return figures
 # There's no limit so we want to get all objects before getting figures
 while len(objects) < total:
 page += 1
 rj = send_query_search_request(query, page)
 if not rj:
 logger.warning(f'Did not get results for {query} page {page}')
 break
 objects += rj['objects']
 figures = get_figures_from_objects(objects, True)
 logger.info(f'Returning {len(figures)} figures and tables.')
 return figures

[docs]def send_request(url, params):
 """Send a request and handle potential errors."""
 try:
 res = requests.get(url, params=params)
 # Catch connection error
 except Exception as e:
 logger.info(e)
 return
 try:
 rj = res.json()
 if 'objects' not in rj:
 params.pop('api_key')
 logger.warning(f'Could not get objects for {params}')
 if 'error' in rj:
 logger.warning(rj['error'])
 return
 # Catch bad response
 except Exception as e:
 logger.info(e)
 return
 return rj

[docs]def send_query_search_request(query, page):
 """Send a request to get one page of results for a query."""
 logger.info(f'Sending a request for query {query}, page {page}')
 return send_request(
 query_url,
 {'query': query, 'inclusive': True, 'page': page, 'api_key': api_key})

[docs]def send_document_search_request(doi, page):
 """Send a request to get one page of results for a DOI."""
 logger.info(f'Sending a request for DOI {doi}, page {page}')
 return send_request(doc_url,
 {'doi': doi, 'api_key': api_key, 'page': page})

[docs]def get_figures_from_objects(objects, paper_links=False):
 """Get a list of paper links, figure titles and their content bytes from
 a list of object dictionaries (returned from query or document api)."""
 figures = []
 for obj in objects:
 for child in obj['children']:
 if child['cls'] in ['Figure', 'Table']:
 txt = child['header_content']
 b = child['bytes']
 if paper_links:
 urls = set()
 for link in obj['bibjson']['link']:
 urls.add(link['url'])
 figures.append((urls, txt, b))
 else:
 figures.append((txt, b))
 return figures

_images/rasmodel_test_report.png
EGF bound to EGFR and GRB2 activates RAC1.

ELK1 bound to SRF activates ELK1.

IGF1R phosphorylated on Y1166 activates IRS1.

EGF binds EGFR.

EGFR bound to EGF binds EGFR bound to EGF.
EGFR bound to EGFR phosphorylates SRC on Y419.
Active SRC phosphorylates TIAM1.

Active TIAM1 activates RAC1.

No path found that satisfies the test statement

Active IGF1R phosphorylates IRS1 on tyrosine.

_images/registration_window.png
IndraLab

Login Register

email

your@email.com

password

password N

repeat password

_images/rasmodel_kappa_ui.png
Preferences

cC @ tools.kappalanguage.org/try/?model=https://emmaa.s3.amazonaws.com/exports/rasmodel/kappa_2021-05-27-17-55-42.kappa @ Y
« default New project
editor log plot DIN snapshot outputs stories about
Filew toggle kappa_2021... contact_map influences constraints polymers
Accuracy low
45 Bdgent: n4ril(pocket_protein)
24 %agent: RB1l(e2f,S807{u p})
25 %agent: FOXOl(loc{nucleus cytoplasm},S256{u p},pl4_3_3)
26 %agent: LRP6(phospho{u p})
27 %agent: Wnt(activity{inactive active})
28 %agent: PAKI (phospho{u p},cdc42,rac,nf2)
29 %agent: JNK(activity{inactive active})
30 %agent: BAX(bcl2,activity{inactive active})
31 %agent: BCL2(bax,bad)
32 %agent: RALGDS(ras,loc{membrane})
33 %agent: RALA(activity{inactive active},ralbpl)
34 %agent: RALB(activity{inactive active},ralbpl)
35 %agent: BCL2L11l()
36 %agent: RPS6KAL1(T573{u p},T359{u p})
37 %agent: RPS6KB1(T412{u p},T444{u p})
38 %agent: BRAF(phospho{u p},ras)
39 %agent: SRC(Y419{u p},ptk2)
40 %agent: TEADI(yapl)
41 %agent: YAPI(tead,loc{nucleus},smad,nf2,S127{u p})
42 %agent: TSCl(tsc)
43 %agent: TSC2(tsc,S1798{u p},S939{u p},T1462{u p})
44 %agent: EIF4EBP1(T37{u p},T70{u p},S65{u p})
45 %agent: ELK1(S383{u p}.S389{u p}.loc{cvtoplasm nucleus})
svg V|| file name export
Pause if [false] «1/94 » [kappa_2021-05-27-17-55-42.kappa] Dead rule 'SOS1_GRB2_translocates_cytoplasm_to_membrane'
Plot period 1.0

start

[Show All States] [Reset Zoom]

_images/rasmodel_mapk1_phos.png
Amount (molecules)

Simulation results for MAPK1 phosphorylated on T185

1750

1500

1250

1000

500

250
High

0 20 0 60 80 100
Time (s)

_images/rest_api.png
EMMAA REST API©®

[Base URL: /]
/swagger.json

EMMAA REST API

Metadata Get EMMAA models metadata

GET /metadata/entity_info/{model} Get information about an entity

GET /metadata/model_info/{model} Get metadata for model

GET /metadata/models Get a list of all available models
GET /metadata/test_corpora/{model} Get a listof available test corpora for model
GET /metadata/tests_info/{test_corpus} Get testcorpus metadata

Latest Get updates specific to latest models

GET /latest/curated_statements/{model} Get hashes of curated statements by category

GET /latest/statements/{model} Return model latest statements and link to S3 latest statements file
GET /latest/statements_url/{model} Return a link to model latest statements file on S3

GET /latest/stats_date Get latest date for which both model and test stats are available

>
c

€ry Run EMMAA queries

POST /query/source_target_dynamic Simulate a model to describe the effect of an intervention

POST /query/source_target_path Explain an effect between source and target

POST /query/temporal_dynamic Simulate a model to verify if a certain pattern is met

POST /query/up_down_stream_ path Find causal paths to or from a given entity

_images/stmt_evidence.png
Statement Evidence and Curation

EGFR binds ERBB2.CEDCD

N\ reach

N\ reach

N\ reach

For example, (38 binds @I, and the kinase activity of [[E%) subsequently phosphorylates the
heterodimer, which leads to phosphatidylinositol 3-kinase (PI3K)/Akt and Ras and MEK signaling
pathway activation [XREF_BIBR].

I3 and G binding and displacement of binding by competitors were found for (111) In-bsICs.

Pertuzumab, another anti-{f[;F) humanized monoclonal antibody, binds (¥ at a different epitope of
the (X extracellular domain from that at which trastuzumab binds, inhibiting not only
homodimerization of [EE¥) but also heterodimerization of G4 and (EY) and EEY and HER3
[XREF_BIBR].

26728266

23525982

23346316

_static/images/xdd_stmt_figures.png
Statement Evidence and Curation

ACE2 binds SARS-CoV-2.CE)

“reach

“reach

“reach

“reach

“reach

s

Sisi

\isi

P——

Ribavirin has an inhibitory effect in proteolytic activity of TMPRSS2 enzymeA well-
known mechanism is that EZXEEIEY entries a host cell using its spike protein

appearing on the surface of the virus binds (T3] receptor on the host cell surface.

It may survive on different surfaces for 24-72 h. [XREF_BIBR] To enter into target
cells, binds angiotensin converting enzyme 2 (ACE2) receptor which is
expressed in the heart, lung, intestine, kidney, [XREF_BIBR XREF_BIBR XREF_BIBR]
and blood vessels.

[XREF_BIBR] Sex differences in the binding of (EEZEY to the CXZ] receptor
have been identified as an important contributor to the initiation and course of the
disease.

Recently, ACEls and ARBs were linked to COVID-19 infection due to the close
association between (EZ) and EIEEE.

As binding of with is a prerequisite for the entry in the host cells,
hence the distribution and expression of in target organ could be important
determinant for the initiation of virus infection and its progression.

Similar to SARS-CoV, [T} is exploited by as a cellular entry receptor,
therefore, inhibition of virues-gIEZJ interaction may intercept viral entry into host
cells and subsequently prevent COVID-19 infection (Figure 2) (14).

The spike proteins of interact with or basigin/CD147 receptors,
regulating human-to-human transmissions of COVID-19 together with serine
protease TMPRSS2.

Competitive Serology Reveals Most Antibodies Targeting the Spike
Receptor-Binding Domain Compete for (X523 Binding.

Linfart inately it hac heen recentlv renarted that EYTTIRTEY hinde to the

10/481 JJSON

10.1101/2
020.12.0
4.410092

3368841
2

3294409
1

3349573
9

3327851
6

3275460
8

3258945
9

3293870
[

22RA27R0

View paper

Fig. 5. Effect of ACE2 and ARBs on SARS-CoV-1 or SARS-CoV-2 infection. This illustrates a proposed mechanism of the
effects of ACE2 in COVID-19 infection. SARS-COV-2 virus uses the ACE2 receptor to gain entry into the cell, leading to the
increase in proinflammatory cytokines and the development of cytokine storm, as well as increased viral replication (see Fig.
4). TMPRSS2 assists in S protein priming. ARBs may potentially increase the expression of ACE2, leading increased binding of
SARS-CoV-2 and greater proinflammatory cytokine production. SARS-CoV-2 may at the same time downregulate ACE2,
which leads to an increase in angiotensin 2 mediated lung injury. The negative regulatory activity of ACE2 is reduced by
SARS-CoV-2 and leads to worsening severity of illness.

S
ACEVARBs .* *

‘Htar

Internalization

A-xm Ang 17

s ..,..n
= Incrnin ety of COVID 19
a2 1
r— MCEI MR Ilﬂv-d'(infection
View paper

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

_static/down.png

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/images/xdd_figure_integration.png
il
5 e
¢ Pyoptoss

_images/rasmachine_tests_tab_top.png
Percentage of Tests Passed

Be 588388

M PySB M PyBEL M Signed Graph M Unsigned Graph

Passed and Applied Tests

M PySB Passed Tests W PyBEL Passed Tests M Signed Graph Passed Tests Ml Unsigned Graph Passed Tests B Applied Tests

_images/rasmachine_tests_tab_top1.png
Percentage of Tests Passed

Be 588388

M PySB M PyBEL M Signed Graph M Unsigned Graph

Passed and Applied Tests

M PySB Passed Tests W PyBEL Passed Tests M Signed Graph Passed Tests Ml Unsigned Graph Passed Tests B Applied Tests

_images/ras_tests_annot.png
Percentage of Tests Passed

703 2. Model expansion
65 —

1. Model enhancements
—

B Passed Ratio

Passed and Applied Tests

200 =
180 - <>
160 -] 2. Model expansion
140 i
120 4
100+ ._/Q—H. - -
80—
60 N 3. Add missing reaction
40 |
204
0 QI)I T IQI) T TT T THTTT !{ T ml
< of w© N o) S
PO & S K ‘
N ¥ N @q/\ &
O Y P B2
¢ & & Qggo & &
5 s° s $°
v v v v

M Passed Tests M Applied Tests

_images/rasmachine_map2k1_phos.png
Amount (molecules)

Simulation results for MAP2K1 phosphorylated on 5222

10000
8000
6000
4000
2000

High
0
o Low 20 40 60 80 100

Time (s)

_static/images/subscribed_queries.png
Subscribed Queries

Query Model PysB PYBEL Signed Graph Unsigned Graph

FLT3 activates KRAS. aml v v v v

_static/images/test_matrix.png
All Test Results

Test

AGT activates EGFR.

AGT activates RAS.

AGT bound to AGTR1 activates ERK.
Kinase-active AKT activates ESR2.

Kinase-active AKT activates angiogenesis.

Kinase-active AKT activates cell differentiation.

AKT activates MTOR.

ANGPT1 activates RAS.

ANGPT1 activates angiogenesis.

Kinase-active BRAF activates ERK.

GTP-bound active CDC42 activates MTOR.

CDKN2A activates TP53.

Pysb

Pybel

Signed Graph
v

v

Unsigned Graph
v

v

_static/images/test_corpus_selection_cropped.png
Model Tests Papers Curation
b RO R o PG Oalaailima

Rasmodel tests

Skcm tests
v Rasmachine tests] Load Test Results

Large corpus tests

_static/images/testing_pipeline.png
Display results in
EMMAA dashboard

AWS S3 AWS Lambda AWS Batch AWS S3
Updated Model Trigger batch job Run tests on New test
updated model results

_static/images/testing_mockup.png
Model Tests

Observation Model Result Number of Paths Shortest Path Length
IGF1R phosphorylates AKT1 on T308. (] 2 6

KRAS phosphorylates BRAF. (] 4 3

KRAS phosphorylates MAP2K1. (] 4 4

KRAS phosphorylates MAPK1. (] 4 5

MAPK1 phosphorylates RPS6. [+]

PIK3CA phosphorylates MTOR. (] 7 5

BRAF phosphorylates MAP2K1 on S218. [6 2

_static/images/unsubscribe_page.png
Pick queries to unsubscribe from

query
FLT3 activates KRAS. for model aml

FLT3 activates KRAS. for model rasmachine

SUMO1 activates TP53. for model ami

BRAF phosphorylates MAP2K1. for model marm_model

Resveratrol activates inflammatory response. for model painmachine
Phosphorylated MAP2KT is sometimes low. for model marm_model

Phosphorylated MAP2KT is eventually high. for model marm_model

type

path property

path property

path property

path property

path property

dynamic property

dynamic property

Unsubscribe from all

Unsubscribe

_static/images/time_machine_selection_cropped.png
Percentage of Tests Passed

o |
=
s fmsnsaseed T
s
M
x
s
» 6-18-28-50 USRI
15 ‘ M Unsigned Graph 48.95
1
5 W PyBEL 296
o ‘ M Signed Graph 21.91
® bl uryss I
E fﬂ o il &
5 5 ¢
E & e f&
& b b

W pyss M PyBEL M Signed Graph M Unsigned Graph

_static/images/waiting_for_response.png
Model Queries

Model selection
Query selection
Activation * BRAF ERK (Subscribe To Query

To read more about statement types, read the INDRA documentation.

‘Submit
b o

Waiting for server response

_static/images/user_queries_concept.png
on results models

“ Measure effect
How doesPLX4032le2d o | Run relevant i Ecosystem of
treatment resistance? analysis knowledge Machine-maintained

Queries: register
scientific questions

Scientists /

Clinicians
—
Notifications:

novel hypotheses,
analysis reports

Notify select users
about novel
conclusions

“The newly reported interaction
between CALM and KRAS is part
of a new explanation for PLX-

4032 resistance.”

_static/images/stonkgs_cross_modal_attention.png
token sequence (text)

_static/images/stmts_by_type.png
Next > H Filter Curated H Download Statements

Sorting by evidence + | Load Statements Inhibition

All statements in COVID19 model.

‘ < Previous

<

Filter Statements | Reset Filter ’

Acetylsalicylic acid inhibits PTGS1.€)
Flutamide inhibits AR.C)€D)
Spironolactone inhibits NR3C2.€)€D
Ritonavir inhibits CYP3A4.€8)
Sitagliptin inhibits DPP4.€¥)

_static/images/aml_tests_annot.png
O

Acute Myeloid Leukemia (AML)

Percentage of Tests Passed

167 Made multiple improvements to test evaluation framework that

eliminated false positives
14 /
124

104

Load Model

A >
& ;&,\
Q»O (v\’\
&q, e’bﬂ/ &
4 & & &
® ® ® ®
M Passed Ratio

Passed and Applied Tests
Eliminated spurious duplicates in test corpus
1200]
1100 4 /
1000 o
900 o

800
700 o
600 -
500 o
400
300+
200+
100

S <l Gt
‘19\ ‘19\ ‘LQN q9\

M Passed Tests M Applied Tests

_static/images/aml_tests_tab_top.png
EMMAA Dashboard Queries

About
Acute Myeloid Leukemia (AML) 4 | Load Model
Model Tests
Percentage of Tests Passed
16
1
2
0
o
.
B
2
! s 3 & ©
w"f &ﬁ“ 0,«*? «PS w"g a‘s
& & & & & &
W Passed Ratio

Passed and Applied Tests

.5B88883888E0

_static/images/aml_tests_tab_tests.png
New Applied Tests

Test Status
Kinase-active PKC leads to the phosphorylation of APP on S730. x
Kinase-active RPS6KBL leads to the phosphorylation of RPS6KB1 on T412. x
HBP1 phosphorylated on S402 increases the amount of HBP1. x
Catalytically active DRD2 leads to the phosphorylation of EGFR on Y869. x
Kinase-active MTOR leads to the phosphorylation of EIF4EBP1 on T70. x
Kinase-active AKT1 leads to the phosphorylation of RPS6KB1 on T412. x
Aldosterone leads to the phosphorylation of SRC on Y419. x
EGFR phosphorylated on Y1069 inhibits cell proliferation. x

New Passed Tests

Test Path Found

All Test Results

Test Status Path Found or Result Code

BRMS1 leads to the acetylation of RELA on K310. x ‘Statement object state not in model

_static/images/annotations_displayed.png
@ ncbi.nim.nih.gov/pmc/articles/PMC7868326/

19501g |0

| U0

the SARS-CoV-2 coronavirus (Han and Kral, 2020). Classical MD simulations were performed by the
modeling suites NAMD (Phillips et al., 2005) and CHARMM36 protein force field (MacKerell et al.,
1998), which screened the most suitable peptide inhibitor with good binding affinity yet low RMSD for
critical amino acids, indicative of relatively high binding energies. The novel designed peptide inhibitors
have provided insights for researchers to develop therapeutic antiviral inhibitors by offering the al helix of
ACE?2 a sulfated ligand. Other molecules of similar structures, the heparin/HS for instance, could also
attach to positively charged residues at the bottom of the RBD.

The timescale of the MD simulations is also a determinant for the convergence of structural clustering, free
energy of binding, and native contacts between the GAGs and target proteins. Bojarski et al. analyzed the

structure of fibroblast growth factor 1 (FGF1) complexed with heparin [PDB ID: 2AXM (DiGabriele et al.,
1998)] through microsecond-scale simulations by the force field of AMBER16 (Bojarski et al., 2019). The

analysis revealed a conformational selection mechanism of GAGs binding and determined the structural
specificity in the FGF1-heparin complex. Their findings could potentially contribute to the development of

novel biomaterial resembling GAGs in the field of regenerative medicine.

dg

Effective In
Enoxaparin

[} INDRA v

Showing 2 annotations

bgyori
22 INDRA

X Show all (30)

8 mins ago

The analysis revealed a conformational selection
mechanism of GAGs binding and determined the
structural specificity in the FGF1 and heparin complex.

heparin binds FGF1.

reach

indra_upload

_static/images/annotations_added.png
New Papers

Assembled
Paper Title Link Statements
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. PubMed (3 24
Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS- PubMed (3 23

Annotations
added, see
here

CoV-2-Related Proteins-An Important Strategy for Developing Novel
Therapeutics for the COVID-19 Pandemic.

Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. PubMed (3 16

Raw Statements

71

75

29

_static/images/askee_hmi_2.png
heaical eatity
o

Sl o

polecular entip)x

5701

_static/images/askee_hmi_1.png
COVID-19 model | 1688 Nodes | 5035 Edges Subgraph | 11 Nodes | 9 Edges

paracetamo...

cytokine

prostaglan...

dexamethas...

_static/images/belief_distr.png
Belief Distribution

T T
0.876 0.885 0.893 0.901 0.909 0.918 0.926

M Beliefs

0.934 0.942 0.951 0.959 0.967 0.975 0.984 0.992

_static/images/belief_badge_screenshot.png
‘ < Previous H Next > H Filter Curated H Download Statements ‘

Sorting by evidence ¢ | Load Statements | Filter by statement type * | Filter Statements | Reset Filter ‘

All statements in BRCA model.

EGFR binds ERBB2.CEDED
ERBB2 binds ERBB3.CD
EGFR binds EGFR.CDED
MEN1 binds MEN1.
ERBB2 is ubiquitinated.
EGFR binds ERBB3.CZD)
AKT1is phosphorylated on S473.

CDKN1B is phosphorylated on T187.

_static/images/belief_filter.png
Filter and Sort Statements

‘ < Previous || Next> H Filter Curated H Download Statements

Sorting by belief + | Load Statements Filter by statementtype ¢ | Filter Statements

Select belief range

0.93-0.97
e e

All statements in RASMACHINE model.

AZD5363 inhibits AKT1.

BI-D1870 inhibits RPS6KA1.

BI-D1870 inhibits RPS6KA2.

BI-D1870 inhibits RPSG6KAG.

CH5183284 inhibits FGFR1.

CH5183284 inhibits FGFR3.

P529 inhibits MTOR.

Reset Filter

Load statements

0.96 , 0/1 , JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

_static/up-pressed.png

_static/images/akt_mtor_curation.png
AKT1 phosphorylates MTOR

AKT1 phosphorylates MTOR.

N

N

reach

reach

\

Click to curate
any problems

"We have investigated the effects of insulin, amino acids, and the degree of muscle loading on the
phosphorylation of Ser (2448), a site in the (mTOR) phosphorylated by ¥~

11884412

Original evidence

(PKB) in vitro." / sentences describing mechanism

"Despite modulation of PRAS40, which regulates the containing TORC1 complex, mutational activatio
of PIK3CA or did not consistently increase phosphorylation of at serine 2448 or phosphorylati
of target proteins and their targets, including p70-ribosomal protein S6-kinase (p70S6K), eukaryotj
elongation factor 4 binding protein 1 (EIF4EBP1), and ribosomal protein S6."

biopax:panther None available
sparser \ "We speculated that RhebL1 might bind to directly or indirectly via since RhebL1 could bind to
d hosphorylated b f f1."
™~ Extractic@ an was phosphorylated by [xref , xref]

reach /

sources
"Primary antibodies included glucose transpoter-4, focal adhesion kinase, PGC-1alpha (Santa Cruz

Biotechnology), total (AKT), phosphorylated AKT, total mammalian target of rapamycin ({5
) and phosphorylated (Cell Signaling)."

23888070

Hover to see article
info

28209923 /

Kim HJ, ... Lee CH, "Novel involvement of
RhebL1 in sphingosylphosphorylcholine-
induced keratin phosphorylation and

2§ reorganization: Binding to and activation of
AKT1.", Oncotarget, 2017 Mar 28;8(13):
20851-20864

_static/up.png

_static/images/all_statements.png
‘ { Previous H Next) H Filter Curated H Download Statements

All statements in RASMACHINE model.

EGFR binds ERBB2.CEDCD
BRCA1 binds BRCA2.€)€D
BRAF binds RAF1.€DED
SOS1 binds GRB2.€)ED
EGFR binds EGFR.CDED
CDK4 binds CDK6.€$)

CBL binds EGFR.CEDED

Sorting by evidence

<

Load Statements

0/3382 SJSON

0/417 SJSON

0/380 SJSON

0/343 JJSON

0/328 JJSON

0/321 SJJSON

0/306 JJSON

_static/images/akt_mtor_linkout.png
All Test Results

Test Status Path Found or Result Code
Kinase-active AKT1 activates MTOR. v AKT1 phosphorylated on T308 and S473 phosphorylates MTOR on S2448.
Kinase-active AKT1 activates RPS6KB2. v AKT1 phosphorylated on T308 and S473 phosphorylates MTOR on S2448.

Kinase-active MTOR phosphorylates RPS6KB2 on T388.

N\

Link out to source
evidence

Kinase-active BRAF activates ELK1. v BRAF phosphorylates MAPK3 on T202.
Kinase-active MAPK3 phosphorylates ELK1 on S383.

Kinase-active BRAF activates MAPK1. v BRAF phosphorylates MAPK1 on T185.

Kinase-active BRAF activates MAPK3. v BRAF phosphorylates MAPK3 on T202.

_static/images/all_test_results.png
All Test Results

signed Unsigned
Test PysB PYBEL Graph Graph
AGT activates EGFR. v v v v
AGT activates IGF1R. x v v v
AGT bound to AGTR1 activates ERK. x x v v
Kinase-active AKT activates ESR2. x x x x

Kinase-active AKT activates SP1. x x x x

_static/images/all_statements_curation.png
Statement Evidence and Curation

_ - Total number of curations for this statement
DDX58 binds MAVS.@ZDE€D ~

% sparser The activated (I further interacts with (LA IIAR e rer) (MAVS) and stimulates PMC711379
transcription factor, IFN regulatory factor-3/7 (IRF-3/7) to induce IFN gene expression (xref). 6

- Green halo representing existing correct curation for this evidence
(reach 74 The interaction between () and [ZIE) promotes the formation of a signaling complex on the 25544499

mitochondrial surface that recruits and activates the downstream classical IKK complex, IKKalpha and
IKKbeta, and two non classical IKK related kinases, TBK1 and IKKepsilon.

Select error type... ¥ Optional description (240 chars)) m

The specific prior curation shown

Prior Curations & e ———————) C
¥ for this evidence

3/23/2020, 10:22:55 PM ben.gyori@gmail.com correct No text given. EMMAA

_static/images/aml_tests_all_tests.png
Angiogenesis increases the amount of ZEBL.

Bortezomib increases the amount of RUNX1.

Cisplatin increases the amount of ANXA1.

Cisplatin increases the amount of CDKN1A.

Cisplatin increases the amount of FOSL1.

Cisplatin increases the amount of ICAM1.

Cisplatin increases the amount of TP53.

Inflammatory response increases the amount of FGF2.

‘Statement subject not in model

Bortezomib increases the amount of TP53.
TP53 increases the amount of CEBPA.
CEBPA increases the amount of RUNXL.

No path found that satisfies the test statement
No path found that satisfies the test statement
No path found that satisfies the test statement

No path found that satisfies the test statement

Cisplatin decreases the amount of KRAS.
KRAS decreases the amount of TP53.

‘Statement subject not in model

_static/images/aml_model_tab.png
Model Tests Papers Curation

Model Info
Item Details
Model Description A model of molecular mechanisms governing AML, focusing on frequently mutated genes, and
the pathways in which they are involved.
Latest Data Available 2021-02-03
Data Displayed 2021-02-03
Network on Ndex ef58f76d-f6a2-11e8-aaa6-0ac135e8bacf

Download as

‘ json H jsonl H bngl H indranet H kappa ’

Statement Types Distribution

Complex
Activation
Inhibition
Phosphorylation
IncreaseAmount
ActiveForm
Translocation
DecreaseAmount
Methylation
Acetylation

DepHBE(MBRﬁBﬂB
SumoylatioR

AutdBhEgmRR

Palmitoylaﬂgﬂ
Hydroxylation
Deacetylation
Desumoylation
Deubiquitination
Demethylation
Depalmitoylation
Farnesylation
Myristoylation

Ribosylation
] 50 100 150 200 250 300 350 400 450 500 550

M Statements count

_static/plus.png

_images/endpoint_response.png
Responses Response content type | application/json v

Code Description

200
Success

Example Value = Model

"pysb": {
"nodes":
"EGFR",
"SRC",
"AKT1"

"graph_type" gned_graph",
"fail_reason": "Statement object state not in

"SRC",
"AKT1"

Example Value | Model

result v ¢
b
pYs. v {
description:
Results in PySB model
nodes
v I
List of nodes in the found path
string]
d
edges @ [
List of edges in the found path
edge v ¢
type string
example: statements
Type of edge
hashes
v I
Hashes of statements for the edge
integer]
H
graph_type string

example: signed_graph

- e e A% L AL e s = 3

_images/food_insec_model_ndex.png
T > oo = =T

_images/emmaa_overview.png
Ecosystem of Machine-maintained

Models with Automated Analysis Extract knowledge
(EMMAA) when it appears
Queries:
Register scientific
questions Assemble
Scientists / knowledge
Clinicians into model
Notifications: ~ \
8 novel hypotheses, \
analysis reports \ Measure
\ effect of new
knowledge
onresults

Run relevant
analysis

“The newly reported interaction between
CALM and KRAS is part of a new
explanation for PLX-4032 resistance.”

Notify select users about novel
conclusions

_images/endpoint_input.png
POST /query/up_down_stream_ path Find causal paths to or from a given entity

Parameters Try it out

Name Description

payload * required
object
(body)

Example Value | Model

"rasmodel”,
{
"Agent",
name": "AKT1",
"db_refs": {
HGNC": "391"

3

1,
"entity_role": "object",
"stmt_type": "Activation"”,
"terminal_ns": [

"HGNC",

"uP",

"FPLX"

Parameter content type

application/json v

payload * required
object
(body)

Example Value | Model

open_query v {
model string
example: rasmodel

A name of EMMAA model to query (e.g. aml, covidl9)

tit,
entity v q
description:
INDRA Agent JSON to start the search from.
}
entity role string
example: object
subject for downstream or object for upstream search.
stmt_type string

example: Activation
Type of effect to search for.

terminal ns
= v

Optional list of namespaces to constrain the types of up/downstream entities

string]

_images/hypothesis_badge.png
New Papers

Assembled
Paper Title Link Statements Raw Statements
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. PubMed (3 24 71
Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS- PubMed (3 23 75

m
Wait while we
add
annotations

CoV-2-Related Proteins-An Important Strategy for Developing Novel
Therapeutics for the COVID-19 Pandemic.

Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. PubMed (3 16 29

_images/interv_query_filled.png
Query specification

Model selection

Query selection

Activation $ SOS1 KRAS

To read more about statement types, read the INDRA documentation.

Submit ['Subscribe To Query

_images/food_insec_model_size.png
Number of Statements over Time

2604
240
220+
2004
180
160
140 +
120 4

100
80 -
60 o

M Statements

_images/hybrid_db_belief.png
EMMAA-only evidence, default scorer EMMAA-only evidence, hybrid scorer

000 000
000 000
5000 5000
000 000
2000 2000
200 200
1000 1000

02 o8 06 08 10 00 02 o8 06 o8
EMMAA+INDRA DB evidence, default scorer EMMAA+INDRA DB evidence, hybrid scorer
700 700
5000 5000
5000 5000
000 000
000 000
2000
1000
o

00 02 o4 05

_images/linkout.png
Most Supported Statements View All Statements

Statement Evidence Count
ANG translocates to the nucleus. 306
MAX is phosphorylated. 260
EED binds EZH2. 252

https://emmaa.indra.bio/evidence?stmt_hash=-33026541481052423&source=model_statement&model=aml|&date=2021-02-03 214

_images/user_queries_concept.png
on results models

“ Measure effect
How doesPLX4032le2d o | Run relevant i Ecosystem of
treatment resistance? analysis knowledge Machine-maintained

Queries: register
scientific questions

Scientists /

Clinicians
—
Notifications:

novel hypotheses,
analysis reports

Notify select users
about novel
conclusions

“The newly reported interaction
between CALM and KRAS is part
of a new explanation for PLX-

4032 resistance.”

_static/images/nrl_belief_plot.png
Overlap Coefficient Overlap Coefficient Overlap Coefficient Overlap Coefficient

Overlap Coefficient

Effect of Belief Cutoff on Overlap Coefficient Rank Distribution at k= 0.05

AML

BRCA

COVID19_MAP

1.0 -

|/l

0.8 A

0.6

9

0.2 A

0.0 -

LUAD

MS

NF

1.0

PAAD

PAINMACHINE

PRAD

1.0 -

0.8 A

0.6

0.4 -

0.2 A

0.0 -

RASMACHINE

RASMODEL

SKCM

VITILIGO

1.0 4

0.8 A

0.6 A

|
1
0.41 l
O
0.0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Rank %

_images/login_window.png
IndraLab

Login | Register

email

your@email.com

password

password

_static/images/new_passed_tests_multi_model.png
New Passed Tests

Test Top Path Found
New passed tests for Pybel model.

Kinase-active ERK increases the amount of CRP. ERK activates BRAF.
BRAF activates PTEN.
PTEN decreases the amount of IL17A.
IL17A activates CRP.

New passed tests for Signed Graph model.

Kinase-active ERK activates angiogenesis. ERK -> BRAF
BRAF -> TP53
TP53 -> angiogenesis

Kinase-active ERK increases the amount of CRP. ERK -> BRAF
BRAF -> PTEN
PTEN -> IL17A
IL17A -> CRP

New passed tests for Unsigned Graph model.

Kinase-active ERK activates angiogenesis. ERK -> BRAF
BRAF -> TP53
TP53 -> angiogenesis

Kinase-active ERK decreases the amount of IL6. ERK -> BRAF
BRAF -> TP53
TP53 -> IL17A
IL17A -> CRP
CRP -> IL6

_images/xdd_figure_integration.png
il
5 e
¢ Pyoptoss

_static/images/open_query.png
Model Queries

Model selection

Query selection
Inhibition s ACE2

To read more about statement types, read the INDRA documentation.

small molecules (CHEBI, DRUGBANK, CHEMBL, PUBCHEM) ERI iR SRR (e]sJile1E1)]

Submit | ‘Subscribe To Query

object (upstream search)

<

_images/waiting_for_response.png
Model Queries

Model selection
Query selection
Activation * BRAF ERK (Subscribe To Query

To read more about statement types, read the INDRA documentation.

‘Submit
b o

Waiting for server response

_static/images/nrl_comparison.png
AML

EMMAA Subspace Occupation at belief = 60.0

BRCA

COVID19

COVID19_MAP

10.0 4

2.5 1

0.0

—5.0 1

MARM_MODEL

1

10.0

7.5 1

0.0

PAINMACHINE

RASMACHINE

10.0 A

2.5 1

0.0

—5.0 1

RASMODEL

VITILIGO

1

10.0

7.5 1

_static/images/open_search_email.png
Updates to your open queries

« "What inhibits COVID-197 (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For details click here.

« "What inhibits TMPRSS2? (CHEB, DRUGBANK, CHEMBL, PUBCHEM)" in Govid19 using the Signed Graph model type. For details click here.

« "What inhibits TMPRSS2? (CHEB, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For detals clck here.

« "What inhibits COVID-197 (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details ciick here.

« "What inhibits ACE2? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details ciick here.

« "What inhibits ACE2? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)* in covid19 using the Unsigned Graph model type. For details ciick here.

« "What inhibits Middle East Respiratory Syndrome Coronavirus? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details click here.
« "What inhibits Middle East Respiratory Syndrome Coronavirus? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid18 using the Unsigned Graph model type. For details click here.
« "What does leupeptin inhibit? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details clck here.

« "What does leupeptin inhibit? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For details click here.

« "What inhibits CTSB? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For details clck here.

_images/xdd_stmt_figures.png
Statement Evidence and Curation

ACE2 binds SARS-CoV-2.CE)

“reach

“reach

“reach

“reach

“reach

s

Sisi

\isi

P——

Ribavirin has an inhibitory effect in proteolytic activity of TMPRSS2 enzymeA well-
known mechanism is that EZXEEIEY entries a host cell using its spike protein

appearing on the surface of the virus binds (T3] receptor on the host cell surface.

It may survive on different surfaces for 24-72 h. [XREF_BIBR] To enter into target
cells, binds angiotensin converting enzyme 2 (ACE2) receptor which is
expressed in the heart, lung, intestine, kidney, [XREF_BIBR XREF_BIBR XREF_BIBR]
and blood vessels.

[XREF_BIBR] Sex differences in the binding of (EEZEY to the CXZ] receptor
have been identified as an important contributor to the initiation and course of the
disease.

Recently, ACEls and ARBs were linked to COVID-19 infection due to the close
association between (EZ) and EIEEE.

As binding of with is a prerequisite for the entry in the host cells,
hence the distribution and expression of in target organ could be important
determinant for the initiation of virus infection and its progression.

Similar to SARS-CoV, [T} is exploited by as a cellular entry receptor,
therefore, inhibition of virues-gIEZJ interaction may intercept viral entry into host
cells and subsequently prevent COVID-19 infection (Figure 2) (14).

The spike proteins of interact with or basigin/CD147 receptors,
regulating human-to-human transmissions of COVID-19 together with serine
protease TMPRSS2.

Competitive Serology Reveals Most Antibodies Targeting the Spike
Receptor-Binding Domain Compete for (X523 Binding.

Linfart inately it hac heen recentlv renarted that EYTTIRTEY hinde to the

10/481 JJSON

10.1101/2
020.12.0
4.410092

3368841
2

3294409
1

3349573
9

3327851
6

3275460
8

3258945
9

3293870
[

22RA27R0

View paper

Fig. 5. Effect of ACE2 and ARBs on SARS-CoV-1 or SARS-CoV-2 infection. This illustrates a proposed mechanism of the
effects of ACE2 in COVID-19 infection. SARS-COV-2 virus uses the ACE2 receptor to gain entry into the cell, leading to the
increase in proinflammatory cytokines and the development of cytokine storm, as well as increased viral replication (see Fig.
4). TMPRSS2 assists in S protein priming. ARBs may potentially increase the expression of ACE2, leading increased binding of
SARS-CoV-2 and greater proinflammatory cytokine production. SARS-CoV-2 may at the same time downregulate ACE2,
which leads to an increase in angiotensin 2 mediated lung injury. The negative regulatory activity of ACE2 is reduced by
SARS-CoV-2 and leads to worsening severity of illness.

S
ACEVARBs .* *

‘Htar

Internalization

A-xm Ang 17

s ..,..n
= Incrnin ety of COVID 19
a2 1
r— MCEI MR Ilﬂv-d'(infection
View paper

_static/images/open_query_result.png
Query Results

Signed Unsigned
Query Model PySB PyBEL Graph Graph

What inhibits ACE2? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM) covid19 v v

_images/test_corpus_selection_cropped1.png
Model Tests Papers Curation
b RO R o PG Oalaailima

Rasmodel tests

Skcm tests
v Rasmachine tests] Load Test Results

Large corpus tests

_static/images/multi_model_node_table.png
“How does phosphorylated BRAF increase MAPK1 activity?”

“phosphorylated BRAF”

“active MAPK1”

Unsigned Graph BRAF MAPK1
Signed Graph BRAF MAPK1
BEL Graph p(BRPI;F}’?AT—Od(P’dSFGOZ» 2cMAPKT)
rap P(BRAF, pmod(P)) Kin(MAPK1)

p(BRAF, pmod(P, T, 599))

Influence Map

Rules with phosphorylated
BRAF as subject on LHS

Observables with MAPK1
in phosphorylated state

_images/test_corpus_selection_cropped.png
Model Tests Papers Curation
b RO R o PG Oalaailima

Rasmodel tests

Skcm tests
v Rasmachine tests] Load Test Results

Large corpus tests

_static/images/model_tests_new_passed_per_day.png
103 4

102 4

10! 4

10° 4

—0.05

L mIl &

0.00 0.05 0.10 0.15 0.20
Change in the fraction of tests that passed each day

0.25

_images/testing_pipeline.png
Display results in
EMMAA dashboard

AWS S3 AWS Lambda AWS Batch AWS S3
Updated Model Trigger batch job Run tests on New test
updated model results

_static/images/new_papers.png
New Papers

Paper Title

Preclinical evaluation of gilteritinib on NPM1-ALK driven Anaplastic Large Cell Lymphoma
Cells.

Incidence of Adverse Cutaneous Reactions to Epidermal Growth Factor Receptor Inhibitors in
Patients with Non-Small-Cell Lung Cancer.

Epidermal growth factor receptor tyrosine kinase inhibitor remodels tumor microenvironment
by upregulating LAG-3 in advanced non-small-cell lung cancer.

Shikonin Inhibits Cholangiocarcinoma Cell Line QBC939 by Regulating Apoptosis,

Link

PubMed

PubMed

PubMed

PubMed

Assembled Raw
Statements Statements

1 9
1 2
1 1
0 16

_images/test_matrix.png
All Test Results

Test

AGT activates EGFR.

AGT activates RAS.

AGT bound to AGTR1 activates ERK.
Kinase-active AKT activates ESR2.

Kinase-active AKT activates angiogenesis.

Kinase-active AKT activates cell differentiation.

AKT activates MTOR.

ANGPT1 activates RAS.

ANGPT1 activates angiogenesis.

Kinase-active BRAF activates ERK.

GTP-bound active CDC42 activates MTOR.

CDKN2A activates TP53.

Pysb

Pybel

Signed Graph
v

v

Unsigned Graph
v

v

_static/images/new_applied_tests.png
New Applied Tests

Signed Unsigned

Test PySB PyBEL Graph Graph
BMP2 activates CASP9. x v v v
BMP2 increases the amount of CCND3. x v v v
Inflammatory response increases the x x x x
amount of BMP2.

BMP2 activates MEK. x v v v
BMP2 activates p38. x x x v
BMP2 inhibits cell cycle. x x v v
BMP2 activates cell differentiation. x x v v
BMP2 activates PKC. x x x x

BMP2 inhibits STAT3. x v v v

_images/unsubscribe_page.png
Pick queries to unsubscribe from

query
FLT3 activates KRAS. for model aml

FLT3 activates KRAS. for model rasmachine

SUMO1 activates TP53. for model ami

BRAF phosphorylates MAP2K1. for model marm_model

Resveratrol activates inflammatory response. for model painmachine
Phosphorylated MAP2KT is sometimes low. for model marm_model

Phosphorylated MAP2KT is eventually high. for model marm_model

type

path property

path property

path property

path property

path property

dynamic property

dynamic property

Unsubscribe from all

Unsubscribe

_images/time_machine_selection_cropped.png
Percentage of Tests Passed

o |
=
s fmsnsaseed T
s
M
x
s
» 6-18-28-50 USRI
15 ‘ M Unsigned Graph 48.95
1
5 W PyBEL 296
o ‘ M Signed Graph 21.91
® bl uryss I
E fﬂ o il &
5 5 ¢
E & e f&
& b b

W pyss M PyBEL M Signed Graph M Unsigned Graph

_static/images/new_passed_tests.png
New Passed Tests

Test Top Path

New passed tests for PyBEL model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9
BMP2 increases the amount of CCND3. BMP2 - PTEN - PIK3CA - CCND3
BMP2 activates MEK. BMP2 - PTEN - KRAS - MEK
BMP2 inhibits STAT3. BMP2 - PTEN - EGFR - STAT3

New passed tests for Signed Graph model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9
BMP2 increases the amount of CCND3. BMP2 - PTEN - PIK3CA - CCND3
BMP2 activates MEK. BMP2 - PTEN - EGFR - MEK
BMP2 inhibits cell cycle. BMP2 - PTEN - RB1 - cell cycle
BMP2 activates cell differentiation. BMP2 - PTEN - cell differentiation
BMP2 inhibits STAT3. BMP2 - PTEN - EGFR -> STAT3

New passed tests for Unsigned Graph model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9

_images/all_statements_curation.png
Statement Evidence and Curation

_ - Total number of curations for this statement
DDX58 binds MAVS.@ZDE€D ~

% sparser The activated (I further interacts with (LA IIAR e rer) (MAVS) and stimulates PMC711379
transcription factor, IFN regulatory factor-3/7 (IRF-3/7) to induce IFN gene expression (xref). 6

- Green halo representing existing correct curation for this evidence
(reach 74 The interaction between () and [ZIE) promotes the formation of a signaling complex on the 25544499

mitochondrial surface that recruits and activates the downstream classical IKK complex, IKKalpha and
IKKbeta, and two non classical IKK related kinases, TBK1 and IKKepsilon.

Select error type... ¥ Optional description (240 chars)) m

The specific prior curation shown

Prior Curations & e ———————) C
¥ for this evidence

3/23/2020, 10:22:55 PM ben.gyori@gmail.com correct No text given. EMMAA

_images/all_test_results.png
All Test Results

signed Unsigned
Test PysB PYBEL Graph Graph
AGT activates EGFR. v v v v
AGT activates IGF1R. x v v v
AGT bound to AGTR1 activates ERK. x x v v
Kinase-active AKT activates ESR2. x x x x

Kinase-active AKT activates SP1. x x x x

_images/akt_mtor_linkout.png
All Test Results

Test Status Path Found or Result Code
Kinase-active AKT1 activates MTOR. v AKT1 phosphorylated on T308 and S473 phosphorylates MTOR on S2448.
Kinase-active AKT1 activates RPS6KB2. v AKT1 phosphorylated on T308 and S473 phosphorylates MTOR on S2448.

Kinase-active MTOR phosphorylates RPS6KB2 on T388.

N\

Link out to source
evidence

Kinase-active BRAF activates ELK1. v BRAF phosphorylates MAPK3 on T202.
Kinase-active MAPK3 phosphorylates ELK1 on S383.

Kinase-active BRAF activates MAPK1. v BRAF phosphorylates MAPK1 on T185.

Kinase-active BRAF activates MAPK3. v BRAF phosphorylates MAPK3 on T202.

_images/all_statements.png
‘ { Previous H Next) H Filter Curated H Download Statements

All statements in RASMACHINE model.

EGFR binds ERBB2.CEDCD
BRCA1 binds BRCA2.€)€D
BRAF binds RAF1.€DED
SOS1 binds GRB2.€)ED
EGFR binds EGFR.CDED
CDK4 binds CDK6.€$)

CBL binds EGFR.CEDED

Sorting by evidence

<

Load Statements

0/3382 SJSON

0/417 SJSON

0/380 SJSON

0/343 JJSON

0/328 JJSON

0/321 SJJSON

0/306 JJSON

_images/aml_model_tab.png
Model Tests Papers Curation

Model Info
Item Details
Model Description A model of molecular mechanisms governing AML, focusing on frequently mutated genes, and
the pathways in which they are involved.
Latest Data Available 2021-02-03
Data Displayed 2021-02-03
Network on Ndex ef58f76d-f6a2-11e8-aaa6-0ac135e8bacf

Download as

‘ json H jsonl H bngl H indranet H kappa ’

Statement Types Distribution

Complex
Activation
Inhibition
Phosphorylation
IncreaseAmount
ActiveForm
Translocation
DecreaseAmount
Methylation
Acetylation

DepHBE(MBRﬁBﬂB
SumoylatioR

AutdBhEgmRR

Palmitoylaﬂgﬂ
Hydroxylation
Deacetylation
Desumoylation
Deubiquitination
Demethylation
Depalmitoylation
Farnesylation
Myristoylation

Ribosylation
] 50 100 150 200 250 300 350 400 450 500 550

M Statements count

_images/model_subscribe_email.png
emmaa_notifications@indra.bio B3 Inbox - Exchange March 24, 2021 at 9:55 AM e
Updates to the Ras Machine 2.0 EMMAA model

To: diana_kolusheva@hms.harvard.edu

e Today | read 280 new publications and learned 2 new mechanisms
o Today | applied 17 new tests in the Selventa findings corpus
e Today | explained 7 new observations in the Selventa findings corpus with my PyBEL model

_images/model_testing_concept.png
=) New mechanisms

R

Continuous integration/automated testing

— New data

_images/model_stmt_added_per_day.png
300 A

2501

200 A

150 A

100 4

50 A

=20

: : |‘“I|I..
-15 -10 -5 0 5 10

Number of statements added to the model

15

_images/model_subscribe_button.png
Model Info

Item

Model Description

Details

A model of Ras signaling built using automated reading and assembly from the scientific
literature.

_images/multi_model_node_table.png
“How does phosphorylated BRAF increase MAPK1 activity?”

“phosphorylated BRAF”

“active MAPK1”

Unsigned Graph BRAF MAPK1
Signed Graph BRAF MAPK1
BEL Graph p(BRPI;F}’?AT—Od(P’dSFGOZ» 2cMAPKT)
rap P(BRAF, pmod(P)) Kin(MAPK1)

p(BRAF, pmod(P, T, 599))

Influence Map

Rules with phosphorylated
BRAF as subject on LHS

Observables with MAPK1
in phosphorylated state

_images/akt_mtor_curation.png
AKT1 phosphorylates MTOR

AKT1 phosphorylates MTOR.

N

N

reach

reach

\

Click to curate
any problems

"We have investigated the effects of insulin, amino acids, and the degree of muscle loading on the
phosphorylation of Ser (2448), a site in the (mTOR) phosphorylated by ¥~

11884412

Original evidence

(PKB) in vitro." / sentences describing mechanism

"Despite modulation of PRAS40, which regulates the containing TORC1 complex, mutational activatio
of PIK3CA or did not consistently increase phosphorylation of at serine 2448 or phosphorylati
of target proteins and their targets, including p70-ribosomal protein S6-kinase (p70S6K), eukaryotj
elongation factor 4 binding protein 1 (EIF4EBP1), and ribosomal protein S6."

biopax:panther None available
sparser \ "We speculated that RhebL1 might bind to directly or indirectly via since RhebL1 could bind to
d hosphorylated b f f1."
™~ Extractic@ an was phosphorylated by [xref , xref]

reach /

sources
"Primary antibodies included glucose transpoter-4, focal adhesion kinase, PGC-1alpha (Santa Cruz

Biotechnology), total (AKT), phosphorylated AKT, total mammalian target of rapamycin ({5
) and phosphorylated (Cell Signaling)."

23888070

Hover to see article
info

28209923 /

Kim HJ, ... Lee CH, "Novel involvement of
RhebL1 in sphingosylphosphorylcholine-
induced keratin phosphorylation and

2§ reorganization: Binding to and activation of
AKT1.", Oncotarget, 2017 Mar 28;8(13):
20851-20864

_images/new_applied_tests.png
New Applied Tests

Signed Unsigned

Test PySB PyBEL Graph Graph
BMP2 activates CASP9. x v v v
BMP2 increases the amount of CCND3. x v v v
Inflammatory response increases the x x x x
amount of BMP2.

BMP2 activates MEK. x v v v
BMP2 activates p38. x x x v
BMP2 inhibits cell cycle. x x v v
BMP2 activates cell differentiation. x x v v
BMP2 activates PKC. x x x x

BMP2 inhibits STAT3. x v v v

_images/model_tests_new_applied_per_day.png
102 4

10! 4

100 4
NI T
-10 0 10 20 30 40 50
Number of tests applied to the model

_images/model_tests_new_passed_per_day.png
103 4

102 4

10! 4

10° 4

—0.05

L mIl &

0.00 0.05 0.10 0.15 0.20
Change in the fraction of tests that passed each day

0.25

_images/new_papers.png
New Papers

Paper Title

Preclinical evaluation of gilteritinib on NPM1-ALK driven Anaplastic Large Cell Lymphoma
Cells.

Incidence of Adverse Cutaneous Reactions to Epidermal Growth Factor Receptor Inhibitors in
Patients with Non-Small-Cell Lung Cancer.

Epidermal growth factor receptor tyrosine kinase inhibitor remodels tumor microenvironment
by upregulating LAG-3 in advanced non-small-cell lung cancer.

Shikonin Inhibits Cholangiocarcinoma Cell Line QBC939 by Regulating Apoptosis,

Link

PubMed

PubMed

PubMed

PubMed

Assembled Raw
Statements Statements

1 9
1 2
1 1
0 16

_static/images/model_stmt_added_per_day.png
300 A

2501

200 A

150 A

100 4

50 A

=20

: : |‘“I|I..
-15 -10 -5 0 5 10

Number of statements added to the model

15

_images/stmts_by_type.png
Next > H Filter Curated H Download Statements

Sorting by evidence + | Load Statements Inhibition

All statements in COVID19 model.

‘ < Previous

<

Filter Statements | Reset Filter ’

Acetylsalicylic acid inhibits PTGS1.€)
Flutamide inhibits AR.C)€D)
Spironolactone inhibits NR3C2.€)€D
Ritonavir inhibits CYP3A4.€8)
Sitagliptin inhibits DPP4.€¥)

_static/images/model_subscribe_email.png
emmaa_notifications@indra.bio B3 Inbox - Exchange March 24, 2021 at 9:55 AM e
Updates to the Ras Machine 2.0 EMMAA model

To: diana_kolusheva@hms.harvard.edu

e Today | read 280 new publications and learned 2 new mechanisms
o Today | applied 17 new tests in the Selventa findings corpus
e Today | explained 7 new observations in the Selventa findings corpus with my PyBEL model

_images/stmt_types_chart.png
Statement Types Distribution

Activation
Complex
Inhibition

IncreaseAmount
Phosphorylation
ActiveForm
DecreaseAmount
Translocation
Methylation
Acetylation
Ubiquitination
Dephosphorylation
Sumoylation
Glycosylation
Autophosphorylation
Deacetylation
Palmitoylation
Deubiquitination

Hydroxylation
Desumoylation
Demethylation
Depalmitoylation
Farnesylation
Myristoylation
Ribosylation

B Statements count | 522

T
200

T
300

M Statements count

T
400

T
500

T
600

T
700

_static/images/model_subscribe_button.png
Model Info

Item

Model Description

Details

A model of Ras signaling built using automated reading and assembly from the scientific
literature.

_images/subscribed_queries.png
Subscribed Queries

Query Model PysB PYBEL Signed Graph Unsigned Graph

FLT3 activates KRAS. aml v v v v

_static/images/model_tests_new_applied_per_day.png
102 4

10! 4

100 4
NI T
-10 0 10 20 30 40 50
Number of tests applied to the model

_images/stonkgs_cross_modal_attention.png
token sequence (text)

_static/images/model_testing_concept.png
=) New mechanisms

R

Continuous integration/automated testing

— New data

_static/images/incremental_model_concept.png
Ecosystem of
machine-maintained

models
Extract knowledge
when it appears

Assemble knowledge
into models

_static/images/hypothesis_badge.png
New Papers

Assembled
Paper Title Link Statements Raw Statements
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. PubMed (3 24 71
Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS- PubMed (3 23 75

m
Wait while we
add
annotations

CoV-2-Related Proteins-An Important Strategy for Developing Novel
Therapeutics for the COVID-19 Pandemic.

Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. PubMed (3 16 29

_static/images/linkout.png
Most Supported Statements View All Statements

Statement Evidence Count
ANG translocates to the nucleus. 306
MAX is phosphorylated. 260
EED binds EZH2. 252

https://emmaa.indra.bio/evidence?stmt_hash=-33026541481052423&source=model_statement&model=aml|&date=2021-02-03 214

_static/images/interv_query_filled.png
Query specification

Model selection

Query selection

Activation $ SOS1 KRAS

To read more about statement types, read the INDRA documentation.

Submit ['Subscribe To Query

_static/images/meta_model_concept.png
Model
Measurable parameters Indicators Simulation;
Data BB Parametric variation Outcomes »I Ifmu ation
Variables vs. Observables NUt'“tl); nference
ovelty

Tuneable parameters
Cost of intervention
Cost of measurement

Experiments/Interventions

_static/images/login_window.png
IndraLab

Login | Register

email

your@email.com

password

password

_images/meta_model_concept.png
Model
Measurable parameters Indicators Simulation;
Data BB Parametric variation Outcomes »I Ifmu ation
Variables vs. Observables NUt'“tl); nference
ovelty

Tuneable parameters
Cost of intervention
Cost of measurement

Experiments/Interventions

_images/nrl_comparison.png
AML

EMMAA Subspace Occupation at belief = 60.0

BRCA

COVID19

COVID19_MAP

10.0 4

2.5 1

0.0

—5.0 1

MARM_MODEL

1

10.0

7.5 1

0.0

PAINMACHINE

RASMACHINE

10.0 A

2.5 1

0.0

—5.0 1

RASMODEL

VITILIGO

1

10.0

7.5 1

_images/open_query.png
Model Queries

Model selection

Query selection
Inhibition s ACE2

To read more about statement types, read the INDRA documentation.

small molecules (CHEBI, DRUGBANK, CHEMBL, PUBCHEM) ERI iR SRR (e]sJile1E1)]

Submit | ‘Subscribe To Query

object (upstream search)

<

_images/new_passed_tests1.png
New Passed Tests

Test Top Path

New passed tests for PyBEL model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9
BMP2 increases the amount of CCND3. BMP2 - PTEN - PIK3CA - CCND3
BMP2 activates MEK. BMP2 - PTEN - KRAS - MEK
BMP2 inhibits STAT3. BMP2 - PTEN - EGFR - STAT3

New passed tests for Signed Graph model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9
BMP2 increases the amount of CCND3. BMP2 - PTEN - PIK3CA - CCND3
BMP2 activates MEK. BMP2 - PTEN - EGFR - MEK
BMP2 inhibits cell cycle. BMP2 - PTEN - RB1 - cell cycle
BMP2 activates cell differentiation. BMP2 - PTEN - cell differentiation
BMP2 inhibits STAT3. BMP2 - PTEN - EGFR -> STAT3

New passed tests for Unsigned Graph model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9

_images/nrl_belief_plot.png
Overlap Coefficient Overlap Coefficient Overlap Coefficient Overlap Coefficient

Overlap Coefficient

Effect of Belief Cutoff on Overlap Coefficient Rank Distribution at k= 0.05

AML

BRCA

COVID19_MAP

1.0 -

|/l

0.8 A

0.6

9

0.2 A

0.0 -

LUAD

MS

NF

1.0

PAAD

PAINMACHINE

PRAD

1.0 -

0.8 A

0.6

0.4 -

0.2 A

0.0 -

RASMACHINE

RASMODEL

SKCM

VITILIGO

1.0 4

0.8 A

0.6 A

|
1
0.41 l
O
0.0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Rank %

_images/open_search_paths.png
losartan - ACE2 > COVID-19

pioglitazone > ACE2 - COVID-19

losartan - ACE2
 Losartan activates ACE2.

 Losartan increases the amount of ACE2.
Losartan deubiquitinates ACE2.

ACE2 > COVID-19

ACE2 inhibits COVID-19.

ACE2 binds COVID-19.

ACE2 increases the amount of COVID-19.
ACE2 activates COVID-19.

COVID-19 binds ACE2.

pioglitazone - ACE2
Pioglitazone activates ACE2.

Pioglitazone increases the amount of ACE2.
Pioglitazone decreases the amount of ACE2.
Pioglitazone inhibits ACE2.

ACE2 > COVID-19

ACE2 inhibits COVID-19.

ACE2 binds COVID-19.

ACE2 increases the amount of COVID-19.
ACE2 activates COVID-19.

COVID-19 binds ACE2.

_images/paper_stmts.png
Statements from the paper "Role of Merlin/NF2 inactivation in tumor biology."

YAP1 binds NF2.

AMOT binds NF2.€Y)

DCAF1 activates cell population proliferation.€Y)
Tubulin binds NF2.€9)

SRC binds ERBB2.

NF2 binds PXN.

0/3 JJSON

0/3 JJSON

0/2 SJJSON

0/2 SJJSON

0/2 SJJSON

0/2 SJJSON

_images/open_query_result.png
Query Results

Signed Unsigned
Query Model PySB PyBEL Graph Graph

What inhibits ACE2? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM) covid19 v v

_images/open_search_email.png
Updates to your open queries

« "What inhibits COVID-197 (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For details click here.

« "What inhibits TMPRSS2? (CHEB, DRUGBANK, CHEMBL, PUBCHEM)" in Govid19 using the Signed Graph model type. For details click here.

« "What inhibits TMPRSS2? (CHEB, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For detals clck here.

« "What inhibits COVID-197 (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details ciick here.

« "What inhibits ACE2? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details ciick here.

« "What inhibits ACE2? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)* in covid19 using the Unsigned Graph model type. For details ciick here.

« "What inhibits Middle East Respiratory Syndrome Coronavirus? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details click here.
« "What inhibits Middle East Respiratory Syndrome Coronavirus? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid18 using the Unsigned Graph model type. For details click here.
« "What does leupeptin inhibit? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Signed Graph model type. For details clck here.

« "What does leupeptin inhibit? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For details click here.

« "What inhibits CTSB? (CHEBI, DRUGBANK, CHEMBL, PUBCHEM)" in covid19 using the Unsigned Graph model type. For details clck here.

_static/images/rasmodel_kappa_ui.png
Preferences

cC @ tools.kappalanguage.org/try/?model=https://emmaa.s3.amazonaws.com/exports/rasmodel/kappa_2021-05-27-17-55-42.kappa @ Y
« default New project
editor log plot DIN snapshot outputs stories about
Filew toggle kappa_2021... contact_map influences constraints polymers
Accuracy low
45 Bdgent: n4ril(pocket_protein)
24 %agent: RB1l(e2f,S807{u p})
25 %agent: FOXOl(loc{nucleus cytoplasm},S256{u p},pl4_3_3)
26 %agent: LRP6(phospho{u p})
27 %agent: Wnt(activity{inactive active})
28 %agent: PAKI (phospho{u p},cdc42,rac,nf2)
29 %agent: JNK(activity{inactive active})
30 %agent: BAX(bcl2,activity{inactive active})
31 %agent: BCL2(bax,bad)
32 %agent: RALGDS(ras,loc{membrane})
33 %agent: RALA(activity{inactive active},ralbpl)
34 %agent: RALB(activity{inactive active},ralbpl)
35 %agent: BCL2L11l()
36 %agent: RPS6KAL1(T573{u p},T359{u p})
37 %agent: RPS6KB1(T412{u p},T444{u p})
38 %agent: BRAF(phospho{u p},ras)
39 %agent: SRC(Y419{u p},ptk2)
40 %agent: TEADI(yapl)
41 %agent: YAPI(tead,loc{nucleus},smad,nf2,S127{u p})
42 %agent: TSCl(tsc)
43 %agent: TSC2(tsc,S1798{u p},S939{u p},T1462{u p})
44 %agent: EIF4EBP1(T37{u p},T70{u p},S65{u p})
45 %agent: ELK1(S383{u p}.S389{u p}.loc{cvtoplasm nucleus})
svg V|| file name export
Pause if [false] «1/94 » [kappa_2021-05-27-17-55-42.kappa] Dead rule 'SOS1_GRB2_translocates_cytoplasm_to_membrane'
Plot period 1.0

start

[Show All States] [Reset Zoom]

_static/images/rasmachine_tests_tab_top.png
Percentage of Tests Passed

Be 588388

M PySB M PyBEL M Signed Graph M Unsigned Graph

Passed and Applied Tests

M PySB Passed Tests W PyBEL Passed Tests M Signed Graph Passed Tests Ml Unsigned Graph Passed Tests B Applied Tests

_static/images/rasmodel_test_report.png
EGF bound to EGFR and GRB2 activates RAC1.

ELK1 bound to SRF activates ELK1.

IGF1R phosphorylated on Y1166 activates IRS1.

EGF binds EGFR.

EGFR bound to EGF binds EGFR bound to EGF.
EGFR bound to EGFR phosphorylates SRC on Y419.
Active SRC phosphorylates TIAM1.

Active TIAM1 activates RAC1.

No path found that satisfies the test statement

Active IGF1R phosphorylates IRS1 on tyrosine.

_static/images/rasmodel_mapk1_phos.png
Amount (molecules)

Simulation results for MAPK1 phosphorylated on T185

1750

1500

1250

1000

500

250
High

0 20 0 60 80 100
Time (s)

_static/images/rest_api.png
EMMAA REST API©®

[Base URL: /]
/swagger.json

EMMAA REST API

Metadata Get EMMAA models metadata

GET /metadata/entity_info/{model} Get information about an entity

GET /metadata/model_info/{model} Get metadata for model

GET /metadata/models Get a list of all available models
GET /metadata/test_corpora/{model} Get a listof available test corpora for model
GET /metadata/tests_info/{test_corpus} Get testcorpus metadata

Latest Get updates specific to latest models

GET /latest/curated_statements/{model} Get hashes of curated statements by category

GET /latest/statements/{model} Return model latest statements and link to S3 latest statements file
GET /latest/statements_url/{model} Return a link to model latest statements file on S3

GET /latest/stats_date Get latest date for which both model and test stats are available

>
c

€ry Run EMMAA queries

POST /query/source_target_dynamic Simulate a model to describe the effect of an intervention

POST /query/source_target_path Explain an effect between source and target

POST /query/temporal_dynamic Simulate a model to verify if a certain pattern is met

POST /query/up_down_stream_ path Find causal paths to or from a given entity

_static/images/registration_window.png
IndraLab

Login Register

email

your@email.com

password

password N

repeat password

_static/images/stmt_types_chart.png
Statement Types Distribution

Activation
Complex
Inhibition

IncreaseAmount
Phosphorylation
ActiveForm
DecreaseAmount
Translocation
Methylation
Acetylation
Ubiquitination
Dephosphorylation
Sumoylation
Glycosylation
Autophosphorylation
Deacetylation
Palmitoylation
Deubiquitination

Hydroxylation
Desumoylation
Demethylation
Depalmitoylation
Farnesylation
Myristoylation
Ribosylation

B Statements count | 522

T
200

T
300

M Statements count

T
400

T
500

T
600

T
700

_static/images/stmt_evidence.png
Statement Evidence and Curation

EGFR binds ERBB2.CEDCD

N\ reach

N\ reach

N\ reach

For example, (38 binds @I, and the kinase activity of [[E%) subsequently phosphorylates the
heterodimer, which leads to phosphatidylinositol 3-kinase (PI3K)/Akt and Ras and MEK signaling
pathway activation [XREF_BIBR].

I3 and G binding and displacement of binding by competitors were found for (111) In-bsICs.

Pertuzumab, another anti-{f[;F) humanized monoclonal antibody, binds (¥ at a different epitope of
the (X extracellular domain from that at which trastuzumab binds, inhibiting not only
homodimerization of [EE¥) but also heterodimerization of G4 and (EY) and EEY and HER3
[XREF_BIBR].

26728266

23525982

23346316

_static/images/ras_tests_annot.png
Percentage of Tests Passed

703 2. Model expansion
65 —

1. Model enhancements
—

B Passed Ratio

Passed and Applied Tests

200 =
180 - <>
160 -] 2. Model expansion
140 i
120 4
100+ ._/Q—H. - -
80—
60 N 3. Add missing reaction
40 |
204
0 QI)I T IQI) T TT T THTTT !{ T ml
< of w© N o) S
PO & S K ‘
N ¥ N @q/\ &
O Y P B2
¢ & & Qggo & &
5 s° s $°
v v v v

M Passed Tests M Applied Tests

_static/images/ras_machine_pybel_delta_tests.jpeg
New Passed Tests

Test Top Path

New passed tests for PyBEL model.
AKT inhibits CDKN1B. Path found but exceeds search depth
Catalytically active PTGS2 increases the amount of CCND1. Path found but exceeds search depth

MIR21 increases the amount of MMP2. MIR21 » MIR21 - PTEN - MMP2 - MMP2

_static/images/rasmachine_map2k1_phos.png
Amount (molecules)

Simulation results for MAP2K1 phosphorylated on 5222

10000
8000
6000
4000
2000

High
0
o Low 20 40 60 80 100

Time (s)

_images/new_papers1.png
New Papers

Paper Title

Preclinical evaluation of gilteritinib on NPM1-ALK driven Anaplastic Large Cell Lymphoma
Cells.

Incidence of Adverse Cutaneous Reactions to Epidermal Growth Factor Receptor Inhibitors in
Patients with Non-Small-Cell Lung Cancer.

Epidermal growth factor receptor tyrosine kinase inhibitor remodels tumor microenvironment
by upregulating LAG-3 in advanced non-small-cell lung cancer.

Shikonin Inhibits Cholangiocarcinoma Cell Line QBC939 by Regulating Apoptosis,

Link

PubMed

PubMed

PubMed

PubMed

Assembled Raw
Statements Statements

1 9
1 2
1 1
0 16

_images/new_passed_tests.png
New Passed Tests

Test Top Path

New passed tests for PyBEL model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9
BMP2 increases the amount of CCND3. BMP2 - PTEN - PIK3CA - CCND3
BMP2 activates MEK. BMP2 - PTEN - KRAS - MEK
BMP2 inhibits STAT3. BMP2 - PTEN - EGFR - STAT3

New passed tests for Signed Graph model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9
BMP2 increases the amount of CCND3. BMP2 - PTEN - PIK3CA - CCND3
BMP2 activates MEK. BMP2 - PTEN - EGFR - MEK
BMP2 inhibits cell cycle. BMP2 - PTEN - RB1 - cell cycle
BMP2 activates cell differentiation. BMP2 - PTEN - cell differentiation
BMP2 inhibits STAT3. BMP2 - PTEN - EGFR -> STAT3

New passed tests for Unsigned Graph model.

BMP2 activates CASP9. BMP2 - PTEN -> BAX - CASP9

_images/query_links.png
Source-target paths Source-target dynamics Temporal properties Up/down-stream paths

Description

This query mode allows finding causal paths to or from a given agent to identify its upstream regulators and its downstream targets. The query
specification involves specifying the agent by name and role (subject or object corresponding to finding its downstream targets or upstream
regulators, respectively), a statement type representing the effect of the regulations (e.g., Phosphorylation, Inhibition), and optional
constraints on the types of up/downstream entities that are of interest. This allows expressing questions such as “what small molecules
[entity constraint] inhibit [statement type] the phosphorylation [statement type] of JAK2 [agent]?” or “what biological process [entity
constraint] does TNF [agent] activate [statement type]?”. The result returns not only the entities but also the specific causal paths that are
consistent with the query specification. Depending on which EMMAA model is selected, multiple modeling formalisms (unsigned graph, signed
graph, PyBEL model, PySB model) are used to find paths, each with different causal constraint assumptions, potentially resulting in different
results.

Learn more about up/down-stream paths queries and see some example

Learn whether this query type is right for your scientific questio
Watch a video example of this quer

_images/query_page_4_types.png
Source-target paths Source-target dynamics Temporal properties Up/down-stream paths

Description

This query mode uses dynamical simulation to describe the effect of an intervention from a given source on a given target. Specifying the query
involves choosing a source and a target by name, and a statement type(e.g., Phosphorylation, Inhibition, IncreaseAmount) which represents
the effect of the intervention on the target. An example question that can be answered using this query type is “if the initial amount of BRAF
[source] is increased, does the phosphorylation [statement type] of MAP2K1 [target] increase?”. The results provide a yes/no answer to the
query as well as the time course results of simulations of the target readout (phosphorylated MAP2K1 in the above example) to compare the
effect of two different initial amounts of the source.

Query specification

Model selection

Query selection

select statement type $ Enter source Enter target

To read more about statement types, read the INDRA documentation.

Submit JSubscribe To Query

_images/previous_date_cropped.png
Model Tests
Model Info
Item

Latest Data Available

Data Displayed

Network on Ndex

Details

2020-01-30

2019-11-10

ef58f76d-f6a2-11e8-aaa6-0ac135e8bact

Go to Latest

Acute Myeloid Leukemia (AML)

Load Model

_images/query_filled.png
Model Queries

Model selection
Query selection
Activation * BRAF ERK (Subscribe To Query

To read more about statement types, read the INDRA documentation.

Submit

_images/ras_machine_pybel_delta_tests.jpeg
New Passed Tests

Test Top Path

New passed tests for PyBEL model.
AKT inhibits CDKN1B. Path found but exceeds search depth
Catalytically active PTGS2 increases the amount of CCND1. Path found but exceeds search depth

MIR21 increases the amount of MMP2. MIR21 » MIR21 - PTEN - MMP2 - MMP2

_images/query_tutorial.png
EMMAA Model Queries

The Queries page can be accessed by clicking the “Queries” link at the top of the Dashboard
website. The page contains the forms to submit queries and results of queries in four tabs Source-
target paths, Source-target dynamics, Temporal properties, and Up/down-stream paths corresponding
to three currently supported query types.

Each tab has the following boxes:

e Description - a brief description of selected query mode, what questions can it answer and how
to specify it properly.

e Query specification - a form to select which models the query should be run on and to specify
query parameters.

e Query results - here the immediate results for the recently run query will be displayed.

e Subscribed queries - if a user is logged in and has previously subscribed to any queries of a
given type, these queries are rerun every time the models are updated and the latest results will
be displayed in this box.

Which query type do I need?

e If you want to explain an effect between two entities, read more about Source-target paths
queries

e If you want to observe the effect of intervention in dynamical simulation, read more about
Source-target dynamics queries

e If you want to observe the baseline dynamics of an entity in the model in dynamical simulation,
read more about Temporal properties queries

e If you want to find the downstream targets or upstream regulators of an entity, read more about
Up/down-stream paths queries

Source-target paths queries

This query mode uses causal path finding to explain an effect between a source and a target. It
allows to answer questions like “How does EGF lead to the phosphorylation of MAPK1"? Depending
on which EMMAA model is selected, multiple modeling formalisms (unsigned graph, signed graph,

_images/ras_machine_pybel_delta.jpeg
Percentage of Tests Passed

90 G0 000 0000000000000000000000 00000000000000000000000000000000000.0000000000000000000000 0000000000 0000000000000 000000000000000P000000000000000000, 000 eesee

80 4
704
60 -
50 4
40+
90 H%
20 _mmwoommmm.”mww“wmm

10

T 1T
N I\ & BN g
& & & & K
N N3 N N3 N3
& & % & .
Q\’QQ cbl\e %"\\ Q\’\(L Q’Q
S S S S g
P P P P P

H PySB M PyBEL M Signed Graph M Unsigned Graph

_static/images/previous_date_cropped.png
Model Tests
Model Info
Item

Latest Data Available

Data Displayed

Network on Ndex

Details

2020-01-30

2019-11-10

ef58f76d-f6a2-11e8-aaa6-0ac135e8bact

Go to Latest

Acute Myeloid Leukemia (AML)

Load Model

_static/images/query_links.png
Source-target paths Source-target dynamics Temporal properties Up/down-stream paths

Description

This query mode allows finding causal paths to or from a given agent to identify its upstream regulators and its downstream targets. The query
specification involves specifying the agent by name and role (subject or object corresponding to finding its downstream targets or upstream
regulators, respectively), a statement type representing the effect of the regulations (e.g., Phosphorylation, Inhibition), and optional
constraints on the types of up/downstream entities that are of interest. This allows expressing questions such as “what small molecules
[entity constraint] inhibit [statement type] the phosphorylation [statement type] of JAK2 [agent]?” or “what biological process [entity
constraint] does TNF [agent] activate [statement type]?”. The result returns not only the entities but also the specific causal paths that are
consistent with the query specification. Depending on which EMMAA model is selected, multiple modeling formalisms (unsigned graph, signed
graph, PyBEL model, PySB model) are used to find paths, each with different causal constraint assumptions, potentially resulting in different
results.

Learn more about up/down-stream paths queries and see some example

Learn whether this query type is right for your scientific questio
Watch a video example of this quer

_static/images/query_filled.png
Model Queries

Model selection
Query selection
Activation * BRAF ERK (Subscribe To Query

To read more about statement types, read the INDRA documentation.

Submit

_static/images/query_page_main.png
EMMAA Dashboard Queries

Model Queries

(JAML CBRCA [ILUAD CIPAAD [JPRAD FIRASMACHINE CIRASMODEL [1SKCM
To read more about statement types, read the INDRA documentation.

select statement type ¢ | Enter subject Enter object

CIRegister Query

Results

Model Result

‘Your previous queries

_static/images/query_page_4_types.png
Source-target paths Source-target dynamics Temporal properties Up/down-stream paths

Description

This query mode uses dynamical simulation to describe the effect of an intervention from a given source on a given target. Specifying the query
involves choosing a source and a target by name, and a statement type(e.g., Phosphorylation, Inhibition, IncreaseAmount) which represents
the effect of the intervention on the target. An example question that can be answered using this query type is “if the initial amount of BRAF
[source] is increased, does the phosphorylation [statement type] of MAP2K1 [target] increase?”. The results provide a yes/no answer to the
query as well as the time course results of simulations of the target readout (phosphorylated MAP2K1 in the above example) to compare the
effect of two different initial amounts of the source.

Query specification

Model selection

Query selection

select statement type $ Enter source Enter target

To read more about statement types, read the INDRA documentation.

Submit JSubscribe To Query

_static/images/ras_machine_pybel_delta.jpeg
Percentage of Tests Passed

90 G0 000 0000000000000000000000 00000000000000000000000000000000000.0000000000000000000000 0000000000 0000000000000 000000000000000P000000000000000000, 000 eesee

80 4
704
60 -
50 4
40+
90 H%
20 _mmwoommmm.”mww“wmm

10

T 1T
N I\ & BN g
& & & & K
N N3 N N3 N3
& & % & .
Q\’QQ cbl\e %"\\ Q\’\(L Q’Q
S S S S g
P P P P P

H PySB M PyBEL M Signed Graph M Unsigned Graph

_static/images/query_tutorial.png
EMMAA Model Queries

The Queries page can be accessed by clicking the “Queries” link at the top of the Dashboard
website. The page contains the forms to submit queries and results of queries in four tabs Source-
target paths, Source-target dynamics, Temporal properties, and Up/down-stream paths corresponding
to three currently supported query types.

Each tab has the following boxes:

e Description - a brief description of selected query mode, what questions can it answer and how
to specify it properly.

e Query specification - a form to select which models the query should be run on and to specify
query parameters.

e Query results - here the immediate results for the recently run query will be displayed.

e Subscribed queries - if a user is logged in and has previously subscribed to any queries of a
given type, these queries are rerun every time the models are updated and the latest results will
be displayed in this box.

Which query type do I need?

e If you want to explain an effect between two entities, read more about Source-target paths
queries

e If you want to observe the effect of intervention in dynamical simulation, read more about
Source-target dynamics queries

e If you want to observe the baseline dynamics of an entity in the model in dynamical simulation,
read more about Temporal properties queries

e If you want to find the downstream targets or upstream regulators of an entity, read more about
Up/down-stream paths queries

Source-target paths queries

This query mode uses causal path finding to explain an effect between a source and a target. It
allows to answer questions like “How does EGF lead to the phosphorylation of MAPK1"? Depending
on which EMMAA model is selected, multiple modeling formalisms (unsigned graph, signed graph,

_static/images/paper_stmts.png
Statements from the paper "Role of Merlin/NF2 inactivation in tumor biology."

YAP1 binds NF2.

AMOT binds NF2.€Y)

DCAF1 activates cell population proliferation.€Y)
Tubulin binds NF2.€9)

SRC binds ERBB2.

NF2 binds PXN.

0/3 JJSON

0/3 JJSON

0/2 SJJSON

0/2 SJJSON

0/2 SJJSON

0/2 SJJSON

_static/images/open_search_paths.png
losartan - ACE2 > COVID-19

pioglitazone > ACE2 - COVID-19

losartan - ACE2
 Losartan activates ACE2.

 Losartan increases the amount of ACE2.
Losartan deubiquitinates ACE2.

ACE2 > COVID-19

ACE2 inhibits COVID-19.

ACE2 binds COVID-19.

ACE2 increases the amount of COVID-19.
ACE2 activates COVID-19.

COVID-19 binds ACE2.

pioglitazone - ACE2
Pioglitazone activates ACE2.

Pioglitazone increases the amount of ACE2.
Pioglitazone decreases the amount of ACE2.
Pioglitazone inhibits ACE2.

ACE2 > COVID-19

ACE2 inhibits COVID-19.

ACE2 binds COVID-19.

ACE2 increases the amount of COVID-19.
ACE2 activates COVID-19.

COVID-19 binds ACE2.

_static/images/path_query_result.png
Query Results

Query Model PysB PYBEL Signed Graph Unsigned Graph

BRAF activates KRAS. rasmodel v v x v

_static/images/papers_over_time.png
Number of Papers over Time

160000]
140000 |
120000 -
100000 -|

80000 |
60000 |
40000 |
20000 -

0+

®
2021-01-31-17-52-26

60000000 0000000 00000 00 00600000000 6 ¢ 00O eOL O —

B Processed Papers

152468

[Papers with Statements . 96535

T T T

x & & & & v i
DA & s§°‘ s
o & o kS & &
NS N 4 o I\ f4
N N INS v v N
W W W W 3 W
® ® ® ® ® ®

B Processed Papers B Papers with Statements

_images/papers_over_time1.png
Number of Papers over Time

160000]
140000 |
120000 -
100000 -|

80000 |
60000 |
40000 |
20000 -

0+

®
2021-01-31-17-52-26

60000000 0000000 00000 00 00600000000 6 ¢ 00O eOL O —

B Processed Papers

152468

[Papers with Statements . 96535

T T T

x & & & & v i
DA & s§°‘ s
o & o kS & &
NS N 4 o I\ f4
N N INS v v N
W W W W 3 W
® ® ® ® ® ®

B Processed Papers B Papers with Statements

_images/path_query_result.png
Query Results

Query Model PysB PYBEL Signed Graph Unsigned Graph

BRAF activates KRAS. rasmodel v v x v

_images/papers_over_time.png
Number of Papers over Time

160000]
140000 |
120000 -
100000 -|

80000 |
60000 |
40000 |
20000 -

0+

®
2021-01-31-17-52-26

60000000 0000000 00000 00 00600000000 6 ¢ 00O eOL O —

B Processed Papers

152468

[Papers with Statements . 96535

T T T

x & & & & v i
DA & s§°‘ s
o & o kS & &
NS N 4 o I\ f4
N N INS v v N
W W W W 3 W
® ® ® ® ® ®

B Processed Papers B Papers with Statements

_images/annotations_displayed.png
@ ncbi.nim.nih.gov/pmc/articles/PMC7868326/

19501g |0

| U0

the SARS-CoV-2 coronavirus (Han and Kral, 2020). Classical MD simulations were performed by the
modeling suites NAMD (Phillips et al., 2005) and CHARMM36 protein force field (MacKerell et al.,
1998), which screened the most suitable peptide inhibitor with good binding affinity yet low RMSD for
critical amino acids, indicative of relatively high binding energies. The novel designed peptide inhibitors
have provided insights for researchers to develop therapeutic antiviral inhibitors by offering the al helix of
ACE?2 a sulfated ligand. Other molecules of similar structures, the heparin/HS for instance, could also
attach to positively charged residues at the bottom of the RBD.

The timescale of the MD simulations is also a determinant for the convergence of structural clustering, free
energy of binding, and native contacts between the GAGs and target proteins. Bojarski et al. analyzed the

structure of fibroblast growth factor 1 (FGF1) complexed with heparin [PDB ID: 2AXM (DiGabriele et al.,
1998)] through microsecond-scale simulations by the force field of AMBER16 (Bojarski et al., 2019). The

analysis revealed a conformational selection mechanism of GAGs binding and determined the structural
specificity in the FGF1-heparin complex. Their findings could potentially contribute to the development of

novel biomaterial resembling GAGs in the field of regenerative medicine.

dg

Effective In
Enoxaparin

[} INDRA v

Showing 2 annotations

bgyori
22 INDRA

X Show all (30)

8 mins ago

The analysis revealed a conformational selection
mechanism of GAGs binding and determined the
structural specificity in the FGF1 and heparin complex.

heparin binds FGF1.

reach

indra_upload

_images/askee_hmi_1.png
COVID-19 model | 1688 Nodes | 5035 Edges Subgraph | 11 Nodes | 9 Edges

paracetamo...

cytokine

prostaglan...

dexamethas...

_images/aml_tests_annot.png
O

Acute Myeloid Leukemia (AML)

Percentage of Tests Passed

167 Made multiple improvements to test evaluation framework that

eliminated false positives
14 /
124

104

Load Model

A >
& ;&,\
Q»O (v\’\
&q, e’bﬂ/ &
4 & & &
® ® ® ®
M Passed Ratio

Passed and Applied Tests
Eliminated spurious duplicates in test corpus
1200]
1100 4 /
1000 o
900 o

800
700 o
600 -
500 o
400
300+
200+
100

S <l Gt
‘19\ ‘19\ ‘LQN q9\

M Passed Tests M Applied Tests

_images/annotations_added.png
New Papers

Assembled
Paper Title Link Statements
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. PubMed (3 24
Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS- PubMed (3 23

Annotations
added, see
here

CoV-2-Related Proteins-An Important Strategy for Developing Novel
Therapeutics for the COVID-19 Pandemic.

Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. PubMed (3 16

Raw Statements

71

75

29

_images/belief_distr.png
Belief Distribution

T T
0.876 0.885 0.893 0.901 0.909 0.918 0.926

M Beliefs

0.934 0.942 0.951 0.959 0.967 0.975 0.984 0.992

_images/belief_filter.png
Filter and Sort Statements

‘ < Previous || Next> H Filter Curated H Download Statements

Sorting by belief + | Load Statements Filter by statementtype ¢ | Filter Statements

Select belief range

0.93-0.97
e e

All statements in RASMACHINE model.

AZD5363 inhibits AKT1.

BI-D1870 inhibits RPS6KA1.

BI-D1870 inhibits RPS6KA2.

BI-D1870 inhibits RPSG6KAG.

CH5183284 inhibits FGFR1.

CH5183284 inhibits FGFR3.

P529 inhibits MTOR.

Reset Filter

Load statements

0.96 , 0/1 , JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

0.96 | 0/2 ; JSON

_images/askee_hmi_2.png
heaical eatity
o

Sl o

polecular entip)x

5701

_images/belief_badge_screenshot.png
‘ < Previous H Next > H Filter Curated H Download Statements ‘

Sorting by evidence ¢ | Load Statements | Filter by statement type * | Filter Statements | Reset Filter ‘

All statements in BRCA model.

EGFR binds ERBB2.CEDED
ERBB2 binds ERBB3.CD
EGFR binds EGFR.CDED
MEN1 binds MEN1.
ERBB2 is ubiquitinated.
EGFR binds ERBB3.CZD)
AKT1is phosphorylated on S473.

CDKN1B is phosphorylated on T187.

_images/belief_range.png
View Statements within Belief Range

0.93 - 0.97

a a View statements

_images/bio_platform.png
Therapeutics

Information

Sl Epi platform

EMMAA

Uncharted Ul

(O Harvard Medical School
O University of Wisconsin
O University of Arizona
QO Uncharted

O MITRE

_images/c19dm_card.png
Covid-19 Disease Map

Covid-19 knowledge network
automatically assembled from the
Covid-19 Disease Map

nav.xhtml

 Table of Contents

 		
 EMMAA: Ecosystem of Machine-maintained models with Automated Analysis

 		
 EMMAA Architecture and Approach

 		
 Model Assembly and Updates

 		
 Cancer types of interest

 		
 Model availability

 		
 Defining model scope

 		
 Deriving relevant terms for a given type of cancer

 		
 Updating the network

 		
 Machine-reading

 		
 Automated incremental assembly

 		
 Meta-Model

 		
 Initial specification of annotation guidelines

 		
 EMMAA currently supports “does X…” queries for PySB models

 		
 Annotations required for “what if” queries

 		
 Annotations required for open-ended “relevance” queries

 		
 Model Testing and Analysis

 		
 Model test cycle deployed on AWS

 		
 Test conditions generated automatically

 		
 General EMMAA model testing framework

 		
 Model queries from users

 		
 Pre-registered queries and notifications

 		
 Model Analysis Query Language

 		
 Structural properties with constraints

 		
 Path properties with constraints

 		
 Simple intervention properties

 		
 Comparative intervention properties

 		
 EMMAA Dashboard

 		
 EMMAA Models Page

 		
 Link to statement details

 		
 Model Tab

 		
 Tests Tab

 		
 Papers Tab

 		
 Curation Tab

 		
 Load Previous State of Model

 		
 EMMAA Statement Evidence Page

 		
 EMMAA All Statements Page

 		
 EMMAA Individual Paper Page

 		
 EMMAA Model Queries

 		
 Which query type do I need?

 		
 Source-target paths queries

 		
 Source-target dynamics queries

 		
 Temporal properties queries

 		
 Up/down-stream paths queries

 		
 Waiting for results

 		
 Logging In and Registering a User

 		
 Subscribing to a Query

 		
 Email Notifications of Subscribed Queries

 		
 Failing test/query result interpretation

 		
 EMMAA Detailed Test or Query Results

 		
 Results for Different Model Types

 		
 Non-passing Tests

 		
 Walkthrough tutorial

 		
 1. Visit the EMMAA Dashboard

 		
 2. (Optional) Register and log in

 		
 3. Explore the COVID-19 Model page

 		
 4. Examine and curate statement evidences

 		
 5. Browse all statements in the model

 		
 6. Examine drug-virus effect explanations

 		
 7. Drill-down into explanation results

 		
 8. Browse the model from the perspective of papers

 		
 9. Query the model to find source-target paths

 		
 10. Query the model to find upstream regulator paths

 		
 11. Chat with a machine assistant about the COVID-19 model

 		
 12. Follow the COVID-19 EMMAA model on Twitter

 		
 EMMAA modules reference

 		
 EMMAA Statement (emmaa.statements)

 		
 EMMAA Model (emmaa.model)

 		
 EMMAA Model Test Framework (emmaa.model_tests)

 		
 Analyze model test results (emmaa.analyze_tests_results)

 		
 Query classes (emmaa.queries)

 		
 Process model queries (emmaa.answer_queries)

 		
 Priors (emmaa.priors)

 		
 Literature Prior (emmaa.priors.literature_prior)

 		
 TCGA Cancer Prior (emmaa.priors.cancer_prior)

 		
 Gene List Prior (emmaa.priors.gene_list_prior)

 		
 Reactome Prior (emmaa.priors.reactome_prior)

 		
 Querying Prior Statements (emmaa.priors.prior_stmts)

 		
 Readers (emmaa.readers)

 		
 AWS reader (emmaa.readers.aws_reader)

 		
 INDRA DB client reader (emmaa.readers.db_client_reader)

 		
 EMMAA’s Database (emmaa.db)

 		
 The Database Schema (emmaa.db.schema)

 		
 Database Manager (emmaa.db.manager)

 		
 AWS model update and testing pipeline (emmaa.aws_lambda_functions)

 		
 xDD client

 		
 EMMAA’s Subscription Service (emmaa.subscription)

 		
 Notifications functions (emmaa.subscription.notifications)

 		
 Email Service (emmaa.subscription.email_service)

 		
 Email Utilities (emmaa.subscription.email_util)

 		
 Utilities (emmaa.util)

 		
 Functions for node and edge filtering (emmaa.filter_functions)

 		
 Configuring an EMMAA model

 		
 First level fields of config.json

 		
 Model update configuration

 		
 Model testing configuration

 		
 Model queries configuration

 		
 Making tests from model configuration

 		
 ASKE Reports

 		
 ASKE Month 5 Milestone Report: Lessons Learned

 		
 Automated model assembly: the challenge of defining scope and context

 		
 Automated model analysis: benefits of automated model validation

 		
 Test-driven modeling

 		
 Exploiting the bidirectional relationship between models and tests

 		
 ASKE Month 6 Milestone Report

 		
 Making model analysis and model content fully auditable

 		
 Including new information based on relevance

 		
 Coarse-grained model checking of EMMAA models with directed graphs

 		
 ASKE Month 7 Milestone Report

 		
 Repositioning EMMAA within the ASKE framework of modeling layers

 		
 Use cases for the EMMAA system (and ASKE systems in general)

 		
 ASKE Month 9 Milestone Report

 		
 Generalizing EMMAA: a proof-of-principle model of food insecurity

 		
 Extending model testing and analysis to multiple resolutions

 		
 Implementing an object model for model analysis queries

 		
 Detecting changes in analysis results due to model updates

 		
 ASKE Month 11 Milestone Report

 		
 Deployment of multiple-resolution model testing and analysis

 		
 User-specific query registration and subscription

 		
 An improved food insecurity model

 		
 ASKE Month 13 Milestone Report

 		
 Related work for the EMMAA system

 		
 System performance statistics

 		
 ASKE Month 15 Milestone Report

 		
 EMMAA Knowledge assemblies as alternative test corpora

 		
 Time machine

 		
 Dynamical model simulation and testing

 		
 Towards push science: User notifications of newly-discovered query results

 		
 ASKE Month 18 Milestone Report

 		
 Expert curation of models on the EMMAA dashboard

 		
 Viewing and ranking all statements in a model

 		
 Email notifications

 		
 A model of Covid-19

 		
 Integration of content from UW xDD system

 		
 Configurable model assembly pipeline

 		
 ASKE-E Reports

 		
 ASKE-E Month 1 Milestone Report

 		
 Overall goals and use cases for the Bio Platform

 		
 Integration plan for the Bio Platform

 		
 Progress during the ASKE-E Hackathon

 		
 Open Search model queries and notifications

 		
 ASKE-E Month 2 Milestone Report

 		
 Push science: EMMAA models tweet new discoveries and explanations

 		
 Improving named entity recognition in text mining integrated with EMMAA models

 		
 Making model tests and paths available for use by other applications

 		
 ASKE-E Month 4 Milestone Report

 		
 EMMAA Neurofibromatosis Models and NF Hackathon Prize

 		
 Rapid initialization of EMMAA models from literature for two new diseases

 		
 Downloading EMMAA models in alternative formats

 		
 ASKE-E Month 5 Milestone Report

 		
 Semantic filters to improve model analysis

 		
 Model analysis exploiting ontological relationships

 		
 Improved reading and assembly of protein chains and fragments

 		
 Bio ontology optimized for visualization

 		
 ASKE-E Month 6 Milestone Report

 		
 Reading and assembly with context-aware organism prioritization

 		
 Preparing for the stakeholder meeting

 		
 Reporting curation statistics

 		
 Reporting paper level statistics

 		
 Integrating non-textual evidence with EMMAA models

 		
 ASKE-E Month 7 Milestone Report

 		
 Natural language dialogue interaction with EMMAA models

 		
 Automatically generated text annotations in context

 		
 Demonstrations at the stakeholder meeting

 		
 Developing the EMMAA REST API for flexible integration

 		
 ASKE-E Month 9 Milestone Report

 		
 Integrating the COVID-19 Disease Map community model

 		
 Notifications about general model updates

 		
 Figures and tables from xDD as non-textual evidence for model statements

 		
 Integration with the Uncharted UI

 		
 Semantic separation of model sources for analysis and reporting

 		
 Assembling and analyzing dynamical models

 		
 Creating a training corpus for identifying causal precedence in text

 		
 Knowledge/model curation using BEL annotations

 		
 Formalizing EMMAA model configuration

 		
 ASKE-E Month 10 Milestone Report

 		
 Dynamical model analysis

 		
 Improved EMMAA query UI and REST API

 		
 Network representation learning for EMMAA models

 		
 ASKE-E Month 11 Milestone Report

 		
 Integration with ASKE modeling frameworks

 		
 BioCreative participation

 		
 Improving the EMMAA model query interface

 		
 Improving the EMMAA statement browser

 		
 Using custom belief scorers for EMMAA models

 		
 Developments in relation extraction from text

 		
 ASKE-E Month 12 Milestone Report

 		
 EMMAA and its role in the integrated architecture

 		
 Applying EMMAA model to COVID-19 therapeutics

 		
 Review article on automated modeling

 		
 Progress on inter-sentence causal connective extraction from text

 		
 Integrating belief information in the EMMAA dashboard

 		
 Extending the ontology to epidemiology

 		
 STonKGs

 		
 PyKEEN Updates

 		
 BioCreative participation and new Walkthrough Tutorial

_images/c19dm_mitre.png
Test: "Aliskiren inhibits COVID-19 adverse outcomes." for COVID19_MAP (Signed Graph) on 2021-

04-29

Path

aliskiren - AGT - angiotensin | > aldosterone > vascular inflammation - COVID-19
adverse outcomes

Support

aliskiren + AGT

Aliskiren inhibits AGT.

AGT » angiotensin |

AGT activates angiotensin .

angiotensin | » aldosterone

Angiotensin | activates aldosterone.
aldosterone - vascular inflammation
Aldosterone activates vascular inflammation.
vascular inflammation - COVID-19 adverse
outcomes

Vascular inflammation activates COVID-19 adverse
outcomes.

_images/c19dm_text_mining_test.png
Test:

Path

azithromycin - TLR3 - TICAM1 - RIPK1 - MAP3K7 - MAP2K4 - JNK - BCL2 - autophagy

"Azithromycin activates autophagy." for COVID19_MAP (Signed Graph) on 2021-04-29

Support

azithromyein - TLR3
Azithromycin activates TLRS.
TLR3 > TICAM1

TLRS activates TICAMT.
TICAM1 5 RIPK1

TICAM activates RIPK1.
RIPK1 > MAP3K7

RIPK1 activates MAP3K?.
MAP3K7 > MAP2K4
MAP3K? activates MAP2K4.
MAP2K4 > JNK

MAP2K4 activates JNK.
JNK > BCL2

JINK activates BCL2.

BCL2 > autophagy

BCL2 activates autophagy.

_images/c19dm_extension.png
Cov101§
advivse

P OVL)“LQV\A

_images/c19dm_invitro.png
Test: "Nafamostat inhibits Virus Replication." for COVID19_MAP (Signed Graph) on 2021-04-29

Path Support

nafamostat + TMPRSS2 -> ACE2 - Virus Replication nafamostat ~ TMPRSS2
Nafamostat inhibits TMPRSS2.
TMPRSS2 > ACE2
TMPRSS2 activates ACE2.
ACE2 > Virus Replication
ACE2 activates Virus Replication.

_images/covid19_model_card.png
Covid-19

Covid-19 knowledge network
automatically assembled from the
CORD-19 document corpus.

Details | View on NDEX

_images/covid19_twitter.png
< EMMAA COVID-19 model

1 Tweet

EMMAA COVID-19 model

@covid19_emmaa

The EMMAA COVID-19 model reads all new COVID-19 literature daily, and
automatically assembles discoveries to explain experimental findings and find drugs.

& emmaa.indra.bio/dashboard/covi... Joined September 2020
0 Following 2 Followers

Not followed by anyone you're following

Tweets Tweets & replies Media Likes
EMMAA COVID-19 model @covid19_emmaa - 18h N
Today | learned 82 new mechanisms. See emmaa.indra.bio/dashboard/covi

... for more details.

Q) Q I &

_images/c19dm_text_mining_test2.png
Test: "N decreases the amount of Interferon." for COVID19_MAP (Signed Graph) on 2021-04-29

Path Support
N = IRF3 > IFNAT - Interferon N - IRF3
N inhibits IRF3.
IRF3 - IFNA1

IRF3 activates IFNA1.
IFNA1 - Interferon
IFNA1 is a refinement of Interferon.

_images/chat_button.png
Breast Cancer Covid-19

A model of molecular mechanisms Covid-19 knowledge network

‘governing brest cancer, focusing automatically assembled from the

on frequently mutated genes, and CORD-19 document corpus.
the pathways in which they are

involved.

@v

Chat with

is model

_images/covid_test_refinement.png
Test Condition Model Explanation

Anticoagulant has refinement Heparin
(CHEBI:50249) (CHEBI:28304)
Inhibits Inhibits
SARS-CoV-2 SARS-CoV-2

(MESH:D000086402) (MESH:D000086402)

_images/curation_over_time.png
Curations Over Time

M Curated Evidences M Curated Statements

_images/curation_over_time1.png
Curations Over Time

M Curated Evidences M Curated Statements

_images/curators.png
Number of Evidences Curated

o |
m

bachmanjohn@gmail.
com

diana_kolusheva@hm
s.harvard.edu

cgaray @mitre.org

laura_maliszewski@
hms.harvard.edu

patrick_greene@hms
-harvard.edu

T T T T
0 100 200 300 400 500 600 700 800 900 1000
M Curations count

Number of Unique Statements Curated

o |
m

bachmanjohn@gmail.
com

diana_kolusheva@hm
s.harvard.edu

cgaray @mitre.org

laura_maliszewski@
hms.harvard.edu

patrick_greene@hms
-harvard.edu

T T T
0 100 200 300 400 500 600 700 800 900
M Curations count

_images/curators1.png
Number of Evidences Curated

o |
m

bachmanjohn@gmail.
com

diana_kolusheva@hm
s.harvard.edu

cgaray @mitre.org

laura_maliszewski@
hms.harvard.edu

patrick_greene@hms
-harvard.edu

T T T T
0 100 200 300 400 500 600 700 800 900 1000
M Curations count

Number of Unique Statements Curated

o |
m

bachmanjohn@gmail.
com

diana_kolusheva@hm
s.harvard.edu

cgaray @mitre.org

laura_maliszewski@
hms.harvard.edu

patrick_greene@hms
-harvard.edu

T T T
0 100 200 300 400 500 600 700 800 900
M Curations count

_images/curation_types.png
Curation Types

no_relation
entity_boundaries
correct

grounding
wrong_relation
polarity
act_vs_amt
negative_result
other

hypothesis

relation

50

T
100

T
150

T
200

T
250

T T
300 350
M Curations count

_images/curation_types1.png
Curation Types

no_relation
entity_boundaries
correct

grounding
wrong_relation
polarity
act_vs_amt
negative_result
other

hypothesis

relation

50

T
100

T
150

T
200

T
250

T T
300 350
M Curations count

_images/detailed_results_dropdown.png
PySB ¢ | Load Type
PysB
Test: " Phosphatase-active PTEN inhibits MTOR. " for RASMODEL (PySB) Signed Graph
Unsigned Graph
Path Support
PTEN — phosphatidylinositol trisphosphate — AKT1 ~ PTEN — phosphatidylinositol trisphosphate
MTOR PTEN decreases the amount of phosphatidylinositol trisphosphate.
PDPK1 — AKT1
Active PDPK1 phosphorylates AKT1 bound to phosphatidylinositol trisphosphate
onT308.
AKT1 —~ MTOR

Active AKT1 phosphorylates MTOR on $2448.

_images/detailed_results_fail.png
o

PyBEL

Load Type

Test: " Phosphatase-active PTEN inhibits MTOR. " for RASMODEL (PyBEL)

The test failed with the following code: Statement object state not in model

To see more information about tests, see the documentation.

_images/dashboard_top.png
EMMAA Dashboard Queries

Acute Myeloid Leukemia

SULT1B1

RBBP4

|_EzH2_]
/ﬂ/ll\\\\\\\\
GCLM \ FLT3

iy, @ 7
S "pé. 4 '.'f"\

A model of molecular mechanisms
governing AML, focusing on
frequently mutated genes, and the
pathways in which they are involved.

‘ Details H Query H NDEx ’

Breast Cancer

7 rosisricy
(‘MAP3 SPAG118]

o AL TFOX03
o

A model of molecular mechanisms
governing brest cancer, focusing on
frequently mutated genes, and the

pathways in which they are involved.

‘ Details H Query H NDEx ’

Help About Demos

Covid-19

Covid-19 knowledge network
automatically assembled from the
CORD-19 document corpus.

‘ Details H Query H NDEX ’ ’

_images/detailed_results.png
Query: "FLT3 activates KRAS." for AML (PyBEL) on 2020-01-31-20-18-53

Path

FLT3 - NPM1 - CDC42 - KRAS

FLT3 - NPM1 > KRAS - KRAS

Support

FLT3 > NPM1

FLT3 bound to NPM1 has a component NPM1.
NPM1 - CDC42

NPM1 activates CDC42.

CDC42 - KRAS

CDCA42 activates KRAS.

FLT3 > NPM1

FLT3 bound to NPM1 has a component NPM1.
NPM1 - KRAS

NPM1 is a part of KRAS bound to NPM1.
KRAS - KRAS

KRAS bound to NPM1 has a component KRAS.

_static/images/food_insec_model_ndex.png
T > oo = =T

_static/images/endpoint_response.png
Responses Response content type | application/json v

Code Description

200
Success

Example Value = Model

"pysb": {
"nodes":
"EGFR",
"SRC",
"AKT1"

"graph_type" gned_graph",
"fail_reason": "Statement object state not in

"SRC",
"AKT1"

Example Value | Model

result v ¢
b
pYs. v {
description:
Results in PySB model
nodes
v I
List of nodes in the found path
string]
d
edges @ [
List of edges in the found path
edge v ¢
type string
example: statements
Type of edge
hashes
v I
Hashes of statements for the edge
integer]
H
graph_type string

example: signed_graph

- e e A% L AL e s = 3

_static/images/hybrid_db_belief.png
EMMAA-only evidence, default scorer EMMAA-only evidence, hybrid scorer

000 000
000 000
5000 5000
000 000
2000 2000
200 200
1000 1000

02 o8 06 08 10 00 02 o8 06 o8
EMMAA+INDRA DB evidence, default scorer EMMAA+INDRA DB evidence, hybrid scorer
700 700
5000 5000
5000 5000
000 000
000 000
2000
1000
o

00 02 o4 05

_static/images/food_insec_model_size.png
Number of Statements over Time

2604
240
220+
2004
180
160
140 +
120 4

100
80 -
60 o

M Statements

_static/images/emmaa_aske_architecture.png
For model construction:
“Breast cancer”

Acute Myeloid Leukemia

Breast Cancer

Lung Adenocarcinoma

1

For model analysis:

“What is the optimal
intervention

to decrease proliferation?”

Formulations/Constraints

Choose relevant
scope of knowledge

Interpret knowled,

EMMAA Statements =
knowledge + meta-data

2

Domain-specific

>

knowledge-level model

Assemble knowledge

Link results to knowledge-

into a model level constructs
PySB / Kappa / ODE 3 HP
s) g e Domain-independent
graphs model
Create code to run a specific Compile analysis
instance of a model results
Synthesized 4

automatically for model
using generic solvers

Executable code

ge-level analysis results
in the context of high-level goals

Knowledge extracted

from sources +
knowledge-assembly, curation

_static/images/email_notification.png
You have an update to your queries on EMMAA ©

emmaa_notifications@indra.bio via hms harvard edu 0937 (4hoursag) Yr 4
to example ~

Updates to your static queries

« "FLT3 activates KRAS." in rasmachine using the PyBEL model type. For details click here.

1fyou wish to unsubserbe from fture noifiations, click on the olloving fnk:

_static/images/emmaa_chat_ras_model.png
Chat with an EMMAA model (powered by CLARE) Tutor

CLARE
Grestings, human!

ben.gyori@gmail.com
what does BRAF interact with?

cLARE
Overall, 1 know that BRAF can interact with MAP2K1, SRC, KRAS, and BAD.

ben.gyori@gmail.com
ny of those kinases?

CLARE
Out of those, MAP2K1 and SRC are kinases.

ben.gyori@gmail.com
o there any drugs for any of those?

_static/images/emmaa_chat_marm_model.png
Chat with an EMMAA model (powered by CLARE) Tutorial

ben.gyori@gmail.com
what does BRAF interact with?

cLARE
Overall, | know that BRAF can interact with BRAF, RAF1, KRAS, MAP2K1, and vemurafenib.

ben.gyori@gmail.com
ny of those small molecules?

cLARE
Out of those, vemurafenib is the only small molecule

ben.gyori@gmail.com
what does vemurafenib do?

cLARE
Overall, | know that vemurafenib can affect BRAF and RAF'.

_static/images/emmaa_overview.png
Ecosystem of Machine-maintained

Models with Automated Analysis Extract knowledge
(EMMAA) when it appears
Queries:
Register scientific
questions Assemble
Scientists / knowledge
Clinicians into model
Notifications: ~ \
8 novel hypotheses, \
analysis reports \ Measure
\ effect of new
knowledge
onresults

Run relevant
analysis

“The newly reported interaction between
CALM and KRAS is part of a new
explanation for PLX-4032 resistance.”

Notify select users about novel
conclusions

_static/images/emmaa_nf_model_cycle.png
New publications Expert curation

! !

Neurofibromatosis Ras Model

is used to explain
C——

ot b irtonts ke drives extensions of
eurotibromatosis nowledge ————————— A human-curated model of Ras

network automatically assembled . .) .
e . signaling defined in natural
from relevant publications in |
pubMed. anguage.

‘ Details H Query H NDEX ‘ L4 ‘ Details H Query H NDEXx |

(2
2 e
Yoy et ®
SPCrene

New experiments

_static/images/endpoint_input.png
POST /query/up_down_stream_ path Find causal paths to or from a given entity

Parameters Try it out

Name Description

payload * required
object
(body)

Example Value | Model

"rasmodel”,
{
"Agent",
name": "AKT1",
"db_refs": {
HGNC": "391"

3

1,
"entity_role": "object",
"stmt_type": "Activation"”,
"terminal_ns": [

"HGNC",

"uP",

"FPLX"

Parameter content type

application/json v

payload * required
object
(body)

Example Value | Model

open_query v {
model string
example: rasmodel

A name of EMMAA model to query (e.g. aml, covidl9)

tit,
entity v q
description:
INDRA Agent JSON to start the search from.
}
entity role string
example: object
subject for downstream or object for upstream search.
stmt_type string

example: Activation
Type of effect to search for.

terminal ns
= v

Optional list of namespaces to constrain the types of up/downstream entities

string]

_images/dynamic_result.png
Query Results

Query

Phosphorylated
MAP2K1 is
sometimes low.

Model

marm_model

Result

v

Amount (molecules)

400

W
8
8

S
g

100

Simulation results for phosphorylated MAP2K1

Image

High

2000

4000

Time (s)

6000

8000

10000

_images/dynamical_intervention_sos_kras.png
Query Results

Query Model Result Image
SOS1 rasmodel v
Increases Simulation results for active KRAS
active KRAS.
—— Without condition
175 1 —— With condition
150 A
W 125 A
=]
v
QL
S 100 -
E
€
3 75
£
<
50 4
25 A
0 4

0 20 40 60 80 100
Time (s)

_images/dynamic_query.png
Model Queries

Model selection
MARM Model

Query selection

phosphorylated MAP2K1 eventual_value +

Subscribe To Query

Submit

_images/email_notification1.png
You have an update to your queries on EMMAA ©

emmaa_notifications@indra.bio via hms harvard edu 0937 (4hoursag) Yr 4
to example ~

Updates to your static queries

« "FLT3 activates KRAS." in rasmachine using the PyBEL model type. For details click here.

1fyou wish to unsubserbe from fture noifiations, click on the olloving fnk:

_images/emmaa_aske_architecture.png
For model construction:
“Breast cancer”

Acute Myeloid Leukemia

Breast Cancer

Lung Adenocarcinoma

1

For model analysis:

“What is the optimal
intervention

to decrease proliferation?”

Formulations/Constraints

Choose relevant
scope of knowledge

Interpret knowled,

EMMAA Statements =
knowledge + meta-data

2

Domain-specific

>

knowledge-level model

Assemble knowledge

Link results to knowledge-

into a model level constructs
PySB / Kappa / ODE 3 HP
s) g e Domain-independent
graphs model
Create code to run a specific Compile analysis
instance of a model results
Synthesized 4

automatically for model
using generic solvers

Executable code

ge-level analysis results
in the context of high-level goals

Knowledge extracted

from sources +
knowledge-assembly, curation

_images/dynamical_intervention_sos_kras1.png
Query Results

Query Model Result Image
SOS1 rasmodel v
Increases Simulation results for active KRAS
active KRAS.
—— Without condition
175 1 —— With condition
150 A
W 125 A
=]
v
QL
S 100 -
E
€
3 75
£
<
50 4
25 A
0 4

0 20 40 60 80 100
Time (s)

_images/email_notification.png
You have an update to your queries on EMMAA ©

emmaa_notifications@indra.bio via hms harvard edu 0937 (4hoursag) Yr 4
to example ~

Updates to your static queries

« "FLT3 activates KRAS." in rasmachine using the PyBEL model type. For details click here.

1fyou wish to unsubserbe from fture noifiations, click on the olloving fnk:

_images/emmaa_nf_model_cycle.png
New publications Expert curation

! !

Neurofibromatosis Ras Model

is used to explain
C——

ot b irtonts ke drives extensions of
eurotibromatosis nowledge ————————— A human-curated model of Ras

network automatically assembled . .) .
e . signaling defined in natural
from relevant publications in |
pubMed. anguage.

‘ Details H Query H NDEX ‘ L4 ‘ Details H Query H NDEXx |

(2
2 e
Yoy et ®
SPCrene

New experiments

_images/emmaa_chat_marm_model.png
Chat with an EMMAA model (powered by CLARE) Tutorial

ben.gyori@gmail.com
what does BRAF interact with?

cLARE
Overall, | know that BRAF can interact with BRAF, RAF1, KRAS, MAP2K1, and vemurafenib.

ben.gyori@gmail.com
ny of those small molecules?

cLARE
Out of those, vemurafenib is the only small molecule

ben.gyori@gmail.com
what does vemurafenib do?

cLARE
Overall, | know that vemurafenib can affect BRAF and RAF'.

_images/emmaa_chat_ras_model.png
Chat with an EMMAA model (powered by CLARE) Tutor

CLARE
Grestings, human!

ben.gyori@gmail.com
what does BRAF interact with?

cLARE
Overall, 1 know that BRAF can interact with MAP2K1, SRC, KRAS, and BAD.

ben.gyori@gmail.com
ny of those kinases?

CLARE
Out of those, MAP2K1 and SRC are kinases.

ben.gyori@gmail.com
o there any drugs for any of those?

_static/images/dynamic_query.png
Model Queries

Model selection
MARM Model

Query selection

phosphorylated MAP2K1 eventual_value +

Subscribe To Query

Submit

_static/images/dynamical_intervention_sos_kras.png
Query Results

Query Model Result Image
SOS1 rasmodel v
Increases Simulation results for active KRAS
active KRAS.
—— Without condition
175 1 —— With condition
150 A
W 125 A
=]
v
QL
S 100 -
E
€
3 75
£
<
50 4
25 A
0 4

0 20 40 60 80 100
Time (s)

_static/images/dynamic_result.png
Query Results

Query

Phosphorylated
MAP2K1 is
sometimes low.

Model

marm_model

Result

v

Amount (molecules)

400

W
8
8

S
g

100

Simulation results for phosphorylated MAP2K1

Image

High

2000

4000

Time (s)

6000

8000

10000

_static/images/covid19_twitter.png
< EMMAA COVID-19 model

1 Tweet

EMMAA COVID-19 model

@covid19_emmaa

The EMMAA COVID-19 model reads all new COVID-19 literature daily, and
automatically assembles discoveries to explain experimental findings and find drugs.

& emmaa.indra.bio/dashboard/covi... Joined September 2020
0 Following 2 Followers

Not followed by anyone you're following

Tweets Tweets & replies Media Likes
EMMAA COVID-19 model @covid19_emmaa - 18h N
Today | learned 82 new mechanisms. See emmaa.indra.bio/dashboard/covi

... for more details.

Q) Q I &

_static/images/curation_over_time.png
Curations Over Time

M Curated Evidences M Curated Statements

_static/images/covid_test_refinement.png
Test Condition Model Explanation

Anticoagulant has refinement Heparin
(CHEBI:50249) (CHEBI:28304)
Inhibits Inhibits
SARS-CoV-2 SARS-CoV-2

(MESH:D000086402) (MESH:D000086402)

_static/images/curators.png
Number of Evidences Curated

o |
m

bachmanjohn@gmail.
com

diana_kolusheva@hm
s.harvard.edu

cgaray @mitre.org

laura_maliszewski@
hms.harvard.edu

patrick_greene@hms
-harvard.edu

T T T T
0 100 200 300 400 500 600 700 800 900 1000
M Curations count

Number of Unique Statements Curated

o |
m

bachmanjohn@gmail.
com

diana_kolusheva@hm
s.harvard.edu

cgaray @mitre.org

laura_maliszewski@
hms.harvard.edu

patrick_greene@hms
-harvard.edu

T T T
0 100 200 300 400 500 600 700 800 900
M Curations count

_static/images/curation_types.png
Curation Types

no_relation
entity_boundaries
correct

grounding
wrong_relation
polarity
act_vs_amt
negative_result
other

hypothesis

relation

50

T
100

T
150

T
200

T
250

T T
300 350
M Curations count

_static/images/dashboard_top.png
EMMAA Dashboard Queries

Acute Myeloid Leukemia

SULT1B1

RBBP4

|_EzH2_]
/ﬂ/ll\\\\\\\\
GCLM \ FLT3

iy, @ 7
S "pé. 4 '.'f"\

A model of molecular mechanisms
governing AML, focusing on
frequently mutated genes, and the
pathways in which they are involved.

‘ Details H Query H NDEx ’

Breast Cancer

7 rosisricy
(‘MAP3 SPAG118]

o AL TFOX03
o

A model of molecular mechanisms
governing brest cancer, focusing on
frequently mutated genes, and the

pathways in which they are involved.

‘ Details H Query H NDEx ’

Help About Demos

Covid-19

Covid-19 knowledge network
automatically assembled from the
CORD-19 document corpus.

‘ Details H Query H NDEX ’ ’

_static/images/dashboard_models.png
EMMAA Dashboard About

Acute myeloid leukemia Breast Cancer Lung adenocarcinoma

. /)
sz

S

&

Short model description of acute Short model description of breast cancer Short model description of lung
myeloid leukemia adenocarcinoma

Last updated: 2018-12-13-21-23-02

Last updated: 2018-12-13-21-23-19
Details | View on NDEX
Details | View on NDEX Details | View on NDEX

Last updated: 2018-12-13-21-22-49

Pancreas adenocarcinoma Prostate adenocarcinoma Skin cutaneous melanoma

_static/images/detailed_results_dropdown.png
PySB ¢ | Load Type
PysB
Test: " Phosphatase-active PTEN inhibits MTOR. " for RASMODEL (PySB) Signed Graph
Unsigned Graph
Path Support
PTEN — phosphatidylinositol trisphosphate — AKT1 ~ PTEN — phosphatidylinositol trisphosphate
MTOR PTEN decreases the amount of phosphatidylinositol trisphosphate.
PDPK1 — AKT1
Active PDPK1 phosphorylates AKT1 bound to phosphatidylinositol trisphosphate
onT308.
AKT1 —~ MTOR

Active AKT1 phosphorylates MTOR on $2448.

_static/images/detailed_results.png
Query: "FLT3 activates KRAS." for AML (PyBEL) on 2020-01-31-20-18-53

Path

FLT3 - NPM1 - CDC42 - KRAS

FLT3 - NPM1 > KRAS - KRAS

Support

FLT3 > NPM1

FLT3 bound to NPM1 has a component NPM1.
NPM1 - CDC42

NPM1 activates CDC42.

CDC42 - KRAS

CDCA42 activates KRAS.

FLT3 > NPM1

FLT3 bound to NPM1 has a component NPM1.
NPM1 - KRAS

NPM1 is a part of KRAS bound to NPM1.
KRAS - KRAS

KRAS bound to NPM1 has a component KRAS.

_static/images/detailed_results_fail.png
o

PyBEL

Load Type

Test: " Phosphatase-active PTEN inhibits MTOR. " for RASMODEL (PyBEL)

The test failed with the following code: Statement object state not in model

To see more information about tests, see the documentation.

_static/images/bio_platform.png
Therapeutics

Information

Sl Epi platform

EMMAA

Uncharted Ul

(O Harvard Medical School
O University of Wisconsin
O University of Arizona
QO Uncharted

O MITRE

_static/images/belief_range.png
View Statements within Belief Range

0.93 - 0.97

a a View statements

_static/images/c19dm_extension.png
Cov101§
advivse

P OVL)“LQV\A

_static/images/c19dm_card.png
Covid-1