
Ember CSI plugin Documentation
Release 0.9.1

Gorka Eguileor

Jun 06, 2022

Contents

1 Introduction 3
1.1 Features . 3
1.2 Limitations . 4
1.3 Supported drivers . 4

2 Installation 7
2.1 Requirements . 7
2.2 OpenShift . 7

3 Usage 17
3.1 Volume creation . 17
3.2 Using volumes . 19
3.3 Expanding Volumes . 19
3.4 Volume cloning . 20
3.5 Snapshot creation . 21
3.6 Restoring a snapshot . 21
3.7 Volume deletion . 22
3.8 Snapshot deletion . 23

4 Troubleshooting 25
4.1 Status . 25
4.2 Logs . 26
4.3 CSC . 27
4.4 CRDs . 29

i

ii

Ember CSI plugin Documentation, Release 0.9.1

Welcome to the Ember-CSI documentation!

Ember-CSI is a plugin to provision and use block and file storage in containerized workloads on Kubernetes and
OpenShift.

The documentation for the site is organized into the following sections:

Contents 1

Ember CSI plugin Documentation, Release 0.9.1

2 Contents

CHAPTER 1

Introduction

The Container Storage Interface (CSI) is a standard for provision and use block and file storage systems in container-
ized workloads on Container Orchestration Systems (COs) like OpenShift.

Using this interface new storage systems can be exposed to COs without needing to change the COs code.

Ember-CSI is an Open Source implementation of the CSI specification supporting storage solutions from multiple
vendors by leveraging a library called cinderlib that provides an abstraction layer over the storage drivers.

1.1 Features

Ember-CSI supports CSI versions 0.2, 0.3, 1.0, and 1.1 providing the following features:

• Volume provisioning: file and block types

• Volume cloning

• Volume deletion

• Snapshot creation

• Create volume from a snapshot

• Snapshots deletion

• Listing volumes with pagination

• Listing snapshots with pagination

• Attaching/Detaching volumes

• Multi pod attaching (block mode only)

• Storage capacity reporting

• Node probing

3

https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://docs.openstack.org/cinderlib/latest/
https://github.com/container-storage-interface/spec

Ember CSI plugin Documentation, Release 0.9.1

1.2 Limitations

There are 2 types of volumes in OpenShift and Kubernetes, Block and File, and while both are supported by Ember-
CSI, behind the scenes all the storage drivers in Ember-CSI are for block storage systems.

To provide File volumes from block storage Ember-CSI connects the volumes to the host, formats and present them to
the Orchestrator for the containerized workloads.

Since File type volumes are locally attached block volumes they cannot be shared between containers, so the Shared
Access (RWX) Access Mode is not supported.

This limitation does not apply to block volumes, that can be mounted in multiple hosts simultaneously and it’s the
application the one responsible to orchestrate the proper access to the disk.

1.3 Supported drivers

Ember-CSI includes a good number of storage drivers, but due to limitation on hardware availability only a small
number of them have been validated at one point or another. In alphabetical order they are:

• HPE3PARFC

• HPE3PARISCSI

• KaminarioISCSI

• LVMVolume

• PowerMaxFC

• PowerMaxISCSI

• PureFC

• PureISCSI

• QnapISCSI

• RBD

• SolidFire

• SynoISCSI

• XtremIOFC

• XtremIOISCSI

The remaining drivers included in Ember-CSI have not been validated yet:

• ACCESSIscsi

• AS13000

• FJDXFC

• FJDXISCSI

• FlashSystemFC

• FlashSystemISCSI

• GPFS

• GPFSRemote

4 Chapter 1. Introduction

Ember CSI plugin Documentation, Release 0.9.1

• HPELeftHandISCSI

• HPMSAFC

• HPMSAISCSI

• HedvigISCSI

• HuaweiFC

• HuaweiISCSI

• IBMStorage

• InStorageMCSFC

• InStorageMCSISCSI

• InfortrendCLIFC

• InfortrendCLIISCSI

• LenovoFC

• LenovoISCSI

• LinstorDrbd

• LinstorIscsi

• MStorageFC

• MStorageISCSI

• MacroSANFC

• MacroSANISCSI

• NetAppCmodeFibreChannel

• NetAppCmodeISCSI

• NexentaISCSI

• PSSeriesISCSI

• Quobyte

• RSD

• SCFC

• SCISCSI

• SPDK

• Sheepdog

• StorPool

• StorwizeSVCFC

• StorwizeSVCISCSI

• Unity

• VNX

• VZStorage

• VxFlexOS

1.3. Supported drivers 5

Ember CSI plugin Documentation, Release 0.9.1

• WindowsISCSI

• WindowsSmbfs

• ZadaraVPSAISCS

6 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Requirements

Ember-CSI has the following requirements:

• Operating system: A Red Hat Linux distribution (support for other distributions is possible but not currently
provided by the project): - Centos 7 and Centos 8 - RHEL 7 and RHEL 8 - Fedora

• Container Orchestrator: Both Kubernetes and OpenShift are supported: - Openshift: Recommended version 4.6
or newer. Supported from version 4.3 onward. - Kubernetes: Recommended version 1.17 or newer. Supported
from version 1.16 onward.

• Storage solution: Access and credentials to a supported storage solution.

• Network: Network connections must be setup appropriately. - Controller nodes: Must have access to the storage
management interface. Some drivers require access to the storage data network as well. - Worker nodes: Must
have access to the storage data network.

• Services: Depending on the driver and the configuration we may need additional services running on worker
nodes and in some drivers controller nodes.

– iSCSI: For iSCSI drivers the iSCSI initiator, iscsid provided by the iscsi-initiator-utils package must be
configured and running on the host.

– Multipathing: When selecting multipathing on iSCSI and FC drivers we’ll need to have multipathd, pro-
vided by the device-mapper-multipath package, configured and running on the host.

2.2 OpenShift

To eliminate configuration and deployment complexities and the errors that come with them, the recommended mech-
anism to deploy Ember-CSI is using its operator, which makes installing Ember-CSI a simple and intuitive process.

After logging in the OpenShift console as an administrator we go to the OperatorHub:

7

index.html#supported_drivers

Ember CSI plugin Documentation, Release 0.9.1

Then we search for the Ember-CSI operator and click on it:

8 Chapter 2. Installation

Ember CSI plugin Documentation, Release 0.9.1

If we are installing the Community Operator we’ll be required to confirm that we understand the implications. We
click Continue:

2.2. OpenShift 9

Ember CSI plugin Documentation, Release 0.9.1

And we are presented with the Ember-CSI Operator page, where we click Install:

And then Install again:

10 Chapter 2. Installation

Ember CSI plugin Documentation, Release 0.9.1

This will trigger the download and execution of the operator container image. It will take a couple of seconds, and in
the meantime we’ll see that the installation is in progress and maybe a couple of weird entries saying at the beginning:

Once the operator reaches the Succeeded status we click on it:

Inside the Ember-CSI operator page we create a new Storage Backend instance:

2.2. OpenShift 11

Ember CSI plugin Documentation, Release 0.9.1

Backends can be configured using YAML, but this is a cumbersome process, so it’s usually only used on automated
processes such as CI systems, and the Ember-CSI team recommends using the form interface when doing things
manually, which is the default on OpenShift 4.5.

In the form we should change the name field from default to a unique and meaningful name to identify this backend.
Then go to the Driver dropdown and select the name of our storage backend. After selecting the appropriate driver the
relevant configuration options for the selected driver will be displayed.

12 Chapter 2. Installation

Ember CSI plugin Documentation, Release 0.9.1

After setting the configuration options we click Create at the botom of the page:

And a new EmberStorageBackend entity will be created. Don’t wait for the Status to change, since it won’t:

2.2. OpenShift 13

Ember CSI plugin Documentation, Release 0.9.1

We can see that the deployment is complete going to Stateful Sets, Daemon Sets, and Replica Sets pages in the
Workloads section to see that the deployed pods are running:

We can also check that a new Storage Class has been created in Storage > Storage Classes. The name of the new class
will be example.ember-csi.io where example will be the name we gave to the Storage Backend in the form:

We can set this Storage Class as the default class by going to its actions and selecting Edit Annotations:

14 Chapter 2. Installation

Ember CSI plugin Documentation, Release 0.9.1

And then adding key storageclass.kubernetes.io/is-default-class with the value of true.

Warning: If we already have a default and we want to change it to this one, we’ll need to modify the current
default by removing the annotation or setting it to false.

If we have configured everything right we’ll now be able to use our storage solution into OpenShift using the new
StorageClass that was created by the operator. In the usage section there is information on how to use the new
Storage Backend.

If you see problems in the new Stateful, Daemon, or Replica Sets, please refer to the troubleshooting guide for details
on how to resolve installation issues.

2.2. OpenShift 15

usage.html
troubleshooting.html

Ember CSI plugin Documentation, Release 0.9.1

16 Chapter 2. Installation

CHAPTER 3

Usage

Now that we have completed the installation of Ember-CSI, we can manage our Storage Backend in our Container
Orchestrator.

In this section examples will be provided both for the OpenShift Web Console and for the command line in the form
of YAML manifests.

The same YAML manifests work on Kubernetes and OpenShift, the only difference is the command to invoke. For
Kubernetes we’ll use kubectl‘ and oc for OpenShift:

$ # On OpenShift
$ oc apply -f manifest.yaml

$ # On Kubernetes
$ kubectl apply -f manifest.yaml

NOTE: In all the examples we’ll assume we created the Storage Backend with the default name example using the
Operator, and that the Storage Class automatically created is example.ember-csi.io

3.1 Volume creation

We can create 2 types of volumes, Block and File, and both are supported by Ember-CSI, but OpenShift forms don’t
allow specifying the type on creation, so they always default to File.

To create a volume we go to Storage > Persistence VolumeClaims and click on Create Persistent Volume Clain.

On the next page we must select the Storage Class created by the operator, give the PVC a unique name, select the
Access Mode and the size.

17

installation.html

Ember CSI plugin Documentation, Release 0.9.1

Warning: Ember-CSI only supports the Shared Access (RWX) Access Mode for Block volumes.

Note: OpenShift doesn’t support selecting the type of volume we want to create, so we’ll have to use YAML if we
want to create a Block volume.

To select the type of volume we want in our YAML we’ll use the volumeMode parameter. Acceptable values are
Block and Filesystem, the default being Filesystem.

Example of a PVC manifest using this default:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: my-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 1Gi
storageClassName: example.ember-csi.io

18 Chapter 3. Usage

Ember CSI plugin Documentation, Release 0.9.1

Similar PVC example for a Block volume:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: my-block-pvc
spec:
accessModes:
- ReadWriteOnce

volumeMode: Block
resources:
requests:

storage: 3Gi
storageClassName: example.ember-csi.io

3.2 Using volumes

Using a dynamically created PVC is as easy as adding a persistentVolumeClaim parameter with the
claimName in the volumes section of our manifest:

kind: Pod
apiVersion: v1
metadata:

name: my-app
spec:
containers:
- name: my-frontend

image: busybox
volumeMounts:
- mountPath: "/data"

name: my-csi-volume
command: ["sleep", "1000000"]

volumes:
- name: my-csi-volume

persistentVolumeClaim:
claimName: my-pvc

3.3 Expanding Volumes

We can expand already created volumes to have more space without losing existing data. The operation is called
expanding, and it’s very straightforward. In the web console we just go to the actions we can do in the PVC and select
Expand PVC.

3.2. Using volumes 19

Ember CSI plugin Documentation, Release 0.9.1

Then write the new size, that must be greater or equal than the existing size, and click on Expand.

When using the command line and a YAML manifest, we just need to modify the original contents with the new
storage size, and it’s important to use apply and not create on the command line:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: csi-pvc
spec:
accessModes:
- ReadWriteOnce

resources:
requests:

storage: 2Gi
storageClassName: example.ember-csi.io

3.4 Volume cloning

Volume cloning is the process of creating a new volume with the same contents as the source volume.

The new volume must be greater or equal in size as the original one and the source volume must be specified in the

20 Chapter 3. Usage

Ember CSI plugin Documentation, Release 0.9.1

dataSource parameter, which is not available yet in the OpenShift Web Console, so we’ll have to use YAML to do
it:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: cloned-vol
spec:
storageClassName: example.ember-csi.io
volumeMode: Block
dataSource:
name: my-block-pvc
kind: PersistentVolumeClaim

accessModes:
- ReadWriteOnce

resources:
requests:

storage: 5Gi

3.5 Snapshot creation

During the deployment phase the Operator also creates a VolumeSnapshotClass for our Storage Backend with the same
name as the StorageClass so we can easily create snapshots.

Note: As of OpenShift 4.5 the Web Console doesn’t have support for snapshots, but the necessary code is being
merged in master, so it will most likely be available in OpenShift 4.6.

So we’ll have to use a YAML manifest and use the source parameter to define the volume we want to snapshot.

apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:

name: my-snapshot
spec:
volumeSnapshotClassName: example.ember-csi.io
source:
persistentVolumeClaimName: my-block-pvc

3.6 Restoring a snapshot

To restore an already created snapshot we’ll have to create a new volume and use our snapshot as its source.

The new volume must be of greater or equal size than the snapshot.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: restored-snapshot
spec:
storageClassName: example.ember-csi.io
dataSource:
name: my-snapshot

3.5. Snapshot creation 21

Ember CSI plugin Documentation, Release 0.9.1

kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.io

accessModes:
- ReadWriteOnce

resources:
requests:

storage: 3Gi

3.7 Volume deletion

The Storage Class created by the operator is defined with a Delete ReclaimPolicy, which means that once we
delete the PVC the dynamically created PV will be deleted.

We can delete a volume in the OpenShift Web Console by going to Storage > Persistence VolumeClaims and look for
the PVC we want to delete and in its actions we select Delete Persistent Volume Claim:

Deletion requires confirmation, so we’ll have to click on the Delete volume:

Deleting the PVC from the command line can be done using the name:

$ oc delete pvc my-block-pvc

Or with the manifest we used to create it:

$ oc delete -f manifest.yaml

22 Chapter 3. Usage

Ember CSI plugin Documentation, Release 0.9.1

3.8 Snapshot deletion

Note: As of OpenShift 4.5 the Web Console doesn’t have support for snapshots, but the necessary code is being
merged in master, so it will most likely be available in OpenShift 4.6.

Deleting a VolumeSnapshot from the command line can be done using the name:

$ oc delete pvc my-snapshot

Or with the manifest we used to create it:

$ oc delete -f manifest.yaml

3.8. Snapshot deletion 23

Ember CSI plugin Documentation, Release 0.9.1

24 Chapter 3. Usage

CHAPTER 4

Troubleshooting

The main tool used to investigate issues between Ember-CSI and the Orchestrator are OpenShift/Kubernetes status
and logs.

Ember-CSI runs 2 types of services, one is the controller and the other is the node type. While the controller takes
care of the management operations (create, delete, map/unmap, snapshots, etc.) the node mostly takes care of doing
the local attach and detach on the hosts that are running the pods.

These services follow the CSI specification, exposing all their operations through a gRPC interface that needs to be
translated into OpenShift/Kubernetes objects. The sidecars present in the Ember-CSI pods are responsible for the
translation.

4.1 Status

The first thing we need to do when we encounter an issue is make sure that all the containers in the Ember-CSI pods,
the driver container and the sidecars, are running and that their restart counts are not increasing.

Instead of looking at all the pod in our deployment we can use the fact that the operator adds the embercsi_cr label
to filter for the pods of a specific backend:

$ # On OpenShift
$ oc get pod -n <cluster-namespace> -l embercsi_cr=<backend_name> -o wide

$ # On Kubernetes
$ kubectl get pod -n <cluster-namespace> -l embercsi_cr=<backend_name> -o wide

Or the pods for all the Ember-CSI backends:

$ oc get pod -n <cluster-namespace> -l embercsi_cr -o wide

When using an iSCSI or FC backend we need to make sure that the system daemons required for the connections are
running and they are not reporting errors if we encounter issues on the following operations:

• Creating a volume from a source (volume or snapshot): On some drivers this is not a backend assisted operation,
so the resources in the backend need to be accessed in the controller node.

25

Ember CSI plugin Documentation, Release 0.9.1

• Creating or destroying a pod that uses an Ember-CSI volume:

If we are running the daemons as systemd services on baremetal, we can check them running:

$ systemctl status iscsid multipathd
$ sudo journalctl -u iscsid -u multipathd

On the other hand, if we are running the daemons in the foreground inside containers, we’ll have to check the containers
status and logs themselves.

4.2 Logs

One of the most versatile tools to debug issues in general are the logs, and Ember-CSI is no different.

The logs we’ll have to check will depend on the operations that are failing:

• If it’s creating/deleting a volume or creating/deleting a snapshot, we should look into the Ember-CSI controller
pod, primarily the driver container.

• Creating/destroying a pod that uses a volume is one of the most complex operations, and it requires the controller
pod, the node pod, and the kubelet, so we’ll have to look into all their logs.

By default Ember-CSI logs will be on INFO level and they can only be changed to DEBUG when creating the Storage
Backend in the Advanced Settings section:

By setting the Debug logs checkbox:

26 Chapter 4. Troubleshooting

Ember CSI plugin Documentation, Release 0.9.1

4.3 CSC

When debugging issues on complex flows, it’s very convenient to be able to test the individual tasks that form the
flows. For that purpose the Ember-CSI has created containers with the csc tool for each of the CSI specs.

The csc tool allows us to execute specific CSI operations directly against an Ember-CSI service.

For example, we could run a create volume operation completely bypassing the Orchestrator. This way we could
focus on the Ember-CSI code itself and the interactions with the storage solutions, removing the interactions with
other elements such as OpenShift/Kubernetes scheduler and the sidecars.

Neither Kubernetes nor OpenShift allows adding containers to a running Pod, but there is an Alpha feature called
Ephemeral Containers designed for debugging purposes that can do it.

We need to have the feature gate EphemeralContainers enabled in our Orchestrator. Specifically on the API,
Scheduler, and Kubelet: --feature-gates=EphemeralContainers=true.

If it’s enabled we can add an Ephemeral container with the csc command to our running pod.

For the following steps we’ll assume we have used the name example as our Backend name.

First we check the CSI version that is using Ember-CSI:

$ oc describe pod example-controller-0|grep X_CSI_SPEC_VERSION
X_CSI_SPEC_VERSION: 1.0

Now that we know we are running CSI v1.0 we know the csc container we want to use: embercsi/csc:v1.0.0

With that we can write the csc.json file to add the Ephemeral Container:

{
"apiVersion": "v1",
"kind": "EphemeralContainers",
"metadata": {
"name": "example-controller-0"

},
"ephemeralContainers": [
{

"command": ["tail"],
"args": ["-f", "/dev/null"],
"image": "embercsi/csc:v1.0.0",
"imagePullPolicy": "IfNotPresent",
"name": "csc",

4.3. CSC 27

https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/

Ember CSI plugin Documentation, Release 0.9.1

"stdin": true,
"tty": true,
"terminationMessagePolicy": "File",
"env": [{"name": "CSI_ENDPOINT",

"value": "unix:///csi-data/csi.sock"}],
"volumeMounts": [

{
"mountPath": "/csi-data",
"mountPropagation": "HostToContainer",
"name": "socket-dir"

}
]

}
]

}

And, assuming we don’t have any other Ephemeral Containers, we add it by replace the current value:

$ oc replace --raw /api/v1/namespaces/default/pods/example-controller-0/
→˓ephemeralcontainers -f csc.json

If we don’t want to create a file we can do a one-liner by using echo a piping it to the oc replace command and
setting the file contents to stdin with -f -.

Now that we have added the Ephemeral Container we can confirm it is running looking at the description of the
controller pod and going to the Ephemeral Containers section and checking the State:

$ oc describe pod example-controller-0

...

Ephemeral Containers:
csc:
Container ID: docker://

→˓e52d25a53af77a6f660d171504aa9dc6c2c3d405a9af20451054fadba969c84a
Image: embercsi/csc:v1.0.0
Image ID: docker-pullable://embercsi/

→˓csc@sha256:5433e0042725398b9398be1b73d43cc96c77893cf4b77cafca77001fa533cd29
Port: <none>
Host Port: <none>
Command:

sh
State: Running

Started: Thu, 13 Aug 2020 14:18:23 +0000
Ready: False
Restart Count: 0
Environment:

CSI_ENDPOINT: unix:///csi-data/csi.sock
Mounts:

/csi-data from socket-dir (rw)

When we have the shell container running we can run csc commands by attaching to the shell. For example to see
the help:

$ oc attach -it example-controller-0 -c csc
If you don't see a command prompt, try pressing enter.
/ # csc
NAME

28 Chapter 4. Troubleshooting

Ember CSI plugin Documentation, Release 0.9.1

csc -- a command line container storage interface (CSI) client

SYNOPSIS
csc [flags] CMD

AVAILABLE COMMANDS
controller
identity
node

Use "csc -h,--help" for more information

Warning: Just like with normal containers, once you add an Ephemeral Container to a pod you cannot remove it,
so be sure to detach from the container and not exit the shell, or the container will no longer be running and you
won’t be able to use it (you cannot run exec on an Ephemeral Container).

Note: To detach from the csc container shell you must type the escape sequence Ctrl+P followed by Ctrl+Q.

4.4 CRDs

Ember-CSI uses OpenShift/Kubernets etcd service to store metadata of its resources in the form of CRDs. Existing
CRDs are:

• Volume: Stores each volume’s status as well as the information necessary to locate them in the storage solution.

• Snapshot: Stores the information necessary to locate each snapshot in the storage solution.

• Connection: Stores the connection information needed for a node to connect to a volume.

• KeyValue: Stores the connector information needed to map the volumes to the nodes on the storage solution.

These CRDs are just JSON dictionaries with all the information Ember-CSI needs to operate, and in some cases it can
be useful to examine them to see internal information.

4.4. CRDs 29

	Introduction
	Features
	Limitations
	Supported drivers

	Installation
	Requirements
	OpenShift

	Usage
	Volume creation
	Using volumes
	Expanding Volumes
	Volume cloning
	Snapshot creation
	Restoring a snapshot
	Volume deletion
	Snapshot deletion

	Troubleshooting
	Status
	Logs
	CSC
	CRDs

