
Python Heart Rate Analysis Toolkit
Documentation

Release 0.8

Paul van Gent

Apr 02, 2019

.

1 Note on using it in scientific research 3

2 Index 5
2.1 Quickstart Guide . 5

2.1.1 Where to begin? . 5
2.1.2 What board do I have? . 7

2.2 Implementations . 9
2.2.1 Simple Logger . 10
2.2.2 Peak Finder . 11
2.2.3 Time Series Analysis . 12
2.2.4 Full Implementation . 13

2.3 Background - Heart Rate Analysis . 14
2.3.1 Background . 14
2.3.2 Measuring the heart rate signal . 14
2.3.3 On the Accuracy of Peak Position . 17
2.3.4 References . 21

2.4 Background - Algorithm functioning . 21
2.4.1 Pre-processing . 21
2.4.2 Peak detection & Error Detection . 23
2.4.3 Calculation of Measures . 24

2.5 Development . 24
2.5.1 Release Notes . 24
2.5.2 Questions . 25

i

ii

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

Welcome to the Arduino Heart Rate Analysis Toolkit’s documentation. This documentation describes the embedded
implementations available for heart rate analysis.

The toolkit was presented at the Humanist 2018 conference in The Hague (see paper here). A technical paper about
the functionality is currently under review and will be linked here as soon as it’s published.

Please cite one or both of these papers when using the toolkit in your research. Citation format below

van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2018). Heart Rate Analysis for Human Factors: Develop-
ment and Validation of an Open Source Toolkit for Noisy Naturalistic Heart Rate Data. In Proceedings of the 6th
HUMANIST Conference (pp. 173–178).

The documentation will help you get up to speed quickly. Follow the Quickstart Guide guide for a general overview
of how to use the toolkit in only a few lines of code. For a more in-depth review of the module’s functionality you can
refer to the papers mentioned above, or the Background - Heart Rate Analysis overview.

. 1

https://www.researchgate.net/publication/325967542_Heart_Rate_Analysis_for_Human_Factors_Development_and_Validation_of_an_Open_Source_Toolkit_for_Noisy_Naturalistic_Heart_Rate_Data

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

2 .

CHAPTER 1

Note on using it in scientific research

Support is available at P.vanGent@tudelft.nl. When using the toolkit in your scientific work: please include me in the
process. I can help you implement the toolkit, and the collaboration will also help improve the toolkit so that it can
handle more types of data in the future.

3

mailto:P.vanGent@tudelft.nl

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

4 Chapter 1. Note on using it in scientific research

CHAPTER 2

Index

2.1 Quickstart Guide

If you find yourself here, chances are you want to use the developed toolkit in your research or some other open-source
application. Great! On this page we will describe the options available to you. If you already know what you want
please go to the Implementations section.

Otherwise, look at the statements below and click whichever one is closest to your situation:

2.1.1 Where to begin?

• I have recorded heart rate data and want to analyse it

• I have a way of recording heart rate data, and just want to analyse the recorded data

• I just want to record heart rate data unintrusively, I have my own analysis tools

• I want to record heart rate data unintrusively, it’s ok if the analysis is done later (offline)

• I want to record heart rate data and analyse the results real-time

I have recorded heart rate data and want to analyse it

You need the Python implementation of this toolkit. Take a look at the repository here: https://github.com/
paulvangentcom/heartrate_analysis_python

And at the documentation here: https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/

5

https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_python
https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

I have a way of recording heart rate data, and just want to analyse the recorded data

Our Python version of the toolkit handles pre-recorded data (and is most complete in functionality). However, often
open source alternatives might be a better alternative to record your heart rate data. They are completely transparent,
adjustable to your needs and free of charge.

For the Python version if you just want to analyse, take a look at the repository here: https://github.com/
paulvangentcom/heartrate_analysis_python

And at the documentation here: https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/

We recommend you take a look at the Implementations section to familiarise yourself with what’s possible. It only
takes around $20,- to get started!

I just want to record heart rate data unintrusively, I have my own analysis tools

The Simple Logger implementation is just what you need! It reliably logs data either over USB or to an SD memory
card. Feel free to contact me if you need help implementing this: P.vanGent@tudelft.nl

I want to record heart rate data unintrusively, it’s ok if the analysis is done later (offline)

The Simple Logger implementation is just what you need! It reliably logs data either over USB or to an SD memory
card.

To analyse the results, we suggest you take a look at our Python analysis toolkit: https://github.com/paulvangentcom/
heartrate_analysis_python

I want to record heart rate data and analyse the results real-time

Your options here depend on what exactly you want.

Do you have on-line analysis tools on your PC and just want to stream sensor data? Look at the Simple Logger USB
implementation.

A second option is the peak finder, which detects and returns detected peaks and RR-intervals realtime: Peak Finder.

The time series analysis version is based on the peak finder, and outputs time-series measurements real-time: Time
Series Analysis

Finally, the full implementation is almost identical to the Python implementation. It is the most noise-robust and
reliable. It only runs on Teensy ARM board due to the amount of RAM required for buffering and analysis: Full
Implementation.

6 Chapter 2. Index

https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_python
https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/
mailto:P.vanGent@tudelft.nl
https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_python

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

2.1.2 What board do I have?

“8-bit AVR, 32-bit ARM, what? I just bought this board. Can it run the toolkits you made?” I understand, it can be
confusing. If you’re unsure what you have please find a few methods of getting your board type in this section.

Method 1: Is it mentioned in this table?

Check the table below to see if you recognize the name of the board. You can also look up what CPU your board has
and see if that is in the table.

2.1. Quickstart Guide 7

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

Board type CPU Instruction set RAM available Available imple-
mentations

Arduino Gemma,
Adafruit Trinket,
Digispark USB

ATTiny45/85 8-bit 512 byte

Simple Logger
USB version only!

Arduino Uno,
Lilypad,
Lilypad
Simplesnap,
Pro 16MHz, Pro
mini,
Ethernet, Mini,
Nano,
BT, Fio

Atmega 328p 8-bit 2 KiloByte

Simple Logger
Peak Finder
up to XX Hz

Arduino Lilypad
USB,
Micro, Espiora,
Leonardo, Yún,
Robot
Teensy 2.0

Atmega 32U4 8-bit 2.5 KiloByte

Simple Logger
Peak Finder
up to XX Hz

Arduino Mega,
Mega ADK

Atmega 2560 8-bit 8 KiloByte

Simple Logger
Peak Finder
up to XX Hz

Teensy LC,
Arduino MKR Zero
Adafruit Itsybitsy,
Feather M0

ARM Cortex M0+ 32-bit 32 kiloByte

Simple Logger
Peak Finder
Full
Implementation

Teensy 3.1, 3.2,
3.5, 3.6
Adafruit Feather
M4

ARM Cortex M4 32-bit

64 - 256
KiloByte

Simple Logger
Peak Finder
Full
Implementation
up to XX Hz

8 Chapter 2. Index

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

Method 2: Look at the processor

Look to see if you can find any information on there. Usually if it says “Atmel” it will be an 8-bit RISC and you will
find the type in the table above. If it says “ARM” or “Cortex”, you can also find the chip in the table above. If you find
markings like this:

That likely means you have an ARM Cortex chip on the board.

If this doesn’t help, you can google the number printed on the chip and see what comes up.

Method 4: Talk to me Contact me at P.vanGent@tudelft.nl and show me a picture of the board and/or its name.

2.2 Implementations

Several implementations are available, depending on the goal you want to achieve. This page describes them in detail.
If you’re unsure which to pick, take a look at the Quickstart Guide.

Each implementation may be available for different chipsets. The requirements are always mentioned with each
implementation. If you don’t know what you have, take a look at the section “What board do I have?” in the quickstart
to get help with that.

have different options and characteristics. This section describes them as best as possible. The implementations are
split into AVR (Arduino, and other 8-bit Atmel chipsets), and ARM (Teensy and other boards using ARM (Cortex) or
other 32-bit chipsets).

General note: When using the SD versions, install the SDFat library from Greiman first: https://github.com/greiman/
SdFat

2.2. Implementations 9

mailto:P.vanGent@tudelft.nl
https://github.com/greiman/SdFat
https://github.com/greiman/SdFat

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

2.2.1 Simple Logger

The simple logger implementation functions as a basic data logging device with highly precise timing. It utilizes
hardware interrupt timers so that the chosen sampling rate is reliably maintained throughout the logging process. This
differs from for example logging solutions using linux-boards (such as Raspberry Pi), pc-based logging systems, or
indeed many Arduino versions out there, where timing is usually done through software timers and therefore often not
precise at all . See here for more information on hardware timers.

Board type Available? Notes
Arduino Yes All except ATTiny based
Teensy Yes All versions
Other Yes

Requires >700 bytes RAM
SD version requires 512 bytes extra
for buffering
Sampling rate dependent on chip
speed
Tested up to 2KHz on 16MHz 328p

Settable options available in the code:

// -------------------- User Settable Variables --------------------
int8_t hrpin = 0; //Whatever analog pin the sensor is hooked up to
int8_t scale_data = 1; /*Uses dynamic scaling of data when set to 1, not if set to 0 \

sampling speed over 1500Hz not recommended when scaling data
on 8-bit AVR (e.g. Arduino)*/

int8_t mode = 0; /*Speed mode. \
0 means the "sample_rate" speed will be used \
1 means custom. Custom sampling rate is set through Serial after

→˓connect.\
See documentation for details. */

int16_t sample_rate = 1500; /*should be 4Hz or more, over 2KHz on AVR not recommended.
When using adaptive scaling: over 1.5KHz not recommended

→˓on AVR.
Higher speeds attainable on 32-bit chipsets.
Please see documentation for suggested limits and

→˓theoretical limits*/

• hrpin: the pin you connected the sensor to. By default it is set to 0, meaning Analog-0 (often called A0 on the
board pinout).

• scale_data: Whether to use adaptive scaling, see Adaptive Input Amplitude Scaling. Set to ‘1’ to enable adaptive
scaling, set to ‘0’ to disable.

• mode: the logging mode, indicating if you want a predefined sampling rate, or want to set it at boot. If set to
‘0’, whatever value is set in “sample_rate” will be adhered to.

• sample_rate: the sample rate to adhere to when mode is set to 0.

USB version

The USB logger starts when a serial connection is made to the device. It is meant to be used in connection with a
computer to log heart rate. There is an example Python file supplied that shows how to do so using PySerial. When

10 Chapter 2. Index

http://www.paulvangent.com/2018/03/28/hardware-interrupts-are-not-that-scary/

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

set to mode 6, once a serial connection is established the logger will request a logging speed and wait for a reply,
otherwise it will just start logging once a serial connection is made.

SD Version

Note that this SD version has been moved to the folder experimental on the repository, while I investigate reports
of slowdowns and missed datapoints with some SD card types.

The SD logger starts as soon as power is applied to it. If no SD card is present or there is an error writing to the card,
the default board light (pin 13) turns on and stays on. It flashes while writing data. “mode” is not available on SD
version.

2.2.2 Peak Finder

The Peak Finder implementation logs heart rate data, analyses it real-time to identify peaks, and returns the peak
positions + RR-intervals. It can also be set to output the raw signal as well. On 8-bit AVR implementations the
sampling rate is limited by the available RAM used for buffering. It uses adaptive scaling and error correction described
in Background - Algorithm functioning.

Board type Available? Notes
Arduino Yes All except ATTiny based
Teensy Yes

All versions, implementation with
settable sampling rate coming soon

Other Yes

Requires >900 bytes RAM*
SD version requires 512 bytes extra
for buffering
Sampling rate dependent on chip
speed

* RAM is dependent on sample rate, as a higher sample rate will expand the size of the used buffers.

// -------------------- User Settable Variables --------------------
int8_t hrpin = 0; //Whatever analog pin the sensor is hooked up to
const int16_t sample_rate = 250; //up to 250Hz tested on the 328p. Not enough RAM for
→˓more than ~320.
int8_t report_hr = 1; //if 1, reports raw heart rate and peak threshold data as well,
→˓else set to 0 (default 0)
float max_bpm = 180; //The max BPM to be expected, used in error detection (default
→˓180)
float min_bpm = 45; //The min BPM to be expected, used in error detection (default 45)

• hrpin: the pin you connected the sensor to. By default it is set to 0, meaning Analog-0 (often called A0 on the
board pinout).

• sample_rate: sample rate to use for raw signal collection and peak detection. On the 8-bit AVR (Arduino)
it is tested up to 300Hz. I would recommend caution when going over 250Hz, as stability over 250Hz is not

2.2. Implementations 11

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

explicitly tested. There is a theoretical maximum of 325Hz based on available RAM. On the ARM chip it is safe
to go up to 1KHz. A future update will expand the ARM abilities.

• report_hr: Set this to ‘1’ to have the logger also output the raw heart rate signal and moving average.

• max_bpm: The maximum BPM to expect, used as a first estimation of peak position accuracy.

• min_bpm: The minimum BPM to expect, used as a first estimation of peak position accuracy.

USB version

The USB logger AVR starts when a serial connection is made to the device (The ARM version starts when power is
applied regardless of serial status). It is meant to be used in connection with a computer to log peak positions and
RR-intervals (and raw heart rate if set to output). There is an example Python file supplied that shows how to do so
using PySerial. The peak finder runs at a settable sampling rate. Over 250Hz is not tested. On the 328p-chip the
theoretical limit is 320Hz based on available RAM buffers, but stability above 250Hz is not guaranteed.

SD Version

Note that this SD version has been moved to the folder experimental on the repository, while I investigate reports
of slowdowns and missed datapoints with some SD card types.

The SD logger starts as soon as power is applied to it. If no SD card is present or there is an error writing to the card,
the default board light (pin 13) turns on and stays on. It flashes while writing data.

2.2.3 Time Series Analysis

This implementation is a basic heart rate analysis toolkit for both AVR and ARM chipsets. It functions like the peak
detector, but will also output the described under Time-series every beat. For now the logger is locked at 100Hz, which
makes it a lot less accurate than the ARM full implementation!

By default it will output only RR-interval of the last two peaks, and the absolute position in samples-since-start of the
last detected peak.

Sample rate will be made settable in the next update.

// -------------------- User Settable Variables --------------------
int8_t hrpin = 0; //Whatever analog pin the sensor is hooked up to
int8_t Verbose = 0; //Whether to report measures + description (1) or just measures
→˓(0); See docs.
int8_t report_hr = 0; //if 1, reports raw heart rate and peak threshold data as well,
→˓else set to 0 (default 0)
int8_t thresholding = 0; //Whether to use thresholding, can cause incorrect
→˓rejections in conditions of high variability
float max_bpm = 180; //The max BPM to be expected, used in error detection (default
→˓180)
float min_bpm = 45; //The min BPM to be expected, used in error detection (default 45)

• hrpin: the pin you connected the sensor to. By default it is set to 0, meaning Analog-0 (often called A0 on the
board pinout).

• Verbose: If set to 0, variables are output in CSV format, a descriptive output is given including the variable
names.

– CSV format = “bpm,ibi,sdnn,sdsd,rmssd,pnn20,pnn50”

12 Chapter 2. Index

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

– Verbose looks like this:

1090,2679 //first is RR-value, second is peak position in samples-since-start
bpm: 66.91
ibi: 896.67
sdnn: 87.69
sdsd: 55.75
rmssd: 96.69
pnn20: 0.85
pnn50: 0.65

Note that the SD logger does not have the Verbose option.

• report_hr: Set this to ‘1’ to have the logger also output the raw heart rate signal and moving average.

• max_bpm: The maximum BPM to expect, used as a first estimation of peak position accuracy.

• min_bpm: The minimum BPM to expect, used as a first estimation of peak position accuracy.

Board type Available? Notes
Arduino Yes All Except ATTiny based
Teensy Yes All versions
Other Yes

Requires >1050 bytes of RAM
SD version requires 512 bytes extra
for buffering
Sampling rate fixed @100Hz for
now

USB version

The USB logger AVR starts when a serial connection is made to the device (The ARM version starts when power is
applied regardless of serial status). It is meant to be used in connection with a computer. There is an example Python
file supplied that shows how to do so using PySerial. The peak finder runs at a fixed 100Hz rate. The next update
will introduce settable sampling rate

SD Version

Note that this SD version has been moved to the folder experimental on the repository, while I investigate reports
of slowdowns and missed datapoints with some SD card types.

The SD logger starts as soon as power is applied to it. If no SD card is present or there is an error writing to the card,
the default board light (pin 13) turns on and stays on. It flashes while writing data.

2.2.4 Full Implementation

This implementation mirrors the full Python implementation on a Teensy (ARM Cortex-based) board and makes it
real-time. The logger collects 20 seconds of heart rate data, and at the end of each measurement period outputs both
the time-serie and frequency-series heart rate measures.

2.2. Implementations 13

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

For now the sampling rate is fixed at 100Hz. An update is being worked on that will make it settable. The Frequency
Measures that are output rely on a squared FFT to estimate the periodogram, which is not a good estimator. It gives
an indication, but I would not recommend using the frequency measures for scientific use yet. In a future version
Welch’s method will be implemented.

Board type Available? Notes
Arduino No Amount of RAM too limited for re-

quired buffers
Teensy Yes

All ARM-based versions except
Teensy LC,
meaning 3.1, 3.2, 3.5, 3.6

Other Yes

Requires >30 Kilobytes of RAM
SD version requires 512 bytes extra
for buffering
Sampling rate fixed @100Hz for
now

USB version

The USB logger starts when power is applied regardless of serial status. It is meant to be used in connection with a
computer. There is an example Python file supplied that shows how to do so using PySerial. The analysis suite
runs at a fixed 100Hz rate. A future update will introduce settable sampling rate

SD Version

The SD logger starts as soon as power is applied to it. If no SD card is present or there is an error writing to the card,
the default board light (pin 13) turns on and stays on. It flashes while writing data.

2.3 Background - Heart Rate Analysis

A complete description of the algorithm can be found in: <ref embedded paper>.

2.3.1 Background

The Python Heart Rate Analysis Toolkit has been designed mainly with PPG signals in mind. The Raspberry Pi and
the Arduino platforms have enabled more diverse data collection methods by providing affordable open hardware
platforms. This is great for researchers, especially because traditional ECG may be considered to invasive or too
disruptive for experiments.

2.3.2 Measuring the heart rate signal

Two often used ways of measuring the heart rate are the electrocardiogram (ECG) and the Photoplethysmogram (PPG).
Many of the online available algorithms are designed for ECG measurements. Applying an ECG algorithm (like the

14 Chapter 2. Index

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

famous Pan-Tompkins one1) to PPG data does not necessarily make sense. Although both the ECG and PPG are
measures for cardiac activity, they measure very different constructs to estimate it.

The ECG measures the electrical activations that lead to the contraction of the heart muscle, using electrodes attached
to the body, usually at the chest. The PPG uses a small optical sensor in conjunction with a light source to measure
the discoloration of the skin as blood perfuses through it after each heartbeat. This measuring of electrical activation
and pressure waves respectively, leads to very different signal and noise properties, that require specialised tools to
process. This toolkit specialises in PPG data.

Figure 1: a. and b. display the ECG and PPG waveform morphology, respectively. The ECG is divided into distinct
waves (a, I-V), of which the R-wave (a, II) is used for heart beat extraction. With the PPG wave, the systolic peak (b,
I) is used. The plot in c. shows the relationship between ECG and PPG signals.

Most notably in the ECG is the QRS-complex (Fig 1a, I-III), which represents the electrical activation that leads to the
ventricles contracting and expelling blood from the heart muscle. The R-peak is the point of largest amplitude in the
signal. When extracting heart beats, these peaks are marked in the ECG. Advantages of the ECG are that it provides a
good signal/noise ratio, and the R-peak that is of interest generally has a large amplitude compared to the surrounding
data points (Fig 1c). The main disadvantage is that the measurement of the ECG is invasive. It requires the attachment
of wired electrodes to the chest of the participant, which can interfere with experimental tasks such as driving.

The PPG measures the discoloration of the skin as blood perfuses through the capillaries and arteries after each
heartbeat. The signal consists of the systolic peak (Fig 1-b, I), dicrotic notch (II), and the diastolic peak (III). When
extracting heart beats, the systolic peaks (I) are used. PPG sensors offer a less invasive way of measuring heart rate
data, which is one of their main advantages. Usually the sensors are placed at the fingertip, earlobe, or on the wrist

1 Pan, J., & Tompkins, W. J. A simple real-time QRS detection algorithm. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,
BME-32(3), 230–236, 1985. https://doi.org/10.1109/IEMBS.1996.647473

2.3. Background - Heart Rate Analysis 15

https://doi.org/10.1109/IEMBS.1996.647473

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

using a bracelet. Contactless camera-based systems have recently been demonstrated2,3,4. These offer non-intrusive
ways of acquiring the PPG signal. PPG signals have the disadvantages of showing more noise, large amplitude
variations, and the morphology of the peaks displays broader variation (Figure 2b, c). This complicates analysis of the
signal, especially when using software designed for ECG, which the available open source tools generally are.

Figure 2 – The ECG signal (a.) shows a strong QRS complex together with little amplitude variation. The PPG
signal measured simultaneously while the patient is at rest in a hospital bed (b.) shows some amplitude variation
but relatively stable morphology. When measuring PPG in a driving simulator using low-cost sensors (c.), strong
amplitude and waveform morphology variation is visible.

2

Y. Sun, S. Hu, V. Azorin-Peris, R. Kalawsky, and S. Greenwald, “Noncontact imaging photoplethysmography to effectively access pulse rate
variability,” J. Biomed. Opt., vol. 18, no. 6, p. 61205, 2012.

3

M. Lewandowska, J. Ruminsky, T. Kocejko, and J. Nowak, “Measuring Pulse Rate with a Webcam - a Non-contact Method for Evaluating
Cardiac Activity,” in Proceedings of the Federated Conference on Computer Science and Information Systems, 2011, no. January, pp.
405–410.

4

F. Bousefsaf, C. Maaoui, and a. Pruski, “Remote detection of mental workload changes using cardiac parameters assessed with a low-cost
webcam,” Comput. Biol. Med., vol. 53, pp. 1–10, 2014.

16 Chapter 2. Index

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

2.3.3 On the Accuracy of Peak Position

When analysing heart rate, the main crux lies in the accuracy of the peak position labeling being used. When extracting
instantaneous heart rate (BPM), accurate peak placement is not crucial. The BPM is an aggregate measure, which is
calculated as the average beat-beat interval across the entire analysed signal (segment). This makes it quite robust to
outliers.

However, when extracting heart rate variability (HRV) measures, the peak positions are crucial. Take as an example
two often used variability measures, the RMSSD (root mean square of successive differences) and the SDSD (standard
deviation of successive differences). Given a segment of heart rate data as displayed in the figure below, the RMSSD
is calculated as shown. The SDSD is the standard deviation between successive differences.

2.3. Background - Heart Rate Analysis 17

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

Figure 3 - Image displaying the desired peak detection result, as well as the calculation of the RMSSD measure. The
SDSD measure is the standard deviation between successive differences

18 Chapter 2. Index

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

Now consider that two mistakes are possible: either a beat is not detected at all (missed), or a beat is placed at an
incorrect time position (incorrectly placed). These will have an effect on the calculated HRV output measures, which
are highly sensitive to outliers as they are designed to capture the slight natural variation between peak-peak intervals
in the heart rate signal!

To illustrate the problem we have run a few simulations. We took a sample of a heart rate signal which was annotated
manually, and introduced two types of errors:

• We randomly dropped n% of peaks from the signal, than re-ran the analysis considering only intervals between
two peaks where no missing value occurred in between.

• We introduced a random position error (0.1% - 10% of peak position, meaning between about 1ms and 100ms
deviation) in n% of peaks.

• The simulation ran bootstrapped for 10,000 iterations, with values n=[5, 10, 20].

Results show that the effect of incorrect beat placements far outweigh those of missing values. As described earlier,
the instantaneous heart rate (BPM) is not sensitive to outliers, as is shown in the plots as well, where almost no
discernible deviation is visible.

2.3. Background - Heart Rate Analysis 19

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

20 Chapter 2. Index

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

Figure 4 - Results for manually anotated measures (ground truth), and error induction of n% missed beats, as well as
error induction on the detected position of n% beats (random error 0.1% - 10%, or 1-100ms).

Take into consideration that the scale for RMSSD doesn’t typically exceed +/- 130, SDSD doesn’t differ by much.
This means that even a few incorrectly detected peaks are already introducing large measurement errors into the
output variables. The algorithm described here is specifically designed to handle noisy PPG data from cheap sensors.
The main design criteria was to minimise the number of incorrectly placed peaks as to minimise the error introduced
into the output measures.

More information on the functioning can be found in the rest of the documentation, as well as the embedded paper.
Information on the valiation can be found in5.

2.3.4 References

2.4 Background - Algorithm functioning

This section describes the details of the algorithm functionality.

2.4.1 Pre-processing

Depending on which implementation you select, several pre-processing steps can be applied.

Adaptive Input Amplitude Scaling

This feature is available on all implementations. It can be turned on by setting the flag “adaptivescale” in the “user
settable variables” section to 0. The 8-bit AVR boards (Arduino) will be restricted in sampling rate when using adaptive
scaling, since it relies on 16- and 32-bit computations, which run slower on 8-bit systems. The ARM (Teensy, 32-bit)
boards can handle high sampling rates without issue.

The adaptive scaling funcions in periods of 2 seconds. At the end of each 2-second period the signal minimum and
maximum are determined over the preceding period. The signal in the next period is scaled using these values. This
accomodates changes in signal amplitude.

In the PPG signal, amplitude is influenced mostly by the position where the signal is measured: areas with less
capillaries show less perfusion-discoloration and thus produce a weaker signal. Area’s like the fingertip and earlobe
show strong signals, especially in younger to middle-aged individuals with no history of heavy smoking. Furthermore,
low-frequency amplitude changes occur over time due to changes in for example blood pressure, or vasoconstriction
in response to (internal or external) stressors. Adaptive scaling also accomodates instances where reduced blood
perfusion leads to a lower signal amplitude baseline, such as in the elderly or long-term smokers.

While not as powerful as the adaptive moving average used in the other implementations, the adaptive signal scaling
is still quite powerful as shown on the figure below:

5 van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2018). “Heart Rate Analysis for Human Factors: Development and Validation of an
Open Source Toolkit for Noisy Naturalistic Heart Rate Data.“ In proceedings of the Humanist 2018 conference, 2018, pp.173-17

2.4. Background - Algorithm functioning 21

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

Image showing result of the real-time AVR implementation in different conditions. In the first part (I.), the signal is
measured at the fingertip. A period of sensor disconnect occurs (II.) while moving the sensor to a new measurement
location. In the final segment (III.) the signal is measured on the cheek, where signal amplitude is much weaker. The
adaptive scaling kicks in after the first two low-amplitude beats (IV.) to stabilize amplitude and allow further analysis.

The following image shows a signal recorded at the top of the wrist, a location where typically PPG sensors record a
very low amplitude signal. Two recordings are displayed below, one made without adaptive scaling (top) and one with
(bottom).

As you can see it makes quite a difference. Keep in mind that it is not a magic bullet: noise will scale as well, meaning
that the lower the amplitude of the original signal, generally the more noise you’ll find in the scaled recording.

22 Chapter 2. Index

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

2.4.2 Peak detection & Error Detection

Two types of peak detection are available, one real-time using adaptive scaling, and one using an adaptive threshold
similar to the Python implementation. The latter one is only available on ARM (Teensy) boards due to RAM demands
made by the required buffers.

Adaptive Scaling

When comparing the AVR implementations to the full ARM or Python implementations, the first thing to note is
that there is no adaptive moving average in the AVR version. The main reason is that AVR chips have very limited
RAM, so the use of buffers required for the adaptive moving average is not feasible. In stead, the AVR implmentation
implements adaptive signal scaling as discussed above.

In the case of adaptive scaling, peak detection functions with a fixed moving average that is computed on-the-fly for
each datapoint read from the sensor. Whenever the signal exceeds the moving average, it is stored in a “region of
interest” buffer until it dips below the moving average again. The peak is then identified in the region of interest
and marked. This process is similar to the adaptive threshold used in the Python version, but in stead of moving the
threshold (which requires too much RAM to buffer the signal first), it attempts to standardise the amplitude over time.

Adaptive Threshold

The adaptive threshold is similar to what is discussed in the Python version documentation. Limitations in the available
RAM mean that sampling rate and size of the total segment of the analysed signal are more limited however. The
adaptive thresholding implementation is only available on the Teensy 3.1, 3.2, 3.5 and 3.6. The 3.5 and 3.6 have
enough RAM (128k, 256k) to allow for faster sampling speeds than the 3.1 and 3.2 (64k).

It functions as described in the Python documentation. Click here to go to the page.

Error Detection

Error-detection functions in three stages:

1. The RR-interval with the previously marked peak is computed and evaluated whether it falls into to the expected
BPM range (settable under “user settable variables”).

2.4. Background - Algorithm functioning 23

https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/algorithmfunctioning.html#peak-detection
https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/algorithmfunctioning.html#peak-detection
https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/algorithmfunctioning.html#peak-detection

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

2. The RR-interval is compared to the previous RR-interval. It is not allowed to deviate more than 350ms, other-
wise it is ignored.

3. Thresholds are computed based on the mean of the last 20 RR-intervals. Thresholds are determined as RR_mean
+/- (30% of RR_mean, with minimum value of 300) (+ or - for upper and lower threshold, respectively). If
the RR-interval exceeds one of the thresholds, it is ignored. This is the same as the thresholding used in the
Python version

2.4.3 Calculation of Measures

All measures are computed on the detected and accepted peaks in the segment. When RR-intervals are used in
computation, only the intervals created by two adjacent, accepted, peaks are used. Whenever differences in RR-
intervals are required (for example in the RMSSD), only intervals between two adjacens RR-intervals, which in turn
are created by three adjacent, accepted, peaks are used. This ensures that any rejected peaks do not inject measurement
error in the subsequent measure calculations.

Time-series

Time series measurements are computed from detected peaks. The output measures are:

• beats per minute (BPM)

• interbeat interval (IBI)

• standard deviation of RR intervals (SDNN)

• standard deviation of successive differences (SDSD)

• root mean square of successive differences (RMSSD)

• proportion of successive differences above 20ms (pNN20)

• proportion of successive differences above 50ms (pNN50)

• median absolute deviation of RR intervals (MAD)

Frequency Domain

Frequency domain measures computed are:

• low-frequency, frequency spectrum between 0.05-0.15Hz (LF)

• high-frequency, frequency spectrum between 0.15-0.5Hz (HF)

• the ration high frequency / low frequency (HF/LF)

The measures are computed from the PSD (Power Spectral Density), which itself is estimated using either FFT-based,
Periodogram-based, or Welch-based methods. The default is Welch’s method.

2.5 Development

2.5.1 Release Notes

V0.3

• Included AVR Logger Version

24 Chapter 2. Index

https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/algorithmfunctioning.html#peak-rejection
https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/algorithmfunctioning.html#peak-rejection

Python Heart Rate Analysis Toolkit Documentation, Release 0.8

• Included AVR Logger with Hampel filtering

• Included AVR Peak detector with error rejection and automatic scaling

2.5.2 Questions

contact me at P.vanGent@tudelft.nl

2.5. Development 25

mailto:P.vanGent@tudelft.nl

	Note on using it in scientific research
	Index
	Quickstart Guide
	Where to begin?
	What board do I have?

	Implementations
	Simple Logger
	Peak Finder
	Time Series Analysis
	Full Implementation

	Background - Heart Rate Analysis
	Background
	Measuring the heart rate signal
	On the Accuracy of Peak Position
	References

	Background - Algorithm functioning
	Pre-processing
	Peak detection & Error Detection
	Calculation of Measures

	Development
	Release Notes
	Questions

