

Welcome to ELIXIR Data Transfer’s documentation!

ELIXIR [https://www.elixir-europe.org/] is a distributed infrastructure for
life-science information. As part of the H2020 project ELIXIR-Excelerate [https://www.elixir-europe.org/about-us/how-funded/eu-projects/excelerate]
to accelerate the implementation of ELIXIR, the ELIXIR Compute Platform [https://www.elixir-europe.org/platforms/compute] task 4.3.3 Data Storage and
Transfers has investigated, tested and piloted different methods to move
data between sites, compute facilities and users’ local environments. These
pages contain findings, recommendations and instructions for different
scenarios related to data transfers.

[image: _images/elixir.png]
[image: _images/excelerate-logo.png]

Introduction

	Introduction and Overview

Use case-based documentation

I want to…

	deploy a storage endpoint

	GridFTP installation instructions for ELIXIR use

	GridFTP Servers and Clients with Ansible

	move data

	… to a cloud instance (user to cloud)

	Docker image for cloud data ingestion [https://github.com/nmb/ready-to-go]

	… between workstations (user to user)

	FilePizza [https://file.pizza/] (WebRTC in browser)

	ShareDrop [https://www.sharedrop.io/] (WebRTC in browser)

	Magic wormhole [https://magic-wormhole.readthedocs.io/] (command line application)

	FileSender [https://filesender.org/] (web service)

	… from a central repository to a local resource, and keep the mirror up to date

	Reference Data Set Distribution Service [https://docs.google.com/document/d/1DR4YcKVb0HTq-V6r-5lfEhwz8VPRoPl44uAOL4Fzq7Y/edit#heading=h.gbf4xn8cmekk]

	Dat - a protocol for sharing data between computers [https://docs.datproject.org/docs/intro]

Introduction and Overview

ELIXIR [https://www.elixir-europe.org/], the European collaboration for life
science information, is not only funded by the member countries, in the form of
membership fees and in-kind contributions, but also with a H2020 grant from the
European Commission. The grant, called ELIXIR-Excelerate, was awarded in 2012
and is a 4-year project to build up ELIXIR as an infrastructure.

Background

ELIXIR is a distributed organization with a hub in Hinxton, England. A large
part of the ELIXIR activities are shaped around 5 different platforms (Compute [https://www.elixir-europe.org/platforms/compute], Interoperability [https://elixir-europe.org/platforms/interoperability], Tools [https://elixir-europe.org/platforms/tools], Data [https://elixir-europe.org/platforms/data] and Training [https://elixir-europe.org/platforms/training]). Each platform develops and
provides services for the life science community. In order to provide
useful services, ELIXIR also has user communities [https://elixir-europe.org/communities], which are focused on scientific
areas. In the Excelerate grant, there are four user communities (or use cases,
as they are called in the grant application): marine metagenomics, plant
genotypes, human data and rare disease.

The Compute Platform is divided into working groups responsible for different
subtasks. In this document, we try to give an overview on how we have been
working on the data transfer task in the ELIXIR Compute
Platform.

Collecting requirements and making plans

At the start of the Excelerate project, we started planning the compute
platform by communicating with the use cases about their requirements
for technical services. This information was then compiled and
reorganized into a document, the ELIXIR Technical Architecture [http://drive.google.com/file/d/0B0KXZdVao0kqUE9BbXVrc3ZLY1E/view], which is
revised annually. In this document, we have collated and translated common
elements for IT services into so-called technical use cases (TUCs).

Upon reviewing the requirements, and taking the level of funding into
consideration, it became apparent that we could not spend any resources
developing new tools or technologies. Instead, our strategy in the
compute platform is to identify, integrate and deploy best-of-breed
technologies that can fulfill the requirements from the communities.
This is not a bad thing, as this forces us to utilize the efforts from
e-infrastructures, from other scientific disciplines, and from the
commercial sector.

Sub task: Data Storage and Transfers

In the sub task “Data Storage and Transfers” we have been asked to develop
services for four TUCs: data transfers, network storage, data distribution, and
a data/PID registry. Here, we focus on data transfers, which in spite of being
an old problem [https://xkcd.com/949/], often is a stumble block for large
scale data analysis.

Bulk transfers

When it comes to data transfers, we really mean bulk
transfers of large data volumes. Smaller transfers are really not a
problem, as it can be achieved with common software and protocols thanks
to mature tools, and the fantastic academic networks, coordinated by
GÉANT [https://www.geant.org/], that we have access to. However, for
transfers on the terra- and peta-byte scale, performance make a substantial
difference in transfer time, and we need to use the best tools available.

Second, due to the heterogeneous and complex landscape of data
producers, providers, centers, processing facilities and scientists, we
need to be technology and protocol agnostic, and also – in order to
have any chance of uptake – propose non-invasive solutions that are
reasonably easy to deploy and maintain. We also aim to provide a service
that is as simple as possible (but not simpler); i.e. we aim to provide
a service that can move bits from one place to another reliably, and
with high performance - preferrably using free software.

When it comes to large scale transfers over long distances, http/(s)ftp are
not viable options [https://fasterdata.es.net/data-transfer-tools/say-no-to-scp/]. While there
are multiple commercial providers
and proprietary tools (e.g. Aspera, Globus Transfer, …) the de facto
standard for bulk transfers in academia is gridftp [https://en.wikipedia.org/wiki/GridFTP], which is being used extensibly at
CERN, PRACE, XSEDE, NERSC, etc. The protocol is an
extension of ftp that have some useful features:

	parallel transfers

	third-party transfers

	checksums

	resumable transfers

	encryption

	sync

In 2017, Globus [https://www.globus.org/] announced that they will no longer
maintain the open source Globus Toolkit [http://toolkit.globus.org/], which
include server and client software for gridftp-based transfers. Fortunately,
there is now a community effort in place, the Grid community Forum [https://gridcf.org/], that will keep the software maintained for the time
being.

Getting high performance using free software used to be something of a
black art, but with the advent of self-tuning tcp parameters in the
Linux network stack, good results can be obtained without virtually any
manual work. In fact, with a high-bandwidth connection, disk I/O often
end up as the bottleneck in the transfer (which of course can be
optimized further by using solid state disks and/or striping on the end
points, but that is a whole other story).

Managed transfers

When working with large scale transfers, it is advantageous to have a service
that can carry out the transfer, confirm integrity using checksums, and keep
logs of the activities. This is useful not only because you can have a central
place to monitor the transfer jobs, but also because it is then possible to
submit a transfer job from your laptop, shut it down and return later.
Furthermore, a dedicated transfer service can at least partly move the task of
optimizing performance from end users to IT staff with expert knowledge.

To this end, we have deployed a pilot instance of File Transfer Service 3 [http://fts.web.cern.ch/] (fts3), which is developed at CERN, where it is
being used to distribute large volumes of experimental data world-wide.

fts3 is REST [https://en.wikipedia.org/wiki/Representational_state_transfer]
service with support for multiple protocols (e.g. https, gridftp, S3), and no
extra configuration is needed at the storage endpoints. Third-party transfers
are used when possible, otherwise they are relayed by the fts3 server. The fts3
software is well designed, and the code is clean and readable. The architecture
also allows for horizontal scaling, so that more instances can be deployed if
needed.

On top of fts3, we have deployed a pilot web service [https://fts3.du2.cesnet.cz/] that provides an easy-to-use interface for
submitting and monitoring the transfers.

AAI integration

Services that read from and write to storage systems most often need to
have a system of authentication and authorization. In ELIXIR we have a
well-functioning AAI system where users can obtain an ELIXIR identity
that can be connected to identity providers such as eduGAIN [https://edugain.org/] or google id. Service providers can then use several
different methods to authenticate users, e.g. SAML and OAuth2.

When it comes to the transfer services that we are testing, the AAI
layer is based on Public Key Infrastructure [https://en.wikipedia.org/wiki/Public_key_infrastructure] (PKI). This is a
mature and battle tested technology. However, obtaining and handling
certificates has also proven to be a large hurdle for users – in particular
the life science community, which is less accustomed to the sometimes archaic
command line utilities involved.

Our approach is to rely on the PKI technology, but to avoid exposing
users to certificates. For this to work, we rely on a credential
translation service (CTS) called rcauth [http://rcauth.eu/], which is part
of the AARC project [https://aarc-project.eu/]. The CTS allows users to
obtain so-called proxy certificates by authenticating to a web portal. These
proxy certificates, which can be thought of as short-lived tickets, can then be
used when communicating with transfer and storage service.

Current status and the road ahead

We now have all the building blocks needed for carrying out large scale data
transfers. Future work in this area will to some extent also take place in the
European Open Science Cloud [https://www.eosc-hub.eu/], where there is a
life science project called EOSC-Life [https://elixir-europe.org/news/eosc-life-start].

GridFTP installation instructions for ELIXIR use

ELIXIR Excelerate WP4

Harri Salminen/CSC, 2016

This document covers an example installation of a standard globus
GridFTP server with ELIXIR Demo CA on a Scientific Linux 7 server. For
official and more comprehensive generic installation instructions please
see the gtadmin
manual [http://toolkit.globus.org/toolkit/docs/6.0/admin/install/]

Software installation

First you need to have or install the Scientific Linux 7 server or
similar (Centos/RHEL). This example uses SL7.2 set up as an
infrastructure server. If you have a debian based distribution like
Ubuntu the principles are same but commands differ (yum -> apt-get,
firewall-cmd -> ufw or whatever fw you use etc.). It’s assumed that you
have a running server with standard unix development and management
tools with which you are familiar with.

To start the server installation please go to
http://toolkit.globus.org/toolkit/
and check for the
latest stable release. In this case it was GT6.0 and its download page
listed repositories for various operating systems (Centos/RHEL/SL,
Ubuntu, SuSE,Mac OS X,Windows etc.).

Install the chosen repo with:

wget http://toolkit.globus.org/ftppub/gt6/installers/repo/globus-toolkit-repo-latest.noarch.rpm
rpm -i globus-toolkit-repo-latest.noarch.rpm

Then install Globus packages e.g.:

yum install globus-gridftp globus-gsi globus-data-management-server

You may also want a client tools for in the server or your client host
to test the server with:

yum install globus-data-management-client

Firewall configuration

Open ports for GridFTP control and data connections:

firewall-cmd --add-port=50000-51000/tcp
firewall-cmd --add-port=2811/tcp

Check results:

firewall-cmd --zone=public --list-all
public (default, active)
interfaces: eth0
sources:
services: dhcpv6-client ssh
ports: 2811/tcp 50000-51000/tcp
masquerade: no
forward-ports:
icmp-blocks:
rich rules:

If your public interface is eth1 instead of eth0 change it with:

firewall-cmd --zone=public --change-interface=eth1

You’ll also need to configure the port range to the environment of the
GridFTP server in its startup script. (e.g.
/etc/init.d/globus-gridftp-server):

export GLOBUS_TCP_PORT_RANGE=50000,51000

or if you use xinetd in /etc/xinet.d/gridftp:

env += GLOBUS_TCP_PORT_RANGE=50000,51000

If you also need to restrict source ports there’s variable called
GLOBUS_TCP_SOURCE_RANGE for that purpose.

Access Control

For secure transfers GridFTP uses the Grid Security Infrastructure. It
requires that the client has a valid X.509 certificate which is signed
by a Certificate Authority (CA). Both sides must be able to validate the
certificate via a chain of trust. Who you trust, determines with whom
you can communicate. In this example we trust both the Interoperable
Global Trust Federation (IGTF) [https://www.igtf.net/] used for
building distributed research infrastructures and an ELIXIR demo CA used
for demonstrating the possibilities of the ELIXIR AAI pilot.

The server does also support password and ssh authentication which are
beyond the scope of this document but of course documented in the
manuals if you need them. It even has anonymous mode which is not
recommended. If you need to allow anonymous public access, I’d recommend
you to look at pureftpd and rsync instead.

After verifying the client certificate the server uses the DN in the
certificate to map the user to a local user using a grid map file. What
that entitles the user to do, is up to the configuration of each
particular installation.

Host certificate

Every server needs its own server certificate and key which should be
signed by a Certificate Authority accepted by the clients. How you get
certificates depends on your organization. Many european sites can get
the certificate service via their National Research Network. Like FUNET,
most of them, but not all, are partners in the Terena Certificate
Service [http://www.geant.org/Services/Trust_identity_and_security/Pages/TCS.aspx].

If your organization is not a member in that, check you can get IGTF
recognized certificates via some other trusted source. If not, you may
have to acquire it from some other CA or act as your own CA. The
standard installation does create by default a globus-simple-ca and
associated certificates which are mainly intended for testing and
development. In that case you’ll have to convince all your clients to
install and trust your CA certificates as well which may work in a
limited internal setup you can control but not very well globally
between organizations.

In all cases the procedure is similar. First you create a certificate
request for your server with openssl preferably on the same server. The
-subj parameter is filled according to your local instructions and
identifies your server globally.

openssl req -newkey rsa:4096 -sha256 -nodes -subj
"/C=FI/ST=Uusimaa/L=Espoo/O=CSC/CN=gridftp.bio.nic.funet.fi" -out
gridftp.bio.nic.funet.fi.req -keyout gridftp.bio.nic.funet.fi.key

Then you send the resulting .req file to your local certificate
provider. E.g. an authorized person in your organization that can verify
you and issue the certificate while you wait.

After you get your public host certificate, you should place it in a
file called /etc/grid-security/hostcert.pem.

The private .key file should be named as /etc/grid-security/hostkey.pem
which should be protected from access by others than root. (0600)

You should of course have the domain name in the request configured in
the DNS. Bear in mind that reverse DNS record (PTR) is checked by some
applications (e.g. uberftp) but not all (e.g. globus-url-copy) so try to
keep it synced with the certificate or some applications may not work.
If you plan to use a CNAME for the server you could include the name
mentioned in the reverse record as an alternative name.

Subject: DC=org, DC=terena, DC=tcs, C=FI, ST=Uusimaa, L=Espoo, O=CSC -
Tieteen tietotekniikan keskus Oy, CN=gridftp.bio.nic.funet.fi
...
X509v3 Subject Alternative Name:
DNS:gridftp.bio.nic.funet.fi,DNS:valine.nic.funet.fi

This approach works only if you have authority to request certificates
for all the domains in question from the CA. Usually server certificates
are issued for a period of 1-3 years and you should be the owner of the
domains for that period. For servers with a short lifetime you may need
to figure out a solution by getting your own subdomain (with reverse
DNS) and apply for a wildcard certficate e.g.
*.vm.yourproject.somewhere.net.

IGTF CA certificate list installation

If you use common eScience certificates from terena or other IGTF
compatible certificates Grid Community usually uses you should add trust
anchors which means CA certificate and signing policy files usually kept
in the directory /etc/grid-security/certificates. The easiest way is to
install them from the IGTF repository so they will be automatically kept
up to date. You should also install the Certificate Revocation List
update scripts in cron to be able to revoke certificates that may have
been compromised or for some other reason. Please note that there’s
multiple different IGTF repo versions. Please pick the comprehensive one
detailed under heading Installation which should also contain the CA for
eScience Personal Certificates you probably may wish to use. For more
information please go to https://wiki.egi.eu/wiki/EGI_IGTF_Release.

ELIXIR CILogon integration

The ELIXIR AAI
integration [https://docs.google.com/document/d/1ihb0hH2YJqSCPZS0syVpvAOeQP1HTxdf_XMsZZLe_W0/edit]
is still in R&D phase and is the process of being included in the
official IGTF repository. To enable it at the moment you should do the
following:

cd /etc/grid-security/certificates

wget --no-check-certificate -O /etc/grid-security/certificates/rcauth.eu.pem http://rcauth.eu/pilot/g1/ca/cacert.pem

wget --no-check-certificate -O /etc/grid-security/certificates/rcauth.eu.signing_policy https://rcauth.eu/pilot/rcauth-pilot-ica-g1.signing_policy

export HASH=`openssl x509 -in
/etc/grid-security/certificates/rcauth.eu.pem -noout -hash`

ln -s rcauth.eu.pem $HASH.0

ln -s rcauth.eu.signing_policy $HASH.signing_policy

wget --no-check-certificate -O
/etc/grid-security/certificates/dcaroot.pem
https://ca.dutchgrid.nl/dcaroot/g1/ca/cacert.pem

wget --no-check-certificate -O
/etc/grid-security/certificates/dcaroot.signing_policy
https://ca.dutchgrid.nl/dcaroot/g1/dca-root-g1.signing_policy

export HASH=\`openssl x509 -in
/etc/grid-security/certificates/dcaroot.pem -noout -hash`

ln -s dcaroot.pem $HASH.0

ln -s dcaroot.signing_policy $HASH.signing_policy

Obtaining ELIXIR CILogon VO proxy

To test and demonstrate the ELIXIR AAI infrastructure there’s a portal
via one can get a temporary proxy certificate that validates against the
rcauth.eu CA. First you need to register yourself with your name to the
elixir intranet [https://www.elixir-europe.org/intranet] to get an
ELIXIR id. There’s also a growing number of alternative authenticators
available on the vo
proxy [https://elixir-cilogon-mp.grid.cesnet.cz/vo-portal/] login
page.

After that you can go to the demo portal, press the vo-proxy button and
you should end up in
a page that has the temporary proxy certificate and key behind a
show/hide link.

Please cut/paste a copy of the encoded certificates and private key to
your client machine in a file /tmp/x509up_uUID with permissions 0600.
UID would be the user under which you are going to run the GridFTP
clients.

For real use this step is planned to be automated under the hood in one
way or other during the course of the ELIXIR EXCELERATE WP4. This is
just a proof of concept.

Adding users to Gridmap file

Also take note of the identity line in your certificate which you’ll
need to put in the gridmap file at the server to map the identity to a
local user (here a fictitious Joe User):

grid-mapfile-add-entry -dn ‘/DC=eu/DC=rcauth/DC=rcauth-clients/O=elixir-europe.org/CN=Joe Use ABCDEFG1234567’ -ln test

For eScience certificates there’s usually at least C, O and CN
attributes and rest vary locally.

After the gridmap procedure the holders of the certificate mentioned in
the file have the same file access rights as the local user it’s mapped
to including usually the root directory.

Limiting access

If you want to further limit access to certain directories you’ll need
additional gridftp configuration options which can be placed in
/etc/gridftp.conf. If you wish, more complex configurations may be split
to files without type (a dot in a filename) to the /etc/gridftp.d/
directory which you must create first yourself.

E.g. to restrict access to only certain directory trees use a setting
like restrict_paths /pub,/home.

If you wish to limit users to their home directories set
use_home_dirs 1.

Chrooting the gridftp server

If you wish you can optionally chroot the whole gridftp server to
particular directory tree
as follows:

mkdir /mnt/gridftp
cd /mnt/gridftp/
globus-gridftp-server-setup-chroot -r /mnt/gridftp/

and add in the gridftp config chroot_path /mnt/gridftp

After that you should have /mnt/gridftp/etc/grid-security/certificates
and other necessary files and directories copied under /mnt/gridftp.
You can the mount whatever data directories you need. And you can use
restrict paths to hide the /etc, /dev and /tmp directories if
you wish. Note that /etc/passwd contains paths for users home
directories that are now relative to the chroot root directory.

NOTE: the server still runs under user root by default even though it
changes to the user mentioned in the gridmap file. If you want to avoid
that and prefer a non-root public server, you can set up a split
configuration where the frontend is running under some other userid and
the data transfer backend nodes as root. See the admin manual for advice
on how to set up split and striped configurations. You’ll need to create
a new user id with suitable environment, write custom startup scripts,
copy keys, assign backend ports etc. so the default configuration for a
single server setup described here is not enough.

Testing the server

After you have set up the server it’s time to test it.

First try to start it either as a standalone daemon:

service globus-gridftp-server start

If it fails, start debugging and reading the manual until it succeeds.
You may want to set a
config parameter debug 1 after which the server doesn’t disconnect but
stays at foreground in debug mode until one request has been served.

The default installation includes a xinetd configuration file in
/etc/xinet.d/gridftp which you
can enable by changing the disable parameter in it to no and reloading
xinetd config. However in that mode you can’t debug it in foreground
mode.

Third option which is also suited for debugging is to run the server
directly from command line. For command line options try

globus-gridftp-server -h

If you have the certificates for the CA set up in your local workstation
and grid proxy initialized either by grid-proxy-init (the normal way) or
by copying the above mentioned proxy
to /tmp directory (the demo way) you should be ready to start.

For testing the simple globus-url-copy tool is used here:

Syntax: globus-url-copy [-help] [-vb] [-dbg] [-r] [-rst] [-s <subject>]
[-p <parallelism>] [-tcp-bs <size>] [-bs <size>]
-f <filename> | <sourceURL> <destURL>
If something fails, add -dbg flag to see where it fails.

List directories

globus-url-copy -list gsiftp://gridftp.bio.nic.funet.fi/
gsiftp://gridftp.bio.nic.funet.fi/
 home/
 pub/

globus-url-copy -list
gsiftp://gridftp.bio.nic.funet.fi/pub/mirrors/ftp.ebi.ac.uk/pub/databases/ensembl/mysql/83/xiphophorus_maculatus_rnaseq_83_1/

gsiftp://gridftp.bio.nic.funet.fi/pub/mirrors/ftp.ebi.ac.uk/pub/databases/ensembl/mysql/83/xiphophorus_maculatus_rnaseq_83_1/

 alt_allele.MYD
 alt_allele.MYI
 …

Copying files

globus-url-copy
gsiftp://gridftp.bio.nic.funet.fi/home/test/RandomMegabyte.bin
Random.bin

mkdir /tmp/test; globus-url-copy -vb
gsiftp://gridftp.bio.nic.funet.fi/pub/mirrors/ftp.ebi.ac.uk/pub/databases/ensembl/mysql/83/xiphophorus_maculatus_rnaseq_83_1/ /tmp/test/

with -vb flag you can get some performance statistics. With -tcp-bs you
can try to increase your TCP buffers if they don’t scale enough
automatically within few seconds.

-p option specifies how many parallel data connections should be used
which may help when window scaling or tcp tuning isn’t a solution.

The -p option seems to automatically use active mode FTP which means
that the server tries to open the data connections to the client and not
vice versa. For that to succeed the destination should have it’s
firewall opened to a range of ports for incoming TCP-connections. So you
may need to set the GLOBUS_TCP_PORT_RANGE=start,end also in the
client and open all firewalls for the range. Finally there’s a -cc
switch which means that you can specify how many parallel ftp clients
for transferring different files you may want to use. Excessive amounts
are not a good idea since you might block out others, try just a few to
start and tune your TCP first if possible.

There’s also a large number of other parameters that are documented in
the man page.

If your transfer speed is not fast enough you should check if it’s
limited by source or destination server and its associated storage or
the network in between.

If you are experiencing problems, you could debug the by adding the
-dbg
flag to your clobus-url-copy command:

globus-url-copy -list -dbg gsiftp://gridftp.bio.nic.funet.fi/

The are also 3rd party transfer tools such as UberfFTP and
gtransfer [https://github.com/fr4nk5ch31n3r/gtransfer] with
multiple functions and a debug option. You should note that UberFTP is
significantly slower than globus-url-copy with smaller files since it
doesn’t seem to reuse the data connections:

uberftp -debug 3 globus.du3.cesnet.cz

If you can’t get the authetication to success, you can check for
possible certificate issues with commands:

grid-cert-diagnostics -g globus.du3.cesnet.cz
grid-proxy-init -verify -debug

Many problems seem to stem from the fact that the certificate your
client is not signed by a CA that is in the
/etc/grid-security/certificates on both ends. Other common issues are
missing or expired CRLs or certificates.

Network performance analysis

For checking the network connection I recommend in addition to the basic
ping and traceroute tools the iperf performance testing tool against
some suitable iperf servers. The command line iperf too can act either
as server or client so it would relatively easy to set up servers at
each site so that one could measure, analyze and tune network issues
independent of storage and gridftp server issues. You can get it along
with documentation from https://iperf.fr/
Version 3 is recommended, it’s easier to use and has more features. Use
version 2 only if there’s no version 3 available. They are not
compatible and use different default ports.

A basic iperf v3 server is started simply with command iperf3 -s. You
only need to open port 5201 for TCP and UDP both in IPv4 and IPv6 (if you
use it). Funet has a dedicated iperf server with a 10Gbit/s link called
iperf.funet.fi. Also iperf-delay50 and iperf-delay150.funet.fi
are available with simulated extra 50ms (trans european) or 150ms
(transatlantic) delay.

Following is an example of a basic performance test between the Cray
XC40 supercomputer called
sisu [https://research.csc.fi/sisu-supercomputer] in the CSC Kajaani
data center which is 7,7 ms away from the FUNET iperf server in Espoo.
Link speed is 10Gbit/s shared with other users as is usually the case.
You may want to repeat tests at different times of day or different
days.

hks@sisu-login3:~> ping iperf.funet.fi
PING iperf.funet.fi (193.166.255.193) 56(84) bytes of data.
64 bytes from iperf.funet.fi (193.166.255.193): icmp_seq=1 ttl=60
time=7.73 ms
64 bytes from iperf.funet.fi (193.166.255.193): icmp_seq=2 ttl=60
time=7.74 ms
hks@sisu-login3:~> traceroute iperf.funet.fi
traceroute to iperf.funet.fi (193.166.255.193), 30 hops max, 40 byte
packets using UDP
1 compnet-gw2.csc.fi (86.50.166.3) 0.407 ms 0.325 ms 0.299 ms
2 rr2-lsc2.csc.fi (86.50.160.14) 7.943 ms 7.808 ms 7.806 ms
3 lsc2-lsc1.csc.fi (86.50.160.4) 7.898 ms 7.828 ms 7.742 ms
4 lsc1-csc6.csc.fi (86.50.160.0) 7.690 ms 7.660 ms 7.630 ms
5 iperf.funet.fi (193.166.255.193)(N!) 7.692 ms (N!) 7.745 ms (N!) 7.663
ms

hks@sisu-login3:~> iperf3 -c iperf.funet.fi
Connecting to host iperf.funet.fi, port 5201
[4] local 86.50.166.23 port 51444 connected to 193.166.255.193 port
5201
[ID] Interval Transfer Bandwidth Retr Cwnd
[4] 0.00-1.00 sec 12.9 MBytes 108 Mbits/sec 0 242 KBytes
[4] 1.00-2.00 sec 96.2 MBytes 807 Mbits/sec 0 1.80 MBytes
[4] 2.00-3.00 sec 381 MBytes 3.20 Gbits/sec 0 3.82 MBytes
[4] 3.00-4.00 sec 414 MBytes 3.47 Gbits/sec 0 3.87 MBytes
[4] 4.00-5.00 sec 421 MBytes 3.53 Gbits/sec 0 3.87 MBytes
[4] 5.00-6.00 sec 420 MBytes 3.52 Gbits/sec 0 3.89 MBytes
[4] 6.00-7.00 sec 421 MBytes 3.53 Gbits/sec 0 3.90 MBytes
[4] 7.00-8.00 sec 425 MBytes 3.57 Gbits/sec 0 3.90 MBytes
[4] 8.00-9.00 sec 424 MBytes 3.55 Gbits/sec 0 3.90 MBytes
[4] 9.00-10.00 sec 421 MBytes 3.53 Gbits/sec 0 3.91 MBytes
- -
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 3.36 GBytes 2.88 Gbits/sec 0 sender
[4] 0.00-10.00 sec 3.36 GBytes 2.88 Gbits/sec receiver
iperf Done.

Note the scaling up of the TCP windows and buffers in the first few
seconds. Scaling should be on by default, you can check it on linux with

cat /proc/sys/net/ipv4/tcp_window_scaling
1

You can also check the TCP buffer settings and possibly tune them within
reasonable limits. Too large maximum buffers may cause problems with
your other connections. In this case the sisu supercomputer has
reasonable write max of 4MB and receive max of 6MB

cat /proc/sys/net/ipv4/tcp_wmem
4096 16384 4194304
cat /proc/sys/net/ipv4/tcp_rmem
4096 87380 6291456

If you are familiar with the TCP
protocol [https://en.wikipedia.org/wiki/Transmission_Control_Protocol]
and its extensions then you could also use some suitable network
analyzer like tcpdump or wireshark to look deeper in the problem at the
protocol and packet level too.

Storage performance analysis

If network seems to be much faster that your transfers, then the problem
might be in your storage infrastructure. The simple way to check is to
transfer to/from /dev/null or ramdisk like /dev/shm and compare it to
the results from real storage. To test the storage performance you could
first simply use a large enough file and copy it to /dev/null or ramdisk
with for example dd which may give an idea of sequential transfer
speeds. Please note that there may be a huge difference in performance
depending if the file is already in the memory buffers of the server,
disk cache (ram/ssd) or only in real spinning disks possibly used by
others too. To rule that out, in general you should use transfers that
are several times bigger than the largest caches along the way which may
be hard to achieve in some environments.

Also the access patterns, record sizes, number of parallel threads, disk
type etc. affects the performance so for more specialized testing tools
designed for the purpose should be used.

One such tool for unix/linux is the open source
iozone [http://www.iozone.org/].

GridFTP server tuning

The transfers do use server resources like memory, CPU and I/O
especially at high speeds over long latencies. So you may want to limit
the number of concurrent GridFTP connections.

A rule of thumb is that you might need 16MB of memory for network
buffers in both directions of a long delay connection + 2MB for the
server which would set the maximum number of connections available
memory/34. You may need to change the kernel limits too.

To set the limit use the max_connections parameter in the config file
if you are running the server as an independent daemon as in this
example. However, if you are using xinetd, to start the server you can
set the variable instance = <max instances> in the xinetd config.

Another option for tuning is to separate the frontend and backend
processes so that you can have multiple backends for the actual transfer
and only a lightweight nonroot frontend process open to the internet.
This may give a performance boost especially in clusters that can use
multiple different I/O nodes in a striped configuration as well as
increase security.

For more information please refer to the Gridftp admin
guide [http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/gridftp.pdf].

GridFTP Servers and Clients with Ansible

We have created two Ansible roles and an example playbook for the
deployment of GridFTP servers and/or clients. The role will:

	Install globus software and dependencies as needed

	Configure gridftp servers

	Main config in /etc/gridftp.conf

	Directory access restrictions in /etc/gridftp.d

	Host cert/key in /etc/grid-security

	CA certificates in /etc/grid-security/certificates

	Complete management of mappings in
/etc/grid-security/grid-mapfile

	Start the service and enable it at boot

	Open firewall ports if firewalld is detected

	Install fetch-crl and cron jobs on servers to maintain revocation lists

	Install UberFTP of clients

This playbook will also transfer SimpleCA certificates from the server
to all the clients, a step that is only needed if you don’t have access
to a real CA certificate and/or a real host certificate/key, ie when
using Vagrant.

Additionally, a Vagrantfile is provided to launch VirtualBox machines on
a local setup for testing purposes.

Most of the work is based on notes and conversations with Mikael Borg
and Harri Salminen:

	Brief notes on gridftp transfers using proxy certificates from the
ELIXIR CILogon service [https://docs.google.com/document/d/1vDhPU3hgG8xgzf_YrJmza9mbo2FbsjaobxlYWesqY9M]

	GridFTP installation instructions for ELIXIR use [https://docs.google.com/document/d/1IogT-n3nKYCcs03CF1gTKW2jDmF09DK468fUOZplCwU]

Github repositories

	https://github.com/EMBL-EBI-TSI/ansible-playbook-gridftp (version 1.2.0)

	https://github.com/EMBL-EBI-TSI/ansible-gridftp (version 1.2.0)

	https://github.com/EMBL-EBI-TSI/ansible-simpleca (version 1.0.0)

Running the playbook

General instructions can be found in the playbook
repository [https://github.com/EMBL-EBI-TSI/ansible-playbook-gridftp]
and further documentation of the roles can be found in their respective
repositories. In this document we will complete that setup specifically
for ELIXIR with CILogon. We’ll go through three examples:

	Full setup in Vagrant/VirtualBox

	Setting up a GridFTP server

	Adding GridFTP clients

In the following sections we assume you have a working Ansible
environment (see below), cloned the
ansible-playbook-gridftp [https://github.com/EMBL-EBI-TSI/ansible-playbook-gridftp]
repository and installed the role dependencies:

git clone https://github.com/EMBL-EBI-TSI/ansible-playbook-gridftp.git
cd ansible-playbook-gridftp
ansible-galaxy install -r requirements.yml

Adding ELIXIR specifics to the playbook

Before launching servers, to make GridFTP works with ELIXIR’s CA we
first need to add the CA certificate and user mappings to the playbook.

Elixir AAI integration with CILogon

While the integration is still work in progress at Elixir AAI, the
interim solution is to:

	Install rcauth-pilot-ica-g1 and DDCA-Root-G1-CA certificates in
servers and clients. These are already included in the playbook
(group_vars/all/main.yml and
group_vars/gridftp-servers/main.yml).

	Users should get their certificate manually by:

	Sign up for an ELIXIR account if you haven’t already at https://www.elixir-europe.org/intranet.

	Obtain proxy certificate from https://elixir-cilogon-mp.grid.cesnet.cz/vo-portal/ by pressing Get Proxy button.

	Copy the certificate to /tmp/x509up_u1000 with permissions 0600 on the gridftp client host, where 1000 is your user id (id -u).

	Check the proxy certificate with grid-proxy-info.

Issues with CESNET’s certificate at globus.du3.cesnet.cz

We have noticed some authentication problems when connecting to
globus.du3.cesnet.cz. The following workaround is necessary only on
gridftp clients and is already included in the playbook
(group_vars/gridftp-clients/main.yml):

	Add “TERENA SSL CA 3” certificate with the modified signing policy. Download [https://www.terena.org/activities/tcs/repository-g3/TERENA_SSL_CA_3.pem] the certificate and save it in files/TERENA-SSL-CA-3.pem.

	Add “TERENA SSL CA 3” DN to the signing policy of the root DigiCert certificate.

Mappings

We need to let the GridFTP server know how to map DNs to local users.
This is done by listing your mappings in
group_vars/gridftp-servers/main.yml. For example:

gridftp_mappings:
- ln: nobody
dn: /DC=eu/DC=rcauth/DC=rcauth-clients/O=elixir-europe.org/CN=your identity

You can find your DN using grid-proxy-info on a GridFTP client. You can
add as many as needed, but remember to run ansible-playbook on every
change.

Full setup in Vagrant/VirtualBox

Assuming Vagrant and Virtualbox are also installed on the system,
running vagrant up
should bring up a fully functional gridftp server and gridftp client.
The only piece missing is a valid user certificate or proxy. For testing
purposes the Elixir proxy should be sufficient (see “Elixir AAI
integration with CILogon” above). Once that is setup, you can try
copying a file:

Vagrant ssh gridftp-client.local
echo hello > /tmp/hello.txt
globus-url-copy -nodcau file:///tmp/hello.txt
gsiftp://gridftp-server.local/tmp/yeah.txt

Assuming your DN has been added to other gridftp servers, you can run
the script test_endpoints.sh to test bidirectional transfers from each
endpoint listed in the script from your gridftp client:

Vagrant ssh gridftp-client.local
/vagrant/test_endpoints.sh hx-gridftp-test.ebi.ac.uk/tmp/luisg \
 test-gridftp.csc.fi/mnt/gridftp/testaaja/luisg \
 gridftp.bio.nic.funet.fi/home/test/luisg \
 gridftp.bils.se/home/amelie/luisg \
 globus.du3.cesnet.cz/exports/home/luisg

Setting up a GridFTP server

In this section we will deploy a real GridFTP server, which is what most
of you came here to for. We need to do the following changes:

	Setup our inventory

	Simplify playbook by removing plays that only work on gridftp-clients hosts, simpleca, or vagrant.

	Add mappings between DNs and local users (see above).

	Add the host certificate and key

Inventory

We need to tell ansible which machines to target and that is best done
with an inventory. Create a file called production in the current
directory with the following contents (referring your own FQDN):

[gridftp-servers]
my-gridftp.server.com

Simplify playbook

The following plays in site.yml should be enough (with the first play
just there for best practices):

- name: Gather all facts
 hosts: all
 tasks: []
- name: gridftp servers
 hosts: gridftp-servers
 roles:
 - {role: gridftp, gridftp_mode: server}

Host certificate and key

On a real GridFTP server you will need a valid host certificate/key
pair. You should ask your local CA how to obtain these. Once you have
them you might need to manipulate them to convert them to PEM format and
remove the password from the host key. Now they can be referenced in the
variables found in group_vars/gridftp-servers/main.yml and
group_vars/gridftp-servers/vault.yml (see below on how to create this
file). In the following example we will use ansible’s vault to keep the
host key secured. Note that if you don’t want to bother with the vault
at the moment, you can input the value of the host key directly in this
file, but do not push this to any repository because your key would be
compromised.

We start with group_vars/gridftp-servers/main.yml:

gridftp_host_cert: |
 -----BEGIN CERTIFICATE-----
 contents of your certificate
 contents of your certificate
 -----END CERTIFICATE-----
gridftp_host_key: '{{vault_gridftp_host_key}}'

The last line will set the value of the host_key to the one we input in
the secured file. Now we create the vault at
group_vars/gridftp-servers/vault.yml:

ansible-vault --ask-vault-pass create group_vars/gridftp-servers/vault.yml

And enter the following content:

vault_gridftp_host_key: |
 -----BEGIN RSA PRIVATE KEY-----
 contents of your key
 contents of your key
 -----END RSA PRIVATE KEY-----

Running the playbook

Now that all variables are in place, it is time to run ansible:

ansible-playbook -i production -u root site.yml

Ansible will ask you for the password to access your target machine as
root and also the password to access the vault. All this can be
automated by providing paths to files containing a private ssh key that
pairs with a public key deployed to the target machine and another file
that contains the password (in plain text) for the vault. Note to keep
both files secured if you follow this route. For example:

ansible-playbook --private-key=/path/to/ssh.key
--vault-password-file=/path/to/vault/pass -u root site.yml

Adding GridFTP clients

If you need to bootstrap one or more GridFTP clients you can just add
the gridftp clients play in site.yml:

- name: gridftp clients
 hosts: gridftp-clients
 roles:
 - {role: gridftp, gridftp_mode: client}

And if you also want to use the SimpleCA certificates generated by
globus upon install of gridftp, just leave the full site.yml file
intact.

Update the inventory with your gridftp clients:

[gridftp-clients]
my-gridftp.client1.com
my-gridftp.client2.com

Of course you now need to run ansible-playbook (see above).

Installing Ansible, Vagrant and VirtualBox

Vagrant and VirtualBox are better installed using your package manager.
For Ansible, you can also use your package manage, or alternatively I
recommend just cloning from git (remember to source env-setup before
running ansible):

export PROVISION=~/provision
mkdir $PROVISION
cd $PROVISION
git clone git://github.com/ansible/ansible.git --recursive
source $PROVISION/ansible/hacking/env-setup

It is also worth taking the time to configure ansible in a custom
ansible.cfg:

export ANSIBLE_CONFIG=$PROVISION/ansible.cfg
cat <<EOF >$ANSIBLE_CONFIG
[defaults]
vault_password_file = /path/to/vault/pass/file
private_key_file = /path/to/private/key/file
roles_path = vendor/roles:/path/to/ansible/roles
EOF

Note that
ansible-playbook-gridftp [https://github.com/EMBL-EBI-TSI/ansible-playbook-gridftp]
already includes the minimal ansible.cfg configuration to make it work
with this document.

Changes

	1.0.0 (10 May 2016)

	Initial version

	1.1.0 (14 June 2016)

	
	Playbook:
- Workaround for CESNET’s CA issues

	Gridftp role:
- Support certificates from file

	1.2.0 (16 June 2016)

	
	Playbook:
- Include certs needed by Elixir in the repository
- Add script to test endpoints

	Gridftp role:
- Restrict directories in server
- Update revocation lists with fetch-crl
- Install UberFTP on clients

Brief notes on gridftp transfers using proxy certificates from the ELIXIR CILogon service.

Mikael Borg

Feb 2016

Background

I have set up a gridftp endpoint for testing purposes. So far, test transfers have been authenticated using a Terena e-science certificate obtained from my university. Here is a brief description of data transfers authenticated with a proxy certificate obtained from the CIlogon demo portal.

Client-server transfer

In this test, a file is transferred to and from my workstation and a gridftp endpoint. The user is authenticated with an ELIXIR proxy certificate.

On gridftp server

Obtain CA certificate:

$ wget --no-check-certificate -O \
 /etc/grid-security/certificates/ELIXIR-demo.pem \
 https://snf-676811.vm.okeanos.grnet.gr/ca/demoroot.html

Specify certificate signing policy file /etc/grid-security/certificates/ELIXIR-demo.signing_policy with the content (this was just an educated guess):

#
access_id_CA X509 '/O=Grid/OU=GlobusTest/CN=Globus Simple CA for Demo Portal'
pos_rights globus CA:sign
cond_subjects globus '"/O=Grid/OU=GlobusTest/*"'

Create symbolic links based on certificate hash:

$ export HASH=`openssl x509 -in /etc/grid-security/certificates/ELIXIR-demo.pem -noout -hash`
$ cd /etc/grid-security/certificates
$ ln -s ELIXIR-demo.pem $HASH.0
$ ln -s ELIXIR-demo.signing_policy $HASH.signing_policy

Add proxy certificate subject and username to /etc/grid-security/grid-mapfile.

Restart gridftp server.

On workstation:

Obtain proxy certificate from https://elixir-cilogon-mp.grid.cesnet.cz/vo-portal/ by pressing “Get Proxy” button. You need to have an ELIXIR account which you can create by registrating to Intranet (https://www.elixir-europe.org/intranet).

Copy certificate file to /tmp/x509up_u1000 and change permissions to 600 (1000 is my numerical uid).

Check certificate:

$ grid-proxy-info
subject : /O=Grid/OU=GlobusTest/CN=932d5e00216556be236eff3fb858b9b9297b9a02@elixir-europe.org/CN=1272315132/CN=1222112553
issuer : /O=Grid/OU=GlobusTest/CN=932d5e00216556be236eff3fb858b9b9297b9a02@elixir-europe.org/CN=1272315132
identity : /O=Grid/OU=GlobusTest/CN=932d5e00216556be236eff3fb858b9b9297b9a02@elixir-europe.org
type : RFC 3820 compliant impersonation proxy
strength : 2048 bits
path : /tmp/x509up_u1000
timeleft : 8:30:09

Copy file from workstation to gridftp server:

$ globus-url-copy -v -vb -nodcau tmp.txt gsiftp://gridftp.bils.se/home/borg/tmp/tmp.txt
Source: file:///home/borg/tmp/
Dest: gsiftp://gridftp.bils.se/home/borg/tmp/
 tmp.txt

Copy file from gridftp server back to workstation:

$ globus-url-copy -v -vb -nodcau gsiftp://gridftp.bils.se/home/borg/tmp/tmp.txt tmp2.txt

Check that the files are identical:

$ diff tmp.txt tmp2.txt

Third-party transfer

Here, a data transfer between two gridftp endpoints is initiated from my workstation. It is demonstrated that the transfer is not possible without first
* installing the trust anchor of the CILogon certificate authority
* adding the users identity (i.e. certificate subject) to the grid-mapfile that maps certificates to use accounts.

Set up additional gridftp endpoint. Obtain ELIXIR proxy certificate.

	Test without installing CA on new endpoint (should not work):

$ globus-url-copy -v -vb -nodcau gsiftp://gridftp.bils.se/home/borg/tmp/nt.00.tar.gz gsiftp://gridftp.borg.hk/home/borg/tmp/nt.00.tar.gz
Source: gsiftp://gridftp.bils.se/home/borg/tmp/
Dest: gsiftp://gridftp.borg.hk/home/borg/tmp/nt.00.tar.gz

error: globus_ftp_client: the server responded with an error
530 530-globus_xio: Authentication Error
530-OpenSSL Error: s3_srvr.c:3297: in library: SSL routines, function SSL3_GET_CLIENT_CERTIFICATE: no certificate returned
530-globus_gsi_callback_module: Could not verify credential
530-globus_gsi_callback_module: Can’t get the local trusted CA certificate: Cannot find trusted CA certificate with hash 93df451c in /etc/grid-security/certificates
530 End.

	Install CA certificate and try again (should still not work):

$ globus-url-copy -v -vb -nodcau gsiftp://gridftp.bils.se/home/borg/tmp/nt.00.tar.gz gsiftp://gridftp.borg.hk/home/borg/tmp/nt.00.tar.gz
Source: gsiftp://gridftp.bils.se/home/borg/tmp/
Dest: gsiftp://gridftp.borg.hk/home/borg/tmp/nt.00.tar.gz

error: globus_ftp_client: the server responded with an error
530 530-Login incorrect. : globus_gss_assist: Gridmap lookup failure: Could not map /O=Grid/OU=GlobusTest/CN=932d5e00216556be236eff3fb858b9b9297b9a02@elixir-europe.org
530-
530 End.

	Add entry to gridmap-file and retry (should work!):

$ globus-url-copy -v -vb -nodcau gsiftp://gridftp.bils.se/home/borg/tmp/nt.00.tar.gz gsiftp://gridftp.borg.hk/home/borg/tmp/nt.00.tar.gz
Source: gsiftp://gridftp.bils.se/home/borg/tmp/
Dest: gsiftp://gridftp.borg.hk/home/borg/tmp/nt.00.tar.gz

836184904 bytes 78.18 MB/sec avg 80.99 MB/sec inst

error: globus_ftp_client: the server responded with an error
500 500-Command failed. : an end-of-file was reached
500-globus_xio: The GSI XIO driver failed to establish a secure connection. The failure occured during a handshake read.
500-globus_xio: An end of file occurred
500 End.

Test of FTS3 for transfers

Mikael Borg

August 2016

Background

FTS3 [http://fts3-service.web.cern.ch/] is the service responsible
for globally distributing the majority of the Large Hadron Collider
(LHC) data across the Worldwide LHC Computing Grid (WLCG)
infrastructure. It is a low level, multi-protocol data movement service,
responsible for reliable bulk transfer of files from one site to another
while allowing participating sites to control the network resource
usage. A full description is available in the paper FTS3: New Data
Movement Service For WLCG -
IOPscience [http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032081/pdf]
and in the
documentation [http://fts3-docs.web.cern.ch/fts3-docs/].

In addition to effectuating data transfer jobs, the service can also be
used to monitor and log transfer jobs. Users can interact with FTS3
using command line tools, RESTful API calls or a web gui.

Excelerate task 4.3.3 had a meeting with the FTS3 developers in June
2016 to learn more about the service. We decided to do some testing on
the FTS3 instance deployed by CERN,
https://fts3-pilot.cern.ch:8446.

Testing FTS3

Install command-line client

The package fts-tools is available in the EPEL
repository [https://fedoraproject.org/wiki/EPEL] that is compatible
with Red Hat Enterprise Edition/Centos/Scientific Linux. Once the
repository is enabled, the software can be installed by:

yum install fts-tools

The command-line tools have well-written man-pages, and there is also
documentation available online:
http://fts3-docs.web.cern.ch/fts3-docs/docs/cli/cli.html

Create and delegate proxy certificate

The transfer service require a proxy certificate:

grid-proxy-init

Delegate proxy to fts service:

fts-delegation-init -s https://fts3-pilot.cern.ch:8446

In this test, a grid certificate is used to generate proxy certificates,
as ELIXIR proxy certificates are currently not accepted by the fts3
server:

$ fts-delegation-init -v -s https://fts3-pilot.cern.ch:8446 --proxy
/tmp/elixir-proxy

Remaining time for the local proxy is: 228hours and 59 minutes.

Communication problem: SSL connect error

Submit a transfer job

fts-transfer-submit -s https://fts3-pilot.cern.ch:8446
gsiftp://gsiftp.swegrid.se/snic/bils/pub/ADH5_data/md/1u3w_crys/1u3w_nvt1.gro
gsiftp://gridftp.bils.se/home/borg/tmp/1u3w_nvt1.gro

1180d97a-6856-11e6-bfe8-02163e00a17a

Note that the source and destination URL’s are ordinary gridftp
endpoints. The fts service has support for several protocols. The
following job transfers a file via http from the Short Read Archive at
EBI to a gridftp endpoint:

$ fts-transfer-submit -s https://fts3-pilot.cern.ch:8446
http://ftp.sra.ebi.ac.uk/vol1/fastq/SRR741/SRR741952/SRR741952.fastq.gz
gsiftp://gridftp.bils.se/home/borg/tmp/SRR741952.fastq.gz

It is also possible to do bulk transfers by specifying all
source-destination pairs in an input file.

Query transfer job

$ fts-transfer-status --verbose -d -s https://fts3-pilot.cern.ch:8446 -l
1180d97a-6856-11e6-bfe8-02163e00a17a
Using endpoint : https://fts3-pilot.cern.ch:8446
Service version : 3.5.1
Interface version : 3.5.1
Schema version : 1.2.0
Service features : fts3-rest-3.5.1
Client version : 3.4.7
Client interface version : 3.4.7
Request ID: 1180d97a-6856-11e6-bfe8-02163e00a17a
Status: ACTIVE
Client DN: /DC=org/DC=terena/DC=tcs/C=SE/O=Stockholms
universitet/CN=Mikael Borg mborg@su.se
Reason: null
Submission time: 2016-08-22 12:49:15
Files: 1
Priority: 3
VOName: MikaelBorgmborg@su.se@tcs.terena.org
 Active: 1
 Ready: 0
 Canceled: 0
 Finished: 0
 Submitted: 0
 Failed: 0
 Staging: 0
 Started: 0
 Delete: 0

Source:
gsiftp://gsiftp.swegrid.se/snic/bils/pub/ADH5_data/md/1u3w_crys/1u3w_nvt1.gro
Destination: gsiftp://gridftp.bils.se/home/borg/tmp/1u3w_nvt1.gro
State: ACTIVE
Reason:
Duration: -3680938157
Staging: 0
Retries: 0

Additional information using REST API

In addition to the command line tools, it is possible to communicate
with fts3 using its RESTful API. This can give additional information,
such as the transfer rate (in MB/s) and a link to the log file of the
transfer. In the following example, we query a finished job:

$ curl -k -E /tmp/x509up_u505 https://fts3-pilot.cern.ch:8446/jobs/6fe01ef2-6aa1-11e6-a494-02163e00a39b/files

[
 {
 "symbolicname": null,
 "tx_duration": 1.303,
 "pid": 30209,
 "hashed_id": 50397,
 "num_failures": null,
 "log_debug": 0,
 "retry": 0,
 "job_id": "6fe01ef2-6aa1-11e6-a494-02163e00a39b",
 "job_finished": "2016-08-25T08:53:52",
 "wait_timestamp": null,
 "staging_start": null,
 "filesize": 9899611,
 "source_se": "gsiftp:\\/\\/gsiftp.swestore.se",
 "file_state": "FINISHED",
 "start_time": "2016-08-25T08:53:49",
 "activity": "default",
 "file_index": 0,
 "reason": "",
 "wait_timeout": null,
 "file_id": 350669083,
 "error_phase": null,
 "source_surl":
 "gsiftp:\\/\\/gsiftp.swestore.se\\/snic\\/bils\\/pub\\/ADH5_data\\/md\\/1u3w_crys\\/1u3w_nvt1.gro",
 "bringonline_token": null,
 "selection_strategy": "auto",
 "retries": [

],
 "dest_surl":
 "gsiftp:\\/\\/gridftp.bils.se\\/home\\/borg\\/tmp\\/1u3w_nvt1.gro3",
 "internal_file_params": "nostreams:1,timeout:4000,buffersize:0",
 "finish_time": "2016-08-25T08:53:52",
 "dest_se": "gsiftp:\\/\\/gridftp.bils.se",
 "staging_finished": null,
 "user_filesize": 0,
 "file_metadata": null,
 "error_scope": null,
 "transferhost": "fts703.cern.ch",
 "throughput": 7.24559,
 "checksum": null,
 "log_file":
 "\\/var\\/log\\/fts3\\/transfers\\/2016-08-25\\/gsiftp.swestore.se__gridftp.bils.se\\/2016-08-25-0853__gsiftp.swestore.se__gridftp.bils.se__350669083__6fe01ef2-6aa1-11e6-a494-02163e00a39b",
 "agent_dn": null,
 "reason_class": null,
 "vo_name": "MikaelBorgmborg@su.se@tcs.terena.org",
 "recoverable": false
 }
]

Web interfaces

webfts

FTS3 provides several web interfaces for interacting with fts3. The
webfts interface can be used to submit transfer jobs, but requires the
user to paste his/her private key so that it is saved locally in the
browser, and then used to generate proxy certificates. It is then
possible to browse endpoints and initiate data transfers.

Link: https://webfts.cern.ch/

[image: ../_images/image6.png]
Browsing two endpoints:

[image: ../_images/image5.png]
Viewing past transfer jobs:

[image: ../_images/image3.png]
There is ongoing development to have the web interface authenticate via
SAML, and then obtain proxy certificates by making API calls to a
credential translation service. Currently, there is only support for the
CERN Security Token Service (STS). The code is in the ‘kipper’ branch of
webfts:
https://gitlab.cern.ch/fts/webfts/tree/kipper, which in turn requires the software ‘kipper’: https://gitlab.cern.ch/sts/kipper/tree/master.

Ftsmon

Ftsmon is a separate web application where monitoring of jobs can be
achieved with the certificate installed in the browser, but without
entering the private key.

Link:
https://fts3-pilot.cern.ch:8449/fts3/ftsmon

[image: ../_images/image8.png]

Dashboard

The FTS Dashboard gives an overview of transfers across different VO’s
and technologies.

Link:
http://dashb-fts-transfers.cern.ch/ui

Notes

	The FTS3 service seems to fulfill most of the requirements that we
have for an ELIXIR data transfer service: multi-protocol,
monitoring and logging, checksums, API, web gui, …

	The software is free software (Apache License, Version 2.0) and seems
straight-forward to deploy. All components are available in the
RHEL/CENTOS EPEL repository. Installation and configuration
guide [http://fts3-docs.web.cern.ch/fts3-docs/docs/install.html].

	The fts3 development team is very approachable.

	Some development is needed if we want to make the webfts interface
connect to the ELIXIR credential translation service for proxy
certificates.

	It seems like logs of transfers jobs are per default public. This
might be a problem in some cases (e.g. pharma companies that want
to hide what they are working on).

AAI Integration: mapping users

Mikael Borg

Dec 2017

Background

Users of ELIXIR gridftp endpoints are authenticated using X509
certificates. The certificate user identities (subjects) must be mapped
to local accounts. This is done in the configuration file
/etc/grid-security/grid-mapfile.

However, the ELIXIR AAI certificate subjects sometimes change, which
means that the mapping must be kept up to date. This document describes
how to set up automatic user mapping.

In the following it is assumed that a gridftp endpoint already is
deployed.

Set up sync with PERUN

Install package edg-mkgridmap (present in e.g. EPEL repository):

$ yum install -y edg-mkgridmap

Configure edg-mkgridmap with /etc/edg-mkgridmap.conf:

group "vomss://voms1.grid.cesnet.cz:8443/voms/vo.elixir-europe.org/"
AUTO
gmf_local /etc/localgridmap.conf

The first line tells the script to obtain a list of certificate subjects
from ELIXIR PERUN. The second line configures where to store local user
mappings that should be present in the grid-mapfile (e.g. if you have
some other user mapping based on e.g. grid certificates).

Configure user mapping

The AUTO keyword tells edg-mkgridmap to execute the local script
/usr/libexec/edg-mkgridmap/local-subject2user when mapping certificates
to local user accounts. The script is called with each user certificate
subject as argument and is expected to write the local username
associated with the user certificate subject to STDOUT.

Here is a sample script that will map a couple of ELIXIR identities to
local user account ‘heartbeat’, and one ELIXIR identity to local user
‘borg’:

#!/bin/bash
map the following to the heartbeat account:

heartbeaters="Delisa Simonovic\|Amelie Cornelis\|Jinny Chien"
if [[$1 =~ $heartbeaters]]
 then
 echo "heartbeat"
fi
local user
if [[$1 =~ 'Mikael Borg']]
then
 echo "borg"
fi

Note that the script need to be executable.

Testing

It is possible to test the set-up by running edg-mkgridmap without
arguments. The resulting grid-mapfile will then be written to STDOUT.

Note that access to PERUN requires that the server making the connection
has a proper host certificate - letsencrypt certificates are not
accepted. For testing purposes, it is possible to use an ELIXIR proxy
certificate though:

	Obtain ELIXIR proxy certificate from
CILogon [https://elixir-cilogon-mp.grid.cesnet.cz/vo-portal/startRequest]
and save to a file, e.g. cert.txt

	Run edg-mkgridmap in user mode with environment variable
X509_USER_PROXY pointing to your proxy certificate, e.g.:

X509_USER_PROXY=$HOME/cert.txt edg-mkgridmap --usermode

Keep mapping updated via cronjob

Finally, in order to keep the user mapping up to date, run edg-mkgridmap
as a cronjob, e.g. add file /etc/cron.d/edg-mkgridmap.cron with content
(as one line):

17 */2 * * * /usr/sbin/edg-mkgridmap --conf=/etc/edg-mkgridmap.conf
--output=/etc/grid-security/grid-mapfile --safe --cache --quiet

Acknowledgements

Thanks to Michal Procházka for providing necessary information.

Prerequisities to generate RCAuth.eu certificates

If you need to create RCAuth.eu proxy certificates, you have to be a member
of a particular virtual organisation to be able to do so.

Use your ELIXIR credentials to log in the following application and submit
it:
https://perun.elixir-czech.cz/registrar/?vo=elixir&group=EGI:vo.elixir-europe.org

Expect a mail confirmation that your application has been submitted and
later another confirmation that it was accepted. Shortly after this, you’ll
be able to generate proxy certificates in ELIXIR.

Note that membership in this virtual organisation is managed manually.
Primary manager is Steven Newhouse. It can be also approved by Michal
Prochazka.

How to Prepare Documentation

David Antos

May 2018

Where

ELIXIR Data Transfer documentation is published on
http://elixir-data-transfer-docs.readthedocs.io/. Its source codes are kept
on https://github.com/david-antos/elixir-data-transfer-docs. When changes
are pushed to GitHub, Read the Docs published version gets regenerated
automatically.

How

reStructuredText

The documentation is preferrably written in reStructuredText format. Using
Markdown is also possible, but it is much less standardised. For good
reasons to prefer reStructuredText, see
http://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/.

	If you’re new to reStructuredText, there are some docs for you:

	
	reStructuredText Primer [http://docutils.sourceforge.net/docs/user/rst/quickstart.html] is a good start

	Quick reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html] for quick reference

	Full Specification [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] is good when strange things happen

	reStructuredText and Sphinx Cheat Sheet [https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html] is a good and concise reference

Please note that reStructuredText is extremely picky to text
indentation. If you run into trouble, check your indentation first.

Necessary local software

	You’ll need

	
	git

	any text editor

	(optional but recommended) Sphinx [http://www.sphinx-doc.org/] will
allow you to generate the documentation locally

Writing new documentation/article

Kindly add a folder to the repository for a new article to keep it neat.
Write the documentation (using .rst file suffix is recommended). Make a
link to the documentation from index.rst.

If you have Sphinx installed, you can prepare local preview of your docs.
Just run

make html

(or a windows bat equivalent) in the main folder and point your browser to
_build/html/index.html. Or any other format you like.

Please note: to keep things simple, we use built-in Sphinx style for local
html output. It differs from the style on the Read the Docs site. The reason
is not to complicate things beyond necessary, you’d have to install the
Read the Docs style locally.

Tips and tricks

If you’re unlucky enough to have your documentation in Google Docs or any
other format (even lacking proper logical markup), you may try Pandoc [http://pandoc.org/] to convert it.

Initial conversion of this group’s documentation in Google Docs has been
produced by exporting to docx, converting according to Mpei’s Blog [https://peintinger.com/?p=365] and heavily edited by hand.

Working with Git repository

For the time being, there is no urge for a strict “editorial process” to be
put in place. The core team members of data transfer may have write access
to the GitHub repository. Please keep in mind that committing to the
repository directly rebuilds the documentation on the public website. The
branch-to-be-published is “master”. You are therefore advised to push
material suitable for public viewing (it doesn’t have to necessarily be
finished, of course) and compilable. Check your work locally or at least
check the public website after pushing changes. Use a branch for
development.

Ask David or any other collaborator to grant you access to the repository
(including your GitHub identity to this request speeds things up).

If you are an outside contributor or if you feel you’d prefer your
documentation to be extensively reviewed before publishing, use the “fork
and pull”
model. Fork the repository, create a branch, do your stuff, and create a
pull request. Refer to
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
if you need to get familiar with the process.

Contacts

For write access to the GitHub repo, requirements to add plugins (keep it
reasonable, please), change the config of Read the Docs, please contact
David Antos (david (dot) antos (atsymbol) cesnet.cz).

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/elixir-logo.png
EIM

_static/down-pressed.png

_static/down.png

_static/file.png

_static/minus.png

_images/image6.png
Credentials delegation »

The private RSA key can be obtained from the p12 certiicate you have installed in your
browser by using:

‘openssl pkes12-in yourCertp12 -nocerts -nodes | openssi rsa

NOTE: the private key WILL NOT BE TRANSMITTED ANYWHERE. s only used locally

(within the user's browser) to generate the proxies needed fo have access fo the FTS

Private Key

Virtual Organization (VO only if VOMS credentials are required fo access the endpoint)

Please contact the support if you wish more Virtual Organizations o be supported

_images/image8.png
Transfer '6fe01ef2-6aa1-11e6-a494-02163e00a39b’ FINISHED

2 Submitted by '/DC=0rg/DC=terena/DC=tcs/C=SE/O=Stockholms universitet/CN=Mikael Borg mborg@su.se’
22 \0: MikaelBorgmborg@su.se@tcs.terena.org

2 Delegation ID: 87 2f4cecfc3 886! & Received by fts702.cern.ch
© Submitted time: 2016-08-25T08:53:48 X Overwiite flag:
© Job finished: 2016-08-25T08:53:52 © Reuse sessions: N
* Priority: 3 @ Cancel flag:
& Bring online: -1 O pin lifetime: -1
Metadata:
null
Total size Done submission time Start time Running time Avg. file throughput current job throughput
9.44 MiB 9.44 MiB 2016-08-25T08:53:48 2016-08-25T08:53:49 (+1s) 3 s 7.25 MB/s -

Showing 1to 1 out of 1

SUBMITTED | DELETE | REAI NOT_USED

First | Previous | 1 Next | Last

File 1 File State File Size Throughput Remaining Start Time Finish Time Staging Start Staging End

+ 350669083 FIN

9.44 MiB 7.25 MB/s B 2016-08-25T08:53:49 2016-08- 25T08:53:52 E Log
gsiftp://gsiftp.swestore.se/snic/bils/pub/ADHS_data/md/ludw_crys/ludw_nvtl.gro

& gsiftp://gridftp.bils.se/home/borg/tmp/lusw_nvtl.gro3

_images/image3.png
Job ID Submit Time

1005 1fe8-6ab6-11e6-b204-02163e008cfa 2016-08-25T11:21:46

Flie ID. Transter Host Source URL

265648 fts3-webfts.cern.ch gsiftp:/Igsiftp. swestore.se/snic/bils/pub/ADHS_data

Jmd/1udw_crys/1udw.pdb.

Source SE

lgsittp.swestore s

Dest. URL

‘gsiftp:/Igriditp.bils. se/home/borg/tmp/ 1u3w.pdb

Dest. SE
gsiftp:/Igriditp.bils.se
Throughput
Flle Size (Bytes) (MB/s) Start Time.
921689 4395 2016-08-25
11:21:49

End Time

2016-08-25

11:

:53

_images/image5.png
anase ——— anase
Grid Storage Element Grid Storage Element

gsittp://gsittp.swestore. se/snic/bils/pub/ADHS_data/md/1udw_crys/

L overwrite Flles

/compare Checksums

-

Name Mode Date Size —_— Name Mode Date Size
0.

B 1udw.pdb SrWerw-r- 18 Dec 15 900.1 kB 25 Aug 10:43 40kB
B 1u3w_box.gro SrWerw-r- 18 Dec 15 313.4kB 25 Aug 08:23 40kB
B 1u3w_em.edr -rw-rw-r- 18 Dec 15 144.5kB B 10Gdat Wrer 12 May 08:48 93 0GB
B 1udw_em.gro SrWerw-r- 18 Dec 15 6.2MB u3w_md1.xtc W 18 Aug 07:30 20GB
B 1udw_em.tpr SrWerw-r- 18 Dec 15 5.0 MB u3w_md2.xte 23 May 10:56 20GB

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to ELIXIR Data Transfer’s documentation!

 		
 Introduction and Overview

 		
 Background

 		
 Collecting requirements and making plans

 		
 Sub task: Data Storage and Transfers

 		
 Bulk transfers

 		
 Managed transfers

 		
 AAI integration

 		
 Current status and the road ahead

_images/elixir.png
EIM

_static/up.png

_images/excelerate-logo.png
E?félerate

_static/up-pressed.png

