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ELI5 is a Python library which allows to visualize and debug various Machine Learning models using unified API. It
has built-in support for several ML frameworks and provides a way to explain black-box models.
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CHAPTER 1

Overview

1.1

Installation

ELI5 works in Python 2.7 and Python 3.4+. Currently it requires scikit-learn 0.18+. You can install ELIS5 using pip:

’pip install elib

or using:

’conda install -c¢ conda-forge elib

1.2

Features

ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides
support for the following machine learning frameworks and packages:

scikit-learn. Currently ELIS allows to explain weights and predictions of scikit-learn linear classifiers and
regressors, print decision trees as text or as SVG, show feature importances and explain predictions of decision
trees and tree-based ensembles.

Pipeline and FeatureUnion are supported.

ELIS5 understands text processing utilities from scikit-learn and can highlight text data accordingly. It also allows
to debug scikit-learn pipelines which contain HashingVectorizer, by undoing hashing.

Keras - explain predictions of image classifiers via Grad-CAM visualizations.

XGBoost - show feature importances and explain predictions of XGBClassifier, XGBRegressor and xg-
boost.Booster.

LightGBM - show feature importances and explain predictions of LGBMClassifier and LGBMRegressor.
CatBoost - show feature importances of CatBoostClassifier and CatBoostRegressor.

lightning - explain weights and predictions of lightning classifiers and regressors.



https://github.com/TeamHG-Memex/eli5
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e sklearn-crfsuite. ELIS allows to check weights of sklearn_crfsuite. CRF models.
ELIS also implements several algorithms for inspecting black-box models (see Inspecting Black-Box Estimators):

e TextExplainer allows to explain predictions of any text classifier using LIME algorithm (Ribeiro et al., 2016).
There are utilities for using LIME with non-text data and arbitrary black-box classifiers as well, but this feature
is currently experimental.

* Permutation Importance method can be used to compute feature importances for black box estimators.

Explanation and formatting are separated; you can get text-based explanation to display in console, HTML version
embeddable in an [Python notebook or web dashboards, JSON version which allows to implement custom rendering
and formatting on a client, and convert explanations to pandas DataFrame objects.

1.3 Basic Usage

There are two main ways to look at a classification or a regression model:
1. inspect model parameters and try to figure out how the model works globally;
2. inspect an individual prediction of a model, try to figure out why the model makes the decision it makes.

For (1) ELIS provides e115. show_weights () function; for (2) it provides e 11 5. show_prediction () func-
tion.

If the ML library you’re working with is supported then you usually can enter something like this in the IPython
Notebook:

import elib
eli5.show_weights (clf)

and get an explanation like this:

Weight Feature

+11.493 <BIAS>
+6.280 X
-14.140

Note: Depending on an estimator, you may need to pass additional parameters to get readable results - e.g. a vectorizer
used to prepare features for a classifier, or a list of feature names.

Supported arguments and the exact way the classifier is visualized depends on a library.

To explain an individual prediction (2) use e11i5. show_prediction () function. Exact parameters depend on a
classifier and on input data kind (text, tabular, images). For example, you may get text highlighted like this if you’re
using one of the scikit-learn vectorizers with char ngrams:

the vatican library recently made a tour of the i can anyone helpime in fillding

To learn more, follow the Tutorials, check example IPython notebooks and read documentation specific to your frame-
work in the Supported Libraries section.
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1.4 Why?

For some of classifiers inspection and debugging is easy, for others this is hard. It is not a rocket science to take
coefficients of a linear classifier, relate them to feature names and show in an HTML table. ELI5 aims to handle not
only simple cases, but even for simple cases having a unified API for inspection has a value:

* you can call a ready-made function from ELI5 and get a nicely formatted result immediately;
» formatting code can be reused between machine learning frameworks;

* ‘drill down’ code like feature filtering or text highlighting can be reused;

* there are lots of gotchas and small differences which ELIS5 takes care of;

e algorithms like LIME (paper) try to explain a black-box classifier through a locally-fit simple, interpretable
classifier. It means that with each additional supported “simple” classifier/regressor algorithms like LIME are
getting more options automatically.

1.5 Architecture

In ELI5S “explanation” is separated from output format: eli5.explain weights() and eli5.
explain_prediction () return Explanation instances; then functions from eli5. formatters can be
used to get HTML, text, dict/JSON, pandas DataFrame, or PIL image representation of the explanation.

It is not convenient to do that all when working interactively in IPython notebooks, so there are eli5.
show_weights () and el115.show_prediction () functions which do explanation and formatting in a single
step.

Explain functions are not doing any work by themselves; they call a concrete implementation based on
estimator type. So e.g. eli5.explain weights() calls eli5.sklearn.explain weights.
explain_linear _classifier _weights() if sklearn.linear_model.LogisticRegression
classifier is passed as an estimator.

1.4. Why? 5
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CHAPTER 2

Tutorials

Note: This tutorial is intended to be run in an IPython notebook. It is also available as a notebook file here.

2.1 Debugging scikit-learn text classification pipeline

scikit-learn docs provide a nice text classification tutorial. Make sure to read it first. We’ll be doing something similar
to it, while taking more detailed look at classifier weights and predictions.

2.1.1 1. Baseline model

First, we need some data. Let’s load 20 Newsgroups data, keeping only 4 categories:

from sklearn.datasets import fetch_20newsgroups

categories = ['alt.atheism', 'soc.religion.christian',
'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups (

subset="train',
categories=categories,
shuffle=True,
random_state=42
)
twenty_test = fetch_20newsgroups (
subset="test',
categories=categories,
shuffle=True,
random_state=42

A basic text processing pipeline - bag of words features and Logistic Regression as a classifier:



https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/Debugging%20scikit-learn%20text%20classification%20pipeline.ipynb
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from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear model import LogisticRegressionCV
from sklearn.pipeline import make_pipeline

vec = CountVectorizer ()
clf = LogisticRegressionCV ()
pipe = make_pipeline(vec, clf)

pipe.fit (twenty_train.data, twenty_train.target);

We’re using LogisticRegressionCV here to adjust regularization parameter C automatically. It allows to compare
different vectorizers - optimal C value could be different for different input features (e.g. for bigrams or for character-
level input). An alternative would be to use GridSearchCV or RandomizedSearchCV.

Let’s check quality of this pipeline:

from sklearn import metrics

def print_report (pipe) :
y_test = twenty_test.target
y_pred = pipe.predict (twenty_test.data)
report = metrics.classification_report (y_test, y_pred,
target_names=twenty_test.target_names)
print (report)
print ("accuracy: ".format (metrics.accuracy_score(y_test, y_pred)))

print_report (pipe)

precision recall fl-score support

alt.atheism 0.93 0.80 0.86 319
comp.graphics 0.87 0.96 0.91 389

sci.med 0.94 0.81 0.87 396
soc.religion.christian 0.85 0.98 0.91 398
avg / total 0.90 0.89 0.89 1502

accuracy: 0.891

Not bad. We can try other classifiers and preprocessing methods, but let’s check first what the model learned using
eli5.show _weights () function:

import eli5
eli5.show_weights (clf, top=10)

The table above doesn’t make any sense; the problem is that eli5 was not able to get feature and class names from the
classifier object alone. We can provide feature and target names explicitly:

# elib.show_weights(clf,
# feature_names=vec.get__feature_names (),
# target_names=twenty_test.target_names)

The code above works, but a better way is to provide vectorizer instead and let eli5 figure out the details automatically:

eli5.show_weights (clf, vec=vec, top=10,
target_names=twenty_test.target_names)

This starts to make more sense. Columns are target classes. In each column there are features and their weights.
Intercept (bias) feature is shown as <BIAS> in the same table. We can inspect features and weights because we’re

8 Chapter 2. Tutorials
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using a bag-of-words vectorizer and a linear classifier (so there is a direct mapping between individual words and
classifier coefficients). For other classifiers features can be harder to inspect.

Some features look good, but some don’t. It seems model learned some names specific to a dataset (email parts, etc.)
though, instead of learning topic-specific words. Let’s check prediction results on an example:

eli5.show_prediction(clf, twenty_test.datal[0], vec=vec,
target_names=twenty_test.target_names)

What can be highlighted in text is highlighted in text. There is also a separate table for features which can’t be
highlighted in text - <BIAS> in this case. If you hover mouse on a highlighted word it shows you a weight of this
word in a title. Words are colored according to their weights.

2.1.2 2. Baseline model, improved data

Aha, from the highlighting above it can be seen that a classifier learned some non-interesting stuff indeed, e.g. it
remembered parts of email addresses. We should probably clean the data first to make it more interesting; improving
model (trying different classifiers, etc.) doesn’t make sense at this point - it may just learn to leverage these email
addresses better.

In practice we’d have to do cleaning yourselves; in this example 20 newsgroups dataset provides an option to remove
footers and headers from the messages. Nice. Let’s clean up the data and re-train a classifier.

twenty_train = fetch_20newsgroups (
subset="train',
categories=categories,
shuffle=True,
random_state=42,
remove=['headers', 'footers'],

)

twenty_test = fetch_20newsgroups (
subset="test',
categories=categories,
shuffle=True,
random_state=42,

remove=['headers', 'footers'],
)
vec = CountVectorizer ()
clf = LogisticRegressionCV ()

pipe = make_pipeline(vec, clf)
pipe.fit (twenty_train.data, twenty_train.target);

We just made the task harder and more realistic for a classifier.

print_report (pipe)

precision recall fl-score support

alt.atheism 0.83 0.78 0.80 319
comp.graphics 0.82 0.96 0.88 389

sci.med 0.89 0.80 0.84 396
soc.religion.christian 0.88 0.86 0.87 398
avg / total 0.85 0.85 0.85 1502

accuracy: 0.852

2.1. Debugging scikit-learn text classification pipeline 9
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A great result - we just made quality worse! Does it mean pipeline is worse now? No, likely it has a better quality on
unseen messages. It is evaluation which is more fair now. Inspecting features used by classifier allowed us to notice a
problem with the data and made a good change, despite of numbers which told us not to do that.

Instead of removing headers and footers we could have improved evaluation setup directly, using e.g. GroupKFold
from scikit-learn. Then quality of old model would have dropped, we could have removed headers/footers and see
increased accuracy, so the numbers would have told us to remove headers and footers. It is not obvious how to split
data though, what groups to use with GroupKFold.

So, what have the updated classifier learned? (output is less verbose because only a subset of classes is shown - see
“targets” argument):

eli5.show_prediction(clf, twenty_test.datal[0], vec=vec,
target_names=twenty_test.target_names,
targets=['sci.med'])

Hm, it no longer uses email addresses, but it still doesn’t look good: classifier assigns high weights to seemingly
unrelated words like ‘do’ or ‘my’. These words appear in many texts, so maybe classifier uses them as a proxy for
bias. Or maybe some of them are more common in some of classes.

2.1.3 3. Pipeline improvements

To help classifier we may filter out stop words:

vec = CountVectorizer (stop_words='english')

clf = LogisticRegressionCV ()

pipe = make_pipeline(vec, clf)

pipe.fit (twenty_train.data, twenty_train.target)

print_report (pipe)

precision recall fl-score support

alt.atheism 0.87 0.76 0.81 319
comp.graphics 0.85 0.95 0.90 389

sci.med 0.93 0.85 0.89 396
soc.religion.christian 0.85 0.89 0.87 398
avg / total 0.87 0.87 0.87 1502

accuracy: 0.871

eli5.show_prediction(clf, twenty_test.datal0], vec=vec,
target_names=twenty_test.target_names,
targets=['sci.med'])

Looks better, isn’t it?
Alternatively, we can use TF*IDF scheme; it should give a somewhat similar effect.

Note that we’re cross-validating LogisticRegression regularisation parameter here, like in other examples (LogisticRe-
gressionCV, not LogisticRegression). TF*IDF values are different from word count values, so optimal C value can be
different. We could draw a wrong conclusion if a classifier with fixed regularization strength is used - the chosen C
value could have worked better for one kind of data.

10 Chapter 2. Tutorials
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from sklearn.feature_extraction.text import TfidfVectorizer

vec TfidfVectorizer ()

clf = LogisticRegressionCV ()

pipe = make_pipeline(vec, clf)

pipe.fit (twenty_train.data, twenty_train.target)

print_report (pipe)

precision recall fl-score support

alt.atheism 0.91 0.79 0.85 319
comp.graphics 0.83 0.97 0.90 389

sci.med 0.95 0.87 0.91 396
soc.religion.christian 0.90 0.91 0.91 398
avg / total 0.90 0.89 0.89 1502

accuracy: 0.892

eli5.show_prediction(clf, twenty_test.datal0], vec=vec,
target_names=twenty_test.target_names,
targets=['sci.med'])

It helped, but didn’t have quite the same effect. Why not do both?

vec = TfidfVectorizer (stop_words='english')

clf = LogisticRegressionCV ()

pipe = make_pipeline(vec, clf)

pipe.fit (twenty_train.data, twenty_train.target)

print_report (pipe)

precision recall fl-score support

alt.atheism 0.93 0.77 0.84 319
comp.graphics 0.84 0.97 0.90 389

sci.med 0.95 0.89 0.92 396
soc.religion.christian 0.88 0.92 0.90 398
avg / total 0.90 0.89 0.89 1502

accuracy: 0.893

eli5.show_prediction(clf, twenty_test.datal0], vec=vec,
target_names=twenty_test.target_names,
targets=['sci.med'])

This starts to look good!

2.1.4 4. Char-based pipeline

Maybe we can get somewhat better quality by choosing a different classifier, but let’s skip it for now. Let’s try other
analysers instead - use char n-grams instead of words:

2.1. Debugging scikit-learn text classification pipeline 11
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vec = TfidfVectorizer (stop_words='english', analyzer='char',
ngram_range=(3,5))

clf LogisticRegressionCV ()

pipe = make_pipeline(vec, clf)

pipe.fit (twenty_train.data, twenty_train.target)

print_report (pipe)

precision recall fl-score support

alt.atheism 0.93 0.79 0.85 319
comp.graphics 0.81 0.97 0.89 389

sci.med 0.95 0.86 0.90 396
soc.religion.christian 0.89 0.91 0.90 398
avg / total 0.89 0.89 0.89 1502

accuracy: 0.888

eli5.show_prediction(clf, twenty_test.datal[0], vec=vec,
target_names=twenty_test.target_names)

It works, but quality is a bit worse. Also, it takes ages to train.

It looks like stop_words have no effect now - in fact, this is documented in scikit-learn docs, so our
stop_words="‘english’ was useless. But at least it is now more obvious how the text looks like for a char ngram-based
classifier. Grab a cup of tea and see how char_wb looks like:

vec = TfidfVectorizer (analyzer='char wb', ngram_range=(3,5))
clf = LogisticRegressionCV ()

pipe = make_pipeline (vec, clf)

pipe.fit (twenty_train.data, twenty_train.target)

print_report (pipe)

precision recall fl-score support

alt.atheism 0.93 0.79 0.85 319
comp.graphics 0.87 0.96 0.91 389

sci.med 0.91 0.90 0.90 396
soc.religion.christian 0.89 0.91 0.90 398
avg / total 0.90 0.89 0.89 1502

accuracy: 0.894

eli5.show_prediction(clf, twenty_test.datal[0], vec=vec,
target_names=twenty_test.target_names)

The result is similar, with some minor changes. Quality is better for unknown reason; maybe cross-word dependencies
are not that important.

12 Chapter 2. Tutorials
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2.1.5 5. Debugging HashingVectorizer

To check that we can try fitting word n-grams instead of char n-grams. But let’s deal with efficiency first. To handle
large vocabularies we can use HashingVectorizer from scikit-learn; to make training faster we can employ SGDCLas-
sifier:

from sklearn.feature_ extraction.text import HashingVectorizer
from sklearn.linear model import SGDClassifier

vec HashingVectorizer (stop_words='english', ngram_range=(1,2))
clf = SGDClassifier(n_iter=10, random_state=42)

pipe = make_pipeline(vec, clf)

pipe.fit (twenty_train.data, twenty_train.target)

print_report (pipe)

precision recall fl-score support

alt.atheism 0.90 0.80 0.85 319
comp.graphics 0.88 0.96 0.92 389

sci.med 0.93 0.90 0.92 396
soc.religion.christian 0.89 0.91 0.90 398
avg / total 0.90 0.90 0.90 1502

accuracy: 0.899

It was super-fast! We’re not choosing regularization parameter using cross-validation though. Let’s check what model
learned:

eli5.show_prediction(clf, twenty_test.datal[0], vec=vec,
target_names=twenty_test.target_names,
targets=['sci.med'])

Result looks similar to CountVectorizer. But with HashingVectorizer we don’t even have a vocabulary! Why does it
work?

eli5.show_weights (clf, vec=vec, top=10,
target_names=twenty_test.target_names)

Ok, we don’t have a vocabulary, so we don’t have feature names. Are we out of luck? Nope, eli5 has an answer for
that: TnvertableHashingVectorizer. It can be used to get feature names for HahshingVectorizer without
fitiing a huge vocabulary. It still needs some data to learn words -> hashes mapping though; we can use a random
subset of data to fit it.

from eli5.sklearn import InvertableHashingVectorizer
import numpy as np

ivec = InvertableHashingVectorizer (vec)
sample_size = len(twenty_train.data) // 10
X_sample = np.random.choice (twenty_train.data, size=sample_size)

ivec.fit (X_sample);

eli5.show_weights (clf, vec=ivec, top=20,
target_names=twenty_test.target_names)

2.1. Debugging scikit-learn text classification pipeline 13
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There are collisions (hover mouse over features with “...”), and there are important features which were not seen in
the random sample (FEATURE]... ]), but overall it looks fine.

“rutgers edu” bigram feature is suspicious though, it looks like a part of URL.

rutgers_example = [x for x in twenty_train.data if 'rutgers' in x.lower ()] [0]
print (rutgers_example)

In article <Apr.8.00.57.41.1993.28246Rathos.rutgers.edu> REXLEX@fnal.gov writes:
>In article <Apr.7.01.56.56.1993.22824Q@athos.rutgers.edu> shrum@hpfcso.fc.hp.com
>Matt. 22:9-14 'Go therefore to the main highways, and as many as you find
>there, invite to the wedding feast.'...

>hmmmmmm.  Sounds like your theology and Christ's are at odds. Which one am I
>to believe?

Yep, it looks like model learned this address instead of learning something useful.

eli5.show_prediction(clf, rutgers_example, vec=vec,
target_names=twenty_test.target_names,
targets=['soc.religion.christian'])

Quoted text makes it too easy for model to classify some of the messages; that won’t generalize to new messages. So
to improve the model next step could be to process the data further, e.g. remove quoted text or replace email addresses
with a special token.

You get the idea: looking at features helps to understand how classifier works. Maybe even more importantly, it helps
to notice preprocessing bugs, data leaks, issues with task specification - all these nasty problems you get in a real
world.

Note: This tutorial can be run as an IPython notebook.

2.2 TextExplainer: debugging black-box text classifiers

While eli5 supports many classifiers and preprocessing methods, it can’t support them all.

If a library is not supported by eli5 directly, or the text processing pipeline is too complex for eli5, eliS can still help - it
provides an implementation of LIME (Ribeiro et al., 2016) algorithm which allows to explain predictions of arbitrary
classifiers, including text classifiers. e115.11ime can also help when it is hard to get exact mapping between model
coefficients and text features, e.g. if there is dimension reduction involved.

2.2.1 Example problem: LSA+SVM for 20 Newsgroups dataset

Let’s load “20 Newsgroups” dataset and create a text processing pipeline which is hard to debug using conventional
methods: SVM with RBF kernel trained on LSA features.

from sklearn.datasets import fetch_20newsgroups

categories = ['alt.atheism', 'soc.religion.christian',
'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups (
subset="train',

(continues on next page)
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(continued from previous page)

categories=categories,

shuffle=True,

random_state=42,

remove= ('headers', 'footers'),
)
twenty_test = fetch_20newsgroups (

subset="test',

categories=categories,

shuffle=True,

random_state=42,

remove= ('headers', 'footers'),

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.svm import SVC

from sklearn.decomposition import TruncatedSVD

from sklearn.pipeline import Pipeline, make_pipeline

vec = TfidfVectorizer (min_df=3, stop_words='english',
ngram_range= (1, 2))

svd = TruncatedSVD (n_components=100, n_iter=7, random_state=42)

lsa make_pipeline (vec, svd)

clf = SVC(C=150, gamma=2e-2, probability=True)
pipe = make_pipeline(lsa, clf)

pipe.fit (twenty_train.data, twenty_train.target)
pipe.score (twenty_test.data, twenty_test.target)

0.89014647137150471

The dimension of the input documents is reduced to 100, and then a kernel SVM is used to classify the documents.

This is what the pipeline returns for a document - it is pretty sure the first message in test data belongs to sci.med:

def print_prediction (doc):
y_pred = pipe.predict_proba ([doc]) [0]
for target, prob in zip(twenty_train.target_names, y_pred):
print (" ".format (prob, target))

doc = twenty_test.datal[0]
print_prediction (doc)

.001 alt.atheism

.001 comp.graphics

.995 sci.med

.004 soc.religion.christian

O O O O

2.2.2 TextExplainer
Such pipelines are not supported by eli5 directly, but one can use eli5.lime.TextExplainer to debug the
prediction - to check what was important in the document to make this decision.

Create a TextExplainer instance, then pass the document to explain and a black-box classifier (a function which
returns probabilities) to the £1¢ () method, then check the explanation:

2.2. TextExplainer: debugging black-box text classifiers 15
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import eli5
from eli5.lime import TextExplainer

te = TextExplainer (random_state=42)
te.fit (doc, pipe.predict_proba)
te.show_prediction (target_names=twenty_train.target_names)

2.2.3 Why it works

Explanation makes sense - we expect reasonable classifier to take highlighted words in account. But how can we be
sure this is how the pipeline works, not just a nice-looking lie? A simple sanity check is to remove or change the
highlighted words, to confirm that they change the outcome:

import re
doc2 = re.sub(r' (recall|kidney|stones|medication|pain|tech)', '', doc, flags=re.I)
print_prediction (doc2)

.065 alt.atheism

.145 comp.graphics

.376 sci.med

.414 soc.religion.christian

O O O O

Predicted probabilities changed a lot indeed.

And in fact, TextExplainer did something similar to get the explanation. TextExplainer generated a lot of
texts similar to the document (by removing some of the words), and then trained a white-box classifier which predicts
the output of the black-box classifier (not the true labels!). The explanation we saw is for this white-box classifier.

This approach follows the LIME algorithm; for text data the algorithm is actually pretty straightforward:
1. generate distorted versions of the text;
2. predict probabilities for these distorted texts using the black-box classifier;

3. train another classifier (one of those eli5 supports) which tries to predict output of a black-box classifier on these
texts.

The algorithm works because even though it could be hard or impossible to approximate a black-box classifier globally
(for every possible text), approximating it in a small neighbourhood near a given text often works well, even with
simple white-box classifiers.

Generated samples (distorted texts) are available in samples__ attribute:

print (te.samples_[0])

As my kidney , isn' any
can
Either they , be ’
to
, — tech to mention ' had kidney
and ,

By default TextExplainer generates 5000 distorted texts (use n_samples argument to change the amount):
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’len(te.samples_)

’5000

Trained white-box classifier and vectorizer are available as vec_ and c1£_ attributes:

’te.vec_, te.clf_

(CountVectorizer (analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1l, 2), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern="'(?u)\b\w+\b', tokenizer=None,
vocabulary=None),

SGDClassifier (alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, 1l1l_ratio=0.15,
learning_rate='optimal', loss='log', n_iter=5, n_jobs=1,
penalty='elasticnet', power_t=0.5,
random_state=<mtrand.RandomState object at 0x10eldcf78>,
shuffle=True, verbose=0, warm_start=False))

2.2.4 Should we trust the explanation?

Ok, this sounds fine, but how can we be sure that this simple text classification pipeline approximated the black-box
classifier well?

One way to do that is to check the quality on a held-out dataset (which is also generated). TextExplainer does
that by default and stores metrics in met rics__ attribute:

’te.metrics_

’{'mean_KL_divergence’: 0.020120624088861134, 'score': 0.98625304704899297}

* ‘score’ is an accuracy score weighted by cosine distance between generated sample and the original document
(i.e. texts which are closer to the example are more important). Accuracy shows how good are ‘top 1’ predictions.

* ‘mean_KL_divergence’ is a mean Kullback—Leibler divergence for all target classes; it is also weighted by
distance. KL divergence shows how well are probabilities approximated; 0.0 means a perfect match.

In this example both accuracy and KL divergence are good; it means our white-box classifier usually assigns the same
labels as the black-box classifier on the dataset we generated, and its predicted probabilities are close to those predicted
by our LSA+SVM pipeline. So it is likely (though not guaranteed, we’ll discuss it later) that the explanation is correct
and can be trusted.

When working with LIME (e.g. via TextExplainer) itis always a good idea to check these scores. If they are not
good then you can tell that something is not right.

2.2.5 Let’s make it fail

By default TextExplainer uses a very basic text processing pipeline: Logistic Regression trained on bag-of-
words and bag-of-bigrams features (see te.clf_ and te.vec_ attributes). It limits a set of black-box classifiers
it can explain: because the text is seen as “bag of words/ngrams”, the default white-box pipeline can’t distinguish
e.g. between the same word in the beginning of the document and in the end of the document. Bigrams help to
alleviate the problem in practice, but not completely.

2.2. TextExplainer: debugging black-box text classifiers 17
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Black-box classifiers which use features like “text length” (not directly related to tokens) can be also hard to approxi-
mate using the default bag-of-words/ngrams model.

This kind of failure is usually detectable though - scores (accuracy and KL divergence) will be low. Let’s check it on
a completely synthetic example - a black-box classifier which assigns a class based on oddity of document length and
on a presence of ‘medication’ word.

import numpy as np

def predict_proba_len(docs):

# nasty predict_proba - the result is based on document length,
# and also on a presence of "medication"
proba = [

[0, 0, 1.0, 0] if len(doc) % 2 or 'medication' in doc else [1.0, 0, 0, 0]
for doc in docs
]

return np.array (proba)

te3 = TextExplainer () .fit (doc, predict_proba_len)
te3.show_prediction(target_names=twenty_train.target_names)

TextExplainer correctly figured out that ‘medication’ is important, but failed to account for “len(doc) % 2”
condition, so the explanation is incomplete. We can detect this failure by looking at metrics - they are low:

’te3.metrics_

’{’mean_KL_divergence': 0.3312922355257879, 'score': 0.79050673156810314}

If (a big if...) we suspect that the fact document length is even or odd is important, it is possible to customize
TextExplainer to check this hypothesis.

To do that, we need to create a vectorizer which returns both “is odd” feature and bag-of-words features, and pass
this vectorizer to TextExplainer. This vectorizer should follow scikit-learn API. The easiest way is to use
FeatureUnion - just make sure all transformers joined by FeatureUnion have get_feature_names ()
methods.

from sklearn.pipeline import make_union
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.base import TransformerMixin

class DocLength (TransformerMixin) :
def fit(self, X, y=None): # some boilerplate

return self

def transform(self, X):

return |
# note that we needed both positive and negative
# feature - otherwise for linear model there won't

# be a feature to show in a half of the cases
[len(doc) % 2, not len(doc) % 2]
for doc in X

def get_feature_names (self) :
return ['is_odd', 'is_even']

vec = make_union (DocLength (), CountVectorizer (ngram_range=(1,2)))
ted TextExplainer (vec=vec) .fit (doc[:-1], predict_proba_len)

(continues on next page)
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(continued from previous page)

print (ted4.metrics_)
te4d.explain_prediction(target_names=twenty_train.target_names)

{'mean_KIL_divergence': 0.024826114773734968, 'score': 1.0}

Much better! It was a toy example, but the idea stands - if you think something could be important, add it to the mix
as a feature for TextExplainer.

2.2.6 Let’s make it fail, again

Another possible issue is the dataset generation method. Not only feature extraction should be powerful enough, but
auto-generated texts also should be diverse enough.

TextExplainer removes random words by default, so by default it can’t e.g. provide a good explanation for a
black-box classifier which works on character level. Let’s try to use TextExplainer to explain a classifier which
uses char ngrams as features:

from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear model import SGDClassifier

vec_char = HashingVectorizer (analyzer='char wb', ngram_range=(4,5))
clf_char = SGDClassifier(loss='log'")

pipe_char = make_pipeline (vec_char, clf_char)
pipe_char.fit (twenty_train.data, twenty_train.target)
pipe_char.score (twenty_test.data, twenty_test.target)

0.88082556591211714

This pipeline is supported by eli5 directly, so in practice there is no need to use TextExplainer for it. We’re using
this pipeline as an example - it is possible check the “true” explanation first, without using TextExplainer, and
then compare the results with TextExplainer results.

eli5.show_prediction(clf_char, doc, vec=vec_char,
targets=['sci.med'], target_names=twenty_train.target_names)

TextExplainer produces a different result:

te = TextExplainer (random_state=42) .fit (doc, pipe_char.predict_proba)
print (te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KIL_divergence': 0.020247299052285436, 'score': 0.92434669226497945}

Scores look OK but not great; the explanation kind of makes sense on a first sight, but we know that the classifier
works in a different way.

To explain such black-box classifiers we need to change both dataset generation method (change/remove individual
characters, not only words) and feature extraction method (e.g. use char ngrams instead of words and word ngrams).

TextExplainer hasanoption (char_based=True) to use char-based sampling and char-based classifier. If this
makes a more powerful explanation engine why not always use it?
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te = TextExplainer (char_based=True, random_state=42)

te.fit (doc, pipe_char.predict_proba)

print (te.metrics_)

te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KIL_divergence': 0.22136004391576117, 'score': 0.55669450678688481}

Hm, the result look worse. TextExplainer detected correctly that only the first part of word “medication” is
important, but the result is noisy overall, and scores are bad. Let’s try it with more samples:

te = TextExplainer (char_based=True, n_samples=50000, random_state=42)

te.fit (doc, pipe_char.predict_proba)

print (te.metrics_)

te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KIL_divergence': 0.060019833958355841, 'score': 0.86048000626542609}

It is getting closer, but still not there yet. The problem is that it is much more resource intensive - you need a lot more
samples to get non-noisy results. Here explaining a single example took more time than training the original pipeline.

Generally speaking, to do an efficient explanation we should make some assumptions about black-box classifier, such
as:

1. it uses words as features and doesn’t take word position in account;
it uses words as features and takes word positions in account;
it uses words ngrams as features;

it uses char ngrams as features, positions don’t matter (i.e. an ngram means the same everywhere);

A

it uses arbitrary attention over the text characters, i.e. every part of text could be potentionally important for a
classifier on its own,;

6. it is important to have a particular token at a particular position, e.g. “third token is X”, and if we delete 2nd
token then prediction changes not because 2nd token changed, but because 3rd token is shifted.

Depending on assumptions we should choose both dataset generation method and a white-box classifier. There is a
tradeoff between generality and speed.

Simple bag-of-words assumptions allow for fast sample generation, and just a few hundreds of samples could be
required to get an OK quality if the assumption is correct. But such generation methods / models will fail to explain a
more complex classifier properly (they could still provide an explanation which is useful in practice though).

On the other hand, allowing for each character to be important is a more powerful method, but it can require a lot of
samples (maybe hundreds thousands) and a lot of CPU time to get non-noisy results.

What’s bad about this kind of failure (wrong assumption about the black-box pipeline) is that it could be impossible to
detect the failure by looking at the scores. Scores could be high because generated dataset is not diverse enough, not
because our approximation is good.

The takeaway is that it is important to understand the “lenses” you’re looking through when using LIME to explain a
prediction.

2.2.7 Customizing TextExplainer: sampling

TextExplaineruses MaskingTextSampleror MaskingTextSamplers instances to generate texts to train
on. MaskingTextSampler is the main text generation class; MaskingTextSamplers provides a way to com-
bine multiple samplers in a single object with the same interface.

20 Chapter 2. Tutorials




ELI5 Documentation, Release 0.11.0

A custom sampler instance can be passed to TextExplainer if we want to experiment with sampling. For example,
let’s try a sampler which replaces no more than 3 characters in the text (default is to replace a random number of
characters):

from eli5.lime.samplers import MaskingTextSampler
sampler = MaskingTextSampler (
# Regex to split text into tokens.
# "." means any single character is a token, i.e.
# we work on chars.
token_pattern='.",

# replace no more than 3 tokens
max_replace=3,

# by default all tokens are replaced;
# replace only a token at a given position.
bow=False,
)
samples, similarity = sampler.sample_near (doc)
print (samples[0])

As I recal from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the ain.

Either thy pass, or they have to be broken up with sound, or they have
to be extracted surgically.

When I was in, the X-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.
