

Welcome to ELI5’s documentation!

[image: PyPI Version]
 [https://pypi.python.org/pypi/eli5][image: Build Status]
 [https://github.com/eli5-org/eli5/actions][image: Code Coverage]
 [https://codecov.io/github/TeamHG-Memex/eli5?branch=master]ELI5 [https://github.com/TeamHG-Memex/eli5] is a Python library which allows to visualize and debug
various Machine Learning models using unified API. It has
built-in support for several ML frameworks and provides a way to
explain black-box models.

	Overview
	Installation

	Features

	Basic Usage

	Why?

	Architecture

	Tutorials
	Debugging scikit-learn text classification pipeline

	TextExplainer: debugging black-box text classifiers

	Explaining XGBoost predictions on the Titanic dataset

	Named Entity Recognition using sklearn-crfsuite

	Explaining Keras image classifier predictions with Grad-CAM

	Supported Libraries
	scikit-learn

	XGBoost

	LightGBM

	CatBoost

	lightning

	sklearn-crfsuite

	Keras

	Inspecting Black-Box Estimators
	LIME

	Permutation Importance

	API
	ELI5 top-level API

	eli5.formatters

	eli5.lightning

	eli5.lime

	eli5.sklearn

	eli5.sklearn_crfsuite

	eli5.xgboost

	eli5.lightgbm

	eli5.catboost

	eli5.permutation_importance

	eli5.keras

	eli5.base

	Contributing
	Making releases

	Changelog
	0.11.0 (2021-01-23)

	0.10.1 (2019-08-29)

	0.10.0 (2019-08-21)

	0.9.0 (2019-07-05)

	0.8.2 (2019-04-04)

	0.8.1 (2018-11-19)

	0.8 (2017-08-25)

	0.7 (2017-07-03)

	0.6.4 (2017-06-22)

	0.6.3 (2017-06-02)

	0.6.2 (2017-05-17)

	0.6.1 (2017-05-10)

	0.6 (2017-05-03)

	0.5 (2017-04-27)

	0.4.2 (2017-03-03)

	0.4.1 (2017-01-25)

	0.4 (2017-01-20)

	0.3.1 (2017-01-16)

	0.3 (2017-01-13)

	0.2 (2016-12-03)

	0.1.1 (2016-11-25)

	0.1 (2016-11-24)

	0.0.6 (2016-10-12)

	0.0.5 (2016-09-27)

	0.0.4 (2016-09-24)

	0.0.3 (2016-09-21)

	0.0.2 (2016-09-19)

	0.0.1 (2016-09-15)

License is MIT.

Overview

Installation

ELI5 works in Python 2.7 and Python 3.4+. Currently it requires
scikit-learn 0.18+. You can install ELI5 using pip:

pip install eli5

or using:

conda install -c conda-forge eli5

Features

ELI5 [https://github.com/TeamHG-Memex/eli5] is a Python package which helps to debug machine learning
classifiers and explain their predictions. It provides support for the
following machine learning frameworks and packages:

	scikit-learn. Currently ELI5 allows to explain weights
and predictions of scikit-learn linear classifiers and regressors,
print decision trees as text or as SVG, show feature importances
and explain predictions of decision trees and tree-based ensembles.

Pipeline and FeatureUnion are supported.

ELI5 understands text processing utilities from scikit-learn and can
highlight text data accordingly. It also allows to debug scikit-learn
pipelines which contain HashingVectorizer, by undoing hashing.

	Keras - explain predictions of image classifiers
via Grad-CAM visualizations.

	XGBoost - show feature importances and explain predictions
of XGBClassifier, XGBRegressor and xgboost.Booster.

	LightGBM - show feature importances and explain predictions
of LGBMClassifier and LGBMRegressor.

	CatBoost - show feature importances of CatBoostClassifier and CatBoostRegressor.

	lightning - explain weights and predictions of lightning
classifiers and regressors.

	sklearn-crfsuite. ELI5 allows to check weights of
sklearn_crfsuite.CRF models.

ELI5 also implements several algorithms for inspecting black-box models
(see Inspecting Black-Box Estimators):

	TextExplainer allows to explain predictions
of any text classifier using LIME algorithm
(Ribeiro et al., 2016). There are utilities for using LIME with non-text
data and arbitrary black-box classifiers as well, but this feature is
currently experimental.

	Permutation Importance method can be used to compute feature
importances for black box estimators.

Explanation and formatting are separated; you can get text-based explanation
to display in console, HTML version embeddable in an IPython notebook
or web dashboards, JSON version which allows to implement custom
rendering and formatting on a client, and convert explanations to pandas
DataFrame objects.

Basic Usage

There are two main ways to look at a classification or a regression model:

	inspect model parameters and try to figure out how the model works
globally;

	inspect an individual prediction of a model, try to figure out why
the model makes the decision it makes.

For (1) ELI5 provides eli5.show_weights() function; for (2)
it provides eli5.show_prediction() function.

If the ML library you’re working with is supported then you usually
can enter something like this in the IPython Notebook:

import eli5
eli5.show_weights(clf)

and get an explanation like this:

[image: _images/weights.png]

Note

Depending on an estimator, you may need to pass additional parameters
to get readable results - e.g. a vectorizer used to prepare features
for a classifier, or a list of feature names.

Supported arguments and the exact way the classifier is visualized depends
on a library.

To explain an individual prediction (2) use eli5.show_prediction()
function. Exact parameters depend on a classifier and on input data kind
(text, tabular, images). For example, you may get text highlighted like this
if you’re using one of the scikit-learn [https://github.com/scikit-learn/scikit-learn] vectorizers with char ngrams:

[image: _images/char-ngrams.png]
To learn more, follow the Tutorials, check example IPython
notebooks [https://github.com/TeamHG-Memex/eli5/tree/master/notebooks]
and read documentation specific to your framework in the
Supported Libraries section.

Why?

For some of classifiers inspection and debugging is easy, for others
this is hard. It is not a rocket science to take coefficients
of a linear classifier, relate them to feature names and show in
an HTML table. ELI5 aims to handle not only simple cases,
but even for simple cases having a unified API for inspection has a value:

	you can call a ready-made function from ELI5 and get a nicely formatted
result immediately;

	formatting code can be reused between machine learning frameworks;

	‘drill down’ code like feature filtering or text highlighting can be reused;

	there are lots of gotchas and small differences which ELI5 takes care of;

	algorithms like LIME
(paper [http://arxiv.org/abs/1602.04938]) try to explain a black-box
classifier through a locally-fit simple, interpretable classifier.
It means that with each additional supported “simple” classifier/regressor
algorithms like LIME are getting more options automatically.

Architecture

In ELI5 “explanation” is separated from output format:
eli5.explain_weights() and eli5.explain_prediction()
return Explanation instances; then functions from
eli5.formatters can be used to get HTML, text, dict/JSON,
pandas DataFrame, or PIL image representation of the explanation.

It is not convenient to do that all when working interactively in IPython
notebooks, so there are eli5.show_weights() and
eli5.show_prediction() functions which do explanation and formatting
in a single step.

Explain functions are not doing any work by themselves; they call
a concrete implementation based on estimator type.
So e.g. eli5.explain_weights() calls
eli5.sklearn.explain_weights.explain_linear_classifier_weights()
if sklearn.linear_model.LogisticRegression classifier is passed
as an estimator.

Tutorials

	Debugging scikit-learn text classification pipeline
	1. Baseline model

	2. Baseline model, improved data

	3. Pipeline improvements

	4. Char-based pipeline

	5. Debugging HashingVectorizer

	TextExplainer: debugging black-box text classifiers
	Example problem: LSA+SVM for 20 Newsgroups dataset

	TextExplainer

	Why it works

	Should we trust the explanation?

	Let’s make it fail

	Let’s make it fail, again

	Customizing TextExplainer: sampling

	Customizing TextExplainer: classifier

	Explaining XGBoost predictions on the Titanic dataset
	1. Training data

	2. Simple XGBoost classifier

	3. Explaining weights

	4. Explaining predictions

	5. Adding text features

	Named Entity Recognition using sklearn-crfsuite
	1. Training data

	2. Feature extraction

	3. Train a CRF model

	4. Inspect model weights

	5. Customization

	6. Formatting in console

	Explaining Keras image classifier predictions with Grad-CAM
	1. Loading our model and data

	2. Explaining our model’s prediction

	3. Choosing the target class (target prediction)

	4. Choosing a hidden activation layer

	5. Under the hood - explain_prediction() and format_as_image()

	6. Extra arguments to format_as_image()

	7. Removing softmax

	8. Comparing explanations of different models

Note

This tutorial is intended to be run in an IPython notebook.
It is also available as a notebook file here [https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/Debugging%20scikit-learn%20text%20classification%20pipeline.ipynb].

Debugging scikit-learn text classification pipeline

scikit-learn docs provide a nice text classification
tutorial [http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html].
Make sure to read it first. We’ll be doing something similar to it,
while taking more detailed look at classifier weights and predictions.

1. Baseline model

First, we need some data. Let’s load 20 Newsgroups data, keeping only 4
categories:

from sklearn.datasets import fetch_20newsgroups

categories = ['alt.atheism', 'soc.religion.christian',
 'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups(
 subset='train',
 categories=categories,
 shuffle=True,
 random_state=42
)
twenty_test = fetch_20newsgroups(
 subset='test',
 categories=categories,
 shuffle=True,
 random_state=42
)

A basic text processing pipeline - bag of words features and Logistic
Regression as a classifier:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegressionCV
from sklearn.pipeline import make_pipeline

vec = CountVectorizer()
clf = LogisticRegressionCV()
pipe = make_pipeline(vec, clf)
pipe.fit(twenty_train.data, twenty_train.target);

We’re using LogisticRegressionCV here to adjust regularization parameter
C automatically. It allows to compare different vectorizers - optimal C
value could be different for different input features (e.g. for bigrams
or for character-level input). An alternative would be to use
GridSearchCV or RandomizedSearchCV.

Let’s check quality of this pipeline:

from sklearn import metrics

def print_report(pipe):
 y_test = twenty_test.target
 y_pred = pipe.predict(twenty_test.data)
 report = metrics.classification_report(y_test, y_pred,
 target_names=twenty_test.target_names)
 print(report)
 print("accuracy: {:0.3f}".format(metrics.accuracy_score(y_test, y_pred)))

print_report(pipe)

 precision recall f1-score support

 alt.atheism 0.93 0.80 0.86 319
 comp.graphics 0.87 0.96 0.91 389
 sci.med 0.94 0.81 0.87 396
soc.religion.christian 0.85 0.98 0.91 398

 avg / total 0.90 0.89 0.89 1502

accuracy: 0.891

Not bad. We can try other classifiers and preprocessing methods, but
let’s check first what the model learned using eli5.show_weights()
function:

import eli5
eli5.show_weights(clf, top=10)

 	

 y=0

top features

 	

 y=1

top features

 	

 y=2

top features

 	

 y=3

top features

 	

 	
 Weight?

 	Feature

 	
 +1.991

 	
 x21167

 	
 +1.925

 	
 x19218

 	
 +1.834

 	
 x5714

 	
 +1.813

 	
 x23677

 	
 +1.697

 	
 x15511

 	
 +1.696

 	
 x26415

 	
 +1.617

 	
 x6440

 	
 +1.594

 	
 x26412

 	

 TextExplainer: debugging black-box text classifiers

Note

This tutorial can be run as an IPython notebook [https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/TextExplainer.ipynb].

TextExplainer: debugging black-box text classifiers

While eli5 supports many classifiers and preprocessing methods, it can’t
support them all.

If a library is not supported by eli5 directly, or the text processing
pipeline is too complex for eli5, eli5 can still help - it provides an
implementation of LIME [http://arxiv.org/abs/1602.04938] (Ribeiro et
al., 2016) algorithm which allows to explain predictions of arbitrary
classifiers, including text classifiers. eli5.lime can also help
when it is hard to get exact mapping between model coefficients and text
features, e.g. if there is dimension reduction involved.

Example problem: LSA+SVM for 20 Newsgroups dataset

Let’s load “20 Newsgroups” dataset and create a text processing pipeline
which is hard to debug using conventional methods: SVM with RBF kernel
trained on
LSA [https://en.wikipedia.org/wiki/Latent_semantic_analysis]
features.

from sklearn.datasets import fetch_20newsgroups

categories = ['alt.atheism', 'soc.religion.christian',
 'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups(
 subset='train',
 categories=categories,
 shuffle=True,
 random_state=42,
 remove=('headers', 'footers'),
)
twenty_test = fetch_20newsgroups(
 subset='test',
 categories=categories,
 shuffle=True,
 random_state=42,
 remove=('headers', 'footers'),
)

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.decomposition import TruncatedSVD
from sklearn.pipeline import Pipeline, make_pipeline

vec = TfidfVectorizer(min_df=3, stop_words='english',
 ngram_range=(1, 2))
svd = TruncatedSVD(n_components=100, n_iter=7, random_state=42)
lsa = make_pipeline(vec, svd)

clf = SVC(C=150, gamma=2e-2, probability=True)
pipe = make_pipeline(lsa, clf)
pipe.fit(twenty_train.data, twenty_train.target)
pipe.score(twenty_test.data, twenty_test.target)

0.89014647137150471

The dimension of the input documents is reduced to 100, and then a
kernel SVM is used to classify the documents.

This is what the pipeline returns for a document - it is pretty sure the
first message in test data belongs to sci.med:

def print_prediction(doc):
 y_pred = pipe.predict_proba([doc])[0]
 for target, prob in zip(twenty_train.target_names, y_pred):
 print("{:.3f} {}".format(prob, target))

doc = twenty_test.data[0]
print_prediction(doc)

0.001 alt.atheism
0.001 comp.graphics
0.995 sci.med
0.004 soc.religion.christian

TextExplainer

Such pipelines are not supported by eli5 directly, but one can use
eli5.lime.TextExplainer to debug the prediction - to check what was
important in the document to make this decision.

Create a TextExplainer instance, then pass the document to explain
and a black-box classifier (a function which returns probabilities) to
the fit() method, then check the explanation:

import eli5
from eli5.lime import TextExplainer

te = TextExplainer(random_state=42)
te.fit(doc, pipe.predict_proba)
te.show_prediction(target_names=twenty_train.target_names)

 y=alt.atheism

 (probability 0.000, score -9.663)

top features

 	
 Contribution?

 	Feature

 	
 -0.360

 	
 <BIAS>

 	
 -9.303

 	
 Highlighted in text (sum)

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

 y=comp.graphics

 (probability 0.000, score -8.503)

top features

 	
 Contribution?

 	Feature

 	
 -0.210

 	
 <BIAS>

 	
 -8.293

 	
 Highlighted in text (sum)

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

 y=sci.med

 (probability 0.996, score 5.826)

top features

 	
 Contribution?

 	Feature

 	
 +5.929

 	
 Highlighted in text (sum)

 	
 -0.103

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

 y=soc.religion.christian

 (probability 0.004, score -5.504)

top features

 	
 Contribution?

 	Feature

 	
 -0.342

 	
 <BIAS>

 	
 -5.162

 	
 Highlighted in text (sum)

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Why it works

Explanation makes sense - we expect reasonable classifier to take
highlighted words in account. But how can we be sure this is how the
pipeline works, not just a nice-looking lie? A simple sanity check is to
remove or change the highlighted words, to confirm that they change the
outcome:

import re
doc2 = re.sub(r'(recall|kidney|stones|medication|pain|tech)', '', doc, flags=re.I)
print_prediction(doc2)

0.065 alt.atheism
0.145 comp.graphics
0.376 sci.med
0.414 soc.religion.christian

Predicted probabilities changed a lot indeed.

And in fact, TextExplainer did something similar to get the
explanation. TextExplainer generated a lot of texts similar to the
document (by removing some of the words), and then trained a white-box
classifier which predicts the output of the black-box classifier (not
the true labels!). The explanation we saw is for this white-box
classifier.

This approach follows the LIME algorithm; for text data the algorithm is
actually pretty straightforward:

	generate distorted versions of the text;

	predict probabilities for these distorted texts using the black-box
classifier;

	train another classifier (one of those eli5 supports) which tries to
predict output of a black-box classifier on these texts.

The algorithm works because even though it could be hard or impossible
to approximate a black-box classifier globally (for every possible
text), approximating it in a small neighbourhood near a given text often
works well, even with simple white-box classifiers.

Generated samples (distorted texts) are available in samples_
attribute:

print(te.samples_[0])

As my kidney , isn' any
 can .

Either they , be ,
to .

 , - tech to mention ' had kidney
 and , .

By default TextExplainer generates 5000 distorted texts (use
n_samples argument to change the amount):

len(te.samples_)

5000

Trained white-box classifier and vectorizer are available as vec_
and clf_ attributes:

te.vec_, te.clf_

(CountVectorizer(analyzer='word', binary=False, decode_error='strict',
 dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
 lowercase=True, max_df=1.0, max_features=None, min_df=1,
 ngram_range=(1, 2), preprocessor=None, stop_words=None,
 strip_accents=None, token_pattern='(?u)\b\w+\b', tokenizer=None,
 vocabulary=None),
 SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
 eta0=0.0, fit_intercept=True, l1_ratio=0.15,
 learning_rate='optimal', loss='log', n_iter=5, n_jobs=1,
 penalty='elasticnet', power_t=0.5,
 random_state=<mtrand.RandomState object at 0x10e1dcf78>,
 shuffle=True, verbose=0, warm_start=False))

Should we trust the explanation?

Ok, this sounds fine, but how can we be sure that this simple text
classification pipeline approximated the black-box classifier well?

One way to do that is to check the quality on a held-out dataset (which
is also generated). TextExplainer does that by default and stores
metrics in metrics_ attribute:

te.metrics_

{'mean_KL_divergence': 0.020120624088861134, 'score': 0.98625304704899297}

	‘score’ is an accuracy score weighted by cosine distance between
generated sample and the original document (i.e. texts which are
closer to the example are more important). Accuracy shows how good
are ‘top 1’ predictions.

	‘mean_KL_divergence’ is a mean Kullback–Leibler
divergence [https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence]
for all target classes; it is also weighted by distance. KL
divergence shows how well are probabilities approximated; 0.0 means a
perfect match.

In this example both accuracy and KL divergence are good; it means our
white-box classifier usually assigns the same labels as the black-box
classifier on the dataset we generated, and its predicted probabilities
are close to those predicted by our LSA+SVM pipeline. So it is likely
(though not guaranteed, we’ll discuss it later) that the explanation is
correct and can be trusted.

When working with LIME (e.g. via TextExplainer) it is always a good
idea to check these scores. If they are not good then you can tell that
something is not right.

Let’s make it fail

By default TextExplainer uses a very basic text processing pipeline:
Logistic Regression trained on bag-of-words and bag-of-bigrams features
(see te.clf_ and te.vec_ attributes). It limits a set of
black-box classifiers it can explain: because the text is seen as “bag
of words/ngrams”, the default white-box pipeline can’t distinguish
e.g. between the same word in the beginning of the document and in the
end of the document. Bigrams help to alleviate the problem in practice,
but not completely.

Black-box classifiers which use features like “text length” (not
directly related to tokens) can be also hard to approximate using the
default bag-of-words/ngrams model.

This kind of failure is usually detectable though - scores (accuracy and
KL divergence) will be low. Let’s check it on a completely synthetic
example - a black-box classifier which assigns a class based on oddity
of document length and on a presence of ‘medication’ word.

import numpy as np

def predict_proba_len(docs):
 # nasty predict_proba - the result is based on document length,
 # and also on a presence of "medication"
 proba = [
 [0, 0, 1.0, 0] if len(doc) % 2 or 'medication' in doc else [1.0, 0, 0, 0]
 for doc in docs
]
 return np.array(proba)

te3 = TextExplainer().fit(doc, predict_proba_len)
te3.show_prediction(target_names=twenty_train.target_names)

 y=sci.med

 (probability 0.989, score 4.466)

top features

 	
 Contribution?

 	Feature

 	
 +4.576

 	
 Highlighted in text (sum)

 	
 -0.110

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

TextExplainer correctly figured out that ‘medication’ is important,
but failed to account for “len(doc) % 2” condition, so the explanation
is incomplete. We can detect this failure by looking at metrics - they
are low:

te3.metrics_

{'mean_KL_divergence': 0.3312922355257879, 'score': 0.79050673156810314}

If (a big if…) we suspect that the fact document length is even or odd
is important, it is possible to customize TextExplainer to check
this hypothesis.

To do that, we need to create a vectorizer which returns both “is odd”
feature and bag-of-words features, and pass this vectorizer to
TextExplainer. This vectorizer should follow scikit-learn API. The
easiest way is to use FeatureUnion - just make sure all transformers
joined by FeatureUnion have get_feature_names() methods.

from sklearn.pipeline import make_union
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.base import TransformerMixin

class DocLength(TransformerMixin):
 def fit(self, X, y=None): # some boilerplate
 return self

 def transform(self, X):
 return [
 # note that we needed both positive and negative
 # feature - otherwise for linear model there won't
 # be a feature to show in a half of the cases
 [len(doc) % 2, not len(doc) % 2]
 for doc in X
]

 def get_feature_names(self):
 return ['is_odd', 'is_even']

vec = make_union(DocLength(), CountVectorizer(ngram_range=(1,2)))
te4 = TextExplainer(vec=vec).fit(doc[:-1], predict_proba_len)

print(te4.metrics_)
te4.explain_prediction(target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.024826114773734968, 'score': 1.0}

 y=sci.med

 (probability 0.996, score 5.511)

top features

 	
 Contribution?

 	Feature

 	
 +8.590

 	
 countvectorizer: Highlighted in text (sum)

 	
 -0.043

 	
 <BIAS>

 	
 -3.037

 	
 doclength__is_even

 countvectorizer: as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less

Much better! It was a toy example, but the idea stands - if you think
something could be important, add it to the mix as a feature for
TextExplainer.

Let’s make it fail, again

Another possible issue is the dataset generation method. Not only
feature extraction should be powerful enough, but auto-generated texts
also should be diverse enough.

TextExplainer removes random words by default, so by default it
can’t e.g. provide a good explanation for a black-box classifier which
works on character level. Let’s try to use TextExplainer to explain
a classifier which uses char ngrams as features:

from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier

vec_char = HashingVectorizer(analyzer='char_wb', ngram_range=(4,5))
clf_char = SGDClassifier(loss='log')

pipe_char = make_pipeline(vec_char, clf_char)
pipe_char.fit(twenty_train.data, twenty_train.target)
pipe_char.score(twenty_test.data, twenty_test.target)

0.88082556591211714

This pipeline is supported by eli5 directly, so in practice there is no
need to use TextExplainer for it. We’re using this pipeline as an
example - it is possible check the “true” explanation first, without
using TextExplainer, and then compare the results with
TextExplainer results.

eli5.show_prediction(clf_char, doc, vec=vec_char,
 targets=['sci.med'], target_names=twenty_train.target_names)

 y=sci.med

 (probability 0.565, score -0.037)

top features

 	
 Contribution?

 	Feature

 	
 +0.943

 	
 Highlighted in text (sum)

 	
 -0.980

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

TextExplainer produces a different result:

te = TextExplainer(random_state=42).fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.020247299052285436, 'score': 0.92434669226497945}

 y=sci.med

 (probability 0.576, score 0.621)

top features

 	
 Contribution?

 	Feature

 	
 +0.972

 	
 Highlighted in text (sum)

 	
 -0.351

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Scores look OK but not great; the explanation kind of makes sense on a
first sight, but we know that the classifier works in a different way.

To explain such black-box classifiers we need to change both dataset
generation method (change/remove individual characters, not only words)
and feature extraction method (e.g. use char ngrams instead of words and
word ngrams).

TextExplainer has an option (char_based=True) to use char-based
sampling and char-based classifier. If this makes a more powerful
explanation engine why not always use it?

te = TextExplainer(char_based=True, random_state=42)
te.fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.22136004391576117, 'score': 0.55669450678688481}

 y=sci.med

 (probability 0.366, score -0.003)

top features

 	
 Contribution?

 	Feature

 	
 +0.199

 	
 Highlighted in text (sum)

 	
 -0.202

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Hm, the result look worse. TextExplainer detected correctly that
only the first part of word “medication” is important, but the result is
noisy overall, and scores are bad. Let’s try it with more samples:

te = TextExplainer(char_based=True, n_samples=50000, random_state=42)
te.fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.060019833958355841, 'score': 0.86048000626542609}

 y=sci.med

 (probability 0.630, score 0.800)

top features

 	
 Contribution?

 	Feature

 	
 +1.018

 	
 Highlighted in text (sum)

 	
 -0.219

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

It is getting closer, but still not there yet. The problem is that it is
much more resource intensive - you need a lot more samples to get
non-noisy results. Here explaining a single example took more time than
training the original pipeline.

Generally speaking, to do an efficient explanation we should make some
assumptions about black-box classifier, such as:

	it uses words as features and doesn’t take word position in account;

	it uses words as features and takes word positions in account;

	it uses words ngrams as features;

	it uses char ngrams as features, positions don’t matter (i.e. an
ngram means the same everywhere);

	it uses arbitrary attention over the text characters, i.e. every part
of text could be potentionally important for a classifier on its own;

	it is important to have a particular token at a particular position,
e.g. “third token is X”, and if we delete 2nd token then prediction
changes not because 2nd token changed, but because 3rd token is
shifted.

Depending on assumptions we should choose both dataset generation method
and a white-box classifier. There is a tradeoff between generality and
speed.

Simple bag-of-words assumptions allow for fast sample generation, and
just a few hundreds of samples could be required to get an OK quality if
the assumption is correct. But such generation methods / models will
fail to explain a more complex classifier properly (they could still
provide an explanation which is useful in practice though).

On the other hand, allowing for each character to be important is a more
powerful method, but it can require a lot of samples (maybe hundreds
thousands) and a lot of CPU time to get non-noisy results.

What’s bad about this kind of failure (wrong assumption about the
black-box pipeline) is that it could be impossible to detect the failure
by looking at the scores. Scores could be high because generated dataset
is not diverse enough, not because our approximation is good.

The takeaway is that it is important to understand the “lenses” you’re
looking through when using LIME to explain a prediction.

Customizing TextExplainer: sampling

TextExplainer uses MaskingTextSampler or MaskingTextSamplers
instances to generate texts to train on. MaskingTextSampler is the
main text generation class; MaskingTextSamplers provides a way to
combine multiple samplers in a single object with the same interface.

A custom sampler instance can be passed to TextExplainer if we want
to experiment with sampling. For example, let’s try a sampler which
replaces no more than 3 characters in the text (default is to replace a
random number of characters):

from eli5.lime.samplers import MaskingTextSampler
sampler = MaskingTextSampler(
 # Regex to split text into tokens.
 # "." means any single character is a token, i.e.
 # we work on chars.
 token_pattern='.',

 # replace no more than 3 tokens
 max_replace=3,

 # by default all tokens are replaced;
 # replace only a token at a given position.
 bow=False,
)
samples, similarity = sampler.sample_near(doc)
print(samples[0])

As I recal from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the ain.

Either thy pass, or they have to be broken up with sound, or they have
to be extracted surgically.

When I was in, the X-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

te = TextExplainer(char_based=True, sampler=sampler, random_state=42)
te.fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.71042368337755823, 'score': 0.99933430578588944}

 y=sci.med

 (probability 0.958, score 2.434)

top features

 	
 Contribution?

 	Feature

 	
 +2.430

 	
 Highlighted in text (sum)

 	
 +0.005

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Note that accuracy score is perfect, but KL divergence is bad. It means
this sampler was not very useful: most generated texts were “easy” in
sense that most (or all?) of them should be still classified as
sci.med, so it was easy to get a good accuracy. But because
generated texts were not diverse enough classifier haven’t learned
anything useful; it’s having a hard time predicting the probability
output of the black-box pipeline on a held-out dataset.

By default TextExplainer uses a mix of several sampling strategies
which seems to work OK for token-based explanations. But a good sampling
strategy which works for many real-world tasks could be a research topic
on itself. If you’ve got some experience with it we’d love to hear from
you - please share your findings in eli5 issue tracker (
https://github.com/TeamHG-Memex/eli5/issues)!

Customizing TextExplainer: classifier

In one of the previous examples we already changed the vectorizer
TextExplainer uses (to take additional features in account). It is also
possible to change the white-box classifier - for example, use a small
decision tree:

from sklearn.tree import DecisionTreeClassifier

te5 = TextExplainer(clf=DecisionTreeClassifier(max_depth=2), random_state=0)
te5.fit(doc, pipe.predict_proba)
print(te5.metrics_)
te5.show_weights()

{'mean_KL_divergence': 0.037836554598348969, 'score': 0.9838155527960798}

 	Weight
 	Feature

 	
 0.5461

 	
 kidney

 	
 0.4539

 	
 pain

Tree

0

kidney <= 0.5
gini = 0.1561
samples = 100.0%
value = [0.01, 0.03, 0.92, 0.04]

1

pain <= 0.5
gini = 0.3834
samples = 38.9%
value = [0.03, 0.09, 0.77, 0.11]

0->1

True

4

pain <= 0.5
gini = 0.0456
samples = 61.1%
value = [0.0, 0.01, 0.98, 0.01]

0->4

False

2

gini = 0.5185
samples = 28.4%
value = [0.04, 0.14, 0.66, 0.16]

1->2

3

gini = 0.0434
samples = 10.6%
value = [0.0, 0.0, 0.98, 0.02]

1->3

5

gini = 0.1153
samples = 22.8%
value = [0.01, 0.02, 0.94, 0.04]

4->5

6

gini = 0.0114
samples = 38.2%
value = [0.0, 0.0, 0.99, 0.0]

4->6

How to read it: “kidney <= 0.5” means “word ‘kidney’ is not in the
document” (we’re explaining the orginal LDA+SVM pipeline again).

So according to this tree if “kidney” is not in the document and “pain”
is not in the document then the probability of a document belonging to
sci.med drops to 0.65. If at least one of these words remain
sci.med probability stays 0.9+.

print("both words removed::")
print_prediction(re.sub(r"(kidney|pain)", "", doc, flags=re.I))
print("\nonly 'pain' removed:")
print_prediction(re.sub(r"pain", "", doc, flags=re.I))

both words removed::
0.013 alt.atheism
0.022 comp.graphics
0.894 sci.med
0.072 soc.religion.christian

only 'pain' removed:
0.002 alt.atheism
0.004 comp.graphics
0.979 sci.med
0.015 soc.religion.christian

As expected, after removing both words probability of sci.med
decreased, though not as much as our simple decision tree predicted (to
0.9 instead of 0.64). Removing pain provided exactly the same effect
as predicted - probability of sci.med became 0.98.

 Explaining XGBoost predictions on the Titanic dataset

Note

This tutorial is intended to be run in an IPython notebook.
It is also available as a notebook file here [https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/xboost-titanic.ipynb].

Explaining XGBoost predictions on the Titanic dataset

This tutorial will show you how to analyze predictions of an XGBoost
classifier (regression for XGBoost and most scikit-learn tree ensembles
are also supported by eli5). We will use Titanic
dataset [https://www.kaggle.com/c/titanic/data], which is small and
has not too many features, but is still interesting enough.

We are using XGBoost [https://xgboost.readthedocs.io/en/latest/]
0.81 and data downloaded from https://www.kaggle.com/c/titanic/data (it
is also bundled in the eli5 repo:
https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/titanic-train.csv).

1. Training data

Let’s start by loading the data:

import csv
import numpy as np

with open('titanic-train.csv', 'rt') as f:
 data = list(csv.DictReader(f))
data[:1]

[OrderedDict([('PassengerId', '1'),
 ('Survived', '0'),
 ('Pclass', '3'),
 ('Name', 'Braund, Mr. Owen Harris'),
 ('Sex', 'male'),
 ('Age', '22'),
 ('SibSp', '1'),
 ('Parch', '0'),
 ('Ticket', 'A/5 21171'),
 ('Fare', '7.25'),
 ('Cabin', ''),
 ('Embarked', 'S')])]

Variable descriptions:

	Age: Age

	Cabin: Cabin

	Embarked: Port of Embarkation (C = Cherbourg; Q = Queenstown; S =
Southampton)

	Fare: Passenger Fare

	Name: Name

	Parch: Number of Parents/Children Aboard

	Pclass: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

	Sex: Sex

	Sibsp: Number of Siblings/Spouses Aboard

	Survived: Survival (0 = No; 1 = Yes)

	Ticket: Ticket Number

Next, shuffle data and separate features from what we are trying to
predict: survival.

from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split

_all_xs = [{k: v for k, v in row.items() if k != 'Survived'} for row in data]
_all_ys = np.array([int(row['Survived']) for row in data])

all_xs, all_ys = shuffle(_all_xs, _all_ys, random_state=0)
train_xs, valid_xs, train_ys, valid_ys = train_test_split(
 all_xs, all_ys, test_size=0.25, random_state=0)
print('{} items total, {:.1%} true'.format(len(all_xs), np.mean(all_ys)))

891 items total, 38.4% true

We do just minimal preprocessing: convert obviously contiuous Age and
Fare variables to floats, and SibSp, Parch to integers. Missing
Age values are removed.

for x in all_xs:
 if x['Age']:
 x['Age'] = float(x['Age'])
 else:
 x.pop('Age')
 x['Fare'] = float(x['Fare'])
 x['SibSp'] = int(x['SibSp'])
 x['Parch'] = int(x['Parch'])

2. Simple XGBoost classifier

Let’s first build a very simple classifier with
xbgoost.XGBClassifier [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier]
and
sklearn.feature_extraction.DictVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html],
and check its accuracy with 10-fold cross-validation:

from xgboost import XGBClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_val_score

clf = XGBClassifier()
vec = DictVectorizer()
pipeline = make_pipeline(vec, clf)

def evaluate(_clf):
 scores = cross_val_score(_clf, all_xs, all_ys, scoring='accuracy', cv=10)
 print('Accuracy: {:.3f} ± {:.3f}'.format(np.mean(scores), 2 * np.std(scores)))
 _clf.fit(train_xs, train_ys) # so that parts of the original pipeline are fitted

evaluate(pipeline)

Accuracy: 0.823 ± 0.071

There is one tricky bit about the code above: one may be templed to just
pass dense=True to DictVectorizer: after all, in this case the
matrixes are small. But this is not a great solution, because we will
loose the ability to distinguish features that are missing and features
that have zero value.

3. Explaining weights

In order to calculate a prediction, XGBoost sums predictions of all its
trees. The number of trees is controlled by n_estimators argument
and is 100 by default. Each tree is not a great predictor on it’s own,
but by summing across all trees, XGBoost is able to provide a robust
estimate in many cases. Here is one of the trees:

booster = clf.get_booster()
original_feature_names = booster.feature_names
booster.feature_names = vec.get_feature_names()
print(booster.get_dump()[0])
recover original feature names
booster.feature_names = original_feature_names

0:[Sex=female<-9.53674316e-07] yes=1,no=2,missing=1
 1:[Age<13] yes=3,no=4,missing=4
 3:[SibSp<2] yes=7,no=8,missing=7
 7:leaf=0.145454556
 8:leaf=-0.125
 4:[Fare<26.2687492] yes=9,no=10,missing=9
 9:leaf=-0.151515156
 10:leaf=-0.0727272779
 2:[Pclass=3<-9.53674316e-07] yes=5,no=6,missing=5
 5:[Fare<12.1750002] yes=11,no=12,missing=12
 11:leaf=0.0500000007
 12:leaf=0.175193802
 6:[Fare<24.8083496] yes=13,no=14,missing=14
 13:leaf=0.0365591422
 14:leaf=-0.151999995

We see that this tree checks Sex, Age, Pclass, Fare and SibSp
features. leaf gives the decision of a single tree, and they are
summed over all trees in the ensemble.

Let’s check feature importances with eli5.show_weights():

from eli5 import show_weights
show_weights(clf, vec=vec)

 	Weight
 	Feature

 	
 0.4278

 	
 Sex=female

 	
 0.1949

 	
 Pclass=3

 	
 0.0665

 	
 Embarked=S

 	
 0.0510

 	
 Pclass=2

 	
 0.0420

 	
 SibSp

 	
 0.0417

 	
 Cabin=

 	
 0.0385

 	
 Embarked=C

 	
 0.0358

 	
 Ticket=1601

 	
 0.0331

 	
 Age

 	
 0.0323

 	
 Fare

 	
 0.0220

 	
 Pclass=1

 	
 0.0143

 	
 Parch

 	
 0

 	
 Name=Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)

 	
 0

 	
 Name=Roebling, Mr. Washington Augustus II

 	
 0

 	
 Name=Rosblom, Mr. Viktor Richard

 	
 0

 	
 Name=Ross, Mr. John Hugo

 	
 0

 	
 Name=Rush, Mr. Alfred George John

 	
 0

 	
 Name=Rouse, Mr. Richard Henry

 	
 0

 	
 Name=Ryerson, Miss. Emily Borie

 	
 0

 	
 Name=Ryerson, Miss. Susan Parker "Suzette"

 	

 Named Entity Recognition using sklearn-crfsuite

Note

This tutorial can be run as an IPython notebook [https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/sklearn-crfsuite.ipynb].

Named Entity Recognition using sklearn-crfsuite

In this notebook we train a basic CRF model for Named Entity Recognition
on CoNLL2002 data (following
https://github.com/TeamHG-Memex/sklearn-crfsuite/blob/master/docs/CoNLL2002.ipynb)
and check its weights to see what it learned.

To follow this tutorial you need NLTK > 3.x and sklearn-crfsuite Python
packages. The tutorial uses Python 3.

import nltk
import sklearn_crfsuite
import eli5

1. Training data

CoNLL 2002 datasets contains a list of Spanish sentences, with Named
Entities annotated. It uses
IOB2 [https://en.wikipedia.org/wiki/Inside_Outside_Beginning]
encoding. CoNLL 2002 data also provide POS tags.

train_sents = list(nltk.corpus.conll2002.iob_sents('esp.train'))
test_sents = list(nltk.corpus.conll2002.iob_sents('esp.testb'))
train_sents[0]

[('Melbourne', 'NP', 'B-LOC'),
 ('(', 'Fpa', 'O'),
 ('Australia', 'NP', 'B-LOC'),
 (')', 'Fpt', 'O'),
 (',', 'Fc', 'O'),
 ('25', 'Z', 'O'),
 ('may', 'NC', 'O'),
 ('(', 'Fpa', 'O'),
 ('EFE', 'NC', 'B-ORG'),
 (')', 'Fpt', 'O'),
 ('.', 'Fp', 'O')]

2. Feature extraction

POS tags can be seen as pre-extracted features. Let’s extract more
features (word parts, simplified POS tags, lower/title/upper flags,
features of nearby words) and convert them to sklear-crfsuite format -
each sentence should be converted to a list of dicts. This is a very
simple baseline; you certainly can do better.

def word2features(sent, i):
 word = sent[i][0]
 postag = sent[i][1]

 features = {
 'bias': 1.0,
 'word.lower()': word.lower(),
 'word[-3:]': word[-3:],
 'word.isupper()': word.isupper(),
 'word.istitle()': word.istitle(),
 'word.isdigit()': word.isdigit(),
 'postag': postag,
 'postag[:2]': postag[:2],
 }
 if i > 0:
 word1 = sent[i-1][0]
 postag1 = sent[i-1][1]
 features.update({
 '-1:word.lower()': word1.lower(),
 '-1:word.istitle()': word1.istitle(),
 '-1:word.isupper()': word1.isupper(),
 '-1:postag': postag1,
 '-1:postag[:2]': postag1[:2],
 })
 else:
 features['BOS'] = True

 if i < len(sent)-1:
 word1 = sent[i+1][0]
 postag1 = sent[i+1][1]
 features.update({
 '+1:word.lower()': word1.lower(),
 '+1:word.istitle()': word1.istitle(),
 '+1:word.isupper()': word1.isupper(),
 '+1:postag': postag1,
 '+1:postag[:2]': postag1[:2],
 })
 else:
 features['EOS'] = True

 return features

def sent2features(sent):
 return [word2features(sent, i) for i in range(len(sent))]

def sent2labels(sent):
 return [label for token, postag, label in sent]

def sent2tokens(sent):
 return [token for token, postag, label in sent]

X_train = [sent2features(s) for s in train_sents]
y_train = [sent2labels(s) for s in train_sents]

X_test = [sent2features(s) for s in test_sents]
y_test = [sent2labels(s) for s in test_sents]

This is how features extracted from a single token look like:

X_train[0][1]

{'+1:postag': 'NP',
 '+1:postag[:2]': 'NP',
 '+1:word.istitle()': True,
 '+1:word.isupper()': False,
 '+1:word.lower()': 'australia',
 '-1:postag': 'NP',
 '-1:postag[:2]': 'NP',
 '-1:word.istitle()': True,
 '-1:word.isupper()': False,
 '-1:word.lower()': 'melbourne',
 'bias': 1.0,
 'postag': 'Fpa',
 'postag[:2]': 'Fp',
 'word.isdigit()': False,
 'word.istitle()': False,
 'word.isupper()': False,
 'word.lower()': '(',
 'word[-3:]': '('}

3. Train a CRF model

Once we have features in a right format we can train a linear-chain CRF
(Conditional Random Fields) model using sklearn_crfsuite.CRF:

crf = sklearn_crfsuite.CRF(
 algorithm='lbfgs',
 c1=0.1,
 c2=0.1,
 max_iterations=20,
 all_possible_transitions=False,
)
crf.fit(X_train, y_train);

4. Inspect model weights

CRFsuite CRF models use two kinds of features: state features and
transition features. Let’s check their weights using
eli5.explain_weights:

eli5.show_weights(crf, top=30)

 	From \ To

 	O

 	B-LOC

 	I-LOC

 	B-MISC

 	I-MISC

 	B-ORG

 	I-ORG

 	B-PER

 	I-PER

 	O

 Explaining Keras image classifier predictions with Grad-CAM

Note

This tutorial is intended to be run in an IPython notebook.
It is also available as a notebook file here [https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/keras-image-classifiers.ipynb].

Explaining Keras image classifier predictions with Grad-CAM

If we have a model that takes in an image as its input, and outputs
class scores, i.e. probabilities that a certain object is present in the
image, then we can use ELI5 to check what is it in the image that made
the model predict a certain class score. We do that using a method
called ‘Grad-CAM’ (https://arxiv.org/abs/1610.02391).

We will be using images from ImageNet (http://image-net.org/), and
classifiers from keras.applications.

This has been tested with Python 3.7.3, Keras 2.2.4, and Tensorflow
1.13.1.

1. Loading our model and data

To start out, let’s get our modules in place

from PIL import Image
from IPython.display import display
import numpy as np

you may want to keep logging enabled when doing your own work
import logging
import tensorflow as tf
tf.get_logger().setLevel(logging.ERROR) # disable Tensorflow warnings for this tutorial
import warnings
warnings.simplefilter("ignore") # disable Keras warnings for this tutorial
import keras
from keras.applications import mobilenet_v2

import eli5

Using TensorFlow backend.

And load our image classifier (a light-weight model from
keras.applications).

model = mobilenet_v2.MobileNetV2(include_top=True, weights='imagenet', classes=1000)

check the input format
print(model.input_shape)
dims = model.input_shape[1:3] # -> (height, width)
print(dims)

(None, 224, 224, 3)
(224, 224)

We see that we need a numpy tensor of shape (batches, height, width,
channels), with the specified height and width.

Loading our sample image:

we start from a path / URI.
If you already have an image loaded, follow the subsequent steps
image_uri = 'imagenet-samples/cat_dog.jpg'

this is the original "cat dog" image used in the Grad-CAM paper
check the image with Pillow
im = Image.open(image_uri)
print(type(im))
display(im)

<class 'PIL.JpegImagePlugin.JpegImageFile'>

[image: ../_images/keras-image-classifiers_5_11.png]
We see that this image will need some preprocessing to have the correct
dimensions! Let’s resize it:

we could resize the image manually
but instead let's use a utility function from `keras.preprocessing`
we pass the required dimensions as a (height, width) tuple
im = keras.preprocessing.image.load_img(image_uri, target_size=dims) # -> PIL image
print(im)
display(im)

<PIL.Image.Image image mode=RGB size=224x224 at 0x7FBF0DDE5A20>

[image: ../_images/keras-image-classifiers_7_11.png]
Looking good. Now we need to convert the image to a numpy array.

we use a routine from `keras.preprocessing` for that as well
we get a 'doc', an object almost ready to be inputted into the model

doc = keras.preprocessing.image.img_to_array(im) # -> numpy array
print(type(doc), doc.shape)

<class 'numpy.ndarray'> (224, 224, 3)

dimensions are looking good
except that we are missing one thing - the batch size

we can use a numpy routine to create an axis in the first position
doc = np.expand_dims(doc, axis=0)
print(type(doc), doc.shape)

<class 'numpy.ndarray'> (1, 224, 224, 3)

`keras.applications` models come with their own input preprocessing function
for best results, apply that as well

mobilenetv2-specific preprocessing
(this operation is in-place)
mobilenet_v2.preprocess_input(doc)
print(type(doc), doc.shape)

<class 'numpy.ndarray'> (1, 224, 224, 3)

Let’s convert back the array to an image just to check what we are
inputting

take back the first image from our 'batch'
image = keras.preprocessing.image.array_to_img(doc[0])
print(image)
display(image)

<PIL.Image.Image image mode=RGB size=224x224 at 0x7FBF0CF760F0>

[image: ../_images/keras-image-classifiers_13_11.png]
Ready to go!

2. Explaining our model’s prediction

Let’s classify our image and see where the network ‘looks’ when making
that classification:

make a prediction about our sample image
predictions = model.predict(doc)
print(type(predictions), predictions.shape)

<class 'numpy.ndarray'> (1, 1000)

check the top 5 indices
`keras.applications` contains a function for that

top = mobilenet_v2.decode_predictions(predictions)
top_indices = np.argsort(predictions)[0, ::-1][:5]

print(top)
print(top_indices)

[[('n02108422', 'bull_mastiff', 0.80967486), ('n02108089', 'boxer', 0.098359644), ('n02123045', 'tabby', 0.0066504036), ('n02123159', 'tiger_cat', 0.0048087277), ('n02110958', 'pug', 0.0039409986)]]
[243 242 281 282 254]

Indeed there is a dog in that picture The class ID (index into the
output layer) 243 stands for bull mastiff in ImageNet with 1000
classes (https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a).

But how did the network know that? Let’s check where the model “looked”
for a dog with ELI5:

we need to pass the network
the input as a numpy array
eli5.show_prediction(model, doc)

[image: ../_images/keras-image-classifiers_19_01.png]
The dog region is highlighted. Makes sense!

When explaining image based models, we can optionally pass the image
associated with the input as a Pillow image object. If we don’t, the
image will be created from doc. This may not work with custom models
or inputs, in which case it’s worth passing the image explicitly.

eli5.show_prediction(model, doc, image=image)

[image: ../_images/keras-image-classifiers_22_01.png]

3. Choosing the target class (target prediction)

We can make the model classify other objects and check where the
classifier looks to find those objects.

cat_idx = 282 # ImageNet ID for "tiger_cat" class, because we have a cat in the picture
eli5.show_prediction(model, doc, targets=[cat_idx]) # pass the class id

[image: ../_images/keras-image-classifiers_24_01.png]
The model looks at the cat now!

We have to pass the class ID as a list to the targets parameter.
Currently only one class can be explained at a time.

window_idx = 904 # 'window screen'
turtle_idx = 35 # 'mud turtle', some nonsense
display(eli5.show_prediction(model, doc, targets=[window_idx]))
display(eli5.show_prediction(model, doc, targets=[turtle_idx]))

[image: ../_images/keras-image-classifiers_26_01.png]
[image: ../_images/keras-image-classifiers_26_11.png]
That’s quite noisy! Perhaps the model is weak at classifying ‘window
screens’! On the other hand the nonsense ‘turtle’ example could be
excused.

Note that we need to wrap show_prediction() with
IPython.display.display() to actually display the image when
show_prediction() is not the last thing in a cell.

4. Choosing a hidden activation layer

Under the hood Grad-CAM takes a hidden layer inside the network and
differentiates it with respect to the output scores. We have the ability
to choose which hidden layer we do our computations on.

Let’s check what layers the network consists of:

we could use model.summary() here, but the model has over 100 layers.
we will only look at the first few and last few layers

head = model.layers[:5]
tail = model.layers[-8:]

def pretty_print_layers(layers):
 for l in layers:
 info = [l.name, type(l).__name__, l.output_shape, l.count_params()]
 pretty_print(info)

def pretty_print(lst):
 s = ',\t'.join(map(str, lst))
 print(s)

pretty_print(['name', 'type', 'output shape', 'param. no'])
print('-'*100)
pretty_print([model.input.name, type(model.input), model.input_shape, 0])
pretty_print_layers(head)
print()
print('...')
print()
pretty_print_layers(tail)

name, type, output shape, param. no
--
input_1:0, <class 'tensorflow.python.framework.ops.Tensor'>, (None, 224, 224, 3), 0
input_1, InputLayer, (None, 224, 224, 3), 0
Conv1_pad, ZeroPadding2D, (None, 225, 225, 3), 0
Conv1, Conv2D, (None, 112, 112, 32), 864
bn_Conv1, BatchNormalization, (None, 112, 112, 32), 128
Conv1_relu, ReLU, (None, 112, 112, 32), 0

...

block_16_depthwise_relu, ReLU, (None, 7, 7, 960), 0
block_16_project, Conv2D, (None, 7, 7, 320), 307200
block_16_project_BN, BatchNormalization, (None, 7, 7, 320), 1280
Conv_1, Conv2D, (None, 7, 7, 1280), 409600
Conv_1_bn, BatchNormalization, (None, 7, 7, 1280), 5120
out_relu, ReLU, (None, 7, 7, 1280), 0
global_average_pooling2d_1, GlobalAveragePooling2D, (None, 1280), 0
Logits, Dense, (None, 1000), 1281000

Rough print but okay. Let’s pick a few convolutional layers that are
‘far apart’ and do Grad-CAM on them:

for l in ['block_2_expand', 'block_9_expand', 'Conv_1']:
 print(l)
 display(eli5.show_prediction(model, doc, layer=l)) # we pass the layer as an argument

block_2_expand

[image: ../_images/keras-image-classifiers_31_11.png]
block_9_expand

[image: ../_images/keras-image-classifiers_31_31.png]
Conv_1

[image: ../_images/keras-image-classifiers_31_51.png]
These results should make intuitive sense for Convolutional Neural
Networks. Initial layers detect ‘low level’ features, ending layers
detect ‘high level’ features!

The layer parameter accepts a layer instance, index, name, or None
(get layer automatically) as its arguments. This is where Grad-CAM
builds its heatmap from.

5. Under the hood - explain_prediction() and format_as_image()

This time we will use the eli5.explain_prediction() and
eli5.format_as_image() functions (that are called one after the
other by the convenience function eli5.show_prediction()), so we can
better understand what is going on.

expl = eli5.explain_prediction(model, doc)

Examining the structure of the Explanation object:

print(expl)

Explanation(estimator='mobilenetv2_1.00_224', description='Grad-CAM visualization for image classification; noutput is explanation object that contains input image nand heatmap image for a target.n', error='', method='Grad-CAM', is_regression=False, targets=[TargetExplanation(target=243, feature_weights=None, proba=None, score=0.80967486, weighted_spans=None, heatmap=array([[0. , 0.34700435, 0.8183038 , 0.8033579 , 0.90060294,
 0.11643614, 0.01095222],
 [0.01533252, 0.3834133 , 0.80703807, 0.85117225, 0.95316563,
 0.28513838, 0.],
 [0.00708034, 0.20260051, 0.77189916, 0.77733763, 0.99999996,
 0.30238836, 0.],
 [0. , 0.04289413, 0.4495872 , 0.30086699, 0.2511554 ,
 0.06771996, 0.],
 [0.0148367 , 0. , 0. , 0. , 0. ,
 0.00579786, 0.01928998],
 [0. , 0. , 0. , 0. , 0. ,
 0. , 0.05308531],
 [0. , 0. , 0. , 0. , 0. ,
 0.01124764, 0.06864655]]))], feature_importances=None, decision_tree=None, highlight_spaces=None, transition_features=None, image=<PIL.Image.Image image mode=RGB size=224x224 at 0x7FBEFD7F4080>)

We can check the score (raw value) or probability (normalized score) of
the neuron for the predicted class, and get the class ID itself:

we can access the various attributes of a target being explained
print((expl.targets[0].target, expl.targets[0].score, expl.targets[0].proba))

(243, 0.80967486, None)

We can also access the original image and the Grad-CAM heatmap:

image = expl.image
heatmap = expl.targets[0].heatmap

display(image) # the .image attribute is a PIL image
print(heatmap) # the .heatmap attribute is a numpy array

[image: ../_images/keras-image-classifiers_41_01.png]
[[0. 0.34700435 0.8183038 0.8033579 0.90060294 0.11643614
 0.01095222]
 [0.01533252 0.3834133 0.80703807 0.85117225 0.95316563 0.28513838
 0.]
 [0.00708034 0.20260051 0.77189916 0.77733763 0.99999996 0.30238836
 0.]
 [0. 0.04289413 0.4495872 0.30086699 0.2511554 0.06771996
 0.]
 [0.0148367 0. 0. 0. 0. 0.00579786
 0.01928998]
 [0. 0. 0. 0. 0. 0.
 0.05308531]
 [0. 0. 0. 0. 0. 0.01124764
 0.06864655]]

Visualizing the heatmap:

heatmap_im = eli5.formatters.image.heatmap_to_image(heatmap)
display(heatmap_im)

[image: ../_images/keras-image-classifiers_43_01.png]
That’s only 7x7! This is the spatial dimensions of the
activation/feature maps in the last layers of the network. What Grad-CAM
produces is only a rough approximation.

Let’s resize the heatmap (we have to pass the heatmap and the image with
the required dimensions as Pillow images, and the filter for
resampling):

heatmap_im = eli5.formatters.image.expand_heatmap(heatmap, image, resampling_filter=Image.BOX)
display(heatmap_im)

[image: ../_images/keras-image-classifiers_45_01.png]
Now it’s clear what is being highlighted. We just need to apply some
colors and overlay the heatmap over the original image, exactly what
eli5.format_as_image() does!

I = eli5.format_as_image(expl)
display(I)

[image: ../_images/keras-image-classifiers_47_01.png]

6. Extra arguments to format_as_image()

format_as_image() has a couple of parameters too:

import matplotlib.cm

I = eli5.format_as_image(expl, alpha_limit=1.0, colormap=matplotlib.cm.cividis)
display(I)

[image: ../_images/keras-image-classifiers_50_01.png]
The alpha_limit argument controls the maximum opacity that the
heatmap pixels should have. It is between 0.0 and 1.0. Low values are
useful for seeing the original image.

The colormap argument is a function (callable) that does the
colorisation of the heatmap. See matplotlib.cm for some options.
Pick your favourite color!

Another optional argument is resampling_filter. The default is
PIL.Image.LANCZOS (shown here). You have already seen
PIL.Image.BOX.

7. Removing softmax

The original Grad-CAM paper (https://arxiv.org/pdf/1610.02391.pdf)
suggests that we should use the output of the layer before softmax when
doing Grad-CAM (use raw score values, not probabilities). Currently ELI5
simply takes the model as-is. Let’s try and swap the softmax (logits)
layer of our current model with a linear (no activation) layer, and
check the explanation:

first check the explanation *with* softmax
print('with softmax')
display(eli5.show_prediction(model, doc))

remove softmax
l = model.get_layer(index=-1) # get the last (output) layer
l.activation = keras.activations.linear # swap activation

save and load back the model as a trick to reload the graph
model.save('tmp_model_save_rmsoftmax') # note that this creates a file of the model
model = keras.models.load_model('tmp_model_save_rmsoftmax')

print('without softmax')
display(eli5.show_prediction(model, doc))

with softmax

[image: ../_images/keras-image-classifiers_53_11.png]
without softmax

[image: ../_images/keras-image-classifiers_53_31.png]
We see some slight differences. The activations are brighter. Do
consider swapping out softmax if explanations for your model seem off.

8. Comparing explanations of different models

According to the paper at https://arxiv.org/abs/1711.06104, if an
explanation method such as Grad-CAM is any good, then explaining
different models should yield different results. Let’s verify that by
loading another model and explaining a classification of the same image:

from keras.applications import nasnet

model2 = nasnet.NASNetMobile(include_top=True, weights='imagenet', classes=1000)

we reload the image array to apply nasnet-specific preprocessing
doc2 = keras.preprocessing.image.img_to_array(im)
doc2 = np.expand_dims(doc2, axis=0)
nasnet.preprocess_input(doc2)

print(model.name)
note that this model is without softmax
display(eli5.show_prediction(model, doc))
print(model2.name)
display(eli5.show_prediction(model2, doc2))

mobilenetv2_1.00_224

[image: ../_images/keras-image-classifiers_56_11.png]
NASNet

[image: ../_images/keras-image-classifiers_56_31.png]
Wow show_prediction() is so robust!

 Supported Libraries

Supported Libraries

	scikit-learn

	XGBoost

	LightGBM

	CatBoost

	lightning

	sklearn-crfsuite

	Keras

 scikit-learn

scikit-learn

ELI5 supports many estimators, transformers and other components
from the scikit-learn [https://github.com/scikit-learn/scikit-learn] library.

Additional explain_weights and explain_prediction parameters

For all supported scikit-learn classifiers and regressors
eli5.explain_weights() and eli5.explain_prediction() accept
additional keyword arguments. Additional eli5.explain_weights()
parameters:

	vec is a vectorizer instance used to transform
raw features to the input of the classifier or regressor
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

Additional eli5.explain_prediction() parameters:

	vec is a vectorizer instance used to transform
raw features to the input of the classifier or regressor
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

	vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
estimator. Set it to True if you’re passing vec (e.g. to get feature
names and/or enable text highlighting),
but doc is already vectorized.

Linear estimators

For linear estimators eli5 maps coefficients back to feature names directly.
Supported estimators from sklearn.linear_model [http://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model]:

	ElasticNet [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet]

	ElasticNetCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html#sklearn.linear_model.ElasticNetCV]

	HuberRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor]

	Lars [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html#sklearn.linear_model.Lars]

	LarsCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LarsCV.html#sklearn.linear_model.LarsCV]

	Lasso [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso]

	LassoCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html#sklearn.linear_model.LassoCV]

	LassoLars [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html#sklearn.linear_model.LassoLars]

	LassoLarsCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html#sklearn.linear_model.LassoLarsCV]

	LassoLarsIC [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC]

	LinearRegression [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression]

	LogisticRegression [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression]

	LogisticRegressionCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV]

	OrthogonalMatchingPursuit [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.html#sklearn.linear_model.OrthogonalMatchingPursuit]

	OrthogonalMatchingPursuitCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.html#sklearn.linear_model.OrthogonalMatchingPursuitCV]

	PassiveAggressiveClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html#sklearn.linear_model.PassiveAggressiveClassifier]

	PassiveAggressiveRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html#sklearn.linear_model.PassiveAggressiveRegressor]

	Perceptron [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron]

	Ridge [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge]

	RidgeClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier]

	RidgeClassifierCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html#sklearn.linear_model.RidgeClassifierCV]

	RidgeCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV]

	SGDClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier]

	SGDRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor]

	TheilSenRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor]

Linear SVMs from sklearn.svm are also supported:

	LinearSVC [http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC]

	LinearSVR [http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR]

	SVC [http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC] (only with kernel='linear', only for binary classification)

	SVR [http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR] (only with kernel='linear')

	NuSVC [http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC] (only with kernel='linear', only for binary classification)

	NuSVR [http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html#sklearn.svm.NuSVR] (only with kernel='linear')

	OneClassSVM [http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM] (only with kernel='linear')

For linear scikit-learn classifiers eli5.explain_weights() supports
one more keyword argument, in addition to common argument and extra arguments
for all scikit-learn estimators:

	coef_scale is a 1D np.ndarray with a scaling coefficient
for each feature; coef[i] = coef[i] * coef_scale[i] if
coef_scale[i] is not nan. Use it if you want to scale coefficients
before displaying them, to take input feature sign or scale in account.

Note

Top-level eli5.explain_weights() and eli5.explain_prediction()
calls are dispatched to these functions for linear scikit-learn estimators:

	eli5.sklearn.explain_weights.explain_linear_classifier_weights()

	eli5.sklearn.explain_weights.explain_linear_regressor_weights()

	eli5.sklearn.explain_prediction.explain_prediction_linear_classifier()

	eli5.sklearn.explain_prediction.explain_prediction_linear_regressor()

Decision Trees, Ensembles

eli5 supports the following tree-based estimators from sklearn.tree:

	DecisionTreeClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier]

	DecisionTreeRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor]

eli5.explain_weights() computes feature importances and prepares
tree visualization; eli5.show_weights() may visualizes a tree
either as text or as image (if graphviz is available).

For DecisionTreeClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier] and DecisionTreeRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor]
additional eli5.explain_weights() keyword arguments
are forwarded to sklearn.tree.export_graphviz [http://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html] function when graphviz
is available; they can be used to customize tree image.

Note

For decision trees top-level eli5.explain_weights() calls are
dispatched to eli5.sklearn.explain_weights.explain_decision_tree().

The following tree ensembles from sklearn.ensemble are supported:

	GradientBoostingClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier]

	GradientBoostingRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor]

	AdaBoostClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier] (only eli5.explain_weights())

	AdaBoostRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html#sklearn.ensemble.AdaBoostRegressor] (only eli5.explain_weights())

	RandomForestClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier]

	RandomForestRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor]

	ExtraTreesClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier]

	ExtraTreesRegressor [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html#sklearn.ensemble.ExtraTreesRegressor]

For ensembles eli5.explain_weights() computes feature importances
and their std deviation.

Note

For ensembles top-level eli5.explain_weights() calls are
dispatched to eli5.sklearn.explain_weights.explain_rf_feature_importance().

eli5.explain_prediction() is less straightforward for ensembles and
trees; eli5 uses an approach based on ideas from
http://blog.datadive.net/interpreting-random-forests/ :
feature weights are calculated by following decision paths in trees
of an ensemble (or a single tree for DecisionTreeClassifier and
DecisionTreeRegressor). Each node of the tree has an output score, and
contribution of a feature on the decision path is how much the score changes
from parent to child.

There is a separate package for this explaination method
(https://github.com/andosa/treeinterpreter); eli5 implementation
is independent.

Note

For decision trees and ensembles eli5.explain_prediction()
calls are dispatched to
eli5.sklearn.explain_prediction.explain_prediction_tree_classifier()
and eli5.sklearn.explain_prediction.explain_prediction_tree_regressor().

Transformation pipelines

eli5.explain_weights() can be applied to a scikit-learn Pipeline [http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline] as
long as:

	explain_weights is supported for the final step of the Pipeline;

	eli5.transform_feature_names() is supported for all preceding steps
of the Pipeline. singledispatch [https://pypi.python.org/pypi/singledispatch] can be used to register
transform_feature_names for transformer classes not handled (yet) by ELI5
or to override the default implementation.

For instance, imagine a transformer which selects every second feature:

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils.validation import check_array
from eli5 import transform_feature_names

class OddTransformer(BaseEstimator, TransformerMixin):
 def fit(self, X, y=None):
 # we store n_features_ for the sake of transform_feature_names
 # when in_names=None:
 self.n_features_ = check_array(X).shape[1]
 return self

 def transform(self, X):
 return check_array(X)[:, 1::2]

@transform_feature_names.register(OddTransformer)
def odd_feature_names(transformer, in_names=None):
 if in_names is None:
 from eli5.sklearn.utils import get_feature_names
 # generate default feature names
 in_names = get_feature_names(transformer, num_features=transformer.n_features_)
 # return a list of strings derived from in_names
 return in_names[1::2]

Now we can:
my_pipeline = make_pipeline(OddTransformer(), MyClassifier())
my_pipeline.fit(X, y)
explain_weights(my_pipeline)
explain_weights(my_pipeline, feature_names=['a', 'b', ...])

Note that the in_names != None case does not need to be handled as long as the
transformer will always be passed the set of feature names either from
explain_weights(my_pipeline, feature_names=...) or from the previous step
in the Pipeline.

Currently the following transformers are supported out of the box:

	any transformer which provides .get_feature_names() method;

	nested FeatureUnions and Pipelines;

	SelectorMixin-based transformers: SelectPercentile [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html],
SelectKBest [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html], GenericUnivariateSelect [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html], VarianceThreshold [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html],
RFE [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html], RFECV [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html], SelectFromModel [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html], RandomizedLogisticRegression [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RandomizedLogisticRegression.html];

	scalers from sklearn.preprocessing: MinMaxScaler [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html], StandardScaler [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler],
MaxAbsScaler [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler], RobustScaler [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler].

Reversing hashing trick

eli5 allows to recover feature names for HashingVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer] and FeatureHasher [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher]
by computing hashes for the provided example data.
eli5.explain_prediction() handles HashingVectorizer as vec
automatically; to handle HashingVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer] and FeatureHasher [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher] for
eli5.explain_weights(), use
InvertableHashingVectorizer or
FeatureUnhasher:

vec is a HashingVectorizer instance
clf is a classifier which works on HashingVectorizer output
X_sample is a representative sample of input documents

import eli5
from eli5.sklearn import InvertableHashingVectorizer
ivec = InvertableHashingVectorizer(vec)
ivec.fit(X_sample)

now ``ivec.get_feature_names()`` returns meaningful feature names,
and ``ivec`` can be used as a vectorizer for eli5.explain_weights:
eli5.explain_weights(clf, vec=ivec)

HashingVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer] is also supported inside a FeatureUnion [http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion]:
eli5.explain_prediction() handles this case automatically, and for
eli5.explain_weights() you can use eli5.sklearn.unhashing.invert_hashing_and_fit()
(it works for plain HashingVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer] too) - it tears FeatureUnion [http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion] apart,
inverts and fits all hashing vectorizers and returns a new FeatureUnion [http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion]:

from eli5.sklearn import invert_hashing_and_fit

ivec = invert_hashing_and_fit(vec, X_sample)
eli5.explain_weights(clf, vec=ivec)

Text highlighting

For text data eli5.explain_prediction() can show the input document
with its parts (tokens, characters) highlighted according to their
contribution to the prediction result:

[image: ../_images/word-highlight.png]
It works if the document is vectorized using
CountVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer], TfIdfVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer] or HashingVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer], and a fitted
vectorizer instance is passed to eli5.explain_prediction()
in a vec argument. Custom preprocessors are supported, but custom
analyzers or tokenizers are not: highligting works only with ‘word’, ‘char’
or ‘char_wb’ analyzers and a default tokenizer (non-default token_pattern
is supported).

Text highlighting also works if a document is vectorized using FeatureUnion [http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion]
with at least one of CountVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer], TfIdfVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer] or HashingVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer]
in the transformer list; features of other transformers are displayed in
a regular table.

See also: Debugging scikit-learn text classification pipeline
tutorial.

OneVsRestClassifier

eli5.explain_weights() and eli5.explain_prediction() handle
OneVsRestClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html] by dispatching to the explanation function for
OvR base estimator, and then calling this function for the
OneVsRestClassifier instance. This works in many cases, but not for all.
Please report issues to https://github.com/TeamHG-Memex/eli5/issues.

 XGBoost

XGBoost

XGBoost [https://github.com/dmlc/xgboost] is a popular Gradient Boosting library with Python interface.
eli5 supports eli5.explain_weights() and eli5.explain_prediction()
for XGBClassifer [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier], XGBRegressor [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor] and Booster [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster] estimators. It is tested for
xgboost >= 0.6a2.

eli5.explain_weights() uses feature importances. Additional
arguments for XGBClassifer [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier], XGBRegressor [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor] and Booster [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster]:

	importance_type is a way to get feature importance. Possible values are:

	‘gain’ - the average gain of the feature when it is used in trees
(default)

	‘weight’ - the number of times a feature is used to split the data
across all trees

	‘cover’ - the average coverage of the feature when it is used in trees

target_names and targets arguments are ignored.

Note

Top-level eli5.explain_weights() calls are dispatched
to eli5.xgboost.explain_weights_xgboost() for
XGBClassifer [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier], XGBRegressor [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor] and Booster [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster].

For eli5.explain_prediction() eli5 uses an approach based on ideas from
http://blog.datadive.net/interpreting-random-forests/ :
feature weights are calculated by following decision paths in trees
of an ensemble. Each node of the tree has an output score, and
contribution of a feature on the decision path is how much the score changes
from parent to child.

Note

When explaining Booster [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster] predictions,
do not pass an xgboost.DMatrix object as doc, pass a numpy array
or a sparse matrix instead (or have vec return them).

Additional eli5.explain_prediction() keyword arguments supported
for XGBClassifer [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier], XGBRegressor [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor] and Booster [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster]:

	vec is a vectorizer instance used to transform
raw features to the input of the estimator xgb
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

	vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
estimator. Set it to True if you’re passing vec,
but doc is already vectorized.

eli5.explain_prediction() for Booster [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster] estimator accepts
two more optional arguments:

	is_regression - True if solving a regression problem
(“objective” starts with “reg”)
and False for a classification problem.
If not set, regression is assumed for a single target estimator
and proba will not be shown.

	missing - set it to the same value as the missing argument to
xgboost.DMatrix. Matters only if sparse values are used.
Default is np.nan.

See the tutorial for a more detailed usage
example.

Note

Top-level eli5.explain_prediction() calls are dispatched
to eli5.xgboost.explain_prediction_xgboost() for
XGBClassifer [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier], XGBRegressor [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor] and Booster [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster].

 LightGBM

LightGBM

LightGBM [https://github.com/Microsoft/LightGBM] is a fast Gradient Boosting framework; it provides a Python
interface. eli5 supports eli5.explain_weights()
and eli5.explain_prediction() for lightgbm.LGBMClassifer
and lightgbm.LGBMRegressor estimators.

eli5.explain_weights() uses feature importances. Additional
arguments for LGBMClassifier and LGBMClassifier:

	importance_type is a way to get feature importance. Possible values are:

	‘gain’ - the average gain of the feature when it is used in trees
(default)

	‘split’ - the number of times a feature is used to split the data
across all trees

	‘weight’ - the same as ‘split’, for better compatibility with
XGBoost.

target_names and target arguments are ignored.

Note

Top-level eli5.explain_weights() calls are dispatched
to eli5.lightgbm.explain_weights_lightgbm() for
lightgbm.LGBMClassifer and lightgbm.LGBMRegressor.

For eli5.explain_prediction() eli5 uses an approach based on ideas from
http://blog.datadive.net/interpreting-random-forests/ :
feature weights are calculated by following decision paths in trees
of an ensemble. Each node of the tree has an output score, and
contribution of a feature on the decision path is how much the score changes
from parent to child.

Additional eli5.explain_prediction() keyword arguments supported
for lightgbm.LGBMClassifer and lightgbm.LGBMRegressor:

	vec is a vectorizer instance used to transform
raw features to the input of the estimator lgb
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

	vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
estimator. Set it to True if you’re passing vec,
but doc is already vectorized.

Note

Top-level eli5.explain_prediction() calls are dispatched
to eli5.xgboost.explain_prediction_lightgbm() for
lightgbm.LGBMClassifer and lightgbm.LGBMRegressor.

 CatBoost

CatBoost

CatBoost [https://github.com/catboost/catboost] is a state-of-the-art open-source gradient boosting on decision trees library. eli5 supports eli5.explain_weights()
for catboost.CatBoost, catboost.CatBoostClassifier and catboost.CatBoostRegressor.

eli5.explain_weights() uses feature importances. Additional
arguments for CatBoostClassifier and CatBoostRegressor:

	importance_type is a way to get feature importance. Possible values are:

	‘PredictionValuesChange’ - The individual importance values for each of the input features.(default)

	‘LossFunctionChange’ - The individual importance values for each of the input features for ranking metrics (requires training data to be passed or a similar dataset with Pool)

	pool the catboost.Pool datatype . To be passed if explain_weights_catboost has importance_type set to ‘LossFunctionChange’. The catboost feature_importances uses the Pool datatype to calculate the parameter for the specific importance_type.

Note

Top-level eli5.explain_weights() calls are dispatched
to eli5.catboost.explain_weights_catboost() for
catboost.CatBoost, catboost.CatBoostClassifer and catboost.CatBoostRegressor.

 lightning

lightning

eli5 supports lightning [https://github.com/scikit-learn-contrib/lightning] library, which contains linear classifiers
with API largely compatible with scikit-learn [https://github.com/scikit-learn/scikit-learn].

Using eli5 with estimators from lightning is exactly the same as
using it for scikit-learn built-in linear estimators - see
Additional explain_weights and explain_prediction parameters and Linear estimators.

Supported lightning estimators:

	AdaGradClassifier [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.AdaGradClassifier.html#lightning.classification.AdaGradClassifier]

	AdaGradRegressor [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.AdaGradRegressor.html#lightning.regression.AdaGradRegressor]

	CDClassifier [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.CDClassifier.html#lightning.classification.CDClassifier]

	CDRegressor [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.CDRegressor.html#lightning.regression.CDRegressor]

	FistaClassifier [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.FistaClassifier.html#lightning.classification.FistaClassifier]

	FistaRegressor [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.FistaRegressor.html#lightning.regression.FistaRegressor]

	LinearSVC [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.LinearSVC.html#lightning.classification.LinearSVC]

	LinearSVR [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.LinearSVR.html#lightning.regression.LinearSVR]

	SAGAClassifier [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.SDCAClassifier.html#lightning.classification.SDCAClassifier]

	SAGARegressor [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.SDCARegressor.html#lightning.regression.SDCARegressor]

	SAGClassifier [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.SAGClassifier.html]

	SAGRegressor [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.SAGRegressor.html#lightning.regression.SAGRegressor]

	SDCAClassifier [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.SDCAClassifier.html#lightning.classification.SDCAClassifier]

	SDCARegressor [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.SDCARegressor.html#lightning.regression.SDCARegressor]

	SGDClassifier [http://contrib.scikit-learn.org/lightning/generated/lightning.classification.SGDClassifier.html#lightning.classification.SGDClassifier]

	SGDRegressor [http://contrib.scikit-learn.org/lightning/generated/lightning.regression.SGDRegressor.html#lightning.regression.SGDRegressor]

 sklearn-crfsuite

sklearn-crfsuite

sklearn-crfsuite [https://github.com/TeamHG-Memex/sklearn-crfsuite] is a sequence classification library. It provides
a higher-level API for python-crfsuite [https://github.com/scrapinghub/python-crfsuite]; python-crfsuite [https://github.com/scrapinghub/python-crfsuite] is a Python binding
for CRFSuite [https://github.com/chokkan/crfsuite] C++ library.

eli5 supports eli5.explain_weights() for sklearn_crfsuite.CRF [http://sklearn-crfsuite.readthedocs.io/en/latest/api.html#sklearn_crfsuite.CRF] objects;
explanation contains transition features table and state features table.

import eli5
eli5.explain_weights(crf)

See the tutorial for a more detailed usage
example.

Note

Top-level eli5.explain_weights() calls are dispatched
to eli5.sklearn_crfsuite.explain_weights.explain_weights_sklearn_crfsuite().

 Keras

Keras

Keras [https://keras.io/] is “a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano”.

Keras can be used for many Machine Learning tasks, and it has support for both popular
and experimental neural network architectures.

Note: only TensorFlow 1.x is supported, recommended Keras version is 2.3.1 or earlier.

explain_prediction

Currently ELI5 supports eli5.explain_prediction() for Keras image classifiers.
eli5.explain_prediction() explains image classifications through Grad-CAM [https://arxiv.org/pdf/1610.02391.pdf].

The returned eli5.base.Explanation instance contains some important objects:

	image represents the image input into the model. A Pillow image.

	targets represents the explanation values for each target class (currently only 1 target is supported). A list of eli5.base.TargetExplanation objects with the following attributes set:

	heatmap a grayscale “localization map” (rank 2 (2D) numpy array, with float values in the interval [0, 1]). The numbers indicate how important the region in the image is for the target class (even if the target class was not the predicted class). Higher numbers mean that the region tends to increase the predicted value for a class. Lower numbers mean that the region has smaller effect on the predicted class score.

	target the integer ID of the class (same as the argument to targets if one was passed, or the predicted class ID if no argument was passed).

	score the output of the network for the predicted class.

Important arguments to eli5.explain_prediction() for Model and Sequential:

	doc is an image as a tensor that can be inputted to the model.

	The tensor must be an instance of numpy.ndarray.

	Usually the tensor has the format (batch, dims, …, channels) (channels last format, dims=(height, width), batch=1, one image), i.e. BHWC.

	Check model.input_shape to confirm the required dimensions of the input tensor.

	image Pillow image, corresponds to doc input.

	Image over which to overlay the heatmap.

	If not given, the image will be derived from doc where possible.

	Useful if ELI5 fails in case you have a custom image model or image input.

	targets are the output classes to focus on. Possible values include:

	A list of integers (class ID’s). Only the first prediction from the list is currently taken. The list must be length one.

	None for automatically taking the top prediction of the model.

	layer is the layer in the model from which the heatmap will be generated. Possible values are:

	An instance of Layer, a name (str), or an index (int)

	None for automatically getting a suitable layer, if possible.

All other arguments are ignored.

Note

Top-level eli5.explain_prediction() calls are dispatched
to eli5.keras.explain_prediction_keras() for
keras.models.Model and keras.models.Sequential.

show_prediction

ELI5 supports eli5.show_prediction() to conveniently
invoke explain_prediction with format_as_image, and display the explanation in an
IPython cell.

Grad-CAM

ELI5 contains eli5.keras.gradcam.gradcam() and eli5.keras.gradcam.gradcam_backend().

These functions can be used to obtain finer details of a Grad-CAM explanation.

 Inspecting Black-Box Estimators

Inspecting Black-Box Estimators

eli5.explain_weights() and eli5.explain_prediction() support
a lot of estimators and pipelines directly, but it is not possible to support
everything explicitly. So eli5 provides a way to inspect ML pipelines as black
boxes: Permutation Importance method allows to use
eli5.explain_weights() with black-box estimators, while LIME
allows to use eli5.explain_prediction().

	LIME

	Permutation Importance

 LIME

LIME

Algorithm

LIME [http://arxiv.org/abs/1602.04938] (Ribeiro et. al. 2016) is an algorithm to explain predictions
of black-box estimators:

	Generate a fake dataset from the example we’re going to explain.

	Use black-box estimator to get target values for each example in a generated
dataset (e.g. class probabilities).

	Train a new white-box estimator, using generated dataset
and generated labels as training data. It means we’re trying to create
an estimator which works the same as a black-box estimator, but which is
easier to inspect. It doesn’t have to work well globally, but it must
approximate the black-box model well in the area close to the original
example.

To express “area close to the original example” user must provide
a distance/similarity metric for examples in a generated dataset.
Then training data is weighted according to a distance from the
original example - the further is example, the less it affects weights
of a white-box estimator.

	Explain the original example through weights of this white-box estimator
instead.

	Prediction quality of a white-box classifer shows how well it approximates
the black-box classifier. If the quality is low then explanation
shouldn’t be trusted.

eli5.lime

To understand how to use eli5.lime with text data check the
TextExplainer tutorial. API reference is available
here. Currently eli5 doesn’t provide a lot of helpers
for LIME + non-text data, but there is an IPyhton
notebook [https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/LIME%20and%20synthetic%20data.ipynb]
with an example of applying LIME for such tasks.

Caveats

It sounds too good to be true, and indeed there are caveats:

	If a white-box estimator gets a high score on a generated dataset
it doesn’t necessarily mean it could be trusted - it could also mean that
the generated dataset is too easy and uniform, or that similarity
metric provided by user assigns very low values for most examples,
so that “area close to the original example” is too small to be interesting.

	Fake dataset generation is the main issue; it is task-specific
to a large extent. So LIME [http://arxiv.org/abs/1602.04938] can work with any black-box classifier,
but user may need to write code specific for each dataset.
There is an opposite tradeoff in inspecting model weights:
it works for any task, but one must write inspection code for each
estimator type.

eli5.lime provides dataset generation utilities for text data
(remove random words) and for arbitrary data
(sampling using Kernel Density Estimation).

For text data eli5 also provides eli5.lime.TextExplainer
which brings together all LIME steps and allows to explain text classifiers;
it still needs to make assumptions about the classifier in order to
generate efficient fake dataset.

	Similarity metric has a huge effect on a result. By choosing
neighbourhood of a different size one can get opposite explanations.

Alternative implementations

There is a LIME implementation by LIME authors:
https://github.com/marcotcr/lime, so it is eli5.lime which should be considered
as alternative. At the time of writing eli5.lime has some differences from the
canonical LIME implementation:

	eli5 supports many white-box classifiers from several libraries,
you can use any of them with LIME;

	eli5 supports dataset generation using Kernel Density Estimation,
to ensure that generated dataset looks similar to the original dataset;

	for explaining predictions of probabilistic classifiers
eli5 uses another classifier by default, trained using cross-entropy loss,
while canonical library fits regression model on probability output.

There are also features which are supported by original implementation,
but not by eli5, and the UIs are different.

 Permutation Importance

Permutation Importance

eli5 provides a way to compute feature importances for any black-box
estimator by measuring how score decreases when a feature is not available;
the method is also known as “permutation importance” or
“Mean Decrease Accuracy (MDA)”.

A similar method is described in Breiman, “Random Forests”, Machine Learning,
45(1), 5-32, 2001 (available online at
https://www.stat.berkeley.edu/%7Ebreiman/randomforest2001.pdf).

Algorithm

The idea is the following: feature importance can be measured by looking at
how much the score (accuracy, F1, R^2, etc. - any score we’re interested in)
decreases when a feature is not available.

To do that one can remove feature from the dataset, re-train the estimator
and check the score. But it requires re-training an estimator for each
feature, which can be computationally intensive. Also, it shows what may be
important within a dataset, not what is important within a concrete
trained model.

To avoid re-training the estimator we can remove a feature only from the
test part of the dataset, and compute score without using this
feature. It doesn’t work as-is, because estimators expect feature to be
present. So instead of removing a feature we can replace it with random
noise - feature column is still there, but it no longer contains useful
information. This method works if noise is drawn from the same
distribution as original feature values (as otherwise estimator may
fail). The simplest way to get such noise is to shuffle values
for a feature, i.e. use other examples’ feature values - this is how
permutation importance is computed.

The method is most suitable for computing feature importances when
a number of columns (features) is not huge; it can be resource-intensive
otherwise.

Model Inspection

For sklearn-compatible estimators eli5 provides
PermutationImportance wrapper. If you want to use this
method for other estimators you can either wrap them in sklearn-compatible
objects, or use eli5.permutation_importance module which has basic
building blocks.

For example, this is how you can check feature importances of
sklearn.svm.SVC [http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html] classifier, which is not supported by eli5 directly
when a non-linear kernel is used:

import eli5
from eli5.sklearn import PermutationImportance
from sklearn.svm import SVC

... load data

svc = SVC().fit(X_train, y_train)
perm = PermutationImportance(svc).fit(X_test, y_test)
eli5.show_weights(perm)

If you don’t have a separate held-out dataset, you can fit
PermutationImportance on the same data as used for
training; this still allows to inspect the model, but doesn’t show which
features are important for generalization.

For non-sklearn models you can use
eli5.permutation_importance.get_score_importances():

import numpy as np
from eli5.permutation_importance import get_score_importances

... load data, define score function
def score(X, y):
 y_pred = predict(X)
 return accuracy(y, y_pred)

base_score, score_decreases = get_score_importances(score, X, y)
feature_importances = np.mean(score_decreases, axis=0)

Feature Selection

This method can be useful not only for introspection, but also for
feature selection - one can compute feature importances using
PermutationImportance, then drop unimportant features
using e.g. sklearn’s SelectFromModel [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html#sklearn.feature_selection.SelectFromModel] or RFE [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn-feature-selection-rfe]. In this case estimator passed
to PermutationImportance doesn’t have to be fit; feature
importances can be computed for several train/test splits and then averaged:

import eli5
from eli5.sklearn import PermutationImportance
from sklearn.svm import SVC
from sklearn.feature_selection import SelectFromModel

... load data

perm = PermutationImportance(SVC(), cv=5)
perm.fit(X, y)

perm.feature_importances_ attribute is now available, it can be used
for feature selection - let's e.g. select features which increase
accuracy by at least 0.05:
sel = SelectFromModel(perm, threshold=0.05, prefit=True)
X_trans = sel.transform(X)

It is possible to combine SelectFromModel and
PermutationImportance directly, without fitting
PermutationImportance first:
sel = SelectFromModel(
 PermutationImportance(SVC(), cv=5),
 threshold=0.05,
).fit(X, y)
X_trans = sel.transform(X)

See PermutationImportance docs for more.

Note that permutation importance should be used for feature selection with
care (like many other feature importance measures). For example,
if several features are correlated, and the estimator uses them all equally,
permutation importance can be low for all of these features: dropping one
of the features may not affect the result, as estimator still has an access
to the same information from other features. So if features are dropped
based on importance threshold, such correlated features could
be dropped all at the same time, regardless of their usefulness. RFE [http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn-feature-selection-rfe] and
alike methods (as opposed to single-stage feature selection)
can help with this problem to an extent.

 API

API

API documentation is auto-generated.

	ELI5 top-level API

	eli5.formatters
	eli5.formatters.html

	eli5.formatters.text

	eli5.formatters.as_dict

	eli5.formatters.as_dataframe

	eli5.formatters.image

	eli5.lightning

	eli5.lime
	eli5.lime.lime

	eli5.lime.samplers

	eli5.lime.textutils

	eli5.sklearn
	eli5.sklearn.explain_prediction

	eli5.sklearn.explain_weights

	eli5.sklearn.unhashing

	eli5.sklearn.permutation_importance

	eli5.sklearn_crfsuite

	eli5.xgboost

	eli5.lightgbm

	eli5.catboost

	eli5.permutation_importance

	eli5.keras
	eli5.keras.explain_prediction

	eli5.keras.gradcam

	eli5.base

 ELI5 top-level API

ELI5 top-level API

The following functions are exposed to a top level, e.g.
eli5.explain_weights.

	
explain_weights(estimator, **kwargs)[source]

	Return an explanation of estimator parameters (weights).

explain_weights() is not doing any work itself, it dispatches
to a concrete implementation based on estimator type.

	Parameters

	
	estimator (object) – Estimator instance. This argument must be positional.

	top (int or (int, int) tuple, optional) – Number of features to show. When top is int, top features with
a highest absolute values are shown. When it is (pos, neg) tuple,
no more than pos positive features and no more than neg
negative features is shown. None value means no limit.

This argument may be supported or not, depending on estimator type.

	target_names (list[str] or {‘old_name’: ‘new_name’} dict, optional) – Names of targets or classes. This argument can be used to provide
human-readable class/target names for estimators which don’t expose
clss names themselves. It can be also used to rename estimator-provided
classes before displaying them.

This argument may be supported or not, depending on estimator type.

	targets (list, optional) – Order of class/target names to show. This argument can be also used
to show information only for a subset of classes. It should be a list
of class / target names which match either names provided by
an estimator or names defined in target_names parameter.

This argument may be supported or not, depending on estimator type.

	feature_names (list, optional) – A list of feature names. It allows to specify feature
names when they are not provided by an estimator object.

This argument may be supported or not, depending on estimator type.

	feature_re (str, optional) – Only feature names which match feature_re regex are returned
(more precisely, re.search(feature_re, x) is checked).

	feature_filter (Callable[[str], bool], optional) – Only feature names for which feature_filter function returns True
are returned.

	**kwargs (dict) – Keyword arguments. All keyword arguments are passed to
concrete explain_weights… implementations.

	Returns

	Explanation – Explanation result. Use one of the formatting functions from
eli5.formatters to print it in a human-readable form.

Explanation instances have repr which works well with
IPython notebook, but it can be a better idea to use
eli5.show_weights() instead of eli5.explain_weights()
if you work with IPython: eli5.show_weights() allows to customize
formatting without a need to import eli5.formatters functions.

	
explain_prediction(estimator, doc, **kwargs)[source]

	Return an explanation of an estimator prediction.

explain_prediction() is not doing any work itself, it dispatches
to a concrete implementation based on estimator type.

	Parameters

	
	estimator (object) – Estimator instance. This argument must be positional.

	doc (object) – Example to run estimator on. Estimator makes a prediction for this
example, and explain_prediction() tries to show information
about this prediction. Pass a single element, not a one-element array:
if you fitted your estimator on X, that would be X[i] for
most containers, and X.iloc[i] for pandas.DataFrame.

	top (int or (int, int) tuple, optional) – Number of features to show. When top is int, top features with
a highest absolute values are shown. When it is (pos, neg) tuple,
no more than pos positive features and no more than neg
negative features is shown. None value means no limit (default).

This argument may be supported or not, depending on estimator type.

	top_targets (int, optional) – Number of targets to show. When top_targets is provided,
only specified number of targets with highest scores are shown.
Negative value means targets with lowest scores are shown.
Must not be given with targets argument.
None value means no limit: all targets are shown (default).

This argument may be supported or not, depending on estimator type.

	target_names (list[str] or {‘old_name’: ‘new_name’} dict, optional) – Names of targets or classes. This argument can be used to provide
human-readable class/target names for estimators which don’t expose
class names themselves. It can be also used to rename estimator-provided
classes before displaying them.

This argument may be supported or not, depending on estimator type.

	targets (list, optional) – Order of class/target names to show. This argument can be also used
to show information only for a subset of classes. It should be a list
of class / target names which match either names provided by
an estimator or names defined in target_names parameter.
Must not be given with top_targets argument.

In case of binary classification you can use this argument to
set the class which probability or score should be displayed, with
an appropriate explanation. By default a result for predicted class
is shown. For example, you can use targets=[True] to always show
result for a positive class, even if the predicted label is False.

This argument may be supported or not, depending on estimator type.

	feature_names (list, optional) – A list of feature names. It allows to specify feature
names when they are not provided by an estimator object.

This argument may be supported or not, depending on estimator type.

	feature_re (str, optional) – Only feature names which match feature_re regex are returned
(more precisely, re.search(feature_re, x) is checked).

	feature_filter (Callable[[str, float], bool], optional) – Only feature names for which feature_filter function returns True
are returned. It must accept feature name and feature value.
Missing features always have a NaN value.

	**kwargs (dict) – Keyword arguments. All keyword arguments are passed to
concrete explain_prediction… implementations.

	Returns

	Explanation – Explanation result. Use one of the formatting functions from
eli5.formatters to print it in a human-readable form.

Explanation instances have repr which works well with
IPython notebook, but it can be a better idea to use
eli5.show_prediction() instead of eli5.explain_prediction()
if you work with IPython: eli5.show_prediction() allows to
customize formatting without a need to import eli5.formatters
functions.

	
show_weights(estimator, **kwargs)[source]

	Return an explanation of estimator parameters (weights)
as an IPython.display.HTML object. Use this function
to show classifier weights in IPython.

show_weights() accepts all
eli5.explain_weights() arguments and all
eli5.formatters.html.format_as_html()
keyword arguments, so it is possible to get explanation and
customize formatting in a single call.

	Parameters

	
	estimator (object) – Estimator instance. This argument must be positional.

	top (int or (int, int) tuple, optional) – Number of features to show. When top is int, top features with
a highest absolute values are shown. When it is (pos, neg) tuple,
no more than pos positive features and no more than neg
negative features is shown. None value means no limit.

This argument may be supported or not, depending on estimator type.

	target_names (list[str] or {‘old_name’: ‘new_name’} dict, optional) – Names of targets or classes. This argument can be used to provide
human-readable class/target names for estimators which don’t expose
clss names themselves. It can be also used to rename estimator-provided
classes before displaying them.

This argument may be supported or not, depending on estimator type.

	targets (list, optional) – Order of class/target names to show. This argument can be also used
to show information only for a subset of classes. It should be a list
of class / target names which match either names provided by
an estimator or names defined in target_names parameter.

This argument may be supported or not, depending on estimator type.

	feature_names (list, optional) – A list of feature names. It allows to specify feature
names when they are not provided by an estimator object.

This argument may be supported or not, depending on estimator type.

	feature_re (str, optional) – Only feature names which match feature_re regex are shown
(more precisely, re.search(feature_re, x) is checked).

	feature_filter (Callable[[str], bool], optional) – Only feature names for which feature_filter function returns True
are shown.

	show (List[str], optional) – List of sections to show. Allowed values:

	‘targets’ - per-target feature weights;

	‘transition_features’ - transition features of a CRF model;

	‘feature_importances’ - feature importances of a decision tree or
an ensemble-based estimator;

	‘decision_tree’ - decision tree in a graphical form;

	‘method’ - a string with explanation method;

	‘description’ - description of explanation method and its caveats.

eli5.formatters.fields provides constants that cover common cases:
INFO (method and description), WEIGHTS (all the rest),
and ALL (all).

	horizontal_layout (bool) – When True, feature weight tables are printed horizontally
(left to right); when False, feature weight tables are printed
vertically (top to down). Default is True.

	highlight_spaces (bool or None, optional) – Whether to highlight spaces in feature names. This is useful if
you work with text and have ngram features which may include spaces
at left or right. Default is None, meaning that the value used
is set automatically based on vectorizer and feature values.

	include_styles (bool) – Most styles are inline, but some are included separately in <style> tag;
you can omit them by passing include_styles=False. Default is True.

	**kwargs (dict) – Keyword arguments. All keyword arguments are passed to
concrete explain_weights… implementations.

	Returns

	IPython.display.HTML – The result is printed in IPython notebook as an HTML widget.
If you need to display several explanations as an output of a single
cell, or if you want to display it from a function then use
IPython.display.display:

from IPython.display import display
display(eli5.show_weights(clf1))
display(eli5.show_weights(clf2))

	
show_prediction(estimator, doc, **kwargs)[source]

	Return an explanation of estimator prediction
as an IPython.display.HTML object. Use this function
to show information about classifier prediction in IPython.

show_prediction() accepts all
eli5.explain_prediction() arguments and all
eli5.formatters.html.format_as_html()
keyword arguments, so it is possible to get explanation and
customize formatting in a single call.

If explain_prediction() returns an base.Explanation object with
the image attribute not set to None, i.e. if explaining image based models,
then formatting is dispatched to an image display implementation,
and image explanations are shown in an IPython cell.
Extra keyword arguments are passed to eli5.format_as_image().

Note that this image display implementation
requires matplotlib and Pillow as extra dependencies.
If the dependencies are missing, no formatting is done
and the original base.Explanation object is returned.

	Parameters

	
	estimator (object) – Estimator instance. This argument must be positional.

	doc (object) – Example to run estimator on. Estimator makes a prediction for this
example, and show_prediction() tries to show information
about this prediction. Pass a single element, not a one-element array:
if you fitted your estimator on X, that would be X[i] for
most containers, and X.iloc[i] for pandas.DataFrame.

	top (int or (int, int) tuple, optional) – Number of features to show. When top is int, top features with
a highest absolute values are shown. When it is (pos, neg) tuple,
no more than pos positive features and no more than neg
negative features is shown. None value means no limit (default).

This argument may be supported or not, depending on estimator type.

	top_targets (int, optional) – Number of targets to show. When top_targets is provided,
only specified number of targets with highest scores are shown.
Negative value means targets with lowest scores are shown.
Must not be given with targets argument.
None value means no limit: all targets are shown (default).

This argument may be supported or not, depending on estimator type.

	target_names (list[str] or {‘old_name’: ‘new_name’} dict, optional) – Names of targets or classes. This argument can be used to provide
human-readable class/target names for estimators which don’t expose
clss names themselves. It can be also used to rename estimator-provided
classes before displaying them.

This argument may be supported or not, depending on estimator type.

	targets (list, optional) – Order of class/target names to show. This argument can be also used
to show information only for a subset of classes. It should be a list
of class / target names which match either names provided by
an estimator or names defined in target_names parameter.

In case of binary classification you can use this argument to
set the class which probability or score should be displayed, with
an appropriate explanation. By default a result for predicted class
is shown. For example, you can use targets=[True] to always show
result for a positive class, even if the predicted label is False.

This argument may be supported or not, depending on estimator type.

	feature_names (list, optional) – A list of feature names. It allows to specify feature
names when they are not provided by an estimator object.

This argument may be supported or not, depending on estimator type.

	feature_re (str, optional) – Only feature names which match feature_re regex are shown
(more precisely, re.search(feature_re, x) is checked).

	feature_filter (Callable[[str, float], bool], optional) – Only feature names for which feature_filter function returns True
are shown. It must accept feature name and feature value.
Missing features always have a NaN value.

	show (List[str], optional) – List of sections to show. Allowed values:

	‘targets’ - per-target feature weights;

	‘transition_features’ - transition features of a CRF model;

	‘feature_importances’ - feature importances of a decision tree or
an ensemble-based estimator;

	‘decision_tree’ - decision tree in a graphical form;

	‘method’ - a string with explanation method;

	‘description’ - description of explanation method and its caveats.

eli5.formatters.fields provides constants that cover common cases:
INFO (method and description), WEIGHTS (all the rest),
and ALL (all).

	horizontal_layout (bool) – When True, feature weight tables are printed horizontally
(left to right); when False, feature weight tables are printed
vertically (top to down). Default is True.

	highlight_spaces (bool or None, optional) – Whether to highlight spaces in feature names. This is useful if
you work with text and have ngram features which may include spaces
at left or right. Default is None, meaning that the value used
is set automatically based on vectorizer and feature values.

	include_styles (bool) – Most styles are inline, but some are included separately in <style> tag;
you can omit them by passing include_styles=False. Default is True.

	force_weights (bool) – When True, a table with feature weights is displayed even if all
features are already highlighted in text. Default is False.

	preserve_density (bool or None) – This argument currently only makes sense when used with text data
and vectorizers from scikit-learn.

If preserve_density is True, then color for longer fragments will be
less intensive than for shorter fragments, so that “sum” of intensities
will correspond to feature weight.

If preserve_density is None, then it’s value is chosen depending on
analyzer kind: it is preserved for “char” and “char_wb” analyzers,
and not preserved for “word” analyzers.

Default is None.

	show_feature_values (bool) – When True, feature values are shown along with feature contributions.
Default is False.

	**kwargs (dict) – Keyword arguments. All keyword arguments are passed to
concrete explain_prediction… implementations.

	Returns

	
	IPython.display.HTML – The result is printed in IPython notebook as an HTML widget.
If you need to display several explanations as an output of a single
cell, or if you want to display it from a function then use
IPython.display.display:

from IPython.display import display
display(eli5.show_weights(clf1))
display(eli5.show_weights(clf2))

	PIL.Image.Image – Image with a heatmap overlay, if explaining image based models.
The image is shown in an IPython notebook cell
if it is the last thing returned.
To display the image in a loop, function, or other case,
use IPython.display.display:

from IPython.display import display
for cls_idx in [0, 432]:
 display(eli5.show_prediction(clf, doc, targets=[cls_idx]))

	
transform_feature_names(transformer, in_names=None)[source]

	Get feature names for transformer output as a function of input names.

Used by explain_weights() when applied to a scikit-learn Pipeline,
this singledispatch should be registered with custom name
transformations for each class of transformer.

If there is no singledispatch handler registered for a transformer
class, transformer.get_feature_names() method is called; if there is
no such method then feature names are not supported and
this function raises an exception.

	Parameters

	
	transformer (scikit-learn-compatible transformer)

	in_names (list of str, optional) – Names for features input to transformer.transform().
If not provided, the implementation may generate default feature names
if the number of input features is known.

	Returns

	feature_names (list of str)

	
explain_weights_df(estimator, **kwargs)[source]

	Explain weights and export them to pandas.DataFrame.
All keyword arguments are passed to eli5.explain_weights().
Weights of all features are exported by default.

	
explain_weights_dfs(estimator, **kwargs)[source]

	Explain weights and export them to a dict with pandas.DataFrame
values (as eli5.formatters.as_dataframe.format_as_dataframes() does).
All keyword arguments are passed to eli5.explain_weights().
Weights of all features are exported by default.

	
explain_prediction_df(estimator, doc, **kwargs)[source]

	Explain prediction and export explanation to pandas.DataFrame
All keyword arguments are passed to eli5.explain_prediction().
Weights of all features are exported by default.

	
explain_prediction_dfs(estimator, doc, **kwargs)[source]

	Explain prediction and export explanation
to a dict with pandas.DataFrame values
(as eli5.formatters.as_dataframe.format_as_dataframes() does).
All keyword arguments are passed to eli5.explain_prediction().
Weights of all features are exported by default.

	
format_as_text(expl, show=('method', 'description', 'transition_features', 'targets', 'feature_importances', 'decision_tree'), highlight_spaces=None, show_feature_values=False)[source]

	Format explanation as text.

	Parameters

	
	expl (eli5.base.Explanation) – Explanation returned by eli5.explain_weights or
eli5.explain_prediction functions.

	highlight_spaces (bool or None, optional) – Whether to highlight spaces in feature names. This is useful if
you work with text and have ngram features which may include spaces
at left or right. Default is None, meaning that the value used
is set automatically based on vectorizer and feature values.

	show_feature_values (bool) – When True, feature values are shown along with feature contributions.
Default is False.

	show (List[str], optional) – List of sections to show. Allowed values:

	‘targets’ - per-target feature weights;

	‘transition_features’ - transition features of a CRF model;

	‘feature_importances’ - feature importances of a decision tree or
an ensemble-based estimator;

	‘decision_tree’ - decision tree in a graphical form;

	‘method’ - a string with explanation method;

	‘description’ - description of explanation method and its caveats.

eli5.formatters.fields provides constants that cover common cases:
INFO (method and description), WEIGHTS (all the rest),
and ALL (all).

	
format_as_html(explanation, include_styles=True, force_weights=True, show=('method', 'description', 'transition_features', 'targets', 'feature_importances', 'decision_tree'), preserve_density=None, highlight_spaces=None, horizontal_layout=True, show_feature_values=False)[source]

	Format explanation as html.
Most styles are inline, but some are included separately in <style> tag,
you can omit them by passing include_styles=False and call
format_html_styles to render them separately (or just omit them).
With force_weights=False, weights will not be displayed in a table for
predictions where it is possible to show feature weights highlighted
in the document.
If highlight_spaces is None (default), spaces will be highlighted in
feature names only if there are any spaces at the start or at the end of the
feature. Setting it to True forces space highlighting, and setting it to
False turns it off.
If horizontal_layout is True (default), multiclass classifier
weights are laid out horizontally.
If show_feature_values is True, feature values are shown if present.
Default is False.

	
format_as_dataframe(explanation)[source]

	Export an explanation to a single pandas.DataFrame.
In case several dataframes could be exported by
eli5.formatters.as_dataframe.format_as_dataframes(),
a warning is raised. If no dataframe can be exported, None is returned.
This function also accepts some components of the explanation as arguments:
feature importances, targets, transition features.
Note that eli5.explain_weights() limits number of features
by default. If you need all features, pass top=None to
eli5.explain_weights(), or use
explain_weights_df().

	
format_as_dataframes(explanation)[source]

	Export an explanation to a dictionary with pandas.DataFrame values
and string keys that correspond to explanation attributes.
Use this method if several dataframes can be exported from a single
explanation (e.g. for CRF explanation with has both feature weights
and transition matrix).
Note that eli5.explain_weights() limits number of features
by default. If you need all features, pass top=None to
eli5.explain_weights(), or use
explain_weights_dfs().

	
format_as_dict(explanation)[source]

	Return a dictionary representing the explanation that can be JSON-encoded.
It accepts parts of explanation (for example feature weights) as well.

	
format_as_image(expl, resampling_filter=Image.LANCZOS, colormap=matplotlib.cm.viridis, alpha_limit=0.65)[source]

	Format a eli5.base.Explanation object as an image.

Note that this formatter requires matplotlib and Pillow optional dependencies.

	Parameters

	
	expl (Explanation) – eli5.base.Explanation object to be formatted.
It must have an image attribute with a Pillow image that will be overlaid.
It must have a targets attribute, a list of eli5.base.TargetExplanation instances that contain the attribute heatmap, a rank 2 numpy array with float values in the interval [0, 1].
Currently targets must be length 1 (only one target is supported).

	raises TypeError

	if heatmap is not a numpy array.

	raises ValueError

	if heatmap does not contain values as floats in the interval [0, 1].

	raises TypeError

	if image is not a Pillow image.

	resampling_filter (int, optional) – Interpolation ID or Pillow filter to use when resizing the image.

	Example filters from PIL.Image

	
	NEAREST

	BOX

	BILINEAR

	HAMMING

	BICUBIC

	LANCZOS

See also https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters.

Note that these attributes are integer values.

Default is PIL.Image.LANCZOS.

	colormap (callable, optional) – Colormap scheme to be applied when converting the heatmap from grayscale to RGB.
Either a colormap from matplotlib.cm,
or a callable that takes a rank 2 array and
returns the colored heatmap as a [0, 1] RGBA numpy array.

	Example colormaps from matplotlib.cm

	
	viridis

	jet

	binary

See also https://matplotlib.org/gallery/color/colormap_reference.html.

Default is matplotlib.cm.viridis (green/blue to yellow).

	alpha_limit (float or int, optional) – Maximum alpha (transparency / opacity) value allowed
for the alpha channel pixels in the RGBA heatmap image.

Between 0.0 and 1.0.

Useful when laying the heatmap over the original image,
so that the image can be seen over the heatmap.

Default is 0.65.

	raises ValueError

	if alpha_limit is outside the [0, 1] interval.

	raises TypeError

	if alpha_limit is not float, int, or None.

	Returns

	overlay (PIL.Image.Image) – PIL image instance of the heatmap blended over the image.

 eli5.formatters

eli5.formatters

This module holds functions that convert Explanation objects
(returned by eli5.explain_weights() and eli5.explain_prediction())
into HTML, text, dict/JSON or pandas DataFrames. The following functions are
also available in eli5 namespace (e.g. eli5.format_as_html):

	eli5.formatters.html.format_as_html()

	eli5.formatters.html.format_html_styles()

	eli5.formatters.text.format_as_text()

	eli5.formatters.as_dict.format_as_dict()

	eli5.formatters.as_dataframe.explain_weights_df()

	eli5.formatters.as_dataframe.explain_weights_dfs()

	eli5.formatters.as_dataframe.explain_prediction_df()

	eli5.formatters.as_dataframe.explain_prediction_dfs()

	eli5.formatters.as_dataframe.format_as_dataframe()

	eli5.formatters.as_dataframe.format_as_dataframes()

	eli5.formatters.image.format_as_image()

eli5.formatters.html

	
format_as_html(explanation, include_styles=True, force_weights=True, show=('method', 'description', 'transition_features', 'targets', 'feature_importances', 'decision_tree'), preserve_density=None, highlight_spaces=None, horizontal_layout=True, show_feature_values=False)[source]

	Format explanation as html.
Most styles are inline, but some are included separately in <style> tag,
you can omit them by passing include_styles=False and call
format_html_styles to render them separately (or just omit them).
With force_weights=False, weights will not be displayed in a table for
predictions where it is possible to show feature weights highlighted
in the document.
If highlight_spaces is None (default), spaces will be highlighted in
feature names only if there are any spaces at the start or at the end of the
feature. Setting it to True forces space highlighting, and setting it to
False turns it off.
If horizontal_layout is True (default), multiclass classifier
weights are laid out horizontally.
If show_feature_values is True, feature values are shown if present.
Default is False.

	
format_hsl(hsl_color)[source]

	Format hsl color as css color string.

	
format_html_styles()[source]

	Format just the styles,
use with format_as_html(explanation, include_styles=False).

	
get_weight_range(weights)[source]

	Max absolute feature for pos and neg weights.

	
remaining_weight_color_hsl(ws, weight_range, pos_neg)[source]

	Color for “remaining” row.
Handles a number of edge cases: if there are no weights in ws or weight_range
is zero, assume the worst (most intensive positive or negative color).

	
render_targets_weighted_spans(targets, preserve_density)[source]

	Return a list of rendered weighted spans for targets.
Function must accept a list in order to select consistent weight
ranges across all targets.

	
weight_color_hsl(weight, weight_range, min_lightness=0.8)[source]

	Return HSL color components for given weight,
where the max absolute weight is given by weight_range.

eli5.formatters.text

	
format_as_text(expl, show=('method', 'description', 'transition_features', 'targets', 'feature_importances', 'decision_tree'), highlight_spaces=None, show_feature_values=False)[source]

	Format explanation as text.

	Parameters

	
	expl (eli5.base.Explanation) – Explanation returned by eli5.explain_weights or
eli5.explain_prediction functions.

	highlight_spaces (bool or None, optional) – Whether to highlight spaces in feature names. This is useful if
you work with text and have ngram features which may include spaces
at left or right. Default is None, meaning that the value used
is set automatically based on vectorizer and feature values.

	show_feature_values (bool) – When True, feature values are shown along with feature contributions.
Default is False.

	show (List[str], optional) – List of sections to show. Allowed values:

	‘targets’ - per-target feature weights;

	‘transition_features’ - transition features of a CRF model;

	‘feature_importances’ - feature importances of a decision tree or
an ensemble-based estimator;

	‘decision_tree’ - decision tree in a graphical form;

	‘method’ - a string with explanation method;

	‘description’ - description of explanation method and its caveats.

eli5.formatters.fields provides constants that cover common cases:
INFO (method and description), WEIGHTS (all the rest),
and ALL (all).

eli5.formatters.as_dict

	
format_as_dict(explanation)[source]

	Return a dictionary representing the explanation that can be JSON-encoded.
It accepts parts of explanation (for example feature weights) as well.

eli5.formatters.as_dataframe

	
explain_prediction_df(estimator, doc, **kwargs)[source]

	Explain prediction and export explanation to pandas.DataFrame
All keyword arguments are passed to eli5.explain_prediction().
Weights of all features are exported by default.

	
explain_prediction_dfs(estimator, doc, **kwargs)[source]

	Explain prediction and export explanation
to a dict with pandas.DataFrame values
(as eli5.formatters.as_dataframe.format_as_dataframes() does).
All keyword arguments are passed to eli5.explain_prediction().
Weights of all features are exported by default.

	
explain_weights_df(estimator, **kwargs)[source]

	Explain weights and export them to pandas.DataFrame.
All keyword arguments are passed to eli5.explain_weights().
Weights of all features are exported by default.

	
explain_weights_dfs(estimator, **kwargs)[source]

	Explain weights and export them to a dict with pandas.DataFrame
values (as eli5.formatters.as_dataframe.format_as_dataframes() does).
All keyword arguments are passed to eli5.explain_weights().
Weights of all features are exported by default.

	
format_as_dataframe(explanation)[source]

	Export an explanation to a single pandas.DataFrame.
In case several dataframes could be exported by
eli5.formatters.as_dataframe.format_as_dataframes(),
a warning is raised. If no dataframe can be exported, None is returned.
This function also accepts some components of the explanation as arguments:
feature importances, targets, transition features.
Note that eli5.explain_weights() limits number of features
by default. If you need all features, pass top=None to
eli5.explain_weights(), or use
explain_weights_df().

	
format_as_dataframes(explanation)[source]

	Export an explanation to a dictionary with pandas.DataFrame values
and string keys that correspond to explanation attributes.
Use this method if several dataframes can be exported from a single
explanation (e.g. for CRF explanation with has both feature weights
and transition matrix).
Note that eli5.explain_weights() limits number of features
by default. If you need all features, pass top=None to
eli5.explain_weights(), or use
explain_weights_dfs().

eli5.formatters.image

	
expand_heatmap(heatmap, image, resampling_filter=<Mock spec='type' id='140531288667856'>)[source]

	Resize the heatmap image array to fit over the original image,
using the specified resampling_filter method.
The heatmap is converted to an image in the process.

	Parameters

	
	heatmap (numpy.ndarray) – Heatmap that is to be resized, as an array.

	image (PIL.Image.Image) – The image whose dimensions will be resized to.

	resampling_filter (int or None) – Interpolation to use when resizing.

See eli5.format_as_image() for more details on the resampling_filter parameter.

	Raises

	TypeError – if image is not a Pillow image instance.

	Returns

	resized_heatmap (PIL.Image.Image) – The heatmap, resized, as a PIL image.

	
format_as_image(expl, resampling_filter=Image.LANCZOS, colormap=matplotlib.cm.viridis, alpha_limit=0.65)[source]

	Format a eli5.base.Explanation object as an image.

Note that this formatter requires matplotlib and Pillow optional dependencies.

	Parameters

	
	expl (Explanation) – eli5.base.Explanation object to be formatted.
It must have an image attribute with a Pillow image that will be overlaid.
It must have a targets attribute, a list of eli5.base.TargetExplanation instances that contain the attribute heatmap, a rank 2 numpy array with float values in the interval [0, 1].
Currently targets must be length 1 (only one target is supported).

	raises TypeError

	if heatmap is not a numpy array.

	raises ValueError

	if heatmap does not contain values as floats in the interval [0, 1].

	raises TypeError

	if image is not a Pillow image.

	resampling_filter (int, optional) – Interpolation ID or Pillow filter to use when resizing the image.

	Example filters from PIL.Image

	
	NEAREST

	BOX

	BILINEAR

	HAMMING

	BICUBIC

	LANCZOS

See also https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters.

Note that these attributes are integer values.

Default is PIL.Image.LANCZOS.

	colormap (callable, optional) – Colormap scheme to be applied when converting the heatmap from grayscale to RGB.
Either a colormap from matplotlib.cm,
or a callable that takes a rank 2 array and
returns the colored heatmap as a [0, 1] RGBA numpy array.

	Example colormaps from matplotlib.cm

	
	viridis

	jet

	binary

See also https://matplotlib.org/gallery/color/colormap_reference.html.

Default is matplotlib.cm.viridis (green/blue to yellow).

	alpha_limit (float or int, optional) – Maximum alpha (transparency / opacity) value allowed
for the alpha channel pixels in the RGBA heatmap image.

Between 0.0 and 1.0.

Useful when laying the heatmap over the original image,
so that the image can be seen over the heatmap.

Default is 0.65.

	raises ValueError

	if alpha_limit is outside the [0, 1] interval.

	raises TypeError

	if alpha_limit is not float, int, or None.

	Returns

	overlay (PIL.Image.Image) – PIL image instance of the heatmap blended over the image.

	
heatmap_to_image(heatmap)[source]

	Convert the numpy array heatmap to a Pillow image.

	Parameters

	heatmap (numpy.ndarray) – Rank 2 grayscale (‘L’) array or rank 3 coloured (‘RGB’ or RGBA’) array,
with values in interval [0, 1] as floats.

	Raises

	
	TypeError – if heatmap is not a numpy array.

	ValueError – if heatmap does not contain values as floats in the interval [0, 1].

	ValueError – if heatmap rank is neither 2 nor 3.

	ValueError – if rank 3 heatmap does not have 4 (RGBA) or 3 (RGB) channels.

	Returns

	heatmap_image (PIL.Image.Image) – Heatmap as an image with a suitable mode.

 eli5.lightning

eli5.lightning

	
explain_prediction_lightning(estimator, doc, vec=None, top=None, target_names=None, targets=None, feature_names=None, vectorized=False, coef_scale=None)[source]

	Return an explanation of a lightning estimator predictions

	
explain_weights_lightning(estimator, vec=None, top=20, target_names=None, targets=None, feature_names=None, coef_scale=None)[source]

	Return an explanation of a lightning estimator weights

 eli5.lime

eli5.lime

eli5.lime.lime

An impementation of LIME (http://arxiv.org/abs/1602.04938), an algorithm to
explain predictions of black-box models.

	
class TextExplainer(n_samples=5000, char_based=None, clf=None, vec=None, sampler=None, position_dependent=False, rbf_sigma=None, random_state=None, expand_factor=10, token_pattern=None)[source]

	TextExplainer allows to explain predictions of black-box text classifiers
using LIME algorithm.

	Parameters

	
	n_samples (int) – A number of samples to generate and train on. Default is 5000.

With larger n_samples it takes more CPU time and RAM to explain
a prediction, but it could give better results. Larger n_samples
could be also required to get good results if you don’t want to
make strong assumptions about the black-box classifier
(e.g. char_based=True and position_dependent=True).

	char_based (bool) – True if explanation should be char-based, False if it should be
token-based. Default is False.

	clf (object, optional) – White-box probabilistic classifier. It should be supported by eli5,
follow scikit-learn interface and provide predict_proba method.
When not set, a default classifier is used (logistic regression with
elasticnet regularization trained with SGD).

	vec (object, optional) – Vectorizer which converts generated texts to feature vectors
for the white-box classifier. When not set, a default vectorizer is
used; which one depends on char_based and position_dependent
arguments.

	sampler (MaskingTextSampler or MaskingTextSamplers, optional) – Sampler used to generate modified versions of the text.

	position_dependent (bool) – When True, a special vectorizer is used which takes
each token or character (depending on char_based value)
in account separately. When False (default) a vectorized passed in
vec or a default vectorizer is used.

Default vectorizer converts text to vector using bag-of-ngrams
or bag-of-char-ngrams approach (depending on char_based argument).
It means that it may be not powerful enough to approximate a black-box
classifier which e.g. takes in account word FOO in the beginning of
the document, but not in the end.

When position_dependent is True the model becomes powerful enough
to account for that, but it can become more noisy and require
larger n_samples to get an OK explanation.

When char_based=False the default vectorizer uses word bigrams
in addition to unigrams; this is less powerful than
position_dependent=True, but can give similar results in practice.

	rbf_sigma (float, optional) – Sigma parameter of RBF kernel used to post-process cosine similarity
values. Default is None, meaning no post-processing
(cosine simiilarity is used as sample weight as-is).
Small rbf_sigma values (e.g. 0.1) tell the classifier to pay
more attention to generated texts which are close to the original text.
Large rbf_sigma values (e.g. 1.0) make distance between text
irrelevant.

Note that if you’re using large rbf_sigma it could be more
efficient to use custom samplers instead, in order to generate
text samples which are closer to the original text in the first place.
Use e.g. max_replace parameter of MaskingTextSampler.

	random_state (integer or numpy.random.RandomState, optional) – random state

	expand_factor (int or None) – To approximate output of the probabilistic classifier generated
dataset is expanded by expand_factor (10 by default)
according to the predicted label probabilities. This is a workaround
for scikit-learn limitation (no cross-entropy loss for non 1/0 labels).
With larger values training takes longer, but probability output
can be approximated better.

expand_factor=None turns this feature off; pass None when you know
that black-box classifier returns only 1.0 or 0.0 probabilities.

	token_pattern (str, optional) – Regex which matches a token. Use it to customize tokenization.
Default value depends on char_based parameter.

	
rng_

	random state

	Type

	numpy.random.RandomState

	
samples_

	A list of samples the local model is trained on.
Only available after fit().

	Type

	list[str]

	
X_

	A matrix with vectorized samples_.
Only available after fit().

	Type

	ndarray or scipy.sparse matrix

	
similarity_

	Similarity vector. Only available after fit().

	Type

	ndarray

	
y_proba_

	probabilities predicted by black-box classifier
(predict_proba(self.samples_) result).
Only available after fit().

	Type

	ndarray

	
clf_

	Trained white-box classifier. Only available after fit().

	Type

	object

	
vec_

	Fit white-box vectorizer. Only available after fit().

	Type

	object

	
metrics_

	A dictionary with metrics of how well the local
classification pipeline approximates the black-box pipeline.
Only available after fit().

	Type

	dict

	
explain_prediction(**kwargs)[source]

	Call eli5.explain_prediction() for the locally-fit
classification pipeline. Keyword arguments are passed
to eli5.explain_prediction().

fit() must be called before using this method.

	
explain_weights(**kwargs)[source]

	Call eli5.show_weights() for the locally-fit
classification pipeline. Keyword arguments are passed
to eli5.show_weights().

fit() must be called before using this method.

	
fit(doc, predict_proba)[source]

	Explain predict_proba probabilistic classification function
for the doc example. This method fits a local classification
pipeline following LIME approach.

To get the explanation use show_prediction(),
show_weights(), explain_prediction() or
explain_weights().

	Parameters

	
	doc (str) – Text to explain

	predict_proba (callable) – Black-box classification pipeline. predict_proba
should be a function which takes a list of strings (documents)
and return a matrix of shape (n_samples, n_classes) with
probability values - a row per document and a column per output
label.

	
show_prediction(**kwargs)[source]

	Call eli5.show_prediction() for the locally-fit
classification pipeline. Keyword arguments are passed
to eli5.show_prediction().

fit() must be called before using this method.

	
show_weights(**kwargs)[source]

	Call eli5.show_weights() for the locally-fit
classification pipeline. Keyword arguments are passed
to eli5.show_weights().

fit() must be called before using this method.

eli5.lime.samplers

	
class BaseSampler[source]

	Base sampler class.
Sampler is an object which generates examples similar to a given example.

	
fit(X=None, y=None)[source]

	

	
sample_near(doc, n_samples=1)[source]

	Return (examples, similarity) tuple with generated documents
similar to a given document and a vector of similarity values.

	
class MaskingTextSampler(token_pattern=None, bow=True, random_state=None, replacement='', min_replace=1, max_replace=1.0, group_size=1)[source]

	Sampler for text data. It randomly removes or replaces tokens from text.

	Parameters

	
	token_pattern (str, optional) – Regexp for token matching

	bow (bool, optional) – Sampler could either replace all instances of a given token
(bow=True, bag of words sampling) or replace just a single token
(bow=False).

	random_state (integer or numpy.random.RandomState, optional) – random state

	replacement (str) – Defalt value is ‘’ - by default tokens are removed. If you want to
preserve the total token count set replacement to a non-empty
string, e.g. ‘UNKN’.

	min_replace (int or float) – A minimum number of tokens to replace. Default is 1, meaning 1 token.
If this value is float in range [0.0, 1.0], it is used as a ratio.
More than min_replace tokens could be replaced if group_size > 1.

	max_replace (int or float) – A maximum number of tokens to replace. Default is 1.0, meaning
all tokens can be replaced. If this value is float in range
[0.0, 0.1], it is used as a ratio.

	group_size (int) – When group_size > 1, groups of nearby tokens are replaced all
in once (each token is still replaced with a replacement).
Default is 1, meaning individual tokens are replaced.

	
sample_near(doc, n_samples=1)[source]

	Return (examples, similarity) tuple with generated documents
similar to a given document and a vector of similarity values.

	
sample_near_with_mask(doc, n_samples=1)[source]

	

	
class MaskingTextSamplers(sampler_params, token_pattern=None, random_state=None, weights=None)[source]

	Union of MaskingText samplers, with weights.
sample_near() or sample_near_with_mask() generate
a requested number of samples using all samplers; a probability of
using a sampler is proportional to its weight.

All samplers must use the same token_pattern in order for
sample_near_with_mask() to work.

Create it with a list of {param: value} dicts
with MaskingTextSampler paremeters.

	
sample_near(doc, n_samples=1)[source]

	Return (examples, similarity) tuple with generated documents
similar to a given document and a vector of similarity values.

	
sample_near_with_mask(doc, n_samples=1)[source]

	

	
class MultivariateKernelDensitySampler(kde=None, metric='euclidean', fit_bandwidth=True, bandwidths=array([1.00000000e-06, 1.00000000e-03, 3.16227766e-03, 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01, 1.00000000e+02, 3.16227766e+02, 1.00000000e+03, 3.16227766e+03, 1.00000000e+04]), sigma='bandwidth', n_jobs=1, random_state=None)[source]

	General-purpose sampler for dense continuous data, based on multivariate
kernel density estimation.

The limitation is that a single bandwidth value is used for all dimensions,
i.e. bandwith matrix is a positive scalar times the identity matrix.
It is a problem e.g. when features have different variances
(e.g. some of them are one-hot encoded and other are continuous).

	
fit(X, y=None)[source]

	

	
sample_near(doc, n_samples=1)[source]

	Return (examples, similarity) tuple with generated documents
similar to a given document and a vector of similarity values.

	
class UnivariateKernelDensitySampler(kde=None, metric='euclidean', fit_bandwidth=True, bandwidths=array([1.00000000e-06, 1.00000000e-03, 3.16227766e-03, 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01, 1.00000000e+02, 3.16227766e+02, 1.00000000e+03, 3.16227766e+03, 1.00000000e+04]), sigma='bandwidth', n_jobs=1, random_state=None)[source]

	General-purpose sampler for dense continuous data, based on univariate
kernel density estimation. It estimates a separate probability
distribution for each input dimension.

The limitation is that variable interactions are not taken in account.

Unlike KernelDensitySampler it uses different bandwidths for different
dimensions; because of that it can handle one-hot encoded features somehow
(make sure to at least tune the default sigma parameter).
Also, at sampling time it replaces only random subsets
of the features instead of generating totally new examples.

	
fit(X, y=None)[source]

	

	
sample_near(doc, n_samples=1)[source]

	Sample near the document by replacing some of its features
with values sampled from distribution found by KDE.

eli5.lime.textutils

Utilities for text generation.

	
cosine_similarity_vec(num_tokens, num_removed_vec)[source]

	Return cosine similarity between a binary vector with all ones
of length num_tokens and vectors of the same length with
num_removed_vec elements set to zero.

	
generate_samples(text, n_samples=500, bow=True, random_state=None, replacement='', min_replace=1, max_replace=1.0, group_size=1)[source]

	Return n_samples changed versions of text (with some words removed),
along with distances between the original text and a generated
examples. If bow=False, all tokens are considered unique
(i.e. token position matters).

 eli5.sklearn

eli5.sklearn

eli5.sklearn.explain_prediction

	
explain_prediction_linear_classifier(clf, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False)[source]

	Explain prediction of a linear classifier.

See eli5.explain_prediction() for description of
top, top_targets, target_names, targets,
feature_names, feature_re and feature_filter parameters.

vec is a vectorizer instance used to transform
raw features to the input of the classifier clf
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
classifier. Set it to True if you’re passing vec, but doc
is already vectorized.

	
explain_prediction_linear_regressor(reg, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False)[source]

	Explain prediction of a linear regressor.

See eli5.explain_prediction() for description of
top, top_targets, target_names, targets,
feature_names, feature_re and feature_filter parameters.

vec is a vectorizer instance used to transform
raw features to the input of the classifier clf;
you can pass it instead of feature_names.

vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
regressor reg. Set it to True if you’re passing vec,
but doc is already vectorized.

	
explain_prediction_sklearn(estimator, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False)[source]

	Return an explanation of a scikit-learn estimator

	
explain_prediction_tree_classifier(clf, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False)[source]

	Explain prediction of a tree classifier.

See eli5.explain_prediction() for description of
top, top_targets, target_names, targets,
feature_names, feature_re and feature_filter parameters.

vec is a vectorizer instance used to transform
raw features to the input of the classifier clf
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
classifier. Set it to True if you’re passing vec,
but doc is already vectorized.

Method for determining feature importances follows an idea from
http://blog.datadive.net/interpreting-random-forests/.
Feature weights are calculated by following decision paths in trees
of an ensemble (or a single tree for DecisionTreeClassifier).
Each node of the tree has an output score, and contribution of a feature
on the decision path is how much the score changes from parent to child.
Weights of all features sum to the output score or proba of the estimator.

	
explain_prediction_tree_regressor(reg, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False)[source]

	Explain prediction of a tree regressor.

See eli5.explain_prediction() for description of
top, top_targets, target_names, targets,
feature_names, feature_re and feature_filter parameters.

vec is a vectorizer instance used to transform
raw features to the input of the regressor reg
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
regressor. Set it to True if you’re passing vec,
but doc is already vectorized.

Method for determining feature importances follows an idea from
http://blog.datadive.net/interpreting-random-forests/.
Feature weights are calculated by following decision paths in trees
of an ensemble (or a single tree for DecisionTreeRegressor).
Each node of the tree has an output score, and contribution of a feature
on the decision path is how much the score changes from parent to child.
Weights of all features sum to the output score of the estimator.

eli5.sklearn.explain_weights

	
explain_decision_tree(estimator, vec=None, top=20, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, **export_graphviz_kwargs)[source]

	Return an explanation of a decision tree.

See eli5.explain_weights() for description of
top, target_names, feature_names,
feature_re and feature_filter parameters.

targets parameter is ignored.

vec is a vectorizer instance used to transform
raw features to the input of the estimator (e.g. a fitted
CountVectorizer instance); you can pass it instead of feature_names.

All other keyword arguments are passed to
sklearn.tree.export_graphviz [http://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html] function.

	
explain_linear_classifier_weights(clf, vec=None, top=20, target_names=None, targets=None, feature_names=None, coef_scale=None, feature_re=None, feature_filter=None)[source]

	Return an explanation of a linear classifier weights.

See eli5.explain_weights() for description of
top, target_names, targets, feature_names,
feature_re and feature_filter parameters.

vec is a vectorizer instance used to transform
raw features to the input of the classifier clf
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

coef_scale is a 1D np.ndarray with a scaling coefficient
for each feature; coef[i] = coef[i] * coef_scale[i] if
coef_scale[i] is not nan. Use it if you want to scale coefficients
before displaying them, to take input feature sign or scale in account.

	
explain_linear_regressor_weights(reg, vec=None, top=20, target_names=None, targets=None, feature_names=None, coef_scale=None, feature_re=None, feature_filter=None)[source]

	Return an explanation of a linear regressor weights.

See eli5.explain_weights() for description of
top, target_names, targets, feature_names,
feature_re and feature_filter parameters.

vec is a vectorizer instance used to transform
raw features to the input of the regressor reg; you can
pass it instead of feature_names.

coef_scale is a 1D np.ndarray with a scaling coefficient
for each feature; coef[i] = coef[i] * coef_scale[i] if
coef_scale[i] is not nan. Use it if you want to scale coefficients
before displaying them, to take input feature sign or scale in account.

	
explain_permutation_importance(estimator, vec=None, top=20, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None)[source]

	Return an explanation of PermutationImportance.

See eli5.explain_weights() for description of
top, feature_names, feature_re and feature_filter
parameters.

target_names and targets parameters are ignored.

vec is a vectorizer instance used to transform
raw features to the input of the estimator (e.g. a fitted
CountVectorizer instance); you can pass it instead of feature_names.

	
explain_rf_feature_importance(estimator, vec=None, top=20, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None)[source]

	Return an explanation of a tree-based ensemble estimator.

See eli5.explain_weights() for description of
top, feature_names, feature_re and feature_filter
parameters.

target_names and targets parameters are ignored.

vec is a vectorizer instance used to transform
raw features to the input of the estimator (e.g. a fitted
CountVectorizer instance); you can pass it instead of feature_names.

	
explain_weights_sklearn(estimator, vec=None, top=20, target_names=None, targets=None, feature_names=None, coef_scale=None, feature_re=None, feature_filter=None)[source]

	Return an explanation of an estimator

eli5.sklearn.unhashing

Utilities to reverse transformation done by FeatureHasher or HashingVectorizer.

	
class FeatureUnhasher(hasher, unkn_template='FEATURE[%d]')[source]

	Class for recovering a mapping used by FeatureHasher.

	
recalculate_attributes(force=False)[source]

	Update all computed attributes. It is only needed if you need to access
computed attributes after patrial_fit() was called.

	
class InvertableHashingVectorizer(vec, unkn_template='FEATURE[%d]')[source]

	A wrapper for HashingVectorizer which allows to get meaningful
feature names. Create it with an existing HashingVectorizer
instance as an argument:

vec = InvertableHashingVectorizer(my_hashing_vectorizer)

Unlike HashingVectorizer it can be fit. During fitting
InvertableHashingVectorizer learns which input terms map to
which feature columns/signs; this allows to provide more meaningful
get_feature_names(). The cost is that it is no longer stateless.

You can fit InvertableHashingVectorizer on a random sample
of documents (not necessarily on the whole training and testing data),
and use it to inspect an existing HashingVectorizer instance.

If several features hash to the same value, they are ordered by
their frequency in documents that were used to fit the vectorizer.

transform() works the same as HashingVectorizer.transform.

	
column_signs_

	Return a numpy array with expected signs of features.
Values are

	+1 when all known terms which map to the column have positive sign;

	-1 when all known terms which map to the column have negative sign;

	nan when there are both positive and negative known terms
for this column, or when there is no known term which maps to this
column.

	
fit(X, y=None)[source]

	Extract possible terms from documents

	
get_feature_names(always_signed=True)[source]

	Return feature names.
This is a best-effort function which tries to reconstruct feature
names based on what it has seen so far.

HashingVectorizer uses a signed hash function. If always_signed is True,
each term in feature names is prepended with its sign. If it is False,
signs are only shown in case of possible collisions of different sign.

You probably want always_signed=True if you’re checking
unprocessed classifier coefficients, and always_signed=False
if you’ve taken care of column_signs_.

	
handle_hashing_vec(vec, feature_names, coef_scale, with_coef_scale=True)[source]

	Return feature_names and coef_scale (if with_coef_scale is True),
calling .get_feature_names for invhashing vectorizers.

	
invert_hashing_and_fit(vec, docs)[source]

	Create an InvertableHashingVectorizer from hashing
vectorizer vec and fit it on docs. If vec is a FeatureUnion, do it for all
hashing vectorizers in the union.
Return an InvertableHashingVectorizer, or a FeatureUnion,
or an unchanged vectorizer.

eli5.sklearn.permutation_importance

	
class PermutationImportance(estimator, scoring=None, n_iter=5, random_state=None, cv='prefit', refit=True)[source]

	Meta-estimator which computes feature_importances_ attribute
based on permutation importance (also known as mean score decrease).

PermutationImportance instance can be used instead of
its wrapped estimator, as it exposes all estimator’s common methods like
predict.

There are 3 main modes of operation:

	cv=”prefit” (pre-fit estimator is passed). You can call
PermutationImportance.fit either with training data, or
with a held-out dataset (in the latter case feature_importances_
would be importances of features for generalization). After the fitting
feature_importances_ attribute becomes available, but the estimator
itself is not fit again. When cv=”prefit”,
fit() must be called
directly, and PermutationImportance cannot be used with
cross_val_score, GridSearchCV and similar utilities that clone
the estimator.

	cv=None. In this case fit() method fits
the estimator and computes feature importances on the same data, i.e.
feature importances don’t reflect importance of features for
generalization.

	all other cv values. fit() method
fits the estimator, but instead of computing feature importances for
the concrete estimator which is fit, importances are computed for
a sequence of estimators trained and evaluated on train/test splits
according to cv, and then averaged. This is more resource-intensive
(estimators are fit multiple times), and importances are not computed
for the final estimator, but feature_importances_ show importances
of features for generalization.

Mode (1) is most useful for inspecting an existing estimator; modes
(2) and (3) can be also used for feature selection, e.g. together with
sklearn’s SelectFromModel or RFE.

Currently PermutationImportance works with dense data.

	Parameters

	
	estimator (object) – The base estimator. This can be both a fitted
(if prefit is set to True) or a non-fitted estimator.

	scoring (string, callable or None, default=None) – Scoring function to use for computing feature importances.
A string with scoring name (see scikit-learn docs [https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values]) or
a scorer callable object / function with signature
scorer(estimator, X, y).
If None, the score method of the estimator is used.

	n_iter (int, default 5) – Number of random shuffle iterations. Decrease to improve speed,
increase to get more precise estimates.

	random_state (integer or numpy.random.RandomState, optional) – random state

	cv (int, cross-validation generator, iterable or “prefit”) – Determines the cross-validation splitting strategy.
Possible inputs for cv are:

	None, to disable cross-validation and compute feature importances
on the same data as used for training.

	integer, to specify the number of folds.

	An object to be used as a cross-validation generator.

	An iterable yielding train/test splits.

	“prefit” string constant (default).

If “prefit” is passed, it is assumed that estimator has been
fitted already and all data is used for computing feature importances.

	refit (bool) – Whether to fit the estimator on the whole data if cross-validation
is used (default is True).

	
feature_importances_

	Feature importances, computed as mean decrease of the score when
a feature is permuted (i.e. becomes noise).

	Type

	array

	
feature_importances_std_

	Standard deviations of feature importances.

	Type

	array

	
results_

	A list of score decreases for all experiments.

	Type

	list of arrays

	
scores_

	A list of base scores for all experiments (with no features permuted).

	Type

	array of float

	
estimator_

	The base estimator from which the PermutationImportance
instance is built. This is stored only when a non-fitted estimator
is passed to the PermutationImportance, i.e when cv is
not “prefit”.

	Type

	an estimator

	
rng_

	random state

	Type

	numpy.random.RandomState

	
fit(X, y, groups=None, **fit_params)[source]

	Compute feature_importances_ attribute and optionally
fit the base estimator.

	Parameters

	
	X (array-like of shape (n_samples, n_features)) – The training input samples.

	y (array-like, shape (n_samples,)) – The target values (integers that correspond to classes in
classification, real numbers in regression).

	groups (array-like, with shape (n_samples,), optional) – Group labels for the samples used while splitting the dataset into
train/test set.

	**fit_params (Other estimator specific parameters)

	Returns

	self (object) – Returns self.

 eli5.sklearn_crfsuite

eli5.sklearn_crfsuite

	
explain_weights_sklearn_crfsuite(crf, top=20, target_names=None, targets=None, feature_re=None, feature_filter=None)[source]

	Explain sklearn_crfsuite.CRF weights.

See eli5.explain_weights() for description of
top, target_names, targets,
feature_re and feature_filter parameters.

	
filter_transition_coefs(transition_coef, indices)[source]

	>>> coef = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
>>> filter_transition_coefs(coef, [0])
array([[0]])
>>> filter_transition_coefs(coef, [1, 2])
array([[4, 5],
 [7, 8]])
>>> filter_transition_coefs(coef, [2, 0])
array([[8, 6],
 [2, 0]])
>>> filter_transition_coefs(coef, [0, 1, 2])
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

	
sorted_for_ner(crf_classes)[source]

	Return labels sorted in a default order suitable for NER tasks:

>>> sorted_for_ner(['B-ORG', 'B-PER', 'O', 'I-PER'])
['O', 'B-ORG', 'B-PER', 'I-PER']

 eli5.xgboost

eli5.xgboost

eli5 has XGBoost [https://github.com/dmlc/xgboost] support - eli5.explain_weights()
shows feature importances,
and eli5.explain_prediction() explains predictions by showing feature weights.
Both functions work for XGBClassifier and XGBRegressor.

	
explain_prediction_xgboost(xgb, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False, is_regression=None, missing=None)[source]

	Return an explanation of XGBoost prediction (via scikit-learn wrapper
XGBClassifier or XGBRegressor, or via xgboost.Booster) as feature weights.

See eli5.explain_prediction() for description of
top, top_targets, target_names, targets,
feature_names, feature_re and feature_filter parameters.

	Parameters

	
	vec (vectorizer, optional) – A vectorizer instance used to transform
raw features to the input of the estimator xgb
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

	vectorized (bool, optional) – A flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
estimator. Set it to True if you’re passing vec,
but doc is already vectorized.

	is_regression (bool, optional) – Pass if an xgboost.Booster is passed as the first argument.
True if solving a regression problem (“objective” starts with “reg”)
and False for a classification problem.
If not set, regression is assumed for a single target estimator
and proba will not be shown.

	missing (optional) – Pass if an xgboost.Booster is passed as the first argument.
Set it to the same value as the missing argument to
xgboost.DMatrix.
Matters only if sparse values are used. Default is np.nan.

	Method for determining feature importances follows an idea from

	http (//blog.datadive.net/interpreting-random-forests/.)

	Feature weights are calculated by following decision paths in trees

	of an ensemble.

	Each leaf has an output score, and expected scores can also be assigned

	to parent nodes.

	Contribution of one feature on the decision path is how much expected score

	changes from parent to child.

	Weights of all features sum to the output score of the estimator.

	
explain_weights_xgboost(xgb, vec=None, top=20, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, importance_type='gain')[source]

	Return an explanation of an XGBoost estimator (via scikit-learn wrapper
XGBClassifier or XGBRegressor, or via xgboost.Booster)
as feature importances.

See eli5.explain_weights() for description of
top, feature_names,
feature_re and feature_filter parameters.

target_names and targets parameters are ignored.

	Parameters

	importance_type (str, optional) – A way to get feature importance. Possible values are:

	‘gain’ - the average gain of the feature when it is used in trees
(default)

	‘weight’ - the number of times a feature is used to split the data
across all trees

	‘cover’ - the average coverage of the feature when it is used in trees

 eli5.lightgbm

eli5.lightgbm

eli5 has LightGBM [https://github.com/Microsoft/LightGBM] support - eli5.explain_weights()
shows feature importances, and eli5.explain_prediction() explains
predictions by showing feature weights.
Both functions work for LGBMClassifier and LGBMRegressor.

	
explain_prediction_lightgbm(lgb, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False)[source]

	Return an explanation of LightGBM prediction (via scikit-learn wrapper
LGBMClassifier or LGBMRegressor) as feature weights.

See eli5.explain_prediction() for description of
top, top_targets, target_names, targets,
feature_names, feature_re and feature_filter parameters.

vec is a vectorizer instance used to transform
raw features to the input of the estimator xgb
(e.g. a fitted CountVectorizer instance); you can pass it
instead of feature_names.

vectorized is a flag which tells eli5 if doc should be
passed through vec or not. By default it is False, meaning that
if vec is not None, vec.transform([doc]) is passed to the
estimator. Set it to True if you’re passing vec,
but doc is already vectorized.

Method for determining feature importances follows an idea from
http://blog.datadive.net/interpreting-random-forests/.
Feature weights are calculated by following decision paths in trees
of an ensemble.
Each leaf has an output score, and expected scores can also be assigned
to parent nodes.
Contribution of one feature on the decision path is how much expected score
changes from parent to child.
Weights of all features sum to the output score of the estimator.

	
explain_weights_lightgbm(lgb, vec=None, top=20, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, importance_type='gain')[source]

	Return an explanation of an LightGBM estimator (via scikit-learn wrapper
LGBMClassifier or LGBMRegressor) as feature importances.

See eli5.explain_weights() for description of
top, feature_names,
feature_re and feature_filter parameters.

target_names and targets parameters are ignored.

	Parameters

	importance_type (str, optional) – A way to get feature importance. Possible values are:

	‘gain’ - the average gain of the feature when it is used in trees
(default)

	‘split’ - the number of times a feature is used to split the data
across all trees

	‘weight’ - the same as ‘split’, for compatibility with xgboost

 eli5.catboost

eli5.catboost

eli5 has CatBoost [https://github.com/catboost/catboost] support - eli5.explain_weights()
shows feature importances,
The function works for CatBoost, CatBoostClassifier and CatBoostRegressor.

	
explain_weights_catboost(catb, vec=None, top=20, importance_type='PredictionValuesChange', feature_names=None, pool=None)[source]

	Return an explanation of an CatBoost estimator (CatBoostClassifier,
CatBoost, CatBoostRegressor) as feature importances.

See eli5.explain_weights() for description of
top, feature_names,
feature_re and feature_filter parameters.

target_names and targets parameters are ignored.

	Parameters

	
	param ‘importance_type’ : str, optional – A way to get feature importance. Possible values are:

	‘PredictionValuesChange’ (default) - The individual importance
values for each of the input features.

	‘LossFunctionChange’ - The individual importance values for
each of the input features for ranking metrics
(requires training data to be passed or a similar dataset with Pool)

	param ‘pool’ : catboost.Pool, optional – To be passed if explain_weights_catboost has importance_type set
to LossFunctionChange. The catboost feature_importances uses the Pool
datatype to calculate the parameter for the specific importance_type.

 eli5.permutation_importance

eli5.permutation_importance

Note

See also: PermutationImportance

A module for computing feature importances by measuring how score decreases
when a feature is not available. It contains basic building blocks;
there is a full-featured sklearn-compatible implementation
in PermutationImportance.

A similar method is described in Breiman, “Random Forests”, Machine Learning,
45(1), 5-32, 2001 (available online at
https://www.stat.berkeley.edu/%7Ebreiman/randomforest2001.pdf), with an
application to random forests. It is known in literature as
“Mean Decrease Accuracy (MDA)” or “permutation importance”.

	
get_score_importances(score_func, X, y, n_iter=5, columns_to_shuffle=None, random_state=None)[source]

	Return (base_score, score_decreases) tuple with the base score and
score decreases when a feature is not available.

base_score is score_func(X, y); score_decreases
is a list of length n_iter with feature importance arrays
(each array is of shape n_features); feature importances are computed
as score decrease when a feature is not available.

n_iter iterations of the basic algorithm is done, each iteration
starting from a different random seed.

If you just want feature importances, you can take a mean of the result:

import numpy as np
from eli5.permutation_importance import get_score_importances

base_score, score_decreases = get_score_importances(score_func, X, y)
feature_importances = np.mean(score_decreases, axis=0)

	
iter_shuffled(X, columns_to_shuffle=None, pre_shuffle=False, random_state=None)[source]

	Return an iterator of X matrices which have one or more columns shuffled.
After each iteration yielded matrix is mutated inplace, so
if you want to use multiple of them at the same time, make copies.

columns_to_shuffle is a sequence of column numbers to shuffle.
By default, all columns are shuffled once, i.e. columns_to_shuffle
is range(X.shape[1]).

If pre_shuffle is True, a copy of X is shuffled once, and then
result takes shuffled columns from this copy. If it is False,
columns are shuffled on fly. pre_shuffle = True can be faster
if there is a lot of columns, or if columns are used multiple times.

 eli5.keras

eli5.keras

eli5 has Keras [https://keras.io/] support - eli5.explain_prediction() explains
predictions of image classifiers by using an impementation of Grad-CAM (Gradient-weighted Class Activation Mapping, https://arxiv.org/pdf/1610.02391.pdf).
The function works with both Sequential model and functional Model.

eli5.keras.explain_prediction

	
explain_prediction_keras(model, doc, targets=None, layer=None, image=None)[source]

	Explain the prediction of a Keras classifier with the Grad-CAM technique.

We explicitly assume that the model’s task is classification, i.e. final output is class scores.

	Parameters

	
	model (keras.models.Model) – Instance of a Keras neural network model,
whose predictions are to be explained.

	doc (numpy.ndarray) – An input to model whose prediction will be explained.

Currently only numpy arrays are supported.

The tensor must be of suitable shape for the model.

Check model.input_shape to confirm the required dimensions of the input tensor.

	raises TypeError

	if doc is not a numpy array.

	raises ValueError

	if doc shape does not match.

	targets (list[int], optional) – Prediction ID’s to focus on.

Currently only the first prediction from the list is explained.
The list must be length one.

If None, the model is fed the input image and its top prediction
is taken as the target automatically.

	raises ValueError

	if targets is a list with more than one item.

	raises TypeError

	if targets is not list or None.

	layer (int or str or keras.layers.Layer, optional) – The activation layer in the model to perform Grad-CAM on:
a valid keras layer name, layer index, or an instance of a Keras layer.

If None, a suitable layer is attempted to be retrieved.
For best results, pick a layer that:

	has spatial or temporal information (conv, recurrent, pooling, embedding)
(not dense layers).

	shows high level features.

	has large enough dimensions for resizing over input to work.

	raises TypeError

	if layer is not None, str, int, or keras.layers.Layer instance.

	raises ValueError

	if suitable layer can not be found.

	raises ValueError

	if differentiation fails with respect to retrieved layer.

See eli5.explain_prediction() for more information about the model,
doc, and targets parameters.

Other arguments are passed to concrete implementations
for image and text explanations.

	Returns

	expl (eli5.base.Explanation) – An eli5.base.Explanation object for the relevant implementation.

	
explain_prediction_keras_image(model, doc, image=None, targets=None, layer=None)[source]

	Explain an image-based model, highlighting what contributed in the image.

	Parameters

	
	doc (numpy.ndarray) – Input representing an image.

Must have suitable format. Some models require tensors to be
rank 4 in format (batch_size, dims, …, channels) (channels last)
or (batch_size, channels, dims, …) (channels first),
where dims is usually in order height, width
and batch_size is 1 for a single image.

If image argument is not given, an image will be created
from doc, where possible.

	image (PIL.Image.Image, optional) – Pillow image over which to overlay the heatmap.
Corresponds to the input doc.

See eli5.keras.explain_prediction.explain_prediction_keras()
for a description of model, doc, targets, and layer parameters.

	Returns

	expl (eli5.base.Explanation) –

	An eli5.base.Explanation object with the following attributes:

	
	image a Pillow image representing the input.

	targets a list of eli5.base.TargetExplanation objects for each target. Currently only 1 target is supported.

	The eli5.base.TargetExplanation objects will have the following attributes:

	
	heatmap a rank 2 numpy array with the localization map values as floats.

	target ID of target class.

	score value for predicted class.

	
explain_prediction_keras_not_supported(model, doc)[source]

	Can not do an explanation based on the passed arguments.
Did you pass either “image” or “tokens”?

eli5.keras.gradcam

	
gradcam(weights, activations)[source]

	Generate a localization map (heatmap) using Gradient-weighted Class Activation Mapping
(Grad-CAM) (https://arxiv.org/pdf/1610.02391.pdf).

The values for the parameters can be obtained from
eli5.keras.gradcam.gradcam_backend().

	Parameters

	
	weights (numpy.ndarray) – Activation weights, vector with one weight per map,
rank 1.

	activations (numpy.ndarray) – Forward activation map values, vector of matrices,
rank 3.

	Returns

	lmap (numpy.ndarray) – A Grad-CAM localization map,
rank 2, with values normalized in the interval [0, 1].

Notes

	We currently make two assumptions in this implementation

	
	We are dealing with images as our input to model.

	We are doing a classification. model’s output is a class scores or probabilities vector.

	Credits

	
	Jacob Gildenblat for “https://github.com/jacobgil/keras-grad-cam”.

	Author of “https://github.com/PowerOfCreation/keras-grad-cam” for fixes to Jacob’s implementation.

	Kotikalapudi, Raghavendra and contributors for “https://github.com/raghakot/keras-vis”.

	
gradcam_backend(model, doc, targets, activation_layer)[source]

	Compute the terms and by-products required by the Grad-CAM formula.

	Parameters

	
	model (keras.models.Model) – Differentiable network.

	doc (numpy.ndarray) – Input to the network.

	targets (list, optional) – Index into the network’s output,
indicating the output node that will be
used as the “loss” during differentiation.

	activation_layer (keras.layers.Layer) – Keras layer instance to differentiate with respect to.

See eli5.keras.explain_prediction() for description of the
model, doc, targets parameters.

	Returns

	(weights, activations, gradients, predicted_idx, predicted_val) ((numpy.ndarray, …, int, float)) – Values of variables.

 eli5.base

eli5.base

	
class DocWeightedSpans(document, spans, preserve_density=None, vec_name=None)[source]

	Features highlighted in text. :document: is a pre-processed document
before applying the analyzer. :weighted_spans: holds a list of spans
for features found in text (span indices correspond to
:document:). :preserve_density: determines how features are colored
when doing formatting - it is better set to True for char features
and to False for word features.

	
class Explanation(estimator, description=None, error=None, method=None, is_regression=False, targets=None, feature_importances=None, decision_tree=None, highlight_spaces=None, transition_features=None, image=None)[source]

	An explanation for classifier or regressor,
it can either explain weights or a single prediction.

	
class FeatureImportances(importances, remaining)[source]

	Feature importances with number of remaining non-zero features.

	
class FeatureWeights(pos, neg, pos_remaining=0, neg_remaining=0)[source]

	Weights for top features, :pos: for positive and :neg: for negative,
sorted by descending absolute value.
Number of remaining positive and negative features are stored in
:pos_remaining: and :neg_remaining: attributes.

	
class NodeInfo(id, is_leaf, value, value_ratio, impurity, samples, sample_ratio, feature_name=None, feature_id=None, threshold=None, left=None, right=None)[source]

	A node in a binary tree.
Pointers to left and right children are in :left: and :right: attributes.

	
class TargetExplanation(target, feature_weights=None, proba=None, score=None, weighted_spans=None, heatmap=None)[source]

	Explanation for a single target or class.
Feature weights are stored in the :feature_weights: attribute,
and features highlighted in text in the :weighted_spans: attribute.

Spatial values are stored in the :heatmap: attribute.

	
class TransitionFeatureWeights(class_names, coef)[source]

	Weights matrix for transition features.

	
class TreeInfo(criterion, tree, graphviz, is_classification)[source]

	Information about the decision tree. :criterion: is the name of
the function to measure the quality of a split, :tree: holds all nodes
of the tree, and :graphviz: is the tree rendered in graphviz .dot format.

	
class WeightedSpans(docs_weighted_spans, other=None)[source]

	Holds highlighted spans for parts of document - a DocWeightedSpans
object for each vectorizer, and other features not highlighted anywhere.

 Contributing

Contributing

ELI5 uses MIT license; contributions are welcome!

	Source code: https://github.com/TeamHG-Memex/eli5

	Issue tracker: https://github.com/TeamHG-Memex/eli5/issues

ELI5 supports Python 2.7 and Python 3.4+
To run tests make sure tox [https://tox.readthedocs.io/en/latest/] Python package is installed, then run

tox

from source checkout.

We like high test coverage and mypy [https://github.com/python/mypy] type annotations.

Making releases

Note: releases are made from master by eli5 maintainers.
When contributing a pull request, please do not update release notes
or package version.

To make a new release:

	Write a summary of changes to CHANGES.rst

	Bump version in eli5/__init__.py

	Make a release on PyPI using twine [https://pypi.org/project/twine/]

	Tag a commit in git and push it

 Changelog

Changelog

0.11.0 (2021-01-23)

	fixed scikit-learn 0.22+ and 0.24+ support.

	allow nan inputs in permutation importance (if model supports them).

	fix for permutation importance with sample_weight and cross-validation.

	doc fixes (typos, keras and TF versions clarified).

	don’t use deprecated getargspec function.

	less type ignores, mypy updated to 0.750.

	python 3.8 and 3.9 tested on GI, python 3.4 not tested any more.

	tests moved to github actions.

0.10.1 (2019-08-29)

	Don’t include typing dependency on Python 3.5+
to fix installation on Python 3.7

0.10.0 (2019-08-21)

	Keras image classifiers: explaining predictions with Grad-CAM
(GSoC-2019 project by @teabolt).

0.9.0 (2019-07-05)

	CatBoost support: show feature importances of CatBoostClassifier,
CatBoostRegressor and catboost.CatBoost.

	Test fixes: fixes for scikit-learn 0.21+, use xenial base on Travis

	Catch exceptions from improperly installed LightGBM

0.8.2 (2019-04-04)

	fixed scikit-learn 0.21+ support (randomized linear models are removed
from scikit-learn);

	fixed pandas.DataFrame + xgboost support for PermutationImportance;

	fixed tests with recent numpy;

	added conda install instructions (conda package is maintained by community);

	tutorial is updated to use xgboost 0.81;

	update docs to use pandoc 2.x.

0.8.1 (2018-11-19)

	fixed Python 3.7 support;

	added support for XGBoost > 0.6a2;

	fixed deprecation warnings in numpy >= 1.14;

	documentation, type annotation and test improvements.

0.8 (2017-08-25)

	backwards incompatible: DataFrame objects with explanations no longer
use indexes and pivot tables, they are now just plain DataFrames;

	new method for inspection black-box models is added
(Permutation Importance);

	transfor_feature_names is implemented for sklearn’s MinMaxScaler,
StandardScaler, MaxAbsScaler and RobustScaler;

	zero and negative feature importances are no longer hidden;

	fixed compatibility with scikit-learn 0.19;

	fixed compatibility with LightGBM master (2.0.5 and 2.0.6 are still
unsupported - there are bugs in LightGBM);

	documentation, testing and type annotation improvements.

0.7 (2017-07-03)

	better pandas.DataFrame integration: eli5.explain_weights_df(),
eli5.explain_weights_dfs(), eli5.explain_prediction_df(),
eli5.explain_prediction_dfs(),
eli5.format_as_dataframe
and eli5.format_as_dataframes
functions allow to export explanations to pandas.DataFrames;

	eli5.explain_prediction() now shows predicted class for binary
classifiers (previously it was always showing positive class);

	eli5.explain_prediction() supports targets=[<class>] now
for binary classifiers; e.g. to show result as seen for negative class,
you can use eli5.explain_prediction(..., targets=[False]);

	support eli5.explain_prediction() and eli5.explain_weights()
for libsvm-based linear estimators from sklearn.svm: SVC(kernel='linear')
(only binary classification), NuSVC(kernel='linear') (only
binary classification), SVR(kernel='linear'), NuSVR(kernel='linear'),
OneClassSVM(kernel='linear');

	fixed eli5.explain_weights() for LightGBM [https://github.com/Microsoft/LightGBM] estimators in Python 2 when
importance_type is ‘split’ or ‘weight’;

	testing improvements.

0.6.4 (2017-06-22)

	Fixed eli5.explain_prediction() for recent LightGBM [https://github.com/Microsoft/LightGBM] versions;

	fixed Python 3 deprecation warning in formatters.html;

	testing improvements.

0.6.3 (2017-06-02)

	eli5.explain_weights() and eli5.explain_prediction()
works with xgboost.Booster, not only with sklearn-like APIs;

	eli5.formatters.as_dict.format_as_dict() is now available as
eli5.format_as_dict;

	testing and documentation fixes.

0.6.2 (2017-05-17)

	readable eli5.explain_weights() for XGBoost models trained on
pandas.DataFrame;

	readable eli5.explain_weights() for LightGBM models trained on
pandas.DataFrame;

	fixed an issue with eli5.explain_prediction() for XGBoost
models trained on pandas.DataFrame when feature names contain dots;

	testing improvements.

0.6.1 (2017-05-10)

	Better pandas support in eli5.explain_prediction() for
xgboost, sklearn, LightGBM and lightning.

0.6 (2017-05-03)

	Better scikit-learn Pipeline support in eli5.explain_weights():
it is now possible to pass a Pipeline object directly. Curently only
SelectorMixin-based transformers, FeatureUnion and transformers
with get_feature_names are supported, but users can register other
transformers; built-in list of supported transformers will be expanded
in future. See Transformation pipelines for more.

	Inverting of HashingVectorizer is now supported inside FeatureUnion
via eli5.sklearn.unhashing.invert_hashing_and_fit().
See Reversing hashing trick.

	Fixed compatibility with Jupyter Notebook >= 5.0.0.

	Fixed eli5.explain_weights() for Lasso regression with a single
feature and no intercept.

	Fixed unhashing support in Python 2.x.

	Documentation and testing improvements.

0.5 (2017-04-27)

	LightGBM [https://github.com/Microsoft/LightGBM] support: eli5.explain_prediction() and
eli5.explain_weights() are now supported for
LGBMClassifier and LGBMRegressor
(see eli5 LightGBM support).

	fixed text formatting if all weights are zero;

	type checks now use latest mypy;

	testing setup improvements: Travis CI now uses Ubuntu 14.04.

0.4.2 (2017-03-03)

	bug fix: eli5 should remain importable if xgboost is available, but
not installed correctly.

0.4.1 (2017-01-25)

	feature contribution calculation fixed
for eli5.xgboost.explain_prediction_xgboost()

0.4 (2017-01-20)

	eli5.explain_prediction(): new ‘top_targets’ argument allows
to display only predictions with highest or lowest scores;

	eli5.explain_weights() allows to customize the way feature importances
are computed for XGBClassifier and XGBRegressor using importance_type
argument (see docs for the eli5 XGBoost support);

	eli5.explain_weights() uses gain for XGBClassifier and XGBRegressor
feature importances by default; this method is a better indication of
what’s going, and it makes results more compatible with feature importances
displayed for scikit-learn gradient boosting methods.

0.3.1 (2017-01-16)

	packaging fix: scikit-learn is added to install_requires in setup.py.

0.3 (2017-01-13)

	eli5.explain_prediction() works for XGBClassifier, XGBRegressor
from XGBoost and for ExtraTreesClassifier, ExtraTreesRegressor,
GradientBoostingClassifier, GradientBoostingRegressor,
RandomForestClassifier, RandomForestRegressor, DecisionTreeClassifier
and DecisionTreeRegressor from scikit-learn.
Explanation method is based on
http://blog.datadive.net/interpreting-random-forests/ .

	eli5.explain_weights() now supports tree-based regressors from
scikit-learn: DecisionTreeRegressor, AdaBoostRegressor,
GradientBoostingRegressor, RandomForestRegressor and ExtraTreesRegressor.

	eli5.explain_weights() works for XGBRegressor;

	new TextExplainer class allows to explain predictions
of black-box text classification pipelines using LIME algorithm;
many improvements in eli5.lime.

	better sklearn.pipeline.FeatureUnion support in
eli5.explain_prediction();

	rendering performance is improved;

	a number of remaining feature importances is shown when the feature
importance table is truncated;

	styling of feature importances tables is fixed;

	eli5.explain_weights() and eli5.explain_prediction() support
more linear estimators from scikit-learn: HuberRegressor, LarsCV, LassoCV,
LassoLars, LassoLarsCV, LassoLarsIC, OrthogonalMatchingPursuit,
OrthogonalMatchingPursuitCV, PassiveAggressiveRegressor,
RidgeClassifier, RidgeClassifierCV, TheilSenRegressor.

	text-based formatting of decision trees is changed: for binary
classification trees only a probability of “true” class is printed,
not both probabilities as it was before.

	eli5.explain_weights() supports feature_filter in addition
to feature_re for filtering features, and eli5.explain_prediction()
now also supports both of these arguments;

	‘Weight’ column is renamed to ‘Contribution’ in the output of
eli5.explain_prediction();

	new show_feature_values=True formatter argument allows to display
input feature values;

	fixed an issue with analyzer=’char_wb’ highlighting at the start of the
text.

0.2 (2016-12-03)

	XGBClassifier support (from XGBoost [https://github.com/dmlc/xgboost]
package);

	eli5.explain_weights() support for sklearn OneVsRestClassifier;

	std deviation of feature importances is no longer printed as zero
if it is not available.

0.1.1 (2016-11-25)

	packaging fixes: require attrs > 16.0.0, fixed README rendering

0.1 (2016-11-24)

	HTML output;

	IPython integration;

	JSON output;

	visualization of scikit-learn text vectorizers;

	sklearn-crfsuite [https://github.com/TeamHG-Memex/sklearn-crfsuite]
support;

	lightning [https://github.com/scikit-learn-contrib/lightning] support;

	eli5.show_weights() and eli5.show_prediction() functions;

	eli5.explain_weights() and eli5.explain_prediction()
functions;

	eli5.lime improvements: samplers for non-text data,
bug fixes, docs;

	HashingVectorizer is supported for regression tasks;

	performance improvements - feature names are lazy;

	sklearn ElasticNetCV and RidgeCV support;

	it is now possible to customize formatting output - show/hide sections,
change layout;

	sklearn OneVsRestClassifier support;

	sklearn DecisionTreeClassifier visualization (text-based or svg-based);

	dropped support for scikit-learn < 0.18;

	basic mypy type annotations;

	feature_re argument allows to show only a subset of features;

	target_names argument allows to change display names of targets/classes;

	targets argument allows to show a subset of targets/classes and
change their display order;

	documentation, more examples.

0.0.6 (2016-10-12)

	Candidate features in eli5.sklearn.InvertableHashingVectorizer
are ordered by their frequency, first candidate is always positive.

0.0.5 (2016-09-27)

	HashingVectorizer support in explain_prediction;

	add an option to pass coefficient scaling array; it is useful
if you want to compare coefficients for features which scale or sign
is different in the input;

	bug fix: classifier weights are no longer changed by eli5 functions.

0.0.4 (2016-09-24)

	eli5.sklearn.InvertableHashingVectorizer and
eli5.sklearn.FeatureUnhasher allow to recover feature names for
pipelines which use HashingVectorizer or FeatureHasher;

	added support for scikit-learn linear regression models (ElasticNet,
Lars, Lasso, LinearRegression, LinearSVR, Ridge, SGDRegressor);

	doc and vec arguments are swapped in explain_prediction function;
vec can now be omitted if an example is already vectorized;

	fixed issue with dense feature vectors;

	all class_names arguments are renamed to target_names;

	feature name guessing is fixed for scikit-learn ensemble estimators;

	testing improvements.

0.0.3 (2016-09-21)

	support any black-box classifier using LIME (http://arxiv.org/abs/1602.04938)
algorithm; text data support is built-in;

	“vectorized” argument for sklearn.explain_prediction; it allows to pass
example which is already vectorized;

	allow to pass feature_names explicitly;

	support classifiers without get_feature_names method using auto-generated
feature names.

0.0.2 (2016-09-19)

	‘top’ argument of explain_prediction
can be a tuple (num_positive, num_negative);

	classifier name is no longer printed by default;

	added eli5.sklearn.explain_prediction to explain individual examples;

	fixed numpy warning.

0.0.1 (2016-09-15)

Pre-release.

 Python Module Index

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 eli5	

 	
 	
 eli5.base	

 	
 	
 eli5.catboost	

 	
 	
 eli5.formatters	

 	
 	
 eli5.formatters.as_dataframe	

 	
 	
 eli5.formatters.as_dict	

 	
 	
 eli5.formatters.html	

 	
 	
 eli5.formatters.image	

 	
 	
 eli5.formatters.text	

 	
 	
 eli5.keras.explain_prediction	

 	
 	
 eli5.keras.gradcam	

 	
 	
 eli5.lightgbm	

 	
 	
 eli5.lightning	

 	
 	
 eli5.lime	

 	
 	
 eli5.lime.lime	

 	
 	
 eli5.lime.samplers	

 	
 	
 eli5.lime.textutils	

 	
 	
 eli5.permutation_importance	

 	
 	
 eli5.sklearn.explain_prediction	

 	
 	
 eli5.sklearn.explain_weights	

 	
 	
 eli5.sklearn.permutation_importance	

 	
 	
 eli5.sklearn.unhashing	

 	
 	
 eli5.sklearn_crfsuite.explain_weights	

 	
 	
 eli5.xgboost	

 Index

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

B

 	
 	BaseSampler (class in eli5.lime.samplers)

C

 	
 	clf_ (TextExplainer attribute)

 	
 	column_signs_ (InvertableHashingVectorizer attribute)

 	cosine_similarity_vec() (in module eli5.lime.textutils)

D

 	
 	DocWeightedSpans (class in eli5.base)

E

 	
 	eli5 (module)

 	eli5.base (module)

 	eli5.catboost (module)

 	eli5.formatters (module)

 	eli5.formatters.as_dataframe (module)

 	eli5.formatters.as_dict (module)

 	eli5.formatters.html (module)

 	eli5.formatters.image (module)

 	eli5.formatters.text (module)

 	eli5.keras.explain_prediction (module)

 	eli5.keras.gradcam (module)

 	eli5.lightgbm (module)

 	eli5.lightning (module)

 	eli5.lime (module)

 	eli5.lime.lime (module)

 	eli5.lime.samplers (module)

 	eli5.lime.textutils (module)

 	eli5.permutation_importance (module)

 	eli5.sklearn.explain_prediction (module)

 	eli5.sklearn.explain_weights (module)

 	eli5.sklearn.permutation_importance (module)

 	eli5.sklearn.unhashing (module)

 	eli5.sklearn_crfsuite.explain_weights (module)

 	eli5.xgboost (module)

 	estimator_ (PermutationImportance attribute)

 	expand_heatmap() (in module eli5.formatters.image)

 	explain_decision_tree() (in module eli5.sklearn.explain_weights)

 	explain_linear_classifier_weights() (in module eli5.sklearn.explain_weights)

 	explain_linear_regressor_weights() (in module eli5.sklearn.explain_weights)

 	explain_permutation_importance() (in module eli5.sklearn.explain_weights)

 	
 	explain_prediction() (in module eli5)

 	(TextExplainer method)

 	explain_prediction_df() (in module eli5)

 	(in module eli5.formatters.as_dataframe)

 	explain_prediction_dfs() (in module eli5)

 	(in module eli5.formatters.as_dataframe)

 	explain_prediction_keras() (in module eli5.keras.explain_prediction)

 	explain_prediction_keras_image() (in module eli5.keras.explain_prediction)

 	explain_prediction_keras_not_supported() (in module eli5.keras.explain_prediction)

 	explain_prediction_lightgbm() (in module eli5.lightgbm)

 	explain_prediction_lightning() (in module eli5.lightning)

 	explain_prediction_linear_classifier() (in module eli5.sklearn.explain_prediction)

 	explain_prediction_linear_regressor() (in module eli5.sklearn.explain_prediction)

 	explain_prediction_sklearn() (in module eli5.sklearn.explain_prediction)

 	explain_prediction_tree_classifier() (in module eli5.sklearn.explain_prediction)

 	explain_prediction_tree_regressor() (in module eli5.sklearn.explain_prediction)

 	explain_prediction_xgboost() (in module eli5.xgboost)

 	explain_rf_feature_importance() (in module eli5.sklearn.explain_weights)

 	explain_weights() (in module eli5)

 	(TextExplainer method)

 	explain_weights_catboost() (in module eli5.catboost)

 	explain_weights_df() (in module eli5)

 	(in module eli5.formatters.as_dataframe)

 	explain_weights_dfs() (in module eli5)

 	(in module eli5.formatters.as_dataframe)

 	explain_weights_lightgbm() (in module eli5.lightgbm)

 	explain_weights_lightning() (in module eli5.lightning)

 	explain_weights_sklearn() (in module eli5.sklearn.explain_weights)

 	explain_weights_sklearn_crfsuite() (in module eli5.sklearn_crfsuite.explain_weights)

 	explain_weights_xgboost() (in module eli5.xgboost)

 	Explanation (class in eli5.base)

F

 	
 	feature_importances_ (PermutationImportance attribute)

 	feature_importances_std_ (PermutationImportance attribute)

 	FeatureImportances (class in eli5.base)

 	FeatureUnhasher (class in eli5.sklearn.unhashing)

 	FeatureWeights (class in eli5.base)

 	filter_transition_coefs() (in module eli5.sklearn_crfsuite.explain_weights)

 	fit() (BaseSampler method)

 	(InvertableHashingVectorizer method)

 	(MultivariateKernelDensitySampler method)

 	(PermutationImportance method)

 	(TextExplainer method)

 	(UnivariateKernelDensitySampler method)

 	format_as_dataframe() (in module eli5)

 	(in module eli5.formatters.as_dataframe)

 	
 	format_as_dataframes() (in module eli5)

 	(in module eli5.formatters.as_dataframe)

 	format_as_dict() (in module eli5)

 	(in module eli5.formatters.as_dict)

 	format_as_html() (in module eli5)

 	(in module eli5.formatters.html)

 	format_as_image() (in module eli5)

 	(in module eli5.formatters.image)

 	format_as_text() (in module eli5)

 	(in module eli5.formatters.text)

 	format_hsl() (in module eli5.formatters.html)

 	format_html_styles() (in module eli5.formatters.html)

G

 	
 	generate_samples() (in module eli5.lime.textutils)

 	get_feature_names() (InvertableHashingVectorizer method)

 	get_score_importances() (in module eli5.permutation_importance)

 	
 	get_weight_range() (in module eli5.formatters.html)

 	gradcam() (in module eli5.keras.gradcam)

 	gradcam_backend() (in module eli5.keras.gradcam)

H

 	
 	handle_hashing_vec() (in module eli5.sklearn.unhashing)

 	
 	heatmap_to_image() (in module eli5.formatters.image)

I

 	
 	invert_hashing_and_fit() (in module eli5.sklearn.unhashing)

 	
 	InvertableHashingVectorizer (class in eli5.sklearn.unhashing)

 	iter_shuffled() (in module eli5.permutation_importance)

M

 	
 	MaskingTextSampler (class in eli5.lime.samplers)

 	MaskingTextSamplers (class in eli5.lime.samplers)

 	
 	metrics_ (TextExplainer attribute)

 	MultivariateKernelDensitySampler (class in eli5.lime.samplers)

N

 	
 	NodeInfo (class in eli5.base)

P

 	
 	PermutationImportance (class in eli5.sklearn.permutation_importance)

R

 	
 	recalculate_attributes() (FeatureUnhasher method)

 	remaining_weight_color_hsl() (in module eli5.formatters.html)

 	render_targets_weighted_spans() (in module eli5.formatters.html)

 	
 	results_ (PermutationImportance attribute)

 	rng_ (PermutationImportance attribute)

 	(TextExplainer attribute)

S

 	
 	sample_near() (BaseSampler method)

 	(MaskingTextSampler method)

 	(MaskingTextSamplers method)

 	(MultivariateKernelDensitySampler method)

 	(UnivariateKernelDensitySampler method)

 	sample_near_with_mask() (MaskingTextSampler method)

 	(MaskingTextSamplers method)

 	
 	samples_ (TextExplainer attribute)

 	scores_ (PermutationImportance attribute)

 	show_prediction() (in module eli5)

 	(TextExplainer method)

 	show_weights() (in module eli5)

 	(TextExplainer method)

 	similarity_ (TextExplainer attribute)

 	sorted_for_ner() (in module eli5.sklearn_crfsuite.explain_weights)

T

 	
 	TargetExplanation (class in eli5.base)

 	TextExplainer (class in eli5.lime.lime)

 	
 	transform_feature_names() (in module eli5)

 	TransitionFeatureWeights (class in eli5.base)

 	TreeInfo (class in eli5.base)

U

 	
 	UnivariateKernelDensitySampler (class in eli5.lime.samplers)

V

 	
 	vec_ (TextExplainer attribute)

W

 	
 	weight_color_hsl() (in module eli5.formatters.html)

 	
 	WeightedSpans (class in eli5.base)

X

 	
 	X_ (TextExplainer attribute)

Y

 	
 	y_proba_ (TextExplainer attribute)

 <no title>

 See LIME.

 Overview: module code

 All modules for which code is available

	eli5.base

	eli5.catboost

	eli5.explain

	eli5.formatters.as_dataframe

	eli5.formatters.as_dict

	eli5.formatters.html

	eli5.formatters.image

	eli5.formatters.text

	eli5.ipython

	eli5.keras.explain_prediction

	eli5.keras.gradcam

	eli5.lightgbm

	eli5.lightning

	eli5.lime.lime

	eli5.lime.samplers

	eli5.lime.textutils

	eli5.permutation_importance

	eli5.sklearn.explain_prediction

	eli5.sklearn.explain_weights

	eli5.sklearn.permutation_importance

	eli5.sklearn.unhashing

	eli5.sklearn_crfsuite.explain_weights

	eli5.transform

	eli5.xgboost

 eli5.base

 Source code for eli5.base

-*- coding: utf-8 -*-
from typing import Any, List, Tuple, Union, Optional

import numpy as np

from .base_utils import attrs
from .formatters.features import FormattedFeatureName

@attrs decorator used in this file calls @attr.s(slots=True),
creating attr.ib entries based on the signature of __init__.

[docs]@attrs
class Explanation(object):
 """ An explanation for classifier or regressor,
 it can either explain weights or a single prediction.
 """
 def __init__(self,
 estimator, # type: str
 description=None, # type: Optional[str]
 error=None, # type: Optional[str]
 method=None, # type: Optional[str]
 is_regression=False, # type: bool
 targets=None, # type: Optional[List[TargetExplanation]]
 feature_importances=None, # type: Optional[FeatureImportances]
 decision_tree=None, # type: Optional[TreeInfo]
 highlight_spaces=None, # type: Optional[bool]
 transition_features=None, # type: Optional[TransitionFeatureWeights]
 image=None, # type: Any
):
 # type: (...) -> None
 self.estimator = estimator
 self.description = description
 self.error = error
 self.method = method
 self.is_regression = is_regression
 self.targets = targets
 self.feature_importances = feature_importances
 self.decision_tree = decision_tree
 self.highlight_spaces = highlight_spaces
 self.transition_features = transition_features
 self.image = image # if arg is not None, assume we are working with images

 def _repr_html_(self):
 """ HTML formatting for the notebook.
 """
 from eli5.formatters import fields
 from eli5.formatters.html import format_as_html
 return format_as_html(self, force_weights=False, show=fields.WEIGHTS)

[docs]@attrs
class FeatureImportances(object):
 """ Feature importances with number of remaining non-zero features.
 """
 def __init__(self, importances, remaining):
 # type: (...) -> None
 self.importances = importances # type: List[FeatureWeight]
 self.remaining = remaining # type: int

 @classmethod
 def from_names_values(cls, names, values, std=None, **kwargs):
 params = zip(names, values) if std is None else zip(names, values, std)
 importances = [FeatureWeight(*x) for x in params] # type: ignore
 return cls(importances, **kwargs)

[docs]@attrs
class TargetExplanation(object):
 """ Explanation for a single target or class.
 Feature weights are stored in the :feature_weights: attribute,
 and features highlighted in text in the :weighted_spans: attribute.

 Spatial values are stored in the :heatmap: attribute.
 """
 def __init__(self,
 target, # type: Union[str, int]
 feature_weights=None, # type: Optional[FeatureWeights]
 proba=None, # type: Optional[float]
 score=None, # type: Optional[float]
 weighted_spans=None, # type: Optional[WeightedSpans]
 heatmap=None, # type: Optional[np.ndarray]
):
 # type: (...) -> None
 self.target = target
 self.feature_weights = feature_weights
 self.proba = proba
 self.score = score
 self.weighted_spans = weighted_spans
 self.heatmap = heatmap

List is currently used for unhashed features
Feature = Union[str, List, FormattedFeatureName]

[docs]@attrs
class FeatureWeights(object):
 """ Weights for top features, :pos: for positive and :neg: for negative,
 sorted by descending absolute value.
 Number of remaining positive and negative features are stored in
 :pos_remaining: and :neg_remaining: attributes.
 """
 def __init__(self,
 pos, # type: List[FeatureWeight]
 neg, # type: List[FeatureWeight]
 pos_remaining=0, # type: int
 neg_remaining=0, # type: int
):
 # type: (...) -> None
 self.pos = pos
 self.neg = neg
 self.pos_remaining = pos_remaining
 self.neg_remaining = neg_remaining

@attrs
class FeatureWeight(object):
 def __init__(self,
 feature, # type: Feature
 weight, # type: float
 std=None, # type: float
 value=None, # type: Any
):
 # type: (...) -> None
 self.feature = feature
 self.weight = weight
 self.std = std
 self.value = value

[docs]@attrs
class WeightedSpans(object):
 """ Holds highlighted spans for parts of document - a DocWeightedSpans
 object for each vectorizer, and other features not highlighted anywhere.
 """
 def __init__(self,
 docs_weighted_spans, # type: List[DocWeightedSpans]
 other=None, # type: FeatureWeights
):
 # type: (...) -> None
 self.docs_weighted_spans = docs_weighted_spans
 self.other = other

WeightedSpan = Tuple[
 Feature,
 List[Tuple[int, int]], # list of spans (start, end) for this feature
 float, # feature weight
]

[docs]@attrs
class DocWeightedSpans(object):
 """ Features highlighted in text. :document: is a pre-processed document
 before applying the analyzer. :weighted_spans: holds a list of spans
 for features found in text (span indices correspond to
 :document:). :preserve_density: determines how features are colored
 when doing formatting - it is better set to True for char features
 and to False for word features.
 """
 def __init__(self,
 document, # type: str
 spans, # type: List[WeightedSpan]
 preserve_density=None, # type: bool
 vec_name=None, # type: str
):
 # type: (...) -> None
 self.document = document
 self.spans = spans
 self.preserve_density = preserve_density
 self.vec_name = vec_name

[docs]@attrs
class TransitionFeatureWeights(object):
 """ Weights matrix for transition features. """
 def __init__(self,
 class_names, # type: List[str]
 coef,
):
 # type: (...) -> None
 self.class_names = class_names
 self.coef = coef

[docs]@attrs
class TreeInfo(object):
 """ Information about the decision tree. :criterion: is the name of
 the function to measure the quality of a split, :tree: holds all nodes
 of the tree, and :graphviz: is the tree rendered in graphviz .dot format.
 """
 def __init__(self,
 criterion, # type: str
 tree, # type: NodeInfo
 graphviz, # type: str
 is_classification, # type: bool
):
 # type: (...) -> None
 self.criterion = criterion
 self.tree = tree
 self.graphviz = graphviz
 self.is_classification = is_classification

[docs]@attrs
class NodeInfo(object):
 """ A node in a binary tree.
 Pointers to left and right children are in :left: and :right: attributes.
 """
 def __init__(self,
 id, # type: int
 is_leaf, # type: bool
 value,
 value_ratio,
 impurity, # type: float
 samples, # type: int
 sample_ratio, # type: float
 feature_name=None, # type: str
 feature_id=None, # type: int
 threshold=None, # type: float
 left=None, # type: NodeInfo
 right=None, # type: NodeInfo
):
 # type: (...) -> None
 self.id = id
 self.is_leaf = is_leaf
 self.value = value
 self.value_ratio = value_ratio
 self.impurity = impurity
 self.samples = samples
 self.sample_ratio = sample_ratio
 self.feature_name = feature_name
 self.feature_id = feature_id
 self.threshold = threshold
 self.left = left
 self.right = right

 eli5.catboost

 Source code for eli5.catboost

from __future__ import absolute_import, division

import numpy as np
import catboost

from eli5.explain import explain_weights
from eli5._feature_importances import get_feature_importance_explanation

DESCRIPTION_CATBOOST = """CatBoost feature importances;
values are numbers 0 <= x <= 1; all values sum to 1."""

[docs]@explain_weights.register(catboost.CatBoost)
@explain_weights.register(catboost.CatBoostClassifier)
@explain_weights.register(catboost.CatBoostRegressor)
def explain_weights_catboost(catb,
 vec=None,
 top=20,
 importance_type='PredictionValuesChange',
 feature_names=None,
 pool=None
):
 """
 Return an explanation of an CatBoost estimator (CatBoostClassifier,
 CatBoost, CatBoostRegressor) as feature importances.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``feature_names``,
 ``feature_re`` and ``feature_filter`` parameters.

 ``target_names`` and ``targets`` parameters are ignored.

 Parameters

 :param 'importance_type' : str, optional
 A way to get feature importance. Possible values are:

 - 'PredictionValuesChange' (default) - The individual importance
 values for each of the input features.
 - 'LossFunctionChange' - The individual importance values for
 each of the input features for ranking metrics
 (requires training data to be passed or a similar dataset with Pool)

 :param 'pool' : catboost.Pool, optional
 To be passed if explain_weights_catboost has importance_type set
 to LossFunctionChange. The catboost feature_importances uses the Pool
 datatype to calculate the parameter for the specific importance_type.
 """
 is_regression = _is_regression(catb)
 catb_feature_names = catb.feature_names_
 coef = _catb_feature_importance(catb, importance_type=importance_type, pool=pool)
 return get_feature_importance_explanation(catb, vec, coef,
 feature_names=feature_names,
 estimator_feature_names=catb_feature_names,
 feature_filter=None,
 feature_re=None,
 top=top,
 description=DESCRIPTION_CATBOOST,
 is_regression=is_regression,
 num_features=coef.shape[-1]
)

def _is_regression(catb):
 return isinstance(catb, catboost.CatBoostRegressor)

def _catb_feature_importance(catb, importance_type, pool=None):
 if importance_type == "PredictionValuesChange":
 fs = catb.get_feature_importance(type=importance_type)
 elif importance_type == "LossFunctionChange":
 if isinstance(pool, catboost.Pool):
 fs = catb.get_feature_importance(data=pool, type=importance_type)
 else:
 raise ValueError(
 'importance_type: "LossFunctionChange" requires catboost.Pool '
 'datatype to be passed with parameter pool to calculate '
 'metric. Either no datatype or invalid datatype was passed'
)
 else:
 raise ValueError(
 'Only two importance_type "PredictionValuesChange" '
 'and "LossFunctionChange" are supported. Invalid Parameter '
 '{} for importance_type'.format(importance_type))
 all_features = np.array(fs, dtype=np.float32)
 return all_features/all_features.sum()

 eli5.explain

 Source code for eli5.explain

-*- coding: utf-8 -*-
"""
Dispatch module. Explanation functions for conctere estimator classes
are defined in submodules.
"""
from eli5.base import Explanation
from eli5.base_utils import singledispatch

[docs]@singledispatch
def explain_weights(estimator, **kwargs):
 """ Return an explanation of estimator parameters (weights).

 :func:`explain_weights` is not doing any work itself, it dispatches
 to a concrete implementation based on estimator type.

 Parameters

 estimator : object
 Estimator instance. This argument must be positional.

 top : int or (int, int) tuple, optional
 Number of features to show. When ``top`` is int, ``top`` features with
 a highest absolute values are shown. When it is (pos, neg) tuple,
 no more than ``pos`` positive features and no more than ``neg``
 negative features is shown. ``None`` value means no limit.

 This argument may be supported or not, depending on estimator type.

 target_names : list[str] or {'old_name': 'new_name'} dict, optional
 Names of targets or classes. This argument can be used to provide
 human-readable class/target names for estimators which don't expose
 clss names themselves. It can be also used to rename estimator-provided
 classes before displaying them.

 This argument may be supported or not, depending on estimator type.

 targets : list, optional
 Order of class/target names to show. This argument can be also used
 to show information only for a subset of classes. It should be a list
 of class / target names which match either names provided by
 an estimator or names defined in ``target_names`` parameter.

 This argument may be supported or not, depending on estimator type.

 feature_names : list, optional
 A list of feature names. It allows to specify feature
 names when they are not provided by an estimator object.

 This argument may be supported or not, depending on estimator type.

 feature_re : str, optional
 Only feature names which match ``feature_re`` regex are returned
 (more precisely, ``re.search(feature_re, x)`` is checked).

 feature_filter : Callable[[str], bool], optional
 Only feature names for which ``feature_filter`` function returns True
 are returned.

 **kwargs: dict
 Keyword arguments. All keyword arguments are passed to
 concrete explain_weights... implementations.

 Returns

 Explanation
 :class:`~Explanation` result. Use one of the formatting functions from
 :mod:`eli5.formatters` to print it in a human-readable form.

 Explanation instances have repr which works well with
 IPython notebook, but it can be a better idea to use
 :func:`eli5.show_weights` instead of :func:`eli5.explain_weights`
 if you work with IPython: :func:`eli5.show_weights` allows to customize
 formatting without a need to import :mod:`eli5.formatters` functions.
 """
 return Explanation(
 estimator=repr(estimator),
 error="estimator %r is not supported" % estimator,
)

[docs]@singledispatch
def explain_prediction(estimator, doc, **kwargs):
 """
 Return an explanation of an estimator prediction.

 :func:`explain_prediction` is not doing any work itself, it dispatches
 to a concrete implementation based on estimator type.

 Parameters

 estimator : object
 Estimator instance. This argument must be positional.

 doc : object
 Example to run estimator on. Estimator makes a prediction for this
 example, and :func:`explain_prediction` tries to show information
 about this prediction. Pass a single element, not a one-element array:
 if you fitted your estimator on ``X``, that would be ``X[i]`` for
 most containers, and ``X.iloc[i]`` for ``pandas.DataFrame``.

 top : int or (int, int) tuple, optional
 Number of features to show. When ``top`` is int, ``top`` features with
 a highest absolute values are shown. When it is (pos, neg) tuple,
 no more than ``pos`` positive features and no more than ``neg``
 negative features is shown. ``None`` value means no limit (default).

 This argument may be supported or not, depending on estimator type.

 top_targets : int, optional
 Number of targets to show. When ``top_targets`` is provided,
 only specified number of targets with highest scores are shown.
 Negative value means targets with lowest scores are shown.
 Must not be given with ``targets`` argument.
 ``None`` value means no limit: all targets are shown (default).

 This argument may be supported or not, depending on estimator type.

 target_names : list[str] or {'old_name': 'new_name'} dict, optional
 Names of targets or classes. This argument can be used to provide
 human-readable class/target names for estimators which don't expose
 class names themselves. It can be also used to rename estimator-provided
 classes before displaying them.

 This argument may be supported or not, depending on estimator type.

 targets : list, optional
 Order of class/target names to show. This argument can be also used
 to show information only for a subset of classes. It should be a list
 of class / target names which match either names provided by
 an estimator or names defined in ``target_names`` parameter.
 Must not be given with ``top_targets`` argument.

 In case of binary classification you can use this argument to
 set the class which probability or score should be displayed, with
 an appropriate explanation. By default a result for predicted class
 is shown. For example, you can use ``targets=[True]`` to always show
 result for a positive class, even if the predicted label is False.

 This argument may be supported or not, depending on estimator type.

 feature_names : list, optional
 A list of feature names. It allows to specify feature
 names when they are not provided by an estimator object.

 This argument may be supported or not, depending on estimator type.

 feature_re : str, optional
 Only feature names which match ``feature_re`` regex are returned
 (more precisely, ``re.search(feature_re, x)`` is checked).

 feature_filter : Callable[[str, float], bool], optional
 Only feature names for which ``feature_filter`` function returns True
 are returned. It must accept feature name and feature value.
 Missing features always have a NaN value.

 **kwargs: dict
 Keyword arguments. All keyword arguments are passed to
 concrete explain_prediction... implementations.

 Returns

 Explanation
 :class:`~.Explanation` result. Use one of the formatting functions from
 :mod:`eli5.formatters` to print it in a human-readable form.

 Explanation instances have repr which works well with
 IPython notebook, but it can be a better idea to use
 :func:`eli5.show_prediction` instead of :func:`eli5.explain_prediction`
 if you work with IPython: :func:`eli5.show_prediction` allows to
 customize formatting without a need to import :mod:`eli5.formatters`
 functions.
 """
 return Explanation(
 estimator=repr(estimator),
 error="estimator %r is not supported" % estimator,
)

 eli5.ipython

 Source code for eli5.ipython

-*- coding: utf-8 -*-
from __future__ import absolute_import
from typing import Any, Dict, Tuple
import warnings

from IPython.display import HTML, Image

from .explain import explain_weights, explain_prediction
from .formatters import format_as_html, fields
try:
 from .formatters.image import format_as_image
except ImportError as e:
 # missing dependencies
 format_as_image = e # type: ignore

FORMAT_KWARGS = {'include_styles', 'force_weights',
 'show', 'preserve_density',
 'highlight_spaces', 'horizontal_layout',
 'show_feature_values',
 # kwargs for image formatter
 'resampling_filter', 'colormap',
 'alpha_limit',
}
TODO: automatically get FORMAT_KWARGS from function signatures

[docs]def show_weights(estimator, **kwargs):
 """ Return an explanation of estimator parameters (weights)
 as an IPython.display.HTML object. Use this function
 to show classifier weights in IPython.

 :func:`show_weights` accepts all
 :func:`eli5.explain_weights` arguments and all
 :func:`eli5.formatters.html.format_as_html`
 keyword arguments, so it is possible to get explanation and
 customize formatting in a single call.

 Parameters

 estimator : object
 Estimator instance. This argument must be positional.

 top : int or (int, int) tuple, optional
 Number of features to show. When ``top`` is int, ``top`` features with
 a highest absolute values are shown. When it is (pos, neg) tuple,
 no more than ``pos`` positive features and no more than ``neg``
 negative features is shown. ``None`` value means no limit.

 This argument may be supported or not, depending on estimator type.

 target_names : list[str] or {'old_name': 'new_name'} dict, optional
 Names of targets or classes. This argument can be used to provide
 human-readable class/target names for estimators which don't expose
 clss names themselves. It can be also used to rename estimator-provided
 classes before displaying them.

 This argument may be supported or not, depending on estimator type.

 targets : list, optional
 Order of class/target names to show. This argument can be also used
 to show information only for a subset of classes. It should be a list
 of class / target names which match either names provided by
 an estimator or names defined in ``target_names`` parameter.

 This argument may be supported or not, depending on estimator type.

 feature_names : list, optional
 A list of feature names. It allows to specify feature
 names when they are not provided by an estimator object.

 This argument may be supported or not, depending on estimator type.

 feature_re : str, optional
 Only feature names which match ``feature_re`` regex are shown
 (more precisely, ``re.search(feature_re, x)`` is checked).

 feature_filter : Callable[[str], bool], optional
 Only feature names for which ``feature_filter`` function returns True
 are shown.

 show : List[str], optional
 List of sections to show. Allowed values:

 * 'targets' - per-target feature weights;
 * 'transition_features' - transition features of a CRF model;
 * 'feature_importances' - feature importances of a decision tree or
 an ensemble-based estimator;
 * 'decision_tree' - decision tree in a graphical form;
 * 'method' - a string with explanation method;
 * 'description' - description of explanation method and its caveats.

 ``eli5.formatters.fields`` provides constants that cover common cases:
 ``INFO`` (method and description), ``WEIGHTS`` (all the rest),
 and ``ALL`` (all).

 horizontal_layout : bool
 When True, feature weight tables are printed horizontally
 (left to right); when False, feature weight tables are printed
 vertically (top to down). Default is True.

 highlight_spaces : bool or None, optional
 Whether to highlight spaces in feature names. This is useful if
 you work with text and have ngram features which may include spaces
 at left or right. Default is None, meaning that the value used
 is set automatically based on vectorizer and feature values.

 include_styles : bool
 Most styles are inline, but some are included separately in <style> tag;
 you can omit them by passing ``include_styles=False``. Default is True.

 **kwargs: dict
 Keyword arguments. All keyword arguments are passed to
 concrete explain_weights... implementations.

 Returns

 IPython.display.HTML
 The result is printed in IPython notebook as an HTML widget.
 If you need to display several explanations as an output of a single
 cell, or if you want to display it from a function then use
 IPython.display.display::

 from IPython.display import display
 display(eli5.show_weights(clf1))
 display(eli5.show_weights(clf2))

 """
 format_kwargs, explain_kwargs = _split_kwargs(kwargs)
 expl = explain_weights(estimator, **explain_kwargs)
 _set_html_kwargs_defaults(format_kwargs)
 html = format_as_html(expl, **format_kwargs)
 return HTML(html)

[docs]def show_prediction(estimator, doc, **kwargs):
 """ Return an explanation of estimator prediction
 as an IPython.display.HTML object. Use this function
 to show information about classifier prediction in IPython.

 :func:`show_prediction` accepts all
 :func:`eli5.explain_prediction` arguments and all
 :func:`eli5.formatters.html.format_as_html`
 keyword arguments, so it is possible to get explanation and
 customize formatting in a single call.

 If :func:`explain_prediction` returns an :class:`base.Explanation` object with
 the ``image`` attribute not set to None, i.e. if explaining image based models,
 then formatting is dispatched to an image display implementation,
 and image explanations are shown in an IPython cell.
 Extra keyword arguments are passed to :func:`eli5.format_as_image`.

 Note that this image display implementation
 requires ``matplotlib`` and ``Pillow`` as extra dependencies.
 If the dependencies are missing, no formatting is done
 and the original :class:`base.Explanation` object is returned.

 Parameters

 estimator : object
 Estimator instance. This argument must be positional.

 doc : object
 Example to run estimator on. Estimator makes a prediction for this
 example, and :func:`show_prediction` tries to show information
 about this prediction. Pass a single element, not a one-element array:
 if you fitted your estimator on ``X``, that would be ``X[i]`` for
 most containers, and ``X.iloc[i]`` for ``pandas.DataFrame``.

 top : int or (int, int) tuple, optional
 Number of features to show. When ``top`` is int, ``top`` features with
 a highest absolute values are shown. When it is (pos, neg) tuple,
 no more than ``pos`` positive features and no more than ``neg``
 negative features is shown. ``None`` value means no limit (default).

 This argument may be supported or not, depending on estimator type.

 top_targets : int, optional
 Number of targets to show. When ``top_targets`` is provided,
 only specified number of targets with highest scores are shown.
 Negative value means targets with lowest scores are shown.
 Must not be given with ``targets`` argument.
 ``None`` value means no limit: all targets are shown (default).

 This argument may be supported or not, depending on estimator type.

 target_names : list[str] or {'old_name': 'new_name'} dict, optional
 Names of targets or classes. This argument can be used to provide
 human-readable class/target names for estimators which don't expose
 clss names themselves. It can be also used to rename estimator-provided
 classes before displaying them.

 This argument may be supported or not, depending on estimator type.

 targets : list, optional
 Order of class/target names to show. This argument can be also used
 to show information only for a subset of classes. It should be a list
 of class / target names which match either names provided by
 an estimator or names defined in ``target_names`` parameter.

 In case of binary classification you can use this argument to
 set the class which probability or score should be displayed, with
 an appropriate explanation. By default a result for predicted class
 is shown. For example, you can use ``targets=[True]`` to always show
 result for a positive class, even if the predicted label is False.

 This argument may be supported or not, depending on estimator type.

 feature_names : list, optional
 A list of feature names. It allows to specify feature
 names when they are not provided by an estimator object.

 This argument may be supported or not, depending on estimator type.

 feature_re : str, optional
 Only feature names which match ``feature_re`` regex are shown
 (more precisely, ``re.search(feature_re, x)`` is checked).

 feature_filter : Callable[[str, float], bool], optional
 Only feature names for which ``feature_filter`` function returns True
 are shown. It must accept feature name and feature value.
 Missing features always have a NaN value.

 show : List[str], optional
 List of sections to show. Allowed values:

 * 'targets' - per-target feature weights;
 * 'transition_features' - transition features of a CRF model;
 * 'feature_importances' - feature importances of a decision tree or
 an ensemble-based estimator;
 * 'decision_tree' - decision tree in a graphical form;
 * 'method' - a string with explanation method;
 * 'description' - description of explanation method and its caveats.

 ``eli5.formatters.fields`` provides constants that cover common cases:
 ``INFO`` (method and description), ``WEIGHTS`` (all the rest),
 and ``ALL`` (all).

 horizontal_layout : bool
 When True, feature weight tables are printed horizontally
 (left to right); when False, feature weight tables are printed
 vertically (top to down). Default is True.

 highlight_spaces : bool or None, optional
 Whether to highlight spaces in feature names. This is useful if
 you work with text and have ngram features which may include spaces
 at left or right. Default is None, meaning that the value used
 is set automatically based on vectorizer and feature values.

 include_styles : bool
 Most styles are inline, but some are included separately in <style> tag;
 you can omit them by passing ``include_styles=False``. Default is True.

 force_weights : bool
 When True, a table with feature weights is displayed even if all
 features are already highlighted in text. Default is False.

 preserve_density: bool or None
 This argument currently only makes sense when used with text data
 and vectorizers from scikit-learn.

 If preserve_density is True, then color for longer fragments will be
 less intensive than for shorter fragments, so that "sum" of intensities
 will correspond to feature weight.

 If preserve_density is None, then it's value is chosen depending on
 analyzer kind: it is preserved for "char" and "char_wb" analyzers,
 and not preserved for "word" analyzers.

 Default is None.

 show_feature_values : bool
 When True, feature values are shown along with feature contributions.
 Default is False.

 **kwargs: dict
 Keyword arguments. All keyword arguments are passed to
 concrete explain_prediction... implementations.

 Returns

 IPython.display.HTML
 The result is printed in IPython notebook as an HTML widget.
 If you need to display several explanations as an output of a single
 cell, or if you want to display it from a function then use
 IPython.display.display::

 from IPython.display import display
 display(eli5.show_weights(clf1))
 display(eli5.show_weights(clf2))

 PIL.Image.Image
 Image with a heatmap overlay, *if explaining image based models*.
 The image is shown in an IPython notebook cell
 if it is the last thing returned.
 To display the image in a loop, function, or other case,
 use IPython.display.display::

 from IPython.display import display
 for cls_idx in [0, 432]:
 display(eli5.show_prediction(clf, doc, targets=[cls_idx]))

 """
 format_kwargs, explain_kwargs = _split_kwargs(kwargs)
 expl = explain_prediction(estimator, doc, **explain_kwargs)
 if expl.image is not None:
 # dispatch to image display implementation
 if isinstance(format_as_image, ImportError):
 warnings.warn('Missing dependencies: "{}". '
 'Returning original Explanation.'.format(
 format_as_image))
 return expl
 else:
 return format_as_image(expl, **format_kwargs)
 else:
 # use default implementation
 # TODO: a better design / refactorings might be needed
 _set_html_kwargs_defaults(format_kwargs)
 html = format_as_html(expl, **format_kwargs)
 return HTML(html)

def _split_kwargs(kwargs):
 # type: (Dict[str, Any]) -> Tuple[Dict[str, Any], Dict[str, Any]]
 format_kwargs = {k: v for k, v in kwargs.items() if k in FORMAT_KWARGS}
 explain_kwargs = {k: v for k, v in kwargs.items() if k not in FORMAT_KWARGS}
 return format_kwargs, explain_kwargs
 # TODO: consider moving this to utils.py as a function that splits kwargs based on an argset

def _set_html_kwargs_defaults(format_kwargs):
 # type: (Dict[str, Any]) -> None
 format_kwargs.setdefault('show', fields.WEIGHTS)
 format_kwargs.setdefault('force_weights', False)

 eli5.lightgbm

 Source code for eli5.lightgbm

-*- coding: utf-8 -*-
from __future__ import absolute_import, division
from collections import defaultdict
from typing import DefaultDict, Optional

import numpy as np
import lightgbm

from eli5.explain import explain_weights, explain_prediction
from eli5._feature_importances import get_feature_importance_explanation
from eli5.sklearn.utils import handle_vec, get_X, get_X0, add_intercept, predict_proba
from eli5._decision_path import get_decision_path_explanation

DESCRIPTION_LIGHTGBM = """
LightGBM feature importances; values are numbers 0 <= x <= 1;
all values sum to 1.
"""

[docs]@explain_weights.register(lightgbm.LGBMClassifier)
@explain_weights.register(lightgbm.LGBMRegressor)
def explain_weights_lightgbm(lgb,
 vec=None,
 top=20,
 target_names=None, # ignored
 targets=None, # ignored
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 importance_type='gain',
):
 """
 Return an explanation of an LightGBM estimator (via scikit-learn wrapper
 LGBMClassifier or LGBMRegressor) as feature importances.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``feature_names``,
 ``feature_re`` and ``feature_filter`` parameters.

 ``target_names`` and ``targets`` parameters are ignored.

 Parameters

 importance_type : str, optional
 A way to get feature importance. Possible values are:

 - 'gain' - the average gain of the feature when it is used in trees
 (default)
 - 'split' - the number of times a feature is used to split the data
 across all trees
 - 'weight' - the same as 'split', for compatibility with xgboost
 """
 coef = _get_lgb_feature_importances(lgb, importance_type)
 lgb_feature_names = lgb.booster_.feature_name()
 return get_feature_importance_explanation(lgb, vec, coef,
 feature_names=feature_names,
 estimator_feature_names=lgb_feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
 top=top,
 description=DESCRIPTION_LIGHTGBM,
 num_features=coef.shape[-1],
 is_regression=isinstance(lgb, lightgbm.LGBMRegressor),
)

[docs]@explain_prediction.register(lightgbm.LGBMClassifier)
@explain_prediction.register(lightgbm.LGBMRegressor)
def explain_prediction_lightgbm(
 lgb, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 vectorized=False,
):
 """ Return an explanation of LightGBM prediction (via scikit-learn wrapper
 LGBMClassifier or LGBMRegressor) as feature weights.

 See :func:`eli5.explain_prediction` for description of
 ``top``, ``top_targets``, ``target_names``, ``targets``,
 ``feature_names``, ``feature_re`` and ``feature_filter`` parameters.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the estimator ``xgb``
 (e.g. a fitted CountVectorizer instance); you can pass it
 instead of ``feature_names``.

 ``vectorized`` is a flag which tells eli5 if ``doc`` should be
 passed through ``vec`` or not. By default it is False, meaning that
 if ``vec`` is not None, ``vec.transform([doc])`` is passed to the
 estimator. Set it to True if you're passing ``vec``,
 but ``doc`` is already vectorized.

 Method for determining feature importances follows an idea from
 http://blog.datadive.net/interpreting-random-forests/.
 Feature weights are calculated by following decision paths in trees
 of an ensemble.
 Each leaf has an output score, and expected scores can also be assigned
 to parent nodes.
 Contribution of one feature on the decision path is how much expected score
 changes from parent to child.
 Weights of all features sum to the output score of the estimator.
 """

 vec, feature_names = handle_vec(lgb, doc, vec, vectorized, feature_names)
 if feature_names.bias_name is None:
 # LightGBM estimators do not have an intercept, but here we interpret
 # them as having an intercept
 feature_names.bias_name = '<BIAS>'
 X = get_X(doc, vec, vectorized=vectorized)

 proba = predict_proba(lgb, X)
 weight_dicts = _get_prediction_feature_weights(lgb, X, _lgb_n_targets(lgb))
 x = get_X0(add_intercept(X))

 is_regression = isinstance(lgb, lightgbm.LGBMRegressor)
 is_multiclass = _lgb_n_targets(lgb) > 2
 names = lgb.classes_ if not is_regression else ['y']

 def get_score_weights(_label_id):
 _weights = _target_feature_weights(
 weight_dicts[_label_id],
 num_features=len(feature_names),
 bias_idx=feature_names.bias_idx,
)
 _score = _get_score(weight_dicts[_label_id])
 return _score, _weights

 return get_decision_path_explanation(
 lgb, doc, vec,
 x=x,
 feature_names=feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
 top=top,
 vectorized=vectorized,
 original_display_names=names,
 target_names=target_names,
 targets=targets,
 top_targets=top_targets,
 is_regression=is_regression,
 is_multiclass=is_multiclass,
 proba=proba,
 get_score_weights=get_score_weights,
)

def _lgb_n_targets(lgb):
 if isinstance(lgb, lightgbm.LGBMClassifier):
 return lgb.n_classes_
 else:
 return 1

def _get_lgb_feature_importances(lgb, importance_type):
 aliases = {'weight': 'split'}
 coef = lgb.booster_.feature_importance(
 importance_type=aliases.get(importance_type, importance_type)
)
 norm = coef.sum()
 return coef / norm if norm else coef

def _compute_node_values(tree_info):
 """ Add node_value key with an expected value for non-leaf nodes """
 def walk(tree):
 if 'leaf_value' in tree:
 return tree['leaf_value'], tree.get('leaf_count', 0)
 left_value, left_count = walk(tree['left_child'])
 right_value, right_count = walk(tree['right_child'])
 count = left_count + right_count
 if tree['split_gain'] <= 0:
 assert left_value == right_value
 tree['_node_value'] = left_value
 else:
 tree['_node_value'] = (left_value * left_count +
 right_value * right_count) / count
 return tree['_node_value'], count

 for tree in tree_info:
 walk(tree['tree_structure'])

def _get_decision_path(leaf_index, split_index, leaf_id):
 path, split_features = [], []
 parent_id, leaf = leaf_index[leaf_id]
 path.append(leaf['leaf_value'])
 while True:
 if parent_id == -1:
 break
 parent_id, node = split_index[parent_id]
 path.append(node['_node_value'])
 split_features.append(node['split_feature'])

 path.reverse()
 changes = _changes(path)
 bias, path = changes[0], list(zip(reversed(split_features), changes[1:]))
 return bias, path

def _changes(path):
 """
 >>> _changes([2, 3, 0, 5])
 [2, 1, -3, 5]
 >>> _changes([2])
 [2]
 """
 res = [path[0]]
 res += [p - p_prev for p, p_prev in zip(path[1:], path)]
 return res

def _get_leaf_split_indices(tree_structure):
 leaf_index = {} # leaf id => (parent_id, leaf)
 split_index = {} # split id => (parent_id, subtree)

 def walk(tree, parent_id=-1):
 if 'leaf_index' in tree:
 # regular leaf
 leaf_index[tree['leaf_index']] = (parent_id, tree)
 elif 'split_index' not in tree:
 # one-leaf tree producing a constant without splits
 leaf_index[0] = (parent_id, tree)
 else:
 # split node
 split_index[tree['split_index']] = (parent_id, tree)
 walk(tree['left_child'], tree['split_index'])
 walk(tree['right_child'], tree['split_index'])

 walk(tree_structure)
 return leaf_index, split_index

def _get_prediction_feature_weights(lgb, X, n_targets):
 """
 Return a list of {feat_id: value} dicts with feature weights,
 following ideas from http://blog.datadive.net/interpreting-random-forests/
 """
 if n_targets == 2:
 n_targets = 1
 dump = lgb.booster_.dump_model()
 tree_info = dump['tree_info']
 _compute_node_values(tree_info)
 pred_leafs = lgb.booster_.predict(X, pred_leaf=True).reshape(-1, n_targets)
 tree_info = np.array(tree_info).reshape(-1, n_targets)
 assert pred_leafs.shape == tree_info.shape

 res = []
 for target in range(n_targets):
 feature_weights = defaultdict(float) # type: DefaultDict[Optional[str], float]
 for info, leaf_id in zip(tree_info[:, target], pred_leafs[:, target]):
 leaf_index, split_index = _get_leaf_split_indices(
 info['tree_structure']
)
 bias, path = _get_decision_path(leaf_index, split_index, leaf_id)
 feature_weights[None] += bias
 for feat, value in path:
 feature_weights[feat] += value
 res.append(dict(feature_weights))
 return res

def _target_feature_weights(feature_weights_dict, num_features, bias_idx):
 feature_weights = np.zeros(num_features)
 for k, v in feature_weights_dict.items():
 if k is None:
 feature_weights[bias_idx] = v
 else:
 feature_weights[k] = v
 return feature_weights

def _get_score(feature_weights_dict):
 return sum(feature_weights_dict.values())

 eli5.lightning

 Source code for eli5.lightning

-*- coding: utf-8 -*-
from __future__ import absolute_import

from lightning.impl.base import BaseEstimator
from lightning import classification, regression
from sklearn.multiclass import OneVsRestClassifier

from eli5.base import Explanation
from eli5.base_utils import singledispatch
from eli5.sklearn import (
 explain_linear_classifier_weights,
 explain_linear_regressor_weights,
 explain_prediction_linear_classifier,
 explain_prediction_linear_regressor
)
from eli5.explain import explain_prediction, explain_weights

[docs]@singledispatch
def explain_weights_lightning(estimator, vec=None, top=20, target_names=None,
 targets=None, feature_names=None,
 coef_scale=None):
 """ Return an explanation of a lightning estimator weights """
 return explain_weights_lightning_not_supported(estimator)

@explain_weights.register(BaseEstimator)
def explain_weights_lightning_not_supported(
 estimator, vec=None, top=20, target_names=None,
 targets=None, feature_names=None,
 coef_scale=None):
 return Explanation(
 estimator=repr(estimator),
 error="Error: estimator %r is not supported" % estimator,
)

[docs]@singledispatch
def explain_prediction_lightning(estimator, doc, vec=None, top=None,
 target_names=None, targets=None,
 feature_names=None, vectorized=False,
 coef_scale=None):
 """ Return an explanation of a lightning estimator predictions """
 return explain_weights_lightning_not_supported(estimator, doc)

@explain_prediction.register(BaseEstimator)
def explain_prediction_lightning_not_supported(
 estimator, doc, vec=None, top=None,
 target_names=None, targets=None,
 feature_names=None, vectorized=False,
 coef_scale=None):
 return Explanation(
 estimator=repr(estimator),
 error="Error: estimator %r is not supported" % estimator,
)

@explain_prediction_lightning.register(OneVsRestClassifier)
def explain_prediction_ovr_lightning(clf, doc, **kwargs):
 # dispatch OvR to eli5.lightning
 # if explain_prediction_lightning is called explicitly
 estimator = clf.estimator
 func = explain_prediction_lightning.dispatch(estimator.__class__)
 return func(clf, doc, **kwargs)

@explain_weights_lightning.register(OneVsRestClassifier)
def explain_weights_ovr_lightning(ovr, **kwargs):
 # dispatch OvR to eli5.lightning
 # if explain_weights_lightning is called explicitly
 estimator = ovr.estimator
 func = explain_weights_lightning.dispatch(estimator.__class__)
 return func(ovr, **kwargs)

_CLASSIFIERS = [
 classification.AdaGradClassifier,
 classification.CDClassifier,
 classification.FistaClassifier,
 classification.LinearSVC,
 classification.SAGAClassifier,
 classification.SAGClassifier,
 classification.SDCAClassifier,
 classification.SGDClassifier,
 # classification.SVRGClassifier, # tests fail for it
]

_REGRESSORS = [
 regression.AdaGradRegressor,
 regression.CDRegressor,
 regression.FistaRegressor,
 regression.LinearSVR,
 regression.SAGARegressor,
 regression.SAGRegressor,
 regression.SDCARegressor,
 regression.SGDRegressor,
 # regression.SVRGRegressor
]

for clf in _CLASSIFIERS:
 explain_weights.register(clf, explain_linear_classifier_weights)
 explain_weights_lightning.register(clf, explain_linear_classifier_weights)
 explain_prediction.register(clf, explain_prediction_linear_classifier)
 explain_prediction_lightning.register(clf, explain_prediction_linear_classifier)

for reg in _REGRESSORS:
 explain_weights.register(reg, explain_linear_regressor_weights)
 explain_weights_lightning.register(reg, explain_linear_regressor_weights)
 explain_prediction.register(reg, explain_prediction_linear_regressor)
 explain_prediction_lightning.register(reg, explain_prediction_linear_regressor)

 eli5.permutation_importance

 Source code for eli5.permutation_importance

"""
A module for computing feature importances by measuring how score decreases
when a feature is not available. It contains basic building blocks;
there is a full-featured sklearn-compatible implementation
in :class:`~.PermutationImportance`.

A similar method is described in Breiman, "Random Forests", Machine Learning,
45(1), 5-32, 2001 (available online at
https://www.stat.berkeley.edu/%7Ebreiman/randomforest2001.pdf), with an
application to random forests. It is known in literature as
"Mean Decrease Accuracy (MDA)" or "permutation importance".
"""
from __future__ import absolute_import
from typing import Tuple, List, Callable, Any

import numpy as np
from sklearn.utils import check_random_state

[docs]def iter_shuffled(X, columns_to_shuffle=None, pre_shuffle=False,
 random_state=None):
 """
 Return an iterator of X matrices which have one or more columns shuffled.
 After each iteration yielded matrix is mutated inplace, so
 if you want to use multiple of them at the same time, make copies.

 ``columns_to_shuffle`` is a sequence of column numbers to shuffle.
 By default, all columns are shuffled once, i.e. columns_to_shuffle
 is ``range(X.shape[1])``.

 If ``pre_shuffle`` is True, a copy of ``X`` is shuffled once, and then
 result takes shuffled columns from this copy. If it is False,
 columns are shuffled on fly. ``pre_shuffle = True`` can be faster
 if there is a lot of columns, or if columns are used multiple times.
 """
 rng = check_random_state(random_state)

 if columns_to_shuffle is None:
 columns_to_shuffle = range(X.shape[1])

 if pre_shuffle:
 X_shuffled = X.copy()
 rng.shuffle(X_shuffled)

 X_res = X.copy()
 for columns in columns_to_shuffle:
 if pre_shuffle:
 X_res[:, columns] = X_shuffled[:, columns]
 else:
 rng.shuffle(X_res[:, columns])
 yield X_res
 X_res[:, columns] = X[:, columns]

[docs]def get_score_importances(
 score_func, # type: Callable[[Any, Any], float]
 X,
 y,
 n_iter=5, # type: int
 columns_to_shuffle=None,
 random_state=None
):
 # type: (...) -> Tuple[float, List[np.ndarray]]
 """
 Return ``(base_score, score_decreases)`` tuple with the base score and
 score decreases when a feature is not available.

 ``base_score`` is ``score_func(X, y)``; ``score_decreases``
 is a list of length ``n_iter`` with feature importance arrays
 (each array is of shape ``n_features``); feature importances are computed
 as score decrease when a feature is not available.

 ``n_iter`` iterations of the basic algorithm is done, each iteration
 starting from a different random seed.

 If you just want feature importances, you can take a mean of the result::

 import numpy as np
 from eli5.permutation_importance import get_score_importances

 base_score, score_decreases = get_score_importances(score_func, X, y)
 feature_importances = np.mean(score_decreases, axis=0)

 """
 rng = check_random_state(random_state)
 base_score = score_func(X, y)
 scores_decreases = []
 for i in range(n_iter):
 scores_shuffled = _get_scores_shufled(
 score_func, X, y, columns_to_shuffle=columns_to_shuffle,
 random_state=rng
)
 scores_decreases.append(-scores_shuffled + base_score)
 return base_score, scores_decreases

def _get_scores_shufled(score_func, X, y, columns_to_shuffle=None,
 random_state=None):
 Xs = iter_shuffled(X, columns_to_shuffle, random_state=random_state)
 return np.array([score_func(X_shuffled, y) for X_shuffled in Xs])

 eli5.transform

 Source code for eli5.transform

"""Handling transformation pipelines in explanations"""

from eli5.base_utils import singledispatch

[docs]@singledispatch
def transform_feature_names(transformer, in_names=None):
 """Get feature names for transformer output as a function of input names.

 Used by :func:`explain_weights` when applied to a scikit-learn Pipeline,
 this ``singledispatch`` should be registered with custom name
 transformations for each class of transformer.

 If there is no ``singledispatch`` handler registered for a transformer
 class, ``transformer.get_feature_names()`` method is called; if there is
 no such method then feature names are not supported and
 this function raises an exception.

 Parameters

 transformer : scikit-learn-compatible transformer
 in_names : list of str, optional
 Names for features input to transformer.transform().
 If not provided, the implementation may generate default feature names
 if the number of input features is known.

 Returns

 feature_names : list of str
 """
 if hasattr(transformer, 'get_feature_names'):
 return transformer.get_feature_names()
 raise NotImplementedError('transform_feature_names not available for '
 '{}'.format(transformer))

 eli5.xgboost

 Source code for eli5.xgboost

-*- coding: utf-8 -*-
from __future__ import absolute_import
from functools import partial
import re
from typing import Any, Dict, List, Tuple, Optional, Pattern

import numpy as np
import scipy.sparse as sp
from xgboost import (
 XGBClassifier,
 XGBRegressor,
 Booster,
 DMatrix
)

from eli5.explain import explain_weights, explain_prediction
from eli5.sklearn.utils import (
 add_intercept,
 get_X,
 get_X0,
 handle_vec,
 predict_proba
)
from eli5.utils import is_sparse_vector
from eli5._decision_path import get_decision_path_explanation
from eli5._feature_importances import get_feature_importance_explanation

DESCRIPTION_XGBOOST = """
XGBoost feature importances; values are numbers 0 <= x <= 1;
all values sum to 1.
"""

[docs]@explain_weights.register(XGBClassifier)
@explain_weights.register(XGBRegressor)
@explain_weights.register(Booster)
def explain_weights_xgboost(xgb,
 vec=None,
 top=20,
 target_names=None, # ignored
 targets=None, # ignored
 feature_names=None,
 feature_re=None, # type: Pattern[str]
 feature_filter=None,
 importance_type='gain',
):
 """
 Return an explanation of an XGBoost estimator (via scikit-learn wrapper
 XGBClassifier or XGBRegressor, or via xgboost.Booster)
 as feature importances.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``feature_names``,
 ``feature_re`` and ``feature_filter`` parameters.

 ``target_names`` and ``targets`` parameters are ignored.

 Parameters

 importance_type : str, optional
 A way to get feature importance. Possible values are:

 - 'gain' - the average gain of the feature when it is used in trees
 (default)
 - 'weight' - the number of times a feature is used to split the data
 across all trees
 - 'cover' - the average coverage of the feature when it is used in trees
 """
 booster, is_regression = _check_booster_args(xgb)
 xgb_feature_names = booster.feature_names
 coef = _xgb_feature_importances(booster, importance_type=importance_type)
 return get_feature_importance_explanation(
 xgb, vec, coef,
 feature_names=feature_names,
 estimator_feature_names=xgb_feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
 top=top,
 description=DESCRIPTION_XGBOOST,
 is_regression=is_regression,
 num_features=coef.shape[-1],
)

[docs]@explain_prediction.register(XGBClassifier)
@explain_prediction.register(XGBRegressor)
@explain_prediction.register(Booster)
def explain_prediction_xgboost(
 xgb, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None, # type: Pattern[str]
 feature_filter=None,
 vectorized=False, # type: bool
 is_regression=None, # type: bool
 missing=None, # type: bool
):
 """ Return an explanation of XGBoost prediction (via scikit-learn wrapper
 XGBClassifier or XGBRegressor, or via xgboost.Booster) as feature weights.

 See :func:`eli5.explain_prediction` for description of
 ``top``, ``top_targets``, ``target_names``, ``targets``,
 ``feature_names``, ``feature_re`` and ``feature_filter`` parameters.

 Parameters

 vec : vectorizer, optional
 A vectorizer instance used to transform
 raw features to the input of the estimator ``xgb``
 (e.g. a fitted CountVectorizer instance); you can pass it
 instead of ``feature_names``.

 vectorized : bool, optional
 A flag which tells eli5 if ``doc`` should be
 passed through ``vec`` or not. By default it is False, meaning that
 if ``vec`` is not None, ``vec.transform([doc])`` is passed to the
 estimator. Set it to True if you're passing ``vec``,
 but ``doc`` is already vectorized.

 is_regression : bool, optional
 Pass if an ``xgboost.Booster`` is passed as the first argument.
 True if solving a regression problem ("objective" starts with "reg")
 and False for a classification problem.
 If not set, regression is assumed for a single target estimator
 and proba will not be shown.

 missing : optional
 Pass if an ``xgboost.Booster`` is passed as the first argument.
 Set it to the same value as the ``missing`` argument to
 ``xgboost.DMatrix``.
 Matters only if sparse values are used. Default is ``np.nan``.

 Method for determining feature importances follows an idea from
 http://blog.datadive.net/interpreting-random-forests/.
 Feature weights are calculated by following decision paths in trees
 of an ensemble.
 Each leaf has an output score, and expected scores can also be assigned
 to parent nodes.
 Contribution of one feature on the decision path is how much expected score
 changes from parent to child.
 Weights of all features sum to the output score of the estimator.
 """
 booster, is_regression = _check_booster_args(xgb, is_regression)
 xgb_feature_names = booster.feature_names
 vec, feature_names = handle_vec(
 xgb, doc, vec, vectorized, feature_names,
 num_features=len(xgb_feature_names))
 if feature_names.bias_name is None:
 # XGBoost estimators do not have an intercept, but here we interpret
 # them as having an intercept
 feature_names.bias_name = '<BIAS>'

 X = get_X(doc, vec, vectorized=vectorized)
 if sp.issparse(X):
 # Work around XGBoost issue:
 # https://github.com/dmlc/xgboost/issues/1238#issuecomment-243872543
 X = X.tocsc()

 if missing is None:
 missing = np.nan if isinstance(xgb, Booster) else xgb.missing
 dmatrix = DMatrix(X, missing=missing)

 if isinstance(xgb, Booster):
 prediction = xgb.predict(dmatrix)
 n_targets = prediction.shape[-1] # type: int
 if is_regression is None:
 # When n_targets is 1, this can be classification too,
 # but it's safer to assume regression.
 # If n_targets > 1, it must be classification.
 is_regression = n_targets == 1
 if is_regression:
 proba = None
 else:
 if n_targets == 1:
 p, = prediction
 proba = np.array([1 - p, p])
 else:
 proba, = prediction
 else:
 proba = predict_proba(xgb, X)
 n_targets = _xgb_n_targets(xgb)

 if is_regression:
 names = ['y']
 elif isinstance(xgb, Booster):
 names = np.arange(max(2, n_targets))
 else:
 names = xgb.classes_

 scores_weights = _prediction_feature_weights(
 booster, dmatrix, n_targets, feature_names, xgb_feature_names)

 x = get_X0(add_intercept(X))
 x = _missing_values_set_to_nan(x, missing, sparse_missing=True)

 return get_decision_path_explanation(
 xgb, doc, vec,
 x=x,
 feature_names=feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
 top=top,
 vectorized=vectorized,
 original_display_names=names,
 target_names=target_names,
 targets=targets,
 top_targets=top_targets,
 is_regression=is_regression,
 is_multiclass=n_targets > 1,
 proba=proba,
 get_score_weights=lambda label_id: scores_weights[label_id],
)

def _check_booster_args(xgb, is_regression=None):
 # type: (Any, Optional[bool]) -> Tuple[Booster, Optional[bool]]
 if isinstance(xgb, Booster):
 booster = xgb
 else:
 if hasattr(xgb, 'get_booster'):
 booster = xgb.get_booster()
 else: # xgb < 0.7
 booster = xgb.booster()
 _is_regression = isinstance(xgb, XGBRegressor)
 if is_regression is not None and is_regression != _is_regression:
 raise ValueError(
 'Inconsistent is_regression={} passed. '
 'You don\'t have to pass it when using scikit-learn API'
 .format(is_regression))
 is_regression = _is_regression
 return booster, is_regression

def _prediction_feature_weights(booster, dmatrix, n_targets,
 feature_names, xgb_feature_names):
 """ For each target, return score and numpy array with feature weights
 on this prediction, following an idea from
 http://blog.datadive.net/interpreting-random-forests/
 """
 # XGBClassifier does not have pred_leaf argument, so use booster
 leaf_ids, = booster.predict(dmatrix, pred_leaf=True)
 xgb_feature_names = {f: i for i, f in enumerate(xgb_feature_names)}
 tree_dumps = booster.get_dump(with_stats=True)
 assert len(tree_dumps) == len(leaf_ids)

 target_feature_weights = partial(
 _target_feature_weights,
 feature_names=feature_names, xgb_feature_names=xgb_feature_names)
 if n_targets > 1:
 # For multiclass, XGBoost stores dumps and leaf_ids in a 1d array,
 # so we need to split them.
 scores_weights = [
 target_feature_weights(
 leaf_ids[target_idx::n_targets],
 tree_dumps[target_idx::n_targets],
) for target_idx in range(n_targets)]
 else:
 scores_weights = [target_feature_weights(leaf_ids, tree_dumps)]
 return scores_weights

def _target_feature_weights(leaf_ids, tree_dumps, feature_names,
 xgb_feature_names):
 feature_weights = np.zeros(len(feature_names))
 # All trees in XGBoost give equal contribution to the prediction:
 # it is equal to sum of "leaf" values in leafs
 # before applying loss-specific function
 # (e.g. logistic for "binary:logistic" loss).
 score = 0
 for text_dump, leaf_id in zip(tree_dumps, leaf_ids):
 leaf = _indexed_leafs(_parse_tree_dump(text_dump))[leaf_id]
 score += leaf['leaf']
 path = [leaf]
 while 'parent' in path[-1]:
 path.append(path[-1]['parent'])
 path.reverse()
 # Check how each split changes "leaf" value
 for node, child in zip(path, path[1:]):
 idx = xgb_feature_names[node['split']]
 feature_weights[idx] += child['leaf'] - node['leaf']
 # Root "leaf" value is interpreted as bias
 feature_weights[feature_names.bias_idx] += path[0]['leaf']
 return score, feature_weights

def _indexed_leafs(parent):
 """ Return a leaf nodeid -> node dictionary with
 "parent" and "leaf" (average child "leaf" value) added to all nodes.
 """
 if not parent.get('children'):
 return {parent['nodeid']: parent}
 indexed = {}
 for child in parent['children']:
 child['parent'] = parent
 if 'leaf' in child:
 indexed[child['nodeid']] = child
 else:
 indexed.update(_indexed_leafs(child))
 parent['leaf'] = _parent_value(parent['children'])
 return indexed

def _parent_value(children):
 # type: (...) -> int
 """ Value of the parent node: a weighted sum of child values.
 """
 covers = np.array([child['cover'] for child in children])
 covers /= np.sum(covers)
 leafs = np.array([child['leaf'] for child in children])
 return np.sum(leafs * covers)

def _xgb_n_targets(xgb):
 # type: (...) -> int
 if isinstance(xgb, XGBClassifier):
 return 1 if xgb.n_classes_ == 2 else xgb.n_classes_
 elif isinstance(xgb, XGBRegressor):
 return 1
 else:
 raise TypeError

def _xgb_feature_importances(booster, importance_type):
 fs = booster.get_score(importance_type=importance_type)
 all_features = np.array(
 [fs.get(f, 0.) for f in booster.feature_names], dtype=np.float32)
 return all_features / all_features.sum()

def _parse_tree_dump(text_dump):
 # type: (str) -> Optional[Dict[str, Any]]
 """ Parse text tree dump (one item of a list returned by Booster.get_dump())
 into json format that will be used by next XGBoost release.
 """
 result = None
 stack = [] # type: List[Dict]
 for line in text_dump.split('\n'):
 if line:
 depth, node = _parse_dump_line(line)
 if depth == 0:
 assert not stack
 result = node
 stack.append(node)
 elif depth > len(stack):
 raise ValueError('Unexpected dump structure')
 else:
 if depth < len(stack):
 stack = stack[:depth]
 stack[-1].setdefault('children', []).append(node)
 stack.append(node)
 return result

def _parse_dump_line(line):
 # type: (str) -> Tuple[int, Dict[str, Any]]
 branch_match = re.match(
 '^(\t*)(\d+):\[([^<]+)<([^\]]+)\] '
 'yes=(\d+),no=(\d+),missing=(\d+),'
 'gain=([^,]+),cover=(.+)$', line)
 if branch_match:
 tabs, node_id, feature, condition, yes, no, missing, gain, cover = \
 branch_match.groups()
 depth = len(tabs)
 return depth, {
 'depth': depth,
 'nodeid': int(node_id),
 'split': feature,
 'split_condition': float(condition),
 'yes': int(yes),
 'no': int(no),
 'missing': int(missing),
 'gain': float(gain),
 'cover': float(cover),
 }
 leaf_match = re.match('^(\t*)(\d+):leaf=([^,]+),cover=(.+)$', line)
 if leaf_match:
 tabs, node_id, value, cover = leaf_match.groups()
 depth = len(tabs)
 return depth, {
 'nodeid': int(node_id),
 'leaf': float(value),
 'cover': float(cover),
 }
 raise ValueError('Line in unexpected format: {}'.format(line))

def _missing_values_set_to_nan(values, missing_value, sparse_missing):
 """ Return a copy of values where missing values (equal to missing_value)
 are replaced to nan according. If sparse_missing is True,
 entries missing in a sparse matrix will also be set to nan.
 Sparse matrices will be converted to dense format.
 """
 if sp.issparse(values):
 assert values.shape[0] == 1
 if sparse_missing and sp.issparse(values) and missing_value != 0:
 # Nothing special needs to be done for missing.value == 0 because
 # missing values are assumed to be zero in sparse matrices.
 values_coo = values.tocoo()
 values = values.toarray()[0]
 missing_mask = values == 0
 # fix for possible zero values
 missing_mask[values_coo.col] = False
 values[missing_mask] = np.nan
 elif is_sparse_vector(values):
 values = values.toarray()[0]
 else:
 values = values.copy()
 if not np.isnan(missing_value):
 values[values == missing_value] = np.nan
 return values

 eli5.formatters.as_dataframe

 Source code for eli5.formatters.as_dataframe

from itertools import chain
from typing import Any, Dict, List, Optional
import warnings

import pandas as pd

import eli5
from eli5.base import (
 Explanation, FeatureImportances, TargetExplanation,
 TransitionFeatureWeights,
)
from eli5.base_utils import singledispatch

[docs]def explain_weights_df(estimator, **kwargs):
 # type: (...) -> pd.DataFrame
 """ Explain weights and export them to ``pandas.DataFrame``.
 All keyword arguments are passed to :func:`eli5.explain_weights`.
 Weights of all features are exported by default.
 """
 kwargs = _set_defaults(kwargs)
 return format_as_dataframe(
 eli5.explain_weights(estimator, **kwargs))

[docs]def explain_weights_dfs(estimator, **kwargs):
 # type: (...) -> Dict[str, pd.DataFrame]
 """ Explain weights and export them to a dict with ``pandas.DataFrame``
 values (as :func:`eli5.formatters.as_dataframe.format_as_dataframes` does).
 All keyword arguments are passed to :func:`eli5.explain_weights`.
 Weights of all features are exported by default.
 """
 kwargs = _set_defaults(kwargs)
 return format_as_dataframes(
 eli5.explain_weights(estimator, **kwargs))

[docs]def explain_prediction_df(estimator, doc, **kwargs):
 # type: (...) -> pd.DataFrame
 """ Explain prediction and export explanation to ``pandas.DataFrame``
 All keyword arguments are passed to :func:`eli5.explain_prediction`.
 Weights of all features are exported by default.
 """
 kwargs = _set_defaults(kwargs)
 return format_as_dataframe(
 eli5.explain_prediction(estimator, doc, **kwargs))

[docs]def explain_prediction_dfs(estimator, doc, **kwargs):
 # type: (...) -> Dict[str, pd.DataFrame]
 """ Explain prediction and export explanation
 to a dict with ``pandas.DataFrame`` values
 (as :func:`eli5.formatters.as_dataframe.format_as_dataframes` does).
 All keyword arguments are passed to :func:`eli5.explain_prediction`.
 Weights of all features are exported by default.
 """
 kwargs = _set_defaults(kwargs)
 return format_as_dataframes(
 eli5.explain_prediction(estimator, doc, **kwargs))

def _set_defaults(kwargs):
 if 'top' not in kwargs:
 # No limit on number of features by default.
 kwargs['top'] = None
 return kwargs

_EXPORTED_ATTRIBUTES = ['transition_features', 'targets', 'feature_importances']

[docs]def format_as_dataframes(explanation):
 # type: (Explanation) -> Dict[str, pd.DataFrame]
 """ Export an explanation to a dictionary with ``pandas.DataFrame`` values
 and string keys that correspond to explanation attributes.
 Use this method if several dataframes can be exported from a single
 explanation (e.g. for CRF explanation with has both feature weights
 and transition matrix).
 Note that :func:`eli5.explain_weights` limits number of features
 by default. If you need all features, pass ``top=None`` to
 :func:`eli5.explain_weights`, or use
 :func:`explain_weights_dfs`.
 """
 result = {}
 for attr in _EXPORTED_ATTRIBUTES:
 value = getattr(explanation, attr)
 if value:
 result[attr] = format_as_dataframe(value)
 return result

[docs]@singledispatch
def format_as_dataframe(explanation):
 # type: (Explanation) -> Optional[pd.DataFrame]
 """ Export an explanation to a single ``pandas.DataFrame``.
 In case several dataframes could be exported by
 :func:`eli5.formatters.as_dataframe.format_as_dataframes`,
 a warning is raised. If no dataframe can be exported, ``None`` is returned.
 This function also accepts some components of the explanation as arguments:
 feature importances, targets, transition features.
 Note that :func:`eli5.explain_weights` limits number of features
 by default. If you need all features, pass ``top=None`` to
 :func:`eli5.explain_weights`, or use
 :func:`explain_weights_df`.
 """
 for attr in _EXPORTED_ATTRIBUTES:
 value = getattr(explanation, attr)
 if value:
 other_attrs = [a for a in _EXPORTED_ATTRIBUTES
 if getattr(explanation, a) and a != attr]
 if other_attrs:
 warnings.warn('Exporting {} to DataFrame, but also {} could be '
 'exported. Consider using eli5.format_as_dataframes.'
 .format(attr, ', '.join(other_attrs)))
 return format_as_dataframe(value)
 return None

@format_as_dataframe.register(FeatureImportances)
def _feature_importances_to_df(feature_importances):
 # type: (FeatureImportances) -> pd.DataFrame
 weights = feature_importances.importances
 df = pd.DataFrame(
 {'feature': [fw.feature for fw in weights],
 'weight': [fw.weight for fw in weights],
 },
 columns=['feature', 'weight'])
 if any(fw.std is not None for fw in weights):
 df['std'] = [fw.std for fw in weights]
 if any(fw.value is not None for fw in weights):
 df['value'] = [fw.value for fw in weights]
 return df

@format_as_dataframe.register(list)
def _targets_to_df(targets):
 # type: (List[TargetExplanation]) -> pd.DataFrame
 if targets and not isinstance(targets[0], TargetExplanation):
 raise ValueError('Only lists of TargetExplanation are supported')
 columns = ['target', 'feature', 'weight', 'std', 'value']
 df_data = {f: [] for f in columns} # type: Dict[str, List[Any]]
 for target in targets:
 assert target.feature_weights is not None
 for fw in chain(target.feature_weights.pos,
 reversed(target.feature_weights.neg)):
 df_data['target'].append(target.target)
 df_data['feature'].append(fw.feature)
 df_data['weight'].append(fw.weight)
 df_data['std'].append(fw.std)
 df_data['value'].append(fw.value)
 for optional_field in ['std', 'value']:
 if all(x is None for x in df_data[optional_field]):
 df_data.pop(optional_field)
 columns.remove(optional_field)
 return pd.DataFrame(df_data, columns=columns)

@format_as_dataframe.register(TransitionFeatureWeights)
def _transition_features_to_df(transition_features):
 # type: (TransitionFeatureWeights) -> pd.DataFrame
 class_names = list(transition_features.class_names)
 return pd.DataFrame(
 {'from': [f for f in class_names for _ in class_names],
 'to': [f for _ in class_names for f in class_names],
 'coef': transition_features.coef.reshape(-1),
 },
 columns=['from', 'to', 'coef'])

 eli5.formatters.as_dict

 Source code for eli5.formatters.as_dict

import six

import attr
import numpy as np

from .features import FormattedFeatureName

[docs]def format_as_dict(explanation):
 """ Return a dictionary representing the explanation that can be JSON-encoded.
 It accepts parts of explanation (for example feature weights) as well.
 """
 return _numpy_to_python(attr.asdict(explanation))

_numpy_string_types = (np.string_, np.unicode_) if six.PY2 else np.str_

def _numpy_to_python(obj):
 """ Convert an nested dict/list/tuple that might contain numpy objects
 to their python equivalents. Return converted object.
 """
 if isinstance(obj, dict):
 return {k: _numpy_to_python(v) for k, v in obj.items()}
 elif isinstance(obj, (list, tuple, np.ndarray)):
 return [_numpy_to_python(x) for x in obj]
 elif isinstance(obj, FormattedFeatureName):
 return obj.value
 elif isinstance(obj, _numpy_string_types):
 return six.text_type(obj)
 elif hasattr(obj, 'dtype') and np.isscalar(obj):
 if np.issubdtype(obj, np.floating):
 return float(obj)
 elif np.issubdtype(obj, np.integer):
 return int(obj)
 elif np.issubdtype(obj, np.bool_):
 return bool(obj)
 return obj

 eli5.formatters.html

 Source code for eli5.formatters.html

-*- coding: utf-8 -*-
from __future__ import absolute_import
from itertools import groupby
from typing import List, Optional, Tuple

import numpy as np
from jinja2 import Environment, PackageLoader

from eli5 import _graphviz
from eli5.base import (Explanation, TargetExplanation, FeatureWeights,
 FeatureWeight)
from eli5.utils import max_or_0
from .utils import (
 format_signed, format_value, format_weight, has_any_values_for_weights,
 replace_spaces, should_highlight_spaces)
from . import fields
from .features import FormattedFeatureName
from .trees import tree2text
from .text_helpers import prepare_weighted_spans, PreparedWeightedSpans

template_env = Environment(
 loader=PackageLoader('eli5', 'templates'),
 extensions=['jinja2.ext.with_'])
template_env.globals.update(dict(zip=zip, numpy=np))
template_env.filters.update(dict(
 weight_color=lambda w, w_range: format_hsl(weight_color_hsl(w, w_range)),
 remaining_weight_color=lambda ws, w_range, pos_neg:
 format_hsl(remaining_weight_color_hsl(ws, w_range, pos_neg)),
 format_feature=lambda f, w, hl: _format_feature(f, w, hl_spaces=hl),
 format_value=format_value,
 format_weight=format_weight,
 format_decision_tree=lambda tree: _format_decision_tree(tree),
))

[docs]def format_as_html(explanation, # type: Explanation
 include_styles=True, # type: bool
 force_weights=True, # type: bool
 show=fields.ALL,
 preserve_density=None, # type: Optional[bool]
 highlight_spaces=None, # type: Optional[bool]
 horizontal_layout=True, # type: bool
 show_feature_values=False # type: bool
):
 # type: (...) -> str
 """ Format explanation as html.
 Most styles are inline, but some are included separately in <style> tag,
 you can omit them by passing ``include_styles=False`` and call
 ``format_html_styles`` to render them separately (or just omit them).
 With ``force_weights=False``, weights will not be displayed in a table for
 predictions where it is possible to show feature weights highlighted
 in the document.
 If ``highlight_spaces`` is None (default), spaces will be highlighted in
 feature names only if there are any spaces at the start or at the end of the
 feature. Setting it to True forces space highlighting, and setting it to
 False turns it off.
 If ``horizontal_layout`` is True (default), multiclass classifier
 weights are laid out horizontally.
 If ``show_feature_values`` is True, feature values are shown if present.
 Default is False.
 """
 template = template_env.get_template('explain.html')
 if highlight_spaces is None:
 highlight_spaces = should_highlight_spaces(explanation)
 targets = explanation.targets or []
 if len(targets) == 1:
 horizontal_layout = False
 explaining_prediction = has_any_values_for_weights(explanation)
 show_feature_values = show_feature_values and explaining_prediction

 rendered_weighted_spans = render_targets_weighted_spans(
 targets, preserve_density)
 weighted_spans_others = [
 t.weighted_spans.other if t.weighted_spans else None for t in targets]

 return template.render(
 include_styles=include_styles,
 force_weights=force_weights,
 target_table_styles=
 'border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto;',
 tr_styles='border: none;',
 # Weight (th and td)
 td1_styles='padding: 0 1em 0 0.5em; text-align: right; border: none;',
 # N more positive/negative
 tdm_styles='padding: 0 0.5em 0 0.5em; text-align: center; border: none; '
 'white-space: nowrap;',
 # Feature (th and td)
 td2_styles='padding: 0 0.5em 0 0.5em; text-align: left; border: none;',
 # Value (th and td)
 td3_styles='padding: 0 0.5em 0 1em; text-align: right; border: none;',
 horizontal_layout_table_styles=
 'border-collapse: collapse; border: none; margin-bottom: 1.5em;',
 horizontal_layout_td_styles=
 'padding: 0px; border: 1px solid black; vertical-align: top;',
 horizontal_layout_header_styles=
 'padding: 0.5em; border: 1px solid black; text-align: center;',
 show=show,
 expl=explanation,
 hl_spaces=highlight_spaces,
 horizontal_layout=horizontal_layout,
 any_weighted_spans=any(t.weighted_spans for t in targets),
 feat_imp_weight_range=max_or_0(
 abs(fw.weight) for fw in explanation.feature_importances.importances)
 if explanation.feature_importances else 0,
 target_weight_range=max_or_0(
 get_weight_range(t.feature_weights) for t in targets
 if t.feature_weights is not None),
 other_weight_range=max_or_0(
 get_weight_range(other)
 for other in weighted_spans_others if other),
 targets_with_weighted_spans=list(
 zip(targets, rendered_weighted_spans, weighted_spans_others)),
 show_feature_values=show_feature_values,
 weights_table_span=3 if show_feature_values else 2,
 explaining_prediction=explaining_prediction,
 weight_help=html_escape(WEIGHT_HELP),
 contribution_help=html_escape(CONTRIBUTION_HELP),
)

WEIGHT_HELP = '''\
Feature weights. Note that weights do not account for feature value scales,
so if feature values have different scales, features with highest weights
might not be the most important.\
'''.replace('\n', ' ')
CONTRIBUTION_HELP = '''\
Feature contribution already accounts for the feature value
(for linear models, contribution = weight * feature value), and the sum
of feature contributions is equal to the score or, for some classifiers,
to the probability. Feature values are shown if "show_feature_values" is True.\
'''.replace('\n', ' ')

[docs]def format_html_styles():
 # type: () -> str
 """ Format just the styles,
 use with ``format_as_html(explanation, include_styles=False)``.
 """
 return template_env.get_template('styles.html').render()

[docs]def render_targets_weighted_spans(
 targets, # type: List[TargetExplanation]
 preserve_density, # type: Optional[bool]
):
 # type: (...) -> List[Optional[str]]
 """ Return a list of rendered weighted spans for targets.
 Function must accept a list in order to select consistent weight
 ranges across all targets.
 """
 prepared_weighted_spans = prepare_weighted_spans(
 targets, preserve_density)

 def _fmt_pws(pws):
 # type: (PreparedWeightedSpans) -> str
 name = ('{}: '.format(pws.doc_weighted_spans.vec_name)
 if pws.doc_weighted_spans.vec_name else '')
 return '{}{}'.format(name, render_weighted_spans(pws))

 def _fmt_pws_list(pws_lst):
 # type: (List[PreparedWeightedSpans]) -> str
 return '
'.join(_fmt_pws(pws) for pws in pws_lst)

 return [_fmt_pws_list(pws_lst) if pws_lst else None
 for pws_lst in prepared_weighted_spans]

def render_weighted_spans(pws):
 # type: (PreparedWeightedSpans) -> str
 # TODO - for longer documents, an option to remove text
 # without active features
 return ''.join(
 _colorize(''.join(t for t, _ in tokens_weights),
 weight,
 pws.weight_range)
 for weight, tokens_weights in groupby(
 zip(pws.doc_weighted_spans.document, pws.char_weights),
 key=lambda x: x[1]))

def _colorize(token, # type: str
 weight, # type: float
 weight_range, # type: float
):
 # type: (...) -> str
 """ Return token wrapped in a span with some styles
 (calculated from weight and weight_range) applied.
 """
 token = html_escape(token)
 if np.isclose(weight, 0.):
 return (
 '<span '
 'style="opacity: {opacity}"'
 '>{token}'.format(
 opacity=_weight_opacity(weight, weight_range),
 token=token)
)
 else:
 return (
 '<span '
 'style="background-color: {color}; opacity: {opacity}" '
 'title="{weight:.3f}"'
 '>{token}'.format(
 color=format_hsl(
 weight_color_hsl(weight, weight_range, min_lightness=0.6)),
 opacity=_weight_opacity(weight, weight_range),
 weight=weight,
 token=token)
)

def _weight_opacity(weight, weight_range):
 # type: (float, float) -> str
 """ Return opacity value for given weight as a string.
 """
 min_opacity = 0.8
 if np.isclose(weight, 0) and np.isclose(weight_range, 0):
 rel_weight = 0.0
 else:
 rel_weight = abs(weight) / weight_range
 return '{:.2f}'.format(min_opacity + (1 - min_opacity) * rel_weight)

_HSL_COLOR = Tuple[float, float, float]

[docs]def weight_color_hsl(weight, weight_range, min_lightness=0.8):
 # type: (float, float, float) -> _HSL_COLOR
 """ Return HSL color components for given weight,
 where the max absolute weight is given by weight_range.
 """
 hue = _hue(weight)
 saturation = 1
 rel_weight = (abs(weight) / weight_range) ** 0.7
 lightness = 1.0 - (1 - min_lightness) * rel_weight
 return hue, saturation, lightness

[docs]def format_hsl(hsl_color):
 # type: (_HSL_COLOR) -> str
 """ Format hsl color as css color string.
 """
 hue, saturation, lightness = hsl_color
 return 'hsl({}, {:.2%}, {:.2%})'.format(hue, saturation, lightness)

def _hue(weight):
 # type: (float) -> float
 return 120 if weight > 0 else 0

[docs]def get_weight_range(weights):
 # type: (FeatureWeights) -> float
 """ Max absolute feature for pos and neg weights.
 """
 return max_or_0(abs(fw.weight)
 for lst in [weights.pos, weights.neg]
 for fw in lst or [])

[docs]def remaining_weight_color_hsl(
 ws, # type: List[FeatureWeight]
 weight_range, # type: float
 pos_neg, # type: str
):
 # type: (...) -> _HSL_COLOR
 """ Color for "remaining" row.
 Handles a number of edge cases: if there are no weights in ws or weight_range
 is zero, assume the worst (most intensive positive or negative color).
 """
 sign = {'pos': 1.0, 'neg': -1.0}[pos_neg]
 if not ws and not weight_range:
 weight = sign
 weight_range = 1.0
 elif not ws:
 weight = sign * weight_range
 else:
 weight = min((fw.weight for fw in ws), key=abs)
 return weight_color_hsl(weight, weight_range)

def _format_unhashed_feature(feature, weight, hl_spaces):
 # type: (...) -> str
 """ Format unhashed feature: show first (most probable) candidate,
 display other candidates in title attribute.
 """
 if not feature:
 return ''
 else:
 first, rest = feature[0], feature[1:]
 html = format_signed(
 first, lambda x: _format_single_feature(x, weight, hl_spaces))
 if rest:
 html += ' …'.format(
 '\n'.join(html_escape(format_signed(f)) for f in rest))
 return html

def _format_feature(feature, weight, hl_spaces):
 # type: (...) -> str
 """ Format any feature.
 """
 if isinstance(feature, FormattedFeatureName):
 return feature.format()
 elif (isinstance(feature, list) and
 all('name' in x and 'sign' in x for x in feature)):
 return _format_unhashed_feature(feature, weight, hl_spaces=hl_spaces)
 else:
 return _format_single_feature(feature, weight, hl_spaces=hl_spaces)

def _format_single_feature(feature, weight, hl_spaces):
 # type: (str, float, bool) -> str
 feature = html_escape(feature)
 if not hl_spaces:
 return feature

 def replacer(n_spaces, side):
 # type: (int, str) -> str
 m = '0.1em'
 margins = {'left': (m, 0), 'right': (0, m), 'center': (m, m)}[side]
 style = '; '.join([
 'background-color: hsl({}, 80%, 70%)'.format(_hue(weight)),
 'margin: 0 {} 0 {}'.format(*margins),
])
 return '{spaces}'.format(
 style=style,
 title='A space symbol' if n_spaces == 1 else
 '{} space symbols'.format(n_spaces),
 spaces=' ' * n_spaces)

 return replace_spaces(feature, replacer)

def _format_decision_tree(treedict):
 # type: (...) -> str
 if treedict.graphviz and _graphviz.is_supported():
 return _graphviz.dot2svg(treedict.graphviz)
 else:
 return tree2text(treedict)

def html_escape(text):
 # type: (str) -> str
 try:
 from html import escape
 except ImportError:
 from cgi import escape # type: ignore
 return escape(text, quote=True)

 eli5.formatters.image

 Source code for eli5.formatters.image

-*- coding: utf-8 -*-
from __future__ import absolute_import
from typing import Union, Optional, Callable

import numpy as np
from PIL import Image
import matplotlib.cm

from eli5.base import Explanation

[docs]def format_as_image(expl, # type: Explanation
 resampling_filter=Image.LANCZOS, # type: int
 colormap=matplotlib.cm.viridis, # type: Callable[[np.ndarray], np.ndarray]
 alpha_limit=0.65, # type: Optional[Union[float, int]]
):
 # type: (...) -> Image
 """format_as_image(expl, resampling_filter=Image.LANCZOS, colormap=matplotlib.cm.viridis, alpha_limit=0.65)

 Format a :class:`eli5.base.Explanation` object as an image.

 Note that this formatter requires ``matplotlib`` and ``Pillow`` optional dependencies.

 :param Explanation expl:
 :class:`eli5.base.Explanation` object to be formatted.
 It must have an ``image`` attribute with a Pillow image that will be overlaid.
 It must have a ``targets`` attribute, a list of :class:`eli5.base.TargetExplanation` \
 instances that contain the attribute ``heatmap``, \
 a rank 2 numpy array with float values in the interval [0, 1].
 Currently ``targets`` must be length 1 (only one target is supported).

 :raises TypeError: if ``heatmap`` is not a numpy array.
 :raises ValueError: if ``heatmap`` does not contain values as floats in the interval [0, 1].
 :raises TypeError: if ``image`` is not a Pillow image.

 :param resampling_filter:
 Interpolation ID or Pillow filter to use when resizing the image.

 Example filters from PIL.Image
 * ``NEAREST``
 * ``BOX``
 * ``BILINEAR``
 * ``HAMMING``
 * ``BICUBIC``
 * ``LANCZOS``

 See also `<https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters>`_.

 Note that these attributes are integer values.

 Default is ``PIL.Image.LANCZOS``.
 :type resampling_filter: int, optional

 :param colormap:
 Colormap scheme to be applied when converting the heatmap from grayscale to RGB.
 Either a colormap from matplotlib.cm,
 or a callable that takes a rank 2 array and
 returns the colored heatmap as a [0, 1] RGBA numpy array.

 Example colormaps from matplotlib.cm
 * ``viridis``
 * ``jet``
 * ``binary``

 See also https://matplotlib.org/gallery/color/colormap_reference.html.

 Default is ``matplotlib.cm.viridis`` (green/blue to yellow).
 :type colormap: callable, optional

 :param alpha_limit:
 Maximum alpha (transparency / opacity) value allowed
 for the alpha channel pixels in the RGBA heatmap image.

 Between 0.0 and 1.0.

 Useful when laying the heatmap over the original image,
 so that the image can be seen over the heatmap.

 Default is 0.65.

 :raises ValueError: if ``alpha_limit`` is outside the [0, 1] interval.
 :raises TypeError: if ``alpha_limit`` is not float, int, or None.
 :type alpha_limit: float or int, optional

 Returns

 overlay : PIL.Image.Image
 PIL image instance of the heatmap blended over the image.
 """
 image = expl.image
 # validate image
 if not isinstance(image, Image.Image):
 raise TypeError('Explanation image must be a PIL.Image.Image instance. '
 'Got: {}'.format(image))
 if image.mode != 'RGBA':
 # normalize to 'RGBA'
 image = image.convert('RGBA')

 if not expl.targets:
 # no heatmaps
 return image
 else:
 assert len(expl.targets) == 1
 heatmap = expl.targets[0].heatmap
 _validate_heatmap(heatmap)

 # The order of our operations is: 1. colorize 2. resize
 # as opposed: 1. resize 2. colorize

 # save the original heatmap values
 heatvals = heatmap
 # apply colours to the grayscale array
 heatmap = _colorize(heatmap, colormap=colormap) # -> rank 3 RGBA array

 # make the alpha intensity correspond to the grayscale heatmap values
 # cap the intensity so that it's not too opaque when near maximum value
 _update_alpha(heatmap, starting_array=heatvals, alpha_limit=alpha_limit)

 heatmap = expand_heatmap(heatmap, image, resampling_filter=resampling_filter)
 overlay = _overlay_heatmap(heatmap, image)
 return overlay

[docs]def heatmap_to_image(heatmap):
 # type: (np.ndarray) -> Image
 """
 Convert the numpy array ``heatmap`` to a Pillow image.

 Parameters

 heatmap : numpy.ndarray
 Rank 2 grayscale ('L') array or rank 3 coloured ('RGB' or RGBA') array,
 with values in interval [0, 1] as floats.

 :raises TypeError: if ``heatmap`` is not a numpy array.
 :raises ValueError: if ``heatmap`` does not contain values as floats in the interval [0, 1].
 :raises ValueError: if ``heatmap`` rank is neither 2 nor 3.
 :raises ValueError: if rank 3 ``heatmap`` does not have 4 (RGBA) or 3 (RGB) channels.

 Returns

 heatmap_image : PIL.Image.Image
 Heatmap as an image with a suitable mode.
 """
 _validate_heatmap(heatmap)
 rank = len(heatmap.shape)
 if rank == 2:
 mode = 'L'
 elif rank == 3:
 channels = heatmap.shape[2]
 if channels == 4:
 mode = 'RGBA'
 elif channels == 3:
 mode = 'RGB'
 else:
 raise ValueError('Rank 3 heatmap must have 4 channels (RGBA), '
 'or 3 channels (RGB). '
 'Got shape with {} channels'.format(channels))
 else:
 raise ValueError('heatmap must have rank 2 (L, grayscale) '
 'or rank 3 (RGBA, colored). '
 'Got: %d' % rank)
 heatmap = (heatmap*255).astype('uint8') # -> [0, 255] int
 return Image.fromarray(heatmap, mode=mode)

def _validate_heatmap(heatmap):
 """Check that ``heatmap`` is a numpy array
 with float values between 0 and 1."""
 if not isinstance(heatmap, np.ndarray):
 raise TypeError('heatmap must be a numpy.ndarray instance. '
 'Got: {}'.format(heatmap))
 mi = np.min(heatmap)
 ma = np.max(heatmap)
 if not (0 <= mi and ma <= 1):
 raise ValueError('heatmap must contain float values '
 'between 0 and 1 inclusive. '
 'Got array with minimum: {} '
 'and maximum: {}'.format(mi, ma))

def _colorize(heatmap, colormap):
 # type: (np.ndarray, Callable[[np.ndarray], np.ndarray]) -> np.ndarray
 """
 Apply the ``colormap`` function to a grayscale
 rank 2 ``heatmap`` array (with float values in interval [0, 1]).
 Returns an RGBA rank 3 array with float values in range [0, 1].
 """
 heatmap = colormap(heatmap) # -> [0, 1] RGBA ndarray
 return heatmap

def _update_alpha(image_array, starting_array=None, alpha_limit=None):
 # type: (np.ndarray, Optional[np.ndarray], Optional[Union[float, int]]) -> None
 """
 Update the alpha channel values of an RGBA rank 3 ndarray ``image_array``,
 optionally creating the alpha channel from rank 2 ``starting_array``,
 and setting upper limit for alpha values (opacity) to ``alpha_limit``.

 This function modifies ``image_array`` in-place.
 """
 # FIXME: this function may be too specialized and could be refactored
 # get the alpha channel slice
 if isinstance(starting_array, np.ndarray):
 alpha = starting_array
 else:
 # take the alpha channel as is
 alpha = image_array[:,:,3]
 # set maximum alpha value
 alpha = _cap_alpha(alpha, alpha_limit)
 # update alpha channel in the original image
 image_array[:,:,3] = alpha

def _cap_alpha(alpha_arr, alpha_limit):
 # type: (np.ndarray, Union[None, float, int]) -> np.ndarray
 """
 Limit the alpha values in ``alpha_arr``
 by setting the maximum alpha value to ``alpha_limit``.
 Returns a a new array with the values capped.
 """
 if alpha_limit is None:
 return alpha_arr
 elif isinstance(alpha_limit, (float, int)):
 if 0 <= alpha_limit <= 1:
 new_alpha = np.minimum(alpha_arr, alpha_limit)
 return new_alpha
 else:
 raise ValueError('alpha_limit must be'
 'between 0 and 1 inclusive, got: %f' % alpha_limit)
 else:
 raise TypeError('alpha_limit must be int or float,'
 'got: {}'.format(alpha_limit))

[docs]def expand_heatmap(heatmap, image, resampling_filter=Image.LANCZOS):
 # type: (np.ndarray, Image, Union[None, int]) -> Image
 """
 Resize the ``heatmap`` image array to fit over the original ``image``,
 using the specified ``resampling_filter`` method.
 The heatmap is converted to an image in the process.

 Parameters

 heatmap : numpy.ndarray
 Heatmap that is to be resized, as an array.

 image : PIL.Image.Image
 The image whose dimensions will be resized to.

 resampling_filter : int or None
 Interpolation to use when resizing.

 See :func:`eli5.format_as_image` for more details on the `resampling_filter` parameter.

 :raises TypeError: if ``image`` is not a Pillow image instance.

 Returns

 resized_heatmap : PIL.Image.Image
 The heatmap, resized, as a PIL image.
 """
 if not isinstance(image, Image.Image):
 raise TypeError('image must be a PIL.Image.Image instance. '
 'Got: {}'.format(image))
 heatmap = heatmap_to_image(heatmap)
 spatial_dimensions = (image.width, image.height)
 heatmap = heatmap.resize(spatial_dimensions, resample=resampling_filter)
 return heatmap

def _overlay_heatmap(heatmap, image):
 # type: (Image, Image) -> Image
 """
 Blend (combine) ``heatmap`` over ``image``,
 using alpha channel values appropriately (must have mode `RGBA`).
 Output is 'RGBA'.
 """
 # note that the order of alpha_composite arguments matters
 overlayed_image = Image.alpha_composite(image, heatmap)
 return overlayed_image

 eli5.formatters.text

 Source code for eli5.formatters.text

-*- coding: utf-8 -*-
from __future__ import absolute_import
from itertools import chain
import six
from tabulate import tabulate
from typing import List, Optional, Iterator

from eli5.base import Explanation, FeatureImportances
from . import fields
from .features import FormattedFeatureName
from .utils import (
 format_signed, format_value, format_weight, has_any_values_for_weights,
 replace_spaces, should_highlight_spaces)
from .utils import tabulate as eli5_tabulate
from .trees import tree2text

_PLUS_MINUS = "+-" if six.PY2 else "±"
_ELLIPSIS = '...' if six.PY2 else '…'
SPACE = '' if six.PY2 else '░'

[docs]def format_as_text(expl, # type: Explanation
 show=fields.ALL,
 highlight_spaces=None, # type: Optional[bool]
 show_feature_values=False, # type: bool
):
 # type: (...) -> str
 """ Format explanation as text.

 Parameters

 expl : eli5.base.Explanation
 Explanation returned by ``eli5.explain_weights`` or
 ``eli5.explain_prediction`` functions.

 highlight_spaces : bool or None, optional
 Whether to highlight spaces in feature names. This is useful if
 you work with text and have ngram features which may include spaces
 at left or right. Default is None, meaning that the value used
 is set automatically based on vectorizer and feature values.

 show_feature_values : bool
 When True, feature values are shown along with feature contributions.
 Default is False.

 show : List[str], optional
 List of sections to show. Allowed values:

 * 'targets' - per-target feature weights;
 * 'transition_features' - transition features of a CRF model;
 * 'feature_importances' - feature importances of a decision tree or
 an ensemble-based estimator;
 * 'decision_tree' - decision tree in a graphical form;
 * 'method' - a string with explanation method;
 * 'description' - description of explanation method and its caveats.

 ``eli5.formatters.fields`` provides constants that cover common cases:
 ``INFO`` (method and description), ``WEIGHTS`` (all the rest),
 and ``ALL`` (all).
 """
 lines = [] # type: List[str]

 if highlight_spaces is None:
 highlight_spaces = should_highlight_spaces(expl)

 if expl.error: # always shown
 lines.extend(_error_lines(expl))

 explaining_prediction = has_any_values_for_weights(expl)
 show_feature_values = show_feature_values and explaining_prediction

 for key in show:
 if not getattr(expl, key, None):
 continue

 if key == 'method':
 lines.extend(_method_lines(expl))

 if key == 'description':
 lines.extend(_description_lines(expl))

 if key == 'transition_features':
 lines.extend(_transition_features_lines(expl))

 if key == 'targets':
 lines.extend(_targets_lines(
 expl,
 hl_spaces=highlight_spaces,
 show_feature_values=show_feature_values,
 explaining_prediction=explaining_prediction,
))

 if key == 'feature_importances':
 lines.extend(_feature_importances_lines(
 expl, hl_spaces=highlight_spaces))

 if key == 'decision_tree':
 lines.extend(_decision_tree_lines(expl))

 return '\n'.join(lines)

def _method_lines(explanation):
 # type: (Explanation) -> List[str]
 return ['Explained as: {}'.format(explanation.method)]

def _description_lines(explanation):
 # type: (Explanation) -> List[str]
 return [explanation.description or '']

def _error_lines(explanation):
 # type: (Explanation) -> List[str]
 return ['Error: {}'.format(explanation.error)]

def _feature_importances_lines(explanation, hl_spaces):
 # type: (Explanation, Optional[bool]) -> Iterator[str]
 max_width = 0
 assert explanation.feature_importances is not None
 for line in _fi_lines(explanation.feature_importances, hl_spaces):
 max_width = max(max_width, len(line))
 yield line
 if explanation.feature_importances.remaining:
 yield _format_remaining(
 explanation.feature_importances.remaining, kind='', width=max_width)

def _fi_lines(feature_importances, hl_spaces):
 # type: (FeatureImportances, Optional[bool]) -> Iterator[str]
 for fw in feature_importances.importances:
 featname = _format_feature(fw.feature, hl_spaces)
 if fw.std or fw.weight:
 w = u'{:0.4f}'.format(fw.weight)
 else:
 w = u"0".rjust(6)
 if fw.std is None:
 yield u'{w} {feature}'.format(feature=featname, w=w)
 else:
 yield u'{w} {plus} {std:0.4f} {feature}'.format(
 feature=featname,
 w=w,
 plus=_PLUS_MINUS,
 std=2 * fw.std,
)

def _decision_tree_lines(explanation):
 # type: (Explanation) -> List[str]
 assert explanation.decision_tree is not None
 return ["", tree2text(explanation.decision_tree)]

def _transition_features_lines(explanation):
 # type: (Explanation) -> List[str]
 tf = explanation.transition_features
 assert tf is not None
 return [
 "",
 "Transition features:",
 tabulate(tf.coef, headers=tf.class_names, showindex=tf.class_names,
 floatfmt="0.3f"),
 ""
]

def _targets_lines(explanation, # type: Explanation
 hl_spaces, # type: Optional[bool]
 show_feature_values, # type: bool
 explaining_prediction, # type: bool
):
 # type: (...) -> List[str]
 lines = []
 assert explanation.targets is not None
 for target in explanation.targets:
 scores = _format_scores(target.proba, target.score)
 if scores:
 scores = " (%s)" % scores

 header = "%s%r%s top features" % (
 'y=' if not explanation.is_regression else '',
 target.target,
 scores)
 lines.append(header)

 if explaining_prediction:
 table_header = ['Contribution', 'Feature']
 else:
 table_header = ['Weight', 'Feature']
 if show_feature_values:
 table_header.append('Value')
 table_line = lambda fw: [
 format_weight(fw.weight),
 _format_feature(fw.feature, hl_spaces),
 format_value(fw.value)]
 col_align = 'rlr'
 else:
 table_line = lambda fw: [
 format_weight(fw.weight),
 _format_feature(fw.feature, hl_spaces)]
 col_align = 'rl'

 w = target.feature_weights
 assert w is not None
 table = eli5_tabulate(
 [table_line(fw) for fw in chain(w.pos, reversed(w.neg))],
 header=table_header,
 col_align=col_align,
)
 max_width = len(table[1])
 pos_table = '\n'.join(table[:-len(w.neg)])
 neg_table = '\n'.join(table[-len(w.neg):])

 if pos_table:
 lines.append(pos_table)
 if w.pos_remaining:
 lines.append(
 _format_remaining(w.pos_remaining, 'positive', max_width))
 if w.neg_remaining:
 lines.append(
 _format_remaining(w.neg_remaining, 'negative', max_width))
 if neg_table:
 lines.append(neg_table)

 lines.append('')
 return lines

def _format_scores(proba, score):
 # type: (Optional[float], Optional[float]) -> str
 scores = []
 if proba is not None:
 scores.append("probability=%0.3f" % proba)
 if score is not None:
 scores.append("score=%0.3f" % score)
 return ", ".join(scores)

def _format_remaining(remaining, kind, width):
 # type: (int, str, int) -> str
 s = '{ellipsis} {remaining} more {kind}{ellipsis}'.format(
 ellipsis=_ELLIPSIS,
 remaining=remaining,
 kind=(kind + ' ') if kind else '',
)
 return ('{:^%d}' % width).format(s)

def _format_feature(name, hl_spaces):
 # type: (...) -> str
 if isinstance(name, bytes):
 name = name.decode('utf8')
 if isinstance(name, FormattedFeatureName):
 return name.format()
 elif isinstance(name, list) and \
 all('name' in x and 'sign' in x for x in name):
 return _format_unhashed_feature(name, hl_spaces=hl_spaces)
 else:
 return _format_single_feature(name, hl_spaces=hl_spaces)

def _format_single_feature(feature, hl_spaces):
 # type: (str, bool) -> str
 if hl_spaces:
 return replace_spaces(feature, lambda n, _: _SPACE * n)
 else:
 return feature

def _format_unhashed_feature(name, hl_spaces, sep=' | '):
 # type: (List, bool, str) -> str
 """
 Format feature name for hashed features.
 """
 return sep.join(
 format_signed(n, _format_single_feature, hl_spaces=hl_spaces)
 for n in name)

 eli5.keras.explain_prediction

 Source code for eli5.keras.explain_prediction

-*- coding: utf-8 -*-
from __future__ import absolute_import
from typing import Union, Optional, Callable, Tuple, List, TYPE_CHECKING
if TYPE_CHECKING:
 import PIL

import numpy as np
import keras
import keras.backend as K
from keras.models import Model
from keras.layers import Layer
from keras.layers import (
 Conv2D,
 MaxPooling2D,
 AveragePooling2D,
 GlobalMaxPooling2D,
 GlobalAveragePooling2D,
)
from keras.preprocessing.image import array_to_img

from eli5.base import Explanation, TargetExplanation
from eli5.explain import explain_prediction
from .gradcam import gradcam, gradcam_backend

DESCRIPTION_KERAS = """Grad-CAM visualization for image classification;
output is explanation object that contains input image
and heatmap image for a target.
"""

note that keras.models.Sequential subclasses keras.models.Model
[docs]@explain_prediction.register(Model)
def explain_prediction_keras(model, # type: Model
 doc, # type: np.ndarray
 targets=None, # type: Optional[list]
 layer=None, # type: Optional[Union[int, str, Layer]]
 image=None,
):
 # type: (...) -> Explanation
 """
 Explain the prediction of a Keras classifier with the Grad-CAM technique.

 We explicitly assume that the model's task is classification, i.e. final output is class scores.

 :param keras.models.Model model:
 Instance of a Keras neural network model,
 whose predictions are to be explained.

 :param numpy.ndarray doc:
 An input to ``model`` whose prediction will be explained.

 Currently only numpy arrays are supported.

 The tensor must be of suitable shape for the ``model``.

 Check ``model.input_shape`` to confirm the required dimensions of the input tensor.

 :raises TypeError: if ``doc`` is not a numpy array.
 :raises ValueError: if ``doc`` shape does not match.

 :param targets:
 Prediction ID's to focus on.

 Currently only the first prediction from the list is explained.
 The list must be length one.

 If None, the model is fed the input image and its top prediction
 is taken as the target automatically.

 :raises ValueError: if ``targets`` is a list with more than one item.
 :raises TypeError: if ``targets`` is not list or None.
 :type targets: list[int], optional

 :param layer:
 The activation layer in the model to perform Grad-CAM on:
 a valid keras layer name, layer index, or an instance of a Keras layer.

 If None, a suitable layer is attempted to be retrieved.
 For best results, pick a layer that:

 * has spatial or temporal information (conv, recurrent, pooling, embedding)
 (not dense layers).
 * shows high level features.
 * has large enough dimensions for resizing over input to work.

 :raises TypeError: if ``layer`` is not None, str, int, or keras.layers.Layer instance.
 :raises ValueError: if suitable layer can not be found.
 :raises ValueError: if differentiation fails with respect to retrieved ``layer``.
 :type layer: int or str or keras.layers.Layer, optional

 See :func:`eli5.explain_prediction` for more information about the ``model``,
 ``doc``, and ``targets`` parameters.

 Other arguments are passed to concrete implementations
 for image and text explanations.

 Returns

 expl : :class:`eli5.base.Explanation`
 An :class:`eli5.base.Explanation` object for the relevant implementation.
 """
 # Note that this function should only do dispatch
 # and no other processing
 if image is not None or _maybe_image(model, doc):
 return explain_prediction_keras_image(model,
 doc,
 image=image,
 targets=targets,
 layer=layer,
)
 else:
 return explain_prediction_keras_not_supported(model, doc)

[docs]def explain_prediction_keras_not_supported(model, doc):
 """
 Can not do an explanation based on the passed arguments.
 Did you pass either "image" or "tokens"?
 """
 return Explanation(
 model.name,
 error='model "{}" is not supported, '
 'try passing the "image" argument if explaining an image model.'.format(model.name),
)

 # TODO (open issue): implement 'other'/differentiable network type explanations

[docs]def explain_prediction_keras_image(model,
 doc,
 image=None, # type: Optional['PIL.Image.Image']
 targets=None,
 layer=None,
):
 """
 Explain an image-based model, highlighting what contributed in the image.

 :param numpy.ndarray doc:
 Input representing an image.

 Must have suitable format. Some models require tensors to be
 rank 4 in format `(batch_size, dims, ..., channels)` (channels last)
 or `(batch_size, channels, dims, ...)` (channels first),
 where `dims` is usually in order `height, width`
 and `batch_size` is 1 for a single image.

 If ``image`` argument is not given, an image will be created
 from ``doc``, where possible.

 :param image:
 Pillow image over which to overlay the heatmap.
 Corresponds to the input ``doc``.
 :type image: PIL.Image.Image, optional

 See :func:`eli5.keras.explain_prediction.explain_prediction_keras`
 for a description of ``model``, ``doc``, ``targets``, and ``layer`` parameters.

 Returns

 expl : eli5.base.Explanation
 An :class:`eli5.base.Explanation` object with the following attributes:
 * ``image`` a Pillow image representing the input.
 * ``targets`` a list of :class:`eli5.base.TargetExplanation` objects \
 for each target. Currently only 1 target is supported.
 The :class:`eli5.base.TargetExplanation` objects will have the following attributes:
 * ``heatmap`` a rank 2 numpy array with the localization map \
 values as floats.
 * ``target`` ID of target class.
 * ``score`` value for predicted class.
 """
 if image is None:
 image = _extract_image(doc)
 _validate_doc(model, doc)
 activation_layer = _get_activation_layer(model, layer)

 # TODO: maybe do the sum / loss calculation in this function and pass it to gradcam.
 # This would be consistent with what is done in
 # https://github.com/ramprs/grad-cam/blob/master/misc/utils.lua
 # and https://github.com/ramprs/grad-cam/blob/master/classification.lua
 values = gradcam_backend(model, doc, targets, activation_layer)
 weights, activations, grads, predicted_idx, predicted_val = values
 heatmap = gradcam(weights, activations)

 return Explanation(
 model.name,
 description=DESCRIPTION_KERAS,
 error='',
 method='Grad-CAM',
 image=image,
 targets=[TargetExplanation(
 predicted_idx,
 score=predicted_val, # for now we keep the prediction in the .score field (not .proba)
 heatmap=heatmap, # 2D [0, 1] numpy array
)],
 is_regression=False, # might be relevant later when explaining for regression tasks
 highlight_spaces=None, # might be relevant later when explaining text models
)

def _maybe_image(model, doc):
 # type: (Model, np.ndarray) -> bool
 """Decide whether we are dealing with a image-based explanation
 based on heuristics on ``model`` and ``doc``."""
 return _maybe_image_input(doc) and _maybe_image_model(model)

def _maybe_image_input(doc):
 # type: (np.ndarray) -> bool
 """Decide whether ``doc`` represents an image input."""
 rank = len(doc.shape)
 # image with channels or without (spatial only)
 return rank == 4 or rank == 3

def _maybe_image_model(model):
 # type: (Model) -> bool
 """Decide whether ``model`` is used for images."""
 # FIXME: replace try-except with something else
 try:
 # search for the first occurrence of an "image" layer
 _search_layer_backwards(model, _is_possible_image_model_layer)
 return True
 except ValueError:
 return False

image_model_layers = (Conv2D,
 MaxPooling2D,
 AveragePooling2D,
 GlobalMaxPooling2D,
 GlobalAveragePooling2D,
)

def _is_possible_image_model_layer(model, layer):
 # type: (Model, Layer) -> bool
 """Check that the given ``layer`` is usually used for images."""
 return isinstance(layer, image_model_layers)

def _extract_image(doc):
 # type: (np.ndarray) -> 'PIL.Image.Image'
 """Convert ``doc`` tensor to image."""
 im_arr, = doc # rank 4 batch -> rank 3 single image
 image = array_to_img(im_arr)
 return image

def _validate_doc(model, doc):
 # type: (Model, np.ndarray) -> None
 """
 Check that the input ``doc`` is suitable for ``model``.
 """
 if not isinstance(doc, np.ndarray):
 raise TypeError('doc must be a numpy.ndarray, got: {}'.format(doc))
 input_sh = model.input_shape
 doc_sh = doc.shape
 if len(input_sh) == 4:
 # rank 4 with (batch, ...) shape
 # check that we have only one image (batch size 1)
 single_batch = (1,) + input_sh[1:]
 if doc_sh != single_batch:
 raise ValueError('Batch size does not match (must be 1). '
 'doc must be of shape: {}, '
 'got: {}'.format(single_batch, doc_sh))
 else:
 # other shapes
 if doc_sh != input_sh:
 raise ValueError('Input and doc shapes do not match.'
 'input: {}, doc: {}'.format(input_sh, doc_sh))

def _get_activation_layer(model, layer):
 # type: (Model, Union[None, int, str, Layer]) -> Layer
 """
 Get an instance of the desired activation layer in ``model``,
 as specified by ``layer``.
 """
 if layer is None:
 # Automatically get the layer if not provided
 activation_layer = _search_layer_backwards(model, _is_suitable_activation_layer)
 return activation_layer

 if isinstance(layer, Layer):
 activation_layer = layer
 # get_layer() performs a bottom-up horizontal graph traversal
 # it can raise ValueError if the layer index / name specified is not found
 elif isinstance(layer, int):
 activation_layer = model.get_layer(index=layer)
 elif isinstance(layer, str):
 activation_layer = model.get_layer(name=layer)
 else:
 raise TypeError('Invalid layer (must be str, int, keras.layers.Layer, or None): %s' % layer)

 if _is_suitable_activation_layer(model, activation_layer):
 # final validation step
 return activation_layer
 else:
 raise ValueError('Can not perform Grad-CAM on the retrieved activation layer')

def _search_layer_backwards(model, condition):
 # type: (Model, Callable[[Model, Layer], bool]) -> Layer
 """
 Search for a layer in ``model``, backwards (starting from the output layer),
 checking if the layer is suitable with the callable ``condition``,
 """
 # linear search in reverse through the flattened layers
 for layer in model.layers[::-1]:
 if condition(model, layer):
 # linear search succeeded
 return layer
 # linear search ended with no results
 raise ValueError('Could not find a suitable target layer automatically.')

def _is_suitable_activation_layer(model, layer):
 # type: (Model, Layer) -> bool
 """
 Check whether the layer ``layer`` matches what is required
 by ``model`` to do Grad-CAM on ``layer``.
 Returns a boolean.

 Matching Criteria:
 * Rank of the layer's output tensor.
 """
 # TODO: experiment with this, using many models and images, to find what works best
 # Some ideas:
 # check layer type, i.e.: isinstance(l, keras.layers.Conv2D)
 # check layer name

 # a check that asks "can we resize this activation layer over the image?"
 rank = len(layer.output_shape)
 required_rank = len(model.input_shape)
 return rank == required_rank

 eli5.keras.gradcam

 Source code for eli5.keras.gradcam

-*- coding: utf-8 -*-
from __future__ import absolute_import
from typing import Union, Optional, Tuple, List

import numpy as np
import keras
import keras.backend as K
from keras.models import Model
from keras.layers import Layer

[docs]def gradcam(weights, activations):
 # type: (np.ndarray, np.ndarray) -> np.ndarray
 """
 Generate a localization map (heatmap) using Gradient-weighted Class Activation Mapping
 (Grad-CAM) (https://arxiv.org/pdf/1610.02391.pdf).

 The values for the parameters can be obtained from
 :func:`eli5.keras.gradcam.gradcam_backend`.

 Parameters

 weights : numpy.ndarray
 Activation weights, vector with one weight per map,
 rank 1.

 activations : numpy.ndarray
 Forward activation map values, vector of matrices,
 rank 3.

 Returns

 lmap : numpy.ndarray
 A Grad-CAM localization map,
 rank 2, with values normalized in the interval [0, 1].

 Notes

 We currently make two assumptions in this implementation
 * We are dealing with images as our input to ``model``.
 * We are doing a classification. ``model``'s output is a class scores or probabilities vector.

 Credits
 * Jacob Gildenblat for "https://github.com/jacobgil/keras-grad-cam".
 * Author of "https://github.com/PowerOfCreation/keras-grad-cam" for fixes to Jacob's implementation.
 * Kotikalapudi, Raghavendra and contributors for "https://github.com/raghakot/keras-vis".
 """
 # For reusability, this function should only use numpy operations
 # Instead of backend library operations

 # Perform a weighted linear combination
 # we need to multiply (dim1, dim2, maps,) by (maps,) over the first two axes
 # and add each result to (dim1, dim2,) results array
 # there does not seem to be an easy way to do this:
 # see: https://stackoverflow.com/questions/30031828/multiply-numpy-ndarray-with-1d-array-along-a-given-axis
 spatial_shape = activations.shape[:2] # -> (dim1, dim2)
 lmap = np.zeros(spatial_shape, dtype=np.float64)
 # iterate through each activation map
 for i, w in enumerate(weights):
 # weight * spatial map
 # add result to the entire localization map (NOT pixel by pixel)
 lmap += w * activations[..., i]

 lmap = np.maximum(lmap, 0) # ReLU

 # normalize lmap to [0, 1] ndarray
 # add eps to avoid division by zero in case lmap is 0's
 # this also means that lmap max will be slightly less than the 'true' max
 lmap = lmap / (np.max(lmap)+K.epsilon())
 return lmap

[docs]def gradcam_backend(model, # type: Model
 doc, # type: np.ndarray
 targets, # type: Optional[List[int]]
 activation_layer # type: Layer
):
 # type: (...) -> Tuple[np.ndarray, np.ndarray, np.ndarray, int, float]
 """
 Compute the terms and by-products required by the Grad-CAM formula.

 Parameters

 model : keras.models.Model
 Differentiable network.

 doc : numpy.ndarray
 Input to the network.

 targets : list, optional
 Index into the network's output,
 indicating the output node that will be
 used as the "loss" during differentiation.

 activation_layer : keras.layers.Layer
 Keras layer instance to differentiate with respect to.

 See :func:`eli5.keras.explain_prediction` for description of the
 ``model``, ``doc``, ``targets`` parameters.

 Returns

 (weights, activations, gradients, predicted_idx, predicted_val) : (numpy.ndarray, ..., int, float)
 Values of variables.
 """
 # score for class in targets
 predicted_idx = _get_target_prediction(targets, model)
 predicted_val = K.gather(model.output[0,:], predicted_idx) # access value by index

 # output of target activation layer, i.e. activation maps of a convolutional layer
 activation_output = activation_layer.output

 # score for class w.r.p.t. activation layer
 grads = _calc_gradient(predicted_val, [activation_output])

 # Global Average Pooling of gradients to get the weights
 # note that axes are in range [-rank(x), rank(x)) (we start from 1, not 0)
 # TODO: decide whether this should go in gradcam_backend() or gradcam()
 weights = K.mean(grads, axis=(1, 2))

 evaluate = K.function([model.input],
 [weights, activation_output, grads, predicted_val, predicted_idx]
)
 # evaluate the graph / do actual computations
 weights, activations, grads, predicted_val, predicted_idx = evaluate([doc])

 # put into suitable form
 weights = weights[0]
 predicted_val = predicted_val[0]
 predicted_idx = predicted_idx[0]
 activations = activations[0, ...]
 grads = grads[0, ...]
 return weights, activations, grads, predicted_idx, predicted_val

def _calc_gradient(ys, xs):
 # (K.variable, list) -> K.variable
 """
 Return the gradient of scalar ``ys`` with respect to each of list ``xs``,
 (must be singleton)
 and apply grad normalization.
 """
 # differentiate ys (scalar) with respect to each variable in xs
 grads = K.gradients(ys, xs)

 # grads gives a python list with a tensor (containing the derivatives) for each xs
 # to use grads with other operations and with K.function
 # we need to work with the actual tensors and not the python list
 grads, = grads # grads should be a singleton list (because xs is a singleton)

 # validate that the gradients were calculated successfully (no None's)
 # https://github.com/jacobgil/keras-grad-cam/issues/17#issuecomment-423057265
 # https://github.com/tensorflow/tensorflow/issues/783#issuecomment-175824168
 if grads is None:
 raise ValueError('Gradient calculation resulted in None values. '
 'Check that the model is differentiable and try again. '
 'ys: {}. xs: {}. grads: {}'.format(
 ys, xs, grads))

 # this seems to make the heatmap less noisy
 grads = K.l2_normalize(grads)
 return grads

def _get_target_prediction(targets, model):
 # type: (Optional[list], Model) -> K.variable
 """
 Get a prediction ID based on ``targets``,
 from the model ``model`` (with a rank 2 tensor for its final layer).
 Returns a rank 1 K.variable tensor.
 """
 if isinstance(targets, list):
 # take the first prediction from the list
 if len(targets) == 1:
 target = targets[0]
 _validate_target(target, model.output_shape)
 predicted_idx = K.constant([target], dtype='int64')
 else:
 raise ValueError('More than one prediction target '
 'is currently not supported '
 '(found a list that is not length 1): '
 '{}'.format(targets))
 elif targets is None:
 predicted_idx = K.argmax(model.output, axis=-1)
 else:
 raise TypeError('Invalid argument "targets" (must be list or None): %s' % targets)
 return predicted_idx

def _validate_target(target, output_shape):
 # type: (int, tuple) -> None
 """
 Check whether ``target``,
 an integer index into the model's output
 is valid for the given ``output_shape``.
 """
 if isinstance(target, int):
 output_nodes = output_shape[1:][0]
 if not (0 <= target < output_nodes):
 raise ValueError('Prediction target index is '
 'outside the required range [0, {}). '
 'Got {}'.format(output_nodes, target))
 else:
 raise TypeError('Prediction target must be int. '
 'Got: {}'.format(target))

 eli5.lime.lime

 Source code for eli5.lime.lime

-*- coding: utf-8 -*-
"""
An impementation of LIME (http://arxiv.org/abs/1602.04938), an algorithm to
explain predictions of black-box models.
"""
from __future__ import absolute_import
from typing import Any, Callable, Dict, Optional

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split
from sklearn.utils import check_random_state
from sklearn.base import clone, BaseEstimator

import eli5
from eli5.sklearn.utils import sklearn_version
from eli5.lime.samplers import BaseSampler
from eli5.lime.textutils import DEFAULT_TOKEN_PATTERN, CHAR_TOKEN_PATTERN
from eli5.lime.samplers import MaskingTextSamplers
from eli5.lime.utils import (
 fit_proba,
 score_with_sample_weight,
 mean_kl_divergence,
 fix_multiclass_predict_proba,
 rbf
)
from eli5.lime._vectorizer import SingleDocumentVectorizer

[docs]class TextExplainer(BaseEstimator):
 """
 TextExplainer allows to explain predictions of black-box text classifiers
 using LIME algorithm.

 Parameters

 n_samples : int
 A number of samples to generate and train on. Default is 5000.

 With larger n_samples it takes more CPU time and RAM to explain
 a prediction, but it could give better results. Larger n_samples
 could be also required to get good results if you don't want to
 make strong assumptions about the black-box classifier
 (e.g. char_based=True and position_dependent=True).
 char_based : bool
 True if explanation should be char-based, False if it should be
 token-based. Default is False.
 clf : object, optional
 White-box probabilistic classifier. It should be supported by eli5,
 follow scikit-learn interface and provide predict_proba method.
 When not set, a default classifier is used (logistic regression with
 elasticnet regularization trained with SGD).
 vec : object, optional
 Vectorizer which converts generated texts to feature vectors
 for the white-box classifier. When not set, a default vectorizer is
 used; which one depends on ``char_based`` and ``position_dependent``
 arguments.
 sampler : MaskingTextSampler or MaskingTextSamplers, optional
 Sampler used to generate modified versions of the text.
 position_dependent : bool
 When True, a special vectorizer is used which takes
 each token or character (depending on ``char_based`` value)
 in account separately. When False (default) a vectorized passed in
 ``vec`` or a default vectorizer is used.

 Default vectorizer converts text to vector using bag-of-ngrams
 or bag-of-char-ngrams approach (depending on ``char_based`` argument).
 It means that it may be not powerful enough to approximate a black-box
 classifier which e.g. takes in account word FOO in the beginning of
 the document, but not in the end.

 When ``position_dependent`` is True the model becomes powerful enough
 to account for that, but it can become more noisy and require
 larger ``n_samples`` to get an OK explanation.

 When ``char_based=False`` the default vectorizer uses word bigrams
 in addition to unigrams; this is less powerful than
 ``position_dependent=True``, but can give similar results in practice.
 rbf_sigma : float, optional
 Sigma parameter of RBF kernel used to post-process cosine similarity
 values. Default is None, meaning no post-processing
 (cosine simiilarity is used as sample weight as-is).
 Small ``rbf_sigma`` values (e.g. 0.1) tell the classifier to pay
 more attention to generated texts which are close to the original text.
 Large ``rbf_sigma`` values (e.g. 1.0) make distance between text
 irrelevant.

 Note that if you're using large ``rbf_sigma`` it could be more
 efficient to use custom ``samplers`` instead, in order to generate
 text samples which are closer to the original text in the first place.
 Use e.g. ``max_replace`` parameter of :class:`~.MaskingTextSampler`.
 random_state : integer or numpy.random.RandomState, optional
 random state
 expand_factor : int or None
 To approximate output of the probabilistic classifier generated
 dataset is expanded by ``expand_factor`` (10 by default)
 according to the predicted label probabilities. This is a workaround
 for scikit-learn limitation (no cross-entropy loss for non 1/0 labels).
 With larger values training takes longer, but probability output
 can be approximated better.

 expand_factor=None turns this feature off; pass None when you know
 that black-box classifier returns only 1.0 or 0.0 probabilities.
 token_pattern : str, optional
 Regex which matches a token. Use it to customize tokenization.
 Default value depends on ``char_based`` parameter.

 Attributes

 rng_ : numpy.random.RandomState
 random state

 samples_ : list[str]
 A list of samples the local model is trained on.
 Only available after :func:`fit`.

 X_ : ndarray or scipy.sparse matrix
 A matrix with vectorized ``samples_``.
 Only available after :func:`fit`.

 similarity_ : ndarray
 Similarity vector. Only available after :func:`fit`.

 y_proba_ : ndarray
 probabilities predicted by black-box classifier
 (``predict_proba(self.samples_)`` result).
 Only available after :func:`fit`.

 clf_ : object
 Trained white-box classifier. Only available after :func:`fit`.

 vec_ : object
 Fit white-box vectorizer. Only available after :func:`fit`.

 metrics_ : dict
 A dictionary with metrics of how well the local
 classification pipeline approximates the black-box pipeline.
 Only available after :func:`fit`.
 """
 def __init__(self,
 n_samples=5000, # type: int
 char_based=None, # type: bool
 clf=None,
 vec=None,
 sampler=None, # type: BaseSampler
 position_dependent=False, # type: bool
 rbf_sigma=None, # type: float
 random_state=None,
 expand_factor=10, # type: Optional[int]
 token_pattern=None, # type: Optional[str]
):
 # type: (...) -> None
 self.n_samples = n_samples
 self.random_state = random_state
 self.expand_factor = expand_factor
 self.rng_ = check_random_state(random_state)
 if clf is None:
 clf = self._default_clf()
 self.clf = clf

 if char_based is None:
 if token_pattern is None:
 self.char_based = False # type: Optional[bool]
 self.token_pattern = DEFAULT_TOKEN_PATTERN # type: str
 else:
 self.char_based = None
 self.token_pattern = token_pattern
 else:
 if token_pattern is None:
 token_pattern = (CHAR_TOKEN_PATTERN if char_based
 else DEFAULT_TOKEN_PATTERN)
 self.char_based = char_based
 self.token_pattern = token_pattern

 if sampler is None:
 sampler = MaskingTextSamplers(
 sampler_params=[{'bow': False}, {'bow': True}],
 weights=[0.7, 0.3],
 token_pattern=self.token_pattern,
 random_state=self.rng_,
)
 self.sampler = sampler
 self.rbf_sigma = rbf_sigma
 self.position_dependent = position_dependent
 if position_dependent:
 if vec is not None:
 raise ValueError("Custom vectorizers are only supported with "
 "position_dependent=False (because "
 "position_dependent=True uses its own "
 "vectorizer)")
 else:
 if vec is None:
 if self.char_based:
 vec = CountVectorizer(
 analyzer='char',
 ngram_range=(2, 5),
)
 else:
 vec = CountVectorizer(
 token_pattern=self.token_pattern,
 ngram_range=(1, 2),
)
 self.vec = vec

[docs] def fit(self,
 doc, # type: str
 predict_proba, # type: Callable[[Any], Any]
):
 # type: (...) -> TextExplainer
 """
 Explain ``predict_proba`` probabilistic classification function
 for the ``doc`` example. This method fits a local classification
 pipeline following LIME approach.

 To get the explanation use :meth:`show_prediction`,
 :meth:`show_weights`, :meth:`explain_prediction` or
 :meth:`explain_weights`.

 Parameters

 doc : str
 Text to explain
 predict_proba : callable
 Black-box classification pipeline. ``predict_proba``
 should be a function which takes a list of strings (documents)
 and return a matrix of shape ``(n_samples, n_classes)`` with
 probability values - a row per document and a column per output
 label.
 """
 self.doc_ = doc

 if self.position_dependent:
 samples, sims, mask, text = self.sampler.sample_near_with_mask(
 doc=doc,
 n_samples=self.n_samples
)
 self.vec_ = SingleDocumentVectorizer(
 token_pattern=self.token_pattern
).fit([doc])
 X = ~mask
 else:
 self.vec_ = clone(self.vec).fit([doc])
 samples, sims = self.sampler.sample_near(
 doc=doc,
 n_samples=self.n_samples
)
 X = self.vec_.transform(samples)

 if self.rbf_sigma is not None:
 sims = rbf(1-sims, sigma=self.rbf_sigma)

 self.samples_ = samples
 self.similarity_ = sims
 self.X_ = X
 self.y_proba_ = predict_proba(samples)
 self.clf_ = clone(self.clf)

 self.metrics_ = _train_local_classifier(
 estimator=self.clf_,
 samples=X,
 similarity=sims,
 y_proba=self.y_proba_,
 expand_factor=self.expand_factor,
 random_state=self.rng_
)
 return self

[docs] def show_prediction(self, **kwargs):
 """
 Call :func:`eli5.show_prediction` for the locally-fit
 classification pipeline. Keyword arguments are passed
 to :func:`eli5.show_prediction`.

 :func:`fit` must be called before using this method.
 """
 self._fix_target_names(kwargs)
 return eli5.show_prediction(self.clf_, self.doc_, vec=self.vec_,
 **kwargs)

[docs] def explain_prediction(self, **kwargs):
 """
 Call :func:`eli5.explain_prediction` for the locally-fit
 classification pipeline. Keyword arguments are passed
 to :func:`eli5.explain_prediction`.

 :func:`fit` must be called before using this method.
 """
 self._fix_target_names(kwargs)
 return eli5.explain_prediction(self.clf_, self.doc_, vec=self.vec_,
 **kwargs)

[docs] def show_weights(self, **kwargs):
 """
 Call :func:`eli5.show_weights` for the locally-fit
 classification pipeline. Keyword arguments are passed
 to :func:`eli5.show_weights`.

 :func:`fit` must be called before using this method.
 """
 self._fix_target_names(kwargs)
 return eli5.show_weights(self.clf_, vec=self.vec_, **kwargs)

[docs] def explain_weights(self, **kwargs):
 """
 Call :func:`eli5.show_weights` for the locally-fit
 classification pipeline. Keyword arguments are passed
 to :func:`eli5.show_weights`.

 :func:`fit` must be called before using this method.
 """
 self._fix_target_names(kwargs)
 return eli5.explain_weights(self.clf_, vec=self.vec_, **kwargs)

 def _fix_target_names(self, kwargs):
 target_names = kwargs.get('target_names', None)
 if not target_names:
 return
 kwargs['target_names'] = np.array(target_names)[self.clf_.classes_]

 def _default_clf(self):
 kwargs = dict(
 loss='log',
 penalty='elasticnet',
 alpha=1e-3,
 random_state=self.rng_
)
 if sklearn_version() >= '0.19':
 kwargs['tol'] = 1e-3
 return SGDClassifier(**kwargs)

def _train_local_classifier(estimator,
 samples,
 similarity, # type: np.ndarray
 y_proba, # type: np.ndarray
 expand_factor=10, # type: Optional[int]
 test_size=0.3, # type: float
 random_state=None,
):
 # type: (...) -> Dict[str, float]
 rng = check_random_state(random_state)

 (X_train, X_test,
 similarity_train, similarity_test,
 y_proba_train, y_proba_test) = train_test_split(samples,
 similarity,
 y_proba,
 test_size=test_size,
 random_state=rng)

 # XXX: in the original lime code instead of a probabilitsic classifier
 # they build several regression models which try to output probabilities.
 #
 # XXX: Probability information is helpful because it could be hard
 # to get enough examples of all classes automatically, so we're fitting
 # classifier to produce the same probabilities, not only the same
 # best answer.

 # TODO: feature selection
 # Ideally, it should be supported as a Pipeline (i.e. user should
 # be able to configure it).
 fit_proba(estimator, X_train, y_proba_train,
 expand_factor=expand_factor,
 sample_weight=similarity_train,
 random_state=rng)

 y_proba_test_pred = estimator.predict_proba(X_test)
 if y_proba_test_pred.shape != y_proba_test.shape:
 # Sometimes generated training labels may contain only a subset of
 # target classes; it means it could happen that dimensions
 # of predicted probability matrices don't match.
 #
 # XXX: the fix is not complete; to explain predictions
 # of the fitted estimator one still have to take care of target_names.
 if not hasattr(estimator, 'classes_'):
 raise ValueError("Result dimensions don't match and estimator"
 "doesn't provide 'classes_' attribute; can't"
 "figure out how are columns related.")
 seen_classes = estimator.classes_
 complete_classes = np.arange(y_proba.shape[1])
 y_proba_test_pred = fix_multiclass_predict_proba(
 y_proba=y_proba_test_pred,
 seen_classes=seen_classes,
 complete_classes=complete_classes
)

 return {
 'mean_KL_divergence': mean_kl_divergence(
 y_proba_test_pred,
 y_proba_test,
 sample_weight=similarity_test
),
 'score': score_with_sample_weight(estimator,
 X_test,
 y_proba_test.argmax(axis=1),
 sample_weight=similarity_test)
 }

 eli5.lime.samplers

 Source code for eli5.lime.samplers

-*- coding: utf-8 -*-
from __future__ import absolute_import
import abc
from functools import partial
from typing import List, Tuple, Any, Union, Dict, Optional
import six

import numpy as np
from scipy.stats import itemfreq
from sklearn.base import BaseEstimator, clone
from sklearn.neighbors import KernelDensity
from sklearn.metrics import pairwise_distances
from sklearn.model_selection import GridSearchCV, KFold
from sklearn.utils import check_random_state

from eli5.utils import vstack
from eli5.lime.utils import rbf
from .textutils import generate_samples, DEFAULT_TOKEN_PATTERN, TokenizedText

[docs]@six.add_metaclass(abc.ABCMeta)
class BaseSampler(BaseEstimator):
 """
 Base sampler class.
 Sampler is an object which generates examples similar to a given example.
 """
[docs] @abc.abstractmethod
 def sample_near(self, doc, n_samples=1):
 """
 Return (examples, similarity) tuple with generated documents
 similar to a given document and a vector of similarity values.
 """
 raise NotImplementedError()

[docs] def fit(self, X=None, y=None):
 return self

[docs]class MaskingTextSampler(BaseSampler):
 """
 Sampler for text data. It randomly removes or replaces tokens from text.

 Parameters

 token_pattern : str, optional
 Regexp for token matching
 bow : bool, optional
 Sampler could either replace all instances of a given token
 (bow=True, bag of words sampling) or replace just a single token
 (bow=False).
 random_state : integer or numpy.random.RandomState, optional
 random state
 replacement : str
 Defalt value is '' - by default tokens are removed. If you want to
 preserve the total token count set ``replacement`` to a non-empty
 string, e.g. 'UNKN'.
 min_replace : int or float
 A minimum number of tokens to replace. Default is 1, meaning 1 token.
 If this value is float in range [0.0, 1.0], it is used as a ratio.
 More than min_replace tokens could be replaced if group_size > 1.
 max_replace : int or float
 A maximum number of tokens to replace. Default is 1.0, meaning
 all tokens can be replaced. If this value is float in range
 [0.0, 0.1], it is used as a ratio.
 group_size : int
 When group_size > 1, groups of nearby tokens are replaced all
 in once (each token is still replaced with a replacement).
 Default is 1, meaning individual tokens are replaced.
 """
 def __init__(self,
 token_pattern=None, # type: Optional[str]
 bow=True, # type: bool
 random_state=None,
 replacement='', # type: str
 min_replace=1, # type: Union[int, float]
 max_replace=1.0, # type: Union[int, float]
 group_size=1, # type: int
):
 # type: (...) -> None
 self.token_pattern = token_pattern or DEFAULT_TOKEN_PATTERN
 self.bow = bow
 self.random_state = random_state
 self.replacement = replacement
 self.min_replace = min_replace
 self.max_replace = max_replace
 self.group_size = group_size
 self.rng_ = check_random_state(self.random_state)

[docs] def sample_near(self, doc, n_samples=1):
 # type: (str, int) -> Tuple[List[str], np.ndarray]
 docs, similarities, mask, text = self.sample_near_with_mask(
 doc=doc, n_samples=n_samples
)
 return docs, similarities

[docs] def sample_near_with_mask(self,
 doc, # type: Union[TokenizedText, str]
 n_samples=1 # type: int
):
 # type: (...) -> Tuple[List[str], np.ndarray, np.ndarray, TokenizedText]
 if not isinstance(doc, TokenizedText):
 doc = TokenizedText(doc, token_pattern=self.token_pattern)

 gen_samples = partial(generate_samples, doc,
 n_samples=n_samples,
 replacement=self.replacement,
 min_replace=self.min_replace,
 max_replace=self.max_replace,
 group_size=self.group_size,
 random_state=self.rng_)
 docs, similarity, mask = gen_samples(bow=self.bow)
 return docs, similarity, mask, doc

[docs]class MaskingTextSamplers(BaseSampler):
 """
 Union of MaskingText samplers, with weights.
 :meth:`sample_near` or :meth:`sample_near_with_mask` generate
 a requested number of samples using all samplers; a probability of
 using a sampler is proportional to its weight.

 All samplers must use the same token_pattern in order for
 :meth:`sample_near_with_mask` to work.

 Create it with a list of {param: value} dicts
 with :class:`MaskingTextSampler` paremeters.
 """
 def __init__(self,
 sampler_params, # type: List[Dict[str, Any]]
 token_pattern=None, # type: Optional[str]
 random_state=None,
 weights=None, # type: Union[np.ndarray, List[float]]
):
 # type: (...) -> None
 self.random_state = random_state
 self.rng_ = check_random_state(random_state)
 self.token_pattern = token_pattern
 self.samplers = list(map(self._create_sampler, sampler_params))
 if weights is None:
 self.weights = np.ones(len(self.samplers))
 else:
 self.weights = np.array(weights)
 self.weights /= self.weights.sum()

 def _create_sampler(self, extra):
 # type: (Dict) -> MaskingTextSampler
 params = dict(
 token_pattern=self.token_pattern,
 random_state=self.rng_,
) # type: Dict[str, Any]
 params.update(extra)
 return MaskingTextSampler(**params)

[docs] def sample_near(self, doc, n_samples=1):
 # type: (str, int) -> Tuple[List[str], np.ndarray]
 assert n_samples >= 1
 all_docs = [] # type: List[str]
 similarities = []
 for sampler, freq in self._sampler_n_samples(n_samples):
 docs, sims = sampler.sample_near(doc, n_samples=freq)
 all_docs.extend(docs)
 similarities.append(sims)
 return all_docs, np.hstack(similarities)

[docs] def sample_near_with_mask(self,
 doc, # type: str
 n_samples=1 # type: int
):
 # type: (...) -> Tuple[List[str], np.ndarray, np.ndarray, TokenizedText]
 assert n_samples >= 1
 assert self.token_pattern is not None
 text = TokenizedText(doc, token_pattern=self.token_pattern)
 all_docs = [] # type: List[str]
 similarities = []
 masks = []
 for sampler, freq in self._sampler_n_samples(n_samples):
 docs, sims, mask, _text = sampler.sample_near_with_mask(text, freq)
 all_docs.extend(docs)
 similarities.append(sims)
 masks.append(mask)
 return all_docs, np.hstack(similarities), vstack(masks), text

 def _sampler_n_samples(self, n_samples):
 """ Return (sampler, n_samplers) tuples """
 sampler_indices = self.rng_.choice(range(len(self.samplers)),
 size=n_samples,
 replace=True,
 p=self.weights)
 return [
 (self.samplers[idx], freq)
 for idx, freq in itemfreq(sampler_indices)
]

_BANDWIDTHS = np.hstack([
 [1e-6], # for discrete features
 np.logspace(-3, 4, 15) # general-purpose (0.001 ... 10000) range
])

class _BaseKernelDensitySampler(BaseSampler):
 def __init__(self, kde=None, metric='euclidean', fit_bandwidth=True,
 bandwidths=_BANDWIDTHS, sigma='bandwidth', n_jobs=1,
 random_state=None):
 if kde is None:
 kde = KernelDensity(rtol=1e-7, atol=1e-7)
 self.kde = kde
 self.fit_bandwidth = fit_bandwidth
 self.bandwidths = bandwidths
 self.metric = metric
 self.n_jobs = n_jobs
 if not isinstance(sigma, (int, float)):
 allowed = {'bandwidth'}
 if sigma not in allowed:
 raise ValueError("sigma must be either "
 "a number or one of {}".format(allowed))
 self.sigma = sigma
 self.random_state = random_state
 self.rng_ = check_random_state(self.random_state)

 def _get_grid(self):
 param_grid = {'bandwidth': self.bandwidths}
 cv = KFold(n_splits=3, shuffle=True, random_state=self.rng_)
 return GridSearchCV(self.kde, param_grid=param_grid, n_jobs=self.n_jobs,
 cv=cv)

 def _fit_kde(self, kde, X):
 # type: (KernelDensity, np.ndarray) -> Tuple[GridSearchCV, KernelDensity]
 if self.fit_bandwidth:
 grid = self._get_grid()
 grid.fit(X)
 return grid, grid.best_estimator_
 else:
 return None, clone(kde).fit(X)

 def _similarity(self, doc, samples):
 distance = _distances(doc, samples, metric=self.metric)
 return rbf(distance, sigma=self.sigma_)

 def _set_sigma(self, bandwidth):
 if self.sigma == 'bandwidth':
 # Sigma estimation using optimal bandwidth found by KDE.
 self.sigma_ = bandwidth
 else:
 self.sigma_ = self.sigma

[docs]class MultivariateKernelDensitySampler(_BaseKernelDensitySampler):
 """
 General-purpose sampler for dense continuous data, based on multivariate
 kernel density estimation.

 The limitation is that a single bandwidth value is used for all dimensions,
 i.e. bandwith matrix is a positive scalar times the identity matrix.
 It is a problem e.g. when features have different variances
 (e.g. some of them are one-hot encoded and other are continuous).
 """
[docs] def fit(self, X, y=None):
 self.grid_, self.kde_ = self._fit_kde(self.kde, X)
 self._set_sigma(self.kde_.bandwidth)
 return self

[docs] def sample_near(self, doc, n_samples=1):
 # XXX: it doesn't sample only near the given document, it
 # samples everywhere
 doc = np.asarray(doc)
 samples = self.kde_.sample(n_samples, random_state=self.rng_)
 return samples, self._similarity(doc, samples)

[docs]class UnivariateKernelDensitySampler(_BaseKernelDensitySampler):
 """
 General-purpose sampler for dense continuous data, based on univariate
 kernel density estimation. It estimates a separate probability
 distribution for each input dimension.

 The limitation is that variable interactions are not taken in account.

 Unlike KernelDensitySampler it uses different bandwidths for different
 dimensions; because of that it can handle one-hot encoded features somehow
 (make sure to at least tune the default ``sigma`` parameter).
 Also, at sampling time it replaces only random subsets
 of the features instead of generating totally new examples.
 """
[docs] def fit(self, X, y=None):
 self.kdes_ = [] # type: List[KernelDensity]
 self.grids_ = [] # type: List[GridSearchCV]
 num_features = X.shape[-1]
 for i in range(num_features):
 grid, kde = self._fit_kde(self.kde, X[:, i].reshape(-1, 1))
 self.grids_.append(grid)
 self.kdes_.append(kde)
 self._set_sigma(bandwidth=max(kde.bandwidth for kde in self.kdes_))
 return self

[docs] def sample_near(self, doc, n_samples=1):
 """
 Sample near the document by replacing some of its features
 with values sampled from distribution found by KDE.
 """
 doc = np.asarray(doc)
 num_features = len(self.kdes_)
 sizes = self.rng_.randint(low=1, high=num_features + 1, size=n_samples)
 samples = []
 for size in sizes:
 to_change = self.rng_.choice(num_features, size, replace=False)
 new_doc = doc.copy()
 for i in to_change:
 kde = self.kdes_[i]
 new_doc[i] = kde.sample(random_state=self.rng_).ravel()
 samples.append(new_doc)
 samples = np.asarray(samples)
 return samples, self._similarity(doc, samples)

def _distances(doc, samples, metric):
 doc = doc.reshape(1, -1)
 return pairwise_distances(samples, doc, metric=metric).ravel()

 eli5.lime.textutils

 Source code for eli5.lime.textutils

-*- coding: utf-8 -*-
"""
Utilities for text generation.
"""
from __future__ import absolute_import
import re
import math
from typing import List, Tuple, Union, Optional

import numpy as np
from sklearn.utils import check_random_state

from eli5.utils import indices_to_bool_mask, vstack

the same as scikit-learn token pattern, but allows single-char tokens
DEFAULT_TOKEN_PATTERN = r'(?u)\b\w+\b'

non-whitespace chars
CHAR_TOKEN_PATTERN = r'[^\s]'

[docs]def generate_samples(text, # type: TokenizedText
 n_samples=500, # type: int
 bow=True, # type: bool
 random_state=None,
 replacement='', # type: str
 min_replace=1, # type: Union[int, float]
 max_replace=1.0, # type: Union[int, float]
 group_size=1, # type: int
):
 # type: (...) -> Tuple[List[str], np.ndarray, np.ndarray]
 """
 Return ``n_samples`` changed versions of text (with some words removed),
 along with distances between the original text and a generated
 examples. If ``bow=False``, all tokens are considered unique
 (i.e. token position matters).
 """
 kwargs = dict(
 n_samples=n_samples,
 replacement=replacement,
 random_state=random_state,
 min_replace=min_replace,
 max_replace=max_replace,
)
 if bow:
 num_tokens = len(text.vocab)
 res = text.replace_random_tokens_bow(**kwargs)
 else:
 num_tokens = len(text.tokens)
 res = text.replace_random_tokens(group_size=group_size, **kwargs)

 texts, num_removed_vec, masks = zip(*res)
 similarity = cosine_similarity_vec(num_tokens, num_removed_vec)
 return texts, similarity, vstack(masks)

[docs]def cosine_similarity_vec(num_tokens, num_removed_vec):
 """
 Return cosine similarity between a binary vector with all ones
 of length ``num_tokens`` and vectors of the same length with
 ``num_removed_vec`` elements set to zero.
 """
 remaining = -np.array(num_removed_vec) + num_tokens
 return remaining / (np.sqrt(num_tokens + 1e-6) * np.sqrt(remaining + 1e-6))

class TokenizedText(object):
 def __init__(self, text, token_pattern=DEFAULT_TOKEN_PATTERN):
 # type: (str, str) -> None
 self.text = text
 self.split = SplitResult.fromtext(text, token_pattern)
 self._vocab = None # type: Optional[List[str]]

 def replace_random_tokens(self,
 n_samples, # type: int
 replacement='', # type: str
 random_state=None,
 min_replace=1, # type: Union[int, float]
 max_replace=1.0, # type: Union[int, float]
 group_size=1 # type: int
):
 # type: (...) -> List[Tuple[str, int, np.ndarray]]
 """
 Return a list of ``(text, replaced_count, mask)``
 tuples with n_samples versions of text with some words replaced.
 By default words are replaced with '', i.e. removed.
 """
 n_tokens = len(self.tokens)
 indices = np.arange(n_tokens)
 if not n_tokens:
 nomask = np.array([], dtype=int)
 return [('', 0, nomask)] * n_samples

 min_replace, max_replace = self._get_min_max(min_replace, max_replace,
 n_tokens)
 rng = check_random_state(random_state)
 replace_sizes = rng.randint(low=min_replace, high=max_replace + 1,
 size=n_samples)
 res = []
 for num_to_replace in replace_sizes:
 idx_to_replace = rng.choice(indices, num_to_replace, replace=False)
 idx_to_replace = np.array([idx_to_replace] + [
 idx_to_replace + shift for shift in range(1, group_size)
]).ravel()
 padded_size = n_tokens + group_size - 1
 mask = indices_to_bool_mask(idx_to_replace, padded_size)[:n_tokens]
 s = self.split.masked(mask, replacement)
 res.append((s.text, num_to_replace, mask))
 return res

 def replace_random_tokens_bow(self,
 n_samples, # type: int
 replacement='', # type: str
 random_state=None,
 min_replace=1, # type: Union[int, float]
 max_replace=1.0, # type: Union[int, float]
):
 # type: (...) -> List[Tuple[str, int, np.ndarray]]
 """
 Return a list of ``(text, replaced_words_count, mask)`` tuples with
 n_samples versions of text with some words replaced.
 If a word is replaced, all duplicate words are also replaced
 from the text. By default words are replaced with '', i.e. removed.
 """
 if not self.vocab:
 nomask = np.array([], dtype=int)
 return [('', 0, nomask)] * n_samples

 min_replace, max_replace = self._get_min_max(min_replace, max_replace,
 len(self.vocab))
 rng = check_random_state(random_state)
 replace_sizes = rng.randint(low=min_replace, high=max_replace + 1,
 size=n_samples)
 res = []
 for num_to_replace in replace_sizes:
 tokens_to_replace = set(rng.choice(self.vocab, num_to_replace,
 replace=False))
 idx_to_replace = [idx for idx, token in enumerate(self.tokens)
 if token in tokens_to_replace]
 mask = indices_to_bool_mask(idx_to_replace, len(self.tokens))
 s = self.split.masked(idx_to_replace, replacement)
 res.append((s.text, num_to_replace, mask))
 return res

 def _get_min_max(self,
 min_replace, # type: Union[int, float]
 max_replace, # type: Union[int, float]
 hard_maximum # type: int
):
 # type: (...) -> Tuple[int, int]
 if isinstance(min_replace, float):
 min_replace = int(math.floor(hard_maximum * min_replace)) or 1
 if isinstance(max_replace, float):
 max_replace = int(math.ceil(hard_maximum * max_replace))
 else:
 max_replace = min(max_replace, hard_maximum)
 return min_replace, max_replace

 @property
 def vocab(self):
 # type: () -> List[str]
 if self._vocab is None:
 self._vocab = sorted(set(self.tokens))
 return self._vocab

 @property
 def tokens(self):
 return self.split.tokens

 @property
 def spans_and_tokens(self):
 return list(zip(self.split.token_spans, self.split.tokens))

class SplitResult(object):
 def __init__(self, parts):
 self.parts = np.array(parts, ndmin=1)
 self.lenghts = np.array([len(p) for p in parts])
 self.starts = self.lenghts.cumsum()

 @classmethod
 def fromtext(cls, text, token_pattern=DEFAULT_TOKEN_PATTERN):
 # type: (str, str) -> SplitResult
 token_pattern = u"(%s)" % token_pattern
 parts = re.split(token_pattern, text)
 return cls(parts)

 @property
 def separators(self):
 return self.parts[::2]

 @property
 def tokens(self):
 return self.parts[1::2]

 @property
 def token_spans(self):
 # type: () -> List[Tuple[int, int]]
 return list(zip(self.starts[::2], self.starts[1::2]))

 def copy(self):
 # type: () -> SplitResult
 return self.__class__(self.parts.copy())

 def masked(self, invmask, replacement=''):
 # type: (Union[np.ndarray, List[int]], str) -> SplitResult
 s = self.copy()
 s.tokens[invmask] = replacement
 return s

 @property
 def text(self):
 # type: () -> str
 return "".join(self.parts)

 eli5.sklearn.explain_prediction

 Source code for eli5.sklearn.explain_prediction

-*- coding: utf-8 -*-
from functools import partial

import numpy as np
import scipy.sparse as sp
from sklearn.base import BaseEstimator
from sklearn.ensemble import (
 ExtraTreesClassifier,
 ExtraTreesRegressor,
 GradientBoostingClassifier,
 GradientBoostingRegressor,
 RandomForestClassifier,
 RandomForestRegressor,
)
from sklearn.linear_model import (
 ElasticNet, # includes Lasso, MultiTaskElasticNet, etc.
 ElasticNetCV,
 HuberRegressor,
 Lars,
 LassoCV,
 LinearRegression,
 LogisticRegression,
 LogisticRegressionCV,
 OrthogonalMatchingPursuit,
 OrthogonalMatchingPursuitCV,
 PassiveAggressiveClassifier,
 PassiveAggressiveRegressor,
 Perceptron,
 Ridge,
 RidgeCV,
 RidgeClassifier,
 RidgeClassifierCV,
 SGDClassifier,
 SGDRegressor,
 TheilSenRegressor,
)
from sklearn.svm import (
 LinearSVC,
 LinearSVR,
 SVC,
 SVR,
 NuSVC,
 NuSVR,
 OneClassSVM,
)
from sklearn.multiclass import OneVsRestClassifier
from sklearn.tree import (
 DecisionTreeClassifier,
 DecisionTreeRegressor
)

from eli5.base import Explanation, TargetExplanation
from eli5.base_utils import singledispatch
from eli5.utils import (
 get_target_display_names,
 get_binary_target_scale_label_id
)
from eli5.sklearn.utils import (
 add_intercept,
 get_coef,
 get_default_target_names,
 get_X,
 get_X0,
 is_multiclass_classifier,
 is_multitarget_regressor,
 predict_proba,
 has_intercept,
 handle_vec,
)
from eli5.sklearn.text import add_weighted_spans
from eli5.explain import explain_prediction
from eli5._decision_path import DECISION_PATHS_CAVEATS
from eli5._feature_weights import get_top_features_filtered

[docs]@singledispatch
def explain_prediction_sklearn(estimator, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 vectorized=False):
 """ Return an explanation of a scikit-learn estimator """
 return explain_prediction_sklearn_not_supported(estimator, doc)

@explain_prediction.register(BaseEstimator)
def explain_prediction_sklearn_not_supported(
 estimator, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 vectorized=False):
 return Explanation(
 estimator=repr(estimator),
 error="estimator %r is not supported" % estimator,
)

def register(cls):
 def deco(f):
 return explain_prediction.register(cls)(
 explain_prediction_sklearn.register(cls)(f))
 return deco

@explain_prediction.register(OneVsRestClassifier)
def explain_prediction_ovr(clf, doc, **kwargs):
 estimator = clf.estimator
 func = explain_prediction.dispatch(estimator.__class__)
 return func(clf, doc, **kwargs)

@explain_prediction_sklearn.register(OneVsRestClassifier)
def explain_prediction_ovr_sklearn(clf, doc, **kwargs):
 # dispatch OvR to eli5.sklearn
 # if explain_prediction_sklearn is called explicitly
 estimator = clf.estimator
 func = explain_prediction_sklearn.dispatch(estimator.__class__)
 return func(clf, doc, **kwargs)

[docs]@register(LogisticRegression)
@register(LogisticRegressionCV)
@register(SGDClassifier)
@register(PassiveAggressiveClassifier)
@register(Perceptron)
@register(LinearSVC)
@register(RidgeClassifier)
@register(RidgeClassifierCV)
def explain_prediction_linear_classifier(clf, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 vectorized=False,
):
 """
 Explain prediction of a linear classifier.

 See :func:`eli5.explain_prediction` for description of
 ``top``, ``top_targets``, ``target_names``, ``targets``,
 ``feature_names``, ``feature_re`` and ``feature_filter`` parameters.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the classifier ``clf``
 (e.g. a fitted CountVectorizer instance); you can pass it
 instead of ``feature_names``.

 ``vectorized`` is a flag which tells eli5 if ``doc`` should be
 passed through ``vec`` or not. By default it is False, meaning that
 if ``vec`` is not None, ``vec.transform([doc])`` is passed to the
 classifier. Set it to True if you're passing ``vec``, but ``doc``
 is already vectorized.
 """
 vec, feature_names = handle_vec(clf, doc, vec, vectorized, feature_names)
 X = get_X(doc, vec=vec, vectorized=vectorized, to_dense=True)

 proba = predict_proba(clf, X)
 score, = clf.decision_function(X)

 if has_intercept(clf):
 X = add_intercept(X)
 x = get_X0(X)

 feature_names, flt_indices = feature_names.handle_filter(
 feature_filter, feature_re, x)

 res = Explanation(
 estimator=repr(clf),
 method='linear model',
 targets=[],
)
 assert res.targets is not None

 _weights = _linear_weights(clf, x, top, feature_names, flt_indices)
 classes = getattr(clf, "classes_", ["-1", "1"]) # OneClassSVM support
 display_names = get_target_display_names(classes, target_names,
 targets, top_targets, score)

 if is_multiclass_classifier(clf):
 for label_id, label in display_names:
 target_expl = TargetExplanation(
 target=label,
 feature_weights=_weights(label_id),
 score=score[label_id],
 proba=proba[label_id] if proba is not None else None,
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)
 else:
 if len(display_names) == 1: # target is passed explicitly
 label_id, target = display_names[0]
 else:
 label_id = 1 if score >= 0 else 0
 target = display_names[label_id][1]
 scale = -1 if label_id == 0 else 1

 target_expl = TargetExplanation(
 target=target,
 feature_weights=_weights(0, scale=scale),
 score=score,
 proba=proba[label_id] if proba is not None else None,
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)

 return res

@register(NuSVC)
@register(SVC)
@register(OneClassSVM)
def test_explain_prediction_libsvm_linear(clf, doc, *args, **kwargs):
 if clf.kernel != 'linear':
 return Explanation(
 estimator=repr(clf),
 error="only kernel='linear' is currently supported for "
 "libsvm-based classifiers",
)
 if len(getattr(clf, 'classes_', [])) > 2:
 return Explanation(
 estimator=repr(clf),
 error="only binary libsvm-based classifiers are supported",
)
 return explain_prediction_linear_classifier(clf, doc, *args, **kwargs)

[docs]@register(ElasticNet)
@register(ElasticNetCV)
@register(HuberRegressor)
@register(Lars)
@register(LassoCV)
@register(LinearRegression)
@register(LinearSVR)
@register(OrthogonalMatchingPursuit)
@register(OrthogonalMatchingPursuitCV)
@register(PassiveAggressiveRegressor)
@register(Ridge)
@register(RidgeCV)
@register(SGDRegressor)
@register(TheilSenRegressor)
@register(SVR)
@register(NuSVR)
def explain_prediction_linear_regressor(reg, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 vectorized=False):
 """
 Explain prediction of a linear regressor.

 See :func:`eli5.explain_prediction` for description of
 ``top``, ``top_targets``, ``target_names``, ``targets``,
 ``feature_names``, ``feature_re`` and ``feature_filter`` parameters.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the classifier ``clf``;
 you can pass it instead of ``feature_names``.

 ``vectorized`` is a flag which tells eli5 if ``doc`` should be
 passed through ``vec`` or not. By default it is False, meaning that
 if ``vec`` is not None, ``vec.transform([doc])`` is passed to the
 regressor ``reg``. Set it to True if you're passing ``vec``,
 but ``doc`` is already vectorized.
 """
 if isinstance(reg, (SVR, NuSVR)) and reg.kernel != 'linear':
 return explain_prediction_sklearn_not_supported(reg, doc)

 vec, feature_names = handle_vec(reg, doc, vec, vectorized, feature_names)
 X = get_X(doc, vec=vec, vectorized=vectorized, to_dense=True)

 score, = reg.predict(X)

 if has_intercept(reg):
 X = add_intercept(X)
 x = get_X0(X)

 feature_names, flt_indices = feature_names.handle_filter(
 feature_filter, feature_re, x)

 res = Explanation(
 estimator=repr(reg),
 method='linear model',
 targets=[],
 is_regression=True,
)
 assert res.targets is not None

 _weights = _linear_weights(reg, x, top, feature_names, flt_indices)
 names = get_default_target_names(reg)
 display_names = get_target_display_names(names, target_names, targets,
 top_targets, score)

 if is_multitarget_regressor(reg):
 for label_id, label in display_names:
 target_expl = TargetExplanation(
 target=label,
 feature_weights=_weights(label_id),
 score=score[label_id],
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)
 else:
 target_expl = TargetExplanation(
 target=display_names[0][1],
 feature_weights=_weights(0),
 score=score,
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)

 return res

DECISION_PATHS_CAVEATS = """
Feature weights are calculated by following decision paths in trees
of an ensemble (or a single tree for DecisionTreeClassifier).
Each node of the tree has an output score, and contribution of a feature
on the decision path is how much the score changes from parent to child.
Weights of all features sum to the output score or proba of the estimator.
""" + DECISION_PATHS_CAVEATS

DESCRIPTION_TREE_CLF_BINARY = """
Features with largest coefficients.
""" + DECISION_PATHS_CAVEATS

DESCRIPTION_TREE_CLF_MULTICLASS = """
Features with largest coefficients per class.
""" + DECISION_PATHS_CAVEATS

DESCRIPTION_TREE_REG = """
Features with largest coefficients.
""" + DECISION_PATHS_CAVEATS

DESCRIPTION_TREE_REG_MULTITARGET = """
Features with largest coefficients per target.
""" + DECISION_PATHS_CAVEATS

[docs]@register(DecisionTreeClassifier)
@register(ExtraTreesClassifier)
@register(GradientBoostingClassifier)
@register(RandomForestClassifier)
def explain_prediction_tree_classifier(
 clf, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 vectorized=False):
 """ Explain prediction of a tree classifier.

 See :func:`eli5.explain_prediction` for description of
 ``top``, ``top_targets``, ``target_names``, ``targets``,
 ``feature_names``, ``feature_re`` and ``feature_filter`` parameters.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the classifier ``clf``
 (e.g. a fitted CountVectorizer instance); you can pass it
 instead of ``feature_names``.

 ``vectorized`` is a flag which tells eli5 if ``doc`` should be
 passed through ``vec`` or not. By default it is False, meaning that
 if ``vec`` is not None, ``vec.transform([doc])`` is passed to the
 classifier. Set it to True if you're passing ``vec``,
 but ``doc`` is already vectorized.

 Method for determining feature importances follows an idea from
 http://blog.datadive.net/interpreting-random-forests/.
 Feature weights are calculated by following decision paths in trees
 of an ensemble (or a single tree for DecisionTreeClassifier).
 Each node of the tree has an output score, and contribution of a feature
 on the decision path is how much the score changes from parent to child.
 Weights of all features sum to the output score or proba of the estimator.
 """
 vec, feature_names = handle_vec(clf, doc, vec, vectorized, feature_names)
 X = get_X(doc, vec=vec, vectorized=vectorized)
 if feature_names.bias_name is None:
 # Tree estimators do not have an intercept, but here we interpret
 # them as having an intercept
 feature_names.bias_name = '<BIAS>'

 proba = predict_proba(clf, X)
 if hasattr(clf, 'decision_function'):
 score, = clf.decision_function(X)
 else:
 score = None

 is_multiclass = clf.n_classes_ > 2
 feature_weights = _trees_feature_weights(
 clf, X, feature_names, clf.n_classes_)
 x = get_X0(add_intercept(X))
 flt_feature_names, flt_indices = feature_names.handle_filter(
 feature_filter, feature_re, x)

 def _weights(label_id, scale=1.0):
 weights = feature_weights[:, label_id]
 return get_top_features_filtered(x, flt_feature_names, flt_indices,
 weights, top, scale)

 res = Explanation(
 estimator=repr(clf),
 method='decision path',
 targets=[],
 description=(DESCRIPTION_TREE_CLF_MULTICLASS if is_multiclass
 else DESCRIPTION_TREE_CLF_BINARY),
)
 assert res.targets is not None

 display_names = get_target_display_names(
 clf.classes_, target_names, targets, top_targets,
 score=score if score is not None else proba)

 if is_multiclass:
 for label_id, label in display_names:
 target_expl = TargetExplanation(
 target=label,
 feature_weights=_weights(label_id),
 score=score[label_id] if score is not None else None,
 proba=proba[label_id] if proba is not None else None,
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)
 else:
 target, scale, label_id = get_binary_target_scale_label_id(
 score, display_names, proba)
 target_expl = TargetExplanation(
 target=target,
 feature_weights=_weights(label_id, scale=scale),
 score=score if score is not None else None,
 proba=proba[label_id] if proba is not None else None,
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)

 return res

[docs]@register(DecisionTreeRegressor)
@register(ExtraTreesRegressor)
@register(GradientBoostingRegressor)
@register(RandomForestRegressor)
def explain_prediction_tree_regressor(
 reg, doc,
 vec=None,
 top=None,
 top_targets=None,
 target_names=None,
 targets=None,
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 vectorized=False):
 """ Explain prediction of a tree regressor.

 See :func:`eli5.explain_prediction` for description of
 ``top``, ``top_targets``, ``target_names``, ``targets``,
 ``feature_names``, ``feature_re`` and ``feature_filter`` parameters.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the regressor ``reg``
 (e.g. a fitted CountVectorizer instance); you can pass it
 instead of ``feature_names``.

 ``vectorized`` is a flag which tells eli5 if ``doc`` should be
 passed through ``vec`` or not. By default it is False, meaning that
 if ``vec`` is not None, ``vec.transform([doc])`` is passed to the
 regressor. Set it to True if you're passing ``vec``,
 but ``doc`` is already vectorized.

 Method for determining feature importances follows an idea from
 http://blog.datadive.net/interpreting-random-forests/.
 Feature weights are calculated by following decision paths in trees
 of an ensemble (or a single tree for DecisionTreeRegressor).
 Each node of the tree has an output score, and contribution of a feature
 on the decision path is how much the score changes from parent to child.
 Weights of all features sum to the output score of the estimator.
 """
 vec, feature_names = handle_vec(reg, doc, vec, vectorized, feature_names)
 X = get_X(doc, vec=vec, vectorized=vectorized)
 if feature_names.bias_name is None:
 # Tree estimators do not have an intercept, but here we interpret
 # them as having an intercept
 feature_names.bias_name = '<BIAS>'

 score, = reg.predict(X)
 num_targets = getattr(reg, 'n_outputs_', 1)
 is_multitarget = num_targets > 1
 feature_weights = _trees_feature_weights(reg, X, feature_names, num_targets)
 x = get_X0(add_intercept(X))
 flt_feature_names, flt_indices = feature_names.handle_filter(
 feature_filter, feature_re, x)

 def _weights(label_id, scale=1.0):
 weights = feature_weights[:, label_id]
 return get_top_features_filtered(x, flt_feature_names, flt_indices,
 weights, top, scale)

 res = Explanation(
 estimator=repr(reg),
 method='decision path',
 description=(DESCRIPTION_TREE_REG_MULTITARGET if is_multitarget
 else DESCRIPTION_TREE_REG),
 targets=[],
 is_regression=True,
)
 assert res.targets is not None

 names = get_default_target_names(reg, num_targets=num_targets)
 display_names = get_target_display_names(names, target_names, targets,
 top_targets, score)

 if is_multitarget:
 for label_id, label in display_names:
 target_expl = TargetExplanation(
 target=label,
 feature_weights=_weights(label_id),
 score=score[label_id],
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)
 else:
 target_expl = TargetExplanation(
 target=display_names[0][1],
 feature_weights=_weights(0),
 score=score,
)
 add_weighted_spans(doc, vec, vectorized, target_expl)
 res.targets.append(target_expl)

 return res

def _trees_feature_weights(clf, X, feature_names, num_targets):
 """ Return feature weights for a tree or a tree ensemble.
 """
 feature_weights = np.zeros([len(feature_names), num_targets])
 is_grad_boost = isinstance(clf, (GradientBoostingClassifier,
 GradientBoostingRegressor))
 if hasattr(clf, 'tree_'):
 _update_tree_feature_weights(X, feature_names, clf, feature_weights)
 else:
 if is_grad_boost:
 weight = clf.learning_rate
 else:
 weight = 1. / len(clf.estimators_)
 for _clfs in clf.estimators_:
 _update = partial(_update_tree_feature_weights, X, feature_names)
 if isinstance(_clfs, np.ndarray):
 if len(_clfs) == 1:
 _update(_clfs[0], feature_weights)
 else:
 for idx, _clf in enumerate(_clfs):
 _update(_clf, feature_weights[:, idx])
 else:
 _update(_clfs, feature_weights)
 feature_weights *= weight
 if hasattr(clf, 'init_'):
 if clf.init_ == 'zero':
 bias_init = 0
 elif is_grad_boost and hasattr(clf.loss_, 'get_init_raw_predictions'):
 bias_init = clf.loss_.get_init_raw_predictions(
 X, clf.init_).astype(np.float64)[0]
 else:
 bias_init = clf.init_.predict(X)[0]
 feature_weights[feature_names.bias_idx] += bias_init
 return feature_weights

def _update_tree_feature_weights(X, feature_names, clf, feature_weights):
 """ Update tree feature weights using decision path method.
 """
 tree_value = clf.tree_.value
 if tree_value.shape[1] == 1:
 squeeze_axis = 1
 else:
 assert tree_value.shape[2] == 1
 squeeze_axis = 2
 tree_value = np.squeeze(tree_value, axis=squeeze_axis)
 tree_feature = clf.tree_.feature
 _, indices = clf.decision_path(X).nonzero()
 if isinstance(clf, DecisionTreeClassifier):
 norm = lambda x: x / x.sum()
 else:
 norm = lambda x: x
 feature_weights[feature_names.bias_idx] += norm(tree_value[0])
 for parent_idx, child_idx in zip(indices, indices[1:]):
 assert tree_feature[parent_idx] >= 0
 feature_idx = tree_feature[parent_idx]
 diff = norm(tree_value[child_idx]) - norm(tree_value[parent_idx])
 feature_weights[feature_idx] += diff

def _multiply(X, coef):
 """ Multiple X by coef element-wise, preserving sparsity. """
 if sp.issparse(X):
 return X.multiply(sp.csr_matrix(coef))
 else:
 return np.multiply(X, coef)

def _linear_weights(clf, x, top, flt_feature_names, flt_indices):
 """ Return top weights getter for label_id.
 """
 def _weights(label_id, scale=1.0):
 coef = get_coef(clf, label_id)
 scores = _multiply(x, coef)
 return get_top_features_filtered(x, flt_feature_names, flt_indices,
 scores, top, scale)
 return _weights

 eli5.sklearn.explain_weights

 Source code for eli5.sklearn.explain_weights

-*- coding: utf-8 -*-
from __future__ import absolute_import

import numpy as np

from sklearn.base import BaseEstimator, RegressorMixin
from sklearn.pipeline import Pipeline
from sklearn.linear_model import (
 ElasticNet, # includes Lasso, MultiTaskElasticNet, etc.
 ElasticNetCV,
 HuberRegressor,
 Lars,
 LassoCV,
 LinearRegression,
 LogisticRegression,
 LogisticRegressionCV,
 OrthogonalMatchingPursuit,
 OrthogonalMatchingPursuitCV,
 PassiveAggressiveClassifier,
 PassiveAggressiveRegressor,
 Perceptron,
 Ridge,
 RidgeClassifier,
 RidgeClassifierCV,
 RidgeCV,
 SGDClassifier,
 SGDRegressor,
 TheilSenRegressor,
)
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import (
 LinearSVC,
 LinearSVR,
 SVC,
 SVR,
 NuSVC,
 NuSVR,
 OneClassSVM,
)
TODO: see https://github.com/scikit-learn/scikit-learn/pull/2250
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.ensemble import (
 GradientBoostingClassifier,
 GradientBoostingRegressor,
 AdaBoostClassifier,
 AdaBoostRegressor,
 RandomForestClassifier,
 RandomForestRegressor,
 ExtraTreesClassifier,
 ExtraTreesRegressor,
)
from sklearn.tree import (
 DecisionTreeClassifier,
 DecisionTreeRegressor,
)

from eli5.base import (
 Explanation, TargetExplanation, FeatureImportances)
from eli5.base_utils import singledispatch
from eli5._feature_weights import get_top_features
from eli5.utils import argsort_k_largest_positive, get_target_display_names
from eli5.sklearn.unhashing import handle_hashing_vec, is_invhashing
from eli5.sklearn.treeinspect import get_tree_info
from eli5.sklearn.utils import (
 get_coef,
 is_multiclass_classifier,
 is_multitarget_regressor,
 get_feature_names,
 get_feature_names_filtered,
 get_default_target_names,
)
from eli5.explain import explain_weights
from eli5.transform import transform_feature_names
from eli5._feature_importances import (
 get_feature_importances_filtered,
 get_feature_importance_explanation,
)
from .permutation_importance import PermutationImportance

LINEAR_CAVEATS = """
Caveats:
1. Be careful with features which are not
 independent - weights don't show their importance.
2. If scale of input features is different then scale of coefficients
 will also be different, making direct comparison between coefficient values
 incorrect.
3. Depending on regularization, rare features sometimes may have high
 coefficients; this doesn't mean they contribute much to the
 classification result for most examples.
""".lstrip()

HASHING_CAVEATS = """
Feature names are restored from their hashes; this is not 100% precise
because collisions are possible. For known collisions possible feature names
are separated by | sign. Keep in mind the collision list is not exhaustive.
Features marked with (-) should be read as inverted: if they have positive
coefficient, the result is negative, if they have negative coefficient,
the result is positive.
""".lstrip()

DESCRIPTION_CLF_MULTICLASS = """
Features with largest coefficients per class.
""" + LINEAR_CAVEATS

DESCRIPTION_CLF_BINARY = """
Features with largest coefficients.
""" + LINEAR_CAVEATS

DESCRIPTION_REGRESSION = DESCRIPTION_CLF_BINARY

DESCRIPTION_REGRESSION_MULTITARGET = """
Features with largest coefficients per target.
""" + LINEAR_CAVEATS

DESCRIPTION_RANDOM_FOREST = """
Random forest feature importances; values are numbers 0 <= x <= 1;
all values sum to 1.
"""

DESCRIPTION_DECISION_TREE = """
Decision tree feature importances; values are numbers 0 <= x <= 1;
all values sum to 1.
"""

DESCRIPTION_SCORE_DECREASE = """
Feature importances, computed as a decrease in score when feature
values are permuted (i.e. become noise). This is also known as
permutation importance.
"""

_TOP = 20

[docs]@singledispatch
def explain_weights_sklearn(estimator, vec=None, top=_TOP,
 target_names=None,
 targets=None,
 feature_names=None, coef_scale=None,
 feature_re=None, feature_filter=None):
 """ Return an explanation of an estimator """
 return explain_weights_sklearn_not_supported(estimator)

@explain_weights.register(BaseEstimator)
def explain_weights_sklearn_not_supported(
 estimator, vec=None, top=_TOP,
 target_names=None,
 targets=None,
 feature_names=None, coef_scale=None,
 feature_re=None, feature_filter=None):
 return Explanation(
 estimator=repr(estimator),
 error="estimator %r is not supported" % estimator,
)

def register(cls):
 def deco(f):
 return explain_weights.register(cls)(
 explain_weights_sklearn.register(cls)(f))
 return deco

@explain_weights.register(OneVsRestClassifier)
def explain_weights_ovr(ovr, **kwargs):
 estimator = ovr.estimator
 func = explain_weights.dispatch(estimator.__class__)
 return func(ovr, **kwargs)

@explain_weights_sklearn.register(OneVsRestClassifier)
def explain_weights_ovr_sklearn(ovr, **kwargs):
 # dispatch OvR to eli5.sklearn
 # if explain_weights_sklearn is called explicitly
 estimator = ovr.estimator
 func = explain_weights_sklearn.dispatch(estimator.__class__)
 return func(ovr, **kwargs)

[docs]@register(LogisticRegression)
@register(LogisticRegressionCV)
@register(SGDClassifier)
@register(PassiveAggressiveClassifier)
@register(Perceptron)
@register(LinearSVC)
@register(RidgeClassifier)
@register(RidgeClassifierCV)
def explain_linear_classifier_weights(clf,
 vec=None,
 top=_TOP,
 target_names=None,
 targets=None,
 feature_names=None,
 coef_scale=None,
 feature_re=None,
 feature_filter=None,
):
 """
 Return an explanation of a linear classifier weights.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``target_names``, ``targets``, ``feature_names``,
 ``feature_re`` and ``feature_filter`` parameters.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the classifier ``clf``
 (e.g. a fitted CountVectorizer instance); you can pass it
 instead of ``feature_names``.

 ``coef_scale`` is a 1D np.ndarray with a scaling coefficient
 for each feature; coef[i] = coef[i] * coef_scale[i] if
 coef_scale[i] is not nan. Use it if you want to scale coefficients
 before displaying them, to take input feature sign or scale in account.
 """
 feature_names, coef_scale = handle_hashing_vec(vec, feature_names,
 coef_scale)
 feature_names, flt_indices = get_feature_names_filtered(
 clf, vec,
 feature_names=feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
)

 _extra_caveats = "\n" + HASHING_CAVEATS if is_invhashing(vec) else ''

 def _features(label_id):
 coef = get_coef(clf, label_id, scale=coef_scale)
 if flt_indices is not None:
 coef = coef[flt_indices]
 return get_top_features(feature_names, coef, top)

 classes = getattr(clf, "classes_", ["-1", "1"]) # OneClassSVM support
 display_names = get_target_display_names(classes, target_names, targets)
 if is_multiclass_classifier(clf):
 return Explanation(
 targets=[
 TargetExplanation(
 target=label,
 feature_weights=_features(label_id)
)
 for label_id, label in display_names
],
 description=DESCRIPTION_CLF_MULTICLASS + _extra_caveats,
 estimator=repr(clf),
 method='linear model',
)
 else:
 # for binary classifiers scikit-learn stores a single coefficient
 # vector, which corresponds to clf.classes_[1].
 return Explanation(
 targets=[
 TargetExplanation(
 target=display_names[1][1],
 feature_weights=_features(0),
)
],
 description=DESCRIPTION_CLF_BINARY + _extra_caveats,
 estimator=repr(clf),
 method='linear model',
)

@register(SVC)
@register(NuSVC)
@register(OneClassSVM)
def explain_libsvm_linear_classifier_weights(clf, *args, **kwargs):
 if clf.kernel != 'linear':
 return Explanation(
 estimator=repr(clf),
 error="only kernel='linear' is currently supported for "
 "libsvm-based classifiers",
)
 if len(getattr(clf, 'classes_', [])) > 2:
 return Explanation(
 estimator=repr(clf),
 error="only binary libsvm-based classifiers are supported",
)
 return explain_linear_classifier_weights(clf, *args, **kwargs)

[docs]@register(RandomForestClassifier)
@register(RandomForestRegressor)
@register(ExtraTreesClassifier)
@register(ExtraTreesRegressor)
@register(GradientBoostingClassifier)
@register(GradientBoostingRegressor)
@register(AdaBoostClassifier)
@register(AdaBoostRegressor)
def explain_rf_feature_importance(estimator,
 vec=None,
 top=_TOP,
 target_names=None, # ignored
 targets=None, # ignored
 feature_names=None,
 feature_re=None,
 feature_filter=None,
):
 """
 Return an explanation of a tree-based ensemble estimator.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``feature_names``, ``feature_re`` and ``feature_filter``
 parameters.

 ``target_names`` and ``targets`` parameters are ignored.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the estimator (e.g. a fitted
 CountVectorizer instance); you can pass it instead of ``feature_names``.
 """
 coef = estimator.feature_importances_
 trees = np.array(estimator.estimators_).ravel()
 coef_std = np.std([tree.feature_importances_ for tree in trees], axis=0)
 return get_feature_importance_explanation(estimator, vec, coef,
 coef_std=coef_std,
 feature_names=feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
 top=top,
 description=DESCRIPTION_RANDOM_FOREST,
 is_regression=isinstance(estimator, RegressorMixin),
)

[docs]@register(DecisionTreeClassifier)
@register(DecisionTreeRegressor)
def explain_decision_tree(estimator,
 vec=None,
 top=_TOP,
 target_names=None,
 targets=None, # ignored
 feature_names=None,
 feature_re=None,
 feature_filter=None,
 **export_graphviz_kwargs):
 """
 Return an explanation of a decision tree.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``target_names``, ``feature_names``,
 ``feature_re`` and ``feature_filter`` parameters.

 ``targets`` parameter is ignored.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the estimator (e.g. a fitted
 CountVectorizer instance); you can pass it instead of ``feature_names``.

 All other keyword arguments are passed to
 `sklearn.tree.export_graphviz`_ function.

 .. _sklearn.tree.export_graphviz: http://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html
 """
 feature_names = get_feature_names(estimator, vec,
 feature_names=feature_names)
 tree_feature_names = feature_names
 feature_names, flt_indices = feature_names.handle_filter(
 feature_filter, feature_re)
 feature_importances = get_feature_importances_filtered(
 estimator.feature_importances_, feature_names, flt_indices, top)

 export_graphviz_kwargs.setdefault("proportion", True)
 tree_info = get_tree_info(
 estimator,
 feature_names=tree_feature_names,
 class_names=target_names,
 **export_graphviz_kwargs)

 return Explanation(
 feature_importances=feature_importances,
 decision_tree=tree_info,
 description=DESCRIPTION_DECISION_TREE,
 estimator=repr(estimator),
 method='decision tree',
)

[docs]@register(ElasticNet)
@register(ElasticNetCV)
@register(HuberRegressor)
@register(Lars)
@register(LassoCV)
@register(LinearRegression)
@register(LinearSVR)
@register(OrthogonalMatchingPursuit)
@register(OrthogonalMatchingPursuitCV)
@register(PassiveAggressiveRegressor)
@register(Ridge)
@register(RidgeCV)
@register(SGDRegressor)
@register(TheilSenRegressor)
@register(SVR)
@register(NuSVR)
def explain_linear_regressor_weights(reg,
 vec=None,
 top=_TOP,
 target_names=None,
 targets=None,
 feature_names=None,
 coef_scale=None,
 feature_re=None,
 feature_filter=None,
):
 """
 Return an explanation of a linear regressor weights.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``target_names``, ``targets``, ``feature_names``,
 ``feature_re`` and ``feature_filter`` parameters.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the regressor ``reg``; you can
 pass it instead of ``feature_names``.

 ``coef_scale`` is a 1D np.ndarray with a scaling coefficient
 for each feature; coef[i] = coef[i] * coef_scale[i] if
 coef_scale[i] is not nan. Use it if you want to scale coefficients
 before displaying them, to take input feature sign or scale in account.
 """
 if isinstance(reg, (SVR, NuSVR)) and reg.kernel != 'linear':
 return explain_weights_sklearn_not_supported(reg)

 feature_names, coef_scale = handle_hashing_vec(vec, feature_names,
 coef_scale)
 feature_names, flt_indices = get_feature_names_filtered(
 reg, vec,
 feature_names=feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
)
 _extra_caveats = "\n" + HASHING_CAVEATS if is_invhashing(vec) else ''

 def _features(target_id):
 coef = get_coef(reg, target_id, scale=coef_scale)
 if flt_indices is not None:
 coef = coef[flt_indices]
 return get_top_features(feature_names, coef, top)

 display_names = get_target_display_names(get_default_target_names(reg),
 target_names, targets)
 if is_multitarget_regressor(reg):
 return Explanation(
 targets=[
 TargetExplanation(
 target=target_name,
 feature_weights=_features(target_id)
)
 for target_id, target_name in display_names
],
 description=DESCRIPTION_REGRESSION_MULTITARGET + _extra_caveats,
 estimator=repr(reg),
 method='linear model',
 is_regression=True,
)
 else:
 return Explanation(
 targets=[TargetExplanation(
 target=display_names[0][1],
 feature_weights=_features(0),
)],
 description=DESCRIPTION_REGRESSION + _extra_caveats,
 estimator=repr(reg),
 method='linear model',
 is_regression=True,
)

@register(Pipeline)
def explain_weights_pipeline(estimator, feature_names=None, **kwargs):
 last_estimator = estimator.steps[-1][1]
 transform_pipeline = Pipeline(estimator.steps[:-1])
 if 'vec' in kwargs:
 feature_names = get_feature_names(feature_names, vec=kwargs.pop('vec'))
 feature_names = transform_feature_names(transform_pipeline, feature_names)
 out = explain_weights(last_estimator,
 feature_names=feature_names,
 **kwargs)
 out.estimator = repr(estimator)
 return out

[docs]@register(PermutationImportance)
def explain_permutation_importance(estimator,
 vec=None,
 top=_TOP,
 target_names=None, # ignored
 targets=None, # ignored
 feature_names=None,
 feature_re=None,
 feature_filter=None,
):
 """
 Return an explanation of PermutationImportance.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``feature_names``, ``feature_re`` and ``feature_filter``
 parameters.

 ``target_names`` and ``targets`` parameters are ignored.

 ``vec`` is a vectorizer instance used to transform
 raw features to the input of the estimator (e.g. a fitted
 CountVectorizer instance); you can pass it instead of ``feature_names``.
 """
 coef = estimator.feature_importances_
 coef_std = estimator.feature_importances_std_
 return get_feature_importance_explanation(estimator, vec, coef,
 coef_std=coef_std,
 feature_names=feature_names,
 feature_filter=feature_filter,
 feature_re=feature_re,
 top=top,
 description=DESCRIPTION_SCORE_DECREASE + estimator.caveats_,
 is_regression=isinstance(estimator.wrapped_estimator_, RegressorMixin),
)

 eli5.sklearn.permutation_importance

 Source code for eli5.sklearn.permutation_importance

-*- coding: utf-8 -*-
from functools import partial
from typing import List

import numpy as np
from sklearn.model_selection import check_cv
from sklearn.utils.metaestimators import if_delegate_has_method
from sklearn.utils import check_array, check_random_state
from sklearn.base import (
 BaseEstimator,
 MetaEstimatorMixin,
 clone,
 is_classifier
)
from sklearn.metrics import check_scoring

from eli5.permutation_importance import get_score_importances
from eli5.sklearn.utils import pandas_available

if pandas_available:
 import pandas as pd

CAVEATS_CV_NONE = """
Feature importances are computed on the same data as used for training,
i.e. feature importances don't reflect importance of features for
generalization.
"""

CAVEATS_CV = """
Feature importances are not computed for the final estimator;
they are computed for a sequence of estimators trained and evaluated
on train/test splits. So they tell you about importances of features
for generalization, but not feature importances of a particular trained model.
"""

CAVEATS_PREFIT = """
If feature importances are computed on the same data as used for training,
they don't reflect importance of features for generalization. Use a held-out
dataset if you want generalization feature importances.
"""

[docs]class PermutationImportance(BaseEstimator, MetaEstimatorMixin):
 """Meta-estimator which computes ``feature_importances_`` attribute
 based on permutation importance (also known as mean score decrease).

 :class:`~PermutationImportance` instance can be used instead of
 its wrapped estimator, as it exposes all estimator's common methods like
 ``predict``.

 There are 3 main modes of operation:

 1. cv="prefit" (pre-fit estimator is passed). You can call
 PermutationImportance.fit either with training data, or
 with a held-out dataset (in the latter case ``feature_importances_``
 would be importances of features for generalization). After the fitting
 ``feature_importances_`` attribute becomes available, but the estimator
 itself is not fit again. When cv="prefit",
 :meth:`~PermutationImportance.fit` must be called
 directly, and :class:`~PermutationImportance` cannot be used with
 ``cross_val_score``, ``GridSearchCV`` and similar utilities that clone
 the estimator.
 2. cv=None. In this case :meth:`~PermutationImportance.fit` method fits
 the estimator and computes feature importances on the same data, i.e.
 feature importances don't reflect importance of features for
 generalization.
 3. all other ``cv`` values. :meth:`~PermutationImportance.fit` method
 fits the estimator, but instead of computing feature importances for
 the concrete estimator which is fit, importances are computed for
 a sequence of estimators trained and evaluated on train/test splits
 according to ``cv``, and then averaged. This is more resource-intensive
 (estimators are fit multiple times), and importances are not computed
 for the final estimator, but ``feature_importances_`` show importances
 of features for generalization.

 Mode (1) is most useful for inspecting an existing estimator; modes
 (2) and (3) can be also used for feature selection, e.g. together with
 sklearn's SelectFromModel or RFE.

 Currently :class:`~PermutationImportance` works with dense data.

 Parameters

 estimator : object
 The base estimator. This can be both a fitted
 (if ``prefit`` is set to True) or a non-fitted estimator.

 scoring : string, callable or None, default=None
 Scoring function to use for computing feature importances.
 A string with scoring name (see scikit-learn `docs`_) or
 a scorer callable object / function with signature
 ``scorer(estimator, X, y)``.
 If ``None``, the ``score`` method of the estimator is used.

 .. _docs: https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values

 n_iter : int, default 5
 Number of random shuffle iterations. Decrease to improve speed,
 increase to get more precise estimates.

 random_state : integer or numpy.random.RandomState, optional
 random state

 cv : int, cross-validation generator, iterable or "prefit"
 Determines the cross-validation splitting strategy.
 Possible inputs for cv are:

 - None, to disable cross-validation and compute feature importances
 on the same data as used for training.
 - integer, to specify the number of folds.
 - An object to be used as a cross-validation generator.
 - An iterable yielding train/test splits.
 - "prefit" string constant (default).

 If "prefit" is passed, it is assumed that ``estimator`` has been
 fitted already and all data is used for computing feature importances.

 refit : bool
 Whether to fit the estimator on the whole data if cross-validation
 is used (default is True).

 Attributes

 feature_importances_ : array
 Feature importances, computed as mean decrease of the score when
 a feature is permuted (i.e. becomes noise).

 feature_importances_std_ : array
 Standard deviations of feature importances.

 results_ : list of arrays
 A list of score decreases for all experiments.

 scores_ : array of float
 A list of base scores for all experiments (with no features permuted).

 estimator_ : an estimator
 The base estimator from which the :class:`~PermutationImportance`
 instance is built. This is stored only when a non-fitted estimator
 is passed to the :class:`~PermutationImportance`, i.e when ``cv`` is
 not "prefit".

 rng_ : numpy.random.RandomState
 random state
 """
 def __init__(self, estimator, scoring=None, n_iter=5, random_state=None,
 cv='prefit', refit=True):
 # type: (...) -> None
 if isinstance(cv, str) and cv != "prefit":
 raise ValueError("Invalid cv value: {!r}".format(cv))
 self.refit = refit
 self.estimator = estimator
 self.scoring = scoring
 self.n_iter = n_iter
 self.random_state = random_state
 self.cv = cv
 self.rng_ = check_random_state(random_state)

 def _wrap_scorer(self, base_scorer, pd_columns):
 def pd_scorer(model, X, y):
 X = pd.DataFrame(X, columns=pd_columns)
 return base_scorer(model, X, y)
 return pd_scorer

[docs] def fit(self, X, y, groups=None, **fit_params):
 # type: (...) -> PermutationImportance
 """Compute ``feature_importances_`` attribute and optionally
 fit the base estimator.

 Parameters

 X : array-like of shape (n_samples, n_features)
 The training input samples.

 y : array-like, shape (n_samples,)
 The target values (integers that correspond to classes in
 classification, real numbers in regression).

 groups : array-like, with shape (n_samples,), optional
 Group labels for the samples used while splitting the dataset into
 train/test set.

 **fit_params : Other estimator specific parameters

 Returns

 self : object
 Returns self.
 """
 self.scorer_ = check_scoring(self.estimator, scoring=self.scoring)

 if pandas_available and isinstance(X, pd.DataFrame):
 self.scorer_ = self._wrap_scorer(self.scorer_, X.columns)

 if self.cv != "prefit" and self.refit:
 self.estimator_ = clone(self.estimator)
 self.estimator_.fit(X, y, **fit_params)

 X = check_array(X, force_all_finite='allow-nan')

 if self.cv not in (None, "prefit"):
 si = self._cv_scores_importances(X, y, groups=groups, **fit_params)
 else:
 si = self._non_cv_scores_importances(X, y)
 scores, results = si
 self.scores_ = np.array(scores)
 self.results_ = results
 self.feature_importances_ = np.mean(results, axis=0)
 self.feature_importances_std_ = np.std(results, axis=0)
 return self

 def _cv_scores_importances(self, X, y, groups=None, **fit_params):
 assert self.cv is not None
 cv = check_cv(self.cv, y, is_classifier(self.estimator))
 feature_importances = [] # type: List
 base_scores = [] # type: List[float]
 weights = fit_params.pop('sample_weight', None)
 fold_fit_params = fit_params.copy()
 for train, test in cv.split(X, y, groups):
 if weights is not None:
 fold_fit_params['sample_weight'] = weights[train]
 est = clone(self.estimator).fit(X[train], y[train], **fold_fit_params)
 score_func = partial(self.scorer_, est)
 _base_score, _importances = self._get_score_importances(
 score_func, X[test], y[test])
 base_scores.extend([_base_score] * len(_importances))
 feature_importances.extend(_importances)
 return base_scores, feature_importances

 def _non_cv_scores_importances(self, X, y):
 score_func = partial(self.scorer_, self.wrapped_estimator_)
 base_score, importances = self._get_score_importances(score_func, X, y)
 return [base_score] * len(importances), importances

 def _get_score_importances(self, score_func, X, y):
 return get_score_importances(score_func, X, y, n_iter=self.n_iter,
 random_state=self.rng_)

 @property
 def caveats_(self):
 # type: () -> str
 if self.cv == 'prefit':
 return CAVEATS_PREFIT
 elif self.cv is None:
 return CAVEATS_CV_NONE
 return CAVEATS_CV

 # ============= Exposed methods of a wrapped estimator:

 @if_delegate_has_method(delegate='wrapped_estimator_')
 def score(self, X, y=None, *args, **kwargs):
 return self.wrapped_estimator_.score(X, y, *args, **kwargs)

 @if_delegate_has_method(delegate='wrapped_estimator_')
 def predict(self, X):
 return self.wrapped_estimator_.predict(X)

 @if_delegate_has_method(delegate='wrapped_estimator_')
 def predict_proba(self, X):
 return self.wrapped_estimator_.predict_proba(X)

 @if_delegate_has_method(delegate='wrapped_estimator_')
 def predict_log_proba(self, X):
 return self.wrapped_estimator_.predict_log_proba(X)

 @if_delegate_has_method(delegate='wrapped_estimator_')
 def decision_function(self, X):
 return self.wrapped_estimator_.decision_function(X)

 @property
 def wrapped_estimator_(self):
 if self.cv == "prefit" or not self.refit:
 return self.estimator
 return self.estimator_

 @property
 def _estimator_type(self):
 return self.estimator._estimator_type

 @property
 def classes_(self):
 return self.wrapped_estimator_.classes_

 eli5.sklearn.unhashing

 Source code for eli5.sklearn.unhashing

-*- coding: utf-8 -*-
"""
Utilities to reverse transformation done by FeatureHasher or HashingVectorizer.
"""
from __future__ import absolute_import
from collections import defaultdict, Counter
from itertools import chain
from typing import List, Iterable, Any, Dict, Tuple, Union

import numpy as np
import six
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction.text import (
 HashingVectorizer,
 FeatureHasher,
)
from sklearn.pipeline import FeatureUnion

from eli5._feature_names import FeatureNames

[docs]class InvertableHashingVectorizer(BaseEstimator, TransformerMixin):
 """
 A wrapper for HashingVectorizer which allows to get meaningful
 feature names. Create it with an existing HashingVectorizer
 instance as an argument::

 vec = InvertableHashingVectorizer(my_hashing_vectorizer)

 Unlike HashingVectorizer it can be fit. During fitting
 :class:`~.InvertableHashingVectorizer` learns which input terms map to
 which feature columns/signs; this allows to provide more meaningful
 :meth:`get_feature_names`. The cost is that it is no longer stateless.

 You can fit :class:`~.InvertableHashingVectorizer` on a random sample
 of documents (not necessarily on the whole training and testing data),
 and use it to inspect an existing HashingVectorizer instance.

 If several features hash to the same value, they are ordered by
 their frequency in documents that were used to fit the vectorizer.

 :meth:`transform` works the same as HashingVectorizer.transform.
 """
 def __init__(self, vec,
 unkn_template="FEATURE[%d]"):
 # type: (HashingVectorizer, str) -> None
 self.vec = vec
 self.unkn_template = unkn_template
 self.unhasher = FeatureUnhasher(
 hasher=vec._get_hasher(),
 unkn_template=unkn_template,
)
 self.n_features = vec.n_features # type: int

[docs] def fit(self, X, y=None):
 """ Extract possible terms from documents """
 self.unhasher.fit(self._get_terms_iter(X))
 return self

 def partial_fit(self, X):
 self.unhasher.partial_fit(self._get_terms_iter(X))
 return self

 def transform(self, X):
 return self.vec.transform(X)

[docs] def get_feature_names(self, always_signed=True):
 # type: (bool) -> FeatureNames
 """
 Return feature names.
 This is a best-effort function which tries to reconstruct feature
 names based on what it has seen so far.

 HashingVectorizer uses a signed hash function. If always_signed is True,
 each term in feature names is prepended with its sign. If it is False,
 signs are only shown in case of possible collisions of different sign.

 You probably want always_signed=True if you're checking
 unprocessed classifier coefficients, and always_signed=False
 if you've taken care of :attr:`column_signs_`.
 """
 return self.unhasher.get_feature_names(
 always_signed=always_signed,
 always_positive=self._always_positive(),
)

 def _get_terms_iter(self, X):
 analyze = self.vec.build_analyzer()
 return chain.from_iterable(analyze(doc) for doc in X)

 @property
 def column_signs_(self):
 """
 Return a numpy array with expected signs of features.
 Values are

 * +1 when all known terms which map to the column have positive sign;
 * -1 when all known terms which map to the column have negative sign;
 * ``nan`` when there are both positive and negative known terms
 for this column, or when there is no known term which maps to this
 column.
 """
 if self._always_positive():
 return np.ones(self.n_features)
 self.unhasher.recalculate_attributes()
 return self.unhasher.column_signs_

 def _always_positive(self):
 # type: () -> bool
 return (
 self.vec.binary
 or getattr(self.vec, 'non_negative', False)
 or not getattr(self.vec, 'alternate_sign', True)
)

[docs]class FeatureUnhasher(BaseEstimator):
 """
 Class for recovering a mapping used by FeatureHasher.
 """
 def __init__(self, hasher, unkn_template="FEATURE[%d]"):
 # type: (FeatureHasher, str) -> None
 if hasher.input_type != 'string':
 raise ValueError("FeatureUnhasher only supports hashers with "
 "input_type 'string', got %r." % hasher.input_type)
 self.hasher = hasher
 self.n_features = self.hasher.n_features # type: int
 self.unkn_template = unkn_template
 self._attributes_dirty = True
 self._term_counts = Counter() # type: Counter

 def fit(self, X, y=None):
 # type: (Iterable[str], Any) -> FeatureUnhasher
 self._term_counts.clear()
 self.partial_fit(X, y)
 self.recalculate_attributes(force=True)
 return self

 def partial_fit(self, X, y=None):
 # type: (Iterable[str], Any) -> FeatureUnhasher
 self._term_counts.update(X)
 self._attributes_dirty = True
 return self

 def get_feature_names(self, always_signed=True, always_positive=False):
 # type: (bool, bool) -> FeatureNames
 self.recalculate_attributes()

 # lists of names with signs of known features
 column_ids, term_names, term_signs = self._get_collision_info()
 feature_names = {}
 for col_id, names, signs in zip(column_ids, term_names, term_signs):
 if always_positive:
 feature_names[col_id] = [{'name': name, 'sign': 1}
 for name in names]
 else:
 if not always_signed and _invert_signs(signs):
 signs = [-sign for sign in signs]
 feature_names[col_id] = [{'name': name, 'sign': sign}
 for name, sign in zip(names, signs)]
 return FeatureNames(
 feature_names,
 n_features=self.n_features,
 unkn_template=self.unkn_template)

[docs] def recalculate_attributes(self, force=False):
 # type: (bool) -> None
 """
 Update all computed attributes. It is only needed if you need to access
 computed attributes after :meth:`patrial_fit` was called.
 """
 if not self._attributes_dirty and not force:
 return
 terms = [term for term, _ in self._term_counts.most_common()]
 if six.PY2:
 terms = np.array(terms, dtype=np.object)
 else:
 terms = np.array(terms)
 if len(terms):
 indices, signs = _get_indices_and_signs(self.hasher, terms)
 else:
 indices, signs = np.array([]), np.array([])
 self.terms_ = terms # type: np.ndarray
 self.term_columns_ = indices
 self.term_signs_ = signs
 self.collisions_ = _get_collisions(indices)
 self.column_signs_ = self._get_column_signs()
 self._attributes_dirty = False

 def _get_column_signs(self):
 colums_signs = np.ones(self.n_features) * np.nan
 for hash_id, term_ids in self.collisions_.items():
 term_signs = self.term_signs_[term_ids]
 if _invert_signs(term_signs):
 colums_signs[hash_id] = -1
 elif (term_signs > 0).all():
 colums_signs[hash_id] = 1
 return colums_signs

 def _get_collision_info(self):
 # type: () -> Tuple[List[int], List[np.ndarray], List[np.ndarray]]
 column_ids, term_names, term_signs = [], [], []
 for column_id, _term_ids in self.collisions_.items():
 column_ids.append(column_id)
 term_names.append(self.terms_[_term_ids])
 term_signs.append(self.term_signs_[_term_ids])
 return column_ids, term_names, term_signs

def _get_collisions(indices):
 # type: (...) -> Dict[int, List[int]]
 """
 Return a dict ``{column_id: [possible term ids]}``
 with collision information.
 """
 collisions = defaultdict(list) # type: Dict[int, List[int]]
 for term_id, hash_id in enumerate(indices):
 collisions[hash_id].append(term_id)
 return dict(collisions)

def _get_indices_and_signs(hasher, terms):
 """
 For each term from ``terms`` return its column index and sign,
 as assigned by FeatureHasher ``hasher``.
 """
 X = _transform_terms(hasher, terms)
 indices = X.nonzero()[1]
 signs = X.sum(axis=1).A.ravel()
 return indices, signs

def _transform_terms(hasher, terms):
 return hasher.transform(np.array(terms).reshape(-1, 1))

def _invert_signs(signs):
 """ Shall we invert signs?
 Invert if first (most probable) term is negative.
 """
 return signs[0] < 0

def is_invhashing(vec):
 return isinstance(vec, InvertableHashingVectorizer)

[docs]def handle_hashing_vec(vec, feature_names, coef_scale, with_coef_scale=True):
 """ Return feature_names and coef_scale (if with_coef_scale is True),
 calling .get_feature_names for invhashing vectorizers.
 """
 needs_coef_scale = with_coef_scale and coef_scale is None
 if is_invhashing(vec):
 if feature_names is None:
 feature_names = vec.get_feature_names(always_signed=False)
 if needs_coef_scale:
 coef_scale = vec.column_signs_
 elif (isinstance(vec, FeatureUnion) and
 any(is_invhashing(v) for _, v in vec.transformer_list) and
 (needs_coef_scale or feature_names is None)):
 _feature_names, _coef_scale = _invhashing_union_feature_names_scale(vec)
 if feature_names is None:
 feature_names = _feature_names
 if needs_coef_scale:
 coef_scale = _coef_scale
 return (feature_names, coef_scale) if with_coef_scale else feature_names

def _invhashing_union_feature_names_scale(vec_union):
 # type: (FeatureUnion) -> Tuple[FeatureNames, np.ndarray]
 feature_names_store = {} # type: Dict[int, Union[str, List]]
 unkn_template = None
 shift = 0
 coef_scale_values = []
 for vec_name, vec in vec_union.transformer_list:
 if isinstance(vec, InvertableHashingVectorizer):
 vec_feature_names = vec.get_feature_names(always_signed=False)
 unkn_template = vec_feature_names.unkn_template
 for idx, fs in vec_feature_names.feature_names.items():
 new_fs = []
 for f in fs:
 new_f = dict(f)
 new_f['name'] = '{}__{}'.format(vec_name, f['name'])
 new_fs.append(new_f)
 feature_names_store[idx + shift] = new_fs
 coef_scale_values.append((shift, vec.column_signs_))
 shift += vec_feature_names.n_features
 else:
 vec_feature_names = vec.get_feature_names()
 feature_names_store.update(
 (shift + idx, '{}__{}'.format(vec_name, fname))
 for idx, fname in enumerate(vec_feature_names))
 shift += len(vec_feature_names)
 n_features = shift
 feature_names = FeatureNames(
 feature_names=feature_names_store,
 n_features=n_features,
 unkn_template=unkn_template)
 coef_scale = np.ones(n_features) * np.nan
 for idx, values in coef_scale_values:
 coef_scale[idx: idx + len(values)] = values
 return feature_names, coef_scale

[docs]def invert_hashing_and_fit(
 vec, # type: Union[FeatureUnion, HashingVectorizer]
 docs
):
 # type: (...) -> Union[FeatureUnion, InvertableHashingVectorizer]
 """ Create an :class:`~.InvertableHashingVectorizer` from hashing
 vectorizer vec and fit it on docs. If vec is a FeatureUnion, do it for all
 hashing vectorizers in the union.
 Return an :class:`~.InvertableHashingVectorizer`, or a FeatureUnion,
 or an unchanged vectorizer.
 """
 if isinstance(vec, HashingVectorizer):
 vec = InvertableHashingVectorizer(vec)
 vec.fit(docs)
 elif (isinstance(vec, FeatureUnion) and
 any(isinstance(v, HashingVectorizer)
 for _, v in vec.transformer_list)):
 vec = _fit_invhashing_union(vec, docs)
 return vec

def _fit_invhashing_union(vec_union, docs):
 # type: (FeatureUnion, Any) -> FeatureUnion
 """ Fit InvertableHashingVectorizer on doc inside a FeatureUnion.
 """
 return FeatureUnion(
 [(name, invert_hashing_and_fit(v, docs))
 for name, v in vec_union.transformer_list],
 transformer_weights=vec_union.transformer_weights,
 n_jobs=vec_union.n_jobs)

 eli5.sklearn_crfsuite.explain_weights

 Source code for eli5.sklearn_crfsuite.explain_weights

-*- coding: utf-8 -*-
from __future__ import absolute_import

import numpy as np
from scipy import sparse as sp
from sklearn_crfsuite import CRF

from eli5.base import Explanation, TargetExplanation, TransitionFeatureWeights
from eli5.explain import explain_weights
from eli5.utils import get_target_display_names
from eli5._feature_names import FeatureNames
from eli5._feature_weights import get_top_features

[docs]@explain_weights.register(CRF)
def explain_weights_sklearn_crfsuite(crf,
 top=20,
 target_names=None,
 targets=None,
 feature_re=None,
 feature_filter=None):
 """ Explain sklearn_crfsuite.CRF weights.

 See :func:`eli5.explain_weights` for description of
 ``top``, ``target_names``, ``targets``,
 ``feature_re`` and ``feature_filter`` parameters.
 """
 feature_names = np.array(crf.attributes_)
 state_coef = crf_state_coef(crf).todense().A
 transition_coef = crf_transition_coef(crf)

 if feature_filter is not None or feature_re is not None:
 state_feature_names, flt_indices = (
 FeatureNames(feature_names).handle_filter(feature_filter, feature_re))
 state_feature_names = np.array(state_feature_names.feature_names)
 state_coef = state_coef[:, flt_indices]
 else:
 state_feature_names = feature_names

 def _features(label_id):
 return get_top_features(state_feature_names, state_coef[label_id], top)

 if targets is None:
 targets = sorted_for_ner(crf.classes_)

 display_names = get_target_display_names(crf.classes_, target_names,
 targets)
 indices, names = zip(*display_names)
 transition_coef = filter_transition_coefs(transition_coef, indices)

 return Explanation(
 targets=[
 TargetExplanation(
 target=label,
 feature_weights=_features(label_id)
)
 for label_id, label in zip(indices, names)
],
 transition_features=TransitionFeatureWeights(
 class_names=names,
 coef=transition_coef,
),
 estimator=repr(crf),
 method='CRF',
)

def crf_state_coef(crf):
 attr_index = {name: idx for idx, name in enumerate(crf.attributes_)}
 class_index = {cls_name: idx for idx, cls_name in enumerate(crf.classes_)}

 n_features = len(crf.attributes_)
 n_classes = len(crf.classes_)
 coef = sp.dok_matrix((n_classes, n_features))

 for (feat, cls), value in crf.state_features_.items():
 coef[class_index[cls], attr_index[feat]] = value

 return coef.tocsr()

def crf_transition_coef(crf):
 n_classes = len(crf.classes_)
 coef = np.empty((n_classes, n_classes))

 for i, cls_from in enumerate(crf.classes_):
 for j, cls_to in enumerate(crf.classes_):
 w = crf.transition_features_.get((cls_from, cls_to), 0)
 coef[i, j] = w

 return coef

[docs]def filter_transition_coefs(transition_coef, indices):
 """
 >>> coef = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
 >>> filter_transition_coefs(coef, [0])
 array([[0]])
 >>> filter_transition_coefs(coef, [1, 2])
 array([[4, 5],
 [7, 8]])
 >>> filter_transition_coefs(coef, [2, 0])
 array([[8, 6],
 [2, 0]])
 >>> filter_transition_coefs(coef, [0, 1, 2])
 array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
 """
 indices = np.array(indices)
 rows = transition_coef[indices]
 return rows[:,indices]

[docs]def sorted_for_ner(crf_classes):
 """
 Return labels sorted in a default order suitable for NER tasks:

 >>> sorted_for_ner(['B-ORG', 'B-PER', 'O', 'I-PER'])
 ['O', 'B-ORG', 'B-PER', 'I-PER']
 """
 def key(cls):
 if len(cls) > 2 and cls[1] == '-':
 # group names like B-ORG and I-ORG together
 return cls.split('-', 1)[1], cls
 return '', cls
 return sorted(crf_classes, key=key)

 Named Entity Recognition using sklearn-crfsuite

Named Entity Recognition using sklearn-crfsuite

In this notebook we train a basic CRF model for Named Entity Recognition
on CoNLL2002 data (following
https://github.com/TeamHG-Memex/sklearn-crfsuite/blob/master/docs/CoNLL2002.ipynb)
and check its weights to see what it learned.

To follow this tutorial you need NLTK > 3.x and sklearn-crfsuite Python
packages. The tutorial uses Python 3.

import nltk
import sklearn_crfsuite
import eli5

1. Training data

CoNLL 2002 datasets contains a list of Spanish sentences, with Named
Entities annotated. It uses
IOB2 [https://en.wikipedia.org/wiki/Inside_Outside_Beginning]
encoding. CoNLL 2002 data also provide POS tags.

train_sents = list(nltk.corpus.conll2002.iob_sents('esp.train'))
test_sents = list(nltk.corpus.conll2002.iob_sents('esp.testb'))
train_sents[0]

[('Melbourne', 'NP', 'B-LOC'),
 ('(', 'Fpa', 'O'),
 ('Australia', 'NP', 'B-LOC'),
 (')', 'Fpt', 'O'),
 (',', 'Fc', 'O'),
 ('25', 'Z', 'O'),
 ('may', 'NC', 'O'),
 ('(', 'Fpa', 'O'),
 ('EFE', 'NC', 'B-ORG'),
 (')', 'Fpt', 'O'),
 ('.', 'Fp', 'O')]

2. Feature extraction

POS tags can be seen as pre-extracted features. Let’s extract more
features (word parts, simplified POS tags, lower/title/upper flags,
features of nearby words) and convert them to sklear-crfsuite format -
each sentence should be converted to a list of dicts. This is a very
simple baseline; you certainly can do better.

def word2features(sent, i):
 word = sent[i][0]
 postag = sent[i][1]

 features = {
 'bias': 1.0,
 'word.lower()': word.lower(),
 'word[-3:]': word[-3:],
 'word.isupper()': word.isupper(),
 'word.istitle()': word.istitle(),
 'word.isdigit()': word.isdigit(),
 'postag': postag,
 'postag[:2]': postag[:2],
 }
 if i > 0:
 word1 = sent[i-1][0]
 postag1 = sent[i-1][1]
 features.update({
 '-1:word.lower()': word1.lower(),
 '-1:word.istitle()': word1.istitle(),
 '-1:word.isupper()': word1.isupper(),
 '-1:postag': postag1,
 '-1:postag[:2]': postag1[:2],
 })
 else:
 features['BOS'] = True

 if i < len(sent)-1:
 word1 = sent[i+1][0]
 postag1 = sent[i+1][1]
 features.update({
 '+1:word.lower()': word1.lower(),
 '+1:word.istitle()': word1.istitle(),
 '+1:word.isupper()': word1.isupper(),
 '+1:postag': postag1,
 '+1:postag[:2]': postag1[:2],
 })
 else:
 features['EOS'] = True

 return features

def sent2features(sent):
 return [word2features(sent, i) for i in range(len(sent))]

def sent2labels(sent):
 return [label for token, postag, label in sent]

def sent2tokens(sent):
 return [token for token, postag, label in sent]

X_train = [sent2features(s) for s in train_sents]
y_train = [sent2labels(s) for s in train_sents]

X_test = [sent2features(s) for s in test_sents]
y_test = [sent2labels(s) for s in test_sents]

This is how features extracted from a single token look like:

X_train[0][1]

{'+1:postag': 'NP',
 '+1:postag[:2]': 'NP',
 '+1:word.istitle()': True,
 '+1:word.isupper()': False,
 '+1:word.lower()': 'australia',
 '-1:postag': 'NP',
 '-1:postag[:2]': 'NP',
 '-1:word.istitle()': True,
 '-1:word.isupper()': False,
 '-1:word.lower()': 'melbourne',
 'bias': 1.0,
 'postag': 'Fpa',
 'postag[:2]': 'Fp',
 'word.isdigit()': False,
 'word.istitle()': False,
 'word.isupper()': False,
 'word.lower()': '(',
 'word[-3:]': '('}

3. Train a CRF model

Once we have features in a right format we can train a linear-chain CRF
(Conditional Random Fields) model using sklearn_crfsuite.CRF:

crf = sklearn_crfsuite.CRF(
 algorithm='lbfgs',
 c1=0.1,
 c2=0.1,
 max_iterations=20,
 all_possible_transitions=False,
)
crf.fit(X_train, y_train);

4. Inspect model weights

CRFsuite CRF models use two kinds of features: state features and
transition features. Let’s check their weights using
eli5.explain_weights:

eli5.show_weights(crf, top=30)

 	From \ To

 	O

 	B-LOC

 	I-LOC

 	B-MISC

 	I-MISC

 	B-ORG

 	I-ORG

 	B-PER

 	I-PER

 	O

 Debugging scikit-learn text classification pipeline

Debugging scikit-learn text classification pipeline

scikit-learn docs provide a nice text classification
tutorial [http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html].
Make sure to read it first. We’ll be doing something similar to it,
while taking more detailed look at classifier weights and predictions.

1. Baseline model

First, we need some data. Let’s load 20 Newsgroups data, keeping only 4
categories:

from sklearn.datasets import fetch_20newsgroups

categories = ['alt.atheism', 'soc.religion.christian',
 'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups(
 subset='train',
 categories=categories,
 shuffle=True,
 random_state=42
)
twenty_test = fetch_20newsgroups(
 subset='test',
 categories=categories,
 shuffle=True,
 random_state=42
)

A basic text processing pipeline - bag of words features and Logistic
Regression as a classifier:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegressionCV
from sklearn.pipeline import make_pipeline

vec = CountVectorizer()
clf = LogisticRegressionCV()
pipe = make_pipeline(vec, clf)
pipe.fit(twenty_train.data, twenty_train.target);

We’re using LogisticRegressionCV here to adjust regularization parameter
C automatically. It allows to compare different vectorizers - optimal C
value could be different for different input features (e.g. for bigrams
or for character-level input). An alternative would be to use
GridSearchCV or RandomizedSearchCV.

Let’s check quality of this pipeline:

from sklearn import metrics

def print_report(pipe):
 y_test = twenty_test.target
 y_pred = pipe.predict(twenty_test.data)
 report = metrics.classification_report(y_test, y_pred,
 target_names=twenty_test.target_names)
 print(report)
 print("accuracy: {:0.3f}".format(metrics.accuracy_score(y_test, y_pred)))

print_report(pipe)

 precision recall f1-score support

 alt.atheism 0.93 0.80 0.86 319
 comp.graphics 0.87 0.96 0.91 389
 sci.med 0.94 0.81 0.87 396
soc.religion.christian 0.85 0.98 0.91 398

 avg / total 0.90 0.89 0.89 1502

accuracy: 0.891

Not bad. We can try other classifiers and preprocessing methods, but
let’s check first what the model learned using eli5.show_weights()
function:

import eli5
eli5.show_weights(clf, top=10)

 	

 y=0

top features

 	

 y=1

top features

 	

 y=2

top features

 	

 y=3

top features

 	

 	
 Weight?

 	Feature

 	
 +1.991

 	
 x21167

 	
 +1.925

 	
 x19218

 	
 +1.834

 	
 x5714

 	
 +1.813

 	
 x23677

 	
 +1.697

 	
 x15511

 	
 +1.696

 	
 x26415

 	
 +1.617

 	
 x6440

 	
 +1.594

 	
 x26412

 	

 Explaining Keras image classifier predictions with Grad-CAM

Explaining Keras image classifier predictions with Grad-CAM

If we have a model that takes in an image as its input, and outputs
class scores, i.e. probabilities that a certain object is present in the
image, then we can use ELI5 to check what is it in the image that made
the model predict a certain class score. We do that using a method
called ‘Grad-CAM’ (https://arxiv.org/abs/1610.02391).

We will be using images from ImageNet (http://image-net.org/), and
classifiers from keras.applications.

This has been tested with Python 3.7.3, Keras 2.2.4, and Tensorflow
1.13.1.

1. Loading our model and data

To start out, let’s get our modules in place

from PIL import Image
from IPython.display import display
import numpy as np

you may want to keep logging enabled when doing your own work
import logging
import tensorflow as tf
tf.get_logger().setLevel(logging.ERROR) # disable Tensorflow warnings for this tutorial
import warnings
warnings.simplefilter("ignore") # disable Keras warnings for this tutorial
import keras
from keras.applications import mobilenet_v2

import eli5

Using TensorFlow backend.

And load our image classifier (a light-weight model from
keras.applications).

model = mobilenet_v2.MobileNetV2(include_top=True, weights='imagenet', classes=1000)

check the input format
print(model.input_shape)
dims = model.input_shape[1:3] # -> (height, width)
print(dims)

(None, 224, 224, 3)
(224, 224)

We see that we need a numpy tensor of shape (batches, height, width,
channels), with the specified height and width.

Loading our sample image:

we start from a path / URI.
If you already have an image loaded, follow the subsequent steps
image_uri = 'imagenet-samples/cat_dog.jpg'

this is the original "cat dog" image used in the Grad-CAM paper
check the image with Pillow
im = Image.open(image_uri)
print(type(im))
display(im)

<class 'PIL.JpegImagePlugin.JpegImageFile'>

[image: ../_images/keras-image-classifiers_5_1.png]
We see that this image will need some preprocessing to have the correct
dimensions! Let’s resize it:

we could resize the image manually
but instead let's use a utility function from `keras.preprocessing`
we pass the required dimensions as a (height, width) tuple
im = keras.preprocessing.image.load_img(image_uri, target_size=dims) # -> PIL image
print(im)
display(im)

<PIL.Image.Image image mode=RGB size=224x224 at 0x7FBF0DDE5A20>

[image: ../_images/keras-image-classifiers_7_1.png]
Looking good. Now we need to convert the image to a numpy array.

we use a routine from `keras.preprocessing` for that as well
we get a 'doc', an object almost ready to be inputted into the model

doc = keras.preprocessing.image.img_to_array(im) # -> numpy array
print(type(doc), doc.shape)

<class 'numpy.ndarray'> (224, 224, 3)

dimensions are looking good
except that we are missing one thing - the batch size

we can use a numpy routine to create an axis in the first position
doc = np.expand_dims(doc, axis=0)
print(type(doc), doc.shape)

<class 'numpy.ndarray'> (1, 224, 224, 3)

`keras.applications` models come with their own input preprocessing function
for best results, apply that as well

mobilenetv2-specific preprocessing
(this operation is in-place)
mobilenet_v2.preprocess_input(doc)
print(type(doc), doc.shape)

<class 'numpy.ndarray'> (1, 224, 224, 3)

Let’s convert back the array to an image just to check what we are
inputting

take back the first image from our 'batch'
image = keras.preprocessing.image.array_to_img(doc[0])
print(image)
display(image)

<PIL.Image.Image image mode=RGB size=224x224 at 0x7FBF0CF760F0>

[image: ../_images/keras-image-classifiers_13_1.png]
Ready to go!

2. Explaining our model’s prediction

Let’s classify our image and see where the network ‘looks’ when making
that classification:

make a prediction about our sample image
predictions = model.predict(doc)
print(type(predictions), predictions.shape)

<class 'numpy.ndarray'> (1, 1000)

check the top 5 indices
`keras.applications` contains a function for that

top = mobilenet_v2.decode_predictions(predictions)
top_indices = np.argsort(predictions)[0, ::-1][:5]

print(top)
print(top_indices)

[[('n02108422', 'bull_mastiff', 0.80967486), ('n02108089', 'boxer', 0.098359644), ('n02123045', 'tabby', 0.0066504036), ('n02123159', 'tiger_cat', 0.0048087277), ('n02110958', 'pug', 0.0039409986)]]
[243 242 281 282 254]

Indeed there is a dog in that picture The class ID (index into the
output layer) 243 stands for bull mastiff in ImageNet with 1000
classes (https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a).

But how did the network know that? Let’s check where the model “looked”
for a dog with ELI5:

we need to pass the network
the input as a numpy array
eli5.show_prediction(model, doc)

[image: ../_images/keras-image-classifiers_19_0.png]
The dog region is highlighted. Makes sense!

When explaining image based models, we can optionally pass the image
associated with the input as a Pillow image object. If we don’t, the
image will be created from doc. This may not work with custom models
or inputs, in which case it’s worth passing the image explicitly.

eli5.show_prediction(model, doc, image=image)

[image: ../_images/keras-image-classifiers_22_0.png]

3. Choosing the target class (target prediction)

We can make the model classify other objects and check where the
classifier looks to find those objects.

cat_idx = 282 # ImageNet ID for "tiger_cat" class, because we have a cat in the picture
eli5.show_prediction(model, doc, targets=[cat_idx]) # pass the class id

[image: ../_images/keras-image-classifiers_24_0.png]
The model looks at the cat now!

We have to pass the class ID as a list to the targets parameter.
Currently only one class can be explained at a time.

window_idx = 904 # 'window screen'
turtle_idx = 35 # 'mud turtle', some nonsense
display(eli5.show_prediction(model, doc, targets=[window_idx]))
display(eli5.show_prediction(model, doc, targets=[turtle_idx]))

[image: ../_images/keras-image-classifiers_26_0.png]
[image: ../_images/keras-image-classifiers_26_1.png]
That’s quite noisy! Perhaps the model is weak at classifying ‘window
screens’! On the other hand the nonsense ‘turtle’ example could be
excused.

Note that we need to wrap show_prediction() with
IPython.display.display() to actually display the image when
show_prediction() is not the last thing in a cell.

4. Choosing a hidden activation layer

Under the hood Grad-CAM takes a hidden layer inside the network and
differentiates it with respect to the output scores. We have the ability
to choose which hidden layer we do our computations on.

Let’s check what layers the network consists of:

we could use model.summary() here, but the model has over 100 layers.
we will only look at the first few and last few layers

head = model.layers[:5]
tail = model.layers[-8:]

def pretty_print_layers(layers):
 for l in layers:
 info = [l.name, type(l).__name__, l.output_shape, l.count_params()]
 pretty_print(info)

def pretty_print(lst):
 s = ',\t'.join(map(str, lst))
 print(s)

pretty_print(['name', 'type', 'output shape', 'param. no'])
print('-'*100)
pretty_print([model.input.name, type(model.input), model.input_shape, 0])
pretty_print_layers(head)
print()
print('...')
print()
pretty_print_layers(tail)

name, type, output shape, param. no
--
input_1:0, <class 'tensorflow.python.framework.ops.Tensor'>, (None, 224, 224, 3), 0
input_1, InputLayer, (None, 224, 224, 3), 0
Conv1_pad, ZeroPadding2D, (None, 225, 225, 3), 0
Conv1, Conv2D, (None, 112, 112, 32), 864
bn_Conv1, BatchNormalization, (None, 112, 112, 32), 128
Conv1_relu, ReLU, (None, 112, 112, 32), 0

...

block_16_depthwise_relu, ReLU, (None, 7, 7, 960), 0
block_16_project, Conv2D, (None, 7, 7, 320), 307200
block_16_project_BN, BatchNormalization, (None, 7, 7, 320), 1280
Conv_1, Conv2D, (None, 7, 7, 1280), 409600
Conv_1_bn, BatchNormalization, (None, 7, 7, 1280), 5120
out_relu, ReLU, (None, 7, 7, 1280), 0
global_average_pooling2d_1, GlobalAveragePooling2D, (None, 1280), 0
Logits, Dense, (None, 1000), 1281000

Rough print but okay. Let’s pick a few convolutional layers that are
‘far apart’ and do Grad-CAM on them:

for l in ['block_2_expand', 'block_9_expand', 'Conv_1']:
 print(l)
 display(eli5.show_prediction(model, doc, layer=l)) # we pass the layer as an argument

block_2_expand

[image: ../_images/keras-image-classifiers_31_1.png]
block_9_expand

[image: ../_images/keras-image-classifiers_31_3.png]
Conv_1

[image: ../_images/keras-image-classifiers_31_5.png]
These results should make intuitive sense for Convolutional Neural
Networks. Initial layers detect ‘low level’ features, ending layers
detect ‘high level’ features!

The layer parameter accepts a layer instance, index, name, or None
(get layer automatically) as its arguments. This is where Grad-CAM
builds its heatmap from.

5. Under the hood - explain_prediction() and format_as_image()

This time we will use the eli5.explain_prediction() and
eli5.format_as_image() functions (that are called one after the
other by the convenience function eli5.show_prediction()), so we can
better understand what is going on.

expl = eli5.explain_prediction(model, doc)

Examining the structure of the Explanation object:

print(expl)

Explanation(estimator='mobilenetv2_1.00_224', description='Grad-CAM visualization for image classification; noutput is explanation object that contains input image nand heatmap image for a target.n', error='', method='Grad-CAM', is_regression=False, targets=[TargetExplanation(target=243, feature_weights=None, proba=None, score=0.80967486, weighted_spans=None, heatmap=array([[0. , 0.34700435, 0.8183038 , 0.8033579 , 0.90060294,
 0.11643614, 0.01095222],
 [0.01533252, 0.3834133 , 0.80703807, 0.85117225, 0.95316563,
 0.28513838, 0.],
 [0.00708034, 0.20260051, 0.77189916, 0.77733763, 0.99999996,
 0.30238836, 0.],
 [0. , 0.04289413, 0.4495872 , 0.30086699, 0.2511554 ,
 0.06771996, 0.],
 [0.0148367 , 0. , 0. , 0. , 0. ,
 0.00579786, 0.01928998],
 [0. , 0. , 0. , 0. , 0. ,
 0. , 0.05308531],
 [0. , 0. , 0. , 0. , 0. ,
 0.01124764, 0.06864655]]))], feature_importances=None, decision_tree=None, highlight_spaces=None, transition_features=None, image=<PIL.Image.Image image mode=RGB size=224x224 at 0x7FBEFD7F4080>)

We can check the score (raw value) or probability (normalized score) of
the neuron for the predicted class, and get the class ID itself:

we can access the various attributes of a target being explained
print((expl.targets[0].target, expl.targets[0].score, expl.targets[0].proba))

(243, 0.80967486, None)

We can also access the original image and the Grad-CAM heatmap:

image = expl.image
heatmap = expl.targets[0].heatmap

display(image) # the .image attribute is a PIL image
print(heatmap) # the .heatmap attribute is a numpy array

[image: ../_images/keras-image-classifiers_41_0.png]
[[0. 0.34700435 0.8183038 0.8033579 0.90060294 0.11643614
 0.01095222]
 [0.01533252 0.3834133 0.80703807 0.85117225 0.95316563 0.28513838
 0.]
 [0.00708034 0.20260051 0.77189916 0.77733763 0.99999996 0.30238836
 0.]
 [0. 0.04289413 0.4495872 0.30086699 0.2511554 0.06771996
 0.]
 [0.0148367 0. 0. 0. 0. 0.00579786
 0.01928998]
 [0. 0. 0. 0. 0. 0.
 0.05308531]
 [0. 0. 0. 0. 0. 0.01124764
 0.06864655]]

Visualizing the heatmap:

heatmap_im = eli5.formatters.image.heatmap_to_image(heatmap)
display(heatmap_im)

[image: ../_images/keras-image-classifiers_43_0.png]
That’s only 7x7! This is the spatial dimensions of the
activation/feature maps in the last layers of the network. What Grad-CAM
produces is only a rough approximation.

Let’s resize the heatmap (we have to pass the heatmap and the image with
the required dimensions as Pillow images, and the filter for
resampling):

heatmap_im = eli5.formatters.image.expand_heatmap(heatmap, image, resampling_filter=Image.BOX)
display(heatmap_im)

[image: ../_images/keras-image-classifiers_45_0.png]
Now it’s clear what is being highlighted. We just need to apply some
colors and overlay the heatmap over the original image, exactly what
eli5.format_as_image() does!

I = eli5.format_as_image(expl)
display(I)

[image: ../_images/keras-image-classifiers_47_0.png]

6. Extra arguments to format_as_image()

format_as_image() has a couple of parameters too:

import matplotlib.cm

I = eli5.format_as_image(expl, alpha_limit=1.0, colormap=matplotlib.cm.cividis)
display(I)

[image: ../_images/keras-image-classifiers_50_0.png]
The alpha_limit argument controls the maximum opacity that the
heatmap pixels should have. It is between 0.0 and 1.0. Low values are
useful for seeing the original image.

The colormap argument is a function (callable) that does the
colorisation of the heatmap. See matplotlib.cm for some options.
Pick your favourite color!

Another optional argument is resampling_filter. The default is
PIL.Image.LANCZOS (shown here). You have already seen
PIL.Image.BOX.

7. Removing softmax

The original Grad-CAM paper (https://arxiv.org/pdf/1610.02391.pdf)
suggests that we should use the output of the layer before softmax when
doing Grad-CAM (use raw score values, not probabilities). Currently ELI5
simply takes the model as-is. Let’s try and swap the softmax (logits)
layer of our current model with a linear (no activation) layer, and
check the explanation:

first check the explanation *with* softmax
print('with softmax')
display(eli5.show_prediction(model, doc))

remove softmax
l = model.get_layer(index=-1) # get the last (output) layer
l.activation = keras.activations.linear # swap activation

save and load back the model as a trick to reload the graph
model.save('tmp_model_save_rmsoftmax') # note that this creates a file of the model
model = keras.models.load_model('tmp_model_save_rmsoftmax')

print('without softmax')
display(eli5.show_prediction(model, doc))

with softmax

[image: ../_images/keras-image-classifiers_53_1.png]
without softmax

[image: ../_images/keras-image-classifiers_53_3.png]
We see some slight differences. The activations are brighter. Do
consider swapping out softmax if explanations for your model seem off.

8. Comparing explanations of different models

According to the paper at https://arxiv.org/abs/1711.06104, if an
explanation method such as Grad-CAM is any good, then explaining
different models should yield different results. Let’s verify that by
loading another model and explaining a classification of the same image:

from keras.applications import nasnet

model2 = nasnet.NASNetMobile(include_top=True, weights='imagenet', classes=1000)

we reload the image array to apply nasnet-specific preprocessing
doc2 = keras.preprocessing.image.img_to_array(im)
doc2 = np.expand_dims(doc2, axis=0)
nasnet.preprocess_input(doc2)

print(model.name)
note that this model is without softmax
display(eli5.show_prediction(model, doc))
print(model2.name)
display(eli5.show_prediction(model2, doc2))

mobilenetv2_1.00_224

[image: ../_images/keras-image-classifiers_56_1.png]
NASNet

[image: ../_images/keras-image-classifiers_56_3.png]
Wow show_prediction() is so robust!

 TextExplainer: debugging black-box text classifiers

TextExplainer: debugging black-box text classifiers

While eli5 supports many classifiers and preprocessing methods, it can’t
support them all.

If a library is not supported by eli5 directly, or the text processing
pipeline is too complex for eli5, eli5 can still help - it provides an
implementation of LIME [http://arxiv.org/abs/1602.04938] (Ribeiro et
al., 2016) algorithm which allows to explain predictions of arbitrary
classifiers, including text classifiers. eli5.lime can also help
when it is hard to get exact mapping between model coefficients and text
features, e.g. if there is dimension reduction involved.

Example problem: LSA+SVM for 20 Newsgroups dataset

Let’s load “20 Newsgroups” dataset and create a text processing pipeline
which is hard to debug using conventional methods: SVM with RBF kernel
trained on
LSA [https://en.wikipedia.org/wiki/Latent_semantic_analysis]
features.

from sklearn.datasets import fetch_20newsgroups

categories = ['alt.atheism', 'soc.religion.christian',
 'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups(
 subset='train',
 categories=categories,
 shuffle=True,
 random_state=42,
 remove=('headers', 'footers'),
)
twenty_test = fetch_20newsgroups(
 subset='test',
 categories=categories,
 shuffle=True,
 random_state=42,
 remove=('headers', 'footers'),
)

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.decomposition import TruncatedSVD
from sklearn.pipeline import Pipeline, make_pipeline

vec = TfidfVectorizer(min_df=3, stop_words='english',
 ngram_range=(1, 2))
svd = TruncatedSVD(n_components=100, n_iter=7, random_state=42)
lsa = make_pipeline(vec, svd)

clf = SVC(C=150, gamma=2e-2, probability=True)
pipe = make_pipeline(lsa, clf)
pipe.fit(twenty_train.data, twenty_train.target)
pipe.score(twenty_test.data, twenty_test.target)

0.89014647137150471

The dimension of the input documents is reduced to 100, and then a
kernel SVM is used to classify the documents.

This is what the pipeline returns for a document - it is pretty sure the
first message in test data belongs to sci.med:

def print_prediction(doc):
 y_pred = pipe.predict_proba([doc])[0]
 for target, prob in zip(twenty_train.target_names, y_pred):
 print("{:.3f} {}".format(prob, target))

doc = twenty_test.data[0]
print_prediction(doc)

0.001 alt.atheism
0.001 comp.graphics
0.995 sci.med
0.004 soc.religion.christian

TextExplainer

Such pipelines are not supported by eli5 directly, but one can use
eli5.lime.TextExplainer to debug the prediction - to check what was
important in the document to make this decision.

Create a TextExplainer instance, then pass the document to explain
and a black-box classifier (a function which returns probabilities) to
the fit() method, then check the explanation:

import eli5
from eli5.lime import TextExplainer

te = TextExplainer(random_state=42)
te.fit(doc, pipe.predict_proba)
te.show_prediction(target_names=twenty_train.target_names)

 y=alt.atheism

 (probability 0.000, score -9.663)

top features

 	
 Contribution?

 	Feature

 	
 -0.360

 	
 <BIAS>

 	
 -9.303

 	
 Highlighted in text (sum)

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

 y=comp.graphics

 (probability 0.000, score -8.503)

top features

 	
 Contribution?

 	Feature

 	
 -0.210

 	
 <BIAS>

 	
 -8.293

 	
 Highlighted in text (sum)

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

 y=sci.med

 (probability 0.996, score 5.826)

top features

 	
 Contribution?

 	Feature

 	
 +5.929

 	
 Highlighted in text (sum)

 	
 -0.103

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

 y=soc.religion.christian

 (probability 0.004, score -5.504)

top features

 	
 Contribution?

 	Feature

 	
 -0.342

 	
 <BIAS>

 	
 -5.162

 	
 Highlighted in text (sum)

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Why it works

Explanation makes sense - we expect reasonable classifier to take
highlighted words in account. But how can we be sure this is how the
pipeline works, not just a nice-looking lie? A simple sanity check is to
remove or change the highlighted words, to confirm that they change the
outcome:

import re
doc2 = re.sub(r'(recall|kidney|stones|medication|pain|tech)', '', doc, flags=re.I)
print_prediction(doc2)

0.065 alt.atheism
0.145 comp.graphics
0.376 sci.med
0.414 soc.religion.christian

Predicted probabilities changed a lot indeed.

And in fact, TextExplainer did something similar to get the
explanation. TextExplainer generated a lot of texts similar to the
document (by removing some of the words), and then trained a white-box
classifier which predicts the output of the black-box classifier (not
the true labels!). The explanation we saw is for this white-box
classifier.

This approach follows the LIME algorithm; for text data the algorithm is
actually pretty straightforward:

	generate distorted versions of the text;

	predict probabilities for these distorted texts using the black-box
classifier;

	train another classifier (one of those eli5 supports) which tries to
predict output of a black-box classifier on these texts.

The algorithm works because even though it could be hard or impossible
to approximate a black-box classifier globally (for every possible
text), approximating it in a small neighbourhood near a given text often
works well, even with simple white-box classifiers.

Generated samples (distorted texts) are available in samples_
attribute:

print(te.samples_[0])

As my kidney , isn' any
 can .

Either they , be ,
to .

 , - tech to mention ' had kidney
 and , .

By default TextExplainer generates 5000 distorted texts (use
n_samples argument to change the amount):

len(te.samples_)

5000

Trained white-box classifier and vectorizer are available as vec_
and clf_ attributes:

te.vec_, te.clf_

(CountVectorizer(analyzer='word', binary=False, decode_error='strict',
 dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
 lowercase=True, max_df=1.0, max_features=None, min_df=1,
 ngram_range=(1, 2), preprocessor=None, stop_words=None,
 strip_accents=None, token_pattern='(?u)\b\w+\b', tokenizer=None,
 vocabulary=None),
 SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
 eta0=0.0, fit_intercept=True, l1_ratio=0.15,
 learning_rate='optimal', loss='log', n_iter=5, n_jobs=1,
 penalty='elasticnet', power_t=0.5,
 random_state=<mtrand.RandomState object at 0x10e1dcf78>,
 shuffle=True, verbose=0, warm_start=False))

Should we trust the explanation?

Ok, this sounds fine, but how can we be sure that this simple text
classification pipeline approximated the black-box classifier well?

One way to do that is to check the quality on a held-out dataset (which
is also generated). TextExplainer does that by default and stores
metrics in metrics_ attribute:

te.metrics_

{'mean_KL_divergence': 0.020120624088861134, 'score': 0.98625304704899297}

	‘score’ is an accuracy score weighted by cosine distance between
generated sample and the original document (i.e. texts which are
closer to the example are more important). Accuracy shows how good
are ‘top 1’ predictions.

	‘mean_KL_divergence’ is a mean Kullback–Leibler
divergence [https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence]
for all target classes; it is also weighted by distance. KL
divergence shows how well are probabilities approximated; 0.0 means a
perfect match.

In this example both accuracy and KL divergence are good; it means our
white-box classifier usually assigns the same labels as the black-box
classifier on the dataset we generated, and its predicted probabilities
are close to those predicted by our LSA+SVM pipeline. So it is likely
(though not guaranteed, we’ll discuss it later) that the explanation is
correct and can be trusted.

When working with LIME (e.g. via TextExplainer) it is always a good
idea to check these scores. If they are not good then you can tell that
something is not right.

Let’s make it fail

By default TextExplainer uses a very basic text processing pipeline:
Logistic Regression trained on bag-of-words and bag-of-bigrams features
(see te.clf_ and te.vec_ attributes). It limits a set of
black-box classifiers it can explain: because the text is seen as “bag
of words/ngrams”, the default white-box pipeline can’t distinguish
e.g. between the same word in the beginning of the document and in the
end of the document. Bigrams help to alleviate the problem in practice,
but not completely.

Black-box classifiers which use features like “text length” (not
directly related to tokens) can be also hard to approximate using the
default bag-of-words/ngrams model.

This kind of failure is usually detectable though - scores (accuracy and
KL divergence) will be low. Let’s check it on a completely synthetic
example - a black-box classifier which assigns a class based on oddity
of document length and on a presence of ‘medication’ word.

import numpy as np

def predict_proba_len(docs):
 # nasty predict_proba - the result is based on document length,
 # and also on a presence of "medication"
 proba = [
 [0, 0, 1.0, 0] if len(doc) % 2 or 'medication' in doc else [1.0, 0, 0, 0]
 for doc in docs
]
 return np.array(proba)

te3 = TextExplainer().fit(doc, predict_proba_len)
te3.show_prediction(target_names=twenty_train.target_names)

 y=sci.med

 (probability 0.989, score 4.466)

top features

 	
 Contribution?

 	Feature

 	
 +4.576

 	
 Highlighted in text (sum)

 	
 -0.110

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

TextExplainer correctly figured out that ‘medication’ is important,
but failed to account for “len(doc) % 2” condition, so the explanation
is incomplete. We can detect this failure by looking at metrics - they
are low:

te3.metrics_

{'mean_KL_divergence': 0.3312922355257879, 'score': 0.79050673156810314}

If (a big if…) we suspect that the fact document length is even or odd
is important, it is possible to customize TextExplainer to check
this hypothesis.

To do that, we need to create a vectorizer which returns both “is odd”
feature and bag-of-words features, and pass this vectorizer to
TextExplainer. This vectorizer should follow scikit-learn API. The
easiest way is to use FeatureUnion - just make sure all transformers
joined by FeatureUnion have get_feature_names() methods.

from sklearn.pipeline import make_union
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.base import TransformerMixin

class DocLength(TransformerMixin):
 def fit(self, X, y=None): # some boilerplate
 return self

 def transform(self, X):
 return [
 # note that we needed both positive and negative
 # feature - otherwise for linear model there won't
 # be a feature to show in a half of the cases
 [len(doc) % 2, not len(doc) % 2]
 for doc in X
]

 def get_feature_names(self):
 return ['is_odd', 'is_even']

vec = make_union(DocLength(), CountVectorizer(ngram_range=(1,2)))
te4 = TextExplainer(vec=vec).fit(doc[:-1], predict_proba_len)

print(te4.metrics_)
te4.explain_prediction(target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.024826114773734968, 'score': 1.0}

 y=sci.med

 (probability 0.996, score 5.511)

top features

 	
 Contribution?

 	Feature

 	
 +8.590

 	
 countvectorizer: Highlighted in text (sum)

 	
 -0.043

 	
 <BIAS>

 	
 -3.037

 	
 doclength__is_even

 countvectorizer: as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less

Much better! It was a toy example, but the idea stands - if you think
something could be important, add it to the mix as a feature for
TextExplainer.

Let’s make it fail, again

Another possible issue is the dataset generation method. Not only
feature extraction should be powerful enough, but auto-generated texts
also should be diverse enough.

TextExplainer removes random words by default, so by default it
can’t e.g. provide a good explanation for a black-box classifier which
works on character level. Let’s try to use TextExplainer to explain
a classifier which uses char ngrams as features:

from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier

vec_char = HashingVectorizer(analyzer='char_wb', ngram_range=(4,5))
clf_char = SGDClassifier(loss='log')

pipe_char = make_pipeline(vec_char, clf_char)
pipe_char.fit(twenty_train.data, twenty_train.target)
pipe_char.score(twenty_test.data, twenty_test.target)

0.88082556591211714

This pipeline is supported by eli5 directly, so in practice there is no
need to use TextExplainer for it. We’re using this pipeline as an
example - it is possible check the “true” explanation first, without
using TextExplainer, and then compare the results with
TextExplainer results.

eli5.show_prediction(clf_char, doc, vec=vec_char,
 targets=['sci.med'], target_names=twenty_train.target_names)

 y=sci.med

 (probability 0.565, score -0.037)

top features

 	
 Contribution?

 	Feature

 	
 +0.943

 	
 Highlighted in text (sum)

 	
 -0.980

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

TextExplainer produces a different result:

te = TextExplainer(random_state=42).fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.020247299052285436, 'score': 0.92434669226497945}

 y=sci.med

 (probability 0.576, score 0.621)

top features

 	
 Contribution?

 	Feature

 	
 +0.972

 	
 Highlighted in text (sum)

 	
 -0.351

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain.

either they pass, or they have to be broken up with sound, or they have
to be extracted surgically.

when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Scores look OK but not great; the explanation kind of makes sense on a
first sight, but we know that the classifier works in a different way.

To explain such black-box classifiers we need to change both dataset
generation method (change/remove individual characters, not only words)
and feature extraction method (e.g. use char ngrams instead of words and
word ngrams).

TextExplainer has an option (char_based=True) to use char-based
sampling and char-based classifier. If this makes a more powerful
explanation engine why not always use it?

te = TextExplainer(char_based=True, random_state=42)
te.fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.22136004391576117, 'score': 0.55669450678688481}

 y=sci.med

 (probability 0.366, score -0.003)

top features

 	
 Contribution?

 	Feature

 	
 +0.199

 	
 Highlighted in text (sum)

 	
 -0.202

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Hm, the result look worse. TextExplainer detected correctly that
only the first part of word “medication” is important, but the result is
noisy overall, and scores are bad. Let’s try it with more samples:

te = TextExplainer(char_based=True, n_samples=50000, random_state=42)
te.fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.060019833958355841, 'score': 0.86048000626542609}

 y=sci.med

 (probability 0.630, score 0.800)

top features

 	
 Contribution?

 	Feature

 	
 +1.018

 	
 Highlighted in text (sum)

 	
 -0.219

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

It is getting closer, but still not there yet. The problem is that it is
much more resource intensive - you need a lot more samples to get
non-noisy results. Here explaining a single example took more time than
training the original pipeline.

Generally speaking, to do an efficient explanation we should make some
assumptions about black-box classifier, such as:

	it uses words as features and doesn’t take word position in account;

	it uses words as features and takes word positions in account;

	it uses words ngrams as features;

	it uses char ngrams as features, positions don’t matter (i.e. an
ngram means the same everywhere);

	it uses arbitrary attention over the text characters, i.e. every part
of text could be potentionally important for a classifier on its own;

	it is important to have a particular token at a particular position,
e.g. “third token is X”, and if we delete 2nd token then prediction
changes not because 2nd token changed, but because 3rd token is
shifted.

Depending on assumptions we should choose both dataset generation method
and a white-box classifier. There is a tradeoff between generality and
speed.

Simple bag-of-words assumptions allow for fast sample generation, and
just a few hundreds of samples could be required to get an OK quality if
the assumption is correct. But such generation methods / models will
fail to explain a more complex classifier properly (they could still
provide an explanation which is useful in practice though).

On the other hand, allowing for each character to be important is a more
powerful method, but it can require a lot of samples (maybe hundreds
thousands) and a lot of CPU time to get non-noisy results.

What’s bad about this kind of failure (wrong assumption about the
black-box pipeline) is that it could be impossible to detect the failure
by looking at the scores. Scores could be high because generated dataset
is not diverse enough, not because our approximation is good.

The takeaway is that it is important to understand the “lenses” you’re
looking through when using LIME to explain a prediction.

Customizing TextExplainer: sampling

TextExplainer uses MaskingTextSampler or MaskingTextSamplers
instances to generate texts to train on. MaskingTextSampler is the
main text generation class; MaskingTextSamplers provides a way to
combine multiple samplers in a single object with the same interface.

A custom sampler instance can be passed to TextExplainer if we want
to experiment with sampling. For example, let’s try a sampler which
replaces no more than 3 characters in the text (default is to replace a
random number of characters):

from eli5.lime.samplers import MaskingTextSampler
sampler = MaskingTextSampler(
 # Regex to split text into tokens.
 # "." means any single character is a token, i.e.
 # we work on chars.
 token_pattern='.',

 # replace no more than 3 tokens
 max_replace=3,

 # by default all tokens are replaced;
 # replace only a token at a given position.
 bow=False,
)
samples, similarity = sampler.sample_near(doc)
print(samples[0])

As I recal from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the ain.

Either thy pass, or they have to be broken up with sound, or they have
to be extracted surgically.

When I was in, the X-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

te = TextExplainer(char_based=True, sampler=sampler, random_state=42)
te.fit(doc, pipe_char.predict_proba)
print(te.metrics_)
te.show_prediction(targets=['sci.med'], target_names=twenty_train.target_names)

{'mean_KL_divergence': 0.71042368337755823, 'score': 0.99933430578588944}

 y=sci.med

 (probability 0.958, score 2.434)

top features

 	
 Contribution?

 	Feature

 	
 +2.430

 	
 Highlighted in text (sum)

 	
 +0.005

 	
 <BIAS>

 as i recall from my bout with kidney stones, there isn't any
medication that can do anything about them except relieve the pain. either they pass, or they have to be broken up with sound, or they have
to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had kidney
stones and children, and the childbirth hurt less.

Note that accuracy score is perfect, but KL divergence is bad. It means
this sampler was not very useful: most generated texts were “easy” in
sense that most (or all?) of them should be still classified as
sci.med, so it was easy to get a good accuracy. But because
generated texts were not diverse enough classifier haven’t learned
anything useful; it’s having a hard time predicting the probability
output of the black-box pipeline on a held-out dataset.

By default TextExplainer uses a mix of several sampling strategies
which seems to work OK for token-based explanations. But a good sampling
strategy which works for many real-world tasks could be a research topic
on itself. If you’ve got some experience with it we’d love to hear from
you - please share your findings in eli5 issue tracker (
https://github.com/TeamHG-Memex/eli5/issues)!

Customizing TextExplainer: classifier

In one of the previous examples we already changed the vectorizer
TextExplainer uses (to take additional features in account). It is also
possible to change the white-box classifier - for example, use a small
decision tree:

from sklearn.tree import DecisionTreeClassifier

te5 = TextExplainer(clf=DecisionTreeClassifier(max_depth=2), random_state=0)
te5.fit(doc, pipe.predict_proba)
print(te5.metrics_)
te5.show_weights()

{'mean_KL_divergence': 0.037836554598348969, 'score': 0.9838155527960798}

 	Weight
 	Feature

 	
 0.5461

 	
 kidney

 	
 0.4539

 	
 pain

Tree

0

kidney <= 0.5
gini = 0.1561
samples = 100.0%
value = [0.01, 0.03, 0.92, 0.04]

1

pain <= 0.5
gini = 0.3834
samples = 38.9%
value = [0.03, 0.09, 0.77, 0.11]

0->1

True

4

pain <= 0.5
gini = 0.0456
samples = 61.1%
value = [0.0, 0.01, 0.98, 0.01]

0->4

False

2

gini = 0.5185
samples = 28.4%
value = [0.04, 0.14, 0.66, 0.16]

1->2

3

gini = 0.0434
samples = 10.6%
value = [0.0, 0.0, 0.98, 0.02]

1->3

5

gini = 0.1153
samples = 22.8%
value = [0.01, 0.02, 0.94, 0.04]

4->5

6

gini = 0.0114
samples = 38.2%
value = [0.0, 0.0, 0.99, 0.0]

4->6

How to read it: “kidney <= 0.5” means “word ‘kidney’ is not in the
document” (we’re explaining the orginal LDA+SVM pipeline again).

So according to this tree if “kidney” is not in the document and “pain”
is not in the document then the probability of a document belonging to
sci.med drops to 0.65. If at least one of these words remain
sci.med probability stays 0.9+.

print("both words removed::")
print_prediction(re.sub(r"(kidney|pain)", "", doc, flags=re.I))
print("\nonly 'pain' removed:")
print_prediction(re.sub(r"pain", "", doc, flags=re.I))

both words removed::
0.013 alt.atheism
0.022 comp.graphics
0.894 sci.med
0.072 soc.religion.christian

only 'pain' removed:
0.002 alt.atheism
0.004 comp.graphics
0.979 sci.med
0.015 soc.religion.christian

As expected, after removing both words probability of sci.med
decreased, though not as much as our simple decision tree predicted (to
0.9 instead of 0.64). Removing pain provided exactly the same effect
as predicted - probability of sci.med became 0.98.

 Explaining XGBoost predictions on the Titanic dataset

Explaining XGBoost predictions on the Titanic dataset

This tutorial will show you how to analyze predictions of an XGBoost
classifier (regression for XGBoost and most scikit-learn tree ensembles
are also supported by eli5). We will use Titanic
dataset [https://www.kaggle.com/c/titanic/data], which is small and
has not too many features, but is still interesting enough.

We are using XGBoost [https://xgboost.readthedocs.io/en/latest/]
0.81 and data downloaded from https://www.kaggle.com/c/titanic/data (it
is also bundled in the eli5 repo:
https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/titanic-train.csv).

1. Training data

Let’s start by loading the data:

import csv
import numpy as np

with open('titanic-train.csv', 'rt') as f:
 data = list(csv.DictReader(f))
data[:1]

[OrderedDict([('PassengerId', '1'),
 ('Survived', '0'),
 ('Pclass', '3'),
 ('Name', 'Braund, Mr. Owen Harris'),
 ('Sex', 'male'),
 ('Age', '22'),
 ('SibSp', '1'),
 ('Parch', '0'),
 ('Ticket', 'A/5 21171'),
 ('Fare', '7.25'),
 ('Cabin', ''),
 ('Embarked', 'S')])]

Variable descriptions:

	Age: Age

	Cabin: Cabin

	Embarked: Port of Embarkation (C = Cherbourg; Q = Queenstown; S =
Southampton)

	Fare: Passenger Fare

	Name: Name

	Parch: Number of Parents/Children Aboard

	Pclass: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

	Sex: Sex

	Sibsp: Number of Siblings/Spouses Aboard

	Survived: Survival (0 = No; 1 = Yes)

	Ticket: Ticket Number

Next, shuffle data and separate features from what we are trying to
predict: survival.

from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split

_all_xs = [{k: v for k, v in row.items() if k != 'Survived'} for row in data]
_all_ys = np.array([int(row['Survived']) for row in data])

all_xs, all_ys = shuffle(_all_xs, _all_ys, random_state=0)
train_xs, valid_xs, train_ys, valid_ys = train_test_split(
 all_xs, all_ys, test_size=0.25, random_state=0)
print('{} items total, {:.1%} true'.format(len(all_xs), np.mean(all_ys)))

891 items total, 38.4% true

We do just minimal preprocessing: convert obviously contiuous Age and
Fare variables to floats, and SibSp, Parch to integers. Missing
Age values are removed.

for x in all_xs:
 if x['Age']:
 x['Age'] = float(x['Age'])
 else:
 x.pop('Age')
 x['Fare'] = float(x['Fare'])
 x['SibSp'] = int(x['SibSp'])
 x['Parch'] = int(x['Parch'])

2. Simple XGBoost classifier

Let’s first build a very simple classifier with
xbgoost.XGBClassifier [http://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier]
and
sklearn.feature_extraction.DictVectorizer [http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html],
and check its accuracy with 10-fold cross-validation:

from xgboost import XGBClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_val_score

clf = XGBClassifier()
vec = DictVectorizer()
pipeline = make_pipeline(vec, clf)

def evaluate(_clf):
 scores = cross_val_score(_clf, all_xs, all_ys, scoring='accuracy', cv=10)
 print('Accuracy: {:.3f} ± {:.3f}'.format(np.mean(scores), 2 * np.std(scores)))
 _clf.fit(train_xs, train_ys) # so that parts of the original pipeline are fitted

evaluate(pipeline)

Accuracy: 0.823 ± 0.071

There is one tricky bit about the code above: one may be templed to just
pass dense=True to DictVectorizer: after all, in this case the
matrixes are small. But this is not a great solution, because we will
loose the ability to distinguish features that are missing and features
that have zero value.

3. Explaining weights

In order to calculate a prediction, XGBoost sums predictions of all its
trees. The number of trees is controlled by n_estimators argument
and is 100 by default. Each tree is not a great predictor on it’s own,
but by summing across all trees, XGBoost is able to provide a robust
estimate in many cases. Here is one of the trees:

booster = clf.get_booster()
original_feature_names = booster.feature_names
booster.feature_names = vec.get_feature_names()
print(booster.get_dump()[0])
recover original feature names
booster.feature_names = original_feature_names

0:[Sex=female<-9.53674316e-07] yes=1,no=2,missing=1
 1:[Age<13] yes=3,no=4,missing=4
 3:[SibSp<2] yes=7,no=8,missing=7
 7:leaf=0.145454556
 8:leaf=-0.125
 4:[Fare<26.2687492] yes=9,no=10,missing=9
 9:leaf=-0.151515156
 10:leaf=-0.0727272779
 2:[Pclass=3<-9.53674316e-07] yes=5,no=6,missing=5
 5:[Fare<12.1750002] yes=11,no=12,missing=12
 11:leaf=0.0500000007
 12:leaf=0.175193802
 6:[Fare<24.8083496] yes=13,no=14,missing=14
 13:leaf=0.0365591422
 14:leaf=-0.151999995

We see that this tree checks Sex, Age, Pclass, Fare and SibSp
features. leaf gives the decision of a single tree, and they are
summed over all trees in the ensemble.

Let’s check feature importances with eli5.show_weights():

from eli5 import show_weights
show_weights(clf, vec=vec)

 	Weight
 	Feature

 	
 0.4278

 	
 Sex=female

 	
 0.1949

 	
 Pclass=3

 	
 0.0665

 	
 Embarked=S

 	
 0.0510

 	
 Pclass=2

 	
 0.0420

 	
 SibSp

 	
 0.0417

 	
 Cabin=

 	
 0.0385

 	
 Embarked=C

 	
 0.0358

 	
 Ticket=1601

 	
 0.0331

 	
 Age

 	
 0.0323

 	
 Fare

 	
 0.0220

 	
 Pclass=1

 	
 0.0143

 	
 Parch

 	
 0

 	
 Name=Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)

 	
 0

 	
 Name=Roebling, Mr. Washington Augustus II

 	
 0

 	
 Name=Rosblom, Mr. Viktor Richard

 	
 0

 	
 Name=Ross, Mr. John Hugo

 	
 0

 	
 Name=Rush, Mr. Alfred George John

 	
 0

 	
 Name=Rouse, Mr. Richard Henry

 	
 0

 	
 Name=Ryerson, Miss. Emily Borie

 	
 0

 	
 Name=Ryerson, Miss. Susan Parker "Suzette"

 	
 _static/up-pressed.png

_static/up.png

_images/keras-image-classifiers_13_11.png

_images/keras-image-classifiers_19_0.png

_images/keras-image-classifiers_13_1.png

_images/keras-image-classifiers_22_01.png

_images/keras-image-classifiers_24_0.png

_images/keras-image-classifiers_19_01.png

_images/keras-image-classifiers_22_0.png

_images/keras-image-classifiers_24_01.png

_images/keras-image-classifiers_26_0.png

_static/minus.png

_static/plus.png

_static/file.png

_images/keras-image-classifiers_26_01.png

nav.xhtml

 Table of Contents

 		
 Welcome to ELI5’s documentation!

 		
 Overview

 		
 Installation

 		
 Features

 		
 Basic Usage

 		
 Why?

 		
 Architecture

 		
 Tutorials

 		
 Debugging scikit-learn text classification pipeline

 		
 1. Baseline model

 		
 2. Baseline model, improved data

 		
 3. Pipeline improvements

 		
 4. Char-based pipeline

 		
 5. Debugging HashingVectorizer

 		
 TextExplainer: debugging black-box text classifiers

 		
 Example problem: LSA+SVM for 20 Newsgroups dataset

 		
 TextExplainer

 		
 Why it works

 		
 Should we trust the explanation?

 		
 Let’s make it fail

 		
 Let’s make it fail, again

 		
 Customizing TextExplainer: sampling

 		
 Customizing TextExplainer: classifier

 		
 Explaining XGBoost predictions on the Titanic dataset

 		
 1. Training data

 		
 2. Simple XGBoost classifier

 		
 3. Explaining weights

 		
 4. Explaining predictions

 		
 5. Adding text features

 		
 Named Entity Recognition using sklearn-crfsuite

 		
 1. Training data

 		
 2. Feature extraction

 		
 3. Train a CRF model

 		
 4. Inspect model weights

 		
 5. Customization

 		
 6. Formatting in console

 		
 Explaining Keras image classifier predictions with Grad-CAM

 		
 1. Loading our model and data

 		
 2. Explaining our model’s prediction

 		
 3. Choosing the target class (target prediction)

 		
 4. Choosing a hidden activation layer

 		
 5. Under the hood - explain_prediction() and format_as_image()

 		
 6. Extra arguments to format_as_image()

 		
 7. Removing softmax

 		
 8. Comparing explanations of different models

 		
 Supported Libraries

 		
 scikit-learn

 		
 Additional explain_weights and explain_prediction parameters

 		
 Linear estimators

 		
 Decision Trees, Ensembles

 		
 Transformation pipelines

 		
 Reversing hashing trick

 		
 Text highlighting

 		
 OneVsRestClassifier

 		
 XGBoost

 		
 LightGBM

 		
 CatBoost

 		
 lightning

 		
 sklearn-crfsuite

 		
 Keras

 		
 explain_prediction

 		
 show_prediction

 		
 Grad-CAM

 		
 Inspecting Black-Box Estimators

 		
 LIME

 		
 Algorithm

 		
 eli5.lime

 		
 Caveats

 		
 Alternative implementations

 		
 Permutation Importance

 		
 Algorithm

 		
 Model Inspection

 		
 Feature Selection

 		
 API

 		
 ELI5 top-level API

 		
 eli5.formatters

 		
 eli5.formatters.html

 		
 eli5.formatters.text

 		
 eli5.formatters.as_dict

 		
 eli5.formatters.as_dataframe

 		
 eli5.formatters.image

 		
 eli5.lightning

 		
 eli5.lime

 		
 eli5.lime.lime

 		
 eli5.lime.samplers

 		
 eli5.lime.textutils

 		
 eli5.sklearn

 		
 eli5.sklearn.explain_prediction

 		
 eli5.sklearn.explain_weights

 		
 eli5.sklearn.unhashing

 		
 eli5.sklearn.permutation_importance

 		
 eli5.sklearn_crfsuite

 		
 eli5.xgboost

 		
 eli5.lightgbm

 		
 eli5.catboost

 		
 eli5.permutation_importance

 		
 eli5.keras

 		
 eli5.keras.explain_prediction

 		
 eli5.keras.gradcam

 		
 eli5.base

 		
 Contributing

 		
 Making releases

 		
 Changelog

 		
 0.11.0 (2021-01-23)

 		
 0.10.1 (2019-08-29)

 		
 0.10.0 (2019-08-21)

 		
 0.9.0 (2019-07-05)

 		
 0.8.2 (2019-04-04)

 		
 0.8.1 (2018-11-19)

 		
 0.8 (2017-08-25)

 		
 0.7 (2017-07-03)

 		
 0.6.4 (2017-06-22)

 		
 0.6.3 (2017-06-02)

 		
 0.6.2 (2017-05-17)

 		
 0.6.1 (2017-05-10)

 		
 0.6 (2017-05-03)

 		
 0.5 (2017-04-27)

 		
 0.4.2 (2017-03-03)

 		
 0.4.1 (2017-01-25)

 		
 0.4 (2017-01-20)

 		
 0.3.1 (2017-01-16)

 		
 0.3 (2017-01-13)

 		
 0.2 (2016-12-03)

 		
 0.1.1 (2016-11-25)

 		
 0.1 (2016-11-24)

 		
 0.0.6 (2016-10-12)

 		
 0.0.5 (2016-09-27)

 		
 0.0.4 (2016-09-24)

 		
 0.0.3 (2016-09-21)

 		
 0.0.2 (2016-09-19)

 		
 0.0.1 (2016-09-15)

_images/keras-image-classifiers_31_1.png

_images/keras-image-classifiers_31_11.png

_images/keras-image-classifiers_26_1.png

_images/keras-image-classifiers_26_11.png

_images/keras-image-classifiers_31_5.png

_images/keras-image-classifiers_31_51.png

_images/keras-image-classifiers_31_3.png

_images/keras-image-classifiers_31_31.png

_images/keras-image-classifiers_41_0.png

_images/keras-image-classifiers_41_01.png

_images/keras-image-classifiers_43_0.png

_images/keras-image-classifiers_45_01.png

_images/keras-image-classifiers_47_0.png

_images/keras-image-classifiers_43_01.png

images/keras-image-classifiers