

The elba Guide

elba is a package manager for the Idris programming language. This book aims
to be a mostly comprehensive guide on actually using it.

Usage

	Quick Start
	Installation

	Creating a package

	Adding dependencies

	Targets

	Building a package

	Binaries and Tests
	Terminology

	Resolution Rules

	Source & Target Paths

	In Practice

	Installing a Package
	Installing a local package

	Installing a package from an index

	Uninstalling a package

	Custom Subcommands

	Publishing Packages
	Logging in

	Packaging/archiving

	Uploading a package

	Yanking: for when things go wrong

Reference

	Configuration
	Config Format

	Resolutions
	Syntax

	The Manifest
	[package]

	[dependencies] and [dev_dependencies]

	[targets]

	[scripts]

	[workspace]

	An aside: the lockfile

	Indices
	Index Resolutions

	index.toml

	Metadata structure

	Index Retrieval Semantics

	Registries
	API v1 Endpoints

	Dependencies
	Versions

	Dependency Resolution

	The Global Cache
	Installed binaries

	Folder structure

	Cleaning the cache

Indices and tables

	Index

	Module Index

	Search Page

Quick Start

This section is for getting up-to-speed with elba as fast as possible,
covering getting elba installed on your machine in the first place and
making a new project.

By the end of this chapter, you should have a basic elba installation
up-and-running, as well as a general overview of how to use elba for
day-to-day Idris development.

We will assume that you already have the Idris toolchain installed. If
you don’t, there are instructions available on the
Idris [https://www.idris-lang.org/download/] and
Blodwen [https://github.com/edwinb/Blodwen] websites.

Installation

The easiest and most convenient way of installing elba is to use the
pre-built binaries for elba, which can be downloaded from GitHub
Releases [https://github.com/elba/elba/releases]. To install this
way, just download the corresponding archive for your platform, extract
the executable somewhere in your PATH, add ~/.elba/bin to your PATH
in order to execute elba-installed packages, and you’re done!

Note

For Linux platforms, there are two varieties of binaries available:
one suffixed with -gnu and the other suffixed with -musl. The
-gnu binary is dynamically linked to the system libc, while the
-musl binary is statically linked using musl.

For most users, the -gnu binary should work fine, but if it
doesn’t, try using the -musl binary.

Installing with Cargo

Because elba is written in Rust, it is available as an installable crate
from crates.io [https://crates.io]. In order to install elba this
way, you should have a copy of the Rust toolchain installed on your
computer first. The process for this is explained on the Rust
website [https://www.rust-lang.org/en-US/install.html]. The version of
of Rust elba has successfully been built on is nightly-2020-02-21.

Once you have Rust installed, installing elba is self-explanatory:

$ cargo install elba
$ elba # should work

Remember to add ~/.elba/bin to your PATH to be able to run
elba-installed packages.

Building elba

Building elba from source is much the same process as installing it
using cargo; the only difference is that instead of using a stable,
versioned-crate available from crates.io, elba’s source code is used
directly. You’ll still need to have Rust 1.31 or later installed.
After that’s done, download elba’s source code and install it:

$ git clone https://github.com/elba/elba
$ cd elba
$ cargo install --path .
$ elba # should work!

Remember to add ~/.elba/bin to your PATH to be able to run
elba-installed packages.

Creating a package

Creating a package is easy with elba: all you need is a package name.
Note that names in elba are special in that they are always
namespaced; every name in elba comes with a group part and a name part,
separated with a slash. For more information, see the information on
names in the manifest chapter.

$ elba new asd # won't work: no namespace
$ elba new grp/asd # ok!

This command will generate a new elba project with name grp/asd in
the folder ./asd/, along with an associated git project. If you want
to omit the git project, pass the option --vcs none.

By default, elba will create a project with a binary target, with a main
file located at src/Main.idr. If you’d like to generate a package
with a library target instead, pass the --lib flag, which will add a
library target to the manifest and generate the file
src/{group}/{name}.idr. This file structure of having a group
followed by a name is just convention, and isn’t required.

Regardless of which target is chosen, an elba.toml manifest file
will also be generated.

Initializing a pre-existing package

If you already have an Idris project and want to turn it into an elba
project, use the elba init command instead; it follows the exact
same syntax as elba new and is functionally identical, but uses the
current directory instead of making a new one.

Adding dependencies

Now that a new package has been created, you can start to add packages
as part of your dependencies. A package can originate from one of three
places: a git repository, a file directory, or a package index. Ordinary
dependencies are placed under the [dependencies] section, while
dependencies that are only needed for tests and the like are placed
under [dev_dependencies]. Examples are shown below:

[dependencies]
"index/version" = "0.1.5" # uses the default index (i.e. the first specified one in configuration)
"index/explicit" = { version = "0.1.5", index = "index+dir+../index" } # uses the index specified
"directory/only" = { path = "../awesome" } # uses the package in the path specified
"git/master" = { git = "https://github.com/doesnt/exist" } # uses the master branch
"git/explicit" = { git = "https://github.com/doesnt/exist", tag = "beta" } # "tag" can be an arbitrary git ref: a branch, a tag, commit, etc.

For more information on the syntax regarding specifying and adding
custom indices, see the chapters on Resolutions
and ../usage/configuration. More information about
dependency specification syntax is available at its relevant
chapter.

Note that only packages with library targets can be depended on.

At this point, you can add whatever files you want and import anything
from your dependencies.

Targets

The manifest also allows you to specify which targets you want to have
built for your package. There are three types of targets:

	A library target allows this package to be depended on by other
packages. A package can only have one library, and the syntax follows
the following:

[targets.lib]
the path which contains all of the lib files (*cannot* be a parent directory)
this is set to "src" by default
path = "src/"
a list of files to export
mods = [
 "Awesome.A", # the file src/Awesome/A.idr
 "Control.Zygohistomorphic.Prepromorphisms", # the file src/Control/Zygohistomorphic/Prepromorphisms.idr
]

	A bin target specifies a binary to be built. Multiple binaries
can correspond to one package.

[[targets.bin]]
the name of the binary to create
name = "awes"
the path which contains all of the bin files (*cannot* be a parent directory)
this is set to "src" by default
path = "src/"
the path to the Main module of the binary
main = "Awesome.B"

Note: the format of the binary target has some nuance to it, so for
more information, see the docs on the manifest format.

	A test target specifies a test binary to build. It uses the same
syntax as a bin target, with the difference that we use
[[targets.test]] to specify them and the test binary can depend
on the dev-dependencies as well as the root package’s library. A test
binary succeeds upon execution if it returns exit code 0.

Building a package

…can be accomplished with the command:

$ # assuming the current directory is an elba package
$ elba build

For all elba build-related commands, the IDRIS_OPTS environment
variable will dictate additional arguments to pass to the Idris compiler
(the flags passed by elba get higher priority). Additionally, any args
passed after a double-dash will be interpreted as arguments to the
Idris compiler:

$ # adds both the contrib and effects built-in packages
$ IDRIS_OPTS="-p contrib" elba build -- -p effects

When building a local package, the output binaries are located at
target/bin, while the output library is placed at target/lib.

Interactive development with the REPL can also be accomplished with the
command:

$ # assuming the current directory is an elba package
$ elba repl

Instead of placing the build outputs in a target/ folder, the
elba repl command directly loads the files on-disk, then cleans up
any build files after execution.

elba uses an elba.lock lockfile to ensure that these builds are
reproducible. This should be committed to repositories for libraries,
but not for binaries.

Binaries and Tests

Although specifying a library target is pretty straightforward, trying
to get a binary or a test target working can involve a lot more
finagling; elba supports multiple syntaxes and ways to specify a
binary target (and by extension, a test target, since test targets are
just spruced-up binary targets under-the-hood) in order to ensure
maximum flexibility and compatibility with the existing Idris code out
in the wild. Although there is information about these kinds of targets
:doc:`in the reference <../reference/manifest>`__, this section will
help you build some intuition as to the building blocks of the binary
target specification system, and will provide a “cookbook” of common
usecases to follow.

Terminology

There are a few terms you should know as a prerequisite:

	A subpath is a subdirectory of the project’s root folder. By
definition, subpaths cannot refer to parent or absolute directories.
Examples include bin/, bin/Whatever/Module, Lightyear.idr,
etc.

	A module path is the A.B.C name associated with a given Idris
file (“module”). Names in the module path are separated with periods,
and their precise location is determined by other config keys in the
manifest. Examples include Lightyear.Core,
Control.Monad.Tardis, etc.

Subpaths and module paths can actually be combined into a mixed path,
like in src/Lightyear.Core or tests/one/Tests.Unit.API. The
parts which are separated with slashes are considered the subpath
portion (src, tests/one), while the parts separated with periods
are the module portion (Lightyear.Core, ``Tests.Unit.API**). When
mixed, subpaths always precede module paths. These types of strings–
subpaths, module paths, or mixed paths–will be referred to as
target strings or target specifiers.

In order to account for main functions which aren’t named Main.main,
elba allows for generation of a main file which points to a function
in another module. This will be referred to as “generating a main file”
for another function.

Resolution Rules

There are multiple components to any binary or test target; for our
purposes, the relevant parts are the path and main specifiers.
main is required and refers to a target string, while path
refers to a parent directory in which the target string should be
searched for. path can be omitted: its default value is src/
for binary targets and tests/ for test targets.

Given the following binary target:

[[bin]]
path = "$p"
main = "a/.../pqr.xyz.ext"

elba will go through the following rules to resolve a target specifier
(the first search which works is used):

	Attempt to interpret as a subpath: filename pqr.xyz, extension ext
- If there’s no file extension or ext == idr or lidr:

	Search for a/.../xyz.idr

	Search for a/.../xyz.lidr

	Otherwise:
- Search for a/.../xyz.idr, generate main for fn ext
- Search for a/.../xyz.lidr, generate main for fn ext

	If either branch failed, continue to next

	Otherwise, interpret as a mixed or module path:
- Search for $p/a/.../pqr/xyz/ext.idr
- Search for $p/a/.../pqr/xyz/ext.lidr
- Search for $p/a/.../pqr/xyz.idr, generate main for fn ext

(except if ext == idr or lidr)

	Search for $p/a/.../pqr/xyz.lidr, generate main for fn ext
(except if ext == idr or lidr)

These rules make more sense in practice.

Source & Target Paths

Internally, elba splits a path into two parts: a source path and a
target path. Any file which is located in the source path will be
included in the Idris build invocation with the --include flag (i.e.
your source files will not be available unless they are located under
the source path). To determine where to divide the source and target
paths, elba uses the following rules:

	The source path of a subpath is its immediate parent.

	The source path of a mixed or module path is the value of the
path specifier.

In Practice

This section contains a few handy examples of common patterns for
target specifiers.

Files in src/ directory

Let’s say your project has a file src/Main.idr, with a function
Main.main. You could generate a binary for it in the following
ways (don’t use all the [[bin]] blocks at once!)

[[bin]]
path = "src" # also specified by default
main = "Main.idr"

[[bin]]
this is a subpath, so path will be ignored:
main = "src/Main.idr"

src/ directory, custom main

Now, let’s say you decide to move your main file to somewhere more
exotic, like src/bin/App/Cli.idr, with a main function
App.Cli.run. Which bin target you use depends on which files your
binary will need to import to work:

[[bin]]
This binary needs files from the `src` directory
This line is the default, so it isn't necessary
path = "src/"
main = "bin/App.Cli.run"
this works as long as the file "bin/App.Cli.idr" doesn't exist
also works: main = "bin/App/Cli.run", so long as
"bin/App/Cli/run.idr" doesn't exist

[[bin]]
We only need files from src/bin
path = "src/bin"
main = "App.Cli.run"
or main = "App/Cli.run"

[[bin]]
We only need files from src/bin/App
path = "src/bin/App"
main = "Cli.run"

[[bin]]
Equivalent to above
Whatever we set path to is irrelevant; elba will resolve main as a
subpath first
main = "src/bin/App/Cli.run"

Adding a test

Because tests and binaries are represented the same way to elba, the
same rules and processes apply here too. Let’s add a test function
runTests in the file tests/Tests.idr:

[[test]]
path = "tests"
main = "Tests.runTests"

.idr and .lidr

elba has special cases for target specifiers that end in idr or
lidr. If you add a test target like so:

[[test]]
path = "tests"
main = "Tests.idr"

elba will look for:

	Tests.idr

	tests/Tests/idr.idr

	tests/Tests/idr.lidr

	tests/Tests.idr

	tests/Tests.lidr

elba will never try to generate anything if the target specifier ends
with .idr or .lidr.

More examples of these are available in :doc:`the reference
<../reference/manifest>`__.

Installing a Package

elba can build and install the binary targets of packages into a global
directory (this directory is the bin subfolder under the folder of
the global cache; under normal circumstances, this should be located at
~/.elba/bin). In order for these executables to be run from
anywhere, you should this global bin folder to your PATH.

Installing a local package

To install a package which is located on-disk, simply navigate to the
directory of the package and whack:

$ elba install

Doing that should rebuild the package if needed and install its binaries
into the global bin folder.

Note that if a binary with the same name as one of the binaries being
installed already exists, the above command will fail. If you’re
absolutely sure that you want to replace the old binary, run the command
again but with the --force flag. Additionally, if you only want to
install certain binaries, you can use the --bin flag:

$ elba install --bin yeet # only install the binary named "yeet"

Installing a package from an index

If one or more package indices is specified in elba’s
configuration, you also have the option of
installing a package from one of those indices. elba install
optionally takes a package spec as an argument, which consists of
three parts:

	The name of the package to install (required)

	The resolution of the package; for the time being, this must be
the resolution of an index (see
Resolutions)

	The version of the package

The following are examples of valid elba install invocations:

$ # installs the latest version of `jsmith/one` from any index it can:
$ elba install "jsmith/one"
$ # installs version 1.0.0 of `jsmith/one` from any index it can:
$ elba install "jsmith/one|1.0.0"
$ # installs the latest version of `jsmith/one` from the index specified:
$ elba install "jsmith/one@index+tar+https://example.com/index.tar.gz"
$ # installs version 1.0.0 of `jsmith/one` from the index specified:
$ elba install "jsmith/one@index+tar+https://example.com/index.tar.gz|1.0.0"

As with installing a local package, if you want to replace any old
binaries in the global bin directory, use the --force flag, and if
you want to choose which binaries to install, use the --bin flag.

Note that if a spec can apply to multiple packages at the same time (i.e.
a package index wasn’t specified and multiple package indices offer a
package with the same name), elba will require you to provide more info
to disambiguate between the packages.

Uninstalling a package

Uninstalling a package is much the same process as installing: just pass
a spec to the elba uninstall invocation. Just like with
elba install, if you specify an ambiguous spec, elba will require
you to qualify it further.

Custom Subcommands

To support extensibility in the future, elba supports running custom
subcommands if it is passed a subcommand which doesn’t exist. All
arguments which were passed to elba will be instead passed to the
subcommand:

$ elba installnt # executes `elba-installnt`
$ elba installnt awesome one two three # executes `elba-installnt awesome one two three`
$ elba installnt --cool awesome --one -f # executes `elba-installnt --cool awesome --one -f`

elba is also available as a Rust library, meaning that subcommands
written in Rust can take advantage of elba’s internal data structures
and functions. This opens a variety of possibilities: using custom
project scaffolds and templates, running special heuristics on elba
projects, etc.

Publishing Packages

elba dependencies can be hosted on
registries, which are online package
repositories which host packages (think crates.io or npm) that are
associated with indices. The process
of publishing a package involves multiple steps (some of which are
handled for you).

Package registries are specified in the configuration of an index; for
users, this means a registry can be added by just adding the
corresponding package index. See the relevant reference docs for more
details.

Logging in

Before you can upload a package to a registry, you must be authenticated
with that registry. Each package registry might do authentication in a
slightly different way, but all authentication systems revolve around
you being given an authentication token which can be used in the elba
command-line interface.

For the official registry [https://elba.pub], logging in can be done
by clicking the “Log in” button at the top of the page and
authenticating with Github (other authentication methods aren’t
currently being implemented, but we’re open to contributions!). After
this is done, you can add an auth token which can be used to log into
the elba cli.

For any other potential registries, the process might differ, but the
end result should be that you get an auth token.

In order to log into a registry, use the elba login subcommand. If you
have multiple indices specified in your configuration, you can specify
the index to use with the --index flag. For example:

$ elba login a67fc893bccfea2141 --index index+git+https://github.com/elba/index

Otherwise, elba will use the default index (the first index specified in
configuration).

Login information is saved to the logins.toml file in the platform-
specific data directory:

	On Linux, this is either $XDG_DATA_HOME/elba or
~/.local/share/elba.

	On Windows, this is at %ROAMINGAPPDATA\elba.

	On macOS, this is at ~/Library/Application/Support/elba.

Packaging/archiving

Before a package is published, it must be compressed into a tarball with
the tar.gz extension. The elba publish command will do this
automatically for you; however, you can also do this step yourself with
the elba package subcommand.

When run in an elba project directory or subdirectory, this command will
build all targets of a project to make sure it builds successfully, then
package the source code of the project into a tarball.

If you’d like to skip the verification process, you can pass the
--no-verify flag to the command.

Ignoring files

In some cases, you might not want to include every file in the current
directory in the tarball. For one thing, elba will automatically ignore
any files specified in a .gitignore file in the current project.
Additionally, you can specify files to ignore in the manifest file of
your project, under the package.ignore key.

package.ignore is a list which accepts individual “lines” of a
.gitignore files as list elements. An example is provided below:

[package]
snip: other package metadata
ignoring files that end with .out or .dev
ignore = ["*.out", "*.dev"]

Uploading a package

Uploading a package can be accomplished with the corresponding command:
elba publish, which verifies that a package builds, packages it into
a tarball, and uploads it to a registry. Similar to elba login, you
can pass the --index flag to specify which index this command should
apply to. Unlike elba package, you can’t disable package
verification: all targets must build in order to upload your package
to an index.

Yanking: for when things go wrong

After a package has been published to a package registry, there is no
API endpoint or elba feature which allows for deleting a package (this
circumvents the “left-pad” problem). However, there is a yanking
feature (similar to crates.io), which lets you disable a version of
a package from being dependended on or retrieved by any future package
consumers.

The relevant subcommand is elba yank, and it takes one positional
argument: the package and package version to yank, specified in the form
group/name|version. It also takes the optional --index flag,
like elba login and elba publish.

You can also provide the --unyank flag, which does exactly what it
says on the tin.

Configuration

elba’s behavior can be configured through the use of TOML configuration
files and environment variables. elba checks the current directory and
all of its ancestors for a .elba/config file, unifying them in the
following order (from highest to lowest priority):

assuming current directory is /foo/bar/baz/quux
/foo/bar/baz/quux/.elba/config
/foo/bar/baz/.elba/config
/foo/bar/.elba/config
/foo/.elba/config
/.elba/config
Your platform-specific config file would go here
- Linux: ~/.config/elba/config
- macOS: /Users/<user>/Library/Preferences/elba/config
- Windows: %LOCALAPPDATA%\elba\config\config
$HOME/.elba/config

Any specified environment variables have the highest priority. This
behavior heavily borrows from Cargo’s configuration
format [https://doc.rust-lang.org/cargo/reference/config.html].

Additionally, whenever elba executes an Idris invocation, elba will pass
all of the arguments in the environment variable IDRIS_OPTS to the
compiler. In any case where the IDRIS_OPTS args conflict with elba’s
own flags (i.e. if the user specifies the flag --ide-mode but elba
specifies --check), elba will override the user-specified flag.

Config Format

A complete default elba configuration file is listed below. Any options
which are not assigned to will carry the default value instead.

compiler = "idris"

[indices]
"official" = "index+git+https://github.com/elba/elba"

[term]
verbosity = "normal"
color = "true"

[alias]
i = "install"
b = "build"
t = "test"

[directories]
cache = "$HOME/.elba"

[[backend]]
name = "c"
default = true
portable = false
opts = []

Using environment variables

In order to specify an option as an environment variable, simply
replace the “dots” of the option with underscores, and prefix with
ELBA_. So the option term.verbosity becomes
ELBA_TERM_VERBOSITY.

compiler

The compiler key specifies the name of the executable of the Idris
compiler. By default it is set to “idris”. You should not pass
any command line options in this string, as elba will search the
path for an executable with the name of this string.

elba is smart enough to detect the version of the compiler - whether
it’s Idris 1 or 2 (Blodwen). If it can’t tell what version the compiler
is, it’ll default to the behavior for Idris 1.

indices

This key plays a few different roles based on the context of the elba
operation:

	When building a local package or running a command which takes a
--index command-line flag, this key defines aliases for indices;
this way, you don’t have to completely write out the resolution of
an index to refer to it (but you can if you want).

For both the command-line flag and when building a package, if an
index is specified, elba will first see if it’s an alias for another
index. If not, it will try to parse the index as an index resolution.

The first index specified is set as the default index when building
a package. For commands with an --index flag, elba will require
that you specify what index you’re referring to if the config lists
multiple indices.

	When building a package which originates from an index, this key
defines all the indices that will be searched for the package.

By default, the first and only index available to elba is the official
package index [https://github.com/elba/index].

[profile]

This section specifies the default author information that should be
provided upon creating or initializing a new elba project. By default,
this section has no value, so new projects are made without an author.

[profile]
name = "John Smith"
email = "jsmith@example.com"

[term]

This section specifies options for terminal output, and has two fields:

	verbosity: specifies how verbose elba should be. Can be one of
verbose, normal, quiet, or none.

	color: specifies if elba should try to print color output. Either
true or false.

At the moment, neither of these options actually do anything.

[alias]

This section is for providing aliases for commands. The key represents
the alias and the value represents the the command that it should be
aliased to. Note that aliases can alias to other aliases, which can
cause infinite recursion of aliases. Be careful.

$ elba b # builds the local package with the default alias settings

[directories]

This section only contains one key: cache, for the location where
the global cache should be placed. This controls not only the location
of elba’s temporary build directories but also the location of the
global bin directory.

[[backend]]

This section specifies information about codegen backends. By default,
information about one default codegen is provided: the C backend. These
settings are used whenever a codegen backend is unspecified or a codegen
backend is specified but doesn’t have any information on it available in
the configuration. A example full [[backend]] section is provided
below:

[[backend]]
The name of the backend, passed to the --codegen or --portable-codegen
compiler option
name = "awesome"
Whether this should be treated as a new default codegen backend, instead of
the c one provided by default. Note that if multiple backends have default set
to true, the backend mentioned first will be used as the default
default = true
Whether or not this backend is portable
portable = false
The command to use to run executables generated by this codegen backend
If omitted, the executable will just be run by itself
runner = "awesomec"
The extension to use for executables generated by this codegen backend
elba will pass the name of the binary/test target with this extension set to
the -o flag of the Idris compiler
If unset, no extension-setting will happen
extension = "awe"
Options to be passed to the codegen backend
opts = []

Resolutions

A core tenet in elba’s functionality is the idea of resolutions. A
resolution is a generic location from which some resource (a package or
a package index) can be retrieved. Internally, elba
distinguishes between two types of resolutions:

	A direct resolution refers to a direct location from which a
resource (either a package or a package index) can be downloaded.
Direct resolutions themselves can include references to tarballs
(either on a network somewhere or located on disk), local directories
on disk, or git repositories.

	An index resolution refers to an index from which information
about a package’s location can be obtained. The location of the index
itself must be a direct resolution.

A package can have (and is identified by) either a direct resolution or
an index resolution. A package index is identified by its index
resolution.

Syntax

In order to refer to these types of direct resolutions, elba has its own
simple syntax for “resolution strings”:

	Each of the types of direct resolutions has its own syntax:

	For a direct resolution which points to a tarball, the resolution
string must start with the identifier tar+ and include a
properly-formed URL with either the http:///https://
(referring to a tarball on the network somewhere) or file://
(referring to a local tarball) schemas:

These are all valid:
tar+http://example.com/asdf.tar.gz
tar+https://example.com/asdf
tar+file://../asdf.tar.gz

	For a direct resolution which points to a directory on disk, the
resolution string must start with the identifier dir+ and
include a properly-formed path to a directory on disk:

These are all valid:
dir+asdf
dir+./asdf
dir+../asdf/whatever/subfolder

On Windows, these would be valid too:
dir+C:\Users\John\etc

	For a direct resolution which points to a git repository, the
resolution string must start with the identifier git+ and
provide the URL of the repository in question. Additionally, a git
ref can be specified as part of the fragment of the URL:

These are all valid:
git+https://github.com/example/doesnt-exist
git+https://github.com/example/doesnt-exist#master <- use the master branch
git+https://github.com/example/doesnt-exist#v1.0.0 <- use the "v1.0.0" tag
git+https://github.com/example/doesnt-exist#a4e13343 <- use the commit "a4e13343"
git+ssh://git@github.com/example/doesnt-exist <- using ssh instead of https

	For an index resolution, the resolution string must start with the
identifier index+ and include the direct resolution of the origin
of the index:

These are all valid
index+tar+http://example.com/asdf.tar.gz
index+dir+../asdf/whatever/subfolder
index+git+ssh://git@github.com/example/doesnt-exist#a4e13343

The Manifest

In order to keep track of package metadata like the name of a package
and what targets should be built for that particular package, elba uses
an elba.toml manifest file. This file is divided into several
different sections which each provide information to elba about the
package in question.

[package]

The first and most important section of the manifest is the
[package] section, which lists all of the metadata about the
package. A complete example of a [package] section is shown below:

[package]
name = "dcao/elba"
version = "0.1.0"
authors = ["David Cao <dcao@example.com>"]
description = "The best package ever released"
homepage = "https://github.com/elba/elba"
repository = "https://github.com/elba/elba"
readme = "README.md"
license = "MIT"
keywords = ["package-manager", "packaging"]
exclude = ["*.blah"]

The namespaced name and version are the two most important parts of this
specification. The name must contain a group (i.e. a namespace) and a
name, separated by a slash, or else the manifest will fail to parse.
Additionally, the name can only contain alphanumeric characters,
hyphens, and underscores. Internally, elba ignores case and treats
hyphens and underscores equally when deciding if two names are
identical. The version must follow Semantic Version
guidelines [https://semver.org/]. Additionally, the package section
contains fields to indicate the authors of the package and the license
which the code falls under. The authors section can be left empty, and
each author should follow the format name <email> (this is just a
helpful convention to follow). The license field can be omitted
entirely, as can the description, homepage, repository, readme,
and keywords.

Note

Why namespacing?

Having to supply a namespace to all package names might seem like
unnecessary work, but it has its benefits; this design decision to
require all package names to be namespaced was borne out of
observations of other package ecosystems where the lack of namespaces
lead to significant problems down the line. In particular, namespaced
packages provide the following benefits:

	Packages which should belong to a single “group” or are a part of
a single ecosystem can easily be grouped together, rather than
using ad-hoc kinda-sorta-namespacing by prefixing all related
packages with some name, which any untrusted package uploader can
do

	Name-squatting becomes less of an issue; instead of one global
http package in a package index, there are now separate
jsmith/http or whatever/http packages

	Namespacing doesn’t stop people from coming up with “creative”
names; you can still create a package called
jsmith/unicorns_and_butterflies if you’d like.

The exclude field specifies files which should be ignored when
building a package, packaging a package, and checking to see if the
package has changed. Each element of the list should correspond to a
line in a .gitignore file. Also note that if an actual
.gitignore file is present, elba will also ignore any files
as specified by that file.

[dependencies] and [dev_dependencies]

These sections of the manifest are mostly self-explanatory; they’re a
place where you can specify the dependencies that your package needs.
All packages in the [dependencies] section will be loaded for every
target of the package, while the packages in the [dev_dependencies]
section will only be loaded for test targets.

elba dependencies can originate from one of three places: a package
index (think RubyGems or crates.io), in which the package is identified
by its version and package index (defaulting to the first package index
specified in the config file; a git repository,
in which the package is identified by the url of the git repo and a git
ref name (defaulting to “master”); and a directory tree, in which the
package is identified by its path.

An example of these sections and all the types of dependencies is shown
below:

deps used for all targets
[dependencies]
"index/version" = "0.1.5" # uses the default index (i.e. the first specified one in configuration)
"index/explicit" = { version = "0.1.5", index = "index+dir+../index" } # uses the index specified
"directory/only" = { path = "../awesome" } # uses the package in the path specified

deps only used for the test targets
[dev_dependencies]
"git/master" = { git = "https://github.com/doesnt/exist" } # uses the master branch
"git/explicit" = { git = "https://github.com/doesnt/exist", tag = "beta" } # "tag" can be an arbitrary git ref: a tag, commit, etc.

elba’s syntax for versioning has several idiosyncrasies of its
own, but the tl;dr version is that
elba will always pick a version of that package which is greater than or
equal to and semver compatible with the version specified.

For more information about package indices, see the relevant
reference page.

[targets]

In order to know which files to build and how to build them, elba
manifest files also must specify a [targets] section. There are
three types of targets which elba can build:

	A library target is exactly what it sounds like: a built library
of ibc files which can be used and imported by other elba packages.
Each package can only export a single library target; attempting to
specify multiple library targets will result in a manifest parsing
error. The syntax for a library target is as follows:

[targets.lib]
The path to the library - defaults to "src"
path = "src"
The list of files which should be exported and made available for public use
mods = [
 "Awesome.A", # the file src/Awesome/A.idr, or src/Awesome/A.lidr
 "Control.Zygohistomorphic.Prepromorphisms", # the file src/Control/Zygohistomorphic/Prepromorphisms.idr,
 # or src/Control/Zygohistomorphic/Prepromorphisms.lidr
]
Optional flags to pass to the compiler
idris_opts = ["--warnpartial", "-p", "effects"]

The path key should be a sub-path of the package; it cannot
reference parent or absolute directories of the package. During the
build process, all of the files under the path sub-path will be
used to build the library and export the Idris bytecode files
corresponding to the items in mods.

	A binary target is a binary which should be generated based on a
Main module. Packages can have as many binary targets as they please;
by default, all binary targets are built/installed in an
elba build or elba install invocation, but this can be
changed with the --bin flag. The syntax for a binary target is as
follows:

[[targets.bin]]
The name of the output binary
name = "whatever"
The path to the folder containing the binary source - defaults to "src"
path = "src/bin"
The path to the Main module
main = "Whatever" # corresponds to src/bin/Whatever.idr
Optional flags to pass to the compiler
idris_opts = ["--warnpartial", "-p", "effects"]

The name, and idris_opts fields should be self-explanatory,
but the path and main arguments have some more nuance to
them. In order to maintain backwards compatibility while providing
maximum flexibility, elba follows several steps to resolve the
location of a binary target. It’s pretty hard to explain these steps,
but examples are much easier to follow:

Example 1: strict subpath specified in main, with folders separated by
slashes. extension left unspecified.
main = "bin/Whatever/Module"
this corresponds to the first of the following files which exists:
- bin/Whatever/Module.idr
- bin/Whatever/Module.lidr

Example 2: main uses dots instead of slashes to separate folders, and
includes an idr extension
main = "Whatever.Module.idr"
because this is not a valid subpath (uses dots instead of slashes),
this corresponds to the first of the following files which exists:
- src/Whatever/Module/idr.idr (treat the last section as a module)
- src/Whatever/Module/idr.lidr (same, but literate file)
- src/Whatever/Module.idr (treat the last section as an extension:
applies to the "idr" extension only)
- src/Whatever/Module.lidr (same, but literate file)
this file should have a function Main.main

Example 3: strict subpath specified with non-"idr" extension
main = "bin/Whatever/Module.custom"
corresponds to the first of the following files which exists:
- bin/Whatever/Module.idr
- bin/Whatever/Module.lidr
in both cases, this file should have a function `Module.custom : IO ()`,
which will be used as the main function

Example 4: non-subpath combined with custom path and non-"idr" extension
path = "bin"
main = "Whatever.Module.custom"
corresponds to the first of the following files which exists:
- bin/Whatever/Module/custom.idr (treat the last section as a module)
- bin/Whatever/Module/custom.lidr
- bin/Whatever/Module.idr (treat the last section as a function in a parent module)
- bin/Whatever/Module.lidr
if this corresponds to `bin/Whatever/Module.idr`, then the file should have a
function `Whatever.Module.custom : IO ()`, which will be used as the main
function

	A test target shares many similarities with a binary target: the
syntax is almost exactly the same, and a single package can have
multiple test targets. Indeed, in elba, tests are just executables
which return exit code 0 on success and any other exit code on
failure. The distinguishing features of a test target are as
follows:

	The path value for test targets defaults to tests/ instead
of src/

	The name value defaults to the value in main, with slashes and
periods replaced with underscores and test- prepended.

	Test targets have access to (i.e. can import from) all dev
dependencies along with the package’s own library target.

This means that if you want to test a library target, you don’t
have to do anything special, just import your library like you
normally would.

If you want to test a binary, you can still do this, since a test
will be built with all of the files in the same directory as the
test’s Main module, so if you put your test’s Main module in the
folder as a binary target, you can import everything that your
binary target can from within the test.

	Test targets can be automatically built and run in one shot using
the command elba test.

You’ll note that the syntax for specifying a test target is
remarkably similar to that for specifying a binary target:

The name of the output test binary
name = "test-a"
The path to the test's Main module
main = "tests/TestA.idr"
Optional flags to pass to the compiler
idris_opts = ["--warnpartial"]

An elba package must specify either a lib target or a bin target, or
else the manifest will be rejected as invalid.

For local packages, after building, all binaries will be output to the
target/bin folder, and any library will be output to the
target/lib folder. Additionally, for libraries, if you pass the
--lib-cg flag, elba will use the codegen backend specified (or the C
backend by default) and any export lists specified in the exported files
of the library to create output files under
target/artifacts/<codegen name> (for more information on export
lists and the like, see this test case in the Idris
compiler [https://github.com/idris-lang/Idris-dev/tree/master/test/ffi006]).

Virtual packages

elba allows packages to declare no packages at all; packages without any
targets are called virtual packages.

[scripts]

elba can run arbitrary shell commands called scripts. These are
defined in a package’s manifest file under the [scripts] section:

[scripts]
"prebuild" = "echo 'I'm building now!"
"whatever" = "echo 'Hey!'"
"dep" = "elba script whatever && echo 'Cool.'"

These can manually be executed with the elba script subcommand:

$ elba script whatever

This feature is deceptively simple; because scripts can call other
scripts in the same project, these simple scripts can function as
a viable alternative to task runners like make.

Additionally, elba has a concept of hooks, which are scripts that
are automatically run during certain phases of the build and install
process. Currently, there is only one hook: prebuild, which, if
defined, is run automatically right before a package is built.

[workspace]

The last section in the manifest is the workspace section, used to
indicate subprojects in the current directory. At the moment, the only
use for this field is to indicate to elba the location of a package in a
subdirectory (for example, with if a git repo has a package located in
some subdirectory). Adding a package to the local workspace does not
automatically add it as a local dependency of the package, nor does it
cause the workspace packages to be automatically built when the root
package is built. To add local directories as dependencies, they must
manually be specified in either the [dependencies] or
[dev_dependencies] sections.

Note that the directory of every package must be a sub-path; it
cannot refer to an absolute directory or a directory above the root
package.

An example workspace section is shown below:

[workspace]
"name/one" = "pkgs/one"
"other/pkg" = "wherever/youd/like"

Note that a a [workspace] section can stand alone and be parsed as a
valid manifest if there is no package in the root directory.

An aside: the lockfile

In order to keep track of the dependency tree and create reproducible
builds, elba uses a lockfile called elba.lock. This lockfile
should not be modified in any way, as it can lead to unpredictable
results during the build process.

The lockfile will not change so long as all of the packages in the
lockfile satisfy the requirements of the manifest and of its transitive
dependencies. For git repositories, the lockfile will lock a package to
a commit, which won’t change given that the following conditions hold:

	If the manifest references a branch, the locked commit must be
contained within that branch.

	If the manifest references a specific tag or commit, the locked
commit must be equal to that tag or commit.

Indices

A package index is a source of metadata for available packages,
mapping package names and versions to requisite dependencies and a
location to retrieve the package. Package indices serve several purposes
in elba’s package management system:

	Package indices group together versions of packages to make depending
on and installing packages easier, more convenient, and less prone to
breakage (á la RubyGems, crates.io)

	Package indices can serve to curate sets of packages which are known
to work together correctly (á la Stackage)

	They provide a level of indirection for packages; consumers of
packages don’t have to be tied to directly depending on a certain git
repository or tarball, they can just rely on wherever the index says
the package is located.

Packages within package indices are capable of depending on packages in
other indices (so long as the index specifies all of the indices it
depends on), and users of elba can specify multiple package indices to
pull from. Additionally, packages in package indices can have arbitrary
direct resolutions as their actual location. This makes elba’s package
indices extremely powerful as a consequence.

Users can have their packages appear in indices by uploading them to
their corresponding registries.

Index Resolutions

An index is identified primarily by its index resolution, which
corresponds to the place where the index is made available. For more
information, see the previous chapter on Resolutions.

In the elba.toml file, when a package requirement is declared with a
certain version, elba goes through the following steps to decide which
package index to use:

	If the resolution of an index is provided in the dependency
specification, elba will use that index.

[dependencies]
"test/one" = { version = "0.1.0", index = "index+dir+/index" }
for this package, elba will use the index located on-disk at `/index`.

	If no resolution is provided, elba will default to the first index
listed in configuration.

.elba/config
indices = [
 "index+dir+/one",
 "index+dir+/two"
]

elba.toml
[dependencies]
"test/two" = "0.1.0"
for this package, elba will use the index located on-disk at `/one`.

Note that if a declared dependency uses an index that isn’t specified in
the configuration, the package will fail to build during dependency
resolution with a “package not found” error.

index.toml

A package index is (when extracted, for tarballs) a directory tree of
metadata files. All package indices must have a configuration file at
the root of this directory tree named index.toml, and specify the
following keys:

[index]
secure = false

[index.dependencies]

The secure key tells elba whether to treat the index like a secure
package index. At the moment, this flag does nothing, but in the future,
this flag may be used to enable compatibility with The Update
Framework [https://theupdateframework.github.io/]. For forwards
compatibility, package index maintainers should set this key to
false.

The dependencies key is a mapping from the “name” of an index to its
index resolution. The name can be whatever you want, but that name will
be how the index will be referred to within metadata files. Every other
index which the packages of this index need to build properly must be
specified in this field, or else package building will fail during
dependency resolution.

An additional key, registry, should be the url of the registry API.

Metadata structure

Package indices must follow a fairly strict folder and file structure in
order for elba to interpret them correctly. The top-level folders should
be groups, and underneath the folder for each group should be a metadata
file corresponding to a package. The name of that file should be the
second portion of the package’s name:

an example index:
.
|-- group
| |-- name # metadata file corresponding to the package `group/name`
| +-- cool # metadata file corresponding to the package `group/cool`
|-- next
| +-- zzz # metadata file corresponding to the package `next/zzz`
|
+-- index.toml

Each line of the metadata file for a package should be a complete JSON
object corresponding to a specific version of a package, and should
follow the following structure (pretty-printed for readability):

{
 "name": "no_conflict/root",
 "version": "1.0.0",
 "dependencies": [
 {
 "name": "no_conflict/foo",
 "req": "1.0.0"
 },
 {
 "name": "awesome/bar",
 "index": "best_index",
 "req": ">= 0.1.0"
 }
],
 "yanked": false,
 "location": "dir+test"
}

The name and version fields should be self-explanatory. The
dependencies section should be a list of objects with fields
name, index, and req. name is self-explanatory, and
req is just the version constraint of that particular dependency.
The value in index should correspond to an index name specified
within the index’s config; if the index is unspecified or if the index
name can’t be found in configuration, elba will assume that the package
is available from the current index.

The yanked field allows for “yanking” of a package, which disallows
future consumers of a package from using that version (but allows
current consumers of a yanked package version to continue using it).
Finally, the location field indicates the direct resolution of the
package in question.

Index Retrieval Semantics

To avoid constantly updating the package index, elba will only update
its indices if it’s building a global project (i.e. elba install),
or if a package cannot be found in the locally cached indices or changes
versions in such a way that is incompatible with an existing lockfile.
This means that if an index changes the resolution of a package, the
package indices might not be updated immediately.

Registries

Where indices can be thought of as the “read-only”
part of a package repository, providing information about packages and
nothing more, a registry is a package server which serves the actual
package files and allows users to upload and yank packages from them.

All registries are tied to indices - a registry must have a
corresponding package index (though the opposite isn’t necessarily
true). Package registries can be specified as URLs in the configuration
of an index with the following syntax:

API v1 Endpoints

It’s assumed that all package registries have some sort of auth system
centered around a user token which allows the registry to authenticate
and authorize different users. elba users can log in to a registry
using the elba login <token> command, where token is the auth token
provided to them by the registry.

In order to function with elba, package registries must support two
basic operations:

	Package publishing: package registries should be able to have
packages uploaded to them at the PUT endpoint /api/v1/publish.
The body of this request will be the package in archived (tar.gz)
form, and the auth token will be provided as a query parameter
token.

	Package yanking: in order to prevent a left-pad-esque scenario,
the public interface of a package registry prohibits package
deletion; instead, packages can be yanked, which means that future
packages will be unable to depend on said package or package version.
A package group/name|version can be yanked at the PATCH endpoint
/api/v1/group/name/version/yank. This endpoint should accept a
boolean query parameter yanked (usually set to true) and a
query parameter token.

Currently, these are the two endpoints which elba needs to function.
However, the full list of endpoints is much longer than this, and can
be found in the source code of the reference elba registry [https://github.com/elba/website/blob/f41ff1dacc741f2d23650932a0e4daacf00e34b8/src/router.rs].

Dependencies

The most important job of a package manager is building dependencies of
a package. Packages in elba can depend on other packages in external
indices, a local file directory, or a git repository.

Versions

Versions in elba follow a slightly modified version of Semantic
Versioning [https://semver.org/] in order to ensure that packages
stay compatible with each other. Most of the core concepts of Semantic
Versioning are carried over:

	Differences in the major version indicate backwards incompatibility.

	Differences in the minor version indicate feature additions.

	Differences in the patch version indicate bug fixes or other
non-feature additions.

	Pre-release versions can be indicated with suffixes:
1.0.0-pre.2-beta.5

In version constraints, the second and third components of a version can
be omitted, in which case they are assumed to be 0. A pre-release
cannot be specified without also specifying the second and third
components.

Version constraints

We say that a constraint satisfies a particular version if that
particular version falls within the version constraint.

elba’s version constraints offer all the same standard operators (<,
>, ^, ~, etc.), but they have some idiosyncrasies which
distinguish them from how other package managers work.

Inequality constraints

The “lowest-level” constraints elba offers are inequality
constraints, which are fairly simple: < 1.0.0, >= 1.0.0, etc.

By default, ``<`` constraints will ignore pre-release versions. for
ergonomic reasons. If a package specifies that they depend on
< 1.0.0, they likely don’t want to have any of the pre-release
versions of 1.0.0 selected, even if those technically satisfy the
constraint. If a package wants to include the pre-release versions as
well it can opt in to pre-releases by adding a bang after the constraint
symbol like so: <! 1.0.0.

The bang trick also works for >= constraints as well: while
>= 1.0.0 doesn’t match pre-releases of 1.0.0, >=! 1.0.0
does.

The constraint parser will allow you to add bangs to all types of
less-than or greater-than constraints, but some of them won’t do
anything: <= 1.0.0 and <=! 1.0.0 mean the exact same thing, as
do > 1.0.0 and >! 1.0.0.

Additionally, if the constraint specifies a pre-release, it will satisfy
other pre-releases.

Two inequality constraints can be intersected to produce a new compound
constraint. Note that at the moment, this is the only case in which the
parser will accept multiple constraints. Additionally, the greater-than
bound must be written before the less-than bound.

The new constraint must allow at least one version for it to be valid:

>= 1.0.0 < 1.4.2 # valid
>= 1.0.0 <= 1.0.0 # valid
< 1 > 0 # invalid: less-than specified before greater-than
> 1 < 0 # invalid: impossible constraint (satisfies no versions)

Caret constraints

Caret constraints in elba function the same as in other package
managers. To quote Cargo’s
documentation [https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#caret-requirements]:

Caret requirements allow SemVer compatible updates to a specified
version. An update is allowed if the new version number does not
modify the left-most non-zero digit in the major, minor, patch
grouping.

Here are some examples of caret constraints (also taken from Cargo’s
documentation):

^1.2.3 := >= 1.2.3 < 2.0.0
^1.2 := >= 1.2.0 < 2.0.0
^1 := >= 1.0.0 < 2.0.0
^0.2.3 := >= 0.2.3 < 0.3.0
^0.2 := >= 0.2.0 < 0.3.0
^0.0.3 := >= 0.0.3 < 0.0.4
^0.0 := >= 0.0.0 < 0.1.0
^0 := >= 0.0.0 < 1.0.0

A version without a sigil or inequality is assumed to be a caret
constraint.

Tilde constraints

Tilde constraints are slightly stricted than caret constraints. If a
tilde constraint specifies a major and minor version, only changes in
the patch version are allowed. If only a major version is specified,
changes in the minor and patch versions are allowed.

~1.2.3 := >= 1.2.3 < 1.3.0
~1.2 := >= 1.2.0 < 1.3.0
~1 := >= 1.0.0 < 2.0.0
~0.2.3 := >= 0.2.3 < 0.3.0
~0.2 := >= 0.2.0 < 0.3.0
~0.0.3 := >= 0.0.3 < 0.1.0
~0.0 := >= 0.0.0 < 0.1.0
~0 := >= 0.0.0 < 1.0.0

The any constraint

If a package doesn’t care about what version of a package it uses (which
it really should; it’s impossible to guarantee infinite perpetual
forwards compatibility with a package), the any constraint can be
used, which satisfies every version.

Combining constraints with unions

Multiple constraints can be combined to form a larger constraint by
placing a comma in between each constraint, like so:
1.0.0, 2.0.0, >= 3.1.3 <= 3.1.3. This constraint represents the
union between its three component constraints, and it requires that
the version has either a major version 1 or 2, or that it’s
equal to 3.1.3.

Dependency Resolution

Dependency resolution for packages is an extremely hard problem
(possibly/probably NP-complete). In order to figure out which versions
of a package should be used, elba uses the Pubgrub
algorithm [https://github.com/dart-lang/pub/blob/master/doc/solver.md]
to do its dependency resolution.

While all of the gory details of how the algorithm works are available
both at that design document and the Pub
documentation [https://www.dartlang.org/tools/pub/versioning] (where
Pubgrub was first implemented), the main consequence of this decision is
that only one version of a package can be used at a time. If
separate packages depend on different incompatible versions of the same
package, elba will return an error during dependency resolution and will
refuse to continue until the conflict is solved.

On the one hand, this aspect of the dependency resolution system has its
fair share of drawbacks:

	“Dependency hell” becomes much harder to avoid, since every dependent
package is limited to one and only one version

	Getting an ecosystem to upgrade major versions of a package can be
much more challenging, as the entire ecosystem is locked to the
“stragglers” stuck on previous versions

However, it does have its advantages:

	Because there will be only one version of a package present at all
times, any data structures or functions provided by that package can
be used freely across between dependencies without fear of
incompatibile data structures due to version differences

	Restricting users to one version of a package simplifies module name
conflicts

Additionally, one benefit that elba gains from using the Pubgrub
algorithm is that elba can provide extremely clear error reporting to
help pinpoint and fix the conflict in question. For example, given a
dependency tree that looks like this:

	conflict_simple/root|1.0.0 depends on
conflict_simple/foo ^1.0.0 and conflict_simple/baz ^1.0.0.

	conflict_simple/foo|1.0.0 depends on
conflict_simple/bar ^2.0.0.

	conflict_simple/bar|2.0.0 depends on
conflict_simple/baz ^3.0.0.

	conflict_simple/baz|1.0.0 and 3.0.0 have no dependencies.

	All these packages are located at the index index+dir+/index/.

elba will print the following output when trying to build it:

$ elba build
snip...
[error] version solving has failed

Because conflict_simple/bar@index+dir+/index/ any depends on
conflict_simple/baz@index+dir+/index/ >=3.0.0 <4.0.0,
conflict_simple/baz@index+dir+/index/ <!3.0.0, >=!4.0.0 is impossible.
And because conflict_simple/root@index+dir+/index/ >=1.0.0 <=1.0.0 depends
on conflict_simple/baz@index+dir+/index/ >=1.0.0 <2.0.0,
conflict_simple/root@index+dir+/index/ >=1.0.0 <=1.0.0 is impossible.

Nice!

The Global Cache

elba uses an internal global cache to store downloaded packages, build
packages in a temporary clean directory, and store built packages for
future re-use. The structure of the global cache looks like the
following:

this directory is platform specific:
- Linux: ~/.cache/elba
- Windows: %LOCALAPPDATA%\elba
- macOS: /Users/<user>/Library/Caches/elba
|
|-- build
| |-- a78bu877c78deadbeef...
| +-- # snip
|-- indices
| |-- d3237be53e69715112f...
| +-- # snip
|-- src
| |-- d2e4a311d3323b784ef...
| +-- # snip
+-- tmp
 |-- a78bu877c78deadbeef...
 +-- # snip

Installed binaries

Binaries are special in that they get their own folder separate from the
internal cache stuff. Ordinarily this is stored at ~/.elba/bin for
all systems, but this can be controlled in the config, separate from the
cache dir. Deleting the whole folder should be safe, but deleting
individual binaries might not be; if you try to uninstall them later
down the line, you might get an error.

Folder structure

build

This folder stores the binary (i.e. .ibc file) outputs of library
builds. elba globally caches the builds of all dependencies to avoid
having to rebuild the same library over and over across different
projects. Each built version of a package gets its own hash which
encapsulates the entire environment under which the package was built
(package dependencies, etc.), ensuring reproducible builds. This
emulates the Nix package manager in some respects.

This folder and its subfolders are safe to delete, although it may cause
rebuilds of some packages.

indices

This folder stores the downloaded package indices as specified in elba’s
configuration, with a hash corresponding
to each different package index.

This folder and its subfolders are safe to delete; elba will redownload
any needed indices on its next invocation.

src

This folder stores the downloaded sources of packages. elba globally
caches these to avoid having to redownload the same files over and over
again.

This folder and its subfolders are safe to delete, although it may cause
having to redownload and rebuild some packages.

tmp

This folder is a temporary build directory for packages, and is more of
an implementation detail than anything else. Folders correspond to build
hashes for packages, and the internal structure of these folders mirrors
the target/ directory of a local package build.

This folder and its subfolders can be safely deleted.

Cleaning the cache

…can be accomplished with the following invocation:

$ elba clean

Doing so clears the artifacts, build, indices, src, and
tmp directories.

Index

Installing Idris

This chapter will go over installation of the Idris toolchain,

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 The elba Guide

 		
 Quick Start

 		
 Installation

 		
 Installing with Cargo

 		
 Building elba

 		
 Creating a package

 		
 Initializing a pre-existing package

 		
 Adding dependencies

 		
 Targets

 		
 Building a package

 		
 Binaries and Tests

 		
 Terminology

 		
 Resolution Rules

 		
 Source & Target Paths

 		
 In Practice

 		
 Files in src/ directory

 		
 src/ directory, custom main

 		
 Adding a test

 		
 .idr and .lidr

 		
 Installing a Package

 		
 Installing a local package

 		
 Installing a package from an index

 		
 Uninstalling a package

 		
 Custom Subcommands

 		
 Publishing Packages

 		
 Logging in

 		
 Packaging/archiving

 		
 Ignoring files

 		
 Uploading a package

 		
 Yanking: for when things go wrong

 		
 Configuration

 		
 Config Format

 		
 compiler

 		
 indices

 		
 [profile]

 		
 [term]

 		
 [alias]

 		
 [directories]

 		
 [[backend]]

 		
 Resolutions

 		
 Syntax

 		
 The Manifest

 		
 [package]

 		
 [dependencies] and [dev_dependencies]

 		
 [targets]

 		
 Virtual packages

 		
 [scripts]

 		
 [workspace]

 		
 An aside: the lockfile

 		
 Indices

 		
 Index Resolutions

 		
 index.toml

 		
 Metadata structure

 		
 Index Retrieval Semantics

 		
 Registries

 		
 API v1 Endpoints

 		
 Dependencies

 		
 Versions

 		
 Version constraints

 		
 Inequality constraints

 		
 Caret constraints

 		
 Tilde constraints

 		
 The any constraint

 		
 Combining constraints with unions

 		
 Dependency Resolution

 		
 The Global Cache

 		
 Installed binaries

 		
 Folder structure

 		
 build

 		
 indices

 		
 src

 		
 tmp

 		
 Cleaning the cache

_static/comment-bright.png

_static/ajax-loader.gif

