
elasticsearch-lua Documentation
Release alpha

Dhaval Kapil

October 29, 2016





Basic Documentation

1 Quickstart 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Setting up Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Wrap up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Installation 7
2.1 Using luarocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Directly from source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 JSON Arrays and Lua Tables 9

4 Client Configuration 11
4.1 Host Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Additional Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Indexing Documents 13
5.1 Indexing Single Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Indexing Bulk Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Getting Documents 15
6.1 Getting Single Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Getting Multiple Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Searching Documents 17
7.1 URI Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Request Body Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 Scan/Scroll Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Updating Documents 21

9 Deleting Documents 23

10 Namespaces 25

11 Connection 27

12 Selector 29
12.1 In-Built Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



12.2 Custom Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

13 Connection Pool 31
13.1 In-Built Connection Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
13.2 Custom Connection Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ii



elasticsearch-lua Documentation, Release alpha

A simple low level client for elasticsearch written in lua. elasticsearch-lua is designed to be in accordance with other
official clients for elasticsearch.

All API functions are developed to closely match with the REST API of elasticsearch. The client is extensible and
developers can attach their own plug-ins.

Basic Documentation 1

https://github.com/DhavalKapil/elasticsearch-lua


elasticsearch-lua Documentation, Release alpha

2 Basic Documentation



CHAPTER 1

Quickstart

A quick guide for installing and using elasticsearch-lua.

1.1 Installation

• Directly using luarocks:

$ luarocks install --server=http://luarocks.org/dev elasticsearch

• Using elasticsearch as a dependency in your project

– Add elasticsearch in your ‘rockspec’:

dependencies = {
"elasticsearch"

}

– Install dependencies using luarocks:

$ luarocks install --server=http://luarocks.org/dev <your_rockspec_file>

1.2 Setting up Client

Requiring elasticsearch in source file:

local elasticsearch = require "elasticsearch"

Creating a client:

local client = elasticsearch.client{
hosts = {
{

host = "localhost",
port = "9200"

}
}

}

3

https://github.com/DhavalKapil/elasticsearch-lua


elasticsearch-lua Documentation, Release alpha

Note: host and port are optional. In case any parameter is not specified, host defaults to ‘localhost’ and port defaults
to ‘9200’.

1.3 Operations

elasticsearch-lua uses Lua tables to pass parameters for any operation. Common keys include index, type, id and
body. Each kind of operation may have additional parameters. The body itself is a Lua table.

Every operation returns two values

local value1, value2 = client:operation()

The result depends on whether the operation succeeded or failed

Success Failure
value1 Actual result nil
value2 HTTP status code error message

1.3.1 Indexing Documents

To index a document, you need to pass index, type, id and body as parameters:

local res, status = client:index{
index = "my_index",
type = "my_type",
id = "my_id",
body = {
my_key = "my_value"

}
}

On success, the response will be returned in res as a Lua table and the HTTP status code in status. Sample output:

{
["_index"] = "my_index",
["_type"] = "my_type",
["_id"] = "my_id",
["created"] = true,
["_version"] = 1.0,
["_shards"] = {
["successful"] = 1.0,
["failed"] = 0.0,
["total"] = 2.0,

}
}

1.3.2 Getting Documents

To get a document, you need to pass index, type and id of the document as parameters:

local res, status = client:get{
index = "my_index",
type = "my_type",

4 Chapter 1. Quickstart



elasticsearch-lua Documentation, Release alpha

id = "my_id"
}

The following response is returned if the document can be retrieved:

{
["_index"] = "my_index",
["_type"] = "my_type",
["_id"] = "my_id",
["found"] = true,
["_version"] = 1.0,
["_source"] = {
["my_key"] = "my_value"

}
}

Otherwise, if the document is not present or cannot be retrieved, nil and an error string is returned.

1.3.3 Searching Documents

For searching documents, you can either perform a URI based search(by passing a q parameter) or a request body
search(by passing the search DSL in body parameter). Searches can be restricted to ‘index’, ‘type’, or even both, by
optionally passing index and type parameters. A sample request body search:

local res, status = client:search{
index = "my_index",
type = "my_type",
body = {
query = {

match = {
my_key = "my_value"

}
}

}
}

The returned response consists of some metadata(took, timed_out, etc.) and a hits table. hits.total contains the total
number of matches. hits.hits is a lua array, each entry represents one matching document.

{
["took"] = 3.0,
["timed_out"] = false,
["_shards"] = {
["failed"] = 0.0,
["total"] = 5.0,
["successful"] = 5.0

},
["hits"] = {
["total"] = 1.0,
["max_score"] = 7.7399282,
["hits"] = {

["1"] = {
["_index"] = "my_index",
["_type"] = "my_type",
["_id"] = "my_id",
["_score"] = 7.7399282,
["_source"] = {
["my_key"] = "my_param"

1.3. Operations 5



elasticsearch-lua Documentation, Release alpha

}
}

}
}

}

1.3.4 Deleting Documents

To delete a document, you need to pass index, type, id and body as parameters:

local res, status = client:delete{
index = "my_index",
type = "my_type",
id = "my_id"

}

On deletion, the following response is returned back:

{
["_index"] = "my_index",
["_type"] = "my_type",
["_id"] = "my_id",
["found"] = true,
["_version"] = 2.0,
["_shards"] = {
["failed"] = 0.0,
["total"] = 2.0,
["successful"] = 1.0,

}
}

1.4 Wrap up

This was just a brief overview of using elasticsearch-lua. The client functions, the body parameter and the response
returned bears resemblance with the Elasticsearch REST API.

Read the rest of the documentation to know more about the client.

6 Chapter 1. Quickstart



CHAPTER 2

Installation

elasticsearch-lua has the following requirements:

• Lua 5.1 or higher

There are two ways to install elasticsearch-lua:

2.1 Using luarocks

luarocks is the package manager for Lua modules. To install Lua and LuaRocks luaver can be used. You can directly
install elasticsearch-lua using LuaRocks:

$ luarocks install --server=http://luarocks.org/dev elasticsearch

The client will be installed and you can require ‘elasticsearch’ anywhere in your Lua code. If elasticsearch-lua is a
dependency, add it in your rockspec file:

dependencies = {
"elasticsearch"

}

2.2 Directly from source

elasticsearch-lua can also be installed directly from the source. However this is not recommended.

• Clone the repository:

git clone https://github.com/DhavalKapil/elasticsearch-lua.git

• Install the following dependencies:

– luasocket

– lua-cjson

– lunitx

Note: lunitx is not needed for using the client. You will need to install it only if you wish to run tests.

• Add the following code to use elasticsearch-lua:

7

https://github.com/DhavalKapil/elasticsearch-lua
https://github.com/DhavalKapil/elasticsearch-lua
https://luarocks.org/
https://dhavalkapil.com/luaver
https://github.com/DhavalKapil/elasticsearch-lua
https://github.com/DhavalKapil/elasticsearch-lua
https://github.com/DhavalKapil/elasticsearch-lua
https://luarocks.org/modules/luarocks/luasocket
https://luarocks.org/modules/luarocks/lua-cjson
https://luarocks.org/modules/luarocks/lunitx
https://luarocks.org/modules/luarocks/lunitx
https://github.com/DhavalKapil/elasticsearch-lua


elasticsearch-lua Documentation, Release alpha

package.path = package.path .. ";/path/to/elasticsearch-lua/src/?.lua";

local elasticsearch = require "elasticsearch";

8 Chapter 2. Installation



CHAPTER 3

JSON Arrays and Lua Tables

Elasticsearch uses JSON API. The request body and the response returned is in JSON format. elasticsearch-lua con-
verts JSON to Lua table and vice versa using the lua-cjson library. Hence, the user directly works with Lua tables.
The request body passed to the client and the response returned by the client is a Lua table.

Sample example conversion:

{
"query": {
"match": { "content": "quick brown fox" }

},
"sort": [
{

"time": { "order": "desc" }
},
{

"popularity": { "order": "desc" }
}

]
}

Note the presence of an array in the above JSON. While creating a corresponding Lua table, take care to handle arrays
using the standard 1-indexable format:

{
query = {
match = { content = "quick brown fox" }

},
sort = {
{

time = { order = "desc" }
},
{

popularity = { order = "desc" }
}

}
}

9

https://github.com/DhavalKapil/elasticsearch-lua
https://luarocks.org/modules/luarocks/lua-cjson


elasticsearch-lua Documentation, Release alpha

10 Chapter 3. JSON Arrays and Lua Tables



CHAPTER 4

Client Configuration

elasticsearch-lua was designed to allow users to configure almost all of the parameters. The standard way of creating
and configuring the client is:

local client = elasticsearch.client{
hosts = {
-- array of elasticsearch hosts
{

protocol = "http",
host = "localhost",
port = "9200"

}
},
params = {
-- additional parameters to configure the client
pingTimeout = 2,
logLevel = "warn"

}
}

Every configuration passed while creating a client is optional. Default settings are used for configurations that are not
provided by the user, as detailed below.

4.1 Host Configuration

A ‘host‘ refers to a single node of elasticsearch server. It may or may not be part of a cluster. Hosts are specified by
using the key hosts. It consists of an array of hosts, wherein each host has 3 parameters:

• protocol : The underlying protocol to be used while communicating with the host. Defaults to ‘http‘. (Presently,
the client only supports http)

• host: The domain name or the IP address at which the host is running. Defaults to ‘localhost‘.

• port: The port on which the host is listening. Defaults to ‘9200‘.

4.2 Additional Parameters

You can also specify some additional parameters to configure the elasticsearch server. Again, these parameters are
optional and have default values.

11

https://github.com/DhavalKapil/elasticsearch-lua


elasticsearch-lua Documentation, Release alpha

Parameter Description Default
pingTimeout The timeout (in seconds) for any ping

or sniff
HTTP request made by the client to
the
elasticsearch server

1

requestEngine The connection request ending to be
used. For
more details, see Connection.

‘LuaSocket’

selector The selector to be used. For more de-
tails, see
Selector.

‘RoundRobinSelector’

connectionPool The connection pool to be used. For
more details,
see Connection Pool.

‘StaticConnectionPool’

maxRetryCount The number of times to retry an
HTTP request
before exiting with a TransportError

5

logLevel The level of the inbuilt console log-
ger. Follows
the convention of log4j: ALL, DE-
BUG, ERROR,
FATAL, INFO, OFF, TRACE,
WARN. (ignores case)

‘WARN’

12 Chapter 4. Client Configuration



CHAPTER 5

Indexing Documents

Elasticsearch accepts documents in the form of JSON. In elasticsearch-lua documents are passed as Lua tables. There
are several ways to index documents.

5.1 Indexing Single Document

To index a document, you need to pass index and type as parameters. The document to be indexed is passed as a Lua
table using the body parameter. Optionally, you can also provide an id for the document or let Elasticsearch generate
it for you.

local res, status = client:index{
index = "my_index",
type = "my_type",
id = "my_id", -- Optional
body = {
my_key = "my_value"

}
}

You can specify additional parameters such as routing, refresh, etc. alongside index, type.

local res, status = client:index{
index = "my_index",
type = "my_type",
id = "my_id", -- Optional
routing = "company_xyz", -- Optional
body = {
my_key = "my_value"

}
}

Refer to the Elasticsearch documentation for a complete list of allowed parameters.

5.2 Indexing Bulk Documents

Elasticsearch also supports bulk indexing of documents (indexing more than one document in one HTTP request). It
is advised to use the Bulk API if you have to index many documents together. The client accepts an array of tables.
You have to specify a pair of tables for every document. The first represents an action(‘index’) in this context and the
second represents the body. So basically the array consists of action, body, action, body, etc. tables.

13

https://github.com/DhavalKapil/elasticsearch-lua
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html


elasticsearch-lua Documentation, Release alpha

local res, status = client:bulk{
body = {
-- First action
{

index = {
["_index"] = "my_index1",
["_type"] = "my_type1"

}
},
-- First body
{

my_key1 = "my_value1",
},
-- Second action
{

index = {
["_index"] = "my_index2",
["_type"] = "my_type2"

}
},
-- Second body
{

my_key2 = "my_value2",
}

}
}

You can also specify a common index or a type separately that would be used as default in every action.

local res, status = client:bulk{
index = "my_index",
body = {
-- First action
{

index = {
["_type"] = "my_type1"

}
},
-- First body
{

my_key1 = "my_value1",
},
-- Second action
{

index = {
["_type"] = "my_type2"

}
},
-- Second body
{

my_key2 = "my_value2",
}

}
}

14 Chapter 5. Indexing Documents



CHAPTER 6

Getting Documents

Like indexing documents, there are several ways to ‘get’ document(s) from the Elasticsearch server using elasticsearch-
lua.

6.1 Getting Single Document

To get a single document, provide index, type and id of the document.

local res, status = client:get{
index = "my_index",
type = "my_type",
id = "my_id"

}

6.2 Getting Multiple Documents

Elasticsearch supports getting multiple documents using a single request. It is advised to use this method in case you
want to retrieve multiple documents. You need to pass an array of Lua tables to the MGET API. Each table represents
details about one document and consists of three fields _index, _type and _id.

local res, status = client:mget{
body = {
docs = {

-- First document
{

["_index"] = "my_index1",
["_type"] = "my_type1",
["_id"] = "my_id1"

},
-- Second document
{

["_index"] = "my_index2",
["_type"] = "my_type2",
["_id"] = "my_id2"

}
}

}
}

15

https://github.com/DhavalKapil/elasticsearch-lua
https://github.com/DhavalKapil/elasticsearch-lua


elasticsearch-lua Documentation, Release alpha

In case every document has the same index or type, they can be specified separately instead of passing them in every
document table.

local res, status = client:mget{
index = "my_index",
type = "my_type",
body = {
docs = {

-- First document
{

["_id"] = "my_id1"
},
-- Second document
{

["_id"] = "my_id2"
}

}
}

}

16 Chapter 6. Getting Documents



CHAPTER 7

Searching Documents

Search is the primary operation of Elasticsearch. The client supports all kinds of searches supported by the Elastic-
search REST API. There are two different ways to search.

7.1 URI Search

This kind of search uses a query string, which internally translates to a URI Search. Only a limited number of search
options are available in this kind of search. However, it can be used for quick and handy searches. The optional index
and type are passed along with q, the search query.

local res, status = client:search{
index = "my_index", -- Optional
type = "my_type", -- Optional
q = "my_key:my_value"

}

This internally transforms to the following ‘curl’ request:

curl -XGET 'http://localhost:9200/my_index/my_type/_search?q=my_key:my_value'

7.2 Request Body Search

This kind of search involves a search DSL to be passed as body. All kinds of searches are possible using mode.
Searches can be restricted to ‘index’, ‘type’, or even both, by optionally passing index and type parameters.

local res, status = client:search{
index = "my_index",
type = "my_type",
body = {
query = {

match = {
my_key = "my_value"

}
}

}
}

The client allows all kinds of searches supported by Elasticsearch. Refer to the official documentation of Elasticsearch
for details.

17

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html


elasticsearch-lua Documentation, Release alpha

7.3 Response

The JSON response returned from Elasticsearch is parsed to a Lua table and returned directly. It consists of some
metadata(took, timed_out, etc.) and a hits table. hits.total contains the total number of matches. hits.hits is a lua
array and each entry represents one matching document.

{
["took"] = 3.0,
["timed_out"] = false,
["_shards"] = {
["failed"] = 0.0,
["total"] = 5.0,
["successful"] = 5.0

},
["hits"] = {
["total"] = 1.0,
["max_score"] = 7.7399282,
["hits"] = {

["1"] = {
["_index"] = "my_index",
["_type"] = "my_type",
["_id"] = "my_id",
["_score"] = 7.7399282,
["_source"] = {
["my_key"] = "my_param"

}
}

}
}

}

7.4 Scan/Scroll Search

Elasticsearch provides a scan and scroll search functionality for retrieving a large number of documents efficiently,
without paying the penalty of deep pagination. It works by first executing a ‘scan’ search. This initiates a ‘scan
window’ which will remain open for the duration of the scan. This allows proper, consistent pagination. After a ‘scan’
search, the ‘scroll’ search is used to fetch paginated results over that window.

7.4.1 Scan Search

A scan search is just a search request with an additional search_type of scan, scroll and size parameters.

local res, status = client:search{
index = "my_index",
type = "my_type",
search_type = "scan",
scroll = "30s", -- How long between scroll requests
size = 50, -- How many results *per shard* you want back
body = {
query = {

match_all = {}
}

}
}

18 Chapter 7. Searching Documents



elasticsearch-lua Documentation, Release alpha

The scroll id is returned in the response, which is later used while ‘scrolling’.

local scroll_id = res["_scroll_id"]

7.4.2 Scroll Search

Using the above generated scroll_id, scroll search can be performed repeatedly till no more results are found. The
client exposes a separate scroll function for this purpose.

while true do
-- Scroll request
res, status = client:scroll{
scroll = "30s",
scroll_id = scroll_id

}

-- If no results obtained, break
if #res["hits"]["hits"] == 0 then
break

end

--
-- Handle results
--

-- Update scroll_id
scroll_id = res["_scroll_id"]

end

Note: On every request, a new scroll_id is generated. Always remember to update it.

Note: The behavior has changed a lot in Elasticsearch 2.1, we don’t have search_type any more.

7.4. Scan/Scroll Search 19



elasticsearch-lua Documentation, Release alpha

20 Chapter 7. Searching Documents



CHAPTER 8

Updating Documents

Elasticsearch supports updating documents. index, type and id parameters are required to be passed. The fields
needed to be updated in the document are passed inside the doc parameter which is inside the body.

local res, status = client:update{
index = "my_index",
type = "my_type",
id = "my_id",
body = {
doc = {

my_key = "new_value",
my_new_key = "another_value"

}
}

}

21



elasticsearch-lua Documentation, Release alpha

22 Chapter 8. Updating Documents



CHAPTER 9

Deleting Documents

Documents can be deleted by specifying index, type and the id of the document.

local res, status = client:delete{
index = "my_index",
type = "my_type",
id = "my_id"

}

23



elasticsearch-lua Documentation, Release alpha

24 Chapter 9. Deleting Documents



CHAPTER 10

Namespaces

The client exposes administrative functionalities through ‘namespaces’.

Namespaces Functionality
indices Index related functions such as create, delete, etc.
nodes Nodes related functions such as stats, info, etc.
cluster Cluster related functions such as get and update settings, stats, etc.

These namespaces are accessible as client.indices, client.nodes and client.cluster. Sample code for using the names-
paces:

-- Creating an index
local res, status = client.indices:create{

index = "my_index"
}

-- Getting Nodes Stats
local res, status = client.nodes:stats()

-- Getting Cluster Stats
local res, status = client.cluster:stats()

Refer to the API documentation for a complete listing.

25



elasticsearch-lua Documentation, Release alpha

26 Chapter 10. Namespaces



CHAPTER 11

Connection

A connection represents the lowest level of bare interaction with the Elasticsearch server in the form of HTTP requests.
The client presently supports HTTP requests using the LuaSocket library.

Each time a request is to be made, the request function is called. However, support is provided to overload this
function. While creating the client, requestEngine can be passed in params.

local client = elasticsearch.client{
hosts = {
{

host = "localhost",
port = "9200"

}
},
params = {
requestEngine = customRequestEngine

}
}

customRequestEngine should be a Lua function which takes as arguments the http method, uri, body and timeout. It
should return a table response with keys code, statusCode and body.

-----------------------------------------------------------------------------
-- Makes a request to target server
--
-- @param method The HTTP method to be used
-- @param uri The HTTP URI for the request
-- @param body The body to passed if any
-- @param timeout The timeout(if any) in seconds
--
-- @return table The response returned
-----------------------------------------------------------------------------
function customRequestEngine(method, uri, body, timeout)
-- Make an HTTP 'method' request to 'uri' with 'body' and 'timeout'
response.code = -- non nil for a successful request
response.statusCode = -- HTTP status code returned
response.body = -- Response body
return response

end

27

http://w3.impa.br/~diego/software/luasocket/


elasticsearch-lua Documentation, Release alpha

28 Chapter 11. Connection



CHAPTER 12

Selector

The selector is an internal structure used in the client. Given an array of connections, it chooses a single connection.
Some selectors don’t even worry much about the internals of the connection. There are some in-built selectors that
you can use or you can even write and use your own custom selector.

Note: A selector is called every time a request to the Elasticsearch server is to be made. The list of all available
connections are passed to the selector.

12.1 In-Built Selectors

These selectors are defined inside elasticsearch.selectors module. There are three of them:

• RoundRobinSelector (Default): The connections are selected in a round robin fashion. i.e. #1 connection will
be chosen on the first request, #2 connection will be chosen on the second request and so on. This ensures a
nearly even load across each node in the cluster.

• StickyRoundRobinSelector: This selector will always return(‘stick’) the same connection each time, unless a
request fails. In that case, it will move on to the next connection in a round robin fashion. This case is ideal for
persistent connections where a considerable time is spent in opening and closing connections.

• RandomSelector: This selector returns a random connection from the list irrespective of whether it is alive or
not. It internally uses math.random function.

To use any particular selector you have to specify it in the parameters while creating a client. By default, the
RoundRobinSelector will be used.

local client = elasticsearch.client{
hosts = {
{

host = "localhost",
port = "9200"

}
},
params = {
selector = "StickyRoundRobinSelector"
-- selector = "RoundRobinSelector"
-- selector = "RandomSelector"

}
}

29



elasticsearch-lua Documentation, Release alpha

12.2 Custom Selector

You can also implement your own custom selector and pass it to the client. To create a custom selector, extend
elasticsearch.selector.Selector and implement the selectNext function.

-- Requiring the Base Class
local Selector = require "elasticsearch.selector.Selector"

-- Create a custom selector
local CustomSelector = Selector:new()

-- Implement the constructor function
function CustomSelector:new(o)
o = o or {}
-- Custom initialization code related to your algorithm
-- End custom code
setmetatable(o, self)
self.__index = self
return o

end

-----------------------------------------------------------------------------
-- Implement the logic to select and return a single connection from
-- an array of connections
--
-- @param connections A table of connections
-- @return Connection The connection selected
-----------------------------------------------------------------------------
function CustomSelector:selectNext(connections)
local connection = -- Select a connection
return connection

end

After creating a custom selector, it needs to be passed as a parameter while creating a client:

local client = elasticsearch.client{
params = {
selector = CustomSelector

}
}

Note: A string is passed in selector when setting an in-built selector. Otherwise, an object is passed while setting a
custom selector.

30 Chapter 12. Selector



CHAPTER 13

Connection Pool

Connection Pool is an internal construct that maintains a list(‘pool’) of connections to nodes that may be alive or dead.
The job of a Connection Pool is to handle these dead and alive connections and return back an alive connection to
provide the best behavior for the client. In case no alive connection can be found, a nil is returned. There are some
in-built connection pools that you can use or you can even write and use your own custom connection pool.

Note: A connection pool is called every time a request to the Elasticsearch server is to be made. It internally uses the
selector to choose a connection.

13.1 In-Built Connection Pools

These connection pools are defined inside elasticsearch.connectionpool module. There are two of them:

• StaticConnectionPool (Default): The StaticConnectionPool selects a connection using a selector. It returns the
connection if it is alive. If the connection is dead and a certain time interval has passed, it is tested again. If it is
still dead, another connection is selected using the selector and the process is repeated. If no alive connection is
found, the remaining dead connections are tested one by one.

• SniffConnectionPool: The SniffConnectionPool iterates the list of connections and returns the first alive con-
nection found. For dead connections, it pings again to update its status. Also, after a certain time interval, it
sniffs the existing connections to discover new nodes in the cluster and update its list of connections.

To use any particular connection pool you have to specify it in the parameters while creating a client. By default, the
StaticConnectionPool will be used.

13.2 Custom Connection Pool

You can also implement your own custom connection pool and pass it to the client. To create a custom connection
pool, extend elasticsearch.connectionpool.ConnectionPool and implement the nextConnection function.

-- Requiring the Base Class
local ConnectionPool = require "elasticsearch.connectionpool.ConnectionPool"

-- Create a custom connection pool
local CustomConnectionPool = ConnectionPool:new()

-- Implement the constructor function
function CustomConnectionPool:new(o)

31



elasticsearch-lua Documentation, Release alpha

o = o or {}
-- Custom initialization code related to your algorithm
-- End custom code
setmetatable(o, self)
self.__index = self
return o

end

-----------------------------------------------------------------------------
-- Implement the logic to return a single connection
--
-- @return Connection The connection selected
-----------------------------------------------------------------------------
function CustomConnectionPool:nextConnection()
local connection = -- Select a connection
return connection

end

After creating a custom ConnectionPool, it needs to be passed as a parameter while creating a client:

local client = elasticsearch.client{
params = {
connectionPool = CustomConnectionPool

}
}

Note: A string is passed in connectionPool when setting an in-built Connection Pool. Otherwise, an object is passed
while setting a custom Connection Pool.

32 Chapter 13. Connection Pool


	Quickstart
	Installation
	Setting up Client
	Operations
	Wrap up

	Installation
	Using luarocks
	Directly from source

	JSON Arrays and Lua Tables
	Client Configuration
	Host Configuration
	Additional Parameters

	Indexing Documents
	Indexing Single Document
	Indexing Bulk Documents

	Getting Documents
	Getting Single Document
	Getting Multiple Documents

	Searching Documents
	URI Search
	Request Body Search
	Response
	Scan/Scroll Search

	Updating Documents
	Deleting Documents
	Namespaces
	Connection
	Selector
	In-Built Selectors
	Custom Selector

	Connection Pool
	In-Built Connection Pools
	Custom Connection Pool


