

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Getting Started

There are a few basic pre-requisites to getting started with ElasticIntel.

	A working aws account with at least one profile configured on your deployment machine(laptop, desktop, instance will all work)

	Terraform 10.4+ [https://www.terraform.io/intro/getting-started/install.html]

Configuration

Once the above requirements have been met, deployment steps should be quite simple.

	Clone the repository(note, because of the python dependencies, the clone is at least moderately sized, it may take a minute)

	Begin by copying the example config to dev.conf (this can actually be whatever you want it to be named, but for this
example we'll work with a "dev" environment

cp example.conf.example dev.conf

2.a - (optional) configure your slack bot integration by following the guide here

	Fill in the values for the configuration as needed.

ElasticIntel

Serverless, low cost, threat intel aggregation for enterprise or personal use, backed by ElasticSearch.

About

An alternative to expensive threat intel aggregation platforms which ingest the same data feeds you could get for free.

ElasticIntel is designed to provide a central, scalable and easily queryable repository for
threat intelligence of all types.

Utilizes amazon services to allow for minimal support needs while maintaining scalability and
resilience and performance. (aws lambda, elasticsearch, s3, sns)

Disclaimer.

Currently documentation for this project is lacking due to time constraints. This is actively
being fixed and should be much more verbose in a few days. Please check back
soon if you're not ready to jump in blind :)

Features

	Serverless - No maintenance required

	Scalable (all services scale via AWS)

	High performance API - API can be used to run extremely high volume queries

	Flexible - Feeds can be added via simple json feed configuration

	Extensible - written in python and extended by new modules

	Cost-effective - Pay only for the backend services - don't worry about API limits

	Automated Deployment - platform can be deployed from a single command

	Works "out of the box" - comes pre-configured with 30+ opensource intel feeds

Why ElasticIntel

ElasticIntel is the answer to a frustration which arose when evaluating various paid threat intel products and feeds.
After reviewing the data from several of these services, I found that 90% of the data they were returning was data
from publicly (and freely) available sources, simply aggregated into one place.

Even more frustrating, was the fact that nearly all of them wanted to charge insane amounts for API access to this ame data,
which was limited by volume and made it nearly impossible to query the data in any significant volume without
paying even more.

Enrichment

	Whois enrichment

	< more to come >

Architecture

	Feed Scheduler lambda - The feed scheduler lambda runs once an hour, just like a cron job. It downloads
the configurations for all feeds, checks their scheduled download times and puts a download job
into an sns queue a feed needs to be downloaded

	Ingest Feed Lambda - The ingest lambda is triggered by messages arriving to an sns topic. When a message arrives,
the ingest lamda reads the message, parses out the information about the intel feed and downloads the feed itself. Once
downloaded, the ingest lambda stores a copy of the feed in s3 and then parses out the data in the feed. Once
the data is parsed, the ingest lambda puts the data into the intel index in elasticsearch for easy querying.

	intel objects define in set of values (json)

	intel feed objects define the feed itself (url, type(xml, csv, json), schedule)

	intel feeds may be easily added simply by defining a new feed configuration in the feeds
directory.

	for API-based intel feeds, modules may be easily added in the form of python scripts and
imported into the main feed manager

feed ingestion is done via a series of lambdas

	Feed scheduler:

	the scheduler lambda runs once an hours, reads the various config files and determines if
any feeds need to be pulled in

	If a feed is determined to need refreshing, the scheduler lambda launches a new lambda
to pull down that feed

Feed ingestion

feeds are ingested through the ingestfeed lambda function.
this function is passed a event containing a feed dictionary, as well as the ES index where the indicators
from the feed will be stored.

This function then reads the feed dictionary, downloads the appropriate data from the feed url, saves that data to
an s3 bucket as a timestamped file, parses that
data into intel objects and finally indexes the feed data in teh specified ES index

Elasticsearch

It is important to note that intel is not unique. Each feed is queried daily and some intel
may appear in a feed across multiple days. This is by designed, to allow a history view of indicators.

However, this may not be your default expected behavior when querying against the data, so it is
important to realize that the number of times an indicator shows up may not be indicative
of a high threat score.

setup

Requirements note

if pip3 fails on crypto install, make sure libssl-dev is installed (sudo apt install libssl-dev)

Issues

	Elasticsearch, while extremely powerful in its query language, has a very high barrier to entry. For actively slicing and dicing
data, piping or copying data to splunk may yield more maleable data.

	Queries are best written in the developer tools section of kibana

Recommended Reading:

Aws elasticsearch service: http://docs.aws.amazon.com/elasticsearch-service/latest

understanding elasticsearch upgrades

aws elasticsearch service takes a large amount of hassle out of running your own elasticsearch cluster
however, it is important to note that because of this abstraction, the variables that
need to be managed by the end user are still important decisions

	Dedicate master

	Dedicated master's are used to control all the operational chores of running
and elasticsearch cluster. They do not hold data, but manage indices, shards, etc. The project ships withsome relatively sane defaults and should be plenty to get you off the ground
and collecting intel. However, as usage and data size grow, it is important to make sure the dedicate master size and count of
dedicated masters also gets increased. This is a manual process and must be managed by changing variables in
the terraform scripts. Further reading: http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html

	Upgrading or modifying the elasticsearch service domain.

	when modifying or changing an elasticsearch domain, a new custer is spun up, data is copied over and
then the old cluster is shut down. in doing this, you will incur charges for running both clusters
for an hour. After the data is copied over, the old cluster is shut down
and you are charged only for the newly running cluster.

	Multi-zone awareness

	Default ships with this disabled. For production it is recommend this be turned on true.

	note: enableding multi-zone awareness requires an even number of instances and master nodes.

	Migrating/Upgrading to a new version: see http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-version-migration.html

	Sizing ElasticSearch Domains: https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/sizing-domains.html

 Here's a quick how-to on getting your slack bot set up so you can use it with lambdabot!

	navigate to https://api.slack.com/ and click "start building"
![alt text](images/Lambdabot 1.jpg?raw=true, "Start building")

	click "Create New App" in the upper right
[image:]

	Name your app and choose your workspace...
[image:]

	Now give your app permisison to be a bot!
[image:]

	Give your bot a username and display name. Toggle your bot to always appear online
[image:]

	Now its time to install our app and give it permissions. Select OAuth & Permissions from
the left column, then hit "Install App to Workspace"
[image:]

	Follow the prompts and authorize your bot...
[image:]

	Once this is complete, you'll have the ability to view and copy your access tokens.
You'll need these later
[image:]

	Navigate to your bots "basic" information on the left and scroll down to "App Credentials".
Make note of the verification token
[image:]

	Now its time to run the code in the repo and get your aws infra all set up. Once that's done,
you'll recieve an output URL for the last step.

	Navigate back to "Event Subscriptions" on the left side.

	Enable event subscriptions for your bot. Note that right now you won't have a url to put into
the url text field. That's ok.
[image:]

Paste your URL into the text field and tab out of the field. The slack API will attempt to
automatically connect to your API Gateway and verify your bot. If all went well, you'll get a nice
green "verified"
[image:]

	Bot events are events that will be sent to your bot to be evaluated and acted upon.
We'll add channels and direct message to allow our bot to respond to both. Make sure to hit
SAVE when you're done!
[image:]
[image:]

	Now find your bot in slack and send it the message 'test'!
[image:]

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

