

ElasticFDA Package

The ElasticFDA package provides a collection of functions for functional data
analysis using the square-root slope framework and curves using the square-root
velocity framework which performs pair-wise and group-wise alignment as well as
modeling using functional component analysis and regression.

Contents:

	Getting Started
	Installation

	References

	Functional Alignment
	SRSF Functions

	Alignment

	Functional Principal Component Analysis
	fPCA Functions

	Bayesian Alignment
	Alignment

	Elastic Functional Regression
	Regression Models and Prediction

	Curve Alignment
	SRVF Functions

	Alignment and Statistics

	Image Alignment
	Alignment

Getting Started

Installation

The ElasticFDA package is available through the Julia package system by running
Pkg.add("ElasticFDA"). Throughout, we have assume that you have installed
the package.

This package relies on two c/cpp optimization routines which will either compile
with icc or g++. One of the libraries relies LAPACK and BLAS. The makefile will
detect if icc is installed and use it, otherwise it will default to g++. If icc
is detected it will use MKL as the BLAS and LAPACK implementation. Otherwise
OpenBLAS is used/required.

References

This package is based on code from the following publications:

	Tucker, J. D. 2014, Functional Component Analysis and Regression using Elastic Methods. Ph.D. Thesis, Florida State University.

	Robinson, D. T. 2012, Function Data Analysis and Partial Shape Matching in the Square Root Velocity Framework. Ph.D. Thesis, Florida State University.

	Huang, W. 2014, Optimization Algorithms on Riemannian Manifolds with Applications. Ph.D. Thesis, Florida State University.

	Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011). Registration of Functional Data Using Fisher-Rao Metric. arXiv:1103.3817v2 [math.ST].

	Tucker, J. D., Wu, W. and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis 61, 50-66.

	Tucker, J.D., Wu, W. and Srivastava, A. (2014). Phase-Amplitude Separation of Proteomics Data Using Extended Fisher-Rao Metric. Electronic Journal of Statistics 8 (2), 1724-1733.

	Tucker, J.D., Wu, W. and Srivastava, A. (2014). Analysis of signals under compositional noise With applications to SONAR data. IEEE Journal of Oceanic Engineering 29 (2), 318-330.

	Kurtek, S., Srivastava, A. and Wu, W. (2011). Signal estimation under random time-warpings and nonlinear signal alignment. In Proceedings of Neural Information Processing Systems (NIPS).

	Joshi, S.H., Srivastava, A., Klassen, E. and Jermyn, I. (2007). A Novel Representation for Computing Geodesics Between n-Dimensional Elastic Curves. IEEE Conference on computer Vision and Pattern Recognition (CVPR), Minneapolis, MN.

	Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.

	Wen Huang, Kyle A. Gallivan, Anuj Srivastava, Pierre-Antoine Absil. “Riemannian Optimization for Elastic Shape Analysis”, Short version, The 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014).

	
	Xie, S. Kurtek, E. Klassen, G. E. Christensen and A. Srivastava. Metric-based pairwise and multiple image registration. IEEE European Conference on Computer Vision (ECCV), September, 2014

	Cheng, W., Dryden, I. L., & Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11(2), 447–475.

Functional Alignment

The main functions deal with the alignment of functional data using the
square-root slope (srsf) framework. Where an input into a function is
expecting an array of functions the shape is assumed to be (M,N) with M
being the number of sample points and N being the number of functions.

SRSF Functions

	
f_to_srsf(f::Array, timet=0, smooth=false)

	Convert function to square-root slope (srsf) functions

f is an array of shape (M,N) as described above. By default the
function will generate timing information, otherwise timet should be
vector of length M describing the timing information. If
smooth=true the input data will be smoothed first using smoothing
splines.

	
srsf_to_f(q::Array, timet, f0=0.0)

	Convert srsf to function space

q is an array with the standard shape. timet is a vector of timing
infomration. f0 is the initial value of the function in f-space, this
is required to make the transformation a bijection.

	
smooth_data(f::Array, sparam=10)

	Smooth functional data using a box filter

f is an array with the standard shape. sparam is the number of
times to run the filter.

	
smooth_data!(f::Array, sparam=10)

	same as smooth_data, except the smoothing is done in-place

	
trapz(x::Vector, y::Array, dim=1)

	Trapezodial Integration

x is a vector of time samples. y is the reponse and dim is the
dimension to integrate along.

	
optimum_reparam(q1, timet, q2, lam=0.0, method="DP", w=0.01, f1o=0.0, f2o=0.0)

	Calculates the optimum reparamertization (warping) between two srsfs q1 and
q2.

q1 and q2 can be vectors or arrays of the standard shape. timet
is a vector describing the time samples. lam controls the amount of
warping. method is the optimization method to find the warping. The
default is Simultaneous Alignment (“SIMUL”). Other options are Dynamic
Programming (“DP” or “DP2”) and Riemannian BFGS (“RBFGS”).

	
warp_f_gamma(time::Vector, f::Vector, gam::Vector)

	Warp function f by warping function gamma

	
warp_q_gamma(time::Vector, q::Vector, gam::Vector)

	Warp srsf q by warping function gamma

	
elastic_distance(f1::Vector, f2::Vector, timet::Vector, method="SIMUL")

	Calculates the elastic distance between two functions and returns the
amplitude distance da and phase distance dp.

	
rgam(N, sigma, num)

	Generate random warping functions of length N. sigma controls the
standard deviation across the random samples and num is the number of
random samples.

Alignment

	
srsf_align(f, timet; method="mean", smooth=false, sparam=10, lam=0.0, optim="DP", MaxItr=20)

	Aligns a collection of functions using the elastic square-root slope (srsf)
framework.

	f is and array of shape (M,N) of N functions with M samples

	timet is a vector of size M describing the sample points

	method (string) calculate Karcher Mean or Median (options = “mean” or “median”) (default=”mean”)

	smooth Smooth the data using a box filter (default = false)

	sparam Number of times to run smoothing filter (default 10)

	lam controls the elasticity (default = 0)

	optim optimization method to find warping, default is Simultaneous Alignment (“SIMUL”). Other options are Dynamic Programming (“DP2”), Riemanain BFGS (“RBFGS”)

	MaxItr maximum number of iterations

Returns Dict containing:

	fn aligned functions - array of shape (M,N) of N functions with M samples

	qn aligned srsfs - similar structure to fn

	q0 original srsfs - similar structure to fn

	fmean function mean or median - vector of length N

	mqn srvf mean or median - vector of length N

	gam warping functions - similar structure to fn

	orig_var Original Variance of Functions

	amp_var Amplitude Variance

	phase_var Phase Variance

	
align_fPCA(f, timet; num_comp=3, smooth=false, sparam=10, MaxItr=50)

	Aligns a collection of functions while extracting principal components.
The functions are aligned to the principal components

	f array of shape (M,N) of N functions with M samples

	timet vector of size M describing the sample points

	num_comp Number of components (default = 3)

	smooth Smooth the data using a box filter (default = false)

	sparam Number of times to run smoothing filter (default 10)

	MaxItr maximum number of iterations

Returns Dict containing:

	fn aligned functions - array of shape (M,N) of N functions with M samples

	qn aligned srvfs - similar structure to fn

	q0 original srvf - similar structure to fn

	mqn srvf mean or median - vector of length M

	gam warping functions - similar structure to fn

	q_pca srsf principal directions

	f_pca functional principal directions

	latent latent values

	coef coefficients

	U eigenvectors

	orig_var Original Variance of Functions

	amp_var Amplitude Variance

	phase_var Phase Variance

Functional Principal Component Analysis

These functions are for computing functional principal component anlaysis
(fPCA) on aligned data and generating random samples

fPCA Functions

	
vert_fPCA(fn, timet, qn; no=1)

	Calculates vertical functional principal component analysis on aligned data

	fn array of shape (M,N) of N aligned functions with M samples

	timet vector of size M describing the sample points

	qn array of shape (M,N) of N aligned SRSF with M samples

	no number of components to extract (default = 1)

Returns Dict containing:

	q_pca srsf principal directions

	f_pca functional principal directions

	latent latent values

	coef coefficients

	U eigenvectors

	
horiz_fPCA(gam, timet; no=1)

	Calculates horizontal functional principal component analysis on aligned data

	gam array of shape (M,N) of N warping functions with M samples

	timet vector of size M describing the sample points

	no number of components to extract (default = 1)

Returns Dict containing:

	gam_pca warping principal directions

	psi_pca srsf functional principal directions

	latent latent values

	U eigenvectors

	gam_mu mean warping function

	vec1 shooting vectors

	
gauss_model(fn, timet, qn, gam; n=1, sort_samples=false)

	Computes random samples of functions from aligned data using Gaussian model

	fn aligned functions (M,N)

	timet vector (M) describing time

	qn aligned srvfs (M,N)

	gam warping functions (M,N)

	n number of samples

	sort_samples sort samples

Returns Dict containing:

	fs random aligned functions

	gams random warping functions

	ft random functions

Bayesian Alignment

The following functions align functional data in the srsf framework using a
Bayesian approach. These functions are experimental and results are not
fully tested

Alignment

	
pair_warping_baye(f1, f2; iter=15000, times=5, powera=1)

	Compute pair warping between two functions using Bayesian method

	f1, f2 vectors describing functions

	iter number of iterations

	times MCMC parameter

	powera MCMC parameter

Returns Dict containing:

	f1 function f1,

	f2_q srsf registration,

	gam_q warping funtion,

	f2a registered f2,

	gam warping function,

	dist_collect distance,

	best_match best match,

	
group_warping_bayes(f; iter=20000, times=5, powera=1)

	Group alignment of functions using Bayesian method

	f array (M,N) of N functions,

	iter number of MCMC iterations,

	times time slicing,

	powera MCMC parameter,

Returns Dict containing:

	f_q registered srvfs

	gam_q warping functions

	f_a registered functions

	gam_a warping functions

Elastic Functional Regression

These functions compute elastic standard, logistic, and m-logistic regression
models. This code is experimental and results are not guaranteed

Regression Models and Prediction

	
elastic_regression(f, y, timet; B=None, lambda=0, df=20, max_itr=20, smooth=false)

	Calculate elastic regression from function data f, for response y

	f array (M,N) of N functions

	y vector (N) of responses

	timet vector (N) describing time samples

	B matrix describing basis functions (M,N) (default=None generates a B-spline basis

	lambda regularization parameter

	df degree of freedom of basis

	max_itr maximum number of iterations

	smooth smooth data

Returns Dict describing regression:

	alpha intercept

	beta regression function

	fn aligned functions

	qn aligned srsfs

	gamma warping functions

	q original srsfs

	B basis functions

	type type of regression

	b coefficients

	SSE sum of squared error

	
elastic_logistic(f, y, timet; B=None, df=20, max_itr=20, smooth=false)

	Calculate elastic logistic regression from function data f, for response y

	f array (M,N) of N functions

	y vector (N) of responses

	timet vector (N) describing time samples

	B matrix describing basis functions (M,N) (default=None generates a B-spline basis

	df degree of freedom of basis

	max_itr maximum number of iterations

	smooth smooth data

Returns Dict describing regression:

	alpha intercept

	beta regression function

	fn aligned functions

	qn aligned srsfs

	gamma warping functions

	q original srsfs

	B basis functions

	type type of regression

	b coefficients

	LL logistic loss

	
elastic_mlogistic(f, y, timet; B=None, df=20, max_itr=20, smooth=false)

	Calculate elastic m-logistic regression from function data f, for response y

	``f: array (M,N) of N functions

	``y: vector (N) of responses

	``timet: vector (N) describing time samples

	``B: matrix describing basis functions (M,N) (default=None generates a B-spline basis

	``df: degree of freedom of basis

	``max_itr: maximum number of iterations

	``smooth: smooth data

Returns Dict describing regression:

	alpha intercept

	beta regression function

	fn aligned functions

	qn aligned srsfs

	gamma warping functions

	q original srsfs

	B basis functions

	type type of regression

	b coefficients

	n_classes number of classes

	LL logistic loss

	
elastic_prediction(f, timet, model; y=None, smooth=false)

	Prediction from elastic regression model

	f functions to predict

	timet vector describing time samples

	model calculated model (regression, logistic, mlogistic)

	y true responses (default = None)

	smooth smooth data (default = false)

Returns:

	y_pred predicted value

	y_labels labels of predicted value

	Perf Performance metric if truth is supplied

Curve Alignment

These functions are for processing of N-D curves using the square-root
velocity framework (srvf)

SRVF Functions

	
curve_to_q(beta)

	Convert curve to square-root velocity function (srvf)

beta is an array of shape (n,T) describing the curve, where n is the dimension and T is the number of sample points

	
q_to_curve(q)

	Convert srvf to curve

q is an array of shape (n,T) describing the srvf, where n is the dimension and T is the number of sample points

	
optimum_reparam(beta1, beta2, lam, method="DP", w=0.01, rotated=true, isclosed=false))

	Calculates the optimum reparamertization (warping) between two curves beta1 and beta2, using the srvf framework

	beta1 array (n,T) describing curve 1

	beta2 array (n,T) describing curve 2

	lam control amount of warping (default=0.0)

	method optimization method to find warping, default is Dynamic Programming (“DP”). Other options are Coordinate Descent (“DP2”), Riemanain BFGS (“LRBFGS”).

	w Controls LRBFGS (default = 0.01)

	rotated calculate rotation (default = true)

	isclosed closed curve (default = false)

Returns:

	gam warping function

	R rotation matrix

	tau seed value

	
calc_shape_dist(beta1, beta2)

	Calculate elastic shape distance between two curves beta1 and beta2

beta1 and beta2 are arrays of shape (n,T) describing the curve, where n is the dimension and T is the number of sample points

	
resamplecurve(x, N=100)

	Resmaples Curve

	x array describing curve (n,T)

	N Number of samples to re-sample curve, N usually is > T

Alignment and Statistics

	
curve_pair_align(beta1::Array{Float64, 2}, beta2::Array{Float64, 2})

	Pairwise align two curves

	beta1 array (n,T)

	beta2 array (n,T)

Returns:

	beta2n aligned curve 2 to 1

	q2n aligned srvf 2 to 1

	gam warping function

	q1 srvf of curve 1

	
curve_geodesic(beta1::Array{Float64, 2}, beta2::Array{Float64, 2}, k::Integer=5)

	Find curves along geodesic between two curves

	beta1 array (n,T)

	beta2 array (n,T)

	k number of curves along geodesic

Returns:

	geod curves along geodesic (n,T,k)

	geod_q srvf’s along geodesic

	
curve_srvf_align(beta; mode='O', maxit=20)

	Aligns a collection of curves using the elastic square-root velocity (srvf) framework.

	beta array (n,T,N) for N number of curves

	mode Open (‘O’) or Closed (‘C’) curves

	maxit maximum number of iterations

Returns:

	betan aligned curves

	qn aligned srvfs

	betamean mean curve

	q_mu mean srvf

	
curve_karcher_mean(beta; mode='O', maxit=20)

	Calculates Karcher mean of a collection of curves using the elastic square-root velocity (srvf) framework.

	beta array (n,T,N) for N number of curves

	mode Open (‘O’) or Closed (‘C’) curves

	maxit maximum number of iterations

Returns:

	mu mean srvf

	betamean mean curve

	v shooting vectors

	q array of srvfs

	
curve_karcher_cov(betamean, beta; mode='O')

	Calculate Karcher Covariance of a set of curves

	betamean array (n,T) of mean curve

	beta array (n,T,N) for N number of curves

	mode Open (‘O’) or Closed (‘C’) curves

Returns:

	K covariance matrix

	
curve_principal_directions(betamean, mu, K; mode='O', no=3, N=5)

	Calculate principal directions of a set of curves

	betamean array (n,T) of mean curve

	mu array (n,T) of mean srvf

	K array (T,T) covariance matrix

	mode Open (‘O’) or Closed (‘C’) curve

	no number of components

	N number of samples on each side of mean

Returns:

	pd array describing principal directions

	
sample_shapes(mu, K; mode='O', no=3, numSamp=10)

	Sample shapes from model

	mu array (n,T) mean srvf

	K array (T,T) covariance matrix

	mode Open (‘O’) or Closed (‘C’) curves

	no number of principal components

	numSamp number of samples

Return:

	samples array (n,T,numSamp) of sample curves

Image Alignment

These functions are for processing of images using the q-map framework

Alignment

	
pair_align_image(I1, I2; M=5, ortho=true, basis_type="t", resizei=true, N=64, stepsize=1e-5, itermax=1000)

	Pairwise align two images

	I1 reference image

	I2 image to warp

	M number of basis elements

	ortho orthonormalize basis

	basis_type type of basis (“t”, “s”, “i”, “o”)

	resizei resize image

	N size of resized image

	stepsize gradient stepsize

	itermax maximum number of iterations

Returns:

	I2_new aligned I2

	gam warping function

Index

 A
 | C
 | E
 | F
 | G
 | H
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | W

A

 	
 	align_fPCA() (built-in function)

C

 	
 	calc_shape_dist() (built-in function)

 	curve_geodesic() (built-in function)

 	curve_karcher_cov() (built-in function)

 	curve_karcher_mean() (built-in function)

 	
 	curve_pair_align() (built-in function)

 	curve_principal_directions() (built-in function)

 	curve_srvf_align() (built-in function)

 	curve_to_q() (built-in function)

E

 	
 	elastic_distance() (built-in function)

 	elastic_logistic() (built-in function)

 	
 	elastic_mlogistic() (built-in function)

 	elastic_prediction() (built-in function)

 	elastic_regression() (built-in function)

F

 	
 	f_to_srsf() (built-in function)

G

 	
 	gauss_model() (built-in function)

 	
 	group_warping_bayes() (built-in function)

H

 	
 	horiz_fPCA() (built-in function)

O

 	
 	optimum_reparam() (built-in function), [1]

P

 	
 	pair_align_image() (built-in function)

 	
 	pair_warping_baye() (built-in function)

Q

 	
 	q_to_curve() (built-in function)

R

 	
 	resamplecurve() (built-in function)

 	
 	rgam() (built-in function)

S

 	
 	sample_shapes() (built-in function)

 	smooth_data() (built-in function)

 	
 	srsf_align() (built-in function)

 	srsf_to_f() (built-in function)

T

 	
 	trapz() (built-in function)

V

 	
 	vert_fPCA() (built-in function)

W

 	
 	warp_f_gamma() (built-in function)

 	
 	warp_q_gamma() (built-in function)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 ElasticFDA Package

 		
 Getting Started

 		
 Installation

 		
 References

 		
 Functional Alignment

 		
 SRSF Functions

 		
 Alignment

 		
 Functional Principal Component Analysis

 		
 fPCA Functions

 		
 Bayesian Alignment

 		
 Alignment

 		
 Elastic Functional Regression

 		
 Regression Models and Prediction

 		
 Curve Alignment

 		
 SRVF Functions

 		
 Alignment and Statistics

 		
 Image Alignment

 		
 Alignment

_static/up-pressed.png

_static/up.png

