

 Navigation

 	
 index

 	
 next |

 	EHRcorral 0.0.3 documentation

Welcome to EHRCorral’s documentation!

EHRCorral creates a master patient index (MPI) by matching and linking
electronic medical records.

EHR

noun (electronic healtchare record)

1. a health record in digital format: the patient’s medical diagnosis was
entered into the EHR.

corral |kəˈral|

verb (corrals, corralling, corralled) [with obj.]

1. gather together and confine (a group of people or things): the
organizers were corralling the crowd into marching formation.

	EHRCorral
	Quick Start

	Overview
	Precedents

	Phonemic Tokenization

	Record Blocking

	Exploding Data

	Matching

	Installation

	Usage
	Records

	Record Fields

	Creating a Herd

	Matching Records

	Modules
	ehrcorral.ehrcorral

	ehrcorral.measures

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Project Info
	Release Log

	Authors

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EHRcorral 0.0.3 documentation

EHRcorral

 [https://travis-ci.org/nsh87/ehrcorral]
 [https://pypi.python.org/pypi/ehrcorral]EHRCorral matches, links, and de-duplicates electronic medical records for
the purpose of creating a master patient index (MPI).

	Free software: ISC license

	Documentation: https://ehrcorral.readthedocs.org.

Quick Start

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EHRcorral 0.0.3 documentation

Overview

Significant effort has been put into developing record-linkage algorithms
using deterministic, probabilistic, or machine learning methods, or
a combination of approaches [1] [2]
[3]. EHRcorral takes a probabilistic approach, wherein certain
fields are weighted based on their match-level, which is determined using
numerical or lexical analysis in the context of two records or the entire set
of records. A composite probability of two records matching is calculated and
if the probability is above a threshold value the records are linked. Several
pre-processing steps are often taken to reduce the computational requirements
and attempt to increase the sensitivity and specificity of the algorithm.

Precedents

Purely deterministic models, which attempt to find identical values in
certain fields, are unideal for many healthcare data sets
[4]. Keying errors, misspellings, and
transpositions of first name and last name are all too common in EHRs
[5] [6], and some institutions are only
able to record minimal identifying information about patients, such as is
often the case with transient, homeless, and under-served populations. This
makes it difficult to identify a field or fields which can reliably be
matched exactly across records.

Machine learning algorithms, such as neural networks, can be used for
matching, with pros and cons compared to other approaches
[7]. However, while machine learning is becoming more
common in many fields as computational units become cheaper, most of these
algorithms require some method of training in order to identify a “pattern”
and develop a specific algorithm to be applied on future records for linkage.
This training might entail feeding in a large data set where record links
have already been identified, or training the algorithm as it is developed.

A probabilistic method can run immediately on a data set without training
data and identify record linkages with surprising sensitivity and specificity
when the right settings are used. The OX-LINK system, which was developed to
match 58 million healthcare records spanning from the 1960s to the ‘90s,
achieved a false positive rate of 0.20%—0.30% and a false negative rate
from 1.0%—3.0% on several hundred thousand records [8]. This system
uses a combination of probabilistic, weighted matching, lexical analysis,
phonemic blocking, and manual review. Recent publications also suggest that
high sensitivity can be achieved with probabilistic methods, even in the
context of error-prone data.

The approach taken here is influenced in large part by the methods of OX-LINK.
Subsequent improvements to such probabilistic techniques have been incorporated,
as well.

Phonemic Tokenization

Phonemic name compression, indexing, or tokenization schemes use phonetics to
approximately represent a word or name. There are several common name
compression schemes in wide use, including Soundex, NYSIIS, metaphone, and
double metaphone, which appear here in chronological order according to their
date of creation
[9] [10]. The purpose
of name compression in record linkage is to allow for a potential name match
when the spelling of two names disagree but the phonetics are identical. For
example, the Soundex code for Catie and Caity are both C300, although
their spelling is different.

Soundex is the oldest method here, developed in the early 1900s and used to
aid the U.S.A. Census Bureau [11]. It is computationally
efficient and included in several modern databases for fuzzy name matching
for that reason, but its shortcomings are quite obvious when non-Anglo-Saxan
names are used and in other scenarios. Continuing the example in the previous
paragraph, the Soundex code for Katie is K300, although it sounds
identical to both Catie and Caity, which both have the code C300. After
stripping vowels and other characters in certain situations, Soundex only
looks at the initial part of a name.

NYSIIS was developed in the 1970s and is used by the New York State Department
of Health and Criminal Justice Services. Unlike Soundex, vowels are not dropped
and codes are not truncated to just four characters. For example, the NYSIIS
encoding of Jonathan is JANATAN. This characteristic leads to improvements
in a number of areas, and the algorithm is purported to better handle phonemes
that occur in Hispanic and some European names. The NYSIIS codes for Catie,
Caity, and Katie are all CATY. The improvement can be seen here since NYSIIS
correctly identifies the same code for these phonetically identical names.

Metaphone, and then double metaphone, are the most recent phonemic
compressions available in EHRcorral [13] [12].
Metaphone was first published in 1990 and is the first algorithm here to
consider the sequences of letters and sounds rather than just individual
characters. It also performs its compression based on the entire name, not
a truncated or stripped version. Double metaphone was released ten years
after metaphone, and particularly turns its attention toward accounting for
combinations of sounds that are not present in the english language. This
makes double metaphone suitable for compression of english or anglicized
names of a variety of origins, including Chinese, European, Spanish, Greek,
French, Italian, and more. It is the most robust algorithm not only for that
reason, but also because it produces two encodings per name: a primary
encoding and a secondary encoding. The metaphone codes for Catie, Caity, and
Katie are all KT. Double metaphone produces just one encoding (again,
KT) and drops the secondary encoding since this is a phonetically simple
name. If we consider the name Katherine, metaphone produces KORN while
double metaphone generates two encodings, KORN, KTRN.

Phonemic compressions have been widely used to quickly identify similar names
for record linkage. They can quickly identify similar names and exclude
dissimilar ones, reducing the time to find matches, and they can improve false
positive/negative rates by eliminating unnecessary matches. They are important
to understand in the context of Record Blocking.

Record Blocking

Record blocking is a technique used to eliminate probabilistic matching
between records that clearly do not match based on some field, such as last
name [14] [15]. If every record
has to be checked against every other record for a probabilistic match there
are [image: {n \choose 2}] checks that must occur. For n=1,000,000 records,
this would require 499,999,500,000 (499 trillion) record-to-record
comparisons. If every comparison takes just 1 microsecond, it would still
take over 5 days for the matching process to complete. However, if we were
able to limit record-to-record comparisons to groups (i.e. blocks) of records
that have the possibility of matching and ignore other record-to-record
combinations, the time to completion could be greatly reduced.

By default, EHRcorral blocks data into groups by the phonemic compression of the
current surname plus the first initial of the forename. Other blocking
techniques group by phonemic compression of the forename or current surname, or
by birth month or year. A combinatory approach can be taken, as well, blocking
by both current surname and birth year, and then by sex and birth month. By
probabilistically checking only records in the same block, the time until the
algorithm finishes is greatly reduced if the average block size is manageable.
Blocking by phonemic compression has the advantage of eliminating checks between
two names that have similar spelling but different pronunciations, potentially
eliminating false positives that might match based on word-distance measures
alone. On the other hand, if the phonemic compression algorithm is inaccurate
(as we saw with Caity and Katie using Soundex), potential matches are discarded,
increasing the false negative rate.

Soundex, NYSIIS, and metaphone all generate a single encoding, while the more
robust double metaphone generates two encodings. In the case of double metaphone
both encodings are used, effectively creating larger block sizes. This can lead
to a significant increase in computation time, depending on the data set.
Therefore, the first initial of the forename is also used to then decrease the
block size. This also helps reduce the size of blocks for very common surnames,
such as Smith, which occurs at a rate of about 1% (or 10,000 for every one
million) in the United States of America.

Exploding Data

Exploding the data set refers to the process of generating additional Records
from each Record by combining, switching, or expanding fields. The purpose of
exploding the data set is to mitigate the effect of certain data entry errors or
scenarios encountered in EHRs, such as the transposition of first name and
middle name, or the entry of a nickname in a name field. This process is used in
conjunction with blocking in order to increase the potential matches of a record
that might have these errors [8].

Consider a Record for a man named Bill Taft Robinson:

Forename: Bill

Mid-forename: Taft

Current surname: Robinson

Initially, blocking would be performed by taking the phonemic compression of the
current surname plus the first initial of the forename. The primary double
metaphone compression of Robinson is RPNSN, and adding on the first initial
of the forename would put this record in block RPNSNB. When this record is
exploded, it will get the following additional blocking groups:

	RPNSNT, using the first initial of the mid-forename

	RPNSNW, using William in place of Bill for the forename since Bill
is a common nickname for William in the english language.

This makes this Record available for probabilistic matching within three
blocking groups. Therefore, if Bill Taft Robinson has another Record under
William Taft Robinson, a potential match can be found with this Record. Note
that the blocking group is only used to determine which Records are checked. It
does not modify the forename, nor does it insert William in place of Bill.

A standard set of names and their nicknames is not yet included with
EHRcorral, but in the future one can be supplied to customize the explosion
to names from a different region. For example, instead of Bill and William,
when dealing with records containing Hispanic and Western European names
perhaps the European name Elizabeth should also be considered as Isabel, the
accepted Spanish version of Elizabeth, for blocking purposes.

Matching

The matching that EHRcorral does is heavily based on the Oxford Record
Linkage System (OX-Link) [8]. It takes a number of name and non-name
fields and determines the similarities between two respective records. Based
on the similarity weight calculated for each individual field, an aggregate
similarity for the two records is determined.

EHRcorral cycles through every record to build a square symmetric similarity
matrix. Thus, the similarity between any two records can be determined by
looking at the matrix. By thresholding the similarity matrix, one can create
a link between records with similarities above the threshold.

Similarity Measures

EHRcorral separates record similarity into two sections: name fields and
non-name fields. Name fields alone have a high degree of accuracy in
determining the similarity of two records [16]
[17]. Thus, EHRcorral heavily weights matching based on names
and uses the non-name fields for fine-tuning.

However, there are many types of entry errors [18].

	character insertion: Richard [image: {\Rightarrow}] Ricthard

	character omission: Sullivan [image: {\Rightarrow}] Sulivan

	character substitution: Robert [image: {\Rightarrow}] Rodert

	character transposition: 55414 [image: {\Rightarrow}] 55441

	gender misclassification: M [image: {\Rightarrow}] F

To deal with the first four errors, EHRcorral converts all characters to
lowercase and uses the damerau-levenshtein edit distance measurement on most
of its data fields [7]. Thus, if any of those errors
occur, the similarity between the two fields compared is still high. To avoid
the issue of gender misclassification as best as possible, EHRcorral focuses
on sex in comparisons. Further work may be done in this area to handle
better gender misclassification in the future. Birth date and postal code are
converted to character fields to handle all of the character errors above
and better understand the similarity of the fields between records.

The name fields have complex similarity calculations. These fields have the
potential for a different type of transposition error than other fields. One
may enter a forename as a mid-forename or vice versa. This can happen with
current and birth surname as well. To account for this, EHRcorral checks both
forename or surname fields in the second record when comparing it with the
respective field from the first and takes the one with the highest similarity.
This has the benefit of handling the case where a surname is changed, e.g. in
marriage, much better. Once the similarity is determined, EHRcorral checks
whether a given surname compression (see Phonemic Tokenization for
compression details) is common or rare or checks whether a given forename
first letter is common or rare. The compression is used with surnames to
negate potentially unique entry errors impacting the determination. The
forename is less significant in determining the similarity of two records, so
using just the first letter saves time computationally and avoids most entry
errors while remaining relatively accurate. With the determination of a name
being common or rare, the similarity is scaled accordingly and a weight is
assigned, which can go negative since very dissimilar names should lead
records to be considered very dissimilar.

The address field requires a lot cleaning before a weight is calculated.
First, both address fields are combined and put into lowercase. Then, all
abbreviations for address suffixes (e.g. avenue) and designators (e
.g. apartment) are found and standardized based on the abbreviations that the
United States Postal Service uses [19]. After this, the first 12
characters of the address are compared as mentioned above to account for the
different types of character entry errors. Address fields that only have a
couple entry errors still have some similarity weight, but ones that have
more differences are given zero weight. This accounts for people moving
around without diminishing the similarity too much.

The comparison of the respective postal code and national identification
fields are relatively simple. EHRcorral looks for exact matches and single
differences in determining similarity for these fields. Here, outside of
simple entry errors, any field that is not exactly the same is considered no
match at all. This is due to the fact that similar values for these fields
are only meaningful in as much as they represent entry errors. Like with
address, there are no negative weights for the postal code due to the
potential for moving. National identifications do not have negative weights
because of the difficulty with getting consistent entry in this area.

The similarity between two sex fields is very simple. EHRcorral asks for
single character sex identification. If they are the same, a small positive
weight is returned. If they are not, then a large negative weight is returned.
This is due to the fact that a different sex should render two records
significantly less similar, but the same sex means very little for their
similarity.

The date of birth field has a slightly more complex comparison. The year,
month, and day are each compared separately using the damerau-levenshtein
method of calculating edit distance to account for all of the character
errors mentioned above. Then, the total similarity is summed with extra
weight given to the year, since entry errors are less likely there (i.e.
someone is more likely to recognize that 1972 was keyed in as 9172), and
different generations will be reflected in this area to separate family
members with common birth days. This field has a strong influence amongst the
non-name fields since it should never change and matches do imply that
records are quite similar. Like with sex, there is a strong negative weight
for records that are strongly dissimilar, but there is also a strong positive
weight for the reasons mentioned above.

The summing of the weights is relatively simple once all individual weights
are calculated. An algebraic sum is divided by the total possible weight that
a record could have (this will vary based on commonality of forenames and
surnames). This returns a values between zero and one that determines the
probability that two records are the same. Then, thresholding can be applied
to make actual determinations.

Similarity Matrix

The similarity matrix is calculated by using the record similarity function
described above. As EHRcorral cycles through each record, it looks at the
respective blocks for that record (see Record Blocking for details) and
determines similarities for each record within the respective blocks. Then, the
accession number for each record is used to fill in the correct row with the
similarities in the correct columns. All records that are not in the same
block as the one being compared receive a zero similarity score. The
similarity of any two records can be found by looking up their respective
accession numbers and then look at either row and column combination.

Thresholding can be used to determine the linkage of records. EHRcorral
leaves to the user the determination of which threshold is appropriate based
on the particular data set on which they are using EHRcorral.

References

	[1]	Gu, Lifang, et al. “Record linkage: Current practice
and future directions.” CSIRO Mathematical and Information Sciences Technical
Report 3 (2003): 83.

	[2]	Winkler, William E. “The state of record linkage and
current research problems.” Statistical Research Division, US Census Bureau.
1999.

	[3]	Morris, Genevieve et al. “Patient Identification And
Matching Final Report”. HealthIT.gov. N.p., 2014. Web. 17 Sept. 2015.

	[4]	Zhu, Ying, et al. “When to conduct
probabilistic linkage vs. deterministic linkage? A simulation study.” Journal
of Biomedical Informatics 56.C (2015): 80-86.

	[5]	Just, B. H., et al. “Managing the integrity of
patient identity in health information exchange.” Journal of AHIMA/American
Health Information Management Association 80.7 (2009): 62-69.

	[6]	Hogan, William R., and Michael M. Wagner. “Accuracy of
data in computer-based patient records.” Journal of the American Medical
Informatics Association 4.5 (1997): 342-355. institutions are only able to
record minimal identifying information about

	[7]	(1, 2) Bell, Glenn B., and Anil Sethi. “Matching records
in a national medical patient index.” Communications of the ACM 44.9 (2001):
83-88.

	[8]	(1, 2, 3) Gill, Leicester. “OX-LINK: the Oxford medical record linkage
system.” (1997).

	[9]	Alvey, W., and B. Jamerson. “Record Linkage
Techniques—1997: Proceedings of an International Workshop and Exposition.”
Washington, DC: Federal Committee on Statistical Methodology (1997).

	[10]	Dolby, James L. “An algorithm for
variable-length proper-name compression.” Information Technology and
Libraries 3.4 (2013): 257-275.

	[11]	Beider, Alexander, and Stephen Morse. “Phonetic
Matching: A Better Soundex”. http://stevemorse.org. N.p., 2015. Web. 17 Oct.
2015.

	[12]	Philips, Lawrence. “The double metaphone search
algorithm.” C/C++ users journal 18.6 (2000): 38-43.

	[13]	Lawrence, Philips. “Hanging on the metaphone.” Computer
Language 7.12 (1990): 39-43.

	[14]	Kelley, Robert Patrick. Blocking considerations
for record linkage under conditions of uncertainty. Bureau of the Census,
1984.

	[15]	Clark, D. E. “Practical introduction to record
linkage for injury research.” Injury Prevention 10.3 (2004): 186-191.

	[16]	Aldridge, Robert W., et al. “Accuracy of
Probabilistic Linkage Using the Enhanced Matching System for Public Health
and Epidemiological Studies.” PloS one 10.8 (2015): e0136179.

	[17]	Weber, Susan C., et al. “A simple heuristic for
blindfolded record linkage.” Journal of the American Medical Informatics
Association 19.e1 (2012): e157-e161.

	[18]	Theera-Ampornpunt, Nawanan, Boonchai Kijsanayotin, and
Stuart M. Speedie. “Creating a large database test bed with typographical
errors for record linkage evaluation.” AMIA... Annual Symposium
proceedings/AMIA Symposium. AMIA Symposium. 2007.

	[19]	United States Postal Service. “Appendix C”. Pe.usps.gov. N.p.,
2015. Web. 4 Dec. 2015.

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EHRcorral 0.0.3 documentation

Installation

At the command line:

$ easy_install ehrcorral

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv ehrcorral
$ pip install ehrcorral

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EHRcorral 0.0.3 documentation

Usage

To use EHRcorral in a project:

import ehrcorral

EHRCorral operates on a collection of Records, each of which represents a single
electronic health record. A collection of Records is called a Herd, hence the
name EHRCorral: generating a master patient index of all the records is
done by “corralling” the Herd.

There is a small number of actions to perform, but potentially several setting
to consider:

	Create Records

	Create a Herd

	Populate the Herd with the Records

	Corral the Herd

Records

Ref: ehrcorral.ehrcorral.Record

A Record is a simplified representation of a patient’s EHR which only contains
information relevant to the current matching algorithm. Each Record must
contain a forename and a current surname, but it can also house other
identifying information. All the information in a Record is used to discover
other Records that describe the same individual.

ehr_entries = [
 {
 'forename': 'John',
 'mid_forename': '',
 'current_surname': 'Doe',
 'suffix': 'Sr.',
 'address1': '1 Denny Way',
 'city': 'Orlando',
 'state_province': 'FL'
 'postal_code': 32801,
 'sex': 'M',
 'gender': 'M',
 'national_id1': '123-45-678', # Using field as social security num
 'id2': 'F1234578', # Optional ID, such as driver license num
 'birth_year': '1985',
 'birth_month': '08',
 'birth_day': '04',
 'blood_type': 'B+'
 },
 {
 'first_name': 'Jane',
 'middle_name': 'Erin',
 'birth_surname': 'Doe',
 'current_surname': 'Fonda',
 'suffix': '',
 'address1': '1 Bipinbop St',
 'address2': 'Apt. 100',
 'city': 'Austin',
 'state_province': 'TX',
 'postal_code': 73301,
 'sex': 'F',
 'gender': 'F',
 'national_id1': '876-54-321',
 'birth_year': 1976,
 'birth_month': '08', # Numeric fields are coerced to proper type
 'birth_day': 01,
 'blood_type': 'A-',
 }
]
records = [ehrcorral.gen_record(entry) for entry in ehr_entries]

Above, we create two Records (an entry for John and one for Jane) using the
function ehrcorral.ehrcorral.gen_record(). Generally, you will not
need to interact directly with the Records once they are created.

In practicality, you won’t have just two EHR entries, but thousands or millions
of them, and there might be multiple entries for John or Jane and many other
individuals in the sub-population. The Record class is designed to be extremely
light on memory usage, much more so than a dictionary or list, for example. A
collection of 10 million Records will occupy about 5—6 GB, whereas 10 million
dictionaries containing the same data will occupy about three times the memory.
Therefore, when generating Records it is advisable not to build up a large
dictionary of data to then be sent one by one to
ehrcorral.ehrcorral.gen_record(). Instead, generate the Records in a
loop that operates only on a single EHR entry at a time so the dictionaries like
the ones above are thrown away once the Record is created:

records = []
for entries in ehr:
 # Extract forenames, sex, etc. from EHR data into dict called 'entry'
 # ...
 # entry = {'forename': 'John', ... , 'blood_type': 'B+'}
 records.append(ehrcorral.gen_record(entry))

Record Fields

For the full list of fields available to generate a Record, see
ehrcorral.ehrcorral.Profile.

If additional fields are passed to gen_record() they are ignored.
Missing fields receive a value of empty string. No transformations are applied
to these fields other than to coerce strings to integers when the algorithm
requires integers. You should perform any pre-processing that you think is
relevant for your region or data set, such as removing accents or umlauts if you
do not want to match based on such special characters, defining forename and
mid forename if names in your region are particularly long, removing prefixes
like Mr. and Mrs., and determining what to use for the national ID field.

Creating a Herd

Ref: ehrcorral.ehrcorral.Herd.populate()

Once the Records have been created, you can populate a Herd. A list or tuple
of Records can be used.

herd = ehrcorral.Herd()
herd.populate(records)

In order to prevent race conditions during matching, the population of a Herd
cannot be updated once it is set. Calling populate() again with additional
records will raise an error.

Matching Records

Ref: ehrcorral.ehrcorral.Herd

To performing record-linkage on the Herd, you call its corral() method. This
method requires as input a function which performs phonemic name compression,
for Record blocking purposes. For convenience, Soundex, NYSIIS, metaphone, and
double metaphone implementations have been included. Below, double metaphone is
used. If you are not yet familiar with blocking methods, please consult
Record Blocking in the documentation.

from ehrcorral.compressions import dmetaphone
Alternate blocking compressions:
from ehrcorral.compressions import soundex
from ehrcorral.compressions import nysiis
from ehrcorral.compressions import metaphone
from ehrcorral.compressions import first_letter
herd.corral(blocking_compression=dmetaphone)
similarities = herd.similarity_matrix

See ehrcorral.ehrcorral.Herd.corral() for documentation of additional
function parameters.

Running corral() on the Herd generates a similarity (i.e. probability)
matrix with dimension N _x_ N, where N is the number of records in the Herd.
This matrix provides the probabilities that each record belongs to the same
person as contained in every other record in the Herd. Each row and column
index in the similarity matrix corresponds to each Record’s record_number
property (see documentation for Record class). The user can decide how to link
records using a threshold value to determine which records belong to the same
individual. Currently there is no built-in method to automatically merge
records together since there are many different strategies for merging that
the user might want to employ. Additionally, it is likely that the user would
want to merge the original data that was used to generate each Record rather
than merging the Records themselves.

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EHRcorral 0.0.3 documentation

Modules

ehrcorral.ehrcorral

Herd

	
class ehrcorral.ehrcorral.Herd[source]

	A collection of Record with methods for interacting with
and linking records in the herd.

	
similarity_matrix

	numpy.ndarray, None

A numpy array containing the
similarities between Record instances, ordered by
accession number on both axes. Each entry is between 0 and 1 with 1
being perfect similarity.

	
append_block_dict(record)[source]

	Appends the herd’s block dictionary with the given Record’s
blocking codes.

The dictionary keys are block codes. The value of each key is a list
of references to Records that have that block.

	Parameters:	record (Record) – An object of class
Record

	
append_names_freq_counters(record)[source]

	Adds the forename and surname for the given Record to the forename
and surname counters.

	Parameters:	record (Record) – An object of class
Record

	
corral(forename_freq_method=<function first_letter>, surname_freq_method=<function doublemetaphone>, blocking_compression=<function doublemetaphone>)[source]

	Perform record matching on all Records in the Herd.

	Parameters:	
	forename_freq_method (func) – A function that performs some sort of
compression. Compression of forename can be different than
compression of surname. The compression information is used to
determine weights for certain matching scenarios. For example,
if forename is compressed to be just the first initial, matching
a name that begins with the letter ‘F’ will result in a weight
equal to the fraction of names that begin with the letter ‘F’ in
the entire Herd. The less common names that begin with ‘F’ are,
the more significant a match between two same or similar
forenames that begin with ‘F’ will be. Defaults to the first
initial of the forename.

	surname_freq_method (func) – A function that performs some sort of
compression. Defaults to double metaphone.

	blocking_compression (func) – Compression method to use when
blocking. Blocks are created by compressing the surname and then
appending the first initial of the forename. Defaults to double
metaphone and then uses the primary compression from that
compression. By default the first initial of the forenames are
appended to the surname compressions to generate block codes.

	
populate(records)[source]

	Sets the Herd’s sub-population.

	Parameters:	records (list, tuple) – A list or tuple containing multiple
Record

	
size

	Returns the size of the Herd’s population.

Record

	
class ehrcorral.ehrcorral.Record[source]

	A Record contains identifying information about a patient, as well as
generated phonemic and meta information.

	
gen_blocks(compression)[source]

	Generate and set the blocking codes for a given record.

Blocking codes are comprised of the phonemic compressions of the
profile surnames combined with the first letter of each forename.
Generated blocking codes are stored in self._blocks, and only contain
the unique set of blocking codes.

	Parameters:	compression (func) – A function that performs phonemic
compression.

	
save_name_freq_refs(record_number, forename_freq_method, surname_freq_method)[source]

	Compress the forenames and surnames and save the compressions to
the Record.

	Parameters:	
	record_number (int) – An integer to be assigned as initial person
and accession number.

	forename_freq_method (func) – A function that performs some sort of
compression on a single name.

	surname_freq_method (func) – A function that performs some sort of

	on a single name. (compression) –

Profile

	
class ehrcorral.ehrcorral.Profile[source]

	A selection of patient-identifying information from a single electronic
health record.

All fields should be populated with an int or string and will be coerced
to the proper type for that field automatically.

	
forename

	Also known as first name.

	
mid_forename

	Also known as middle name.

	
birth_surname

	Last name at birth, often same as mother’s maiden name.

	
current_surname

	Current last name. Can differ from birth surname often in the case of
marriage for females.

	
suffix

	Sr., Junior, II, etc.

	
address1

	Street address, such as “100 Main Street”.

	
address2

	Apartment or unit information, such as “Apt. 201”.

	
state_province

	State or province.

	
postal_code

	

	
country

	Consistent formatting should be used. Do not use USA in one Record
and United States of America in another.

	
sex

	Physiological sex (M or F)

	
gender

	The gender the patient identifies with (M or F), e.g. in the case of
transexualism.

	
national_id1

	For example, social security number. This should be the same type of
number for all patients. Do not use USA social security in one
Record and with Mexico passport number in another.

	
id2

	Can be used as an additional identifying ID number, such as driver’s
license number. Again, define the type of ID number this is for the
entire sub-population.

	
mrn

	Medical record number.

	
birth_year

	In the format YYYY.

	
birth_month

	In the format MM.

	
birth_day

	In the format DD.

	
blood_type

	One of A, B, AB, or O with an optional +/- denoting RhD status.

gen_record()

	
ehrcorral.ehrcorral.gen_record(data)[source]

	Generate a Record which can be used to populate a
Herd.

In addition to extracting the profile information for

	Parameters:	data (dict) – A dictionary containing at least one of fields in
PROFILE_FIELDS.

	Returns:	py:class:.Record.

	Return type:	A object of class

compress()

	
ehrcorral.ehrcorral.compress(names, method)[source]

	Compresses surnames using different phonemic algorithms.

	Parameters:	
	names (list) – A list of names, typically surnames

	method (func) – A function that performs phonemic compression

	Returns:	A list of the compressions.

ehrcorral.measures

record_similarity()

	
ehrcorral.measures.record_similarity(herd, first_record, second_record, forename_method=<function damerau_levenshtein>, surname_method=<function damerau_levenshtein>)[source]

	Determine weights for the likelihood of two records being the same.

	Parameters:	
	herd (Herd) – An object of Herd which contains the two
records being compared.

	first_record (Record) – An object of Record to be
compared to the other one.

	second_record (Record) – An object of Record to be
compared to the other one.

	forename_method (func) – A function that performs some sort of
comparison between strings.

	surname_method (func) – A function that performs some sort of
comparison between strings.

	Returns:	A tuple of the sum of name weights and the sum of non-name weights.

get_forename_similarity()

	
ehrcorral.measures.get_forename_similarity(herd, records, method, name_type)[source]

	Determine weights for the likelihood of two forenames being the same.

	Parameters:	
	herd (Herd) – An object of Herd which contains the two
records being compared.

	records (List[Record]) – A list of two objects of Record
to be compared to one another.

	method (func) – A function to be used to compare the forenames.

	name_type (unicode) – A unicode string to indicate which forename is
being compared.

	Returns:	The forename weight for the similarity of the forenames.

extract_forename_similarity_info()

	
ehrcorral.measures.extract_forename_similarity_info(herd, record, name_type)[source]

	Extract desired forename and associated frequency weight.

	Parameters:	
	herd (Herd) – An object of Herd which contains the
frequency dictionary used for the frequency weight.

	record (Record) – An object of Record from which to
extract the forename.

	name_type (unicode) – A unicode string to indicate which forename is
being extracted.

	Returns:	The forename and associated frequency weight for requested name.

get_surname_similarity()

	
ehrcorral.measures.get_surname_similarity(herd, records, method, name_type)[source]

	Determine weights for the likelihood of two surnames being the same.

	Parameters:	
	herd (Herd) – An object of Herd which contains the two
records being compared.

	records (List[Record]) – A list of two objects of Record
to be compared to one another.

	method (func) – A function to be used to compare the surnames.

	name_type (unicode) – A unicode string to indicate which surname is
being compared.

	Returns:	The surname weight for the similarity of the surnames.

extract_surname_similarity_info()

	
ehrcorral.measures.extract_surname_similarity_info(herd, record, name_type)[source]

	Extract desired surname and associated frequency weight.

	Parameters:	
	herd (Herd) – An object of Herd which contains the
frequency dictionary used for the frequency weight.

	record (Record) – An object of Record from which to
extract the surname.

	name_type (unicode) – A unicode string to indicate which surname is
being extracted.

	Returns:	The forename and associated frequency weight for requested name.

get_address_similarity()

	
ehrcorral.measures.get_address_similarity(records, method=<function damerau_levenshtein>)[source]

	Determine weights for the likelihood of two addresses being the same.

	Parameters:	
	records (List[Record]) – A list of two objects of Record
to be compared to one another.

	method (func) – A function to be used to compare the addresses.

	Returns:	The address weight for the similarity of the addresses.

clean_address()

	
ehrcorral.measures.clean_address(address)[source]

	Clean unicode string that contains an address of all punctuation and
standardize all street suffixes and unit designators.

	Parameters:	address (unicode) – A unicode string that contains an address to be
cleaned and standardized.

	Returns:	The cleaned unicode address string.

get_post_code_similarity()

	
ehrcorral.measures.get_post_code_similarity(records, method=<function damerau_levenshtein>)[source]

	Determine weights for the likelihood of two postal codes being the same.

	Parameters:	
	records (List[Record]) – A list of two objects of Record
to be compared to one another.

	method (func) – A function to be used to compare the postal codes.

	Returns:	The postal code weight for the similarity of the postal codes.

get_sex_similarity()

	
ehrcorral.measures.get_sex_similarity(records)[source]

	Determine weights for the likelihood of two sexes being the same.

	Parameters:	records (List[Record]) – A list of two objects of Record
to be compared to one another.

	Returns:	The sex weight for the similarity of the sexes.

get_dob_similarity()

	
ehrcorral.measures.get_dob_similarity(records, method=<function damerau_levenshtein>)[source]

	Determine weights for the likelihood of two dates of birth being the
same.

	Parameters:	
	records (List[Record]) – A list of two objects of Record
to be compared to one another.

	method (func) – A function to be used to compare the dates of birth.

	Returns:	The date of birth weight for the similarity of the dates of birth.

get_id_similarity()

	
ehrcorral.measures.get_id_similarity(records, method=<function damerau_levenshtein>)[source]

	Determine weights for the likelihood of two national IDs being the same.

	Parameters:	
	records (List[Record]) – A list of two objects of Record
to be compared to one another.

	method (func) – A function to be used to compare the national IDs.

	Returns:	The national ID weight for the similarity of the two national IDs.

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	EHRcorral 0.0.3 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/nsh87/ehrcorral/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

EHRCorral could always use more documentation, whether as part of the
official EHRCorral docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/nsh87/ehrcorral/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up ehrcorral for local development.

	Fork the ehrcorral repo on GitHub <https://github.com/nsh87/ehrcorral>.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/ehrcorral.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv ehrcorral
$ cd ehrcorral/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 ehrcorral tests
$ pylint ehrcorral tests -f colorized
$ python setup.py test
$ tox

To get flake8, pylint, and tox, just pip install them into your virtualenv. You can install all the recommended dependencies with:

$ pip install -r requirements_dev.txt

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/nsh87/ehrcorral/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_ehrcorral

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	EHRcorral 0.0.3 documentation

Project Info

Release Log

0.0.1 (2015-12-17)

	
	First release on PyPI.

	
	Docs need updating and more usage.

	Corralling is functional, but does not use nickname expansions.

	Some tweaking of probabilities could be attempted for certain scenarios.

	Probabilities are generated using birth year, name fields, address, and
zip code.

0.0.2 (2015-12-17)

	
	Update documentation.

	
	Add significant documentation of matching algorithm in Overview docs.

	Fix up code examples in Usage docs.

0.0.3 (2015-12-17)

	
	Another update to documentation.

	
	The previous release had some minor docs stuff missing.

Authors

Nikhil Haas <nikhil@nikhilhaas.com>

Contributors

None yet. Why not be the first?

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	EHRcorral 0.0.3 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S

A

 	

 	address1 (Profile attribute)

 	address2 (Profile attribute)

 	

 	append_block_dict() (ehrcorral.ehrcorral.Herd method)

 	append_names_freq_counters() (ehrcorral.ehrcorral.Herd method)

B

 	

 	birth_day (Profile attribute)

 	birth_month (Profile attribute)

 	birth_surname (Profile attribute)

 	

 	birth_year (Profile attribute)

 	blood_type (Profile attribute)

C

 	

 	clean_address() (in module ehrcorral.measures)

 	compress() (in module ehrcorral.ehrcorral)

 	corral() (ehrcorral.ehrcorral.Herd method)

 	

 	country (Profile attribute)

 	current_surname (Profile attribute)

E

 	

 	extract_forename_similarity_info() (in module ehrcorral.measures)

 	

 	extract_surname_similarity_info() (in module ehrcorral.measures)

F

 	

 	forename (Profile attribute)

G

 	

 	gen_blocks() (ehrcorral.ehrcorral.Record method)

 	gen_record() (in module ehrcorral.ehrcorral)

 	gender (Profile attribute)

 	get_address_similarity() (in module ehrcorral.measures)

 	get_dob_similarity() (in module ehrcorral.measures)

 	

 	get_forename_similarity() (in module ehrcorral.measures)

 	get_id_similarity() (in module ehrcorral.measures)

 	get_post_code_similarity() (in module ehrcorral.measures)

 	get_sex_similarity() (in module ehrcorral.measures)

 	get_surname_similarity() (in module ehrcorral.measures)

H

 	

 	Herd (class in ehrcorral.ehrcorral)

I

 	

 	id2 (Profile attribute)

M

 	

 	mid_forename (Profile attribute)

 	

 	mrn (Profile attribute)

N

 	

 	national_id1 (Profile attribute)

P

 	

 	populate() (ehrcorral.ehrcorral.Herd method)

 	postal_code (Profile attribute)

 	

 	Profile (class in ehrcorral.ehrcorral)

R

 	

 	Record (class in ehrcorral.ehrcorral)

 	

 	record_similarity() (in module ehrcorral.measures)

S

 	

 	save_name_freq_refs() (ehrcorral.ehrcorral.Record method)

 	sex (Profile attribute)

 	similarity_matrix (Herd attribute)

 	

 	size (ehrcorral.ehrcorral.Herd attribute)

 	state_province (Profile attribute)

 	suffix (Profile attribute)

 Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

 _modules/index.html

 Navigation

 		
 index

 		EHRcorral 0.0.3 documentation »

 All modules for which code is available

		ehrcorral.ehrcorral

		ehrcorral.measures

 © Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

_modules/ehrcorral/measures.html

 Navigation

 		
 index

 		EHRcorral 0.0.3 documentation »

 		Module code »

 Source code for ehrcorral.measures

-*- coding: utf-8 -*-
"""Contains functions for measures of similarity between records.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import json
import pkgutil
import string

from pylev import damerau_levenshtein

[docs]def record_similarity(herd,
 first_record,
 second_record,
 forename_method=damerau_levenshtein,
 surname_method=damerau_levenshtein):
 """Determine weights for the likelihood of two records being the same.

 Args:
 herd (Herd): An object of :py:class:`.Herd` which contains the two
 records being compared.
 first_record (Record): An object of :py:class:`.Record` to be
 compared to the other one.
 second_record (Record): An object of :py:class:`.Record` to be
 compared to the other one.
 forename_method (func): A function that performs some sort of
 comparison between strings.
 surname_method (func): A function that performs some sort of
 comparison between strings.

 Returns:
 A tuple of the sum of name weights and the sum of non-name weights.
 """
 forename_similarity, fore_max = \
 get_forename_similarity(herd,
 [first_record, second_record],
 forename_method,
 "fore")
 mid_forename_similarity, mid_fore_max = \
 get_forename_similarity(herd,
 [first_record, second_record],
 forename_method,
 "mid_fore")
 birth_surname_similarity, bir_sur_max = \
 get_surname_similarity(herd,
 [first_record, second_record],
 surname_method,
 "birth")
 current_surname_similarity, cur_sur_max = \
 get_surname_similarity(herd,
 [first_record, second_record],
 surname_method,
 "current")
 # no place of birth field for similarity
 address_similarity = get_address_similarity([first_record, second_record],
 damerau_levenshtein)
 post_code_similarity = get_post_code_similarity([first_record,
 second_record],
 damerau_levenshtein)
 sex_similarity = get_sex_similarity([first_record, second_record])
 dob_similarity = get_dob_similarity([first_record, second_record])
 id_similarity = get_id_similarity([first_record, second_record],
 damerau_levenshtein)
 # did not include GP (doctor), place of birth, hospital and hospital number
 name_sum = forename_similarity + mid_forename_similarity + \
 birth_surname_similarity + current_surname_similarity
 # since we are not using a few of the ox-link weights, the non-name
 # numbers will be different
 non_name_sum = address_similarity + post_code_similarity + sex_similarity +\
 dob_similarity + id_similarity
 # sum of max weights for all fields
 max_similarity = fore_max + mid_fore_max + bir_sur_max + cur_sur_max + 33.0
 return (name_sum + non_name_sum) / max_similarity

[docs]def get_forename_similarity(herd, records, method, name_type):
 """Determine weights for the likelihood of two forenames being the same.

 Args:
 herd (Herd): An object of :py:class:`.Herd` which contains the two
 records being compared.
 records (List[Record]): A list of two objects of :py:class:`.Record`
 to be compared to one another.
 method (func): A function to be used to compare the forenames.
 name_type (unicode): A unicode string to indicate which forename is
 being compared.

 Returns:
 The forename weight for the similarity of the forenames.
 """
 name_types = ["fore", "mid_fore"]
 first_forename, first_freq = \
 extract_forename_similarity_info(herd, records[0], name_type)
 # Get both names and frequencies from second record to compare to first
 second_forefreq = [
 extract_forename_similarity_info(herd, records[1], name)
 for name in name_types
]
 second_forename = [item[0] for item in second_forefreq]
 second_freq = [item[1] for item in second_forefreq]
 # if there is no forename for our first record, we either dismiss the
 # similarity if one of the second record forenames is empty, or return a
 # zero match.
 if first_forename == '':
 if second_forename[0] == '' or second_forename[1] == '':
 return 0, 0
 else:
 return 0, 6
 # Get difference between first record name and both second record names,
 # then find the one that has the minimum difference and keep that one
 diffs = [method(first_forename, name) for name in second_forename]
 difference = min(diffs)
 min_index = diffs.index(difference)
 second_forename = second_forename[min_index]
 second_freq = second_freq[min_index]
 max_length = max(len(first_forename), len(second_forename))
 prop_diff = float(difference) / max_length
 prop_freq = max(first_freq, second_freq, 1.0 / 1000)
 # scale instead of using cutoff
 cutoff = 5.0 / 26 # arbitrary, could be improved
 F = 3 if prop_freq > cutoff else 12
 # map prop_diff from (0, 1) to (-2, 2), then flip sign since lower diff
 # implies that the two name are more similar.
 weight = -(4 * prop_diff - 2)
 return weight * F, 2 * F

[docs]def extract_forename_similarity_info(herd, record, name_type):
 """Extract desired forename and associated frequency weight.

 Args:
 herd (Herd): An object of :py:class:`.Herd` which contains the
 frequency dictionary used for the frequency weight.
 record (Record): An object of :py:class:`.Record` from which to
 extract the forename.
 name_type (unicode): A unicode string to indicate which forename is
 being extracted.

 Returns:
 The forename and associated frequency weight for requested name.
 """
 profile = record.profile
 # Add try/except
 if name_type == "fore":
 forename = profile.forename.lower()
 weight = herd._forename_freq_dict[record._meta.forename_freq_ref] / \
 float(sum(herd._forename_freq_dict.values()))
 elif name_type == "mid_fore":
 forename = profile.mid_forename.lower()
 weight = herd._forename_freq_dict[record._meta.mid_forename_freq_ref]\
 / float(sum(herd._forename_freq_dict.values()))
 return forename, weight

[docs]def get_surname_similarity(herd, records, method, name_type):
 """Determine weights for the likelihood of two surnames being the same.

 Args:
 herd (Herd): An object of :py:class:`.Herd` which contains the two
 records being compared.
 records (List[Record]): A list of two objects of :py:class:`.Record`
 to be compared to one another.
 method (func): A function to be used to compare the surnames.
 name_type (unicode): A unicode string to indicate which surname is
 being compared.

 Returns:
 The surname weight for the similarity of the surnames.
 """
 name_types = ["birth", "current"]
 first_surname, first_freq = \
 extract_surname_similarity_info(herd, records[0], name_type)
 # Get both names and frequencies from second record to compare to first
 second_forefreq = [
 extract_surname_similarity_info(herd, records[1], name)
 for name in name_types
]
 second_surname = [item[0] for item in second_forefreq]
 second_freq = [item[1] for item in second_forefreq]
 # if there is no surname for our first record, we either dismiss the
 # similarity if one of the second record surnames is empty, or return a
 # zero match.
 if first_surname == '':
 if second_surname[0] == '' or second_surname[1] == '':
 return 0, 0
 else:
 return 0, 12
 # Get difference between first record name and both second record names,
 # then find the one that has the minimum difference and keep that one
 diffs = [method(first_surname, name) for name in second_surname]
 difference = min(diffs)
 min_index = diffs.index(difference)
 second_surname = second_surname[min_index]
 second_freq = second_freq[min_index]
 max_length = max(len(first_surname), len(second_surname))
 prop_diff = float(difference) / max_length
 prop_freq = max(first_freq, second_freq, 1.0 / 1000)
 cutoff = 1.0 / 500 # arbitrary, could be improved
 S = 6 if prop_freq > cutoff else 17
 # map prop_diff from (0, 1) to (-2, 2), then flip sign since lower diff
 # implies that the two name are more similar.
 weight = -(4 * prop_diff - 2)
 return weight * S, 2 * S

[docs]def extract_surname_similarity_info(herd, record, name_type):
 """Extract desired surname and associated frequency weight.

 Args:
 herd (Herd): An object of :py:class:`.Herd` which contains the
 frequency dictionary used for the frequency weight.
 record (Record): An object of :py:class:`.Record` from which to
 extract the surname.
 name_type (unicode): A unicode string to indicate which surname is
 being extracted.

 Returns:
 The forename and associated frequency weight for requested name.
 """
 profile = record.profile
 # Add try/except
 if name_type == "birth":
 surname = profile.birth_surname.lower()
 weight = herd._surname_freq_dict[record._meta.birth_surname_freq_ref]\
 / float(sum(herd._surname_freq_dict.values()))
 elif name_type == "current":
 surname = profile.current_surname.lower()
 weight = herd._surname_freq_dict[record._meta.current_surname_freq_ref]\
 / float(sum(herd._surname_freq_dict.values()))
 return surname, weight

[docs]def get_address_similarity(records, method=damerau_levenshtein):
 """Determine weights for the likelihood of two addresses being the same.

 Args:
 records (List[Record]): A list of two objects of :py:class:`.Record`
 to be compared to one another.
 method (func): A function to be used to compare the addresses.

 Returns:
 The address weight for the similarity of the addresses.
 """
 # ox-link only takes first 8 characters
 first_profile = records[0].profile
 second_profile = records[1].profile
 first_address = first_profile.address1.lower() +\
 ' ' +\
 first_profile.address2.lower()
 second_address = second_profile.address1.lower() +\
 ' ' +\
 second_profile.address2.lower()
 first_address = clean_address(first_address)
 second_address = clean_address(second_address)
 difference = method(first_address[:12], second_address[:12])
 if difference == 0:
 return 7
 elif difference <= 2:
 return 2
 else:
 return 0
 # ox-link method
 # return 7 if diff1 == 0 else 0

[docs]def clean_address(address):
 """Clean unicode string that contains an address of all punctuation and
 standardize all street suffixes and unit designators.

 Args:
 address (unicode): A unicode string that contains an address to be
 cleaned and standardized.

 Returns:
 The cleaned unicode address string.
 """
 new_address = ' ' + address + ' '
 generic_abbrevs = get_json('generic_abbrevs.json')
 generics = get_json('generics.json')
 unit_abbrevs = get_json('unit_abbrevs.json')
 designators = get_json('designators.json')
 for char in string.punctuation:
 new_address = new_address.replace(char, ' ')
 for i, generic in enumerate(generics):
 for g in generic:
 old = ' ' + g + ' '
 new = ' ' + generic_abbrevs[i] + ' '
 new_address = new_address.replace(old, new)
 for i, designator in enumerate(designators):
 old = ' ' + designator + ' '
 new = ' ' + unit_abbrevs[i] + ' '
 new_address = new_address.replace(old, new)
 return ' '.join(new_address.split())

[docs]def get_post_code_similarity(records, method=damerau_levenshtein):
 """Determine weights for the likelihood of two postal codes being the same.

 Args:
 records (List[Record]): A list of two objects of :py:class:`.Record`
 to be compared to one another.
 method (func): A function to be used to compare the postal codes.

 Returns:
 The postal code weight for the similarity of the postal codes.
 """
 first_profile = records[0].profile
 second_profile = records[1].profile
 first_post_code = str(first_profile.postal_code) # must be a string
 second_post_code = str(second_profile.postal_code) # must be a string
 difference = method(first_post_code, second_post_code)
 if difference == 0:
 return 4
 elif difference == 1: # for transposition, ox-link does not do this
 return 1
 else:
 return 0
 # ox-link method
 # return 4 if difference == 0 else 0

[docs]def get_sex_similarity(records):
 """Determine weights for the likelihood of two sexes being the same.

 Args:
 records (List[Record]): A list of two objects of :py:class:`.Record`
 to be compared to one another.

 Returns:
 The sex weight for the similarity of the sexes.
 """
 # consider how better to account for sexes besides male and female
 first_profile = records[0].profile
 second_profile = records[1].profile
 # just take first letter so that male = m
 # TODO: Consider robust way to consider non-binary sexes
 first_sex = str(first_profile.sex.lower()) # should be a string
 second_sex = str(second_profile.sex.lower()) # should be a string
 return 1 if first_sex == second_sex else -10

[docs]def get_dob_similarity(records, method=damerau_levenshtein):
 """Determine weights for the likelihood of two dates of birth being the
 same.

 Args:
 records (List[Record]): A list of two objects of :py:class:`.Record`
 to be compared to one another.
 method (func): A function to be used to compare the dates of birth.

 Returns:
 The date of birth weight for the similarity of the dates of birth.
 """
 first_profile = records[0].profile
 second_profile = records[1].profile
 first_dob = str(first_profile.birth_year), \
 str(first_profile.birth_month), \
 str(first_profile.birth_day)
 second_dob = str(second_profile.birth_year), \
 str(second_profile.birth_month), \
 str(second_profile.birth_day)
 # just return 0 if either dob is empty
 if first_dob[0] == first_dob[1] == first_dob[2] == '' or \
 second_dob[0] == second_dob[1] == second_dob[2]:
 return 0
 # TODO: penalize for year diffs like 1983 to 1975
 year_diff = method(first_dob[0], second_dob[0])
 month_diff = method(first_dob[1], second_dob[1])
 day_diff = method(first_dob[2], second_dob[2])
 # could add more complexity here based off of ox-link
 year_prop = 0.5 # slightly arbitrary choice because year means more
 month_prop = 0.25
 day_prop = 0.25
 prop_diff = year_prop * (year_diff / 4.0) + \
 month_prop * (month_diff / 2.0) + \
 day_prop * (day_diff / 2.0)
 # map prop_diff from (0, 1) to (-23, 14), then flip sign since lower diff
 # implies that the two name are more similar.
 return -(37 * prop_diff - 14)

[docs]def get_id_similarity(records, method=damerau_levenshtein):
 """Determine weights for the likelihood of two national IDs being the same.

 Args:
 records (List[Record]): A list of two objects of :py:class:`.Record`
 to be compared to one another.
 method (func): A function to be used to compare the national IDs.

 Returns:
 The national ID weight for the similarity of the two national IDs.
 """
 first_profile = records[0].profile
 second_profile = records[1].profile
 first_id = str(first_profile.national_id1.lower()) # must be a string
 second_id = str(second_profile.national_id1.lower()) # must be a string
 difference = method(first_id, second_id)
 if difference == 0:
 return 7
 elif difference == 1: # for transposition, ox-link does not do this
 return 2
 else:
 return 0
 # ox-link method
 # return 7 if difference == 0 else 0

def get_json(file_name):
 data = pkgutil.get_data('ehrcorral', file_name)
 return json.loads(data.decode())

 © Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

_images/math/fd617609710bcbea060771153d5e9ebefbb14fc4.png

_images/math/52da6b467c1af4bb26dada56233c3094e6cdf668.png

_static/ajax-loader.gif

_static/up-pressed.png

_modules/ehrcorral/ehrcorral.html

 Navigation

 		
 index

 		EHRcorral 0.0.3 documentation »

 		Module code »

 Source code for ehrcorral.ehrcorral

-*- coding: utf-8 -*-
"""Contains core classes and functions for defining populations and acting upon
them.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
from collections import namedtuple, defaultdict

import numpy as np
from pylev import damerau_levenshtein

try:
 from collections import Counter
except ImportError:
 from backport_collections import Counter
from .compressions import first_letter, dmetaphone
from .measures import record_similarity

Make unicode compatible with Python 2 and 3
try:
 unicode = unicode
except NameError:
 # Using Python 3
 unicode = str
 basestring = (str, bytes)

PROFILE_FIELDS = (
 'forename',
 'mid_forename',
 'birth_surname',
 'current_surname',
 'suffix',
 'address1',
 'address2',
 'city',
 'state_province',
 'postal_code',
 'country',
 'sex',
 'gender',
 'national_id1',
 'id2',
 'mrn',
 'birth_year',
 'birth_month',
 'birth_day',
 'blood_type',
)
Use a class and make these class variable so you can document these fields
in Sphinx. Make sure that when looping through these variables you get them
in the correct order that you write them. You might need to use a
namedtuple class. Ideally, every field is its own variable in the class so
you can add documentation for that individual variable.

META_FIELDS = (
 'person', # Unique to this individual, which can be changed if match found
 'accession', # Unique number in entire herd to identify this record
 'forename_freq_ref', # Often phonemic compression, but not necessarily
 'mid_forename_freq_ref', # Same as above
 'birth_surname_freq_ref', # same as above
 'current_surname_freq_ref', # Same as above
)

[docs]def compress(names, method):
 """Compresses surnames using different phonemic algorithms.

 Args:
 names (list): A list of names, typically surnames
 method (func): A function that performs phonemic compression

 Returns:
 A list of the compressions.
 """
 if not isinstance(names, list):
 ValueError("Expected a list of names, got a {0}.".format(type(names)))
 compressions = []
 raw_compressions = map(method, names)
 # Double metaphone returns a list of tuples, so need to unpack it
 for item in raw_compressions:
 if isinstance(item, (list, tuple)):
 compressions.extend([unicode(sub) for sub in item if sub != ''])
 elif item != '':
 compressions.append(unicode(item))
 return compressions if compressions else ['']

[docs]class Profile(namedtuple('Profile', PROFILE_FIELDS)):
 """A selection of patient-identifying information from a single electronic
 health record.

 All fields should be populated with an int or string and will be coerced
 to the proper type for that field automatically.

 .. py:attribute:: forename

 Also known as first name.

 .. py:attribute:: mid_forename

 Also known as middle name.

 .. py:attribute:: birth_surname

 Last name at birth, often same as mother's maiden name.

 .. py:attribute:: current_surname

 Current last name. Can differ from birth surname often in the case of
 marriage for females.

 .. py:attribute:: suffix

 Sr., Junior, II, etc.

 .. py:attribute:: address1

 Street address, such as "100 Main Street".

 .. py:attribute:: address2

 Apartment or unit information, such as "Apt. 201".

 .. py:attribute:: state_province

 State or province.

 .. py:attribute:: postal_code

 .. py:attribute:: country

 Consistent formatting should be used. Do not use USA in one Record
 and United States of America in another.

 .. py:attribute:: sex

 Physiological sex (M or F)

 .. py:attribute:: gender

 The gender the patient identifies with (M or F), e.g. in the case of
 transexualism.

 .. py:attribute:: national_id1

 For example, social security number. This should be the same type of
 number for all patients. Do not use USA social security in one
 Record and with Mexico passport number in another.

 .. py:attribute:: id2

 Can be used as an additional identifying ID number, such as driver's
 license number. Again, define the type of ID number this is for the
 entire sub-population.

 .. py:attribute:: mrn

 Medical record number.

 .. py:attribute:: birth_year

 In the format YYYY.

 .. py:attribute:: birth_month

 In the format MM.

 .. py:attribute:: birth_day

 In the format DD.

 .. py:attribute:: blood_type

 One of A, B, AB, or O with an optional +/- denoting RhD status.
 """
 __slots__ = () # Prevent per-instance dictionaries to reduce memory

class Meta(namedtuple('Meta', META_FIELDS)):
 __slots__ = ()

[docs]class Record(object):
 """A Record contains identifying information about a patient, as well as
 generated phonemic and meta information.
 """
 def __init__(self):
 self.profile = None
 self._meta = None
 self._blocks = None

 def __unicode__(self):
 if self.profile is None:
 return ''
 else:
 return str(self.profile._asdict())

 def __str__(self):
 return self.__unicode__()

[docs] def save_name_freq_refs(self,
 record_number,
 forename_freq_method,
 surname_freq_method):
 """Compress the forenames and surnames and save the compressions to
 the Record.

 Args:
 record_number (int): An integer to be assigned as initial person
 and accession number.
 forename_freq_method (func): A function that performs some sort of
 compression on a single name.
 surname_freq_method (func): A function that performs some sort of
 compression on a single name.
 """
 profile = self.profile
 compressions = {
 "forename":
 compress([profile.forename], forename_freq_method)[0],
 "mid_forename":
 compress([profile.mid_forename], forename_freq_method)[0],
 "current_surname":
 compress([profile.current_surname], surname_freq_method)[0],
 "birth_surname":
 compress([profile.birth_surname], surname_freq_method)[0]
 }
 meta = [
 record_number, # Person number, can be changed if match found
 record_number, # Accession number, unique to this record
 compressions['forename'], # forename ref for dict
 compressions['mid_forename'], # mid forename ref for dict
 compressions['birth_surname'], # birth surname ref for dict
 compressions['current_surname'] # current surname ref for dict
]
 self._meta = Meta._make(meta)

[docs] def gen_blocks(self, compression):
 """Generate and set the blocking codes for a given record.

 Blocking codes are comprised of the phonemic compressions of the
 profile surnames combined with the first letter of each forename.
 Generated blocking codes are stored in self._blocks, and only contain
 the unique set of blocking codes.

 Args:
 compression (func): A function that performs phonemic
 compression.
 """
 blocks = []
 profile = self.profile
 surnames = [profile.current_surname, profile.birth_surname]
 surnames = [surname for surname in surnames if surname != '']
 bases = compress(surnames, compression)
 # Bases are now [PJTR, PHTR] - base phonemic compressions of surnames
 forenames = [profile.forename, profile.mid_forename]
 forenames = [forename for forename in forenames if forename != '']
 # Append 1st letter of each forename to each surname compression
 for base in bases:
 for forename in forenames:
 block = base + forename[0]
 blocks.append(block.upper())
 self._blocks = tuple(set(blocks))

[docs]class Herd(object):
 """A collection of :py:class:`.Record` with methods for interacting with
 and linking records in the herd.

 Attributes:
 similarity_matrix (numpy.ndarray, None): A numpy array containing the
 similarities between :py:class:`.Record` instances, ordered by
 accession number on both axes. Each entry is between 0 and 1 with 1
 being perfect similarity.
 """
 def __init__(self):
 self._population = None
 self._block_dict = defaultdict(list)
 self._surname_freq_dict = Counter()
 self._forename_freq_dict = Counter()
 self.similarity_matrix = None

 def __unicode__(self):
 population = self._population
 if population is None:
 return str(())
 elif len(population) >= 4:
 return "({0},\n {1}\n ...,\n {2},\n {3})".format(
 population[0],
 population[1],
 population[-2],
 population[-1]
)
 else:
 return str(population)

 def __str__(self):
 return self.__unicode__()

 @property
 def size(self):
 """Returns the size of the Herd's population."""
 population = self._population
 if population is None:
 return 0
 else:
 return len(population)

[docs] def populate(self, records):
 """Sets the Herd's sub-population.

 Args:
 records (list, tuple): A list or tuple containing multiple
 :py:class:`.Record`
 """
 if self._population is not None:
 raise AttributeError("The herd is already populated.")
 if not isinstance(records, (tuple, list)):
 raise ValueError("Expected a tuple or list.")
 if isinstance(records, list):
 records = tuple(records)
 self._population = records

[docs] def corral(self,
 forename_freq_method=first_letter,
 surname_freq_method=dmetaphone,
 blocking_compression=dmetaphone):
 """Perform record matching on all Records in the Herd.

 Args:
 forename_freq_method (func): A function that performs some sort of
 compression. Compression of forename can be different than
 compression of surname. The compression information is used to
 determine weights for certain matching scenarios. For example,
 if forename is compressed to be just the first initial, matching
 a name that begins with the letter 'F' will result in a weight
 equal to the fraction of names that begin with the letter 'F' in
 the entire Herd. The less common names that begin with 'F' are,
 the more significant a match between two same or similar
 forenames that begin with 'F' will be. Defaults to the first
 initial of the forename.
 surname_freq_method (func): A function that performs some sort of
 compression. Defaults to double metaphone.
 blocking_compression (func): Compression method to use when
 blocking. Blocks are created by compressing the surname and then
 appending the first initial of the forename. Defaults to double
 metaphone and then uses the primary compression from that
 compression. By default the first initial of the forenames are
 appended to the surname compressions to generate block codes.
 """
 pop_length = len(self._population)
 self.similarity_matrix = np.zeros((pop_length, pop_length),
 dtype=np.float32)
 for i, record in enumerate(self._population):
 try:
 record.gen_blocks(blocking_compression) # Explode the record
 # Keep count of each fore/surname compression for weighting
 except TypeError:
 exc_type, trace = sys.exc_info()[:2]
 raise TypeError("{0}\nYou must populate the Herd "
 "first.".format(trace))
 finally:
 # Clear per https://docs.python.org/2/library/sys.html#sys.exc_info
 sys.exc_info()
 record.save_name_freq_refs(i, forename_freq_method,
 surname_freq_method)
 self.append_names_freq_counters(record)
 # Keep track of the Record's blocking codes in the Herd
 self.append_block_dict(record)
 for record in self._population:
 self.append_similarity_matrix_row(record)

[docs] def append_block_dict(self, record):
 """Appends the herd's block dictionary with the given Record's
 blocking codes.

 The dictionary keys are block codes. The value of each key is a list
 of references to Records that have that block.

 Args:
 record (:py:class:`.Record`): An object of class
 :py:class:`.Record`
 """
 for block in record._blocks:
 self._block_dict[block].append(record)

[docs] def append_names_freq_counters(self, record):
 """Adds the forename and surname for the given Record to the forename
 and surname counters.

 Args:
 record (:py:class:`.Record`): An object of class
 :py:class:`.Record`
 """
 meta = record._meta
 forenames = [
 meta.forename_freq_ref,
 meta.mid_forename_freq_ref,
]
 forenames = [forename for forename in forenames if forename != '']
 surnames = [
 meta.birth_surname_freq_ref,
 meta.current_surname_freq_ref
]
 surnames = [surname for surname in surnames if surname != '']
 self._forename_freq_dict.update(forenames)
 self._surname_freq_dict.update(surnames)

 def append_similarity_matrix_row(self, comparison_record):
 row = comparison_record._meta.accession
 for block in comparison_record._blocks:
 for record in self._block_dict[block]:
 col = record._meta.accession
 self.similarity_matrix[row][col] = \
 record_similarity(self,
 comparison_record,
 record,
 damerau_levenshtein,
 damerau_levenshtein)

[docs]def gen_record(data):
 """Generate a :py:class:`.Record` which can be used to populate a
 :py:class:`Herd`.

 In addition to extracting the profile information for

 Args:
 data (dict): A dictionary containing at least one of fields in
 :py:data:`PROFILE_FIELDS`.

 Returns:
 A object of class :py:class:`.Record`.
 """
 fields = [data.get(field, '') for field in PROFILE_FIELDS]
 profile = Profile._make(fields)
 if len(profile.forename) < 1 or len(profile.current_surname) < 1:
 raise ValueError("A forename and current surname must be supplied.")
 record = Record()
 record.profile = profile
 return record

 © Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		EHRcorral 0.0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Nikhil Haas.
 Created using Sphinx 1.3.1.

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/file.png

_static/minus.png

_static/comment-close.png

