

Welcome to EGADS’s documentation!

	Introduction

	Installation
	Prerequisites

	Optional Packages

	Installation

	Testing

	Options

	Log

	Update

	Tutorial
	Exploring EGADS
	Simple operations with EGADS

	The EgadsData class
	Creating EgadsData instances

	Metadata

	Working with units

	Working with raw text files
	Opening

	File Manipulation

	Reading Data

	Writing Data

	Closing

	Tutorial

	Working with CSV files
	Opening

	File Manipulation

	Reading Data

	Writing Data

	Closing

	Tutorial

	Working with NetCDF files
	Opening

	Getting info

	Reading data

	Writing data

	Conversion from NetCDF to NASA/Ames file format

	Other operations

	Closing

	Tutorial

	Working with NASA Ames files
	Opening

	Getting info

	Reading data

	Writing data

	Saving a file

	Conversion from NASA/Ames file format to NetCDF

	Other operations

	Closing

	Tutorial

	Converting between file formats

	Working with algorithms
	Getting algorithm information

	Calling algorithms

	Scripting
	Scripting Hints

	Using the GUI

	Algorithm Development
	Introduction

	Python module creation

	Documentation creation
	Example

	EGADS API
	Core Classes

	Metadata Classes

	File Classes

Introduction

The EGADS (EUFAR General Airborne Data-processing Software) core is a Python-based library of processing and file I/O routines designed to help analyze a wide range of airborne atmospheric science data. EGADS purpose is to provide a benchmark for airborne data-processing through its community-provided algorithms, and to act as a reference by providing guidance to researchers with an open-source design and well-documented processing routines.

Python is used in development of EGADS due to its straightforward syntax and portability between systems. Users interact with data processing algorithms using the Python command-line, by creating Python scripts for more complex tasks, or by using the EGADS GUI for a simplified interaction. The core of EGADS is built upon a data structure that encapsulates data and metadata into a single object. This simplifies the housekeeping of data and metadata and allows these data to be easily passed between algorithms and data files. Algorithms in EGADS also contain metadata elements that allow data and their sources to be tracked through processing chains.

Note

Even if EGADS is easily accessible, a certain knowledge in Python is still required to use EGADS.

Installation

The latest version of EGADS can be obtained from https://github.com/EUFAR/egads

Prerequisites

Use of EGADS requires the following packages:

	Python 2.7.10 or newer. Available at https://www.python.org/

	numpy 1.10.1 or newer. Available at http://numpy.scipy.org/

	scipy 0.15.0 or newer. Available at http://www.scipy.org/

	Python netCDF4 libraries 1.1.9 or newer. Available at https://pypi.python.org/pypi/netCDF4

	python_dateutil 2.4.2 or newer. Available at https://pypi.python.org/pypi/python-dateutil

Optional Packages

The following are useful when using or compiling EGADS:

	IPython - An optional package which simplifies Python command line usage (http://ipython.scipy.org). IPython is an enhanced interactive Python shell which supports tab-completion, debugging, command history, etc.

	setuptools - An optional package which allows easier installation of Python packages (http://pypi.python.org/pypi/setuptools). It gives access to the easy_install command which allows packages to be downloaded and installed in one step from the command line.

Installation

Since EGADS is a pure Python distribution, it does not need to be built. However, to use it, it must be installed to a location on the Python path. To install EGADS, first download and decompress the file. From the directory containing the file setup.py, type python setup.py install or pip install egads from the command line. To install to a user-specified location, type python setup.py install --prefix=$MYDIR. To avoid the installation of dependencies, use the option --no-depts. On Linux systems, the installation of EGADS in the user home directory is encouraged to ensure the proper operation of the EGADS logging system and of the new Graphical User Interface algorithm creation system.

Testing

To test EGADS after it is installed, run the run_tests.py Python script, or from Python, run the following commands:

>>> import egads
>>> egads.test()

Options

Since version 0.7.0, an .ini file has been added to EGADS to welcome few options: log level and path, automatic check for a new EGADS version on GitHub. If the file is not present in EGADS directory, when importing, EGADS will create it automatically with default options. It is possible to display the status of the configuration file:

>>> import egads
>>> egads.print_options()
The logging level is set on DEBUG and the log file is available in default directory.
The option to check automatically for an update is set on False.

Actually, the number of option is limited and will probably incrase in the future. Here is a list of the options:

	level in LOG section: one of the items in the following list DEBUG, INFO, WARNING, CRITICAL, ERROR ; it is used to set the logging level when EGADS is imported.

	path in LOG section: a string corresponding to an OS path ; it is used to set the directory path where the log file is saved.

	check_update in OPTIONS section: True or False ; it is used to let EGADS check for an update automatically when it is imported.

Log

A logging system has been introduced in EGADS since the version 0.7.0. By default, the output file is available in the ‘Python local site-packages/EGADS x.x.x/egads’ directory and the logging level has been set to INFO. Both options for logging level and logging location have been set in a config file. Both options can be changed through EGADS using the egads.set_log_options() function, by passing a dictionary of option keys and values:

>>> import egads
>>> egads.set_log_options(log_level='INFO', log_path='/path/to/log/directory/')
>>> exit()

Actual options to control the logging system are for now:

	level: the logging level (DEBUG, INFO, WARNING, CRITICAL, ERROR).

	path: the path of the file containing all logs.

New logging options will be loaded at the next import of EGADS. Logging levels are the standard Python ones (DEBUG, INFO, WARNING, CRITICAL, ERROR). It is also possible to change dynamically the logging level in a script:

>>> egads.change_log_level('DEBUG')

That possibility is not permanent and will last until the script run is over.

Update

Since version 0.8.6, EGADS can check for an update on GitHub. The check system is launched in a separate thread and can be used this way:

>>> import egads
>>> egads.check_update()
EGADS vx.x.x is available on GitHub. You can update EGADS by using pip (pip install egads --upgrade)
or by using the following link: https://github.com/eufarn7sp/egads/releases/download/x.x.x/egads-x.
x.x.tar.gz

If the check_update option is set on True in the egads.ini file, EGADS will check automatically for an update each time it is imported. The user can modify the option this way:

>>> import egads
>>> egads.set_update_check_option(True)
>>> exit()

The use of pip or easy_install is still required to update EGADS package.

Tutorial

Exploring EGADS

The simplest way to start working with EGADS is to run it from the Python command line.
To load EGADS into the Python name-space, simply import it:

>>> import egads

You may then begin working with any of the algorithms and functions contained in EGADS.

There are several useful methods to explore the routines contained in EGADS.
The first is using the Python built-in dir() command:

>>> dir(egads)

returns all the classes and subpackages contained in EGADS. EGADS follows the naming conventions from the Python Style Guide (http://www.python.org/dev/peps/pep-0008), so classes are always MixedCase, functions and modules are generally lowercase or lowercase_with_underscores. As a further example,

>>> dir(egads.input)

would returns all the classes and subpackages of the egads.input module.

Another way to explore EGADS is by using tab completion, if supported by your Python installation. Typing

>>> egads.

then hitting TAB will return a list of all available options.

Python has built-in methods to display documentation on any function known as docstrings.
The easiest way to access them is using the help() function:

>>> help(egads.input.NetCdf)

or

>>> egads.input.NetCdf?

will return all methods and their associated documentation for the NetCdf class.

Simple operations with EGADS

To have a list of file in a directory, use the following function:

>>> egads.input.get_file_list('path/to/all/netcdf/files/*.nc')

The EgadsData class

At the core of the EGADS package is a data class intended to handle data and associated metadata in a consistent way between files, algorithms and within the framework. This ensures that important metadata is not lost when combining data form various sources in EGADS.

Additionally, by subclassing the Quantities and Numpy packages, EgadsData incorporates unit comprehension to reduce unit-conversion errors during calculation, and supports broad array manipulation capabilities. This section describes how to employ the EgadsData class in the EGADS program scope.

Creating EgadsData instances

The EgadsData class takes four basic arguments:

	
	value

	Value to assign to EgadsData instance. Can be scalar, array, or other EgadsData instance.

	
	units

	Units to assign to EgadsData instance. Should be string representation of units, and can be a compound units type such as ‘g/kg’, ‘m/s^2’, ‘feet/second’, etc.

	
	variable metadata

	An instance of the VariableMetadata type or dictionary, containing keywords and values of any metadata to be associated with this EgadsData instance.

	
	other attributes

	Any other attributes added to the class are automatically stored in the VariableMetadata instance associated with the EgadsData instance.

The following are examples of creating EgadsData instances:

>>> x = egads.EgadsData([1,2,3], 'm')
>>> a = [1,2,3,4]
>>> b = egads.EgadsData(a, 'km', b_metadata)
>>> c = egads.EgadsData(28, 'degC', long_name="current temperature")

If, during the call to EgadsData, no units are provided, but a variable metadata instance is provided with a units property, this will then be used to define the EgadsData units:

>>> x_metadata = egads.core.metadata.VariableMetadata({'units':'m', 'long_name':'Test Variable'})
>>> x = egads.EgadsData([1,2,3], x_metadata)
>>> print x.units
m
>>> print x.metadata
{'units': 'm', 'long_name': 'Test Variable'}

The EgadsData is a subclass of the Quantities and Numpy packages. Thus it allows different kind of operations like addition, substraction, slicing, and many more. For each of those operations, a new EgadsData class is created with all their attributes.

Note

With mathematical operands, as metadata define an EgadsData before an operation, and may not reflect the new EgadsData, it has been decided to not keep the metadata attribute. It’s the responsability of the user to add a new VariableMetadata instance or a dictionary to the new EgadsData object. It is not true if a user wants to slice an EgadsData. In that case, metadata are automatically attributed to the new EgadsData.

Metadata

The metadata object used by EgadsData is an instance of VariableMetadata, a dictionary object containing methods to recognize, convert and validate known metadata types. It can reference parent metadata objects, such as those from an algorithm or data file, to enable users to track the source of a particular variable.

When reading in data from a supported file type (NetCDF, NASA Ames), or doing calculations with an EGADS algorithm, EGADS will automatically populate the associated metadata and assign it to the output variable. However, when creating an EgadsData instance manually, the metadata must be user-defined.

As mentioned, VariableMetadata is a dictionary object, thus all metadata are stored as keyword:value pairs. To create metadata manually, simply pass in a dictionary object containing the desired metadata:

>>> var_metadata_dict = {'long_name':'test metadata object',
 '_FillValue':-9999}
>>> var_metadata = egads.core.metadata.VariableMetadata(var_metadata_dict)

To take advantage of its metadata recognition capabilities, a conventions keyword can be passed with the variable metadata to give a context to these metadata.

>>> var_metadata = egads.core.metadata.VariableMetadata(var_metadata_dict, conventions='CF-1.0')

If a particular VariableMetadata object comes from a file or algorithm, the class attempts to assign the conventions automatically. While reading from a file, for example, the class attempts to discover the conventions used based on the “Conventions” keyword, if present.

Working with units

EgadsData subclasses Quantities, thus all of the latter’s unit comprehension methods are available when using EgadsData. This section will outline the basics of unit comprehension. A more detailed tutorial of the unit comprehension capabilities can be found at http://packages.python.org/quantities/

In general, units are assigned to EgadsData instances when they are being created.

>>> a = egads.EgadsData([1,2,3], 'm')
>>> b = egads.EgadsData([4,5,6], 'meters/second')

Once a unit type has been assigned to an EgadsData instance, it will remain that class of unit and can only be converted between other types of that same unit. The rescale method can be used to convert between similar units, but will give an error if an attempt is made to convert to non-compatible units.

>>> a = egads.EgadsData([1,2,3], 'm')
>>> a_km = a.rescale('km')
>>> print a_km
['EgadsData', array([0.001, 0.002, 0.003]), 'km']
>>> a_grams = a.rescale('g')
ValueError: Unable to convert between units of "m" and "g"

Likewise, arithmetic operations between EgadsData instances are handled using the unit comprehension provided by Quantities, and behave . For example adding units of a similar type is permitted:

>>> a = egads.EgadsData(10, 'm')
>>> b = egads.EgadsData(5, 'km')
>>> a + b
['EgadsData', array(5010.0), 'm']

But, non-compatible types cannot be added. They can, however, be multiplied or divided:

>>> distance = egads.EgadsData(10, 'm')
>>> time = egads.EgadsData(1, 's')
>>> distance + time
ValueError: Unable to convert between units of "s" and "m"
>>> distance/time
['EgadsData', array(10), 'm/s']

Working with raw text files

EGADS provides the egads.input.text_file_io.EgadsFile class as a simple wrapper for interacting with generic text files. EgadsFile can read, write and display data from text files, but does not have any tools for automatically formatting input or output data.

Opening

To open a text file the EgadsFile class, use the open(filename, permissions)() method:

>>> import egads
>>> f = egads.input.EgadsFile()
>>> f.open('/pathname/filename.txt','r')

Valid values for permissions are:

	r – Read: opens file for reading only. Default value if nothing is provided.

	w – Write: opens file for writing, and overwrites data in file.

	a – Append: opens file for appending data.

	r+ – Read and write: opens file for both reading and writing.

File Manipulation

The following methods are available to control the current position in the file and display more information about the file.

	f.display_file() – Prints contents of file out to standard output.

	f.get_position() – Returns current position in file as integer.

	f.seek(location, from_where) – Seeks to specified location in file. location is an integer specifying how far to seek. Valid options for from_where are b to seek from beginning of file, c to seek from current position in file and e to seek from the end of the file.

	f.reset() – Resets position to beginning of file.

Reading Data

Reading data is done using the read(size) method on a file that has been opened with r or r+ permissions:

>>> import egads
>>> f = egads.input.EgadsFile()
>>> f.open('myfile.txt','r')
>>> single_char_value = f.read()
>>> multiple_chars = f.read(10)

If the size parameter is not specified, the read() function will input a single character from the open file. Providing an integer value n as the size parameter to read(size) will return n characters from the open file.

Data can be read line-by-line from text files using read_line():

>>> line_in = f.read_line()

Writing Data

To write data to a file, use the write(data) method on a file that has been opened with w, a or r+ permissions:

>>> import egads
>>> f = egads.input.EgadsFile()
>>> f.open('myfile.txt','a')
>>> data = 'Testing output data to a file.\n This text will appear on the 2nd line.'
>>> f.write(data)

Closing

To close a file, simply call the close() method:

>>> f.close()

Tutorial

Here is a basic ASCII file, created by EGADS:

The current file has been created with EGADS
Institution: My Institution
Author(s): John Doe
time sea level corr sea level
1.0 5.0 1.0
2.0 2.0 3.0
3.0 -2.0 -1.0
4.0 0.5 2.5
5.0 4.0 6.0

This file has been created with the following commands:

	import EGADS module:

>>> import egads

	create two main variables, following the official EGADS convention:

>>> data1 = egads.EgadsData(value=[5.0,2.0,-2.0,0.5,4.0], units='mm', name='sea level', scale_factor=1., add_offset=0., _FillValue=-9999)
>>> data2 = egads.EgadsData(value=[1.0,3.0,-1.0,2.5,6.0], units='mm', name='corr sea level', scale_factor=1., add_offset=0., _FillValue=-9999)

	create an independant variable, still by following the official EGADS convention:

>>> time = egads.EgadsData(value=[1.0,2.0,3.0,4.0,5.0], units='seconds since 19700101T00:00:00', name='time')

	create a new EgadsFile instance:

>>> f = egads.input.EgadsFile()

	use the following function to open a new file:

>>> f.open('main_raw_file.dat', 'w')

	prepare the headers if necessary:

>>> headers = '# The current file has been created with EGADS\n# Institution: My Institution\n# Author(s): John Doe\n'
>>> headers += time.metadata["long_name"] + ' ' + data1.metadata["long_name"] + ' ' + data2.metadata["long_name"] + '\n''My institution')

	prepare an object to receive all data:

>>> data = ''
>>> for i, _ in enumerate(time.value):
 ... data += str(time.value[i]) + ' ' + str(data1.value[i]) + ' ' + str(data2.value[i]) + '\n'

	write the headers and data into the file

>>> f.write(headers)
>>> f.write(data)

	and do not forget to close the file:

>>> f.close()

Working with CSV files

egads.input.text_file_io.EgadsCsv is designed to easily input or output data in CSV format. Data input using EgadsCsv is separated into a list of arrays, which each column a separate array in the list.

Opening

To open a text file the EgadsCsv class, use the open(pathname, permissions, delimiter, quotechar) method:

>>> import egads
>>> f = egads.input.EgadsCsv()
>>> f.open('/pathname/filename.txt','r',',','"')

Valid values for permissions are:

	r – Read: opens file for reading only. Default value if nothing is provided.

	w – Write: opens file for writing, and overwrites data in file.

	a – Append: opens file for appending data.

	r+ – Read and write: opens file for both reading and writing.

The delimiter argument is a one-character string specifying the character used to separate fields in the CSV file to be read; the default value is ,. The quotechar argument is a one-character string specifying the character used to quote fields containing special characters in the CSV file to to be read; the default value is ".

File Manipulation

The following methods are available to control the current position in the file and display more information about the file.

	f.display_file() – Prints contents of file out to standard output.

	f.get_position() – Returns current position in file as integer.

	f.seek(location, from_where) – Seeks to specified location in file. location is an integer specifying how far to seek. Valid options for from_where are b to seek from beginning of file, c to seek from current position in file and e to seek from the end of the file.

	f.reset() – Resets position to beginning of file.

Reading Data

Reading data is done using the read(lines, format) method on a file that has been opened with r or r+ permissions:

>>> import egads
>>> f = egads.input.EgadsCsv()
>>> f.open('mycsvfile.csv','r')
>>> single_line_as_list = f.read(1)
>>> all_lines_as_list = f.read()

read(lines, format) returns a list of the items read in from the CSV file. The arguments lines and format are optional. If lines is provided, read(lines, format) will read in the specified number of lines, otherwise it will read the whole file. format is an optional list of characters used to decompose the elements read in from the CSV files to their proper types. Options are:

	i – int

	f – float

	l – long

	s – string

Thus to read in the line:

FGBTM,20050105T143523,1.5,21,25

the command to input with proper formatting would look like this:

>>> data = f.read(1, ['s','s','f','f'])

Writing Data

To write data to a file, use the write(data) method on a file that has been opened with w, a or r+ permissions:

>>> import egads
>>> f = egads.input.EgadsCsv()
>>> f.open('mycsvfile.csv','a')
>>> titles = ['Aircraft ID','Timestamp','Value1','Value2','Value3']
>>> f.write(titles)

where the titles parameter is a list of strings. This list will be output to the CSV, with each strings separated by the delimiter specified when the file was opened (default is ,).

To write multiple lines out to a file, writerows(data) is used:

>>> data = [['FGBTM','20050105T143523',1.5,21,25],['FGBTM','20050105T143524',1.6,20,25.6]]
>>> f.writerows(data)

Closing

To close a file, simply call the close() method:

>>> f.close()

Tutorial

Here is a basic CSV file, created by EGADS:

time,sea level,corrected sea level
1.0,5.0,1.0
2.0,2.0,3.0
3.0,-2.0,-1.0
4.0,0.5,2.5
5.0,4.0,6.0

This file has been created with the following commands:

	import EGADS module:

>>> import egads

	create two main variables, following the official EGADS convention:

>>> data1 = egads.EgadsData(value=[5.0,2.0,-2.0,0.5,4.0], units='mm', name='sea level', scale_factor=1., add_offset=0., _FillValue=-9999)
>>> data2 = egads.EgadsData(value=[1.0,3.0,-1.0,2.5,6.0], units='mm', name='corr sea level', scale_factor=1., add_offset=0., _FillValue=-9999)

	create an independant variable, still by following the official EGADS convention:

>>> time = egads.EgadsData(value=[1.0,2.0,3.0,4.0,5.0], units='seconds since 19700101T00:00:00', name='time')

	create a new EgadsFile instance:

>>> f = egads.input.EgadsCsv()

	use the following function to open a new file:

>>> f.open('main_csv_file.csv','w',',','"')

	prepare the headers if necessary:

>>> headers = ['time', 'sea level', 'corrected sea level']

	prepare an object to receive all data:

>>> data = [time.value, data1.value, data2.value]

	write the headers and data into the file

>>> f.write(headers)
>>> f.write(data)

	and do not forget to close the file:

>>> f.close()

Working with NetCDF files

EGADS provides two classes to work with NetCDF files. The simplest, egads.input.netcdf.NetCdf, allows simple read/write operations to NetCDF files. The other, egads.input.netcdf.EgadsNetCdf, is designed to interface with NetCDF files conforming to the EUFAR Standards & Protocols data and metadata regulations. This class directly reads or writes NetCDF data using instances of the EgadsData class.

Opening

To open a NetCDF file, simply create a NetCdf() instance and then use the open(pathname, permissions) command:

>>> import egads
>>> f = egads.input.NetCdf()
>>> f.open('/pathname/filename.nc','r')

Valid values for permissions are:

	r – Read: opens file for reading only. Default value if nothing is provided.

	w – Write: opens file for writing, and overwrites data in file.

	a – Append: opens file for appending data.

	r+ – Same as a.

Getting info

	f.get_dimension_list() – returns a list of all dimensions and their sizes

	f.get_dimension_list(var_name) – var_name is optional and if provided, the function returns a list of all dimensions and their sizes attached to var_name

	f.get_attribute_list() – returns a list of all top-level attributes

	f.get_attribute_list(var_name) – var_name is optional and if provided, the function returns a list of all attributes attached to var_name

	f.get_variable_list() – returns list of all variables

	f.get_filename() – returns filename for currently opened file

	f.get_perms() – returns the current permissions on the file that is open

Reading data

To read data from a file, use the read_variable() function:

>>> data = f.read_variable(var_name, input_range)

where var_name is the name of the variable to read in, and input_range (optional) is a list of min/max values.

If using the egads.input.NetCdf() class, an array of values contained in var_name will be returned. If using the egads.input.EgadsNetCdf() class, an instance of the EgadsData class will be returned containing the values and attributes of var_name.

Writing data

The following describe how to add dimensions or attributes to a file.

	f.add_dim(dim_name, dim_size) – add dimension to file

	f.add_attribute(attr_name, attr_value) – add attribute to file

	f.add_attribute(attr_name, attr_value, var_name) – var_name is optional and if provided, the function add attribute to var_name

Data can be output to variables using the write_variable() function as follows:

>>> f.write_variable(data, var_name, dims, type)

where var_name is a string for the variable name to output, dims is a tuple of dimension names (not needed if the variable already exists), and type is the data type of the variable. The default value is double, other valid options are float, int, short, char and byte.

If using NetCdf, values for data passed into write_variable must be scalar or array. Otherwise, if using EgadsNetCdf, an instance of EgadsData must be passed into write_variable. In this case, any attributes that are contained within the EgadsData instance are applied to the NetCDF variable as well.

Conversion from NetCDF to NASA/Ames file format

The conversion is only possible on opened NetCDF files. If modifications have been made and haven’t been saved, the conversion won’t take into account those modifications. Actually, the only File Format Index supported by the conversion in the NASA/Ames format is 1001. Consequently, if variables depend on multiple independant variables (e.g. data is function of time, longitude and latitude), the file won’t be converted and the function will raise an exception. On the contrary, if multiple independant variables (or dimensions) exist, and if each variable depend on only one independant variable (e.g. data is only function of time), the file will be converted and the function will generate one file per independant variable. If the user needs to convert a complex file with variables depending on multiple independant variables, the conversion should be done manually by creating a NASA/Ames instance and a NASA/Ames dictionary, by populating the dictionary and by saving the file.

To convert a NetCDF file, simply use:

	f.convert_to_nasa_ames() – convert the currently opened NetCDF file to NASA/Ames file format

	f.convert_to_nasa_ames(na_file, requested_ffi, float_format, delimiter, annotation, no_header) – na_file, requested_ffi, float_format, delimiter, annotation and no_header are optional parameters ; na_file is the name of the output file once it has been converted, by default the name of the NetCDF file will be used with the extension .na ; requested_ffi is not used actually, but will be functional in a next version of EGADS ; float_format is the formatting string used for formatting floats when writing to output file, by default %g ; delimiter is a character or a sequence of character for use between data items in the data file, by default ‘ ‘ (four spaces) ; if annotation is set to True, write the output file with an additional left-hand column describing the contents of each header line, by default False ; if no_header is set to True, then only the data blocks are written to file, by default False

To convert a NetCDF file to NASA/Ames CSV format, simply use:

	f.convert_to_csv() – convert the currently opened NetCDF file to NASA/Ames CSV format

	f.convert_to_csv(csv_file, float_format, annotation, no_header) – csv_file, float_format, annotation and no_header are optional parameters ; csv_file is the name of the output file once it has been converted, by default the name of the NetCDF file will be used with the extension .csv ; float_format is the formatting string used for formatting floats when writing to output file, by default %g ; if annotation is set to True, write the output file with an additional left-hand column describing the contents of each header line, by default False ; if no_header is set to True, then only the data blocks are written to file, by default False

Other operations

	f.get_attribute_value(attr_name) – returns the value of a global attribute

	f.get_attribute_value(attr_name, var_name) – var_name is optional and if provided, the function returns the value of an attribute attached to var_name

	f.change_variable_name(var_name, new_name) – change the variable name in currently opened NetCDF file

Closing

To close a file, simply use the close() method:

>>> f.close()

Note

The EGADS NetCdf and EgadsNetCdf use the official NetCDF I/O routines, therefore, as described in the NetCDF documentation, it is not possible to remove a variable or more, and to modify the values of a variable. As attributes, global and those linked to a variable, are more dynamic, it is possible to remove, rename, or replace them.

Tutorial

Here is a NetCDF file, created by EGADS, and viewed by the command ncdump -h:

=> ncdump -h main_netcdf_file.nc
 netcdf main_netcdf_file {
 dimensions:
 time = 5 ;
 variables:
 double time(time) ;
 time:units = "seconds since 19700101T00:00:00" ;
 time:long_name = "time" ;
 double sea_level(time) ;
 sea_level:_FillValue = -9999. ;
 sea_level:category = "TEST" ;
 sea_level:scale_factor = 1. ;
 sea_level:add_offset = 0. ;
 sea_level:long_name = "sea level" ;
 sea_level:units = "mm" ;
 double corrected_sea_level(time) ;
 corrected_sea_level:_FillValue = -9999. ;
 corrected_sea_level:units = "mm" ;
 corrected_sea_level:add_offset = 0. ;
 corrected_sea_level:scale_factor = 1. ;
 corrected_sea_level:long_name = "corr sea level" ;

 // global attributes:
 :Conventions = "CF-1.0" ;
 :history = "the netcdf file has been created by EGADS" ;
 :comments = "no comments on the netcdf file" ;
 :institution = "My institution" ;
 }

This file has been created with the following commands:

	import EGADS module:

>>> import egads

	create two main variables, following the official EGADS convention:

>>> data1 = egads.EgadsData(value=[5.0,2.0,-2.0,0.5,4.0], units='mm', name='sea level', scale_factor=1., add_offset=0., _FillValue=-9999)
>>> data2 = egads.EgadsData(value=[1.0,3.0,-1.0,2.5,6.0], units='mm', name='corr sea level', scale_factor=1., add_offset=0., _FillValue=-9999)

	create an independant variable, still by following the official EGADS convention:

>>> time = egads.EgadsData(value=[1.0,2.0,3.0,4.0,5.0], units='seconds since 19700101T00:00:00', name='time')

	create a new EgadsNetCdf instance with a file name:

>>> f = egads.input.EgadsNetCdf('main_netcdf_file.nc', 'w')

	add the global attributes to the NetCDF file:

>>> f.add_attribute('Conventions', 'CF-1.0')
>>> f.add_attribute('history', 'the netcdf file has been created by EGADS')
>>> f.add_attribute('comments', 'no comments on the netcdf file')
>>> f.add_attribute('institution', 'My institution')

	add the dimension(s) of your variable(s), here it is time:

>>> f.add_dim('time', len(time))

	write the variable(s), it is a good practice to write at the first place the independant variable time:

>>> f.write_variable(time, 'time', ('time',), 'double')
>>> f.write_variable(data1, 'sea_level', ('time',), 'double')
>>> f.write_variable(data2, 'corrected_sea_level', ('time',), 'double')

	and do not forget to close the file:

>>> f.close()

Working with NASA Ames files

To work with NASA Ames files, EGADS incorporates the NAPpy library developed by Ag Stephens of BADC. Information about NAPpy can be found at http://proj.badc.rl.ac.uk/cows/wiki/CowsSupport/Nappy

In EGADS, the NAPpy API has been adapted to match the other EGADS file access methods. Thus, from EGADS, NASA Ames files can be accessed via the egads.input.nasa_ames_io.NasaAmes class. Actually, only the FFI 1001 has been interfaced with EGADS.

Opening

To open a NASA Ames file, simply create a NasaAmes() instance and then use the open(pathname, permissions) command:

>>> import egads
>>> f = egads.input.NasaAmes()
>>> f.open('/pathname/filename.na','r')

Valid values for permissions are:

	r – Read: opens file for reading only. Default value if nothing is provided.

	w – Write: opens file for writing, and overwrites data in file.

	a – Append: opens file for appending data.

	r+ – Same as a.

Once a file has been opened, a dictionary of NASA/Ames format elements is loaded into memory. That dictionary will be used to overwrite the file or to save to a new file.

Getting info

	f.get_attribute_list() – returns a list of all top-level attributes

	f.get_attribute_list(var_name, var_type, na_dict) – var_name is optional and if provided, the function returns list of all attributes attached to var_name ; if var_type is provided the function will search in the variable type var_type by default ; na_dict is optional if provided, will return a list of all top-level attributes, or all var_name attributes, in the NASA/Ames dictionary na_dict

	f.get_attribute_value(attr_name) – returns the value of a global attribute named attr_name

	f.get_attribute_value(attr_name, var_name, var_type, na_dict) – var_name, var_type and na_dict are optional ; if var_name is provided, returns the value of an attribute named attr_name attached to a variable named var_name ; if var_type is provided, the function will search in the variable type var_type by default ; if na_dict is provided, returns the attribute value from the NASA/Ames dictionary na_dict

	f.get_dimension_list() – returns a list of all variable dimensions

	f.get_dimension_list(na_dict, var_type) – var_type is optional, if provided, the function returns a list of all variable dimensions based on the var_type by default ; na_dict is optional and will returns the dimension list from the NASA/Ames dictionary na_dict ;

	f.get_variable_list() – returns list of all variables ;

	f.get_variable_list(na_dict) – na_dict is optional and if provided, will return a list of all variables in the NASA/Ames dictionary na_dict

	f.get_filename() – returns filename for currently opened file

Reading data

To read data from a file, use the read_variable() function:

>>> data = f.read_variable(var_name)

where var_name is the name of the variable to read in. The data will be read in to an instance of the EgadsData class, containing the values and attributes of var_name.

Writing data

To write data to the current file or to a new file, the user must save a dictionary of NASA/Ames elements. Few functions are available to help him to prepare the dictionary:

	f.create_na_dict – create a new dictionary populated with standard NASA/Ames keys.

	f.write_attribute_value(attr_name, attr_value) – write or replace a specific attribute (from the official NASA/Ames attribute list) in the currently opened dictionary

	f.write_attribute_value(attr_name, attr_value, var_name, var_type, na_dict) – var_name and var_type are optional, if provided, write or replace a specific attribute linked to the variable var_name (var_type is by default equal to ‘main’) in the currently opened dictionary ; ccepted attributes for a variable are ‘name’, ‘units’, ‘_FillValue’ and ‘scale_factor’, other attributes will be refused and should be passed as ‘special comments’ ; na_dict is optional and if provided the function will write the attribute in the NASA/Ames dictionary na_dict

	f.write_variable(data, var_name) – write or replace a variable ; the function will search if data is already in the dictionary by comparing varname with other variable names in the dictionary, if it is found, data will replace the old variable, if not data is considered as a new variable ; data can be an EgadsData or a vector/matrix.

	f.write_variable(data, var_name, var_type, attr_dict, na_dict) – var_type, attr_dict and na_dict are optional ; attr_dict (a dictionary of standard NASA/ames variable attributes: ‘name’, ‘units’, ‘_FillValue’ and ‘scale_factor’) must be provided if data is not an EgadsData (in that case, variable attributes are retrieve from the EgadsData.metadata dictionary) ; if na_dict is provided, the function saves the variable in the NASA/Ames dictionary na_dict

Saving a file

Once a dictionary is ready, use the save_na_file() function to save the file:

>>> data = f.save_na_file(file_name, na_dict, float_format):

where file_name is the name of the new file or the name of the current file, na_dict the name of the dictionary to be saved (optional, if not provided, the current dictionary will be used), and float_format the format of the floating numbers in the file (by deffault, two decimal places).

Conversion from NASA/Ames file format to NetCDF

When a NASA/Ames file is opened, all metadata and data are read and stored in memory in a dedicated dictionary. The conversion will convert that dictionary to generate a NetCDF file. If modifications are made to the dictionary, the conversion will take into account those modifications. Actually, the only File Format Index supported by the conversion in the NASA/Ames format is 1001. Consequently, if variables depend on multiple independant variables (e.g. data is function of time, longitude and latitude), the file won’t be converted and the function will raise an exception. If the user needs to convert a complex file with variables depending on multiple independant variables, the conversion should be done manually by creating a NetCDF instance and by populating the NetCDF files with NASA/Ames data and metadata.

To convert a NASA/Ames file, simply use:

	f.convert_to_netcdf() – convert the currently opened NASA/Ames file to NetCDF format.

	f.convert_to_netcdf(nc_file) – nc_file is an optional parameter ; na_file is the name of the output file once it has been converted, by default the name of the NASA/Ames file will be used with the extension .nc

Other operations

	f.read_na_dict() – returns a deep copy of the current opened file dictionary

	f.na_format_information() – returns a text explaining the structure of a NASA/Ames file to help the user to modify or to create his own dictionary

Closing

To close a file, simply use the close() method:

>>> f.close()

Tutorial

Here is a NASA/Ames file:

23 1001
John Doe
An institution
tide gauge
ATESTPROJECT
1 1
2017 1 30 2017 1 30
0.0
time (seconds since 19700101T00:00:00)
2
1 1
-9999 -9999
sea level (mm)
corr sea level (mm)
3
========SPECIAL COMMENTS===========
this file has been created with egads
=========END=========
4
========NORMAL COMMENTS===========
headers:
time sea level corrected sea level
=========END=========
1.00 5.00 1.00
2.00 2.00 3.00
3.00 -2.00 -1.00
4.00 0.50 2.50
5.00 4.00 6.00

This file has been created with the following commands:

	
	import EGADS module:

	>>> import egads

	create two main variables, following the official EGADS convention:

>>> data1 = egads.EgadsData(value=[5.0,2.0,-2.0,0.5,4.0], units='mm', name='sea level', scale_factor=1, _FillValue=-9999)
>>> data2 = egads.EgadsData(value=[1.0,3.0,-1.0,2.5,6.0], units='mm', name='corr sea level', scale_factor=1, _FillValue=-9999)

	create an independant variable, still by following the official EGADS convention:

>>> time = egads.EgadsData(value=[1.0,2.0,3.0,4.0,5.0], units='seconds since 19700101T00:00:00', name='time')

	create a new NASA/Ames empty instance:

>>> f = egads.input.NasaAmes()

	initialize a new NASA/Ames dictionary:

>>> na_dict = f.create_na_dict()

	prepare the normal and special comments if needed, in a list, one cell for each line:

>>> scom = ['========SPECIAL COMMENTS===========','this file has been created with egads','=========END=========']
>>> ncom = ['========NORMAL COMMENTS===========','headers:','time sea level corrected sea level','=========END=========']

	populate the main NASA/Ames attributes:

>>> f.write_attribute_value('ONAME', 'John Doe', na_dict = na_dict) # ONAME is the name of the author(s)
>>> f.write_attribute_value('ORG', 'An institution', na_dict = na_dict) # ORG is tne name of the organization responsible for the data
>>> f.write_attribute_value('SNAME', 'tide gauge', na_dict = na_dict) # SNAME is the source of data (instrument, observation, platform, ...)
>>> f.write_attribute_value('MNAME', 'ATESTPROJECT', na_dict = na_dict) # MNAME is the name of the mission, campaign, programme, project dedicated to data
>>> f.write_attribute_value('DATE', [2017, 1, 30], na_dict = na_dict) # DATE is the date at which the data recorded in this file begin (YYYY MM DD)
>>> f.write_attribute_value('NIV', 1, na_dict = na_dict) # NIV is the number of independent variables
>>> f.write_attribute_value('NSCOML', 3, na_dict = na_dict) # NSCOML is the number of special comments lines or the number of elements in the SCOM list
>>> f.write_attribute_value('NNCOML', 4, na_dict = na_dict) # NNCOML is the number of special comments lines or the number of elements in the NCOM list
>>> f.write_attribute_value('SCOM', scom, na_dict = na_dict) # SCOM is the special comments attribute
>>> f.write_attribute_value('NCOM', ncom, na_dict = na_dict) # NCOM is the normal comments attribute

	write each variable in the dictionary:

>>> f.write_variable(time, 'time', vartype="independant", na_dict = na_dict)
>>> f.write_variable(data1, 'sea level', vartype="main", na_dict = na_dict)
>>> f.write_variable(data2, 'corrected sea level', vartype="main", na_dict = na_dict)

	and finally, save the dictionary to a NASA/Ames file:

>>> f.save_na_file('na_example_file.na', na_dict)

Converting between file formats

Since the first version of EGADS, the direct conversion was possible with the NAPpy library with the help of CDMS. As CDMS is not compatible with windows, that possibility has been dropped. However, two functions have been introduced to allow a conversion from NetCDF to NASA/Ames format, and from NASA/Ames format to NetCDF. Please read the section about NetCDF and NASA/Ames file handling to learn how to convert between those formats.

Working with algorithms

Algorithms in EGADS are stored in the egads.algorithms module, and separated into sub-modules by category (microphysics, thermodynamics, radiation, etc). Each algorithm follows a standard naming scheme, using the algorithm’s purpose and source:

{CalculatedParameter}{Detail}{Source}

For example, an algorithm which calculates static temperature, which was provided by CNRM would be named:

TempStaticCnrm

Getting algorithm information

There are several methods to get information about each algorithm contained in EGADS. The EGADS Algorithm Handbook is available for easy reference outside of Python. In the handbook, each algorithm is described in detail, including a brief algorithm summary, descriptions of algorithm inputs and outputs, the formula used in the algorithm, algorithm source and links to additional references. The handbook also specifies the exact name of the algorithm as defined in EGADS. The handbook can be found on the EGADS website.

Within Python, usage information on each algorithm can be found using the help() command:

>>> help(egads.algorithms.thermodynamics.VelocityTasCnrm)

>>> Help on class VelocityTasCnrm in module egads.algorithms.thermodynamics.
 velocity_tas_cnrm:

class VelocityTasCnrm(egads.core.egads_core.EgadsAlgorithm)
 | FILE velocity_tas_cnrm.py
 |
 | VERSION $Revision: 104 $
 |
 | CATEGORY Thermodynamics
 |
 | PURPOSE Calculate true airspeed
 |
 | DESCRIPTION Calculates true airspeed based on static temperature,
 | static pressure and dynamic pressure using St Venant's
 | formula.
 |
 | INPUT T_s vector K or C static temperature
 | P_s vector hPa static pressure
 | dP vector hPa dynamic pressure
 | cpa coeff. J K-1 kg-1 specific heat of air (dry
 | air is 1004 J K-1 kg-1)
 | Racpa coeff. () R_a/c_pa
 |
 | OUTPUT V_p vector m s-1 true airspeed
 |
 | SOURCE CNRM/GMEI/TRAMM
 |
 | REFERENCES "Mecanique des fluides", by S. Candel, Dunod.
 |
 | Bulletin NCAR/RAF Nr 23, Feb 87, by D. Lenschow and
 | P. Spyers-Duran
 |
...

Calling algorithms

Algorithms in EGADS generally accept and return arguments of EgadsData type, unless otherwise noted. This has the advantages of constant typing between algorithms, and allows metadata to be passed along the whole processing chain. Units on parameters being passed in are also checked for consistency, reducing errors in calculations, and rescaled if needed. However, algorithms will accept any normal data type, as well. They can also return non-EgadsData instances, if desired.

To call an algorithm, simply pass in the required arguments, in the order they are described in the algorithm help function. An algorithm call, using the VelocityTasCnrm in the previous section as an example, would therefore be the following:

>>> V_p = egads.algorithms.thermodynamics.VelocityTasCnrm().run(T_s, P_s, dP,
 cpa, Racpa)

where the arguments T_s, P_s, dP, etc are all assumed to be previously defined in the program scope. In this instance, the algorithm returns an EgadsData instance to V_p. To run the algorithm, but return a standard data type (scalar or array of doubles), set the return_Egads flag to false.

>>> V_p = egads.algorithms.thermodynamics.VelocityTasCnrm(return_Egads=false).
 run(T_s, P_s, dP, cpa, Racpa)

Note

When injecting a variable in an EgadsAlgorithm, the format of the variable should follow closely the documentation of the algorithm. If the variable is a scalar, and the algorithm needs a vector, the scalar should be surrounded by brackets: 52.123 -> [52.123].

Scripting

The recommended method for using EGADS is to create script files, which are extremely useful for common or repetitive tasks. This can be done using a text editor of your choice. The example script belows shows the calculation of density for all NetCDF files in a directory.

#!/usr/bin/env python

import egads package
import egads			
import thermodynamic module and rename to simplify usage
import egads.algorithms.thermodynamics as thermo

get list of all NetCDF files in 'data' directory
filenames = egads.input.get_file_list('data/*.nc')
f = egads.input.EgadsNetCdf() # create EgadsNetCdf instance

for name in filenames: # loop through files

 f.open(name, 'a') # open NetCdf file with append permissions
 T_s = f.read_variable('T_t') # read in static temperature
 P_s = f.read_variable('P_s') # read in static pressure from file
 rho = thermo.DensityDryAirCnrm().run(P_s, T_s) # calculate density
 f.write_variable(rho, 'rho', ('Time',)) # output variable

 f.close() # close file

Scripting Hints

When scripting in Python, there are several important differences from other programming languages to keep in mind. This section outlines a few of these differences.

Importance of white space

Python differs from C++ and Fortran in how loops or nested statements are signified. Whereas C++ uses brackets (‘{‘ and ‘}’) and FORTRAN uses end statements to signify the end of a nesting, Python uses white space. Thus, for statements to nest properly, they must be set at the proper depth. As long as the document is consistent, the number of spaces used doesn’t matter, however, most conventions call for 4 spaces to be used per level. See below for examples:

FORTRAN:

X = 0
DO I = 1,10
 X = X + I
 PRINT I
END DO
PRINT X

Python:

x = 0
for i in range(1,10):
 x = x + i
 print i
print x

Using the GUI

Since September 2016, a Graphical User Interface is available at https://github.com/eufarn7sp/egads-gui. It gives the user the possibility to explore data, apply/create algorithms, display and plot data. Still in beta state, the user will have the possibility in the future to work on a batch of file. For now, EGADS GUI comes as a simple python script and need to be launch from the terminal, if EGADS is installed, and once in the EGADS GUI directory:

>>> python egads_gui.py

It will be available soon as a stand alone (imbedding a version of EGADS CORE or using an already installed EGADS package).

Algorithm Development

Introduction

The EGADS framework is designed to facilitate integration of third-party algorithms. This is accomplished through creation of Python modules containing the algorithm code, and corresponding LaTeX files which contain the algorithm methodology documentation. This section will explain the elements necessary to create these files, and how to incorporate them into the broader package.

Python module creation

To guide creation of Python modules containing algorithms in EGADS, an algorithm template has been included in the distribution. It can be found in ./egads/algorithms/file_templates/algorithm_template.py and is shown below:

__author__ = "mfreer, ohenry"
__date__ = "2016-12-14 15:04"
__version__ = "1.0"
__all__ = ['']

import egads.core.egads_core as egads_core
import egads.core.metadata as egads_metadata

1. Change class name to algorithm name (same as filename) but
following MixedCase conventions.

class AlgorithmTemplate(egads_core.EgadsAlgorithm):

2. Edit docstring to reflect algorithm description and input/output
parameters used

 """
 This file provides a template for creation of EGADS algorithms.

 FILE algorithm_template.py

 VERSION 1.0

 CATEGORY None

 PURPOSE Template for EGADS algorithm files

 DESCRIPTION ...

 INPUT inputs var_type units description

 OUTPUT outputs var_type units description

 SOURCE sources

 REFERENCES references

 """

 def __init__(self, return_Egads=True):
 egads_core.EgadsAlgorithm.__init__(self, return_Egads)

 # 3. Complete output_metadata with metadata of the parameter(s) to be
 # produced by this algorithm. In the case of multiple parameters,
 # use the following formula:
 # self.output_metadata = []
 # self.output_metadata.append(egads_metadata.VariableMetadata(...)
 # self.output_metadata.append(egads_metadata.VariableMetadata(...)
 # ...

 self.output_metadata = egads_metadata.VariableMetadata({
 'units':'%',
 'long_name':'template',
 'standard_name':'',
 'Category':['']
 })

 # 3 cont. Complete metadata with parameters specific to algorithm,
 # including a list of inputs, a corresponding list of units, and
 # the list of outputs. InputTypes are linked to the different
 # var_type written in the docstring

 self.metadata = egads_metadata.AlgorithmMetadata({
 'Inputs':['input'],
 'InputUnits':['unit'],
 'InputTypes':['vector'],
 'InputDescription':['A description for an input'],
 'Outputs':['template'],
 'OutputDescription':['A description for an output'],
 'Purpose':'Template for EGADS algorithm files',
 'Description':'...',
 'Category':'None',
 'Source':'sources',
 'Reference':'references',
 'Processor':self.name,
 'ProcessorDate':__date__,
 'ProcessorVersion':__version__,
 'DateProcessed':self.now()
 }, self.output_metadata)

 # 4. Replace the 'inputs' parameter in the three instances below with the
 # list of input parameters to be used in the algorithm.

 def run(self, inputs):

 return egads_core.EgadsAlgorithm.run(self, inputs)

 # 5. Implement algorithm in this section.

 def _algorithm(self, inputs):

 ## Do processing here:

 return result

The best practice before starting an algorithm is to copy this file and name it following the EGADS algorithm file naming conventions, which is all lowercase with words separated by underscores. As an example, the file name for an algorithm calculating the wet bulb temperature contributed by DLR would be called
temperature_wet_bulb_dlr.py.

Within the file itself, there are one rule to respect and several elements in this template that will need to be modified before this can be usable as an EGADS algorithm.:

	
	Format

	An algorithm file is composed of different elements: metadata, class name, algorithm docstring, … It is critical to respect the format of each element of an algorithm file, in particular the first metadata and the docstring, in term of beginning white spaces, line length, … Even if it is not mandatory for EGADS itself, it will facilitate the integration of those algorithms in the new Graphical User Interface.

	
	Class name

	The class name is currently ‘AlgorithmTemplate’, but this must be changed to the actual name of the algorithm. The conventions here are the same name as the filename (see above), but using MixedCase. So, following the example above, the class name would be TemperatureWetBulbDlr

	
	Algorithm docstring

	The docstring is everything following the three quote marks just after the class definition. This section describes several essential aspects of the algorithm for easy reference directly from Python. This part is critical for the understanding of the algorithm by different users.

	
	Algorithm and output metadata

	In the __init__ method of the module, two important parameters are defined. The first is the ‘output_metadata’, which defines the metadata elements that will be assigned to the variable output by the algorithm. A few recommended elements are included, but a broader list of variable metadata parameters can be found in the NetCDF standards document on the EUFAR website (http://www.eufar.net/documents/6140, Annexe III). In the case that there are multiple parameters output by the algorithm, the output_metadata parameter can be defined as a list VariableMetadata instances.

Next, the ‘metadata’ parameter defines metadata concerning the algorithm itself. These information include the names, types, descriptions and units of inputs; names and descriptions of outputs; name, description, purpose, category, source, reference, date and version of the algorithm; date processed; and a reference to the output parameters. Of these parameters, only the names, types, descriptions and units of the inputs, names and descriptions of the outputs and category, source, reference, description and purpose of the algorithm need to be altered. The other parameters (name, date and version of the processor, date processed) are populated automatically.

	self.output_metadata:

	
	units: units of the output.

	long_name: the name describing the output.

	standard_name: a short name for the output.

	Category: Name(s) of probe category - comma separated list (cf. EUFAR document http://www.eufar.net/documents/6140 for an example of possible categories).

	self.metadata:

	
	Inputs: representation of each input in the documentation and in the code (ex: P_a for altitude pressure).

	InputUnits: a list of all input units, one unit per input, ‘’ for dimensionless input and ‘None’ for the input accepting every kind of units.

	InputTypes: the type of the input (array, vector, coeff, …) linked to the var_type string in the algorithm template ; the string _optional can be added to inform that the input is optional (used in the EGADS GUI).

	InputDescription: short description of each input.

	Outputs: representation of each output (ex: P_a for altitude pressure).

	OutputUnits: units of each output (cf. self.output_metadata[‘units’]).

	OutputTypes: type of each output (ex: vector).

	OutputDescription: short description of each output.

	Purpose: the goal of the algorithm.

	Description: a description of the algorithm.

	Category: the category of the algorithm (ex: Transforms, Thermodynamis, …).

	Source : the source of the algorithm (ex: CNRM).

	Reference : the reference of the algorithm (ex: Doe et al, My wonderful algorithm, Journal of Algorithms, 11, pp 21-22, 2017).

	Processor: self.name.

	ProcessorDate: __date__.

	ProcessorVersion: __version__.

	DateProcessed: self.now().

Note

For algorithms in which the output units depend on the input units (i.e. a purely mathematical transform, derivative, etc), there is a specific methodology to tell EGADS how to set the output units. To do this, set the appropriate units parameter of output_metadata to inputn where n is the number of the input parameter from which to get units (starting at 0). For algorithms in which the units of the input has no importance, the input units should set to None. For algorithms in which the input units are dimensionless (a factor, a quantity, a coefficient), the units on the input parameter should be set to ''.

Note

EGADS accepts different kind of input type: coeff. for coefficient, vector, array, string, … When writing the docstring of an algorithm and the metadata InputTypes, the user should write the type carefully as it is interpreted by EGADS. If a type depends on another variable or multiple variables, for example the time, or geographic coordinates, the variable name should be written between brackets (ex: array[lon,lat]). If a variable is optional, the user should add , optional to the type in the doctstring, and _optional to the type in the metadata InputTypes.

	
	Definition of parameters

	In both the run and _algorithm methods, the local names intended for inputs need to be included. There are three locations where the same list must be added (marked in bold):

	def run(self, inputs)

	return egads_core.EgadsAlgorithm.run(self, inputs)

	def _algorithm(self, inputs)

	
	Implementation of algorithm

	The algorithm itself gets written in the _algorithm method and uses variables passed in by the user. The variables which arrive here are simply scalar or arrays, and if the source is an instance of EgadsData, the variables will be converted to the units you specified in the InputUnits of the algorithm metadata.

	
	Integration of the algorithm in EGADS

	Once the algorithm file is ready, the user has to move it in the appropriate directory in the ./egads/algorithms/user directory. Once it has been done, the __init__.py file has to be modified to declare the new algorithm. The following line can be added to the __init__.py file: from the_name_of_the_file import *.

If the algorithm requires a new directory, the user has to create it in the user directory, move the file inside and create a __init__.py file to declare the new directory and the algoritm to EGADS. A template can be found in ./egads/algorithms/user/file_templates/init_template.py and is shown below:

"""
EGADS new algorithms. See EGADS Algorithm Documentation for more info.
"""

__author__ = "ohenry"
__date__ = "$Date:: 2017-01-27 10:52#$"
__version__ = "$Revision:: 1 $"

import logging
try:
 from the_name_of_my_new_algorithm_file import *
 logging.info('egads [corrections] algorithms have been loaded')
except Exception:
 logging.error('an error occured during the loading of a [corrections] algorithm')

Documentation creation

Within the EGADS structure, each algorithm has accompanying documentation in the EGADS Algorithm Handbook. These descriptions are contained in LaTeX files, organized in a structure similar to the toolbox itself, with one algorithm per file. These files can be found in the Documentation/EGADS Algorithm Handbook directory in the EGADS package downloaded from GitHub repository: https://github.com/eufarn7sp/egads.

A template is provided to guide creation of the documentation files. This can be found at Documentation/EGADS Algorithm Handbook/algorithms/algorithm_template.tex. The template is divided into 8 sections, enclosed in curly braces. These sections are explained below:

	
	Algorithm name

	Simply the name of the Python file where the algorithm can be found.

	
	Algorithm summary

	This is a short description of what the algorithm is designed to calculate, and should contain any usage caveats, constraints or limitations.

	
	Category

	The name of the algorithm category (e.g. Thermodynamics, Microphysics, Radiation, Turbulence, etc).

	
	Inputs

	At the minimum, this section should contain a table containing the symbol, data type (vector or coefficient), full name and units of the input parameters. An example of the expected table layout is given in the template.

	
	Outputs

	This section describes the parameters output from the algorithm, using the same fields as the input table (symbol, data type, full name and units). An example of the expected table layout is given in the template.

	
	Formula

	The mathematical formula for the algorithm is given in this section, if possible, along with a description of the techniques employed by the algorithm.

	
	Author

	Any information about the algorithm author (e.g. name, institution, etc) should be given here.

	
	References

	The references section should contain citations to publications which describe the algorithm.

In addition to these sections, the index and algdesc fields at the top of the file need to be filled in. The value of the index field should be the same as the algorithm name. The algdesc field should be the full English name of the algorithm.

Note

Any “_” character in plain text in LaTeX needs to be offset by a “". Thus if the algorithm name is temp_static_cnrm, in LaTex, it should be input as temp_static_cnrm.

Example

An example algorithm is shown below with all fields completed.

%% $Date: 2012-02-17 18:01:08 +0100 (Fri, 17 Feb 2012) $
%% $Revision: 129 $
\index{temp_static_cnrm}
\algdesc{Static Temperature}
{ %%%%%% Algorithm name %%%%%%
temp_static_cnrm
}
{ %%%%%% Algorithm summary %%%%%%
Calculates static temperature of the air from total temperature.
This method applies to probe types such as the Rosemount.
}
{ %%%%%% Category %%%%%%
Thermodynamics
}
{ %%%%%% Inputs %%%%%%
T_t &	Vector & Measured total temperature [K] \\
${\Delta}P$ & Vector & Dynamic pressure [hPa] \\
P_s & Vector & Static pressure [hPa] \\
r_f & Coeff. & Probe recovery coefficient \\
R_a/c_{pa} & Coeff. & Gas constant of air divided by specific heat of air
at constant pressure
}
{ %%%%%% Outputs %%%%%%
T_s & Vector & Static temperature [K]
}
{ %%%%%% Formula %%%%%%
\begin{displaymath}
 T_s = \frac{T_t}{1+r_f \left(\left(1+\frac{\Delta P}{P_s}\right)^{R_a/c_{pa}}
 -1\right)} \nonumber
\end{displaymath}
}
{ %%%%%% Author %%%%%%
CNRM/GMEI/TRAMM
}
{ %%%%%% References %%%%%%
}

EGADS API

Core Classes

Metadata Classes

File Classes

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to EGADS’s documentation!

 		
 Introduction

 		
 Installation

 		
 Prerequisites

 		
 Optional Packages

 		
 Installation

 		
 Testing

 		
 Options

 		
 Log

 		
 Update

 		
 Tutorial

 		
 Exploring EGADS

 		
 Simple operations with EGADS

 		
 The EgadsData class

 		
 Creating EgadsData instances

 		
 Metadata

 		
 Working with units

 		
 Working with raw text files

 		
 Opening

 		
 File Manipulation

 		
 Reading Data

 		
 Writing Data

 		
 Closing

 		
 Tutorial

 		
 Working with CSV files

 		
 Opening

 		
 File Manipulation

 		
 Reading Data

 		
 Writing Data

 		
 Closing

 		
 Tutorial

 		
 Working with NetCDF files

 		
 Opening

 		
 Getting info

 		
 Reading data

 		
 Writing data

 		
 Conversion from NetCDF to NASA/Ames file format

 		
 Other operations

 		
 Closing

 		
 Tutorial

 		
 Working with NASA Ames files

 		
 Opening

 		
 Getting info

 		
 Reading data

 		
 Writing data

 		
 Saving a file

 		
 Conversion from NASA/Ames file format to NetCDF

 		
 Other operations

 		
 Closing

 		
 Tutorial

 		
 Converting between file formats

 		
 Working with algorithms

 		
 Getting algorithm information

 		
 Calling algorithms

 		
 Scripting

 		
 Scripting Hints

 		
 Using the GUI

 		
 Algorithm Development

 		
 Introduction

 		
 Python module creation

 		
 Documentation creation

 		
 Example

 		
 EGADS API

 		
 Core Classes

 		
 Metadata Classes

 		
 File Classes

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/file.png

_static/minus.png

_static/eufar_new_logo_white_bkgrd.png
EUFl

European Facility
for Airborne Research

_static/plus.png

_static/ajax-loader.gif

_static/comment-bright.png

