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1. Deducing Types


Item 1: Understand template type deduction

Key idea:


If the function template looks like this:

template <typename T>
void f(ParamType param);





then two types are deduced: one for T and one for ParamType.  These types
are often different, because ParamType can contain adornments,
e.g. const or reference qualifiers.





01-pinch_of_pseudocode.cpp

template <typename T>
void f(const T& param) {}  // ParamType is const T&

int main() {
  int x = 0;
  f(x);  // call f with an int
}








Case 1: ParamType is a Reference or Pointer, but not a Universal Reference

Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the simplest case when ParamType is a reference type or a pointer
type, but not a universal reference, type deduction works like this:


	If expr’s type is a reference, ignore the reference part.


	Then pattern-match expr’s type against ParamType to determine T.








02-case1_non_const.cpp

template <typename T>
void f(T& param) {}  // param is a reference

int main() {
  int x = 27;         // x is an int
  const int cx = x;   // cx is a const int
  const int& rx = x;  // rx is a reference to x as a const int

  f(x);  // T is int, param's type is int&

  f(cx);  // T is const int,
          // param's type is const int&

  f(rx);  // T is const int,
          // param's type is const int&
}







Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:


	If expr’s type is a reference, ignore the reference part.


	Then pattern-match expr’s type against ParamType to determine T.




If the type of f’s parameter is changed from T& to const T&, the constness
of cx and rx continues to be respected, but because we’re now assuming that
param is a reference-to-const, there’s no longer a need for const to be
deduced as part of T.





03-case1_const.cpp

template <typename T>
void f(const T& param) {}  // param is now a ref-to-const

int main() {
  int x = 27;         // as before
  const int cx = x;   // as before
  const int& rx = x;  // as before

  f(x);  // T is int, param's type is const int&

  f(cx);  // T is int, param's type is const int&

  f(rx);  // T is int, param's type is const int&
}







Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:


	If expr’s type is a reference, ignore the reference part.


	Pattern-match expr’s type against ParamType to determine T.




If param were a pointer (or a pointer to const) instead of a reference,
things would work essentially the same way.





04-case1_pointer.cpp

template <typename T>
void f(T* param) {}  // param is now a pointer

int main() {
  int x = 27;          // as before
  const int* px = &x;  // px is a ptr to x as a const int

  f(&x);  // T is int, param's type is int*

  f(px);  // T is const int,
          // param's type is const int*
}










Case 2: ParamType is a Universal Reference

Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the case when ParamType is a universal reference
type, type deduction works like this:


	If expr is an lvalue, both T and ParamType are deduced to be lvalue
references


	If expr is an rvalue, the usual type deduction rules apply.








05-case2_uref.cpp

template <typename T>
void f(T&& param) {}  // param is now a universal reference

int main() {
  int x = 27;         // as before
  const int cx = x;   // as before
  const int& rx = x;  // as before

  f(x);  // x is lvalue, so T is int&,
         // param's type is also int&

  f(cx);  // cx is lvalue, so T is const int&,
          // param's type is also const int&

  f(rx);  // rx is lvalue, so T is const int&,
          // param's type is also const int&

  f(27);  // 27 is rvalue, so T is int,
          // param's type is therefore int&&
}










Case 3: ParamType is Neither a Pointer nor a Reference

Key idea:


If we’re dealing with pass-by-value

template <typename T>
void f(T param);        // param is now passed by value





That means that param will be a copy of whatever is passed in - a
completely new object.  The fact that param will be a new object motivates
the rules that govern how T is deduced from expr:


	As before, if expr’s type is a reference, ignore the reference part.


	If, after ignoring expr’s reference-ness, expr is const, ignore that,
too.  If it’s volatile, also ignore that. (volatile objects are
uncommon. They’re generally used only for implementing device drivers.)








06-case3_pass_by_value.cpp

template <typename T>
void f(T param) {}  // param is now passed by value

int main() {
  int x = 27;         // as before
  const int cx = x;   // as before
  const int& rx = x;  // as before
  f(x);               // T's and param's types are both int

  f(cx);  // T's and param's types are again both int

  f(rx);  // T's and param's types are still both int

  const char* const ptr =  // ptr is const pointer to const object
      "Fun with pointers";

  f(ptr);  // pass arg of type const char * const
}










Array Arguments

Key idea:


In many contexts, an array decays into a pointer to its first element.





07-array-to-pointer_decay_rule.cpp

int main() {
  const char name[] = "J. P. Briggs";  // name's type is
                                       // const char[13]

  const char* ptrToName = name;  // array decays to pointer
}







Key idea:


Because array parameter declarations are treated as if they were pointer
parameters, the type of an array that’s passed to a template function by
value is deduced to be a pointer type.





08-arrays_by_value.cpp

template <typename T>
void f(T param) {}  // template with by-value parameter

int main() {
  const char name[] = "J. P. Briggs";  // name's type is
                                       // const char[13]

  f(name);  // what types are deduced for T and param?
            // -> name is array, but T deduced as const char*
}







Key idea:


Although functions can’t declare parameters that are truly arrays, they can
declare parameters that are references to arrays.

The type deduced for T is the actual type of the array!  That type includes
the size of the array, so in this example T is deduced to be const
char[13], and the type of f’s parameter (a reference to this array) is
const char (&)[13].





09-arrays_by_reference.cpp

template <typename T>
void f(T& param) {}  // template with by-reference parameter

int main() {
  const char name[] = "J. P. Briggs";  // name's type is
                                       // const char[13]

  f(name);  // pass array to f
}







Key idea:


The ability to declare references to arrays enables creation of a template
to deduce the number of elements that an array contains.





11-deduce_nb_array_elements.cpp

#include <array>
#include <cstddef>

// return size of an array as a compile-time constant. (The
// array parameter has no name, because we care only about
// the number of elements it contains.)
template <typename T, std::size_t N>
constexpr std::size_t arraySize(T (&)[N]) noexcept {
  return N;
}

// keyVals has 7 elements
int keyVals[] = {1, 3, 7, 9, 11, 22, 35};

// so does mappedVals
int mappedVals1[arraySize(keyVals)];

// mappedVals' size is 7
std::array<int, arraySize(keyVals)> mappedVals2;










Function Arguments

Key-idea:


Function types can decay into pointers, too, and everything regarding type
deduction and arrays applies to type deduction for functions and their
decay into function pointers.





10-function-to-pointer_decay_rule.cpp

void someFunc(int, double) {}  // someFunc is a function;
                               // type is void(int, double)

template <typename T>
void f1(T param) {}  // in f1, param passed by value

template <typename T>
void f2(T& param) {}  // in f2, param passed by ref

int main() {
  f1(someFunc);  // param deduced as ptr-to-func;
                 // type is void (*)(int, double)

  f2(someFunc);  // param deduced as ref-to-func;
                 // type is void (&)(int, double)
}








Identical function declarations.





12-array_and_pointer_parameter_equivalence.cpp

void myFunc1(int param[]) {}

void myFunc2(int* param) {}  // same function as above










Things to Remember


	During template type deduction, arguments that are references are treated as
non-references, i.e. their reference-ness is ignored.


	When deducing types for universal reference parameters, lvalue arguments get
special treatment and are deduced as lvalue references. It’s the only situation
in template type deduction where T is deduced to be a reference


	When deducing types for by-value parameters, const or volatile arguments
are treated as non-const and non-volatile.


	During template type deduction, arguments that are array or function names
decay to pointers, unless they’re used to initialize references.









Item 2: Understand auto type deduction

Key idea:


Deducing types for auto is the same as deducing types for templates (with
only one curious exception).





1-auto_type_deduction.cpp

template <typename T>        // conceptual template for
void func_for_x(T param) {}  // deducing x's type

template <typename T>               // conceptual template for
void func_for_cx(const T param) {}  // deducing cx's type

template <typename T>                // conceptual template for
void func_for_rx(const T& param) {}  // deducing rx's type

void someFunc(int, double) {}  // someFunc is a function;
                               // type is void(int, double)

int main() {
  auto x = 27;  // case 3 (x is neither ptr nor reference)

  const auto cx = x;  // case 3 (cx isn't either)

  const auto& rx = x;  // case 1 (rx is a non-universal ref.)

  auto&& uref1 = x;  // x is int and lvalue,
                     // so uref1's type is int&

  auto&& uref2 = cx;  // cx is const int and lvalue
                      // so uref2's type is const int&

  auto&& uref3 = 27;  // 27 is int and rvalue,
                      // so uref3's type is int&&

  func_for_x(27);  // conceptual call: param's
                   // deduced type is x's type

  func_for_cx(x);  // conceptual call: param's
                   // deduced type is cx's type

  func_for_rx(x);  // conceptual call: param's
                   // deduced type is rx's type

  const char name[] =  // name's type is const char[13]
      "R. N. Briggs";

  auto arr1 = name;  // arr1's type is const char*

  auto& arr2 = name;  // arr2's type is
                      // const char (&)[13]

  auto func1 = someFunc;  // func1's type is
                          // void (*)(int, double)

  auto& func2 = someFunc;  // func2's type is
                           // void (&)(int, double)
}







Key idea:


The treatment of braced initializers is the only way in which auto type
deduction and template type deduction differ.





2-auto_deduction_vs_template_deduction.cpp

#include <initializer_list>

template <typename T>  // template with parameter
void f(T param) {}     // declaration equivalent to
                       // x's declaration

template <typename T>
void f2(std::initializer_list<T> initList) {}

int main() {
  {
    int x1 = 27;
    int x2(27);
    int x3 = {27};
    int x4{27};
  }

  {
    auto x1 = 27;    // type is int, value is 27
    auto x2(27);     // ditto
    auto x3 = {27};  // type is std::initializer_list<int>,
                     // value is {27}
    auto x4{27};     // ditto

    // Error! Can't deduce T for std::initializer_list<T>
    // auto x5 = {1, 2, 3.0};
  }

  {
    // x's type is std::initializer_list<int>
    auto x = {11, 23, 9};

    // Error! Can't deduce type for T
    // f({ 11, 23, 9 });

    // T deduced as int, and initList's type is std::initializer_list<int>
    f2({11, 23, 9});
  }
}







Key ideas:



	A function with an auto return type that returns a braced initializer list
won’t compile.


	When auto is used in a parameter type specification in a C++14 lambda
expression, things won’t compile.








3-function_return_type_deduction.cpp

#include <vector>

auto createInitList() {
  // return {1, 2, 3};    // error: can't deduce type
  // for {1, 2, 3}
}

int main() {
  std::vector<int> v;

  auto resetV = [&v](const auto& newValue) { v = newValue; };  // C++14

  // Error! Can't deduce type for { 1, 2, 3 }
  // resetV( {1, 2, 3} );
}








Things to Remember


	auto type deduction is usually the same as template type deduction, but auto
type deduction assumes that a braced initializer represents a
std::initializer_list, and template type deduction doesn’t.


	auto in a function return type or a lambda parameter implies template type
deduction, not auto type deduction.
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Item 1: Understand template type deduction

Key idea:


If the function template looks like this:

template <typename T>
void f(ParamType param);





then two types are deduced: one for T and one for ParamType.  These types
are often different, because ParamType can contain adornments,
e.g. const or reference qualifiers.





01-pinch_of_pseudocode.cpp

template <typename T>
void f(const T& param) {}  // ParamType is const T&

int main() {
  int x = 0;
  f(x);  // call f with an int
}








Case 1: ParamType is a Reference or Pointer, but not a Universal Reference

Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the simplest case when ParamType is a reference type or a pointer
type, but not a universal reference, type deduction works like this:


	If expr’s type is a reference, ignore the reference part.


	Then pattern-match expr’s type against ParamType to determine T.








02-case1_non_const.cpp

template <typename T>
void f(T& param) {}  // param is a reference

int main() {
  int x = 27;         // x is an int
  const int cx = x;   // cx is a const int
  const int& rx = x;  // rx is a reference to x as a const int

  f(x);  // T is int, param's type is int&

  f(cx);  // T is const int,
          // param's type is const int&

  f(rx);  // T is const int,
          // param's type is const int&
}







Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:


	If expr’s type is a reference, ignore the reference part.


	Then pattern-match expr’s type against ParamType to determine T.




If the type of f’s parameter is changed from T& to const T&, the constness
of cx and rx continues to be respected, but because we’re now assuming that
param is a reference-to-const, there’s no longer a need for const to be
deduced as part of T.





03-case1_const.cpp

template <typename T>
void f(const T& param) {}  // param is now a ref-to-const

int main() {
  int x = 27;         // as before
  const int cx = x;   // as before
  const int& rx = x;  // as before

  f(x);  // T is int, param's type is const int&

  f(cx);  // T is int, param's type is const int&

  f(rx);  // T is int, param's type is const int&
}







Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:


	If expr’s type is a reference, ignore the reference part.


	Pattern-match expr’s type against ParamType to determine T.




If param were a pointer (or a pointer to const) instead of a reference,
things would work essentially the same way.





04-case1_pointer.cpp

template <typename T>
void f(T* param) {}  // param is now a pointer

int main() {
  int x = 27;          // as before
  const int* px = &x;  // px is a ptr to x as a const int

  f(&x);  // T is int, param's type is int*

  f(px);  // T is const int,
          // param's type is const int*
}










Case 2: ParamType is a Universal Reference

Key idea:


Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr





then, in the case when ParamType is a universal reference
type, type deduction works like this:


	If expr is an lvalue, both T and ParamType are deduced to be lvalue
references


	If expr is an rvalue, the usual type deduction rules apply.








05-case2_uref.cpp

template <typename T>
void f(T&& param) {}  // param is now a universal reference

int main() {
  int x = 27;         // as before
  const int cx = x;   // as before
  const int& rx = x;  // as before

  f(x);  // x is lvalue, so T is int&,
         // param's type is also int&

  f(cx);  // cx is lvalue, so T is const int&,
          // param's type is also const int&

  f(rx);  // rx is lvalue, so T is const int&,
          // param's type is also const int&

  f(27);  // 27 is rvalue, so T is int,
          // param's type is therefore int&&
}










Case 3: ParamType is Neither a Pointer nor a Reference

Key idea:


If we’re dealing with pass-by-value

template <typename T>
void f(T param);        // param is now passed by value





That means that param will be a copy of whatever is passed in - a
completely new object.  The fact that param will be a new object motivates
the rules that govern how T is deduced from expr:


	As before, if expr’s type is a reference, ignore the reference part.


	If, after ignoring expr’s reference-ness, expr is const, ignore that,
too.  If it’s volatile, also ignore that. (volatile objects are
uncommon. They’re generally used only for implementing device drivers.)








06-case3_pass_by_value.cpp

template <typename T>
void f(T param) {}  // param is now passed by value

int main() {
  int x = 27;         // as before
  const int cx = x;   // as before
  const int& rx = x;  // as before
  f(x);               // T's and param's types are both int

  f(cx);  // T's and param's types are again both int

  f(rx);  // T's and param's types are still both int

  const char* const ptr =  // ptr is const pointer to const object
      "Fun with pointers";

  f(ptr);  // pass arg of type const char * const
}










Array Arguments

Key idea:


In many contexts, an array decays into a pointer to its first element.





07-array-to-pointer_decay_rule.cpp

int main() {
  const char name[] = "J. P. Briggs";  // name's type is
                                       // const char[13]

  const char* ptrToName = name;  // array decays to pointer
}







Key idea:


Because array parameter declarations are treated as if they were pointer
parameters, the type of an array that’s passed to a template function by
value is deduced to be a pointer type.





08-arrays_by_value.cpp

template <typename T>
void f(T param) {}  // template with by-value parameter

int main() {
  const char name[] = "J. P. Briggs";  // name's type is
                                       // const char[13]

  f(name);  // what types are deduced for T and param?
            // -> name is array, but T deduced as const char*
}







Key idea:


Although functions can’t declare parameters that are truly arrays, they can
declare parameters that are references to arrays.

The type deduced for T is the actual type of the array!  That type includes
the size of the array, so in this example T is deduced to be const
char[13], and the type of f’s parameter (a reference to this array) is
const char (&)[13].





09-arrays_by_reference.cpp

template <typename T>
void f(T& param) {}  // template with by-reference parameter

int main() {
  const char name[] = "J. P. Briggs";  // name's type is
                                       // const char[13]

  f(name);  // pass array to f
}







Key idea:


The ability to declare references to arrays enables creation of a template
to deduce the number of elements that an array contains.





11-deduce_nb_array_elements.cpp

#include <array>
#include <cstddef>

// return size of an array as a compile-time constant. (The
// array parameter has no name, because we care only about
// the number of elements it contains.)
template <typename T, std::size_t N>
constexpr std::size_t arraySize(T (&)[N]) noexcept {
  return N;
}

// keyVals has 7 elements
int keyVals[] = {1, 3, 7, 9, 11, 22, 35};

// so does mappedVals
int mappedVals1[arraySize(keyVals)];

// mappedVals' size is 7
std::array<int, arraySize(keyVals)> mappedVals2;










Function Arguments

Key-idea:


Function types can decay into pointers, too, and everything regarding type
deduction and arrays applies to type deduction for functions and their
decay into function pointers.





10-function-to-pointer_decay_rule.cpp

void someFunc(int, double) {}  // someFunc is a function;
                               // type is void(int, double)

template <typename T>
void f1(T param) {}  // in f1, param passed by value

template <typename T>
void f2(T& param) {}  // in f2, param passed by ref

int main() {
  f1(someFunc);  // param deduced as ptr-to-func;
                 // type is void (*)(int, double)

  f2(someFunc);  // param deduced as ref-to-func;
                 // type is void (&)(int, double)
}








Identical function declarations.





12-array_and_pointer_parameter_equivalence.cpp

void myFunc1(int param[]) {}

void myFunc2(int* param) {}  // same function as above










Things to Remember


	During template type deduction, arguments that are references are treated as
non-references, i.e. their reference-ness is ignored.


	When deducing types for universal reference parameters, lvalue arguments get
special treatment and are deduced as lvalue references. It’s the only situation
in template type deduction where T is deduced to be a reference


	When deducing types for by-value parameters, const or volatile arguments
are treated as non-const and non-volatile.


	During template type deduction, arguments that are array or function names
decay to pointers, unless they’re used to initialize references.










          

      

      

    

  

    
      
          
            
  
Item 2: Understand auto type deduction

Key idea:


Deducing types for auto is the same as deducing types for templates (with
only one curious exception).





1-auto_type_deduction.cpp

template <typename T>        // conceptual template for
void func_for_x(T param) {}  // deducing x's type

template <typename T>               // conceptual template for
void func_for_cx(const T param) {}  // deducing cx's type

template <typename T>                // conceptual template for
void func_for_rx(const T& param) {}  // deducing rx's type

void someFunc(int, double) {}  // someFunc is a function;
                               // type is void(int, double)

int main() {
  auto x = 27;  // case 3 (x is neither ptr nor reference)

  const auto cx = x;  // case 3 (cx isn't either)

  const auto& rx = x;  // case 1 (rx is a non-universal ref.)

  auto&& uref1 = x;  // x is int and lvalue,
                     // so uref1's type is int&

  auto&& uref2 = cx;  // cx is const int and lvalue
                      // so uref2's type is const int&

  auto&& uref3 = 27;  // 27 is int and rvalue,
                      // so uref3's type is int&&

  func_for_x(27);  // conceptual call: param's
                   // deduced type is x's type

  func_for_cx(x);  // conceptual call: param's
                   // deduced type is cx's type

  func_for_rx(x);  // conceptual call: param's
                   // deduced type is rx's type

  const char name[] =  // name's type is const char[13]
      "R. N. Briggs";

  auto arr1 = name;  // arr1's type is const char*

  auto& arr2 = name;  // arr2's type is
                      // const char (&)[13]

  auto func1 = someFunc;  // func1's type is
                          // void (*)(int, double)

  auto& func2 = someFunc;  // func2's type is
                           // void (&)(int, double)
}







Key idea:


The treatment of braced initializers is the only way in which auto type
deduction and template type deduction differ.





2-auto_deduction_vs_template_deduction.cpp

#include <initializer_list>

template <typename T>  // template with parameter
void f(T param) {}     // declaration equivalent to
                       // x's declaration

template <typename T>
void f2(std::initializer_list<T> initList) {}

int main() {
  {
    int x1 = 27;
    int x2(27);
    int x3 = {27};
    int x4{27};
  }

  {
    auto x1 = 27;    // type is int, value is 27
    auto x2(27);     // ditto
    auto x3 = {27};  // type is std::initializer_list<int>,
                     // value is {27}
    auto x4{27};     // ditto

    // Error! Can't deduce T for std::initializer_list<T>
    // auto x5 = {1, 2, 3.0};
  }

  {
    // x's type is std::initializer_list<int>
    auto x = {11, 23, 9};

    // Error! Can't deduce type for T
    // f({ 11, 23, 9 });

    // T deduced as int, and initList's type is std::initializer_list<int>
    f2({11, 23, 9});
  }
}







Key ideas:



	A function with an auto return type that returns a braced initializer list
won’t compile.


	When auto is used in a parameter type specification in a C++14 lambda
expression, things won’t compile.








3-function_return_type_deduction.cpp

#include <vector>

auto createInitList() {
  // return {1, 2, 3};    // error: can't deduce type
  // for {1, 2, 3}
}

int main() {
  std::vector<int> v;

  auto resetV = [&v](const auto& newValue) { v = newValue; };  // C++14

  // Error! Can't deduce type for { 1, 2, 3 }
  // resetV( {1, 2, 3} );
}








Things to Remember


	auto type deduction is usually the same as template type deduction, but auto
type deduction assumes that a braced initializer represents a
std::initializer_list, and template type deduction doesn’t.


	auto in a function return type or a lambda parameter implies template type
deduction, not auto type deduction.
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