

Effective Modern C++

Contents:

	1. Deducing Types
	Item 1: Understand template type deduction
	Case 1: ParamType is a Reference or Pointer, but not a Universal Reference

	Case 2: ParamType is a Universal Reference

	Case 3: ParamType is Neither a Pointer nor a Reference

	Array Arguments

	Function Arguments

	Things to Remember

	Item 2: Understand auto type deduction
	Things to Remember

	2. auto

	3. Moving to Modern C++

	4. Smart Pointers

	5. Rvalue References, Move Semantics, and Perfect Forwarding

	6. Lambda Expressions

	7. The Concurrency API

	8. Tweaks

Indices and tables

	Index

	Module Index

	Search Page

1. Deducing Types

Item 1: Understand template type deduction

Key idea:

If the function template looks like this:

template <typename T>
void f(ParamType param);

then two types are deduced: one for T and one for ParamType. These types
are often different, because ParamType can contain adornments,
e.g. const or reference qualifiers.

01-pinch_of_pseudocode.cpp

template <typename T>
void f(const T& param) {} // ParamType is const T&

int main() {
 int x = 0;
 f(x); // call f with an int
}

Case 1: ParamType is a Reference or Pointer, but not a Universal Reference

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the simplest case when ParamType is a reference type or a pointer
type, but not a universal reference, type deduction works like this:

	If expr’s type is a reference, ignore the reference part.

	Then pattern-match expr’s type against ParamType to determine T.

02-case1_non_const.cpp

template <typename T>
void f(T& param) {} // param is a reference

int main() {
 int x = 27; // x is an int
 const int cx = x; // cx is a const int
 const int& rx = x; // rx is a reference to x as a const int

 f(x); // T is int, param's type is int&

 f(cx); // T is const int,
 // param's type is const int&

 f(rx); // T is const int,
 // param's type is const int&
}

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:

	If expr’s type is a reference, ignore the reference part.

	Then pattern-match expr’s type against ParamType to determine T.

If the type of f’s parameter is changed from T& to const T&, the constness
of cx and rx continues to be respected, but because we’re now assuming that
param is a reference-to-const, there’s no longer a need for const to be
deduced as part of T.

03-case1_const.cpp

template <typename T>
void f(const T& param) {} // param is now a ref-to-const

int main() {
 int x = 27; // as before
 const int cx = x; // as before
 const int& rx = x; // as before

 f(x); // T is int, param's type is const int&

 f(cx); // T is int, param's type is const int&

 f(rx); // T is int, param's type is const int&
}

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:

	If expr’s type is a reference, ignore the reference part.

	Pattern-match expr’s type against ParamType to determine T.

If param were a pointer (or a pointer to const) instead of a reference,
things would work essentially the same way.

04-case1_pointer.cpp

template <typename T>
void f(T* param) {} // param is now a pointer

int main() {
 int x = 27; // as before
 const int* px = &x; // px is a ptr to x as a const int

 f(&x); // T is int, param's type is int*

 f(px); // T is const int,
 // param's type is const int*
}

Case 2: ParamType is a Universal Reference

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the case when ParamType is a universal reference
type, type deduction works like this:

	If expr is an lvalue, both T and ParamType are deduced to be lvalue
references

	If expr is an rvalue, the usual type deduction rules apply.

05-case2_uref.cpp

template <typename T>
void f(T&& param) {} // param is now a universal reference

int main() {
 int x = 27; // as before
 const int cx = x; // as before
 const int& rx = x; // as before

 f(x); // x is lvalue, so T is int&,
 // param's type is also int&

 f(cx); // cx is lvalue, so T is const int&,
 // param's type is also const int&

 f(rx); // rx is lvalue, so T is const int&,
 // param's type is also const int&

 f(27); // 27 is rvalue, so T is int,
 // param's type is therefore int&&
}

Case 3: ParamType is Neither a Pointer nor a Reference

Key idea:

If we’re dealing with pass-by-value

template <typename T>
void f(T param); // param is now passed by value

That means that param will be a copy of whatever is passed in - a
completely new object. The fact that param will be a new object motivates
the rules that govern how T is deduced from expr:

	As before, if expr’s type is a reference, ignore the reference part.

	If, after ignoring expr’s reference-ness, expr is const, ignore that,
too. If it’s volatile, also ignore that. (volatile objects are
uncommon. They’re generally used only for implementing device drivers.)

06-case3_pass_by_value.cpp

template <typename T>
void f(T param) {} // param is now passed by value

int main() {
 int x = 27; // as before
 const int cx = x; // as before
 const int& rx = x; // as before
 f(x); // T's and param's types are both int

 f(cx); // T's and param's types are again both int

 f(rx); // T's and param's types are still both int

 const char* const ptr = // ptr is const pointer to const object
 "Fun with pointers";

 f(ptr); // pass arg of type const char * const
}

Array Arguments

Key idea:

In many contexts, an array decays into a pointer to its first element.

07-array-to-pointer_decay_rule.cpp

int main() {
 const char name[] = "J. P. Briggs"; // name's type is
 // const char[13]

 const char* ptrToName = name; // array decays to pointer
}

Key idea:

Because array parameter declarations are treated as if they were pointer
parameters, the type of an array that’s passed to a template function by
value is deduced to be a pointer type.

08-arrays_by_value.cpp

template <typename T>
void f(T param) {} // template with by-value parameter

int main() {
 const char name[] = "J. P. Briggs"; // name's type is
 // const char[13]

 f(name); // what types are deduced for T and param?
 // -> name is array, but T deduced as const char*
}

Key idea:

Although functions can’t declare parameters that are truly arrays, they can
declare parameters that are references to arrays.

The type deduced for T is the actual type of the array! That type includes
the size of the array, so in this example T is deduced to be const
char[13], and the type of f’s parameter (a reference to this array) is
const char (&)[13].

09-arrays_by_reference.cpp

template <typename T>
void f(T& param) {} // template with by-reference parameter

int main() {
 const char name[] = "J. P. Briggs"; // name's type is
 // const char[13]

 f(name); // pass array to f
}

Key idea:

The ability to declare references to arrays enables creation of a template
to deduce the number of elements that an array contains.

11-deduce_nb_array_elements.cpp

#include <array>
#include <cstddef>

// return size of an array as a compile-time constant. (The
// array parameter has no name, because we care only about
// the number of elements it contains.)
template <typename T, std::size_t N>
constexpr std::size_t arraySize(T (&)[N]) noexcept {
 return N;
}

// keyVals has 7 elements
int keyVals[] = {1, 3, 7, 9, 11, 22, 35};

// so does mappedVals
int mappedVals1[arraySize(keyVals)];

// mappedVals' size is 7
std::array<int, arraySize(keyVals)> mappedVals2;

Function Arguments

Key-idea:

Function types can decay into pointers, too, and everything regarding type
deduction and arrays applies to type deduction for functions and their
decay into function pointers.

10-function-to-pointer_decay_rule.cpp

void someFunc(int, double) {} // someFunc is a function;
 // type is void(int, double)

template <typename T>
void f1(T param) {} // in f1, param passed by value

template <typename T>
void f2(T& param) {} // in f2, param passed by ref

int main() {
 f1(someFunc); // param deduced as ptr-to-func;
 // type is void (*)(int, double)

 f2(someFunc); // param deduced as ref-to-func;
 // type is void (&)(int, double)
}

Identical function declarations.

12-array_and_pointer_parameter_equivalence.cpp

void myFunc1(int param[]) {}

void myFunc2(int* param) {} // same function as above

Things to Remember

	During template type deduction, arguments that are references are treated as
non-references, i.e. their reference-ness is ignored.

	When deducing types for universal reference parameters, lvalue arguments get
special treatment and are deduced as lvalue references. It’s the only situation
in template type deduction where T is deduced to be a reference

	When deducing types for by-value parameters, const or volatile arguments
are treated as non-const and non-volatile.

	During template type deduction, arguments that are array or function names
decay to pointers, unless they’re used to initialize references.

Item 2: Understand auto type deduction

Key idea:

Deducing types for auto is the same as deducing types for templates (with
only one curious exception).

1-auto_type_deduction.cpp

template <typename T> // conceptual template for
void func_for_x(T param) {} // deducing x's type

template <typename T> // conceptual template for
void func_for_cx(const T param) {} // deducing cx's type

template <typename T> // conceptual template for
void func_for_rx(const T& param) {} // deducing rx's type

void someFunc(int, double) {} // someFunc is a function;
 // type is void(int, double)

int main() {
 auto x = 27; // case 3 (x is neither ptr nor reference)

 const auto cx = x; // case 3 (cx isn't either)

 const auto& rx = x; // case 1 (rx is a non-universal ref.)

 auto&& uref1 = x; // x is int and lvalue,
 // so uref1's type is int&

 auto&& uref2 = cx; // cx is const int and lvalue
 // so uref2's type is const int&

 auto&& uref3 = 27; // 27 is int and rvalue,
 // so uref3's type is int&&

 func_for_x(27); // conceptual call: param's
 // deduced type is x's type

 func_for_cx(x); // conceptual call: param's
 // deduced type is cx's type

 func_for_rx(x); // conceptual call: param's
 // deduced type is rx's type

 const char name[] = // name's type is const char[13]
 "R. N. Briggs";

 auto arr1 = name; // arr1's type is const char*

 auto& arr2 = name; // arr2's type is
 // const char (&)[13]

 auto func1 = someFunc; // func1's type is
 // void (*)(int, double)

 auto& func2 = someFunc; // func2's type is
 // void (&)(int, double)
}

Key idea:

The treatment of braced initializers is the only way in which auto type
deduction and template type deduction differ.

2-auto_deduction_vs_template_deduction.cpp

#include <initializer_list>

template <typename T> // template with parameter
void f(T param) {} // declaration equivalent to
 // x's declaration

template <typename T>
void f2(std::initializer_list<T> initList) {}

int main() {
 {
 int x1 = 27;
 int x2(27);
 int x3 = {27};
 int x4{27};
 }

 {
 auto x1 = 27; // type is int, value is 27
 auto x2(27); // ditto
 auto x3 = {27}; // type is std::initializer_list<int>,
 // value is {27}
 auto x4{27}; // ditto

 // Error! Can't deduce T for std::initializer_list<T>
 // auto x5 = {1, 2, 3.0};
 }

 {
 // x's type is std::initializer_list<int>
 auto x = {11, 23, 9};

 // Error! Can't deduce type for T
 // f({ 11, 23, 9 });

 // T deduced as int, and initList's type is std::initializer_list<int>
 f2({11, 23, 9});
 }
}

Key ideas:

	A function with an auto return type that returns a braced initializer list
won’t compile.

	When auto is used in a parameter type specification in a C++14 lambda
expression, things won’t compile.

3-function_return_type_deduction.cpp

#include <vector>

auto createInitList() {
 // return {1, 2, 3}; // error: can't deduce type
 // for {1, 2, 3}
}

int main() {
 std::vector<int> v;

 auto resetV = [&v](const auto& newValue) { v = newValue; }; // C++14

 // Error! Can't deduce type for { 1, 2, 3 }
 // resetV({1, 2, 3});
}

Things to Remember

	auto type deduction is usually the same as template type deduction, but auto
type deduction assumes that a braced initializer represents a
std::initializer_list, and template type deduction doesn’t.

	auto in a function return type or a lambda parameter implies template type
deduction, not auto type deduction.

2. auto

3. Moving to Modern C++

4. Smart Pointers

5. Rvalue References, Move Semantics, and Perfect Forwarding

6. Lambda Expressions

7. The Concurrency API

8. Tweaks

Index

Item 1: Understand template type deduction

Key idea:

If the function template looks like this:

template <typename T>
void f(ParamType param);

then two types are deduced: one for T and one for ParamType. These types
are often different, because ParamType can contain adornments,
e.g. const or reference qualifiers.

01-pinch_of_pseudocode.cpp

template <typename T>
void f(const T& param) {} // ParamType is const T&

int main() {
 int x = 0;
 f(x); // call f with an int
}

Case 1: ParamType is a Reference or Pointer, but not a Universal Reference

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the simplest case when ParamType is a reference type or a pointer
type, but not a universal reference, type deduction works like this:

	If expr’s type is a reference, ignore the reference part.

	Then pattern-match expr’s type against ParamType to determine T.

02-case1_non_const.cpp

template <typename T>
void f(T& param) {} // param is a reference

int main() {
 int x = 27; // x is an int
 const int cx = x; // cx is a const int
 const int& rx = x; // rx is a reference to x as a const int

 f(x); // T is int, param's type is int&

 f(cx); // T is const int,
 // param's type is const int&

 f(rx); // T is const int,
 // param's type is const int&
}

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:

	If expr’s type is a reference, ignore the reference part.

	Then pattern-match expr’s type against ParamType to determine T.

If the type of f’s parameter is changed from T& to const T&, the constness
of cx and rx continues to be respected, but because we’re now assuming that
param is a reference-to-const, there’s no longer a need for const to be
deduced as part of T.

03-case1_const.cpp

template <typename T>
void f(const T& param) {} // param is now a ref-to-const

int main() {
 int x = 27; // as before
 const int cx = x; // as before
 const int& rx = x; // as before

 f(x); // T is int, param's type is const int&

 f(cx); // T is int, param's type is const int&

 f(rx); // T is int, param's type is const int&
}

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the simplest case when ParamType is a pointer type or a reference
type, but not a universal reference, type deduction works like this:

	If expr’s type is a reference, ignore the reference part.

	Pattern-match expr’s type against ParamType to determine T.

If param were a pointer (or a pointer to const) instead of a reference,
things would work essentially the same way.

04-case1_pointer.cpp

template <typename T>
void f(T* param) {} // param is now a pointer

int main() {
 int x = 27; // as before
 const int* px = &x; // px is a ptr to x as a const int

 f(&x); // T is int, param's type is int*

 f(px); // T is const int,
 // param's type is const int*
}

Case 2: ParamType is a Universal Reference

Key idea:

Considering the general form for templates and calls to it:

template <typename T>
void f(ParamType param);

f(expr); // deduce T and ParamType from expr

then, in the case when ParamType is a universal reference
type, type deduction works like this:

	If expr is an lvalue, both T and ParamType are deduced to be lvalue
references

	If expr is an rvalue, the usual type deduction rules apply.

05-case2_uref.cpp

template <typename T>
void f(T&& param) {} // param is now a universal reference

int main() {
 int x = 27; // as before
 const int cx = x; // as before
 const int& rx = x; // as before

 f(x); // x is lvalue, so T is int&,
 // param's type is also int&

 f(cx); // cx is lvalue, so T is const int&,
 // param's type is also const int&

 f(rx); // rx is lvalue, so T is const int&,
 // param's type is also const int&

 f(27); // 27 is rvalue, so T is int,
 // param's type is therefore int&&
}

Case 3: ParamType is Neither a Pointer nor a Reference

Key idea:

If we’re dealing with pass-by-value

template <typename T>
void f(T param); // param is now passed by value

That means that param will be a copy of whatever is passed in - a
completely new object. The fact that param will be a new object motivates
the rules that govern how T is deduced from expr:

	As before, if expr’s type is a reference, ignore the reference part.

	If, after ignoring expr’s reference-ness, expr is const, ignore that,
too. If it’s volatile, also ignore that. (volatile objects are
uncommon. They’re generally used only for implementing device drivers.)

06-case3_pass_by_value.cpp

template <typename T>
void f(T param) {} // param is now passed by value

int main() {
 int x = 27; // as before
 const int cx = x; // as before
 const int& rx = x; // as before
 f(x); // T's and param's types are both int

 f(cx); // T's and param's types are again both int

 f(rx); // T's and param's types are still both int

 const char* const ptr = // ptr is const pointer to const object
 "Fun with pointers";

 f(ptr); // pass arg of type const char * const
}

Array Arguments

Key idea:

In many contexts, an array decays into a pointer to its first element.

07-array-to-pointer_decay_rule.cpp

int main() {
 const char name[] = "J. P. Briggs"; // name's type is
 // const char[13]

 const char* ptrToName = name; // array decays to pointer
}

Key idea:

Because array parameter declarations are treated as if they were pointer
parameters, the type of an array that’s passed to a template function by
value is deduced to be a pointer type.

08-arrays_by_value.cpp

template <typename T>
void f(T param) {} // template with by-value parameter

int main() {
 const char name[] = "J. P. Briggs"; // name's type is
 // const char[13]

 f(name); // what types are deduced for T and param?
 // -> name is array, but T deduced as const char*
}

Key idea:

Although functions can’t declare parameters that are truly arrays, they can
declare parameters that are references to arrays.

The type deduced for T is the actual type of the array! That type includes
the size of the array, so in this example T is deduced to be const
char[13], and the type of f’s parameter (a reference to this array) is
const char (&)[13].

09-arrays_by_reference.cpp

template <typename T>
void f(T& param) {} // template with by-reference parameter

int main() {
 const char name[] = "J. P. Briggs"; // name's type is
 // const char[13]

 f(name); // pass array to f
}

Key idea:

The ability to declare references to arrays enables creation of a template
to deduce the number of elements that an array contains.

11-deduce_nb_array_elements.cpp

#include <array>
#include <cstddef>

// return size of an array as a compile-time constant. (The
// array parameter has no name, because we care only about
// the number of elements it contains.)
template <typename T, std::size_t N>
constexpr std::size_t arraySize(T (&)[N]) noexcept {
 return N;
}

// keyVals has 7 elements
int keyVals[] = {1, 3, 7, 9, 11, 22, 35};

// so does mappedVals
int mappedVals1[arraySize(keyVals)];

// mappedVals' size is 7
std::array<int, arraySize(keyVals)> mappedVals2;

Function Arguments

Key-idea:

Function types can decay into pointers, too, and everything regarding type
deduction and arrays applies to type deduction for functions and their
decay into function pointers.

10-function-to-pointer_decay_rule.cpp

void someFunc(int, double) {} // someFunc is a function;
 // type is void(int, double)

template <typename T>
void f1(T param) {} // in f1, param passed by value

template <typename T>
void f2(T& param) {} // in f2, param passed by ref

int main() {
 f1(someFunc); // param deduced as ptr-to-func;
 // type is void (*)(int, double)

 f2(someFunc); // param deduced as ref-to-func;
 // type is void (&)(int, double)
}

Identical function declarations.

12-array_and_pointer_parameter_equivalence.cpp

void myFunc1(int param[]) {}

void myFunc2(int* param) {} // same function as above

Things to Remember

	During template type deduction, arguments that are references are treated as
non-references, i.e. their reference-ness is ignored.

	When deducing types for universal reference parameters, lvalue arguments get
special treatment and are deduced as lvalue references. It’s the only situation
in template type deduction where T is deduced to be a reference

	When deducing types for by-value parameters, const or volatile arguments
are treated as non-const and non-volatile.

	During template type deduction, arguments that are array or function names
decay to pointers, unless they’re used to initialize references.

Item 2: Understand auto type deduction

Key idea:

Deducing types for auto is the same as deducing types for templates (with
only one curious exception).

1-auto_type_deduction.cpp

template <typename T> // conceptual template for
void func_for_x(T param) {} // deducing x's type

template <typename T> // conceptual template for
void func_for_cx(const T param) {} // deducing cx's type

template <typename T> // conceptual template for
void func_for_rx(const T& param) {} // deducing rx's type

void someFunc(int, double) {} // someFunc is a function;
 // type is void(int, double)

int main() {
 auto x = 27; // case 3 (x is neither ptr nor reference)

 const auto cx = x; // case 3 (cx isn't either)

 const auto& rx = x; // case 1 (rx is a non-universal ref.)

 auto&& uref1 = x; // x is int and lvalue,
 // so uref1's type is int&

 auto&& uref2 = cx; // cx is const int and lvalue
 // so uref2's type is const int&

 auto&& uref3 = 27; // 27 is int and rvalue,
 // so uref3's type is int&&

 func_for_x(27); // conceptual call: param's
 // deduced type is x's type

 func_for_cx(x); // conceptual call: param's
 // deduced type is cx's type

 func_for_rx(x); // conceptual call: param's
 // deduced type is rx's type

 const char name[] = // name's type is const char[13]
 "R. N. Briggs";

 auto arr1 = name; // arr1's type is const char*

 auto& arr2 = name; // arr2's type is
 // const char (&)[13]

 auto func1 = someFunc; // func1's type is
 // void (*)(int, double)

 auto& func2 = someFunc; // func2's type is
 // void (&)(int, double)
}

Key idea:

The treatment of braced initializers is the only way in which auto type
deduction and template type deduction differ.

2-auto_deduction_vs_template_deduction.cpp

#include <initializer_list>

template <typename T> // template with parameter
void f(T param) {} // declaration equivalent to
 // x's declaration

template <typename T>
void f2(std::initializer_list<T> initList) {}

int main() {
 {
 int x1 = 27;
 int x2(27);
 int x3 = {27};
 int x4{27};
 }

 {
 auto x1 = 27; // type is int, value is 27
 auto x2(27); // ditto
 auto x3 = {27}; // type is std::initializer_list<int>,
 // value is {27}
 auto x4{27}; // ditto

 // Error! Can't deduce T for std::initializer_list<T>
 // auto x5 = {1, 2, 3.0};
 }

 {
 // x's type is std::initializer_list<int>
 auto x = {11, 23, 9};

 // Error! Can't deduce type for T
 // f({ 11, 23, 9 });

 // T deduced as int, and initList's type is std::initializer_list<int>
 f2({11, 23, 9});
 }
}

Key ideas:

	A function with an auto return type that returns a braced initializer list
won’t compile.

	When auto is used in a parameter type specification in a C++14 lambda
expression, things won’t compile.

3-function_return_type_deduction.cpp

#include <vector>

auto createInitList() {
 // return {1, 2, 3}; // error: can't deduce type
 // for {1, 2, 3}
}

int main() {
 std::vector<int> v;

 auto resetV = [&v](const auto& newValue) { v = newValue; }; // C++14

 // Error! Can't deduce type for { 1, 2, 3 }
 // resetV({1, 2, 3});
}

Things to Remember

	auto type deduction is usually the same as template type deduction, but auto
type deduction assumes that a braced initializer represents a
std::initializer_list, and template type deduction doesn’t.

	auto in a function return type or a lambda parameter implies template type
deduction, not auto type deduction.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Effective Modern C++

 		
 1. Deducing Types

 		
 Item 1: Understand template type deduction

 		
 Case 1: ParamType is a Reference or Pointer, but not a Universal Reference

 		
 Case 2: ParamType is a Universal Reference

 		
 Case 3: ParamType is Neither a Pointer nor a Reference

 		
 Array Arguments

 		
 Function Arguments

 		
 Things to Remember

 		
 Item 2: Understand auto type deduction

 		
 Things to Remember

 		
 2. auto

 		
 3. Moving to Modern C++

 		
 4. Smart Pointers

 		
 5. Rvalue References, Move Semantics, and Perfect Forwarding

 		
 6. Lambda Expressions

 		
 7. The Concurrency API

 		
 8. Tweaks

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

