

Electrophys Feature Extraction Library

The Electrophys Feature Extract Library (eFEL) allows neuroscientists to
automatically extract eFeatures from time series data recorded from neurons
(both in vitro and in silico). Examples are the action potential width and
amplitude in voltage traces recorded during whole-cell patch clamp experiments.
The user of the library provides a set of traces and selects the eFeatures to be
calculated. The library will then extract the requested eFeatures and return the
values to the user.

The core of the library is written in C++, and a Python wrapper is included.
You can automatically compile and install the library as a Python module.

The source code of the eFEL is located on github:
BlueBrain/eFEL [https://github.com/BlueBrain/eFEL]

	Installation
	Requirements

	Installation using pip

	Installing the C++ standalone library

	Examples
	Quick start

	DEAP optimisation
	Introduction

	Evaluation function

	Setting up the algorithm

	Running the code

	Reading different file formats
	Stimulus information within the file

	Loading NWB files using Neo

	Use of eFEL on the models downloaded from the Neocortical Microcircuit Portal

	Extracting features from SONATA Network simulations

	eFeature descriptions
	Implemented eFeatures
	Spike event features

	Spike shape features

	Subthreshold features

	Python API
	Submodules
	efel.api

	efel.io

	efel.pyfeatures.cppfeature_access

	efel.pyfeatures.isi

	efel.pyfeatures.multitrace

	efel.pyfeatures.pyfeatures

	efel.pyfeatures.validation

	efel.units

	efel.settings

	Changelog
	5.6.20 - 2024-05

	5.6.6 - 2024-04

	5.6.0 - 2024-02

	5.5.5 - 2024-01

	[5.5.4] - 2024-01

	5.5.3 - 2024-01

	5.5.0 - 2024-01
	C++ changes

	5.4.0 - 2024-01
	C++ changes

	Python changes

	Developer’s Guide
	Requirements

	Forking and cloning the git repository

	Makefile

	Adding a new eFeature
	Picking a name

	Creating a branch

	Implementation

	Updating relevant files

	Adding a test

	Add documentation

	Pull request

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements

	Python [https://www.python.org/downloads/]

	Pip [https://pip.pypa.io] (installed by default in newer versions of Python)

	Numpy [http://www.numpy.org] (will be installed automatically by pip)

	The instruction below are written assuming you have access to a command shell on Linux / UNIX / MacOSX / Cygwin

Installation using pip

The easiest way to install eFEL is to use pip [https://pip.pypa.io]:

pip install efel

In case you don’t have administrator access this command might fail with a
permission error. In that case you could install eFEL in your home directory:

pip install efel --user

Or you could use a python virtual environment [https://virtualenv.pypa.io]:

virtualenv pythonenv
. ./pythonenv/bin/activate
pip install git+git://github.com/BlueBrain/eFEL

Installing the C++ standalone library

If your system doesn’t have it, install CMake [http://www.cmake.org/].

Make a new build directory:

mkdir build_cmake

Configure the build, replace YOURINSTALLDIR with the directory in which you want
to install the efel library (e.g. /usr/local):

cd build_cmake
cmake .. -DCMAKE_INSTALL_PREFIX=YOURINSTALLDIR

Run the compilation and installation:

make install

This will have installed a static and shared library as:

YOURINSTALLDIR/lib/libefel.a
YOURINSTALLDIR/lib/libefel.so

Examples

	Quick start

	DEAP optimisation
	Introduction

	Evaluation function

	Setting up the algorithm

	Running the code

	Reading different file formats
	Stimulus information within the file

	Loading NWB files using Neo

	Use of eFEL on the models downloaded from the Neocortical Microcircuit Portal

	Extracting features from SONATA Network simulations

Quick start

First you need to import the module:

import efel

To get a list with all the available eFeature names:

efel.get_feature_names()

The python function to extract eFeatures is get_feature_values(…).
Below is a short example on how to use this function.

The code and example trace are available
here [https://github.com/BlueBrain/eFEL/blob/master/examples/basic/basic_example1.py]:

"""Basic example 1 for eFEL"""

import efel
import numpy

def main():
 """Main"""

 # Use numpy to read the trace data from the txt file
 data = numpy.loadtxt('example_trace1.txt')

 # Time is the first column
 time = data[:, 0]
 # Voltage is the second column
 voltage = data[:, 1]

 # Now we will construct the datastructure that will be passed to eFEL

 # A 'trace' is a dictionary
 trace1 = {}

 # Set the 'T' (=time) key of the trace
 trace1['T'] = time

 # Set the 'V' (=voltage) key of the trace
 trace1['V'] = voltage

 # Set the 'stim_start' (time at which a stimulus starts, in ms)
 # key of the trace
 # Warning: this need to be a list (with one element)
 trace1['stim_start'] = [700]

 # Set the 'stim_end' (time at which a stimulus end) key of the trace
 # Warning: this need to be a list (with one element)
 trace1['stim_end'] = [2700]

 # Multiple traces can be passed to the eFEL at the same time, so the
 # argument should be a list
 traces = [trace1]

 # Now we pass 'traces' to the efel and ask it to calculate the feature
 # values
 traces_results = efel.get_feature_values(traces,
 ['AP_amplitude', 'voltage_base'])

 # The return value is a list of trace_results, every trace_results
 # corresponds to one trace in the 'traces' list above (in same order)
 for trace_results in traces_results:
 # trace_result is a dictionary, with as keys the requested eFeatures
 for feature_name, feature_values in trace_results.items():
 print("Feature %s has the following values: %s" % \
 (feature_name, ', '.join([str(x) for x in feature_values])))

if __name__ == '__main__':
 main()

The output of this example is:

Feature AP_amplitude has the following values: 72.5782441262, 46.3672552618, 41.1546679158, 39.7631750953, 36.1614653031, 37.8489295737
Feature voltage_base has the following values: -75.446665721

This means that the eFEL found 5 action potentials in the voltage trace. The
amplitudes of these APs are the result of the ‘AP_amplitude’ feature.

The voltage before the start of the stimulus is measured by ‘voltage_base’.

Results are in mV.

DEAP optimisation

Contents

	DEAP optimisation

	Introduction

	Evaluation function

	Setting up the algorithm

	Running the code

Introduction

Using the eFEL, pyNeuron and the DEAP optimisation library one can very easily
set up a genetic algorithm to fit parameters of a neuron model.

We propose this setup because it leverages the power of the Python language
to load several software tools in a compact script. The DEAP
(Distributed Evolutionary Algorithms in Python) allows you to easily switch
algorithms. Parallelising your evaluation function over cluster computers
becomes a matter of only adding a couple of lines to your
code [http://deap.readthedocs.org/en/latest/tutorials/basic/part4.html],
thanks to pyScoop [http://pyscoop.org].

In this example we will assume you have installed
eFEL [https://github.com/BlueBrain/eFEL],
pyNeuron [http://www.neuron.yale.edu/neuron/download/compile_linux#otheroptions]
and DEAP [https://github.com/DEAP/deap]

The code of the example below can be downloaded from
here [https://github.com/BlueBrain/eFEL/tree/master/examples/deap]

To keep the example simple, let’s start from a passive single compartmental
model. The parameters to fit will be the conductance and reversal potential
of the leak channel. We will simulate the model for 1000 ms, and at 500 ms
a step current of 1.0 nA is injected until the end of the simulation.

The objective values of the optimisation will be the voltage before the
current injection (i.e. the ‘voltage_base’ feature), and the steady state
voltage during the current injection at the end of the simulation
(‘steady_state_voltage’).

Evaluation function

We now have to use pyNeuron to define the evaluation function to be optimised.
The input arguments are the parameters:

g_pas, e_pas

and the return values:

abs(voltage_base - target_voltage1)
abs(steady_state_voltage - target_voltage2)

This translates into the following file (let’s call it ‘deap_efel_eval1.py’):

import neuron
neuron.h.load_file('stdrun.hoc')

import efel

pylint: disable=W0212

def evaluate(individual, target_voltage1=-80, target_voltage2=-60):
 """
 Evaluate a neuron model with parameters e_pas and g_pas, extracts
 eFeatures from resulting traces and returns a tuple with
 abs(voltage_base-target_voltage1) and
 abs(steady_state_voltage-target_voltage2)
 """

 neuron.h.v_init = target_voltage1

 soma = neuron.h.Section()

 soma.insert('pas')

 soma.g_pas = individual[0]
 soma.e_pas = individual[1]

 clamp = neuron.h.IClamp(0.5, sec=soma)

 stim_start = 500
 stim_end = 1000

 clamp.amp = 1.0
 clamp.delay = stim_start
 clamp.dur = 100000

 voltage = neuron.h.Vector()
 voltage.record(soma(0.5)._ref_v)

 time = neuron.h.Vector()
 time.record(neuron.h._ref_t)

 neuron.h.tstop = stim_end
 neuron.h.run()

 trace = {}
 trace['T'] = time
 trace['V'] = voltage
 trace['stim_start'] = [stim_start]
 trace['stim_end'] = [stim_end]
 traces = [trace]

 features = efel.get_feature_values(traces, ["voltage_base",
 "steady_state_voltage"])
 voltage_base = features[0]["voltage_base"][0]
 steady_state_voltage = features[0]["steady_state_voltage"][0]

 return abs(target_voltage1 - voltage_base), \
 abs(target_voltage2 - steady_state_voltage)

Setting up the algorithm

Now that we have an evaluation function we just have to pass this to the DEAP
optimisation library. DEAP allows you to easily set up a genetic algorithm
to optimise your evaluation function. Let us first import all the necessary
components:

import random
import numpy

import deap
import deap.gp
import deap.benchmarks
from deap import base
from deap import creator
from deap import tools
from deap import algorithms
random.seed(1)

Next we define a number of constants that will be used as settings for DEAP
later:

Population size
POP_SIZE = 100
Number of offspring in every generation
OFFSPRING_SIZE = 100

Number of generations
NGEN = 300

The parent and offspring population size are set the same
MU = OFFSPRING_SIZE
LAMBDA = OFFSPRING_SIZE
Crossover probability
CXPB = 0.7
Mutation probability, should sum to one together with CXPB
MUTPB = 0.3

Eta parameter of cx and mut operators
ETA = 10.0

We have two parameters with the following bounds:

The size of the individual is 2 (parameters g_pas and e_pas)
IND_SIZE = 2

LOWER = [1e-8, -100.0]
UPPER = [1e-4, -20.0]

As evolutionary algorithm we choose
NSGA2 [http://www.tik.ee.ethz.ch/pisa/selectors/nsga2/nsga2_documentation.txt]:

SELECTOR = "NSGA2"

Let’s create the DEAP individual and fitness.
We set the weights of the fitness values to -1.0 so that the fitness function
will be minimised instead of maximised:

creator.create("Fitness", base.Fitness, weights=[-1.0] * 2)

The individual will just be a list (of two parameters):

creator.create("Individual", list, fitness=creator.Fitness)

We want to start with individuals for which the parameters are picked from a
uniform random distribution. Let’s create a function that returns such a
random list based on the bounds and the dimensions of the problem:

def uniform(lower_list, upper_list, dimensions):
 """Fill array """

 if hasattr(lower_list, '__iter__'):
 return [random.uniform(lower, upper) for lower, upper in
 zip(lower_list, upper_list)]
 else:
 return [random.uniform(lower_list, upper_list)
 for _ in range(dimensions)]

DEAP works with the concept of ‘toolboxes’. The user defines genetic
algorithm’s individuals, operators, etc by registering them in a toolbox.

We first create the toolbox:

toolbox = base.Toolbox()

Then we register the ‘uniform’ function we defined above:

toolbox.register("uniformparams", uniform, LOWER, UPPER, IND_SIZE)

The three last parameters of this register call will be passed on to the
‘uniform’ function call

Now we can also register an individual:

toolbox.register(
 "Individual",
 tools.initIterate,
 creator.Individual,
 toolbox.uniformparams)

And a population as list of individuals:

toolbox.register("population", tools.initRepeat, list, toolbox.Individual)

The function to evaluate we defined above. Assuming you saved that files as
‘deap_efel_eval1.py’, we can import it as a module, and register the function:

import deap_efel_eval1
toolbox.register("evaluate", deap_efel_eval1.evaluate)

For the mutation and crossover operator we use builtin operators that are
typically used with NSGA2:

toolbox.register(
 "mate",
 deap.tools.cxSimulatedBinaryBounded,
 eta=ETA,
 low=LOWER,
 up=UPPER)
toolbox.register("mutate", deap.tools.mutPolynomialBounded, eta=ETA,
 low=LOWER, up=UPPER, indpb=0.1)

And then we specify the selector to be used:

toolbox.register(
 "select",
 tools.selNSGA2)

We initialise the population with the size of the offspring:

pop = toolbox.population(n=MU)

And register some statistics we want to print during the run of the algorithm:

first_stats = tools.Statistics(key=lambda ind: ind.fitness.values[0])
second_stats = tools.Statistics(key=lambda ind: ind.fitness.values[1])
stats = tools.MultiStatistics(obj1=first_stats, obj2=second_stats)
stats.register("min", numpy.min, axis=0)

The only thing that is left now is to run the algorithm in ‘main’:

if __name__ == '__main__':
 pop, logbook = algorithms.eaMuPlusLambda(
 pop,
 toolbox,
 MU,
 LAMBDA,
 CXPB,
 MUTPB,
 NGEN,
 stats,
 halloffame=None)

For you convenience the full code is in a code block below. It should be saved
as ‘deap_efel.py’.

Running the code

Assuming that the necessary dependencies are installed correctly the
optimisation can then be run with:

python deap_efel.py

The full code of ‘deap_efel.py’:

import random
import numpy

import deap
import deap.gp
import deap.benchmarks
from deap import base
from deap import creator
from deap import tools
from deap import algorithms

random.seed(1)
POP_SIZE = 100
OFFSPRING_SIZE = 100

NGEN = 300
ALPHA = POP_SIZE
MU = OFFSPRING_SIZE
LAMBDA = OFFSPRING_SIZE
CXPB = 0.7
MUTPB = 0.3
ETA = 10.0

SELECTOR = "NSGA2"

IND_SIZE = 2
LOWER = [1e-8, -100.0]
UPPER = [1e-4, -20.0]

creator.create("Fitness", base.Fitness, weights=[-1.0] * 2)
creator.create("Individual", list, fitness=creator.Fitness)

def uniform(lower_list, upper_list, dimensions):
 """Fill array """

 if hasattr(lower_list, '__iter__'):
 return [random.uniform(lower, upper) for lower, upper in
 zip(lower_list, upper_list)]
 else:
 return [random.uniform(lower_list, upper_list)
 for _ in range(dimensions)]

toolbox = base.Toolbox()
toolbox.register("uniformparams", uniform, LOWER, UPPER, IND_SIZE)
toolbox.register(
 "Individual",
 tools.initIterate,
 creator.Individual,
 toolbox.uniformparams)
toolbox.register("population", tools.initRepeat, list, toolbox.Individual)

import deap_efel_eval1
toolbox.register("evaluate", deap_efel_eval1.evaluate)

toolbox.register(
 "mate",
 deap.tools.cxSimulatedBinaryBounded,
 eta=ETA,
 low=LOWER,
 up=UPPER)
toolbox.register("mutate", deap.tools.mutPolynomialBounded, eta=ETA,
 low=LOWER, up=UPPER, indpb=0.1)

toolbox.register("variate", deap.algorithms.varAnd)

toolbox.register(
 "select",
 tools.selNSGA2)

pop = toolbox.population(n=MU)

first_stats = tools.Statistics(key=lambda ind: ind.fitness.values[0])
second_stats = tools.Statistics(key=lambda ind: ind.fitness.values[1])
stats = tools.MultiStatistics(obj1=first_stats, obj2=second_stats)
stats.register("min", numpy.min, axis=0)

if __name__ == '__main__':
 pop, logbook = algorithms.eaMuPlusLambda(
 pop,
 toolbox,
 MU,
 LAMBDA,
 CXPB,
 MUTPB,
 NGEN,
 stats,
 halloffame=None)

Reading different file formats

Neo is a Python package which provides support for reading a wide range of neurophysiology file
formats, including Spike2, NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon and Tdt.

The function efel.io.load_neo_file() reads data from any of the file formats supported by
Neo and formats it for use in eFEL.

As an example, suppose we have an .abf file containing a single trace. Since eFEL requires
information about the start and end times of the current injection stimulus, we provide these
times as well as the filename:

import efel

data = efel.io.load_neo_file("path/first_file.abf", stim_start=200, stim_end=700)

Since some file formats can contain multiple recording episodes (e.g. trials) and multiple
signals per episode, the function returns traces in a list of lists, like this:

data : [Segment_1, Segment_2, ..., Segment_n]
 with Segment_1 = [Trace_1, Trace_2, ..., Trace_n]

Since our file contains only a single recording episode, our list of traces is:

traces = data[0]

which we pass to eFEL as follows:

features = efel.get_feature_values(traces, ['AP_amplitude', 'voltage_base'])

Stimulus information within the file

Some file formats can store information about the current injection stimulus. In this second
example, the file contains an Epoch object named “stimulation”, so we don’t need to
explicitly specify stim_start and stim_end:

data2 = efel.io.load_neo_file("path/second_file.h5")

Loading NWB files using Neo

This notebook demonstrates how to load electrophysiology data using Neo
for eFEL eFeatures extraction.

import efel

import numpy

%matplotlib notebook
%matplotlib inline
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = 10, 10

We will use the voltage trace recordings obtained from a mouse thalamic
cell classified as a bursting accommodating (bAC) etype. The data is
stored in an NWB (Neurodata Without Borders) file, and we will use the
Python Neo [https://github.com/NeuralEnsemble/python-neo] library to
load it.

test_data = "../../tests/testdata/JY180308_A_1.nwb"
stim_start = 250
stim_end = 600
blocks = efel.io.load_neo_file(test_data, stim_start, stim_end)
traces = blocks[0][0]

Let’s get a trace that includes a burst

trace = traces[5]

time = trace['T']
voltage = trace['V']

plt.rcParams['figure.figsize'] = 10, 10

fig1, ax1 = plt.subplots(1)
ax1.plot(time, voltage)
ax1.set_xlabel('Time (ms)')
ax1.set_ylabel('Membrane voltage (mV)');

[image: _images/load_nwb_7_0.png]
We can now use the eFEL to extract eFeature values from the trace shown
above.

We will use the get_feature_values() function, which accepts a list
of trace and the requested eFeature names as input.

Let’s extract some burst-related features

efel.set_setting("ignore_first_ISI", False) # Don't ignore the first spike
efel.set_setting("strict_burst_factor", 4.0) # The burst detection can be fine-tuned by changing the setting strict_burst_factor. Default value is 2.0.
feature_values = efel.get_feature_values([trace], ['spikes_per_burst', 'strict_burst_number', 'strict_burst_mean_freq', 'peak_time', 'AP_height', 'peak_indices', 'burst_begin_indices', 'burst_end_indices'])[0]
feature_values

{'spikes_per_burst': array([4]),
 'strict_burst_number': array([1]),
 'strict_burst_mean_freq': array([28.96451846]),
 'peak_time': array([330.4, 343.2, 382.7, 468.5]),
 'AP_height': array([11.40000057, 11.71249962, 12.23750019, 12.19999981]),
 'peak_indices': array([3304, 3432, 3827, 4685]),
 'burst_begin_indices': array([0]),
 'burst_end_indices': array([3])}

burst_begin_indices = feature_values['burst_begin_indices'][0]
burst_end_indices = feature_values['burst_end_indices'][0]
peak_times = feature_values['peak_time']
ap_heights = feature_values['AP_height']
burst_mean_freq = feature_values['strict_burst_mean_freq']

time_spike_indices = numpy.where((time > stim_start) & (time < stim_end))
time_spike = time[time_spike_indices]
voltage_spike = voltage[time_spike_indices]

plt.figure(figsize=(10, 6))
plt.plot(time_spike, voltage_spike, label='Voltage Trace')

burst_start = peak_times[burst_begin_indices]
burst_end = peak_times[burst_end_indices]
mean_frequency = burst_mean_freq[0]

plt.axvspan(burst_start, burst_end, color='yellow', alpha=0.3, label='Burst Interval')

for spike_time in peak_times[burst_begin_indices:burst_end_indices+1]:
 plt.axvline(x=spike_time, color='red', linestyle='--', label='Spike' if 'Spike' not in plt.gca().get_legend_handles_labels()[1] else "")

plt.text((burst_start + burst_end) / 2, max(voltage_spike), f'Burst Mean Freq: {mean_frequency:.2f} Hz', horizontalalignment='center', color='black')

plt.legend()
plt.xlabel('Time (ms)')
plt.ylabel('Voltage (mV)')
plt.show()

[image: _images/load_nwb_10_0.png]
We can save the feature values obtained from get_feature_values for
later use. Two functions, save_feature_values_to_json and
save_feature_values_to_csv, are provided for this purpose. They save
the feature values as a JSON file and a CSV file, respectively.

efel.io.save_feature_to_json(feature_values, 'output.json')
efel.io.save_feature_to_csv(feature_values, 'output.csv')

Use of eFEL on the models downloaded from the Neocortical Microcircuit Portal

Requirements: - Python 3.9+, including Pip (https://pip.readthedocs.org)
- A version of Neuron (with Python support) installed on your computer
(for instruction, see https://bbp.epfl.ch/nmc-portal/tools)

Make matplotlib plots show up in the notebook:

%matplotlib inline

Install the eFeature Extraction Library:

!pip install efel
import efel

Get a model package from the website

!curl -o L5_TTPC2.zip https://bbp.epfl.ch/nmc-portal/assets/documents/static/downloads-zip/L5_TTPC2_cADpyr232_1.zip

Unzip the model package:

!unzip L5_TTPC2.zip

Change directory to the model package directory:

import os
os.chdir('L5_TTPC2_cADpyr232_1')

Compile the Neuron mechanisms (if this fails, you might not have
installed Neuron correctly)

!nrnivmodl ./mechanisms

Import the model package in Python, and run it:

import run
run.main(plot_traces=True)

Warning: no DISPLAY environment variable.
--No graphics will be displayed.

Loading constants
Setting temperature to 34.000000 C
Setting simulation time step to 0.025000 ms
 1
 1
 1
Loading cell cADpyr232_L5_TTPC2_8052133265
Attaching stimulus electrodes
Setting up step current clamp: amp=0.593063 nA, delay=700.000000 ms, duration=2000.000000 ms
Setting up hypamp current clamp: amp=-0.286011 nA, delay=0.000000 ms, duration=3000.000000 ms
Attaching recording electrodes
Setting simulation time to 3s for the step currents
Disabling variable timestep integration
Running for 3000.000000 ms
Soma voltage for step 1 saved to: python_recordings/soma_voltage_step1.dat
Loading cell cADpyr232_L5_TTPC2_8052133265
Attaching stimulus electrodes
Setting up step current clamp: amp=0.642485 nA, delay=700.000000 ms, duration=2000.000000 ms
Setting up hypamp current clamp: amp=-0.286011 nA, delay=0.000000 ms, duration=3000.000000 ms
Attaching recording electrodes
Setting simulation time to 3s for the step currents
Disabling variable timestep integration
Running for 3000.000000 ms
Soma voltage for step 2 saved to: python_recordings/soma_voltage_step2.dat
Loading cell cADpyr232_L5_TTPC2_8052133265
Attaching stimulus electrodes
Setting up step current clamp: amp=0.691907 nA, delay=700.000000 ms, duration=2000.000000 ms
Setting up hypamp current clamp: amp=-0.286011 nA, delay=0.000000 ms, duration=3000.000000 ms
Attaching recording electrodes
Setting simulation time to 3s for the step currents
Disabling variable timestep integration
Running for 3000.000000 ms
Soma voltage for step 3 saved to: python_recordings/soma_voltage_step3.dat

[image: _images/L5TTPC2_14_2.png]
[image: _images/L5TTPC2_14_3.png]
[image: _images/L5TTPC2_14_4.png]
Load the output of the model package in numpy array

import numpy
times = []
voltages = []
for step_number in range(1,4):
 data = numpy.loadtxt('python_recordings/soma_voltage_step%d.dat' % step_number)
 times.append(data[:, 0])
 voltages.append(data[:, 1])

Prepare the traces for the eFEL

traces = []
for step_number in range(3):
 trace = {}
 trace['T'] = times[step_number]
 trace['V'] = voltages[step_number]
 trace['stim_start'] = [700]
 trace['stim_end'] = [2700]
 traces.append(trace)

Run the eFEL on the trace

feature_values = efel.get_feature_values(traces, ['mean_frequency', 'adaptation_index2', 'ISI_CV', 'doublet_ISI', 'time_to_first_spike', 'AP_height', 'AHP_depth_abs', 'AHP_depth_abs_slow', 'AHP_slow_time', 'AP_width', 'peak_time', 'AHP_time_from_peak'])

Plot frequencies over steps

import pylab
for step_number in range(3):
 pylab.bar(step_number, feature_values[step_number]['mean_frequency'][0], align='center')
pylab.ylabel('Mean frequency (Hz)')
pylab.xlabel('Step number')
pylab.xticks(range(3), range(1,4))
pylab.show()

[image: _images/L5TTPC2_22_0.png]
Plot AP height and AHP depth

for step_number in range(3):
 time = times[step_number]
 voltage = voltages[step_number]
 peak_times = feature_values[step_number]['peak_time']
 ahp_time = feature_values[step_number]['AHP_time_from_peak']
 ap_heights = feature_values[step_number]['AP_height']
 AHP_depth_abss = feature_values[step_number]['AHP_depth_abs']

 pylab.plot(time,voltage)
 pylab.plot(peak_times, ap_heights, 'o')
 pylab.plot(peak_times+ahp_time, AHP_depth_abss, 'o')
 pylab.xlabel('Time (ms)')
 pylab.ylabel('Vm (mV)')
 pylab.show()

[image: _images/L5TTPC2_24_0.png]
[image: _images/L5TTPC2_24_1.png]
[image: _images/L5TTPC2_24_2.png]

Extracting features from SONATA Network simulations

This notebook shows how to extract features of a group of cells from a
SONATA network, specifically focusing on a small portion of non-barrel
primary somatosensory cortex circuit from juvenile rats, with the help
of BlueCellulLab [https://github.com/BlueBrain/BlueCelluLab/]. For
those interested in conducting a more in-depth analysis, the entire
circuit dataset is accessible on
Zenodo [https://zenodo.org/records/8026353]. For more details about
the simulation and in-depth insights on the circuit, please refer to the
Bluecellulab SONATA Network
example [https://github.com/BlueBrain/BlueCelluLab/blob/main/examples/2-sonata-network/sonata-network.ipynb]
and the related
paper [https://www.biorxiv.org/content/10.1101/2023.05.17.541168v2.abstract],
respectively.

Note: The compiled mechanisms need to be provided before importing
bluecellulab.

!nrnivmodl ./mechanisms

import json
from pathlib import Path

from matplotlib import pyplot as plt

from bluecellulab import CircuitSimulation
import efel

In this example, a small sub-circuit has been extracted from the sscx
circuit [https://zenodo.org/records/8026353]. This sub-circuit
specifically consists of a random selection of cells exhibiting delayed
stuttering (dSTUT) etype.

The simulation_config specifies the types of input stimuli to be applied
to the cells. In this case, we have selected a ‘relative_linear’
stimulus of 70 ms and set the stimulus current at a level equivalent to
100 percent of the cell’s threshold current.

simulation_config = Path("./") / "simulation_config.json"
with open(simulation_config) as f:
 simulation_config_dict = json.load(f)
print(json.dumps(simulation_config_dict, indent=4))

{
 "manifest": {
 "$OUTPUT_DIR": "."
 },
 "run": {
 "tstop": 100.0,
 "dt": 0.025,
 "random_seed": 1
 },
 "conditions": {
 "v_init": -65
 },
 "target_simulator": "NEURON",
 "network": "./O1/circuit_config.json",
 "node_set": "dSTUT_mini",
 "output": {
 "output_dir": "$OUTPUT_DIR/output_sonata",
 "spikes_file": "out.h5",
 "spikes_sort_order": "by_time"
 },
 "inputs": {
 "continuous_linear": {
 "input_type": "current_clamp",
 "module": "relative_linear",
 "delay": 20.0,
 "duration": 70.0,
 "percent_start": 100,
 "node_set": "dSTUT_mini"
 }
 },
 "reports": {
 "soma": {
 "cells": "dSTUT_mini",
 "variable_name": "v",
 "type": "compartment",
 "dt": 1.0,
 "start_time": 0.0,
 "end_time": 20.0,
 "sections": "soma",
 "compartments": "center"
 }
 }
}

We use BlueCellulab for simulating smaller scale circuits, in contrast
to the larger-scale simulations conducted with Neurodamus.

simulation_config = Path("./") / "simulation_config.json"
with open(simulation_config) as f:
 simulation_config_dict = json.load(f)
sim = CircuitSimulation(simulation_config)

from bluepysnap import Simulation as snap_sim
snap_access = snap_sim(simulation_config)
import pandas as pd
from bluepysnap import Simulation as snap_sim
all_nodes = pd.concat([x[1] for x in snap_access.circuit.nodes.get()])
dstut_cells = all_nodes[all_nodes["etype"] == "dSTUT"].index.to_list()

sim.instantiate_gids(dstut_cells, add_stimuli=True)
t_stop = 100.0
sim.run(t_stop)

The plot displays the voltage traces simulated for each cell in our
circuit.

plt.figure(figsize=(18, 12))
for cell_id in sim.cells:
 time = sim.get_time_trace()
 voltage = sim.get_voltage_trace(cell_id)
 plt.plot(time, voltage, label=cell_id)
 plt.xlabel("Time (ms)")
 plt.ylabel("Voltage (mV)")

[image: _images/sonata-network_11_0.png]
Let’s focus on 3 cells for better visualization

sim.cells = dict(list(sim.cells.items())[:3])
plt.figure(figsize=(18, 12))
for cell_id in sim.cells:
 time = sim.get_time_trace()
 voltage = sim.get_voltage_trace(cell_id)
 plt.plot(time, voltage, label=cell_id)
 plt.xlabel("Time (ms)")
 plt.ylabel("Voltage (mV)")
 plt.legend()

[image: _images/sonata-network_13_0.png]
We are now ready to extract features. First, we will build the data
structure for eFEL

traces = []
for cell_id in sim.cells:
 voltage = sim.get_voltage_trace(cell_id)
 trace = {}
 trace['T'] = time
 trace['V'] = voltage
 trace['stim_start'] = [20]
 trace['stim_end'] = [90]
 traces.append(trace)

Next, we choose the specific features of interest

features = ['peak_time', 'AHP_time_from_peak', 'AP_height', 'AHP_depth_abs', 'all_ISI_values']

Finally, we perform the feature extraction

traces_results = efel.get_feature_values(traces, features)

The plot below shows action potential (AP) height and depth of those 3
cells

import pylab
for trace, trace_result, cell_id in zip(traces, traces_results, sim.cells):
 time = trace['T']
 voltage = trace['V']
 peak_times = trace_result['peak_time']
 ahp_time = trace_result['AHP_time_from_peak']
 ap_heights = trace_result['AP_height']
 AHP_depth_abss = trace_result['AHP_depth_abs']

 pylab.figure(figsize=(10, 6))
 pylab.title(cell_id)
 pylab.plot(time,voltage)
 pylab.plot(peak_times, ap_heights, 'o')
 pylab.plot(peak_times+ahp_time, AHP_depth_abss, 'o')
 pylab.xlabel('Time (ms)')
 pylab.ylabel('Vm (mV)')
 pylab.show()

[image: _images/sonata-network_21_0.png]
[image: _images/sonata-network_21_1.png]
[image: _images/sonata-network_21_2.png]
Now, let’s overlay the durations of the inter-spike intervals (ISIs) for
a clearer visualization of the timing between spikes

for trace, trace_result, cell_id in zip(traces, traces_results, sim.cells):
 time = trace['T']
 voltage = trace['V']
 peak_times = trace_result['peak_time']
 ap_heights = trace_result['AP_height']

 all_isi_values = trace_result['all_ISI_values']

 pylab.figure(figsize=(10, 6))
 pylab.title(cell_id)
 pylab.plot(time, voltage, label='Voltage Trace')
 pylab.plot(peak_times, ap_heights, 'o', label='Spike Peaks')

 for i in range(len(peak_times) - 1):
 start_spike_time = peak_times[i]
 end_spike_time = peak_times[i + 1]
 duration = round(all_isi_values[i], 2)

 y_position = max(ap_heights[i], ap_heights[i + 1]) + 1

 # Check if it's the first ISI line to be drawn and add a label, otherwise draw without a label
 if i == 0:
 pylab.plot([start_spike_time, end_spike_time], [y_position, y_position], 'r-', lw=2, label='inter-spike-intervals (ISI)')
 else:
 pylab.plot([start_spike_time, end_spike_time], [y_position, y_position], 'r-', lw=2)

 # Adjust text position to be slightly lower
 midpoint = (start_spike_time + end_spike_time) / 2
 pylab.text(midpoint, y_position - 3, f'{duration} ms', verticalalignment='bottom', horizontalalignment='center', color='red')

 pylab.xlabel('Time (ms)')
 pylab.ylabel('Vm (mV)')
 pylab.legend(loc='lower right')
 pylab.show()

[image: _images/sonata-network_23_0.png]
[image: _images/sonata-network_23_1.png]
[image: _images/sonata-network_23_2.png]

eFeature descriptions

A pdf document describing the eFeatures is available
here [http://bluebrain.github.io/eFEL/efeature-documentation.pdf].

Time, voltage and current (if given) are interpolated using interp_step setting (default interp_step = 0.1 ms) before efeatures are extracted from them.
Since, they are technically features in eFEL, you can retrieve the interpolated time, voltage and current (if given), like any other feature.

Implemented eFeatures

Spike event features

[image: _images/inv_ISI.png]

peak_time

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The times of the maxima of the peaks

	Required features: peak_indices

	Units: ms

	Pseudocode:

peak_time = time[peak_indices]

time_to_first_spike

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Time from the start of the stimulus to the maximum of the first peak

	Required features: peak_time

	Units: ms

	Pseudocode:

time_to_first_spike = peaktime[0] - stimstart

time_to_last_spike

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Time from stimulus start to last spike

	Required features: peak_time (ms), stimstart (ms)

	Units: ms

	Pseudocode:

if len(peak_time) > 0:
 time_to_last_spike = peak_time[-1] - stimstart
else:
 time_to_last_spike = 0

time_to_second_spike

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Time from the start of the stimulus to the maximum of the second peak

	Required features: peak_time

	Units: ms

	Pseudocode:

time_to_second_spike = peaktime[1] - stimstart

inv_time_to_first_spike

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : 1.0 over time to first spike (times 1000 to convert it to Hz); returns 0 when no spike

	Required features: time_to_first_spike

	Units: Hz

	Pseudocode:

if len(time_to_first_spike) > 0:
 inv_time_to_first_spike = 1000.0 / time_to_first_spike[0]
else:
 inv_time_to_first_spike = 0

ISI_values

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The interspike intervals (i.e. time intervals) between adjacent peaks.

	Required features: peak_time (ms)

	Units: ms

	Pseudocode:

isi_values = numpy.diff(peak_time)[1:]

all_ISI_values

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The interspike intervals, i.e., the time intervals between adjacent peaks.

	Required features: peak_time (ms)

	Units: ms

	Pseudocode:

all_isi_values_vec = numpy.diff(peak_time)

inv_ISI_values

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : Computes all inverse spike interval values.

	Required features: peak_time (ms)

	Units: Hz

	Pseudocode:

all_isi_values_vec = numpy.diff(peak_time)
inv_isi_values = 1000.0 / all_isi_values_vec

inv_first_ISI, inv_second_ISI, inv_third_ISI, inv_fourth_ISI, inv_fifth_ISI, inv_last_ISI

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : 1.0 over first/second/third/fourth/fith/last ISI; returns 0 when no ISI

	Required features: peak_time (ms)

	Units: Hz

	Pseudocode:

all_isi_values_vec = numpy.diff(peak_time)

if len(all_isi_values_vec) > 0:
 inv_first_ISI = 1000.0 / all_isi_values_vec[0]
else:
 inv_first_ISI = 0

if len(all_isi_values_vec) > 1:
 inv_second_ISI = 1000.0 / all_isi_values_vec[1]
else:
 inv_second_ISI = 0

if len(all_isi_values_vec) > 2:
 inv_third_ISI = 1000.0 / all_isi_values_vec[2]
else:
 inv_third_ISI = 0

if len(all_isi_values_vec) > 3:
 inv_fourth_ISI = 1000.0 / all_isi_values_vec[3]
else:
 inv_fourth_ISI = 0

if len(all_isi_values_vec) > 4:
 inv_fifth_ISI = 1000.0 / all_isi_values_vec[4]
else:
 inv_fifth_ISI = 0

if len(all_isi_values_vec) > 0:
 inv_last_ISI = 1000.0 / all_isi_values_vec[-1]
else:
 inv_last_ISI = 0

doublet_ISI

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The time interval between the first two peaks

	Required features: peak_time (ms)

	Units: ms

	Pseudocode:

doublet_ISI = peak_time[1] - peak_time[0]

ISI_semilog_slope

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The slope of a linear fit to a semilog plot of the ISI values.

Attention: the 1st ISI is not taken into account unless ignore_first_ISI is set to 0.
See Python efeature: ISIs feature for more details.

	Required features: t, V, stim_start, stim_end, ISI_values

	Units: ms

	Pseudocode:

x = range(1, len(ISI_values)+1)
log_ISI_values = numpy.log(ISI_values)
slope, _ = numpy.polyfit(x, log_ISI_values, 1)

ISI_semilog_slope = slope

ISI_log_slope

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The slope of a linear fit to a loglog plot of the ISI values.

Attention: the 1st ISI is not taken into account unless ignore_first_ISI is set to 0.
See Python efeature: ISIs feature for more details.

	Required features: t, V, stim_start, stim_end, ISI_values

	Units: ms

	Pseudocode:

log_x = numpy.log(range(1, len(ISI_values)+1))
log_ISI_values = numpy.log(ISI_values)
slope, _ = numpy.polyfit(log_x, log_ISI_values, 1)

ISI_log_slope = slope

ISI_log_slope_skip

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The slope of a linear fit to a loglog plot of the ISI values, but not taking into account the first ISI values.

The proportion of ISI values to be skipped is given by spike_skipf (between 0 and 1).
However, if this number of ISI values to skip is higher than max_spike_skip, then max_spike_skip is taken instead.

	Required features: t, V, stim_start, stim_end, ISI_values

	Parameters: spike_skipf (default=0.1), max_spike_skip (default=2)

	Units: ms

	Pseudocode:

start_idx = min([max_spike_skip, round((len(ISI_values) + 1) * spike_skipf)])
ISI_values = ISI_values[start_idx:]
log_x = numpy.log(range(1, len(ISI_values)+1))
log_ISI_values = numpy.log(ISI_values)
slope, _ = numpy.polyfit(log_x, log_ISI_values, 1)

ISI_log_slope = slope

ISI_CV

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The coefficient of variation of the ISIs.

Attention: the 1st ISI is not taken into account unless ignore_first_ISI is set to 0.
See Python efeature: ISIs feature for more details.

	Required features: ISIs

	Units: constant

	Pseudocode:

ISI_mean = numpy.mean(ISI_values)
ISI_CV = np.std(isi_values, ddof=1) / ISI_mean

irregularity_index

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : Mean of the absolute difference of all ISIs, except the first one (see Python efeature: ISIs feature for more details.)

The first ISI can be taken into account if ignore_first_ISI is set to 0.

	Required features: ISI_values

	Units: ms

	Pseudocode:

irregularity_index = numpy.mean(numpy.absolute(ISI_values[1:] - ISI_values[:-1]))

adaptation_index

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Normalized average difference of two consecutive ISIs, skipping the first ISIs

The proportion of ISI values to be skipped is given by spike_skipf (between 0 and 1).
However, if this number of ISI values to skip is higher than max_spike_skip, then max_spike_skip is taken instead.

The adaptation index is zero for a constant firing rate and bigger than zero for a decreasing firing rate

	Required features: stim_start, stim_end, peak_time

	Parameters: offset (default=0), spike_skipf (default=0.1), max_spike_skip (default=2)

	Units: constant

	Pseudocode:

skip the first ISIs
peak_selection = [peak_time >= stim_start - offset, peak_time <= stim_end - offset]
spike_time = peak_time[numpy.all(peak_selection, axis=0)]

start_idx = min([max_spike_skip, round(len(spike_time) * spike_skipf)])
spike_time = spike_time[start_idx:]

compute the adaptation index
ISI_values = spike_time[1:] - spike_time[:-1]
ISI_sum = ISI_values[1:] + ISI_values[:-1]
ISI_sub = ISI_values[1:] - ISI_values[:-1]
adaptation_index = numpy.mean(ISI_sum / ISI_sub)

adaptation_index_2

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Normalized average difference of two consecutive ISIs, starting at the second ISI

The adaptation index is zero for a constant firing rate and bigger than zero for a decreasing firing rate

	Required features: stim_start, stim_end, peak_time

	Parameters: offset (default=0)

	Units: constant

	Pseudocode:

skip the first ISI
peak_selection = [peak_time >= stim_start - offset, peak_time <= stim_end - offset]
spike_time = peak_time[numpy.all(peak_selection, axis=0)]

spike_time = spike_time[1:]

compute the adaptation index
ISI_values = spike_time[1:] - spike_time[:-1]
ISI_sum = ISI_values[1:] + ISI_values[:-1]
ISI_sub = ISI_values[1:] - ISI_values[:-1]
adaptation_index = numpy.mean(ISI_sum / ISI_sub)

spike_count

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Number of spikes in the trace, including outside of stimulus interval

	Required features: peak_indices

	Units: constant

	Pseudocode:

spike_count = len(peak_indices)

Note: “spike_count” is the new name for the feature “Spikecount”.
“Spikecount”, while still available, will be removed in the future.

spike_count_stimint

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Number of spikes inside the stimulus interval

	Required features: peak_time

	Units: constant

	Pseudocode:

peaktimes_stimint = numpy.where((peak_time >= stim_start) & (peak_time <= stim_end))
spike_count_stimint = len(peaktimes_stimint)

Note: “spike_count_stimint” is the new name for the feature “Spikecount_stimint”.
“Spikecount_stimint”, while still available, will be removed in the future.

number_initial_spikes

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Number of spikes at the beginning of the stimulus

	Required features: peak_time

	Required parameters: initial_perc (default=0.1)

	Units: constant

	Pseudocode:

initial_length = (stimend - stimstart) * initial_perc
number_initial_spikes = len(numpy.where(\
 (peak_time >= stimstart) & \
 (peak_time <= stimstart + initial_length)))

mean_frequency

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The mean frequency of the firing rate

	Required features: stim_start, stim_end, peak_time

	Units: Hz

	Pseudocode:

condition = np.all((stim_start < peak_time, peak_time < stim_end), axis=0)
spikecount = len(peak_time[condition])
last_spike_time = peak_time[peak_time < stim_end][-1]
mean_frequency = 1000 * spikecount / (last_spike_time - stim_start)

strict_burst_mean_freq

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The mean frequency during a burst for each burst

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Default value is 2.0.

	Required features: burst_begin_indices, burst_end_indices, peak_time

	Units: Hz

	Pseudocode:

if burst_begin_indices is None or burst_end_indices is None:
 strict_burst_mean_freq = None
else:
 strict_burstmean_freq = (
 (burst_end_indices - burst_begin_indices + 1) * 1000 / (
 peak_time[burst_end_indices] - peak_time[burst_begin_indices]
)
)

burst_mean_freq

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The mean frequency during a burst for each burst

If burst_ISI_indices did not detect any burst beginning,
then the spikes are not considered to be part of any burst

	Required features: burst_ISI_indices, peak_time

	Units: Hz

	Pseudocode:

if burst_ISI_indices is None:
 return None
elif len(burst_ISI_indices) == 0:
 return []

burst_mean_freq = []
burst_index = numpy.insert(
 burst_index_tmp, burst_index_tmp.size, len(peak_time) - 1
)

1st burst
span = peak_time[burst_index[0]] - peak_time[0]
N_peaks = burst_index[0] + 1
burst_mean_freq.append(N_peaks * 1000 / span)

for i, burst_idx in enumerate(burst_index[:-1]):
 if burst_index[i + 1] - burst_idx != 1:
 span = peak_time[burst_index[i + 1]] - peak_time[burst_idx + 1]
 N_peaks = burst_index[i + 1] - burst_idx
 burst_mean_freq.append(N_peaks * 1000 / span)

return burst_mean_freq

strict_burst_number

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The number of bursts

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Default value is 2.0.

	Required features: strict_burst_mean_freq

	Units: constant

	Pseudocode:

burst_number = len(strict_burst_mean_freq)

burst_number

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : The number of bursts

	Required features: burst_mean_freq

	Units: constant

	Pseudocode:

burst_number = len(burst_mean_freq)

single_burst_ratio

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : Length of the second isi over the median of the rest of the isis.
The first isi is not taken into account, because it could bias the feature.
See ISI_values feature for more details.

If ignore_first_ISI is set to 0, then signle burst ratio becomes
the length of the first isi over the median of the rest of the isis.

	Required features: ISI_values

	Units: constant

	Pseudocode:

single_burst_ratio = ISI_values[0] / numpy.mean(ISI_values)

spikes_per_burst

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Number of spikes in each burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: burst_begin_indices, burst_end_indices

	Units: constant

	Pseudocode:

spike_per_bursts = []
for idx_begin, idx_end in zip(burst_begin_indices, burst_end_indices):
 spike_per_bursts.append(idx_end - idx_begin + 1)

spikes_per_burst_diff

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Difference of number of spikes between each burst and the next one.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: spikes_per_burst

	Units: constant

	Pseudocode:

spikes_per_burst[:-1] - spikes_per_burst[1:]

spikes_in_burst1_burst2_diff

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Difference of number of spikes between the first burst and the second one.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: spikes_per_burst_diff

	Units: constant

	Pseudocode:

numpy.array([spikes_per_burst_diff[0]])

spikes_in_burst1_burstlast_diff

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Difference of number of spikes between the first burst and the last one.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: spikes_per_burst

	Units: constant

	Pseudocode:

numpy.array([spikes_per_burst[0] - spikes_per_burst[-1]])

strict_interburst_voltage

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The voltage average in between two bursts

Iterating over the burst indices determine the first peak of each burst.
Starting 5 ms after the previous peak, take the voltage average until 5 ms before the peak.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Default value is 2.0.

	Required features: burst_begin_indices, peak_indices

	Units: mV

	Pseudocode:

interburst_voltage = []
for idx in burst_begin_idxs[1:]:
 ts_idx = peak_idxs[idx - 1]
 t_start = t[ts_idx] + 5
 start_idx = numpy.argwhere(t < t_start)[-1][0]

 te_idx = peak_idxs[idx]
 t_end = t[te_idx] - 5
 end_idx = numpy.argwhere(t > t_end)[0][0]

 interburst_voltage.append(numpy.mean(v[start_idx:end_idx + 1]))

interburst_voltage

ISI Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/isi.py] : The voltage average in between two bursts

Iterating over the burst ISI indices determine the last peak before the burst.
Starting 5 ms after that peak take the voltage average until 5 ms before the first peak of the subsequent burst.

	Required features: burst_ISI_indices, peak_indices

	Units: mV

	Pseudocode:

interburst_voltage = []
for idx in burst_ISI_idxs:
 ts_idx = peak_idxs[idx]
 t_start = time[ts_idx] + 5
 start_idx = numpy.argwhere(time < t_start)[-1][0]

 te_idx = peak_idxs[idx + 1]
 t_end = time[te_idx] - 5
 end_idx = numpy.argwhere(time > t_end)[0][0]

 interburst_voltage.append(numpy.mean(voltage[start_idx:end_idx + 1]))

interburst_min_values

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The minimum voltage between the end of a burst and the next spike.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Default value is 2.0.

	Required features: peak_indices, burst_end_indices

	Units: mV

	Pseudocode:

interburst_min = [
 numpy.min(
 v[peak_indices[i]:peak_indices[i + 1]]
) for i in burst_end_indices if i + 1 < len(peak_indices)
]

interburst_duration

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Duration between the last spike of each burst and the next spike.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: burst_end_indices, peak_time

	Units: ms

	Pseudocode:

interburst_duration = [
 peak_time[idx + 1] - peak_time[idx]
 for idx in burst_end_indices
 if idx + 1 < len(peak_time)
]

interburst_15percent_values, interburst_20percent_values, interburst_25percent_values, interburst_30percent_values, interburst_40percent_values, interburst_60percent_values

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Voltage value after a given percentage (15%, 20%, 25%, 30%, 40% or 60%) of the interburst duration after the fast AHP.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: postburst_fast_ahp_indices, burst_end_indices, peak_indices

	Units: mV

	Pseudocode:

interburst_XXpercent_values = []
for i, postburst_fahp_i in enumerate(postburst_fahpi):
 if i < len(burst_endi) and burst_endi[i] + 1 < len(peaki):
 time_interval = t[peaki[burst_endi[i] + 1]] - t[postburst_fahp_i]
 time_at_XXpercent = t[postburst_fahp_i] + time_interval * percentage / 100.
 index_at_XXpercent = numpy.argwhere(t >= time_at_XXpercent)[0][0]
 interburst_XXpercent_values.append(v[index_at_XXpercent])

time_to_interburst_min

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The time between the last spike of a burst and the minimum between that spike and the next.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Default value is 2.0.

	Required features: peak_indices, burst_end_indices, peak_time

	Units: ms

	Pseudocode:

time_to_interburst_min = [
 t[peak_indices[i] + numpy.argmin(
 v[peak_indices[i]:peak_indices[i + 1]]
)] - peak_time[i]
 for i in burst_end_indices if i + 1 < len(peak_indices)
]

time_to_postburst_slow_ahp

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The time between the last spike of a burst and the slow ahp afterwards.

The number of ms to skip after the spike to skip fast AHP and look for slow AHP can be set with sahp_start.
Default is 5.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: postburst_slow_ahp_indices, burst_end_indices, peak_time

	Units: ms

	Pseudocode:

time_to_postburst_slow_ahp_py = t[postburst_slow_ahp_indices] - peak_time[burst_end_indices]

postburst_min_values

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The minimum voltage after the end of a burst.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Default value is 2.0.

	Required features: peak_indices, burst_end_indices

	Units: mV

	Pseudocode:

postburst_min = [
 numpy.min(
 v[peak_indices[i]:peak_indices[i + 1]]
) for i in burst_end_indices if i + 1 < len(peak_indices)
]

if len(postburst_min) < len(burst_end_indices):
 if t[burst_end_indices[-1]] < stim_end:
 end_idx = numpy.where(t >= stim_end)[0][0]
 postburst_min.append(numpy.min(
 v[peak_indices[burst_end_indices[-1]]:end_idx]
))
 else:
 postburst_min.append(numpy.min(
 v[peak_indices[burst_end_indices[-1]]:]
))

postburst_slow_ahp_values

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The slow AHP voltage after the end of a burst.

The number of ms to skip after the spike to skip fast AHP and look for slow AHP can be set with sahp_start.
Default is 5.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: peak_indices, burst_end_indices

	Units: mV

	Pseudocode:

postburst_slow_ahp = []
for i in burst_end_indices:
 i_start = numpy.where(t >= t[peak_indices[i]] + sahp_start)[0][0]
 if i + 1 < len(peak_indices):
 postburst_slow_ahp.append(numpy.min(v[i_start:peak_indices[i + 1]]))
 else:
 if t[burst_end_indices[-1]] < stim_end:
 end_idx = numpy.where(t >= stim_end)[0][0]
 postburst_slow_ahp.append(numpy.min(v[i_start:end_idx]))
 else:
 postburst_slow_ahp.append(numpy.min(v[i_start:]))

postburst_fast_ahp_values

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The fast AHP voltage after the end of a burst.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: peak_indices, burst_end_indices

	Units: mV

	Pseudocode:

postburst_fahp = []
for i in burst_end_indices:
 if i + 1 < len(peak_indices):
 stop_i = peak_indices[i + 1]
 elif i + 1 < stim_end_index:
 stop_i = stim_end_index
 else:
 stop_i = len(v) - 1

 v_crop = v[peak_indices[i]:stop_i]
 # get where the voltage is going up
 crop_args = numpy.argwhere(numpy.diff(v_crop) >= 0)[:,0]
 # the voltage should go up for at least two consecutive points
 crop_arg_arg = numpy.argwhere(numpy.diff(crop_args) == 1)[0][0]
 crop_arg = crop_args[crop_arg_arg]
 end_i = peak_indices[i] + crop_arg + 1
 # the fast ahp is between last peak of burst and the point where voltage is going back up
 postburst_fahp.append(numpy.min(v[peak_indices[i]:end_i]))

return postburst_fahp

postburst_adp_peak_values

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : The small ADP peak after the fast AHP after the end of a burst.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: postburst_fast_ahp_indices, postburst_slow_ahp_indices

	Units: mV

	Pseudocode:

adp_peak_values = []
for i, sahpi in enumerate(postburst_sahpi):
 if sahpi < postburst_fahpi[i]:
 continue
 adppeaki = numpy.argmax(v[postburst_fahpi[i]:sahpi]) + postburst_fahpi[i]
 if adppeaki != sahpi - 1:
 adp_peak_values.append(v[adppeaki])

if len(adp_peak_values) == 0:
 return None
return adp_peak_values

time_to_postburst_fast_ahp

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Time to the fast AHP after the end of a burst.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: postburst_fast_ahp_indices, burst_end_indices, peak_time

	Units: ms

	Pseudocode:

[t[fahpi] - peak_time[burst_endi[i]] for i, fahpi in enumerate(postburst_fahpi)]

time_to_postburst_adp_peak

SpikeEvent [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeEvent.cpp] : Time to the small ADP peak after the fast AHP after the end of a burst.

This implementation does not assume that every spike belongs to a burst.

The first spike is ignored by default. This can be changed by setting ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting strict_burst_factor. Defalt value is 2.0.

	Required features: postburst_adp_peak_indices, burst_end_indices, peak_time

	Units: ms

	Pseudocode:

time_to_postburst_adp_peaks = []
n_peaks = len(peak_time)
for i, adppeaki in enumerate(postburst_adppeaki):
 # there are not always an adp peak after each burst
 # so make sure that the burst and adp peak indices are consistent
 k = 0
 while (
 burst_endi[i] + k + 1 < n_peaks and peak_time[burst_endi[i] + k + 1] < t[adppeaki]
):
 k += 1

 time_to_postburst_adp_peaks.append(t[adppeaki] - peak_time[burst_endi[i] + k])

return time_to_postburst_adp_peaks

Spike shape features

[image: _images/AP_Amplitude.png]

peak_voltage

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : The voltages at the maxima of the peaks

	Required features: peak_indices

	Units: mV

	Pseudocode:

peak_voltage = voltage[peak_indices]

AP_height

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Same as peak_voltage: The voltages at the maxima of the peaks

	Required features: peak_voltage

	Units: mV

	Pseudocode:

AP_height = peak_voltage

AP_amplitude, AP1_amp, AP2_amp, APlast_amp

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : The relative height of the action potential from spike onset

	Required features: AP_begin_indices, peak_voltage (mV)

	Units: mV

	Pseudocode:

AP_amplitude = peak_voltage - voltage[AP_begin_indices]
AP1_amp = AP_amplitude[0]
AP2_amp = AP_amplitude[1]
APlast_amp = AP_amplitude[-1]

mean_AP_amplitude

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : The mean of all of the action potential amplitudes

	Required features: AP_amplitude (mV)

	Units: mV

	Pseudocode:

mean_AP_amplitude = numpy.mean(AP_amplitude)

AP_Amplitude_change

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the amplitudes of the second and the first action potential
divided by the amplitude of the first action potential

	Required features: AP_amplitude

	Units: constant

	Pseudocode:

AP_amplitude_change = (AP_amplitude[1:] - AP_amplitude[0]) / AP_amplitude[0]

AP_amplitude_from_voltagebase

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : The relative height of the action potential from voltage base

	Required features: voltage_base, peak_voltage (mV)

	Units: mV

	Pseudocode:

AP_amplitude_from_voltagebase = peak_voltage - voltage_base

AP1_peak, AP2_peak

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : The peak voltage of the first and second action potentials

	Required features: peak_voltage (mV)

	Units: mV

	Pseudocode:

AP1_peak = peak_voltage[0]
AP2_peak = peak_voltage[1]

AP2_AP1_diff

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference amplitude of the second to first spike

	Required features: AP_amplitude (mV)

	Units: mV

	Pseudocode:

AP2_AP1_diff = AP_amplitude[1] - AP_amplitude[0]

AP2_AP1_peak_diff

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference peak voltage of the second to first spike

	Required features: peak_voltage (mV)

	Units: mV

	Pseudocode:

AP2_AP1_diff = peak_voltage[1] - peak_voltage[0]

amp_drop_first_second

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the amplitude of the first and the second peak

	Required features: peak_voltage (mV)

	Units: mV

	Pseudocode:

amp_drop_first_second = peak_voltage[0] - peak_voltage[1]

amp_drop_first_last

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the amplitude of the first and the last peak

	Required features: peak_voltage (mV)

	Units: mV

	Pseudocode:

amp_drop_first_last = peak_voltage[0] - peak_voltage[-1]

amp_drop_second_last

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the amplitude of the second and the last peak

	Required features: peak_voltage (mV)

	Units: mV

	Pseudocode:

amp_drop_second_last = peak_voltage[1] - peak_voltage[-1]

max_amp_difference

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Maximum difference of the height of two subsequent peaks

	Required features: peak_voltage (mV)

	Units: mV

	Pseudocode:

max_amp_difference = numpy.max(peak_voltage[:-1] - peak_voltage[1:])

AP_amplitude_diff

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the amplitude of two subsequent peaks

	Required features: AP_amplitude (mV)

	Units: mV

	Pseudocode:

AP_amplitude_diff = AP_amplitude[1:] - AP_amplitude[:-1]

[image: _images/AHP.png]

min_AHP_values

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Absolute voltage values at the first after-hyperpolarization.

	Required features: min_AHP_indices

	Units: mV

AHP_depth

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Relative voltage values at the first after-hyperpolarization

	Required features: voltage_base (mV), min_AHP_values (mV)

	Units: mV

	Pseudocode:

min_AHP_values = first_min_element(voltage, peak_indices)
AHP_depth = min_AHP_values[:] - voltage_base

AHP_depth_abs

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Absolute voltage values at the first after-hyperpolarization.
Is the same as min_AHP_values

	Required features: min_AHP_values (mV)

	Units: mV

AHP_depth_diff

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of subsequent relative voltage values at the first after-hyperpolarization

	Required features: AHP_depth (mV)

	Units: mV

	Pseudocode:

AHP_depth_diff = AHP_depth[1:] - AHP_depth[:-1]

AHP_depth_from_peak, AHP1_depth_from_peak, AHP2_depth_from_peak

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Voltage difference between AP peaks and first AHP depths

	Required features: peak_indices, min_AHP_indices

	Units: mV

	Pseudocode:

AHP_depth_from_peak = v[peak_indices] - v[min_AHP_indices]
AHP1_depth_from_peak = AHP_depth_from_peak[0]
AHP2_depth_from_peak = AHP_depth_from_peak[1]

AHP_time_from_peak

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Time between AP peaks and first AHP depths

	Required features: peak_indices, min_AHP_values (mV)

	Units: ms

	Pseudocode:

min_AHP_indices = first_min_element(voltage, peak_indices)
AHP_time_from_peak = t[min_AHP_indices[:]] - t[peak_indices[i]]

fast_AHP

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Voltage value of the action potential onset relative to the subsequent AHP

Ignores the last spike

	Required features: AP_begin_indices, min_AHP_values

	Units: mV

	Pseudocode:

fast_AHP = voltage[AP_begin_indices[:-1]] - voltage[min_AHP_indices[:-1]]

fast_AHP_change

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the fast AHP of the second and the first action potential
divided by the fast AHP of the first action potential

	Required features: fast_AHP

	Units: constant

	Pseudocode:

fast_AHP_change = (fast_AHP[1:] - fast_AHP[0]) / fast_AHP[0]

AHP_depth_abs_slow

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Absolute voltage values at the first after-hyperpolarization starting
a given number of ms (default: 5) after the peak

	Required features: peak_indices

	Units: mV

AHP_depth_slow

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Relative voltage values at the first after-hyperpolarization starting
a given number of ms (default: 5) after the peak

	Required features: voltage_base (mV), AHP_depth_abs_slow (mV)

	Units: mV

	Pseudocode:

AHP_depth_slow = AHP_depth_abs_slow[:] - voltage_base

AHP_slow_time

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Time difference between slow AHP (see AHP_depth_abs_slow) and peak, divided by
interspike interval

	Required features: AHP_depth_abs_slow

	Units: constant

ADP_peak_values

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Absolute voltage values of the small afterdepolarization peak

strict_stiminterval should be set to True for this feature to behave as expected.

	Required features: min_AHP_indices, min_between_peaks_indices

	Units: mV

	Pseudocode:

adp_peak_values = numpy.array(
 [numpy.max(v[i:j + 1]) for (i, j) in zip(min_AHP_indices, min_v_indices)]
)

ADP_peak_amplitude

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Amplitude of the small afterdepolarization peak with respect to the fast AHP voltage

strict_stiminterval should be set to True for this feature to behave as expected.

	Required features: min_AHP_values, ADP_peak_values

	Units: mV

	Pseudocode:

adp_peak_amplitude = adp_peak_values - min_AHP_values

depolarized_base

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Mean voltage between consecutive spikes
(from the end of one spike to the beginning of the next one)

	Required features: AP_end_indices, AP_begin_indices

	Units: mV

	Pseudocode:

depolarized_base = []
for (start_idx, end_idx) in zip(
 AP_end_indices[:-1], AP_begin_indices[1:])
):
 depolarized_base.append(numpy.mean(voltage[start_idx:end_idx]))

min_voltage_between_spikes

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Minimal voltage between consecutive spikes

	Required features: peak_indices

	Units: mV

	Pseudocode:

min_voltage_between_spikes = []
for peak1, peak2 in zip(peak_indices[:-1], peak_indices[1:]):
 min_voltage_between_spikes.append(numpy.min(voltage[peak1:peak2]))

min_between_peaks_values

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Minimal voltage between consecutive spikes

The last value of min_between_peaks_values is the minimum between last spike and stimulus end
if strict stiminterval is True, and minimum between last spike and last voltage value
if strict stiminterval is False

	Required features: min_between_peaks_indices

	Units: mV

	Pseudocode:

min_between_peaks_values = v[min_between_peaks_indices]

[image: _images/AP_duration_half_width.png]

AP_duration_half_width

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Width of spike at half spike amplitude, with spike onset as described in AP_begin_time

	Required features: AP_rise_indices, AP_fall_indices

	Units: ms

	Pseudocode:

AP_rise_indices = index_before_peak((v(peak_indices) - v(AP_begin_indices)) / 2)
AP_fall_indices = index_after_peak((v(peak_indices) - v(AP_begin_indices)) / 2)
AP_duration_half_width = t(AP_fall_indices) - t(AP_rise_indices)

AP_duration_half_width_change

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the FWHM of the second and the first action potential
divided by the FWHM of the first action potential

	Required features: AP_duration_half_width

	Units: constant

	Pseudocode:

AP_duration_half_width_change = (
 AP_duration_half_width[1:] - AP_duration_half_width[0]
) / AP_duration_half_width[0]

AP_width

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Width of spike at threshold, bounded by minimum AHP

Can use strict_stiminterval compute only for data in stimulus interval.

	Required features: peak_indices, min_AHP_indices, threshold

	Units: ms

	Pseudocode:

min_AHP_indices = numpy.concatenate([[stim_start], min_AHP_indices])
for i in range(len(min_AHP_indices)-1):
 onset_index = numpy.where(v[min_AHP_indices[i]:min_AHP_indices[i+1]] > threshold)[0]
 onset_time[i] = t[onset_index]
 offset_time[i] = t[numpy.where(v[onset_index:min_AHP_indices[i+1]] < threshold)[0]]
 AP_width[i] = t(offset_time[i]) - t(onset_time[i])

AP_duration

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Duration of an action potential from onset to offset

	Required features: AP_begin_indices, AP_end_indices

	Units: ms

	Pseudocode:

AP_duration = time[AP_end_indices] - time[AP_begin_indices]

AP_duration_change

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the durations of the second and the first action potential divided by the duration of the first action potential

	Required features: AP_duration

	Units: constant

	Pseudocode:

AP_duration_change = (AP_duration[1:] - AP_duration[0]) / AP_duration[0]

AP_width_between_threshold

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Width of spike at threshold, bounded by minimum between peaks

Can use strict_stiminterval to not use minimum after stimulus end.

	Required features: peak_indices, min_between_peaks_indices, threshold

	Units: ms

	Pseudocode:

min_between_peaks_indices = numpy.concatenate([[stim_start], min_between_peaks_indices])
for i in range(len(min_between_peaks_indices)-1):
 onset_index = numpy.where(v[min_between_peaks_indices[i]:min_between_peaks_indices[i+1]] > threshold)[0]
 onset_time[i] = t[onset_index]
 offset_time[i] = t[numpy.where(v[onset_index:min_between_peaks_indices[i+1]] < threshold)[0]]
 AP_width[i] = t(offset_time[i]) - t(onset_time[i])

spike_half_width, AP1_width, AP2_width, APlast_width

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Width of spike at half spike amplitude,
with the spike amplitude taken as the difference between the minimum between two peaks and the next peak

	Required features: peak_indices, min_AHP_indices

	Units: ms

	Pseudocode:

min_AHP_indices = numpy.concatenate([[stim_start], min_AHP_indices])
for i in range(1, len(min_AHP_indices)):
 v_half_width = (v[peak_indices[i-1]] + v[min_AHP_indices[i]]) / 2.
 rise_idx = numpy.where(v[min_AHP_indices[i-1]:peak_indices[i-1]] > v_half_width)[0]
 v_dev = v_half_width - v[rise_idx]
 delta_v = v[rise_idx] - v[rise_idx - 1]
 delta_t = t[rise_idx] - t[rise_idx - 1]
 t_dev_rise = delta_t * v_dev / delta_v

 fall_idx = numpy.where(v[peak_indices[i-1]:min_AHP_indices[i]] < v_half_width)[0]
 v_dev = v_half_width - v[fall_idx]
 delta_v = v[fall_idx] - v[fall_idx - 1]
 delta_t = t[fall_idx] - t[fall_idx - 1]
 t_dev_fall = delta_t * v_dev / delta_v
 spike_half_width[i] = t[fall_idx] + t_dev_fall - t[rise_idx] - t_dev_rise

AP1_width = spike_half_width[0]
AP2_width = spike_half_width[1]
APlast_width = spike_half_width[-1]

spike_width2

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Width of spike at half spike amplitude, with the spike onset taken as the maximum of the second derivative of the voltage in the range between
the minimum between two peaks and the next peak

	Required features: peak_indices, min_AHP_indices

	Units: ms

	Pseudocode:

for i in range(len(min_AHP_indices)):
 dv2 = CentralDiffDerivative(CentralDiffDerivative(v[min_AHP_indices[i]:peak_indices[i + 1]]))
 peak_onset_idx = numpy.argmax(dv2) + min_AHP_indices[i]
 v_half_width = (v[peak_indices[i + 1]] + v[peak_onset_idx]) / 2.

 rise_idx = numpy.where(v[peak_onset_idx:peak_indices[i + 1]] > v_half_width)[0]
 v_dev = v_half_width - v[rise_idx]
 delta_v = v[rise_idx] - v[rise_idx - 1]
 delta_t = t[rise_idx] - t[rise_idx - 1]
 t_dev_rise = delta_t * v_dev / delta_v

 fall_idx = numpy.where(v[peak_indices[i + 1]:] < v_half_width)[0]
 v_dev = v_half_width - v[fall_idx]
 delta_v = v[fall_idx] - v[fall_idx - 1]
 delta_t = t[fall_idx] - t[fall_idx - 1]
 t_dev_fall = delta_t * v_dev / delta_v
 spike_width2[i] = t[fall_idx] + t_dev_fall - t[rise_idx] - t_dev_rise

AP_begin_width, AP1_begin_width, AP2_begin_width

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Width of spike at spike start

	Required features: min_AHP_indices, AP_begin_indices

	Units: ms

	Pseudocode:

for i in range(len(min_AHP_indices)):
 rise_idx = AP_begin_indices[i]
 fall_idx = numpy.where(v[rise_idx + 1:min_AHP_indices[i]] < v[rise_idx])[0]
 AP_begin_width[i] = t[fall_idx] - t[rise_idx]

AP1_begin_width = AP_begin_width[0]
AP2_begin_width = AP_begin_width[1]

AP2_AP1_begin_width_diff

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference width of the second to first spike

	Required features: AP_begin_width

	Units: ms

	Pseudocode:

AP2_AP1_begin_width_diff = AP_begin_width[1] - AP_begin_width[0]

AP_begin_voltage, AP1_begin_voltage, AP2_begin_voltage

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Voltage at spike start

	Required features: AP_begin_indices

	Units: mV

	Pseudocode:

AP_begin_voltage = v[AP_begin_indices]
AP1_begin_voltage = AP_begin_voltage[0]
AP2_begin_voltage = AP_begin_voltage[1]

AP_begin_time

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Time at spike start. Spike start is defined as where the first derivative of the voltage trace is higher than 10 V/s , for at least 5 points

	Required features: AP_begin_indices

	Units: ms

	Pseudocode:

AP_begin_time = t[AP_begin_indices]

AP_peak_upstroke

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Maximum of rise rate of spike

	Required features: AP_begin_indices, peak_indices

	Units: V/s

	Pseudocode:

ap_peak_upstroke = []
for apbi, pi in zip(ap_begin_indices, peak_indices):
 ap_peak_upstroke.append(numpy.max(dvdt[apbi:pi]))

AP_peak_downstroke

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Minimum of fall rate from spike

	Required features: min_AHP_indices, peak_indices

	Units: V/s

	Pseudocode:

ap_peak_downstroke = []
for ahpi, pi in zip(min_ahp_indices, peak_indices):
 ap_peak_downstroke.append(numpy.min(dvdt[pi:ahpi]))

AP_rise_time

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Time between the AP threshold and the peak, given a window
(default: from 0% to 100% of the AP amplitude)

	Required features: AP_begin_indices, peak_indices, AP_amplitude

	Units: ms

	Pseudocode:

rise_times = []
begin_voltages = AP_amps * rise_start_perc + voltage[AP_begin_indices]
end_voltages = AP_amps * rise_end_perc + voltage[AP_begin_indices]

for AP_begin_indice, peak_indice, begin_v, end_v in zip(
 AP_begin_indices, peak_indices, begin_voltages, end_voltages
):
 voltage_window = voltage[AP_begin_indice:peak_indice]

 new_begin_indice = AP_begin_indice + numpy.min(
 numpy.where(voltage_window >= begin_v)[0]
)
 new_end_indice = AP_begin_indice + numpy.max(
 numpy.where(voltage_window <= end_v)[0]
)

 rise_times.append(time[new_end_indice] - time[new_begin_indice])

AP_fall_time

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Time from action potential maximum to the offset

	Required features: AP_end_indices, peak_indices

	Units: ms

	Pseudocode:

AP_fall_time = time[AP_end_indices] - time[peak_indices]

AP_rise_rate

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Voltage change rate during the rising phase of the action potential

	Required features: AP_begin_indices, peak_indices

	Units: V/s

	Pseudocode:

AP_rise_rate = (voltage[peak_indices] - voltage[AP_begin_indices]) / (
 time[peak_indices] - time[AP_begin_indices]
)

AP_fall_rate

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Voltage change rate during the falling phase of the action potential

	Required features: AP_end_indices, peak_indices

	Units: V/s

	Pseudocode:

AP_fall_rate = (voltage[AP_end_indices] - voltage[peak_indices]) / (
 time[AP_end_indices] - time[peak_indices]
)

AP_rise_rate_change

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the rise rates of the second and the first action potential
divided by the rise rate of the first action potential

	Required features: AP_rise_rate_change

	Units: constant

	Pseudocode:

AP_rise_rate_change = (AP_rise_rate[1:] - AP_rise_rate[0]) / AP_rise_rate[0]

AP_fall_rate_change

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Difference of the fall rates of the second and the first action potential
divided by the fall rate of the first action potential

	Required features: AP_fall_rate_change

	Units: constant

	Pseudocode:

AP_fall_rate_change = (AP_fall_rate[1:] - AP_fall_rate[0]) / AP_fall_rate[0]

AP_phaseslope

SpikeShape [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/SpikeShape.cpp] : Slope of the V, dVdt phasespace plot at the beginning of every spike

(at the point where the derivative crosses the DerivativeThreshold)

	Required features: AP_begin_indices

	Parameters: AP_phaseslope_range

	Units: 1/(ms)

	Pseudocode:

range_max_idxs = AP_begin_indices + AP_phseslope_range
range_min_idxs = AP_begin_indices - AP_phseslope_range
AP_phaseslope = (dvdt[range_max_idxs] - dvdt[range_min_idxs]) / (v[range_max_idxs] - v[range_min_idxs])

phaseslope_max

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Computes the maximum of the phase slope.
Attention, this feature is sensitive to interpolation timestep.

	Required features: time, voltage

	Units: V/s

	Pseudocode:

phaseslope = numpy.diff(voltage) / numpy.diff(time)
phaseslope_max = numpy.array([numpy.max(phaseslope)])

initburst_sahp

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Slow AHP voltage after initial burst

The end of the initial burst is detected when the ISIs frequency gets lower than initburst_freq_threshold, in Hz.
Then the sahp is searched for the interval between initburst_sahp_start (in ms) after the last spike of the burst,
and initburst_sahp_end (in ms) after the last spike of the burst.

	Required features: peak_time

	Parameters: initburst_freq_threshold (default=50), initburst_sahp_start (default=5), initburst_sahp_end (default=100)

	Units: mV

initburst_sahp_ssse

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Slow AHP voltage from steady_state_voltage_stimend after initial burst

	Required features: steady_state_voltage_stimend, initburst_sahp

	Units: mV

	Pseudocode:

numpy.array([initburst_sahp_value[0] - ssse[0]])

initburst_sahp_vb

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Slow AHP voltage from voltage base after initial burst

	Required features: voltage_base, initburst_sahp

	Units: mV

	Pseudocode:

numpy.array([initburst_sahp_value[0] - voltage_base[0]])

Subthreshold features

[image: _images/voltage_features.png]

steady_state_voltage_stimend

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The average voltage during the last 10% of the stimulus duration.

	Required features: t, V, stim_start, stim_end

	Units: mV

	Pseudocode:

stim_duration = stim_end - stim_start
begin_time = stim_end - 0.1 * stim_duration
end_time = stim_end
steady_state_voltage_stimend = numpy.mean(voltage[numpy.where((t < end_time) & (t >= begin_time))])

steady_state_hyper

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : Steady state voltage during hyperpolarization for 30 data points (after interpolation)

	Required features: t, V, stim_start, stim_end

	Units: mV

	Pseudocode:

stim_end_idx = numpy.argwhere(time >= stim_end)[0][0]
steady_state_hyper = numpy.mean(voltage[stim_end_idx - 35:stim_end_idx - 5])

steady_state_voltage

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The average voltage after the stimulus

	Required features: t, V, stim_end

	Units: mV

	Pseudocode:

steady_state_voltage = numpy.mean(voltage[numpy.where((t <= max(t)) & (t > stim_end))])

voltage_base

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The average voltage during the last 10% of time before the stimulus.

	Required features: t, V, stim_start, stim_end

	Parameters: voltage_base_start_perc (default = 0.9), voltage_base_end_perc (default = 1.0)

	Units: mV

	Pseudocode:

voltage_base = numpy.mean(voltage[numpy.where(
 (t >= voltage_base_start_perc * stim_start) &
 (t <= voltage_base_end_perc * stim_start))])

current_base

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The average current during the last 10% of time before the stimulus.

	Required features: t, I, stim_start, stim_end

	Parameters: current_base_start_perc (default = 0.9), current_base_end_perc (default = 1.0), precision_threshold (default = 1e-10), current_base_mode (can be “mean” or “median”, default=”mean”)

	Units: nA

	Pseudocode:

current_slice = I[numpy.where(
 (t >= current_base_start_perc * stim_start) &
 (t <= current_base_end_perc * stim_start))]
if current_base_mode == "mean":
 current_base = numpy.mean(current_slice)
elif current_base_mode == "median":
 current_base = numpy.median(current_slice)

time_constant

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The membrane time constant

The extraction of the time constant requires a voltage trace of a cell in a hyper- polarized state.
Starting at stim start find the beginning of the exponential decay where the first derivative of V(t) is smaller than -0.005 V/s in 5 subsequent points.
The flat subsequent to the exponential decay is defined as the point where the first derivative of the voltage trace is bigger than -0.005
and the mean of the follwowing 70 points as well.
If the voltage trace between the beginning of the decay and the flat includes more than 9 points, fit an exponential decay.
Yield the time constant of that decay.

	Required features: t, V, stim_start, stim_end

	Units: ms

	Pseudocode:

min_derivative = 5e-3
decay_start_min_length = 5 # number of indices
min_length = 10 # number of indices
t_length = 70 # in ms

get start and middle indices
stim_start_idx = numpy.where(time >= stim_start)[0][0]
increment stimstartindex to skip a possible transient
stim_start_idx += 10
stim_middle_idx = numpy.where(time >= (stim_start + stim_end) / 2.)[0][0]

get derivative
t_interval = time[stim_start_idx:stim_middle_idx]
dv = five_point_stencil_derivative(voltage[stim_start_idx:stim_middle_idx])
dt = five_point_stencil_derivative(t_interval)
dvdt = dv / dt

find start and end of decay
has to be over deriv threshold for at least a given number of indices
pass_threshold_idxs = numpy.append(
 -1, numpy.argwhere(dvdt > -min_derivative).flatten()
)
length_idx = numpy.argwhere(
 numpy.diff(pass_threshold_idxs) > decay_start_min_length
)[0][0]
i_start = pass_threshold_idxs[length_idx] + 1

find flat (end of decay)
flat_idxs = numpy.argwhere(dvdt[i_start:] > -min_derivative).flatten()
for loop is not optimised
but we expect the 1st few values to be the ones we are looking for
for i in flat_idxs:
 i_flat = i + i_start
 i_flat_stop = numpy.argwhere(
 t_interval >= t_interval[i_flat] + t_length
)[0][0]
 if numpy.mean(dvdt[i_flat:i_flat_stop]) > -min_derivative:
 break

dvdt_decay = dvdt[i_start:i_flat]
t_decay = time[stim_start_idx + i_start:stim_start_idx + i_flat]
v_decay_tmp = voltage[stim_start_idx + i_start:stim_start_idx + i_flat]
v_decay = abs(v_decay_tmp - voltage[stim_start_idx + i_flat])

if len(dvdt_decay) < min_length:
 return None

-- golden search algorithm --
from scipy.optimize import minimize_scalar

def numpy_fit(x, t_decay, v_decay):
 new_v_decay = v_decay + x
 log_v_decay = numpy.log(new_v_decay)
 (slope, _), res, _, _, _ = numpy.polyfit(
 t_decay, log_v_decay, 1, full=True
)
 range = numpy.max(log_v_decay) - numpy.min(log_v_decay)
 return res / (range * range)

max_bound = min_derivative * 1000.
golden_bracket = [0, max_bound]
result = minimize_scalar(
 numpy_fit,
 args=(t_decay, v_decay),
 bracket=golden_bracket,
 method='golden',
)

-- fit --
log_v_decay = numpy.log(v_decay + result.x)
slope, _ = numpy.polyfit(t_decay, log_v_decay, 1)

time_constant = -1. / slope

decay_time_constant_after_stim

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The decay time constant of the voltage right after the stimulus

	Required features: t, V, stim_start, stim_end

	Parameters: decay_start_after_stim (default = 1.0 ms), decay_end_after_stim (default = 10.0 ms)

	Units: ms

	Pseudocode:

time_interval = t[numpy.where(t => decay_start_after_stim &
 t < decay_end_after_stim)] - t[numpy.where(t == stim_end)]
voltage_interval = abs(voltages[numpy.where(t => decay_start_after_stim &
 t < decay_end_after_stim)]
 - voltages[numpy.where(t == decay_start_after_stim)])

log_voltage_interval = numpy.log(voltage_interval)
slope, _ = numpy.polyfit(time_interval, log_voltage_interval, 1)

decay_time_constant_after_stim = -1. / slope

multiple_decay_time_constant_after_stim

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : When multiple stimuli are applied, this function returns a list of decay time constants
each computed on the voltage right after each stimulus.

The settings multi_stim_start and multi_stim_end are mandatory for this feature to work.
Each is a list containing the start and end times of each stimulus present in the current protocol respectively.

	Required features: t, V, stim_start, stim_end

	Required settings: multi_stim_start, multi_stim_end

	Parameters: decay_start_after_stim (default = 1.0 ms), decay_end_after_stim (default = 10.0 ms)

	Units: ms

	Pseudocode:

multiple_decay_time_constant_after_stim = []
for i in range(len(number_stimuli):
 stim_start = multi_stim_start[i]
 stim_end = multi_stim_end[i]
 multiple_decay_time_constant_after_stim.append(
 decay_time_constant_after_stim(stim_start, stim_end)
)

sag_time_constant

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The decay time constant of the exponential voltage decay from the bottom of the sag to the steady-state.

The start of the decay is taken at the minimum voltage (the bottom of the sag).
The end of the decay is taken when the voltage crosses the steady state voltage minus 10% of the sag amplitude.
The time constant is the slope of the linear fit to the log of the voltage.
The golden search algorithm is not used, since the data is expected to be noisy and adding a parameter in the log
(log(voltage + x)) is likely to increase errors on the fit.

	Required features: t, V, stim_start, stim_end, minimum_voltage, steady_state_voltage_stimend, sag_amplitude

	Units: ms

	Pseudocode:

get start decay
start_decay = numpy.argmin(vinterval)

get end decay
v90 = steady_state_v - 0.1 * sag_ampl
end_decay = numpy.where((tinterval > tinterval[start_decay]) & (vinterval >= v90))[0][0]

v_reference = vinterval[end_decay]

select t, v in decay interval
interval_indices = numpy.arange(start_decay, end_decay)
interval_time = tinterval[interval_indices]
interval_voltage = abs(vinterval[interval_indices] - v_reference)

get tau
log_interval_voltage = numpy.log(interval_voltage)
slope, _ = numpy.polyfit(interval_time, log_interval_voltage, 1)
tau = abs(1. / slope)

[image: _images/sag.png]

sag_amplitude

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The difference between the minimal voltage and the steady state at stimend

	Required features: t, V, stim_start, stim_end, steady_state_voltage_stimend, minimum_voltage, voltage_deflection_stim_ssse

	Parameters:

	Units: mV

	Pseudocode:

if (voltage_deflection_stim_ssse <= 0):
 sag_amplitude = steady_state_voltage_stimend - minimum_voltage
else:
 sag_amplitude = None

sag_ratio1

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The ratio between the sag amplitude and the maximal sag extend from voltage base

	Required features: t, V, stim_start, stim_end, sag_amplitude, voltage_base, minimum_voltage

	Parameters:

	Units: constant

	Pseudocode:

if voltage_base != minimum_voltage:
 sag_ratio1 = sag_amplitude / (voltage_base - minimum_voltage)
else:
 sag_ratio1 = None

sag_ratio2

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The ratio between the maximal extends of sag from steady state and voltage base

	Required features: t, V, stim_start, stim_end, steady_state_voltage_stimend, voltage_base, minimum_voltage

	Parameters:

	Units: constant

	Pseudocode:

if voltage_base != minimum_voltage:
 sag_ratio2 = (voltage_base - steady_state_voltage_stimend) / (voltage_base - minimum_voltage)
else:
 sag_ratio2 = None

ohmic_input_resistance

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The ratio between the voltage deflection and stimulus current

	Required features: t, V, stim_start, stim_end, voltage_deflection

	Parameters: stimulus_current

	Units: MΩ

	Pseudocode:

ohmic_input_resistance = voltage_deflection / stimulus_current

ohmic_input_resistance_vb_ssse

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The ratio between the voltage deflection (between voltage base and steady-state voltage at stimend) and stimulus current

	Required features: t, V, stim_start, stim_end, voltage_deflection_vb_ssse

	Parameters: stimulus_current

	Units: MΩ

	Pseudocode:

ohmic_input_resistance_vb_ssse = voltage_deflection_vb_ssse / stimulus_current

voltage_deflection_vb_ssse

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The voltage deflection between voltage base and steady-state voltage at stimend

The voltage base used is the average voltage during the last 10% of time before the stimulus
and the steady state voltage at stimend used is
the average voltage during the last 10% of the stimulus duration.

	Required features: t, V, stim_start, stim_end, voltage_base, steady_state_voltage_stimend

	Units: mV

	Pseudocode:

voltage_deflection_vb_ssse = steady_state_voltage_stimend - voltage_base

voltage_deflection

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The voltage deflection between voltage base and steady-state voltage at stimend

The voltage base used is the average voltage during all of the time before the stimulus
and the steady state voltage at stimend used is
the average voltage of the five values before the last five values
before the end of the stimulus duration.

	Required features: t, V, stim_start, stim_end

	Units: mV

	Pseudocode:

voltage_base = numpy.mean(V[t < stim_start])
stim_end_idx = numpy.where(t >= stim_end)[0][0]
steady_state_voltage_stimend = numpy.mean(V[stim_end_idx-10:stim_end_idx-5])
voltage_deflection = steady_state_voltage_stimend - voltage_base

voltage_deflection_begin

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The voltage deflection between voltage base and steady-state voltage soon after stimulation start

The voltage base used is the average voltage during all of the time before the stimulus
and the steady state voltage used is
the average voltage taken from 5% to 15% of the stimulus duration.

	Required features: t, V, stim_start, stim_end

	Units: mV

	Pseudocode:

voltage_base = numpy.mean(V[t < stim_start])
tstart = stim_start + 0.05 * (stim_end - stim_start)
tend = stim_start + 0.15 * (stim_end - stim_start)
condition = numpy.all((tstart < t, t < tend), axis=0)
steady_state_voltage_stimend = numpy.mean(V[condition])
voltage_deflection = steady_state_voltage_stimend - voltage_base

voltage_after_stim

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The mean voltage after the stimulus in
(stim_end + 25%*end_period, stim_end + 75%*end_period)

	Required features: t, V, stim_end

	Units: mV

	Pseudocode:

tstart = stim_end + (t[-1] - stimEnd) * 0.25
tend = stim_end + (t[-1] - stimEnd) * 0.75
condition = numpy.all((tstart < t, t < tend), axis=0)
voltage_after_stim = numpy.mean(V[condition])

minimum_voltage

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The minimum of the voltage during the stimulus

	Required features: t, V, stim_start, stim_end

	Units: mV

	Pseudocode:

minimum_voltage = min(voltage[numpy.where((t >= stim_start) & (t <= stim_end))])

maximum_voltage

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : The maximum of the voltage during the stimulus

	Required features: t, V, stim_start, stim_end

	Units: mV

	Pseudocode:

maximum_voltage = max(voltage[numpy.where((t >= stim_start) & (t <= stim_end))])

maximum_voltage_from_voltagebase

Subthreshold [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/Subthreshold.cpp] : Difference between maximum voltage during stimulus and voltage base

	Required features: maximum_voltage, voltage_base

	Units: mV

	Pseudocode:

maximum_voltage_from_voltagebase = maximum_voltage - voltage_base

depol_block_bool

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Check for a depolarization block. Returns 1 if there is a depolarization block or a hyperpolarization block, and returns 0 otherwise.

A depolarization block is detected when the voltage stays higher than the mean of AP_begin_voltage for longer than 50 ms.

A hyperpolarization block is detected when, after stimulus start, the voltage stays below -75 mV for longer than 50 ms.

	Required features: AP_begin_voltage

	Units: constant

impedance

Python efeature [https://github.com/BlueBrain/eFEL/blob/master/efel/pyfeatures/pyfeatures.py] : Computes the impedance given a ZAP current input and its voltage response.
It will return the frequency at which the impedance is maximal, in the range (0, impedance_max_freq] Hz,
with impedance_max_freq being a setting with 50.0 as a default value.

	Required features: current, spike_count, voltage_base, current_base

	Units: Hz

	Pseudocode:

normalized_voltage = voltage_trace - voltage_base
normalized_current = current_trace - current_base
if spike_count < 1: # if there is no spikes in ZAP
 fft_volt = numpy.fft.fft(normalized_voltage)
 fft_cur = numpy.fft.fft(normalized_current)
 if any(fft_cur) == 0:
 return None
 # convert dt from ms to s to have freq in Hz
 freq = numpy.fft.fftfreq(len(normalized_voltage), d=dt / 1000.)
 Z = fft_volt / fft_cur
 norm_Z = abs(Z) / max(abs(Z))
 select_idxs = numpy.swapaxes(numpy.argwhere((freq > 0) & (freq <= impedance_max_freq)), 0, 1)[0]
 smooth_Z = gaussian_filter1d(norm_Z[select_idxs], 10)
 ind_max = numpy.argmax(smooth_Z)
 return freq[ind_max]
else:
 return None

Python API

Copyright (c) 2015, EPFL/Blue Brain Project

This file is part of eFEL <https://github.com/BlueBrain/eFEL>

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License version 3.0 as published
by the Free Software Foundation.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Submodules

	api

	eFEL Python API functions.

	io

	

	pyfeatures.cppfeature_access

	Module containing access functions to C++ features for Python features.

	pyfeatures.isi

	Features that are depending on the inter-spike intervals.

	pyfeatures.multitrace

	Contains the features that are computed using multiple traces.

	pyfeatures.pyfeatures

	

	pyfeatures.validation

	Contains scientific validation methods on input signals.

	units

	Module to get units of efeatures.

	settings

	efel Settings class

efel.api

eFEL Python API functions.

This module provides the user-facing Python API of eFEL.
The convenience functions defined here call the underlying ‘cppcore’ library
to hide the lower level API from the user.

Copyright (c) 2015, EPFL/Blue Brain Project

This file is part of eFEL <https://github.com/BlueBrain/eFEL>

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License version 3.0 as published
by the Free Software Foundation.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Functions

	FeatureNameExists(feature_name)

	
	param feature_name:

	

	feature_name_exists(feature_name)

	Returns True if the feature name exists in eFEL, False otherwise.

	getDependencyFileLocation()

	
	rtype:

	str

	getDistance(trace, featureName, mean, std[, ...])

	
	rtype:

	float

	getFeatureNames()

	
	rtype:

	list[str]

	getFeatureValues(traces, featureNames[, ...])

	

	getMeanFeatureValues(traces, featureNames[, ...])

	

	get_dependency_file_location()

	Gets the location of the Dependency file.

	get_distance(trace, feature_name, mean, std)

	Calculate distance value for a list of traces.

	get_feature_names()

	Return a list with the name of all the available features

	get_feature_values(traces, feature_names[, ...])

	Calculate feature values for a list of traces.

	get_mean_feature_values(traces, feature_names)

	Convenience function that returns mean values from get_feature_values()

	get_py_feature(feature_name)

	Return values of the given feature name.

	get_settings()

	Returns the current settings of eFEL.

	reset()

	Resets the efel settings to their default values.

	setDependencyFileLocation(location)

	
	param location:

	

	setDerivativeThreshold(newDerivativeThreshold)

	
	param newDerivativeThreshold:

	

	setDoubleSetting(setting_name, new_value)

	
	param setting_name:

	

	setIntSetting(setting_name, new_value)

	
	param setting_name:

	

	setStrSetting(setting_name, new_value)

	
	param setting_name:

	

	setThreshold(newThreshold)

	
	param newThreshold:

	

	set_dependency_file_location(location)

	Sets the location of the Dependency file.

	set_derivative_threshold(...)

	Set the threshold for the derivative for detecting the spike onset.

	set_double_setting(setting_name, new_value)

	Set a certain double setting to a new value.

	set_int_setting(setting_name, new_value)

	Set a certain integer setting to a new value.

	set_setting(setting_name, new_value)

	Set a certain setting to a new value.

	set_str_setting(setting_name, new_value)

	Set a certain string setting to a new value.

	set_threshold(new_threshold)

	Set the spike detection threshold in the eFEL, default -20.0

	
efel.api.feature_name_exists(feature_name)

	Returns True if the feature name exists in eFEL, False otherwise.

	Parameters:

	feature_name (str)

	Return type:

	bool

	
efel.api.get_dependency_file_location()

	Gets the location of the Dependency file.

	Return type:

	str

	Returns:

	Path to the location of a Dependency file.

	
efel.api.get_distance(trace, feature_name, mean, std, trace_check=True, error_dist=250)

	Calculate distance value for a list of traces.

	Parameters:

	
	trace (dict) – Trace dict that represents one trace. The dict should have the
following keys: ‘T’, ‘V’, ‘stim_start’, ‘stim_end’

	feature_name (str) – Name of the the features for which to calculate the distance

	mean (float) – Mean to calculate the distance from

	std (float) – Std to scale the distance with

	trace_check (bool) – Let the library check if there are spikes outside of stimulus
interval, default is True

	error_dist (float) – Distance returned when error, default is 250

	Return type:

	float

	Returns:

	The absolute number of standard deviation the feature is away
from the mean. In case of anomalous results a value of
‘error_dist’ standard deviations is returned.
This can happen if: a feature generates an error, there are
spikes outside of the stimulus interval, the feature returns
a NaN, etc.

	
efel.api.get_feature_names()

	Return a list with the name of all the available features

	Return type:

	list[str]

	Returns:

	A list that contains all the feature names available in
the eFEL. These names can be used in the feature_names
argument of e.g. get_feature_values()

	
efel.api.get_feature_values(traces, feature_names, parallel_map=None, return_list=True, raise_warnings=True)

	Calculate feature values for a list of traces.

This function is the core of eFEL API. A list of traces (in the form
of dictionaries) is passed as argument, together with a list of feature
names.

The return value consists of a list of dictionaries, one for each input
trace. The keys in the dictionaries are the names of the calculated
features, the corresponding values are lists with the feature values.
Beware that every feature returns an array of values. E.g. AP_amplitude
will return a list with the amplitude of every action potential.

	Parameters:

	
	traces (list[dict]) – Every trace dict represents one trace. The dict should have the
following keys: ‘T’, ‘V’, ‘stim_start’, ‘stim_end’

	feature_names (list[str]) – List with the names of the features to be calculated on all
the traces.

	parallel_map (Optional[Callable]) – Map function to parallelise over the traces. Default is the
serial map() function

	return_list (bool) – By default the function returns a list of dicts. This
optional argument can disable this, so that the result of the
parallel_map() is returned. Can be useful for performance
reasons when an iterator is preferred.

	raise_warnings (bool) – Raise warning when efel c++ returns an error

	Return type:

	Union[list, Iterator]

	Returns:

	For every input trace a feature value dict is returned (in
the same order). The dict contains the keys of
‘feature_names’, every key contains a numpy array with
the feature values returned by the C++ efel code.
The value is None if an error occured during the
calculation of the feature.

	
efel.api.get_mean_feature_values(traces, feature_names, raise_warnings=True)

	Convenience function that returns mean values from get_feature_values()

Instead of return a list of values for every feature as get_feature_values()
does, this function returns per trace one value for every feature, namely
the mean value.

	Parameters:

	
	traces (list[dict]) – Every trace dict represents one trace. The dict should have the
following keys: ‘T’, ‘V’, ‘stim_start’, ‘stim_end’

	feature_names (list[str]) – List with the names of the features to be calculated on all
the traces.

	raise_warnings (bool) – Raise warning when efel c++ returns an error

	Return type:

	list[dict]

	Returns:

	For every input trace a feature value dict is returned (in
the same order). The dict contains the keys of
‘feature_names’, every key contains the mean of the array
that is returned by get_feature_values()
The value is None if an error occured during the
calculation of the feature, or if the feature value array
was empty.

	
efel.api.get_py_feature(feature_name)

	Return values of the given feature name.

	Parameters:

	feature_name (str)

	Return type:

	ndarray | None

	
efel.api.get_settings()

	Returns the current settings of eFEL.

	Return type:

	Settings

	
efel.api.reset()

	Resets the efel settings to their default values.
see efel.Settings()

	
efel.api.set_dependency_file_location(location)

	Sets the location of the Dependency file.

eFEL uses ‘Dependency’ files to let the user define versions of features to use.
The installation directory of eFEL contains a default ‘DependencyV5.txt’ file.
Unless users want to change this file, it is not necessary to call this function.
Modifying the Dependency file can be useful in debugging.

	Parameters:

	location (str | Path) – Path to the location of a Dependency file.

	Raises:

	FileNotFoundError – If the path to the dependency file doesn’t exist.

	Return type:

	None

	
efel.api.set_derivative_threshold(new_derivative_threshold)

	Set the threshold for the derivative for detecting the spike onset.

Some features use a threshold on dV/dt to calculate the beginning of an
action potential. This function allows you to set this threshold.

	Parameters:

	new_derivative_threshold (float) – The new derivative threshold value (in the same units
as the traces, e.g. mV/ms).

	Return type:

	None

	
efel.api.set_double_setting(setting_name, new_value)

	Set a certain double setting to a new value.

	Parameters:

	
	setting_name (str)

	new_value (float)

	Return type:

	None

	
efel.api.set_int_setting(setting_name, new_value)

	Set a certain integer setting to a new value.

	Parameters:

	
	setting_name (str)

	new_value (int)

	Return type:

	None

	
efel.api.set_setting(setting_name, new_value)

	Set a certain setting to a new value.

	Parameters:

	
	setting_name (str) – Name of the setting to change.

	new_value (int | float | str) – New value for the setting.

	Return type:

	None

	
efel.api.set_str_setting(setting_name, new_value)

	Set a certain string setting to a new value.

	Parameters:

	
	setting_name (str)

	new_value (str)

	Return type:

	None

	
efel.api.set_threshold(new_threshold)

	Set the spike detection threshold in the eFEL, default -20.0

	Parameters:

	new_threshold (float) – The new spike detection threshold value (in the same units
as the traces, e.g. mV).

	Return type:

	None

efel.io

Functions

	extract_stim_times_from_neo_data(blocks, ...)

	Seeks for the stim_start and stim_end parameters inside the Neo data.

	load_ascii_input(file_path[, delimiter])

	Loads electrophysiology data from an ASCII file.

	load_neo_file(file_name[, stim_start, stim_end])

	Loads a data file using neo and converts it for eFEL readability.

	save_feature_to_csv(feature_values, filename)

	Save feature values as a CSV file.

	save_feature_to_json(feature_values, filename)

	Save feature values as a JSON file.

	
efel.io.extract_stim_times_from_neo_data(blocks, stim_start, stim_end)

	Seeks for the stim_start and stim_end parameters inside the Neo data.

	Parameters:

	
	blocks (Neo object blocks) – Description of what blocks represents.

	stim_start (numerical value or None) – Start time of the stimulation in
milliseconds. If not available, None should be used.

	stim_end (numerical value or None) – End time of the stimulation in
milliseconds. If not available, None should be used.

	Returns:

	
	A tuple containing:
	
	stim_start (numerical value or None): Start time of the stimulation
in milliseconds.

	stim_end (numerical value or None): End time of the stimulation in
milliseconds.

	Return type:

	tuple

Notes

	Epoch.name should be one of “stim”, “stimulus”, “stimulation”,
“current_injection”.

	First Event.name should be “stim_start”, “stimulus_start”,
“stimulation_start”, “current_injection_start”.

	Second Event.name should be one of “stim_end”, “stimulus_end”,
“stimulation_end”, “current_injection_end”.

	
efel.io.load_ascii_input(file_path, delimiter=' ')

	Loads electrophysiology data from an ASCII file.

Returns: A tuple containing two numpy arrays, one for time and one for voltage.

	Parameters:

	
	file_path (Path | str)

	delimiter (str)

	Return type:

	tuple[ndarray, ndarray]

	
efel.io.load_neo_file(file_name, stim_start=None, stim_end=None, **kwargs)

	Loads a data file using neo and converts it for eFEL readability.

	Parameters:

	
	file_name (string) – Path to the Dependency file location.

	stim_start (numerical value, optional) – Start time in ms. Optional if an Epoch
or two Events are in the file.

	stim_end (numerical value, optional) – End time in ms. Optional if an Epoch
or two Events are in the file.

	**kwargs – Additional arguments for the read() method of Neo IO class.

	Returns:

	
	Segments containing traces, formatted as
	[Segments_1, Segments_2, …, Segments_n], where each Segments_i is
[Traces_1, Traces_2, …, Traces_n].

	Return type:

	list of Segments

Notes

	Epoch.name should be “stim”, “stimulus”, “stimulation”, “current_injection”.

	First Event.name: “stim_start”, “stimulus_start”, “stimulation_start”,
“current_injection_start”.

	Second Event.name: “stim_end”, “stimulus_end”, “stimulation_end”,
“current_injection_end”.

	
efel.io.save_feature_to_csv(feature_values, filename)

	Save feature values as a CSV file.

	
efel.io.save_feature_to_json(feature_values, filename)

	Save feature values as a JSON file.

efel.pyfeatures.cppfeature_access

Module containing access functions to C++ features for Python features.

Functions

	get_cpp_feature(feature_name[, raise_warnings])

	Return value of feature implemented in cpp.

	
efel.pyfeatures.cppfeature_access.get_cpp_feature(feature_name, raise_warnings=False)

	Return value of feature implemented in cpp.

	Parameters:

	feature_name (str)

	Return type:

	ndarray | None

efel.pyfeatures.isi

Features that are depending on the inter-spike intervals.

Functions

	ISI_CV()

	Coefficient of variation of ISIs.

	ISI_log_slope()

	The slope of a linear fit to a loglog plot of the ISI values.

	ISI_log_slope_skip()

	The slope of a linear fit to a loglog plot of the ISI values, but not taking into account the first ISI values.

	ISI_semilog_slope()

	The slope of a linear fit to a semilog plot of the ISI values.

	ISI_values()

	Get all ISIs, inter-spike intervals.

	ISIs()

	Get all ISIs, inter-spike intervals.

	burst_ISI_indices()

	Calculate burst ISI indices based on burst factor and ISI values.

	burst_mean_freq()

	Calculate the mean frequency of bursts.

	initburst_sahp()

	SlowAHP voltage after initial burst.

	interburst_voltage()

	The voltage average in between two bursts.

	inv_ISI_values()

	Calculate the inverse of ISI values.

	inv_fifth_ISI()

	Calculate the inverse of the fifth ISI.

	inv_first_ISI()

	Calculate the inverse of the first ISI.

	inv_fourth_ISI()

	Calculate the inverse of the fourth ISI.

	inv_last_ISI()

	Calculate the inverse of the last ISI.

	inv_second_ISI()

	Calculate the inverse of the second ISI.

	inv_third_ISI()

	Calculate the inverse of the third ISI.

	irregularity_index()

	Calculate the irregularity index of ISI values.

	single_burst_ratio()

	Calculates the single burst ratio.

	strict_burst_number()

	Calculate the strict burst number.

	
efel.pyfeatures.isi.ISI_CV()

	Coefficient of variation of ISIs.

If the ignore_first_ISI flag is set, the first ISI will be ignored.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.ISI_log_slope()

	The slope of a linear fit to a loglog plot of the ISI values.

If the ignore_first_ISI flag is set, the first ISI will be ignored.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.ISI_log_slope_skip()

	The slope of a linear fit to a loglog plot of the ISI values,
but not taking into account the first ISI values.

Uses the spike_skipf and max_spike_skip settings to determine how many
ISIs to skip.
.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.ISI_semilog_slope()

	The slope of a linear fit to a semilog plot of the ISI values.

If the ignore_first_ISI flag is set, the first ISI will be ignored.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.ISI_values()

	Get all ISIs, inter-spike intervals.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.ISIs()

	Get all ISIs, inter-spike intervals.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.burst_ISI_indices()

	Calculate burst ISI indices based on burst factor and ISI values.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.burst_mean_freq()

	Calculate the mean frequency of bursts.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.initburst_sahp()

	SlowAHP voltage after initial burst.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.interburst_voltage()

	The voltage average in between two bursts.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.inv_ISI_values()

	Calculate the inverse of ISI values.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.inv_fifth_ISI()

	Calculate the inverse of the fifth ISI.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.inv_first_ISI()

	Calculate the inverse of the first ISI.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.inv_fourth_ISI()

	Calculate the inverse of the fourth ISI.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.inv_last_ISI()

	Calculate the inverse of the last ISI.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.inv_second_ISI()

	Calculate the inverse of the second ISI.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.inv_third_ISI()

	Calculate the inverse of the third ISI.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.irregularity_index()

	Calculate the irregularity index of ISI values.

If the ignore_first_ISI flag is set, the first ISI will be ignored.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.single_burst_ratio()

	Calculates the single burst ratio.

The ratio is the length of the first ISI over the average of the rest.
If the ignore_first_ISI flag is set, the first ISI will be ignored.

	Return type:

	ndarray | None

	
efel.pyfeatures.isi.strict_burst_number()

	Calculate the strict burst number.

This implementation does not assume that every spike belongs to a burst.
The first spike is ignored by default. This can be changed by setting
ignore_first_ISI to 0.

The burst detection can be fine-tuned by changing the setting
strict_burst_factor. Default value is 2.0.

	Return type:

	ndarray

efel.pyfeatures.multitrace

Contains the features that are computed using multiple traces.

Functions

	bpap_attenuation(soma_trace, dendrite_trace)

	Computes the attenuation of backpropagating action potential.

	
efel.pyfeatures.multitrace.bpap_attenuation(soma_trace, dendrite_trace)

	Computes the attenuation of backpropagating action potential.

Backpropagating action potential is the action potential that is initiated
in the soma and propagates to the dendrite. The attenuation is the ratio
of the amplitude of the action potential in the soma and the dendrite.
The attenuation is computed by first subtracting the resting potential
from the voltage traces.

	Parameters:

	
	soma_trace (dict)

	dendrite_trace (dict)

	Return type:

	float

efel.pyfeatures.pyfeatures

Functions

	Spikecount()

	
	rtype:

	ndarray

	Spikecount_stimint()

	
	rtype:

	ndarray

	burst_number()

	The number of bursts.

	current()

	Get current trace

	depol_block()

	Check for a depolarization block

	depol_block_bool()

	Wrapper around the depol_block feature.

	impedance()

	

	initburst_sahp_ssse()

	SlowAHP voltage from steady_state_voltage_stimend after initial burst

	initburst_sahp_vb()

	SlowAHP voltage from voltage base after initial burst

	phaseslope_max()

	Calculate the maximum phase slope.

	spike_count()

	Get spike count.

	spike_count_stimint()

	Get spike count within stimulus interval.

	spikes_in_burst1_burst2_diff()

	Calculate the diff between the spikes in 1st and 2nd bursts

	spikes_in_burst1_burstlast_diff()

	Calculate the diff between the spikes in 1st and last bursts

	spikes_per_burst()

	Calculate the number of spikes per burst

	spikes_per_burst_diff()

	Calculate the diff between the spikes in each burst and the next one

	time()

	Get time trace.

	trace_check()

	Returns np.array([0]) if there are no spikes outside stimulus boundaries.

	voltage()

	Get voltage trace.

	
efel.pyfeatures.pyfeatures.burst_number()

	The number of bursts.

	Return type:

	ndarray

	
efel.pyfeatures.pyfeatures.current()

	Get current trace

	
efel.pyfeatures.pyfeatures.depol_block()

	Check for a depolarization block

	
efel.pyfeatures.pyfeatures.depol_block_bool()

	Wrapper around the depol_block feature. Returns [1] if depol_block
is None, [0] otherwise.

	
efel.pyfeatures.pyfeatures.initburst_sahp_ssse()

	SlowAHP voltage from steady_state_voltage_stimend after initial burst

	
efel.pyfeatures.pyfeatures.initburst_sahp_vb()

	SlowAHP voltage from voltage base after initial burst

	
efel.pyfeatures.pyfeatures.phaseslope_max()

	Calculate the maximum phase slope.

	Return type:

	ndarray | None

	
efel.pyfeatures.pyfeatures.spike_count()

	Get spike count.

	Return type:

	ndarray

	
efel.pyfeatures.pyfeatures.spike_count_stimint()

	Get spike count within stimulus interval.

	Return type:

	ndarray

	
efel.pyfeatures.pyfeatures.spikes_in_burst1_burst2_diff()

	Calculate the diff between the spikes in 1st and 2nd bursts

	
efel.pyfeatures.pyfeatures.spikes_in_burst1_burstlast_diff()

	Calculate the diff between the spikes in 1st and last bursts

	
efel.pyfeatures.pyfeatures.spikes_per_burst()

	Calculate the number of spikes per burst

	
efel.pyfeatures.pyfeatures.spikes_per_burst_diff()

	Calculate the diff between the spikes in each burst and the next one

	
efel.pyfeatures.pyfeatures.time()

	Get time trace.

	Return type:

	ndarray | None

	
efel.pyfeatures.pyfeatures.trace_check()

	Returns np.array([0]) if there are no spikes outside stimulus boundaries.

Returns None upon failure.

	Return type:

	ndarray | None

	
efel.pyfeatures.pyfeatures.voltage()

	Get voltage trace.

	Return type:

	ndarray | None

efel.pyfeatures.validation

Contains scientific validation methods on input signals.

Functions

	check_ais_initiation(soma_trace, ais_trace)

	Checks the initiation of action potential in AIS with respect to soma.

	
efel.pyfeatures.validation.check_ais_initiation(soma_trace, ais_trace)

	Checks the initiation of action potential in AIS with respect to soma.

	Parameters:

	
	soma_trace (dict)

	ais_trace (dict)

	Return type:

	bool

efel.units

Module to get units of efeatures.

Functions

	get_unit(feature_name)

	Get the unit of a feature.

	
efel.units.get_unit(feature_name)

	Get the unit of a feature.

	Parameters:

	feature_name (str)

	Return type:

	str

efel.settings

efel Settings class

Classes

	Settings([Threshold, DerivativeThreshold, ...])

	eFEL settings class.

	
class efel.settings.Settings(Threshold=-20.0, DerivativeThreshold=10.0, DownDerivativeThreshold=-12.0, dependencyfile_path='/home/docs/checkouts/readthedocs.org/user_builds/efel/envs/latest/lib/python3.10/site-packages/efel/DependencyV5.txt', spike_skipf=0.1, max_spike_skip=2, interp_step=0.1, burst_factor=1.5, strict_burst_factor=2.0, voltage_base_start_perc=0.9, voltage_base_end_perc=1.0, current_base_start_perc=0.9, current_base_end_perc=1.0, rise_start_perc=0.0, rise_end_perc=1.0, initial_perc=0.1, min_spike_height=20.0, strict_stiminterval=False, initburst_freq_threshold=50, initburst_sahp_start=5, initburst_sahp_end=100, DerivativeWindow=3, voltage_base_mode='mean', current_base_mode='mean', precision_threshold=1e-10, sahp_start=5.0, ignore_first_ISI=True, impedance_max_freq=50.0)

	eFEL settings class.

	
Threshold

	Spike detection threshold (default: -20.0).

	Type:

	float

	
DerivativeThreshold

	Threshold value for derivative calculations

	Type:

	float

	
(default

	10.0).

	
DownDerivativeThreshold

	Threshold value for downward derivative

	Type:

	float

	
calculations (default

	-12.0).

	
dependencyfile_path

	Path to the dependency file

	Type:

	str

	
(default

	‘DependencyV5.txt’).

	
spike_skipf

	Fraction of spikes to skip (default: 0.1).

	Type:

	float

	
max_spike_skip

	Maximum number of spikes to skip (default: 2).

	Type:

	int

	
interp_step

	Interpolation step (default: 0.1).

	Type:

	float

	
burst_factor

	Burst factor (default: 1.5).

	Type:

	float

	
strict_burst_factor

	Strict burst factor (default: 2.0).

	Type:

	float

	
voltage_base_start_perc

	Voltage base start percentage (default: 0.9).

	Type:

	float

	
voltage_base_end_perc

	Voltage base end percentage (default: 1.0).

	Type:

	float

	
current_base_start_perc

	Current base start percentage (default: 0.9).

	Type:

	float

	
current_base_end_perc

	Current base end percentage (default: 1.0).

	Type:

	float

	
rise_start_perc

	Rise start percentage (default: 0.0).

	Type:

	float

	
rise_end_perc

	Rise end percentage (default: 1.0).

	Type:

	float

	
initial_perc

	Initial percentage (default: 0.1).

	Type:

	float

	
min_spike_height

	Minimum spike height (default: 20.0).

	Type:

	float

	
strict_stiminterval

	Strict stimulus interval (default: False).

	Type:

	bool

	
initburst_freq_threshold

	Initial burst frequency threshold

	Type:

	int

	
(default

	
	

	
initburst_sahp_start

	Initial burst SAHP start (default: 5).

	Type:

	int

	
initburst_sahp_end

	Initial burst SAHP end (default: 100).

	Type:

	int

	
DerivativeWindow

	Derivative window (default: 3).

	Type:

	int

	
voltage_base_mode

	Voltage base mode (default: “mean”).

	Type:

	str

	
current_base_mode

	Current base mode (default: “mean”).

	Type:

	str

	
precision_threshold

	Precision threshold (default: 1e-10).

	Type:

	float

	
sahp_start

	SAHP start (default: 5.0).

	Type:

	float

	
ignore_first_ISI

	Ignore first ISI (default: True).

	Type:

	bool

	
impedance_max_freq

	Impedance maximum frequency (default: 50.0).

	Type:

	float

	Parameters:

	
	Threshold (float)

	DerivativeThreshold (float)

	DownDerivativeThreshold (float)

	dependencyfile_path (str)

	spike_skipf (float)

	max_spike_skip (int)

	interp_step (float)

	burst_factor (float)

	strict_burst_factor (float)

	voltage_base_start_perc (float)

	voltage_base_end_perc (float)

	current_base_start_perc (float)

	current_base_end_perc (float)

	rise_start_perc (float)

	rise_end_perc (float)

	initial_perc (float)

	min_spike_height (float)

	strict_stiminterval (bool)

	initburst_freq_threshold (int)

	initburst_sahp_start (int)

	initburst_sahp_end (int)

	DerivativeWindow (int)

	voltage_base_mode (str)

	current_base_mode (str)

	precision_threshold (float)

	sahp_start (float)

	ignore_first_ISI (bool)

	impedance_max_freq (float)

	
reset_to_default()

	Reset settings to their default values

	
set_setting(setting_name, new_value)

	Set a certain setting to a new value.

	Parameters:

	
	setting_name (str) – Name of the setting to be modified.

	new_value (Union[int, float, str, bool]) – New value for the setting.

	Raises:

	
	ValueError – If the value is of the wrong type.

	FileNotFoundError – If the path to the dependency file does not exist

	(for 'dependencyfile_path' setting). –

	Return type:

	None

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

5.6.20 - 2024-05

	Refactored LibV1, LibV2, LibV3, LibV5 into more meaningful categories: SpikeEvent, SpikeShape and Subthreshold.

5.6.6 - 2024-04

	Adding AP_height to documentation

5.6.0 - 2024-02

	Reduce 3 alternative implementations to get ISIs into 1.

	“all_ISI_values” is recommended, “ISI_values” and “ISIs” are deprecated.

	The features depending on “ISI_values” are moved to Python and now they depend on “all_ISI_values”.

	BUGFIX: single_burst_ratio, irregularity_index, burst_mean_freq, interburst_voltage features were ignoring the first two ISIs when the ignore_first_ISI was set.

	Added new feature: inv_ISI_values that computes and returns all of the inverse isi values.

5.5.5 - 2024-01

	Type annotate api.py’s functions.

	Deprecate camel case function names in api.py.

	Start using same requirements_docs.txt in readthedocs and tox.

	Enable autodoc and typehints in the API documentation.

	Fix docstring errors in the io module.

	Add changelog to the documentation.

[5.5.4] - 2024-01

	New feature: phaseslope_max

5.5.3 - 2024-01

	Add type stub for cppcore module to make Python recognise the C++ functions’ arguments and return values.

5.5.0 - 2024-01

C++ changes

	AP_end_indices, AP_rise_time, AP_fall_time, AP_rise_rate, AP_fall_rate do not take into account peaks before stim_start anymore.

	New test and test data for spontaneous firing case. The data is provided by github user SzaBoglarka using cell https://modeldb.science/114047.

5.4.0 - 2024-01

C++ changes

	New C++ function getFeatures replaced getVec.

	getFeatures automatically handles failures & distinguishes empty results from failures.

	Centralized error handling in getFeatures shortens the code by removing repetitions.

	C++ features’ access is restricted. Read-only references are marked const.

	Removed wildcard features from C++ API. Use of Python is encouraged for that purpose.

Python changes

	bpap_attenuation feature is added to the Python API.

	Spikecount, Spikecount_stimint, burst_number, strict_burst_number and trace_check features migrated to Python from C++.

	check_ais_initiation is added to the Python API.

Developer’s Guide

Contents

	Developer’s Guide

	Requirements

	Forking and cloning the git repository

	Makefile

	Adding a new eFeature

	Picking a name

	Creating a branch

	Implementation

	Updating relevant files

	Adding a test

	Add documentation

	Pull request

Requirements

As a developer you will need some extra requirements

	To get the latest source code: Git [https://git-scm.com/]

	To run the tests: Pytest [https://readthedocs.org/projects/pytest/]

	To build the documentation: Sphinx [http://sphinx-doc.org/], and pdflatex
(e.g. from Mactex [https://tug.org/mactex/])

Forking and cloning the git repository

To make changes to the eFEL, one first needs to fork the eFEL:

https://help.github.com/articles/fork-a-repo/

Then one creates a local clone of the git repository on your computer:

git clone https://github.com/yourgithubusername/eFEL.git

After changes are made, they should be pushed back to your github account.
Then a pull request can be created:

https://help.github.com/articles/using-pull-requests/

Makefile

To simplify certain tasks for developers, a Makefile is provided in the root of
the eFEL project. This Makefile has the following targets

	install: installs the eFEL using pip from the working directory

	test: run the installation and all the tests

	doc: build the sphinx and latex documentation

	clean: clean up the build directories

	pypi: run test target and upload to pypi

	push: clean the build, update the version from the git hash, install eFEL,
run the tests, build the doc, and push the documentation and source to github

Adding a new eFeature

Adding a new eFeature requires several steps.

Picking a name

Try to be specific in the name of the eFeature, because in the future you or
somebody else might want to develop an eFeature with slightly different
behavior. Don’t be afraid to use long names, e.g. ‘min_voltage_between_spikes’
is perfectly ok.

Creating a branch

Create a git branch with the name of the new eFeature:

git checkout -b your_efeaturename

Implementation

All the eFeatures in the eFEL are coded in C++. Thanks to an
eFeatures dependency settings file [https://github.com/BlueBrain/eFEL/blob/master/efel/DependencyV5.txt],
several implementation of the same eFeature name can coexist. E.g.
this [https://github.com/BlueBrain/eFEL/blob/master/efel/cppcore/LibV5.cpp]
is the file with the implementations of all ‘V5’ features.
You can implement the new eFeature by extending one of the current LibV* files,
or by creating your own.
You might want to consider starting the implementation by writing a test for
the eFeature (see below for instruction on how to do that).

Updating relevant files

Apart from the implementation in the LibV*.cpp file, other files have to be
changed to accomodate the new eFeature

	efel/cppcore/LibV5.h: Declare your feature

	efel/DependencyV5.txt: Add your eFeature and its dependencies to this file

	efel/cppcore/FillFptrTable.cpp: Add a reference to the eFeature in the
relevant table

	efel/cppcore/cfeature.cpp: Add the type of the eFeature

	AUTHORS.txt: If your name isn’t there yet, add yourself to the authors list

	efel/units/units.json: Add the units of the eFeature to the API

You can confirm everything compiles correctly by executing:

make test

Adding a test

Most eFeatures are fairly easy to implement in Python, so it is advised to first
write a Python implementation of your eFeature, and to add a test to it.
Then, while you are implementing the code in C++ you can easily compare the
results to the test.

The tests of the individual eFeatures are
here [https://github.com/BlueBrain/eFEL/blob/master/tests/test_basic.py]
.Just add your own test by defining a new function ‘test_yourfeature()’.

Some test data is available
at this link [https://github.com/BlueBrain/eFEL/tree/master/tests/testdata/basic]
, but you can of course add your own traces.

The easiest way to run the tests is by executing:

make test

Add documentation

Add the documentation of the new eFeature to this file:

https://github.com/BlueBrain/eFEL/blob/master/docs/source/eFeatures.rst

Please provide some pseudo-Python code for the eFeature.

The documentation can be built by:

make doc

It can be viewed by opening:

docs/build/html/index.html

To build the documentation, pdflatex has to be present on the system. On a Mac
this can be installed using Mactex [https://tug.org/mactex/]. On Ubuntu one
can use:

sudo apt-get install texlive-latex-base texlive-latex-extra xzdec
tlmgr install helvetic

Pull request

When all the above steps were succesfull, you can push the
new eFeature branch to your github repository:

git commit -a
git push origin your_efeaturename

Finally create a pull request:

https://help.github.com/articles/using-pull-requests/

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 efel	

 	
 	
 efel.api	

 	
 	
 efel.io	

 	
 	
 efel.pyfeatures.cppfeature_access	

 	
 	
 efel.pyfeatures.isi	

 	
 	
 efel.pyfeatures.multitrace	

 	
 	
 efel.pyfeatures.pyfeatures	

 	
 	
 efel.pyfeatures.validation	

 	
 	
 efel.settings	

 	
 	
 efel.units	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | V

B

 	
 	bpap_attenuation() (in module efel.pyfeatures.multitrace)

 	burst_factor (efel.settings.Settings attribute)

 	
 	burst_ISI_indices() (in module efel.pyfeatures.isi)

 	burst_mean_freq() (in module efel.pyfeatures.isi)

 	burst_number() (in module efel.pyfeatures.pyfeatures)

C

 	
 	check_ais_initiation() (in module efel.pyfeatures.validation)

 	current() (in module efel.pyfeatures.pyfeatures)

 	
 	current_base_end_perc (efel.settings.Settings attribute)

 	current_base_mode (efel.settings.Settings attribute)

 	current_base_start_perc (efel.settings.Settings attribute)

D

 	
 	dependencyfile_path (efel.settings.Settings attribute)

 	depol_block() (in module efel.pyfeatures.pyfeatures)

 	depol_block_bool() (in module efel.pyfeatures.pyfeatures)

 	
 	DerivativeThreshold (efel.settings.Settings attribute)

 	DerivativeWindow (efel.settings.Settings attribute)

 	DownDerivativeThreshold (efel.settings.Settings attribute)

E

 	
 	
 efel

 	module

 	
 efel.api

 	module

 	
 efel.io

 	module

 	
 efel.pyfeatures.cppfeature_access

 	module

 	
 efel.pyfeatures.isi

 	module

 	
 	
 efel.pyfeatures.multitrace

 	module

 	
 efel.pyfeatures.pyfeatures

 	module

 	
 efel.pyfeatures.validation

 	module

 	
 efel.settings

 	module

 	
 efel.units

 	module

 	extract_stim_times_from_neo_data() (in module efel.io)

F

 	
 	feature_name_exists() (in module efel.api)

G

 	
 	get_cpp_feature() (in module efel.pyfeatures.cppfeature_access)

 	get_dependency_file_location() (in module efel.api)

 	get_distance() (in module efel.api)

 	get_feature_names() (in module efel.api)

 	
 	get_feature_values() (in module efel.api)

 	get_mean_feature_values() (in module efel.api)

 	get_py_feature() (in module efel.api)

 	get_settings() (in module efel.api)

 	get_unit() (in module efel.units)

I

 	
 	ignore_first_ISI (efel.settings.Settings attribute)

 	impedance_max_freq (efel.settings.Settings attribute)

 	initburst_freq_threshold (efel.settings.Settings attribute)

 	initburst_sahp() (in module efel.pyfeatures.isi)

 	initburst_sahp_end (efel.settings.Settings attribute)

 	initburst_sahp_ssse() (in module efel.pyfeatures.pyfeatures)

 	initburst_sahp_start (efel.settings.Settings attribute)

 	initburst_sahp_vb() (in module efel.pyfeatures.pyfeatures)

 	initial_perc (efel.settings.Settings attribute)

 	interburst_voltage() (in module efel.pyfeatures.isi)

 	interp_step (efel.settings.Settings attribute)

 	inv_fifth_ISI() (in module efel.pyfeatures.isi)

 	
 	inv_first_ISI() (in module efel.pyfeatures.isi)

 	inv_fourth_ISI() (in module efel.pyfeatures.isi)

 	inv_ISI_values() (in module efel.pyfeatures.isi)

 	inv_last_ISI() (in module efel.pyfeatures.isi)

 	inv_second_ISI() (in module efel.pyfeatures.isi)

 	inv_third_ISI() (in module efel.pyfeatures.isi)

 	irregularity_index() (in module efel.pyfeatures.isi)

 	ISI_CV() (in module efel.pyfeatures.isi)

 	ISI_log_slope() (in module efel.pyfeatures.isi)

 	ISI_log_slope_skip() (in module efel.pyfeatures.isi)

 	ISI_semilog_slope() (in module efel.pyfeatures.isi)

 	ISI_values() (in module efel.pyfeatures.isi)

 	ISIs() (in module efel.pyfeatures.isi)

L

 	
 	load_ascii_input() (in module efel.io)

 	
 	load_neo_file() (in module efel.io)

M

 	
 	max_spike_skip (efel.settings.Settings attribute)

 	min_spike_height (efel.settings.Settings attribute)

 	
 module

 	efel

 	efel.api

 	efel.io

 	efel.pyfeatures.cppfeature_access

 	efel.pyfeatures.isi

 	efel.pyfeatures.multitrace

 	efel.pyfeatures.pyfeatures

 	efel.pyfeatures.validation

 	efel.settings

 	efel.units

P

 	
 	phaseslope_max() (in module efel.pyfeatures.pyfeatures)

 	
 	precision_threshold (efel.settings.Settings attribute)

R

 	
 	reset() (in module efel.api)

 	reset_to_default() (efel.settings.Settings method)

 	
 	rise_end_perc (efel.settings.Settings attribute)

 	rise_start_perc (efel.settings.Settings attribute)

S

 	
 	sahp_start (efel.settings.Settings attribute)

 	save_feature_to_csv() (in module efel.io)

 	save_feature_to_json() (in module efel.io)

 	set_dependency_file_location() (in module efel.api)

 	set_derivative_threshold() (in module efel.api)

 	set_double_setting() (in module efel.api)

 	set_int_setting() (in module efel.api)

 	set_setting() (efel.settings.Settings method)

 	(in module efel.api)

 	set_str_setting() (in module efel.api)

 	set_threshold() (in module efel.api)

 	
 	Settings (class in efel.settings)

 	single_burst_ratio() (in module efel.pyfeatures.isi)

 	spike_count() (in module efel.pyfeatures.pyfeatures)

 	spike_count_stimint() (in module efel.pyfeatures.pyfeatures)

 	spike_skipf (efel.settings.Settings attribute)

 	spikes_in_burst1_burst2_diff() (in module efel.pyfeatures.pyfeatures)

 	spikes_in_burst1_burstlast_diff() (in module efel.pyfeatures.pyfeatures)

 	spikes_per_burst() (in module efel.pyfeatures.pyfeatures)

 	spikes_per_burst_diff() (in module efel.pyfeatures.pyfeatures)

 	strict_burst_factor (efel.settings.Settings attribute)

 	strict_burst_number() (in module efel.pyfeatures.isi)

 	strict_stiminterval (efel.settings.Settings attribute)

T

 	
 	Threshold (efel.settings.Settings attribute)

 	
 	time() (in module efel.pyfeatures.pyfeatures)

 	trace_check() (in module efel.pyfeatures.pyfeatures)

V

 	
 	voltage() (in module efel.pyfeatures.pyfeatures)

 	voltage_base_end_perc (efel.settings.Settings attribute)

 	
 	voltage_base_mode (efel.settings.Settings attribute)

 	voltage_base_start_perc (efel.settings.Settings attribute)

 _static/plus.png

_static/file.png

_static/minus.png

_static/figures/AP_duration_half_width.png
-------AP_duration_half_width-----; “**=

- peak_indices
Iy

2
AP_iise_indices_| . AP_fall indices ¥
—»]
4
"

AP_begin_indices

_static/figures/inv_ISI.png
inv_second_ISI
inv_first_ISI inv_third_ISI

inv_time_to_first_spike inv_fourth_ISI inv_fifth_ISI 1/=inv_last_ISI
A

e

Sl

time_to,_last_spike

_static/figures/AHP.png
peak_indices 0—0 AHP_time_from_peak_last

i
AHPJmeﬁ\from _peak

{ AHP ndices;
‘minimum found)

_static/figures/AP_Amplitude.png
- AP_amplitude -~

AP1_amp Uses
AP2_amp

 voltage

2 - AP_begin_indices

_static/figures/sag.png
voltage_base

>

E
steady_state S| 50ms

. ¢ sag_amplitude
minimum_voltage

_static/figures/voltage_features.png
(old: voltage_deflection_begin) (old: voltage_deflection)
90% min_duringstim_from_voltage_base / steady_state_voltage_stimend_from_voltage_base

voltage_base || (max_duringstim_from_voltage_base)
>
E
<| soms
min_duringstim / i 90%
(max_duringstim) steady_state_voltage_stimend

diff_max_duringstim: = max_duringstim - steady_state_voltage_stimend
diff_max_duringstim: = max_duringstim - steady_state_voltage_stimend

nav.xhtml

 Table of Contents

 		
 Electrophys Feature Extraction Library

 		
 Installation

 		
 Requirements

 		
 Installation using pip

 		
 Installing the C++ standalone library

 		
 Examples

 		
 Quick start

 		
 DEAP optimisation

 		
 Introduction

 		
 Evaluation function

 		
 Setting up the algorithm

 		
 Running the code

 		
 Reading different file formats

 		
 Stimulus information within the file

 		
 Loading NWB files using Neo

 		
 Use of eFEL on the models downloaded from the Neocortical Microcircuit Portal

 		
 Extracting features from SONATA Network simulations

 		
 eFeature descriptions

 		
 Implemented eFeatures

 		
 Spike event features

 		
 Spike shape features

 		
 Subthreshold features

 		
 Python API

 		
 Submodules

 		
 efel.api

 		
 efel.io

 		
 efel.pyfeatures.cppfeature_access

 		
 efel.pyfeatures.isi

 		
 efel.pyfeatures.multitrace

 		
 efel.pyfeatures.pyfeatures

 		
 efel.pyfeatures.validation

 		
 efel.units

 		
 efel.settings

 		
 Changelog

 		
 5.6.20 - 2024-05

 		
 5.6.6 - 2024-04

 		
 5.6.0 - 2024-02

 		
 5.5.5 - 2024-01

 		
 [5.5.4] - 2024-01

 		
 5.5.3 - 2024-01

 		
 5.5.0 - 2024-01

 		
 C++ changes

 		
 5.4.0 - 2024-01

 		
 C++ changes

 		
 Python changes

 		
 Developer’s Guide

 		
 Requirements

 		
 Forking and cloning the git repository

 		
 Makefile

 		
 Adding a new eFeature

 		
 Picking a name

 		
 Creating a branch

 		
 Implementation

 		
 Updating relevant files

 		
 Adding a test

 		
 Add documentation

 		
 Pull request

_images/AHP.png
peak_indices 0—0 AHP_time_from_peak_last

i
AHPJmeﬁ\from _peak

{ AHP ndices;
‘minimum found)

_images/L5TTPC2_14_2.png
vm (mv)

20

-80

500

1000

1500
time (ms)

2000

2500

3000

_images/L5TTPC2_14_3.png
vm (mv)

20

500

1000

1500
time (ms)

2000

2500

3000

_images/AP_Amplitude.png
- AP_amplitude -~

AP1_amp Uses
AP2_amp

 voltage

2 - AP_begin_indices

_images/AP_duration_half_width.png
-------AP_duration_half_width-----; “**=

- peak_indices
Iy

2
AP_iise_indices_| . AP_fall indices ¥
—»]
4
"

AP_begin_indices

_images/L5TTPC2_14_4.png
vm (mv)

20

-80

500

1000

1500
time (ms)

2000

2500

3000

_images/L5TTPC2_22_0.png
n o+ om
(zH) Kouanbayy ueapy

0

Step number

_images/L5TTPC2_24_0.png
vm (mv)

20

-80

500

1000

1500
Time (ms)

2000

2500

3000

_images/inv_ISI.png
inv_second_ISI
inv_first_ISI inv_third_ISI

inv_time_to_first_spike inv_fourth_ISI inv_fifth_ISI 1/=inv_last_ISI
A

e

Sl

time_to,_last_spike

_images/load_nwb_10_0.png
Burst Mean Freq: 28.96 Hz

Voltage Trace
Burst Interval

g © o o <o o
- R

(Aw) aBe3jon

-50

-60
-70

600

550

500

450

400

0

35

300

250

Time (ms)

_images/L5TTPC2_24_1.png
vm (mv)

20

500

1000

1500
Time (ms)

2000

2500

3000

_images/L5TTPC2_24_2.png
vm (mv)

20

500

1000

1500
Time (ms)

2000

2500

3000

_images/sonata-network_11_0.png
20

g

(Aw) aBerion

50

-0

100

Time (ms)

_images/sonata-network_13_0.png
Voltage (mV)

50

-0

— Celld(population_name="SInonbarrel_neurons’, id=0)

\

Time (ms)

_images/load_nwb_7_0.png
°
F

(Aw) 2Be3jon BuRIqUIN

-40

-60

200 300 400 500 600 700
Time (ms)

100

_images/sag.png
voltage_base

>

E
steady_state S| 50ms

. ¢ sag_amplitude
minimum_voltage

_images/sonata-network_21_1.png
vm (mv)

Cellld(population_name="S1nonbarrel_neurons’, id=1)

B o @ EY
Time (ms)

150

_images/sonata-network_21_2.png
vm (mv)

Cellld(population_name="S1nonbarrel_neurons’, id=2)

B o @ EY
Time (ms)

150

_images/sonata-network_21_0.png
vm (mv)

-0

-s0

50

-0

Cellld(population_name="S1nonbarrel_neurons’, id=0)

B

Time (ms)

150

_images/sonata-network_23_2.png
vm (mv)

-10

Cellld(population_name="S1nonbarrel_neurons’, id=2)

— Voltage Trace
© Spike peaks

— inter-spike-intervals (1))

[B o @ E)
Time (ms)

150

_images/voltage_features.png
(old: voltage_deflection_begin) (old: voltage_deflection)
90% min_duringstim_from_voltage_base / steady_state_voltage_stimend_from_voltage_base

voltage_base || (max_duringstim_from_voltage_base)
>
E
<| soms
min_duringstim / i 90%
(max_duringstim) steady_state_voltage_stimend

diff_max_duringstim: = max_duringstim - steady_state_voltage_stimend
diff_max_duringstim: = max_duringstim - steady_state_voltage_stimend

_images/sonata-network_23_0.png
vm (mv)

Cellld(population_name="S1nonbarrel_neurons’, id=0)

— Voltage Trace
© Spike peaks
— inter-spike-intervals (1))

[B o @ E) 150
Time (ms)

_images/sonata-network_23_1.png
vm (mv)

Cellld(population_name="S1nonbarrel_neurons’, id=1)

— Voltage Trace
© Spike peaks

— inter-spike-intervals (1)

[B o @ E)
Time (ms)

150

_static/bbp.jpg

