

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/efdocs/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/efdocs/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Microsoft Open Source Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct [https://opensource.microsoft.com/codeofconduct/].
For more information see the Code of Conduct FAQ [https://opensource.microsoft.com/codeofconduct/faq/] or contact opencode@microsoft.com with any additional questions or comments.

Entity Framework Docs

This project provides the source for docs.microsoft.com/ef [http://docs.microsoft.com/ef/].

We accept pull requests! However, before submitting a pull request, please read the CONTRIBUTING guidelines, which include information on how to build the docs locally, as well as style and organizational guidance.

Contributing to the Entity Framework documentation

The document covers the process for contributing to the articles and code samples that are hosted on the Entity Framework documentation site [https://docs.microsoft.com/ef]. Contributions may be as simple as typo corrections or as complex as new articles.

How to make a simple correction or suggestion

Articles are stored in the repository as Markdown files. Simple changes to the content of a Markdown file can be made in the browser by tapping the Edit link in the upper right corner of the browser window. (In narrow browser windows you might need to expand the options bar to see the Edit link.) Follow the directions to create a pull request (PR). The EF team will review the PR and accept it or suggest changes.

How to make a more complex submission

You’ll need a basic understanding of Git and GitHub.com [https://guides.github.com/activities/hello-world/].

	Open an issue [https://github.com/aspnet/EntityFramework.Docs/issues/new] describing what you want to do, such as change an existing article or create a new one. Wait for approval from the EF team before you invest much time.

	Fork the aspnet/EntityFramework.Docs [https://github.com/aspnet/EntityFramework.Docs/] repo and create a branch for your changes.

	Submit a pull request (PR) to master with your changes.

	Respond to PR feedback.

Markdown syntax

Articles are written in DocFx-flavored Markdown [http://dotnet.github.io/docfx/spec/docfx_flavored_markdown.html], which is a superset of GitHub-flavored Markdown (GFM) [https://guides.github.com/features/mastering-markdown/]. For examples of DFM syntax for UI features commonly used in the EF documentation, see Metadata and Markdown Template [https://github.com/dotnet/docs/blob/master/styleguide/template.md] in the .NET Core repo style guide.

Folder structure conventions

Images, and other static content, are stored in an _static folder within each area/folder of the site.

Code samples are stored in the samples root folder. They are organized into a folder structure that mimics the documentation structure (found under the entity-framework root folder).

Code snippets

Articles frequently contain code snippets to illustrate points. DFM lets you copy code into the Markdown file or refer to a separate code file. We prefer to use separate code files whenever possible, to minimize the chance of errors in the code. The code files should be stored in the repo using the folder structure described above for sample projects.

Here are some examples of DFM code snippet syntax [http://dotnet.github.io/docfx/spec/docfx_flavored_markdown.html#code-snippet].

To render an entire code file as a snippet:

[!code-csharp[Main](../../../samples/core/saving/Program.cs)]

To render a portion of a file as a snippet by using line numbers:

[!code-csharp[Main](../../../samples/core/saving/Program.cs?range=1-10]

For C# snippets, you can reference a C# region [https://msdn.microsoft.com/en-us/library/9a1ybwek.aspx]. Whenever possible, use regions rather than line numbers, because line numbers in a code file tend to change and get out of sync with line number references in Markdown. C# regions can be nested, and if you reference the outer region, the inner #region and #endregion directives are not rendered in a snippet.

To render a C# region named “snippet_Example”:

[!code-csharp[Main](../../../samples/core/saving/Program.cs?name=snippet_Example)]

To highlight selected lines in a rendered snippet (usually renders as yellow background color):

[!code-csharp[Main](../../../samples/core/saving/Program.cs?name=snippet_Example&highlight=1-3,10,20-25)]

Test your changes with DocFX

Test your changes with the DocFX command line tool [https://dotnet.github.io/docfx/tutorial/docfx_getting_started.html#2-use-docfx-as-a-command-line-tool], which creates a locally hosted version of the site. DocFX doesn’t render style and site extensions created for docs.microsoft.com.

DocFX requires the .NET Framework on Windows, or Mono for Linux or macOS.

Windows instructions

	Download and unzip docfx.zip from DocFX releases [https://github.com/dotnet/docfx/releases].

	Add DocFX to your PATH.

	In a command line window, navigate to the cloned repository (which contains the docfx.json file) and run the following command:

docfx -t default --serve

	In a browser, navigate to http://localhost:8080.

Mono instructions

	Install Mono via Homebrew - brew install mono.

	Download the latest version of DocFX [https://github.com/dotnet/docfx/releases/tag/v2.7.2].

	Extract to \bin\docfx.

	Create an alias for docfx:

function docfx {
 mono $HOME/bin/docfx/docfx.exe
}

function docfx-serve {
 mono $HOME/bin/docfx/docfx.exe serve _site
}

	Run docfx in the cloned repository to build the site, and docfx-serve to view the site at http://localhost:8080.

Voice and tone

Our goal is to write documentation that is easily understandable by the widest possible audience. To that end we have established guidelines for writing style that we ask our contributors to follow. For more information, see Voice and tone guidelines [https://github.com/dotnet/docs/blob/master/styleguide/voice-tone.md] in the .NET Core repo.

 This issue tracker is for documentation

For product issues, use https://github.com/aspnet/EntityFramework/issues

layout: HubPage
title: Entity Framework
author: rowanmiller
ms.author: divega
ms.date: 10/27/2016
ms.assetid: 6bb12583-c39a-454c-8d83-d2a2793ca9ef
uid: index

 Entity Framework Documentation

 	
 Entity Framework

 	

 	

 Entity Framework is an object-relational mapper (O/RM) that enables .NET developers to work with a database using .NET objects. It eliminates the need for most of the data-access code that developers usually need to write.

 	

 [image:]

 Entity Framework Core

 EF Core is a lightweight, extensible, and cross-platform version of Entity Framework.

 	

 [image:]

 Entity Framework 6

 EF 6 is a tried and tested data access technology with many years of features and stabilization.

 	

 [image:]

 Choosing

 Find out which version of EF is right for you.

 	

 [image:]

 Port to EF Core

 Guidance on porting and exiting EF 6 application to EF Core.

 	
 EF Core

 	
 all

 	

 EF Core is a lightweight, extensible, and cross-platform version of Entity Framework.

 	

 [image:]

 Get Started

 Overview

 Create a Model

 Query Data

 Save Data

 	

 [image:]

 Tutorials

 .NET Framework

 .NET Core

 ASP.NET Core

 UWP

 more…

 	

 [image:]

 Database providers

 SQL Server

 MySQL

 PostgreSQL

 SQLite

 more…

 	

 [image:]

 ⤤ API Reference

 DbContext

 DbSet<TEntity>

 more…

 	
 EF 6

 	

 	

 EF 6 is a tried and tested data access technology with many years of features and stabilization.

 	

 [image:]

 ⤤ Get Started

 Learn how to access data with Entity Framework 6.

 	

 [image:]

 ⤤ API Reference

 Browse the Entity Framework 6 API, organized by namespace.

Entity Framework

Compare EF Core & EF6

Which One Is Right for You

Feature Comparison

EF6 and EF Core in the Same Application

Porting from EF6 to EF Core

Validate Requirements

Porting an EDMX-Based Model

Porting a Code-Based Model

Entity Framework Core

New in EF Core 2.0

EF Core 1.0 (previous version)

EF Core 1.1 (previous version)

Getting Started

Installing EF Core

.NET Framework (Console, WinForms, WPF, etc.)

.NET Framework - New Database

.NET Framework - Existing Database

.NET Core (Windows, OSX, Linux, etc.)

.NET Core - New Database

ASP.NET Core

ASP.NET Core - New Database

ASP.NET Core - Existing Database

EF Core Tutorial on ASP.NET Core site [https://docs.asp.net/en/latest/data/ef-mvc/intro.html]

Universal Windows Platform (UWP)

UWP - New Database

Creating a Model

Including & Excluding Types

Including & Excluding Properties

Keys (primary)

Generated Values

Required/optional properties

Maximum Length

Concurrency Tokens

Shadow Properties

Relationships

Indexes

Alternate Keys

Inheritance

Backing Fields

Alternating models with same DbContext

Relational Database Modeling

Table Mapping

Column Mapping

Data Types

Primary Keys

Default Schema

Computed Columns

Sequences

Default Values

Indexes

Foreign Key Constraints

Alternate Keys (Unique Constraints)

Inheritance (Relational Database)

Querying Data

Basic Query

Loading Related Data

Client vs. Server Evaluation

Tracking vs. No-Tracking

Raw SQL Queries

Asynchronous Queries

How Query Works

Global Query Filters

Saving Data

Basic Save

Related Data

Cascade Delete

Concurrency Conflicts

Transactions

Asynchronous Saving

🔧 Disconnected Entities

Explicit values for generated properties

Supported .NET Implementations

Database Providers

Microsoft SQL Server

Memory-Optimized Tables

SQLite

SQLite Limitations

PostgreSQL (Npgsql)

IBM Data Server (DB2)

MySQL (Official)

MySQL (Pomelo)

Microsoft SQL Server Compact Edition

InMemory (for Testing)

Devart (MySQL, Oracle, PostgreSQL, SQLite, DB2, and more)

Oracle (not yet available)

MyCat

Writing a Database Provider

Managing Database Schemas

Migrations

Team Environments

Custom Operations

Using a Separate Project

Multiple Providers

Custom History Table

🔧 Create and Drop APIs

🔧 Reverse Engineering

Command-Line Reference

Package Manager Console (Visual Studio)

.NET Core CLI

Design-time DbContext Creation

Design-time Services

Tools & Extensions

LLBLGen Pro

Devart Entity Developer

EFSecondLevelCache.Core

EntityFrameworkCore.Detached

EntityFrameworkCore.Triggers

EntityFrameworkCore.Rx

EntityFrameworkCore.PrimaryKey

EntityFrameworkCore.TypedOriginalValues

EFCore.Practices

LinqKit.Microsoft.EntityFrameworkCore

Microsoft.EntityFrameworkCore.AutoHistory

Microsoft.EntityFrameworkCore.DynamicLinq

Microsoft.EntityFrameworkCore.UnitOfWork

Miscellaneous

Connection Strings

Logging

Connection Resiliency

Testing

Testing with SQLite

Testing with InMemory

Configuring a DbContext

Upgrading from 1.0 RC1 to RC2

Upgrading from 1.0 RC2 to RTM

Upgrading to EF Core 2.0

⤤ API Reference [https://docs.microsoft.com/dotnet/api/?view=efcore-2.0]

Entity Framework 6

⤤ Documentation [http://msdn.com/data/ef]

⤤ API Reference [https://msdn.microsoft.com/library/dn223258.aspx]

title: Quick Overview - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: bc2a2676-bc46-493f-bf49-e3cc97994d57
ms.technology: entity-framework-core

uid: core/index

Entity Framework Core Quick Overview

Entity Framework (EF) Core is a lightweight, extensible, and cross-platform version of the popular Entity Framework data access technology.

EF Core is an object-relational mapper (O/RM) that enables .NET developers to work with a database using .NET objects. It eliminates the need for most of the data-access code that developers usually need to write. EF Core supports many database engines, see Database Providers for details.

If you like to learn by writing code, we’d recommend one of our Getting Started guides to get you started with EF Core.

Latest version: EF Core 2.0

If you are familiar with EF Core and want to jump straight into the details of the new version:

	New features in EF Core 2.0

	Upgrading existing applications to EF Core 2.0

Get Entity Framework Core

Install the NuGet package [https://docs.nuget.org/ndocs/quickstart/use-a-package] for the database provider you want to use. E.g. to install the SQL Server provider in cross-platform development using dotnet tool in the command line:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

Or in Visual Studio, using the Package Manager Console:

Install-Package Microsoft.EntityFrameworkCore.SqlServer

See Database Providers for information on available providers and Installing EF Core for more detailed installation steps.

The Model

With EF Core, data access is performed using a model. A model is made up of entity classes and a derived context that represents a session with the database, allowing you to query and save data. See Creating a Model to learn more.

You can generate a model from an existing database, hand code a model to match your database, or use EF Migrations to create a database from your model (and evolve it as your model changes over time).

using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;

namespace Intro
{
 public class BloggingContext : DbContext
 {
 public DbSet<Blog> Blogs { get; set; }
 public DbSet<Post> Posts { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database=MyDatabase;Trusted_Connection=True;");
 }
 }

 public class Blog
 {
 public int BlogId { get; set; }
 public string Url { get; set; }
 public int Rating { get; set; }
 public List<Post> Posts { get; set; }
 }

 public class Post
 {
 public int PostId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }

 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 }
}

Querying

Instances of your entity classes are retrieved from the database using Language Integrated Query (LINQ). See Querying Data to learn more.

using (var db = new BloggingContext())
{
 var blogs = db.Blogs
 .Where(b => b.Rating > 3)
 .OrderBy(b => b.Url)
 .ToList();
}

Saving Data

Data is created, deleted, and modified in the database using instances of your entity classes. See Saving Data to learn more.

using (var db = new BloggingContext())
{
 var blog = new Blog { Url = "http://sample.com" };
 db.Blogs.Add(blog);
 db.SaveChanges();
}

title: Basic Queries - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: ab6e35f1-397f-41c0-9ef4-85aec5466377
ms.technology: entity-framework-core

uid: core/querying/basic

Basic Queries

Learn how to load entities from the database using Language Integrate Query (LINQ).

[!TIP]You can view this article’s sample [https://github.com/aspnet/EntityFramework.Docs/tree/master/samples/core/Querying] on GitHub.

101 LINQ samples

This page shows a few examples to achieve common tasks with Entity Framework Core. For an extensive set of samples showing what is possible with LINQ, see 101 LINQ Samples [https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b].

Loading all data


``` csharp
using (var context = new BloggingContext())
{
    var blogs = context.Blogs.ToList();
}
```


Loading a single entity


``` csharp
using (var context = new BloggingContext())
{
    var blog = context.Blogs
        .Single(b => b.BlogId == 1);
}
```


Filtering


``` csharp
using (var context = new BloggingContext())
{
    var blogs = context.Blogs
        .Where(b => b.Url.Contains("dotnet"))
        .ToList();
}
```


title: Client vs. Server Evaluation - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 8b6697cc-7067-4dc2-8007-85d80503d123
ms.technology: entity-framework-core

uid: core/querying/client-eval

Client vs. Server Evaluation

Entity Framework Core supports parts of the query being evaluated on the client and parts of it being pushed to the database. It is up to the database provider to determine which parts of the query will be evaluated in the database.

[!TIP]You can view this article’s sample [https://github.com/aspnet/EntityFramework.Docs/tree/master/samples/core/Querying] on GitHub.

Client evaluation

In the following example a helper method is used to standardize URLs for blogs that are returned from a SQL Server database. Because the SQL Server provider has no insight into how this method is implemented, it is not possible to translate it into SQL. All other aspects of the query are evaluated in the database, but passing the returned URL through this method is performed on the client.


``` csharp
var blogs = context.Blogs
    .OrderByDescending(blog => blog.Rating)
    .Select(blog => new
    {
        Id = blog.BlogId,
        Url = StandardizeUrl(blog.Url)
    })
    .ToList();
```
``` csharp
public static string StandardizeUrl(string url)
{
    url = url.ToLower();if (!url.StartsWith("http://"))
{
    url = string.Concat("http://", url);
}

return url;





}


## Disabling client evaluation

While client evaluation can be very useful, in some instances it can result in poor performance. Consider the following query, where the helper method is now used in a filter. Because this can't be performed in the database, all the data is pulled into memory and then the filter is applied on the client. Depending on the amount of data, and how much of that data is filtered out, this could result in poor performance.

<!-- [!code-csharp[Main](samples/core/Querying/Querying/ClientEval/Sample.cs)] -->
``` csharp
var blogs = context.Blogs
 .Where(blog => StandardizeUrl(blog.Url).Contains("dotnet"))
 .ToList();

By default, EF Core will log a warning when client evaluation is performed. See Logging for more information on viewing logging output. You can change the behavior when client evaluation occurs to either throw or do nothing. This is done when setting up the options for your context - typically in DbContext.OnConfiguring, or in Startup.cs if you are using ASP.NET Core.


``` csharp
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
    optionsBuilder
        .UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database=EFQuerying;Trusted_Connection=True;")
        .ConfigureWarnings(warnings => warnings.Throw(RelationalEventId.QueryClientEvaluationWarning));
}
```


title: Tracking vs. No-Tracking Queries - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: e17e060c-929f-4180-8883-40c438fbcc01
ms.technology: entity-framework-core

uid: core/querying/tracking

Tracking vs. No-Tracking Queries

Tracking behavior controls whether or not Entity Framework Core will keep information about an entity instance in its change tracker. If an entity is tracked, any changes detected in the entity will be persisted to the database during SaveChanges(). Entity Framework Core will also fix-up navigation properties between entities that are obtained from a tracking query and entities that were previously loaded into the DbContext instance.

[!TIP]You can view this article’s sample [https://github.com/aspnet/EntityFramework.Docs/tree/master/samples/core/Querying] on GitHub.

Tracking queries

By default, queries that return entity types are tracking. This means you can make changes to those entity instances and have those changes persisted by SaveChanges().

In the following example, the change to the blogs rating will be detected and persisted to the database during SaveChanges().


``` csharp
using (var context = new BloggingContext())
{
    var blog = context.Blogs.SingleOrDefault(b => b.BlogId == 1);
    blog.Rating = 5;
    context.SaveChanges();
}
```


No-tracking queries

No tracking queries are useful when the results are used in a read-only scenario. They are quicker to execute because there is no need to setup change tracking information.

You can swap an individual query to be no-tracking:


``` csharp
using (var context = new BloggingContext())
{
    var blogs = context.Blogs
        .AsNoTracking()
        .ToList();
}
```You can also change the default tracking behavior at the context instance level:


``` csharp
using (var context = new BloggingContext())
{
    context.ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;var blogs = context.Blogs.ToList();





}


> [!NOTE]  
> No tracking queries still perform identity resolution. If the result set contains the same entity multiple times, the same instance of the entity class will be returned for each occurrence in the result set. However, weak references are used to keep track of entities that have already been returned. If a previous result with the same identity goes out of scope, and garbage collection runs, you may get a new entity instance. For more information, see [How Query Works](overview.md).

## Tracking and projections

Even if the result type of the query isn't an entity type, if the result contains entity types they will still be tracked by default. In the following query, which returns an anonymous type, the instances of `Blog` in the result set will be tracked.

<!-- [!code-csharp[Main](samples/core/Querying/Querying/Tracking/Sample.cs?highlight=7)] -->
``` csharp
using (var context = new BloggingContext())
{
 var blog = context.Blogs
 .Select(b =>
 new
 {
 Blog = b,
 Posts = b.Posts.Count()
 });
}

If the result set does not contain any entity types, then no tracking is performed. In the following query, which returns an anonymous type with some of the values from the entity (but no instances of the actual entity type), there is no tracking performed.


``` csharp
using (var context = new BloggingContext())
{
    var blog = context.Blogs
        .Select(b =>
            new
            {
                Id = b.BlogId,
                Url = b.Url
            });
}
```


title: Loading Related Data - EF Core
author: rowanmiller
ms.author: divega
ms.date: 10/27/2016
ms.assetid: f9fb64e2-6699-4d70-a773-592918c04c19
ms.technology: entity-framework-core
uid: core/querying/related-data

Loading Related Data

Entity Framework Core allows you to use the navigation properties in your model to load related entities. There are three common O/RM patterns used to load related data.

	Eager loading means that the related data is loaded from the database as part of the initial query.

	Explicit loading means that the related data is explicitly loaded from the database at a later time.

	Lazy loading means that the related data is transparently loaded from the database when the navigation property is accessed. Lazy loading is not yet possible with EF Core.

[!TIP]You can view this article’s sample [https://github.com/aspnet/EntityFramework.Docs/tree/master/samples/core/Querying] on GitHub.

Eager loading

You can use the Include method to specify related data to be included in query results. In the following example, the blogs that are returned in the results will have their Posts property populated with the related posts.

[!code-csharpMain]

[!TIP]Entity Framework Core will automatically fix-up navigation properties to any other entities that were previously loaded into the context instance. So even if you don’t explicitly include the data for a navigation property, the property may still be populated if some or all of the related entities were previously loaded.

You can include related data from multiple relationships in a single query.

[!code-csharpMain]

Including multiple levels

You can drill down thru relationships to include multiple levels of related data using the ThenInclude method. The following example loads all blogs, their related posts, and the author of each post.

[!code-csharpMain]

You can chain multiple calls to ThenInclude to continue including further levels of related data.

[!code-csharpMain]

You can combine all of this to include related data from multiple levels and multiple roots in the same query.

[!code-csharpMain]

You may want to include multiple related entities for one of the entities that is being included. For example, when querying Blogs, you include Posts and then want to include both the Author and Tags of the Posts. To do this, you need to specify each include path starting at the root. For example, Blog -> Posts -> Author and Blog -> Posts -> Tags. This does not mean you will get redundant joins, in most cases EF will consolidate the joins when generating SQL.

[!code-csharpMain]

Ignored includes

If you change the query so that it no longer returns instances of the entity type that the query began with, then the include operators are ignored.

In the following example, the include operators are based on the Blog, but then the Select operator is used to change the query to return an anonymous type. In this case, the include operators have no effect.

[!code-csharpMain]

By default, EF Core will log a warning when include operators are ignored. See Logging for more information on viewing logging output. You can change the behavior when an include operator is ignored to either throw or do nothing. This is done when setting up the options for your context - typically in DbContext.OnConfiguring, or in Startup.cs if you are using ASP.NET Core.

[!code-csharpMain]

Explicit loading

[!NOTE]This feature was introduced in EF Core 1.1.

You can explicitly load a navigation property via the DbContext.Entry(...) API.

[!code-csharpMain]

You can also explicitly load a navigation property by executing a seperate query that returns the related entities. If change tracking is enabled, then when loading an entity, EF Core will automatically set the navigation properties of the newly-loaded entitiy to refer to any entities already loaded, and set the navigation properties of the already-loaded entities to refer to the newly-loaded entity.

Querying related entities

You can also get a LINQ query that represents the contents of a navigation property.

This allows you to do things such as running an aggregate operator over the related entities without loading them into memory.

[!code-csharpMain]

You can also filter which related entities are loaded into memory.

[!code-csharpMain]

Lazy loading

Lazy loading is not yet supported by EF Core. You can view the lazy loading item on our backlog [https://github.com/aspnet/EntityFramework/issues/3797] to track this feature.

Related data and serialization

Because EF Core will automatically fix-up navigation properties, you can end up with cycles in your object graph. For example, Loading a blog and it’s related posts will result in a blog object that references a collection of posts. Each of those posts will have a reference back to the blog.

Some serialization frameworks do not allow such cycles. For example, Json.NET will throw the following exception if a cycle is encoutered.

Newtonsoft.Json.JsonSerializationException: Self referencing loop detected for property ‘Blog’ with type ‘MyApplication.Models.Blog’.

If you are using ASP.NET Core, you can configure Json.NET to ignore cycles that it finds in the object graph. This is done in the ConfigureServices(...) method in Startup.cs.

public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddMvc()
 .AddJsonOptions(
 options => options.SerializerSettings.ReferenceLoopHandling = Newtonsoft.Json.ReferenceLoopHandling.Ignore
);

 ...
}

title: Querying Data - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 7c65ec3e-46c8-48f8-8232-9e31f96c277b
ms.technology: entity-framework-core

uid: core/querying/index

Querying Data

Entity Framework Core uses Language Integrate Query (LINQ) to query data from the database. LINQ allows you to use C# (or your .NET language of choice) to write strongly typed queries based on your derived context and entity classes. A representation of the LINQ query is passed to the database provider, to be translated in database-specific query language (e.g. SQL for a relational database). For more detailed information on how a query is processed, see How Query Works.

title: Asynchronous Queries - EF Core
author: rowanmiller
ms.author: divega
ms.date: 01/24/2017
ms.assetid: b6429b14-cba0-4af4-878f-b829777c89cb
ms.technology: entity-framework-core
uid: core/querying/async

Asynchronous Queries

Asynchronous queries avoid blocking a thread while the query is executed in the database. This can be useful to avoid freezing the UI of a thick-client application. Asynchronous operations can also increase throughput in a web application, where the thread can be freed up to service other requests while the database operation completes. For more information, see Asynchronous Programming in C# [https://docs.microsoft.com/dotnet/csharp/async].

[!WARNING]EF Core does not support multiple parallel operations being run on the same context instance. You should always wait for an operation to complete before beginning the next operation. This is typically done by using the await keyword on each asynchronous operation.

Entity Framework Core provides a set of asynchronous extension methods that can be used as an alternative to the LINQ methods that cause a query to be executed and results returned. Examples include ToListAsync(), ToArrayAsync(), SingleAsync(), etc. There are not async versions of LINQ operators such as Where(...), OrderBy(...), etc. because these methods only build up the LINQ expression tree and do not cause the query to be executed in the database.

[!IMPORTANT]The EF Core async extension methods are defined in the Microsoft.EntityFrameworkCore namespace. This namespace must be imported for the methods to be available.

[!code-csharpMain]

title: Raw SQL Queries - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 70aae9b5-8743-4557-9c5d-239f688bf418
ms.technology: entity-framework-core

uid: core/querying/raw-sql

Raw SQL Queries

Entity Framework Core allows you to drop down to raw SQL queries when working with a relational database. This can be useful if the query you want to perform can’t be expressed using LINQ, or if using a LINQ query is resulting in inefficient SQL being sent to the database.

[!TIP]You can view this article’s sample [https://github.com/aspnet/EntityFramework.Docs/tree/master/samples/core/Querying] on GitHub.

Limitations

There are a couple of limitations to be aware of when using raw SQL queries:

	SQL queries can only be used to return entity types that are part of your model. There is an enhancement on our backlog to enable returning ad-hoc types from raw SQL queries [https://github.com/aspnet/EntityFramework/issues/1862].

	The SQL query must return data for all properties of the entity type.

	The column names in the result set must match the column names that properties are mapped to. Note this is different from EF6 where property/column mapping was ignored for raw SQL queries and result set column names had to match the property names.

	The SQL query cannot contain related data. However, in many cases you can compose on top of the query using the Include operator to return related data (see Including related data).

Basic raw SQL queries

You can use the FromSql extension method to begin a LINQ query based on a raw SQL query.


``` csharp
var blogs = context.Blogs
    .FromSql("SELECT * FROM dbo.Blogs")
    .ToList();
```Raw SQL queries can be used to execute a stored procedure.


``` csharp
var blogs = context.Blogs
    .FromSql("EXECUTE dbo.GetMostPopularBlogs")
    .ToList();
```


Passing parameters

As with any API that accepts SQL, it is important to parameterize any user input to protect against a SQL injection attack. You can include parameter placeholders in the SQL query string and then supply parameter values as additional arguments. Any parameter values you supply will automatically be converted to a DbParameter.

The following example passes a single parameter to a stored procedure. While this may look like String.Format syntax, the supplied value is wrapped in a parameter and the generated parameter name inserted where the {0} placeholder was specified.


``` csharp
var user = "johndoe";var blogs = context.Blogs
.FromSql(“EXECUTE dbo.GetMostPopularBlogsForUser {0}”, user)
.ToList();


This is the same query but using string interpolation syntax, which is supported in EF Core 2.0 and above:

<!-- [!code-csharp[Main](samples/core/Querying/Querying/RawSQL/Sample.cs)] -->
``` csharp
var user = "johndoe";

var blogs = context.Blogs
 .FromSql($"EXECUTE dbo.GetMostPopularBlogsForUser {user}")
 .ToList();

You can also construct a DbParameter and supply it as a parameter value. This allows you to use named parameters in the SQL query string


``` csharp
var user = new SqlParameter("user", "johndoe");var blogs = context.Blogs

  
    
    
    How Queries Work
    
    

    
 
  
  

    
      
          
            
  

title: How Queries Work - EF Core
author: rowanmiller
ms.author: divega
ms.date: 10/27/2016
ms.assetid: de2e34cd-659b-4cab-b5ed-7a979c6bf120
ms.technology: entity-framework-core
uid: core/querying/overview




How Queries Work

Entity Framework Core uses Language Integrate Query (LINQ) to query data from the database. LINQ allows you to use C# (or your .NET language of choice) to write strongly typed queries based on your derived context and entity classes.


The life of a query

The following is a high level overview of the process each query goes through.


	The LINQ query is processed by Entity Framework Core to build a representation that is ready to be processed by the database provider
	The result is cached so that this processing does not need to be done every time the query is executed





	The result is passed to the database provider
	The database provider identifies which parts of the query can be evaluated in the database

	These parts of the query are translated to database specific query language (e.g. SQL for a relational database)

	One or more queries are sent to the database and the result set returned (results are values from the database, not entity instances)





	For each item in the result set
	If this is a tracking query, EF checks if the data represents an entity already in the change tracker for the context instance
	If so, the existing entity is returned

	If not, a new entity is created, change tracking is setup, and the new entity is returned





	If this is a no-tracking query, EF checks if the data represents an entity already in the result set for this query
	If so, the existing entity is returned (1)

	If not, a new entity is created and returned











(1) No tracking queries use weak references to keep track of entities that have already been returned. If a previous result with the same identity goes out of scope, and garbage collection runs, you may get a new entity instance.




When queries are executed

When you call LINQ operators, you are simply building up an in-memory representation of the query. The query is only sent to the database when the results are consumed.

The most common operations that result in the query being sent to the database are:


	Iterating the results in a for loop

	Using an operator such as ToList, ToArray, Single, Count

	Databinding the results of a query to a UI




[!WARNING]Always validate user input: While EF does provide protection from SQL injection attacks, it does not do any general validation of input. Therefore if values being passed to APIs, used in LINQ queries, assigned to entity properties, etc., come from an untrusted source then appropriate validation, per your application requirements, should be performed. This includes any user input used to dynamically construct queries. Even when using LINQ, if you are accepting user input to build expressions you need to make sure than only intended expressions can be constructed.








          

      

      

    

  

  
    
    
    Global Query Filters
    
    

    
 
  
  

    
      
          
            
  

title: Global Query Filters - EF Core
author: anpete
ms.author: anpete
ms.date: 11/03/2017
ms.technology: entity-framework-core
uid: core/querying/filters




Global Query Filters

Global query filters are LINQ query predicates (a boolean expression typically passed to the LINQ Where query operator) applied to Entity Types in the metadata model (usually in OnModelCreating). Such filters are automatically applied to any LINQ queries involving those Entity Types, including Entity Types referenced indirectly, such as through the use of Include or direct navigation property references. Some common applications of this feature are:


	Soft delete - An Entity Type defines an IsDeleted property.

	Multi-tenancy - An Entity Type defines a TenantId property.




Example

The following example shows how to use Global Query Filters to implement soft-delete and multi-tenancy query behaviors in a simple blogging model.


[!TIP]
You can view this article’s sample [https://github.com/aspnet/EntityFrameworkCore/tree/dev/samples/QueryFilters] on GitHub.


First, define the entities:

[!code-csharpMain]

Note the declaration of a __tenantId_ field on the Blog entity. This will be used to associate each Blog instance with a specific tenant. Also defined is an IsDeleted property on the Post entity type. This is used this to keep track of whether a Post instance has been “soft-deleted”. I.e. The instance is marked as deleted withouth physically removing the underlying data.

Next, configure the query filters in OnModelCreating using the HasQueryFilter API.

[!code-csharpMain]

The predicate expressions passed to the HasQueryFilter calls will now automatically be applied to any LINQ queries for those types.


[!TIP]
Note the use of a DbContext instance level field: _tenantId used to set the current tenant. Model-level filters will use the value from the correct context instance. I.e. The instance that is executing the query.





Disabling Filters

Filters may be disabled for individual LINQ queries by using the IgnoreQueryFilters() operator.

[!code-csharpMain]




Limitations

Global query filters have the following limitations:


	Filters cannot contain references to navigation properties.

	Filters can only be defined for the root Entity Type of an inheritance hierarchy.









          

      

      

    

  

  
    
    
    uid: core/modeling/keys
    
    

    
 
  
  

    
      
          
            
  

title: Keys (primary) - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 912ffef7-86a0-4cdc-a776-55f907459d20
ms.technology: entity-framework-core


uid: core/modeling/keys




Keys (primary)

A key serves as the primary unique identifier for each entity instance. When using a relational database this maps to the concept of a primary key. You can also configure a unique identifier that is not the primary key (see Alternate Keys for more information).


Conventions

By convention, a property named Id or <type name>Id will be configured as the key of an entity.


``` csharp
class Car
{
 public string Id { get; set; }public string Make { get; set; }
public string Model { get; set; }

}

<!-- [!code-csharp[Main](samples/core/Modeling/Conventions/Samples/KeyTypeNameId.cs?highlight=3)] -->
``` csharp
class Car
{
    public string CarId { get; set; }

    public string Make { get; set; }
    public string Model { get; set; }
}








Data Annotations

You can use Data Annotations to configure a single property to be the key of an entity.


``` csharp
class Car
{
 [Key]
 public string LicensePlate { get; set; }public string Make { get; set; }
public string Model { get; set; }

}

Fluent API

You can use the Fluent API to configure a single property to be the key of an entity.

<!-- [!code-csharp[Main](samples/core/Modeling/FluentAPI/Samples/KeySingle.cs?highlight=7,8)] -->
``` csharp
class MyContext : DbContext
{
    public DbSet<Car> Cars { get; set; }

    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Car>()
            .HasKey(c => c.LicensePlate);
    }
}

class Car
{
    public string LicensePlate { get; set; }

    public string Make { get; set; }
    public string Model { get; set; }
}





You can also use the Fluent API to configure multiple properties to be the key of an entity (known as a composite key). Composite keys can only be configured using the Fluent API - conventions will never setup a composite key and you can not use Data Annotations to configure one.


``` csharp
class MyContext : DbContext
{
 public DbSet Cars { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Car>()
 .HasKey(c => new { c.State, c.LicensePlate });
}

}

class Car
{
public string State { get; set; }
public string LicensePlate { get; set; }

public string Make { get; set; }
public string Model { get; set; }

}

 uid: core/modeling/included-types

title: Including & Excluding Types - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: cbe6935e-2679-4b77-8914-a8d772240cf1
ms.technology: entity-framework-core

uid: core/modeling/included-types

Including & Excluding Types

Including a type in the model means that EF has metadata about that type and will attempt to read and write instances from/to the database.

Conventions

By convention, types that are exposed in DbSet properties on your context are included in your model. In addition, types that are mentioned in the OnModelCreating method are also included. Finally, any types that are found by recursively exploring the navigation properties of discovered types are also included in the model.

For example, in the following code listing all three types are discovered:

	Blog because it is exposed in a DbSet property on the context

	Post because it is discovered via the Blog.Posts navigation property

	AuditEntry because it is mentioned in OnModelCreating


``` csharp
class MyContext : DbContext
{
    public DbSet Blogs { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<AuditEntry>();
}





}

public class Blog
{
public int BlogId { get; set; }
public string Url { get; set; }

public List<Post> Posts { get; set; }





}

public class Post
{
public int PostId { get; set; }
public string Title { get; set; }
public string Content { get; set; }

public Blog Blog { get; set; }





}

public class AuditEntry
{
public int AuditEntryId { get; set; }
public string Username { get; set; }
public string Action { get; set; }
}


## Data Annotations

You can use Data Annotations to exclude a type from the model.

<!-- [!code-csharp[Main](samples/core/Modeling/DataAnnotations/Samples/IgnoreType.cs?highlight=9)] -->
``` csharp
public class Blog
{
 public int BlogId { get; set; }
 public string Url { get; set; }

 public BlogMetadata Metadata { get; set; }
}

[NotMapped]
public class BlogMetadata
{
 public DateTime LoadedFromDatabase { get; set; }
}

 Relationships

title: Relationships - EF Core
author: rowanmiller
ms.author: divega
ms.date: 10/27/2016
ms.assetid: 0ff736a3-f1b0-4b58-a49c-4a7094bd6935
ms.technology: entity-framework-core
uid: core/modeling/relationships

Relationships

A relationship defines how two entities relate to each other. In a relational database, this is represented by a foreign key constraint.

[!NOTE]Most of the samples in this article use a one-to-many relationship to demonstrate concepts. For examples of one-to-one and many-to-many relationships see the Other Relationship Patterns section at the end of the article.

Definition of Terms

There are a number of terms used to describe relationships

	Dependent entity: This is the entity that contains the foreign key property(s). Sometimes referred to as the ‘child’ of the relationship.

	Principal entity: This is the entity that contains the primary/alternate key property(s). Sometimes referred to as the ‘parent’ of the relationship.

	Foreign key: The property(s) in the dependent entity that is used to store the values of the principal key property that the entity is related to.

	Principal key: The property(s) that uniquely identifies the principal entity. This may be the primary key or an alternate key.

	Navigation property: A property defined on the principal and/or dependent entity that contains a reference(s) to the related entity(s).
	Collection navigation property: A navigation property that contains references to many related entities.

	Reference navigation property: A navigation property that holds a reference to a single related entity.

	Inverse navigation property: When discussing a particular navigation property, this term refers to the navigation property on the other end of the relationship.

The following code listing shows a one-to-many relationship between Blog and Post

	Post is the dependent entity

	Blog is the principal entity

	Post.BlogId is the foreign key

	Blog.BlogId is the principal key (in this case it is a primary key rather than an alternate key)

	Post.Blog is a reference navigation property

	Blog.Posts is a collection navigation property

	Post.Blog is the inverse navigation property of Blog.Posts (and vice versa)

[!code-csharpMain]

Conventions

By convention, a relationship will be created when there is a navigation property discovered on a type. A property is considered a navigation property if the type it points to can not be mapped as a scalar type by the current database provider.

[!NOTE]Relationships that are discovered by convention will always target the primary key of the principal entity. To target an alternate key, additional configuration must be performed using the Fluent API.

Fully Defined Relationships

The most common pattern for relationships is to have navigation properties defined on both ends of the relationship and a foreign key property defined in the dependent entity class.

	If a pair of navigation properties is found between two types, then they will be configured as inverse navigation properties of the same relationship.

	If the dependent entity contains a property named <primary key property name>, <navigation property name><primary key property name>, or <principal entity name><primary key property name> then it will be configured as the foreign key.

[!code-csharpMain]

[!WARNING]If there are multiple navigation properties defined between two types (i.e. more than one distinct pair of navigations that point to each other), then no relationships will be created by convention and you will need to manually configure them to identify how the navigation properties pair up.

No Foreign Key Property

While it is recommended to have a foreign key property defined in the dependent entity class, it is not required. If no foreign key property is found, a shadow foreign key property will be introduced with the name <navigation property name><principal key property name> (see Shadow Properties for more information).

[!code-csharpMain]

Single Navigation Property

Including just one navigation property (no inverse navigation, and no foreign key property) is enough to have a relationship defined by convention. You can also have a single navigation property and a foreign key property.

[!code-csharpMain]

Cascade Delete

By convention, cascade delete will be set to Cascade for required relationships and ClientSetNull for optional relationships. Cascade means dependent entities are also deleted. ClientSetNull means that dependent entities that are not loaded into memory will remain unchanged and must be manually deleted, or updated to point to a valid principal entity. For entities that are loaded into memory, EF Core will attempt to set the foreign key properties to null.

See the Required and Optional Relationships section for the difference between required and optional relationships.

See Cascade Delete for more details about the different delete behaviors and the defaults used by convention.

Data Annotations

There are two data annotations that can be used to configure relationships, [ForeignKey] and [InverseProperty].

[ForeignKey]

You can use the Data Annotations to configure which property should be used as the foreign key property for a given relationship. This is typically done when the foreign key property is not discovered by convention.

[!code-csharpMain]

[!TIP]The [ForeignKey] annotation can be placed on either navigation property in the relationship. It does not need to go on the navigation property in the dependent entity class.

[InverseProperty]

You can use the Data Annotations to configure how navigation properties on the dependent and principal entities pair up. This is typically done when there is more than one pair of navigation properties between two entity types.

[!code-csharpMain]

Fluent API

To configure a relationship in the Fluent API, you start by identifying the navigation properties that make up the relationship. HasOne or HasMany identifies the navigation property on the entity type you are beginning the configuration on. You then chain a call to WithOne or WithMany to identify the inverse navigation. HasOne/WithOne are used for reference navigation properties and HasMany/WithMany are used for collection navigation properties.

[!code-csharpMain]

Single Navigation Property

If you only have one navigation property then there are parameterless overloads of WithOne and WithMany. This indicates that there is conceptually a reference or collection on the other end of the relationship, but there is no navigation property included in the entity class.

[!code-csharpMain]

Foreign Key

You can use the Fluent API to configure which property should be used as the foreign key property for a given relationship.

[!code-csharpMain]

The following code listing shows how to configure a composite foreign key.

[!code-csharpMain]

You can use the string overload of HasForeignKey(...) to configure a shadow property as a foreign key (see Shadow Properties for more information). We recommend explicitly adding the shadow property to the model before using it as a foreign key (as shown below).

[!code-csharpMain]

Principal Key

If you want the foreign key to reference a property other than the primary key, you can use the Fluent API to configure the principal key property for the relationship. The property that you configure as the principal key will automatically be setup as an alternate key (see Alternate Keys for more information).


``` csharp
class MyContext : DbContext
{
    public DbSet Cars { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<RecordOfSale>()
        .HasOne(s => s.Car)
        .WithMany(c => c.SaleHistory)
        .HasForeignKey(s => s.CarLicensePlate)
        .HasPrincipalKey(c => c.LicensePlate);
}





}

public class Car
{
public int CarId { get; set; }
public string LicensePlate { get; set; }
public string Make { get; set; }
public string Model { get; set; }

public List<RecordOfSale> SaleHistory { get; set; }





}

public class RecordOfSale
{
public int RecordOfSaleId { get; set; }
public DateTime DateSold { get; set; }
public decimal Price { get; set; }

public string CarLicensePlate { get; set; }
public Car Car { get; set; }





}


The following code listing shows how to configure a composite principal key.

<!-- [!code-csharp[Main](samples/core/Modeling/FluentAPI/Samples/Relationships/CompositePrincipalKey.cs?highlight=11)] -->
``` csharp
class MyContext : DbContext
{
 public DbSet<Car> Cars { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<RecordOfSale>()
 .HasOne(s => s.Car)
 .WithMany(c => c.SaleHistory)
 .HasForeignKey(s => new { s.CarState, s.CarLicensePlate })
 .HasPrincipalKey(c => new { c.State, c.LicensePlate });
 }
}

public class Car
{
 public int CarId { get; set; }
 public string State { get; set; }
 public string LicensePlate { get; set; }
 public string Make { get; set; }
 public string Model { get; set; }

 public List<RecordOfSale> SaleHistory { get; set; }
}

public class RecordOfSale
{
 public int RecordOfSaleId { get; set; }
 public DateTime DateSold { get; set; }
 public decimal Price { get; set; }

 public string CarState { get; set; }
 public string CarLicensePlate { get; set; }
 public Car Car { get; set; }
}

[!WARNING]The order in which you specify principal key properties must match the order in which they are specified for the foreign key.

 Generated Values

title: Generated Values - EF Core
author: rowanmiller
ms.author: divega
ms.date: 10/27/2016
ms.assetid: eb082011-11a1-41b4-a108-15daafa03e80
ms.technology: entity-framework-core
uid: core/modeling/generated-properties

Generated Values

Value Generation Patterns

There are three value generation patterns that can be used for properties.

No value generation

No value generation means that you will always supply a valid value to be saved to the database. This valid value must be assigned to new entities before they are added to the context.

Value generated on add

Value generated on add means that a value is generated for new entities.

Depending on the database provider being used, values may be generated client side by EF or in the database. If the value is generated by the database, then EF may assign a temporary value when you add the entity to the context. This temporary value will then be replaced by the database generated value during SaveChanges().

If you add an entity to the context that has a value assigned to the property, then EF will attempt to insert that value rather than generating a new one. A property is considered to have a value assigned if it is not assigned the CLR default value (null for string, 0 for int, Guid.Empty for Guid, etc.). For more information, see [Explicit values for generated properties](..\saving\explicit-values-generated-properties.md).

[!WARNING]How the value is generated for added entities will depend on the database provider being used. Database providers may automatically setup value generation for some property types, but others may require you to manually setup how the value is generated.

For example, when using SQL Server, values will be automatically generated for GUID properties (using the SQL Server sequential GUID algorithm). However, if you specify that a DateTime property is generated on add, then you must setup a way for the values to be generated. One way to do this, is to configure a default value of GETDATE(), see Default Values.

Value generated on add or update

Value generated on add or update means that a new value is generated every time the record is saved (insert or update).

Like value generated on add, if you specify a value for the property on a newly added instance of an entity, that value will be inserted rather than a value being generated. It is also possible to set an explicit value when updating. For more information, see [Explicit values for generated properties](..\saving\explicit-values-generated-properties.md).

[!WARNING]How the value is generated for added and updated entities will depend on the database provider being used. Database providers may automatically setup value generation for some property types, while others will require you to manually setup how the value is generated.

For example, when using SQL Server, byte[] properties that are set as generated on add or update and marked as concurrency tokens, will be setup with the rowversion data type - so that values will be generated in the database. However, if you specify that a DateTime property is generated on add or update, then you must setup a way for the values to be generated. One way to do this, is to configure a default value of GETDATE() (see Default Values) to generate values for new rows. You could then use a database trigger to generate values during updates (such as the following example trigger).

[!code-sqlMain]

Conventions

By convention, primary keys that are of an integer or GUID data type will be setup to have values generated on add. All other properties will be setup with no value generation.

Data Annotations

No value generation (Data Annotations)

[!code-csharpMain]

Value generated on add (Data Annotations)

[!code-csharpMain]

[!WARNING]This just lets EF know that values are generated for added entities, it does not guarantee that EF will setup the actual mechanism to generate values. See Value generated on add section for more details.

Value generated on add or update (Data Annotations)

[!code-csharpMain]

[!WARNING]This just lets EF know that values are generated for added or updated entities, it does not guarantee that EF will setup the actual mechanism to generate values. See Value generated on add or update section for more details.

Fluent API

You can use the Fluent API to change the value generation pattern for a given property.

No value generation (Fluent API)

[!code-csharpMain]

Value generated on add (Fluent API)

[!code-csharpMain]

[!WARNING]ValueGeneratedOnAdd() just lets EF know that values are generated for added entities, it does not guarantee that EF will setup the actual mechanism to generate values. See Value generated on add section for more details.

Value generated on add or update (Fluent API)

[!code-csharpMain]

[!WARNING]This just lets EF know that values are generated for added or updated entities, it does not guarantee that EF will setup the actual mechanism to generate values. See Value generated on add or update section for more details.

 uid: core/modeling/index

title: Creating a Model - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 88253ff3-174e-485c-b3f8-768243d01ee1
ms.technology: entity-framework-core

uid: core/modeling/index

Creating a Model

Entity Framework uses a set of conventions to build a model based on the shape of your entity classes. You can specify additional configuration to supplement and/or override what was discovered by convention.

This article covers configuration that can be applied to a model targeting any data store and that which can be applied when targeting any relational database. Providers may also enable configuration that is specific to a particular data store. For documentation on provider specific configuration see the

 uid: core/modeling/concurrency

title: Concurrency Tokens - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: bc8b1cb0-befe-4b67-8004-26e6c5f69385
ms.technology: entity-framework-core

uid: core/modeling/concurrency

Concurrency Tokens

If a property is configured as a concurrency token then EF will check that no other user has modified that value in the database when saving changes to that record. EF uses an optimistic concurrency pattern, meaning it will assume the value has not changed and try to save the data, but throw if it finds the value has been changed.

For example we may want to configure LastName on Person to be a concurrency token. This means that if one user tries to save some changes to a Person, but another user has changed the LastName then an exception will be thrown. This may be desirable so that your application can prompt the user to ensure this record still represents the same actual person before saving their changes.

[!NOTE]
This page documents how to configure concurrency tokens. See Handling Concurrency for examples of how to use optimistic concurrency in your application.

How concurrency tokens work in EF

Data stores can enforce concurrency tokens by checking that any record being updated or deleted still has the same value for the concurrency token that was assigned when the context originally loaded the data from the database.

For example, relational databases achieve this by including the concurrency token in the WHERE clause of any UPDATE or DELETE commands and checking the number of rows that were affected. If the concurrency token still matches then one row will be updated. If the value in the database has changed, then no rows are updated.

UPDATE [Person] SET [FirstName] = @p1
WHERE [PersonId] = @p0 AND [LastName] = @p2;

Conventions

By convention, properties are never configured as concurrency tokens.

Data Annotations

You can use the Data Annotations to configure a property as a concurrency token.

[!code-csharpMain]

Fluent API

You can use the Fluent API to configure a property as a concurrency token.

[!code-csharpMain]

Timestamp/row version

A timestamp is a property where a new value is generated by the database every time a row is inserted or updated. The property is also treated as a concurrency token. This ensures you will get an exception if anyone else has modified a row that you are trying to update since you queried for the data.

How this is achieved is up to the database provider being used. For SQL Server, timestamp is usually used on a byte[] property, which will be setup as a ROWVERSION column in the database.

Conventions

By convention, properties are never configured as timestamps.

Data Annotations

You can use Data Annotations to configure a property as a timestamp.

[!code-csharpMain]

Fluent API

You can use the Fluent API to configure a property as a timestamp.

[!code-csharpMain]

 uid: core/modeling/required-optional

title: Required/optional properties - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: ddaa0a54-9f43-4c34-aae3-f95c96c69842
ms.technology: entity-framework-core

uid: core/modeling/required-optional

Required and Optional Properties

A property is considered optional if it is valid for it to contain null. If null is not a valid value to be assigned to a property then it is considered to be a required property.

Conventions

By convention, a property whose CLR type can contain null will be configured as optional (string, int?, byte[], etc.). Properties whose CLR type cannot contain null will be configured as required (int, decimal, bool, etc.).

[!NOTE]A property whose CLR type cannot contain null cannot be configured as optional. The property will always be considered required by Entity Framework.

Data Annotations

You can use Data Annotations to indicate that a property is required.


``` csharp
public class Blog
{
    public int BlogId { get; set; }
    [Required]
    public string Url { get; set; }
}
```


Fluent API

You can use the Fluent API to indicate that a property is required.


``` csharp
class MyContext : DbContext
{
    public DbSet Blogs { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Blog>()
        .Property(b => b.Url)
        .IsRequired();
}





}

public class Blog
{
public int BlogId { get; set; }
public string Url { get; set; }
}








  
    
    
    uid: core/modeling/indexes
    
    

    
 
  
  

    
      
          
            
  

title: Indexes - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 85b92003-b692-417d-ac1d-76d40dce664b
ms.technology: entity-framework-core


uid: core/modeling/indexes




Indexes

Indexes are a common concept across many data stores. While their implementation in the data store may vary, they are used to make lookups based on a column (or set of columns) more efficient.


Conventions

By convention, an index is created in each property (or set of properties) that are used as a foreign key.




Data Annotations

Indexes can not be created using data annotations.




Fluent API

You can use the Fluent API to specify an index on a single property. By default, indexes are non-unique.


``` csharp
class MyContext : DbContext
{
 public DbSet Blogs { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>()
 .HasIndex(b => b.Url);
}

}

public class Blog
{
public int BlogId { get; set; }
public string Url { get; set; }
}

You can also specify that an index should be unique, meaning that no two entities can have the same value(s) for the given property(s).

<!-- [!code-csharp[Main](samples/core/Modeling/FluentAPI/Samples/IndexUnique.cs?highlight=3)] -->
``` csharp
        modelBuilder.Entity<Blog>()
            .HasIndex(b => b.Url)
            .IsUnique();





You can also specify an index over more than one column.


``` csharp
class MyContext : DbContext
{
 public DbSet People { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .HasIndex(p => new { p.FirstName, p.LastName });
}

}

public class Person
{
public int PersonId { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
}

> [!TIP]
> There is only one index per distinct set of properties. If you use the Fluent API to configure an index on a set of properties that already has an index defined, either by convention or previous configuration, then you will be changing the definition of that index. This is useful if you want to further configure an index that was created by convention.

 uid: core/modeling/inheritance

title: Inheritance - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 754be334-dd21-450e-9d22-2591e80012a2
ms.technology: entity-framework-core

uid: core/modeling/inheritance

Inheritance

Inheritance in the EF model is used to control how inheritance in the entity classes is represented in the database.

Conventions

By convention, it is up to the database provider to determine how inheritance will be represented in the database. See Inheritance (Relational Database) for how this is handled with a relational database provider.

EF will only setup inheritance if two or more inherited types are explicitly included in the model. EF will not scan for base or derived types that were not otherwise included in the model. You can include types in the model by exposing a DbSet

 uid: core/modeling/shadow-properties

title: Shadow Properties - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 75369266-d2b9-4416-b118-ed238f81f599
ms.technology: entity-framework-core

uid: core/modeling/shadow-properties

Shadow Properties

Shadow properties are properties that are not defined in your .NET entity class but are defined for that entity type in the EF Core model. The value and state of these properties is maintained purely in the Change Tracker.

Shadow properties are useful when there is data in the database that should not be exposed on the mapped entity types. They are most often used for foreign key properties, where the relationship between two entities is represented by a foreign key value in the database, but the relationship is managed on the entity types using navigation properties between the entity types.

Shadow property values can be obtained and changed through the ChangeTracker API.

 context.Entry(myBlog).Property("LastUpdated").CurrentValue = DateTime.Now;

Shadow properties can be referenced in LINQ queries via the EF.Property static method.

var blogs = context.Blogs
 .OrderBy(b => EF.Property<DateTime>(b, "LastUpdated"));

Conventions

Shadow properties can be created by convention when a relationship is discovered but no foreign key property is found in the dependent entity class. In this case, a shadow foreign key property will be introduced. The shadow foreign key property will be named <navigation property name><principal key property name> (the navigation on the dependent entity, which points to the principal entity, is used for the naming). If the principal key property name includes the name of the navigation property, then the name will just be <principal key property name>. If there is no navigation property on the dependent entity, then the principal type name is used in its place.

For example, the following code listing will result in a BlogId shadow property being introduced to the Post entity.


``` csharp
class MyContext : DbContext
{
    public DbSet Blogs { get; set; }
    public DbSet Posts { get; set; }
}public class Blog
{
public int BlogId { get; set; }
public string Url { get; set; }

public List<Post> Posts { get; set; }





}

public class Post
{
public int PostId { get; set; }
public string Title { get; set; }
public string Content { get; set; }

public Blog Blog { get; set; }





}


## Data Annotations

Shadow properties can not be created with data annotations.

## Fluent API

You can use the Fluent API to configure shadow properties. Once you have called the string overload of `Property` you can chain any of the configuration calls you would for other properties.

If the name supplied to the `Property` method matches the name of an existing property (a shadow property or one defined on the entity class), then the code will configure that existing property rather than introducing a new shadow property.

<!-- [!code-csharp[Main](samples/core/Modeling/FluentAPI/Samples/ShadowProperty.cs?highlight=7,8)] -->
``` csharp
class MyContext : DbContext
{
 public DbSet<Blog> Blogs { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Blog>()
 .Property<DateTime>("LastUpdated");
 }
}

public class Blog
{
 public int BlogId { get; set; }
 public string Url { get; set; }
}

 uid: core/modeling/included-properties

title: Including & Excluding Properties - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: e9dff604-3469-4a05-8f9e-18ac281d82a9
ms.technology: entity-framework-core

uid: core/modeling/included-properties

Including & Excluding Properties

Including a property in the model means that EF has metadata about that property and will attempt to read and write values from/to the database.

Conventions

By convention, public properties with a getter and a setter will be included in the model.

Data Annotations

You can use Data Annotations to exclude a property from the model.


``` csharp
public class Blog
{
    public int BlogId { get; set; }
    public string Url { get; set; }[NotMapped]
public DateTime LoadedFromDatabase { get; set; }





}


## Fluent API

You can use the Fluent API to exclude a property from the model.

<!-- [!code-csharp[Main](samples/core/Modeling/FluentAPI/Samples/IgnoreProperty.cs?highlight=7,8)] -->
``` csharp
class MyContext : DbContext
{
 public DbSet<Blog> Blogs { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Blog>()
 .Ignore(b => b.LoadedFromDatabase);
 }
}

public class Blog
{
 public int BlogId { get; set; }
 public string Url { get; set; }

 public DateTime LoadedFromDatabase { get; set; }
}

 uid: core/modeling/alternate-keys

title: Alternate Keys - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: 8a5931d4-b480-4298-af36-0e29d74a37c0
ms.technology: entity-framework-core

uid: core/modeling/alternate-keys

Alternate Keys

An alternate key serves as an alternate unique identifier for each entity instance in addition to the primary key. Alternate keys can be used as the target of a relationship. When using a relational database this maps to the concept of a unique index/constraint on the alternate key column(s) and one or more foreign key constraints that reference the column(s).

[!TIP]If you just want to enforce uniqueness of a column then you want a unique index rather than an alternate key, see Indexes. In EF, alternate keys provide greater functionality than unique indexes because they can be used as the target of a foreign key.

Alternate keys are typically introduced for you when needed and you do not need to manually configure them. See Conventions for more details.

Conventions

By convention, an alternate key is introduced for you when you identify a property, that is not the primary key, as the target of a relationship.


``` csharp
class MyContext : DbContext
{
    public DbSet Blogs { get; set; }
    public DbSet Posts { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Post>()
        .HasOne(p => p.Blog)
        .WithMany(b => b.Posts)
        .HasForeignKey(p => p.BlogUrl)
        .HasPrincipalKey(b => b.Url);
}





}

public class Blog
{
public int BlogId { get; set; }
public string Url { get; set; }

public List<Post> Posts { get; set; }





}

public class Post
{
public int PostId { get; set; }
public string Title { get; set; }
public string Content { get; set; }

public string BlogUrl { get; set; }
public Blog Blog { get; set; }





}


## Data Annotations

Alternate keys can not be configured using Data Annotations.

## Fluent API

You can use the Fluent API to configure a single property to be an alternate key.

<!-- [!code-csharp[Main](samples/core/Modeling/FluentAPI/Samples/AlternateKeySingle.cs?highlight=7,8)] -->
``` csharp
class MyContext : DbContext
{
 public DbSet<Car> Cars { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Car>()
 .HasAlternateKey(c => c.LicensePlate);
 }
}

class Car
{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
 public string Make { get; set; }
 public string Model { get; set; }
}

You can also use the Fluent API to configure multiple properties to be an alternate key (known as a composite alternate key).


``` csharp
class MyContext : DbContext
{
    public DbSet Cars { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Car>()
        .HasAlternateKey(c => new { c.State, c.LicensePlate });
}





}

class Car
{
public int CarId { get; set; }
public string State { get; set; }
public string LicensePlate { get; set; }
public string Make { get; set; }
public string Model { get; set; }
}








  
    
    
    uid: core/modeling/max-length
    
    

    
 
  
  

    
      
          
            
  

title: Maximum Length - EF Core
author: rowanmiller
ms.author: divega

ms.date: 10/27/2016

ms.assetid: c39c5d43-018d-48b8-94f2-b8bc7c686c69
ms.technology: entity-framework-core


uid: core/modeling/max-length




Maximum Length

Configuring a maximum length provides a hint to the data store about the appropriate data type to use for a given property. Maximum length only applies to array data types, such as string and byte[].


[!NOTE]Entity Framework does not do any validation of maximum length before passing data to the provider. It is up to the provider or data store to validate if appropriate. For example, when targeting SQL Server, exceeding the maximum length will result in an exception as the data type of the underlying column will not allow excess data to be stored.



Conventions

By convention, it is left up to the database provider to choose an appropriate data type for properties. For properties that have a length, the database provider will generally choose a data type that allows for the longest length of data. For example, Microsoft SQL Server will use nvarchar(max) for string properties (or nvarchar(450) if the column is used as a key).




Data Annotations

You can use the Data Annotations to configure a maximum length for a property. In this example, targeting SQL Server this would result in the nvarchar(500) data type being used.


``` csharp
public class Blog
{
 public int BlogId { get; set; }
 [MaxLength(500)]
 public string Url { get; set; }
}
```


Fluent API

You can use the Fluent API to configure a maximum length for a property. In this example, targeting SQL Server this would result in the nvarchar(500) data type being used.


``` csharp
class MyContext : DbContext
{
 public DbSet Blogs { get; set; }protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>()
 .Property(b => b.Url)
 .HasMaxLength(500);
}

}

public class Blog
{
public int BlogId { get; set; }
public string Url { get; set; }
}

 uid: core/modeling/backing-field

