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Warning: The eemeter package is under rapid development; we are working quickly toward a stable release. In
the mean time, please proceed to use the package, but as you do so, recognize that the API is in flux and the docs
might not be up-to-date. Feel free to contribute changes or open issues on github to report bugs, request features,
or make suggestions.

This package holds the core methods used by the of the Open Energy Efficiency energy efficiency metering stack.
Specifically, the eemeter package abstracts the process of building and evaluating models of energy consumption
or generation and of using those to evaluate the effect of energy efficiency interventions at a particular site associated
with a particular project.

The eemeter package is only one part of the larger Open Energy Efficiency technology stack. Briefly, the architecture
of the stack is as follows:

• eemeter: Given project and energy data, the eemeter package is responsible for creating models of energy
usage under different project conditions, and for using those models to evaluate energy efficiency projects.

• datastore: The datastore application is responsible for validating and storing project data and associated
energy data, for using the eemeter to evaluate the effectiveness of these projects using the data it stores, and
for storing and serving those results. It exposes as REST API for handling these functions.

• etl: The etl package provides tooling which helps to extract data from various formats, transform that data
into the format accepted by datastore, and load that transformed data into the appropriate datastore instance.
ETL stands for Extract, Transform, Load.

Contents 1
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CHAPTER 1

Usage

1.1 Guides

1.1.1 Introduction

The OpenEEmeter is an open source software package that uses metered energy data to manage aggregate demand
capacity across a portfolio of retail customer accounts. The software package consists of three main parts:

1. an Extract-Transform-Load (ETL) toolkit for processing project, energy, and building data (github);

2. a core calculation library (this package) that implements standardized methods (github); and

3. a datastore application for storing post-ETL inputs and computed outputs (github).

More information about this architecture can be found in Architecture Overview.

Core use cases

The OpenEEmeter has been designed specifically to provide weather-normalized energy savings measurements for a
portfolio of projects using monthly billing data or interval smart meter data. The main outputs for this core use case
are project and portfolio-level are:

• Gross Energy Savings

• Annualized Energy Savings

• Realization Rate (when savings predictions are available)

More information about these methods can be found in Methods Overview.

Other potential use cases

The OpenEEmeter can also be configured to manage energy resources across a portfolio of buildings, including po-
tentially:

• Analytics of raw energy data

• Portfolio management

• Demand side resource management

3

https://github.com/openeemeter/etl/
https://github.com/openeemeter/eemeter/
https://github.com/openeemeter/datastore/


Open Energy Efficiency Meter Documentation, Release v0.4.12-alpha

Data requirements

The EEmeter requires a combination of trace data, project data, and weather data to calculate weather-normalized
savings. At its most rudimentary, the EEmeter requires a trace of consumption data along with project data indicating
the completion date and location of the project.

The completion of a project demarcates the shift between a baseline modeling period and a reporting modeling period.
For more information on this, see Methods Overview.

The EEmeter is configured to manage project and trace data. Trace data can be electricity, natural gas, or solar
photovoltaic data of any frequency - from monthly billing data to high-frequency sensor data (see 1) Meters and Smart
Meters - where does energy data come from?).

Where project and trace data originate from different database sources, a common key must be available to link projects
with their respective traces.

Project data

Project data is typically a set of attributes that can be used for advanced savings analytics, but at minimum must contain
a date to demarcate start and end of intervention periods.

Each project must have, at minimum:

• a unique project id

• start and end dates of known interventions

• a ZIP code (for gathering associated weather data)

• a set of associated traces

Other data can also be associated with projects, including (but not limited to):

• savings predictions

• square footage

• cost

Trace data

Each trace must have, at minimum,

• a link to a project id

• a unique id of its own

• an interpretation

• a set of records

Each record within a trace must have:

• a time period (start and end dates)

• a value and assiciated units of

• a boolean “estimated” flag

The EEmeter will reject traces not meeting built-in data sufficiency requirements.

4 Chapter 1. Usage
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Loading data

The eemeter python package is a calculation engine which is not desigend for data storage. Instead, project and trace
data are stored in the datastore alongside outputs from the eemeter.

To load data into the datastore, EEMeter comes bundled with an ETL Toolkit. If you are deploying the open source
software, you will need to write or customize a parser to load your data into the ETL pipeline. We rely on a python
module called luigi to manage the bulk importation of data.

More on this architecture.

External analysis

You may decide that you want to use EEmeter results to analyze project data that does not get parsed and uploaded
into the datastore. We have made it easy to export your EEmeter results through an API or through a web interface.
Other options include a direct database connection to a BI tool like Tableau or Salesforce.

1.1.2 Background

1) Meters and Smart Meters - where does energy data come from?

Energy data is generated by hardware devices that measure electricity and natural gas flow. A device like this is
generally referred to as a “meter” (though this is distinct from the software-based “EEmeter” - see Methods Overview).
The most common and ubiquitous measuring device is a utility-owned meter used for determining billing. Some
utilities have upgraded their meters to provide hourly or 15-minute interval measurements. These so-called “smart
meters” use Advanced Metering Infrastructure (AMI) to transmit data back to utilities for processing in near-real time.
Other devices that generate energy data include sub-meters, external sensors, and embedded sensors.

Note: The “smart” in smart meter can be a bit of a misnomer. Despite higher measurement frequency and wireless data
transmission, these smart meters collect essentially the same data that electricity meters did in the 1950s. Each meter
datapoint consists of a timestamp and an incremental value of consumption. We call this string of data characterized
by paired sets of timestamps and meter readings a trace. Traces form the basis of the energy modeling in the EEmeter.

Just like the odometer in your car doesn’t tell you how fast you are traveling, the meter on your house doesn’t tell
you how much energy you have consumed. Consumption must be calculated. In the past, energy companies simply
determined your rate of consumption by taking monthly meter readings and calculating the difference. With smart
meters, these datapoints can be captured more frequently and with greater precision, allowing for more sophisticated
forms of billing.

2) Measuring Energy Savings and the Transition to Demand Side Management

The OpenEEmeter replaces traditional approaches to program-related energy measurement. Utilizing newly avail-
able smart meter data, the OpenEEmeter solves the problem of measuring energy savings and opens new doors for
managing demand side programs.

Historically, energy savings have been measured in one of three ways. The first (and least costly) approach is to
take laboratory measurements of different energy-consuming devices (e.g., light bulbs) and calculate the difference
in consumption from one to the next, then estimate the savings over a given period of time, taking into consideration
typical usage patterns. This first approach is limited by the accuracy and availability of physical models.

The second (and most costly) approach samples consumption data prior to and following an intervention of some sort
(e.g., an energy efficiency retrofit), and estimates savings after controlling for building-specific factors like occupancy,

1.1. Guides 5
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temperature, energy intensity, etc. This second approach is limited by low availability of data describing these building-
specific factors (thus making it very costly).

A third (post-hoc) approach has recently emerged that takes a population-level sample of similar buildings and com-
pares with a treatment group of buildings that have received an energy efficiency upgrade (or other intervention). This
approach assumes that all buildings will be affected equally by exogenous factors, leaving only endogenous factors
(i.e., the efficiency upgrade) to account for the energy consumption difference.

In the analog era of traditional meters and monthly bills, efforts to improve energy efficiency emphasized fairly static
and permanent changes in consumption. A whole-home retrofit, for example, would reduce energy demand without
requiring any additional behavioral or lifestyle changes. A one-time intervention would provide years of benefit, and
our metering technology at the time provided a way to measure the performance of these measures.

With the introduction of smart meters, utilities have transitioned from simple efficiency programs to a suite of programs
under the umbrella of demand side management (DSM). These new measures fall into three broad categories including
time of day, demand, and net metering. The OpenEEmeter expands the programmatic interface of energy efficiency to
engage with emergent technologies and market based demand side engagement programs.

3) How the OpenEEmeter is valuable: Baselining, Normalization, and Modeling Energy Use

Smart meter data allows for more complexity in statistical models. Rather than relying on simple regression exper-
iments to normalize energy consumption, analysts can parse the impact of exogenous and endogenous factors inde-
pendently and iteratively. The notion of baseload energy use can even be disaggregated into multiple demand states.
For example, a home will use very little energy when empty, a bit more when occupied, and a large amount when
appliances and heating or cooling systems are operating. These demand states can be measured against various sorts
of interventions, thus enabling both traditional energy efficiency savings measurements, but also leveraging modern
load balancing tools.

The OpenEEmeter calculates energy savings in real time by selecting a sample of consumption data prior to an in-
tervention, weather-normalizing it to establish a baseline, and calculating the difference between projected energy
usage and actual energy usage following the intervention. This method maintains the cost-effectiveness of the naive
predicted savings approach, the real-world integrity of the building efficiency approach, without sacrificing on time as
with the post hoc control group approach.

1.1.3 Architecture Overview

The complete eemeter architecture consists primarily of a datastore application (see datastore), which houses energy
and project data, and a data pipeline toolkit (see ETL Toolkit) that helps get data into the datastore.

These two work in tandem to take raw energy data in whatever form it exists and compute energy savings using the
eemeter package. The methods and models used within the datastore for computing energy savings are kept in a library
package called eemeter, which can also be used independent of the datastore application (see eemeter).

Each of these components are open sourced under an MIT License and can be found on github:

• eemeter

• datastore

• etl

The core calculation engine is separated from the datastore in order to allow easier development of and evaluation of
its methods, but this architecture also makes it possible to embed the calculation engine or any of its useful modules
(such as the weather module) in other applications.

The data structures in each - the eemeter and the datastore - mirror each other. This simplifies data transfer and eases
interpretation of results.

6 Chapter 1. Usage

https://github.com/openeemeter/eemeter/
https://github.com/openeemeter/datastore/
https://github.com/openeemeter/etl/


Open Energy Efficiency Meter Documentation, Release v0.4.12-alpha

1.1.4 Methods Overview

The EEmeter provides multiple methods for calculating energy savings. All of these methods compare energy demand
from a modeled counterfactual pre-intervention baseline to post-intervention energy demand. Some of these methods,
including the most conventional, weather normalize energy demand.

These basic methods 1 rely on a modeled relationship between weather patterns and energy demand. The particular
models used by the EEmeter are described more precisely in Modeling Overview.

Modeling periods

For any savings calculation, the period of time prior to the start of any interventions taking place as part of a project we
term the baseline period. This period is used to establish models of the relationship between energy demand and a set
of factors that represent or contribute to end use demand (such as weather, time of day, or day of week) for a particular
building _prior_ to an intervention. The baseline becomes a reference point from which to make comparisions to post-
intervention energy performance. The baseline period is one of two types of modeling period frequently occurring in
the EEmeter.

The second half of the savings calculation concerns what happens after an intervention. Any post-intervention period
for which energy savings is calculated is called a reporting period because it is the period of time over which energy
savings is reported. A project generally has only one baseline period, but it might have multiple reporting periods.
These are the second type of modeling period to frequent occur in the EEmeter.

The extent of these periods will, in most cases, be determined by the start and end dates of the interventions in a
project. However, in some cases, the intervention dates are not known, or are ongoing, and must be modeled because
they cannot be stated explicitly. We refer to models which account for the latter scenario as structural change models;
these are covered in greater detail in Modeling Overview.

EEmeter structures which capture this logic can be found in the API documentation for eemeter.structures.

Fig. 1.1: Pre-intervention baseline period and post-intervention reporting periods on a project timeline.

Trace modeling

The relationship between energy demand and various external factors can differ drastically from building to building,
and (usually!) changes after an intervention. Modeling these relationships properly with statistical confidence is a core
strength of the EEmeter.

As noted in the background, we term a set of energy data points a trace, and a building or project might be associated
with any number of traces. In order to calculate savings models, each of these traces must be modeled.

Before modeling, traces are segmented into components which overlap each baseline and reporting period of interest,
then are modeled separately. 2 This creates up to 𝑛 *𝑚 models for a project with 𝑛 traces and 𝑚 modeling periods.

Each of these models attempts to establish the relationship between energy demand and external factors as it performed
during the particular modeling period of interest. However, since the extent to which a model successfully describes
these relationships varies significantly, these must be considered only in conjunction with model error and goodness of

1 Additional information on why this method is used in preference to other methods is described in the Introduction.
2 This is not quite true for structural change models. This is covered in more detail in Modeling Overview.

1.1. Guides 7
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fit metrics Modeling Overview. Any estimate of energy demand given by any model fitted by the EEmeter is associated
with variance and confidence bounds.

In practice the number of models fitted for any particular project might be fewer than 𝑛 *𝑚 due to missing or insuf-
ficient data (see Data sufficiency). The EEmeter takes these failures into account and considers them when building
summaries of savings.

Fig. 1.2: An example of trace segmenting with two traces, one baseline period and one reporting period. Trace 1 is
segmented into just one component - the baseline component - because data for the reporting period is missing. Trace
2 is segmented into one baseline component and one reporting component. The segments of Trace 1 and Trace 2 have
different lengths, but models of their energy demand behavior can still be built.

Weather normalization

Once we have created a model, we can apply that model determine an estimate of of energy demand during arbitrary
weather scenarios. The two most common weather scenarios for which the EEmeter will estimate demand are the
“normal” weather year and the observed reporting period weather year. This is generally necessary because the data
observed in the baseline and reporting periods occurred during different time periods with different weather – and
valid comparisons between them must account for this. Estimating energy performance during the “normal” weather
attempts to reduce bias in the savings estimate by accounting for the peculiarity (as compared to other years or seasons)
of the relevant observed weather.

In an attempt to reduce the number of arbitrary factors influencing results, we only ever compare model estimates or
data over that has occurred over the same weather scenario and time period. This helps (in the aggregate) to ensure
equivalency of end use demand pre- and post- intervention.

Savings

If the data and models show that energy demand is reduced relative to equivalent end use demand following an
intervention, we say that there have been energy savings, or equivalently, that energy performance has increased.

Energy savings is necessarily a difference; however, this difference must be taken carefully, given missing data and
model error, and is only taken after the necessary aggregation steps.

The equation for savings is always:

𝑆total = 𝐸b − 𝐸r

or

𝑆percent =
𝐸b−𝐸r

𝐸b

8 Chapter 1. Usage
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where

• 𝑆total is aggregate total savings

• 𝑆percent is aggregate percent savings

• 𝐸b is aggregate energy demand as under baseline period conditions

• 𝐸r is aggregate energy demand as under reporting period conditions

Depending on the type of energy savings desired, the values 𝐸b and 𝐸r may be calculated differently. The following
types of savings are supported:

• Annualized weather normal

• Gross predicted

• Gross observed

Annualized weather normal

The annualized weather normal estimates savings as it may have occurred during a “normal” weather year. It does
this by building models of both the baseline and reporting energy demand and using each to weather-normalize the
energy values.

𝐸b = Mb (Xnormal)

𝐸r = Mr (Xnormal)

where

• Mb is the model of energy demand as built using trace data segmented from the baseline period.

• Mr is the model of energy demand as built using trace data segmented from the reporting period.

• Xnormal are temperature and other covariate values for the weather normal year.

Gross predicted

The gross predicted method estimates savings that have occurred from the completion of the project interventions up
to the date of the meter run.

𝐸b = Mb (Xr)

𝐸r = Mr (Xr)

where

• Mb is the model of energy demand as built using trace data segmented from the baseline period.

• Mr is the model of energy demand as built using trace data segmented from the reporting period.

• Xr are temperature and other covariate values for reporting period.

Gross observed

The gross observed method estimates savings that have occurred from the completion of the project interventions up
to the date of the meter run.

𝐸b = Mb (Xr)

𝐸r = Ar

1.1. Guides 9
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where

• Mb is the model of energy demand as built using trace data segmented from the baseline period.

• Ar are the actual observed energy demand values from the trace data segmented from the baseline period. If the
actual data has missing values, these are interpolated using gross predicted values (i.e., Mr (Xr)).

• Xr are temperature and other covariate values for reporting period.

Aggregation rules

Because even an individual project may have multiple traces describing its energy demand, we must be able to ag-
gregate trace-level results before we can obtain project-level or portfolio-level savings. Ideally, this aggregation is
a simple sum of trace-level values. However, trace-level results are often littered with messy results which must be
accounted for; some may be missing data, have bad model fits, or have entirely failed model builds. The EEmeter
must successfully handle each of these cases, or risk invalidating results for entire portfolios.

The aggregation steps are as follows:

1. Select scope (project, portfolio) and gather all trace data available in that scope

2. Select baseline and reporting period. For portfolio level aggregations in which baseline and reporting periods
may not align, select reporting period type and use the default baseline period for each project.

3. Group traces by interpretation

4. Compute 𝐸b and 𝐸r:

(a) Compute (or retrieve) 𝐸t,b and 𝐸t,r for each trace t.

(b) Determine, for each 𝐸t,b and 𝐸t,r whether or not it meets criteria for inclusion in aggregation.

(c) Discard both 𝐸t,b and 𝐸t,r for any trace for which either 𝐸t,b or 𝐸t,r has been discarded.

(d) Compute 𝐸b =
∑︀

t 𝐸t,b and 𝐸r =
∑︀

t 𝐸t,r for remaining traces. Errors are propgated according to the
principles in Error propogation.

5. Compute savings from 𝐸b and 𝐸r as usual.

Inclusion criteria

For inclusion in aggregates, 𝐸t,b and 𝐸t,r must meet the following criteria

1. If ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED, which represents solar generation, is available,
and if solar panels were installed as one of the project interventions, blank 𝐸t,b should be replaced with 0.

2. Model has been successfully built.

Error propogation

Errors are propgated as if they followed 𝜒2 distributions.

Weather data matching

Since weather and temperature data is so central to the activity of the EEmeter, the particulars of how weather data
is obtained for a project is often of interest. Weather data sources are determined automatically within the EEmeter

10 Chapter 1. Usage



Open Energy Efficiency Meter Documentation, Release v0.4.12-alpha

using an internal mapping 3 bewteen ZIP codes 4 and weather stations. The source of the weather normal data may
differ from the source of the observed weather data.

There is a jupyter notebook outlining the process of constructing the weather data available here.

1.1.5 Modeling Overview

Basic modeling principles

Model error

Data sufficiency

Types of models

Weekday and Seasonal effects regression model

Hidden markov model

1.1.6 Glossary

• annualized weather normal: an estimate of annual energy demand under a weather normal.

• baseline: a pre-intervention reference point or starting point from which to compare post-intervention energy
demand.

• baseline period: a time period before a retrofit of interest for which to model, observe, or estimate energy
performance. Generally used in reference to a reporting period or set of reporting periods.

• building performance: see energy performance.

• demand capacity: the extent to which energy-performance increases from a baseline for a reporting period
following an intervention.

• demand response project: a set of interventions designed to shift the time of day or day of week of energy-
demand, generally toward off-peak hours.

• end use: an energy-consuming service such as lighting, space cooling, space heating, refrigeration, or water
heating, particularly as provided by a building or set of buildings.

• end use demand: the extent to which an end use is needed. May vary by season, occupancy, time of day, day
of week, or purpose of building.

• energy demand: the amount of energy needed to satisfy end use demand.

• energy efficiency project: a set of interventions designed to reduce overall energy demand relative to equivalent
end use demand.

• energy model: a mathematical description of energy demand, particularly in response to end use demand
scenarios.

• energy savings: an increase in energy performance indicating lower energy demand for equivalent end use
demand.

• energy performance: the extent to which end use demand causes energy demand. Higher performance indicates
lower energy demand for equivalent end use demand. Sometimes referred to as building performance.

3 Available on github.
4 The ZIP codes used in this mapping aren’t strictly ZIP codes, they’re actually ZCTAs.
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• energy trace: see trace

• gross observed: an estimate of energy demand over the reporting period as given by baseline models and
observed values from the reporting period.

• gross predicted: an estimate of energy demand as given by the baseline and reporting models evaluated over
the reporting period.

• intervention: a set of upgrades or performance improvements on physical infrastructure of an existing building
(see retrofit), or of behavior of individuals living in an existing building.

• modeling period: a period of time over which an energy model is to be created for a particular trace. This
is a generalization of baseline and reporting periods. Modeling periods generally fall into one of those two
categories.

• projected baseline energy demand: a counterfactual estimate of energy demand as it might have been under a
particular end use demand scenario had an intervention not occurred.

• project: an intervention or retrofit for which there is an expected change in energy demand.

• reporting period: a time period after a retrofit of interest over which to model, observe, or estimate energy
performance. Generally used in reference to a baseline period.

• retrofit: a set of interventions taking place at a particular building or site which modify pre-existing structures,
installations or appliances.

• structural change model: a model which takes tries to determine the most probably extents of baseline and
reporting periods for a project given its trace data.

• trace: a single time series of measured values associated with units at a particular (not necessarily fixed) fre-
quency.

• trace interpretation: the meaning of the trace data. Possible interpretations are outlined in eemeter.structures

• Typical Meteorological Year 3 (TMY3): A set of publicly available weather normals designed by the National
Renewable Energy Laboratory (NREL). Used by EEMeter for weather normalization.

• weather normalization: a technique to account for differences in end use demand due to variations in weather
patterns which uses a model of weather-dependent energy demand to determine a counterfactual energy demand
under a weather conditions described by a weather normal.

• weather normal: a set of (not necessarily observed) weather data designed to reflect a “typical” weather sce-
nario. Often covers a time period of 1 year. Used in weather normalization. See TMY3.

• ZIP Code Tabulation Area (ZCTA): a set of geographical areas based on US Postal Service (USPS) ZIP
codes, necessitated by the fact that ZIP codes do not map easily onto geographies. Built and maintained by the
US Census Bureau. Contains only about three quarters of valid ZIP codes. ZIP code and ZCTA do not always
match. More information.

1.1.7 Why open source?

All of our savings algorithms are free and open source. We don’t believe that standard weights and measures should be
the private property of any particular entity. It’s much better for everyone, from contractors to program administrators,
if the measurement tools are equally available to everyone.

12 Chapter 1. Usage
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1.2 eemeter

1.2.1 Installation

To get started with the eemeter, use pip:

$ pip install eemeter

Make sure you have the latest version:

>>> import eemeter; eemeter.get_version()
'0.4.12'

1.2.2 Topics

Basic Usage

This tutorial will cover the three basic steps for using the eemeter package:

1. data prepartation

2. running meters

3. inspecting results

This tutorial is also available as a jupyter notebook:

Before getting started, download some sample energy data and project data:

• energy data CSV

• project data CSV

This sample data was created using this jupyter notebook which you should reference if you have questions about
the data.

Note: Most users of the EEmeter stack do not directly use the eemeter package for loading their data. Instead, they
use the datastore, which uses the eemeter internally. To learn to use the datastore, head over to this tutorial.

Data preparation

The basic container for project data is the eemeter.structures.Project object. This object contains all of
the data necessary for running a meter.

There are three items it requires:

1. An EnergyTraceSet, which is a collection of EnergyTrace s

2. An list of Intervention s

3. An eemeter.structures.ZIPCodeSite

Let’s start by creating an EnergyTrace. Internally, EnergyTrace objects use numpy and pandas, which are
nearly ubiquitous python packages for efficient numerical computation and data analysis, respectively.

Since this data is not in a format eemeter recognizes, we need to load it. Let’s load this data using a parser we create
to turn this data into a format that eemeter recognizes.

1.2. eemeter 13
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We will load data from formatted records using an eemeter.io.serializer.ArbitraryStartSerializer.

# library imports
from eemeter.structures import (

EnergyTrace,
EnergyTraceSet,
Intervention,
ZIPCodeSite,
Project

)
from eemeter.io.serializers import ArbitraryStartSerializer
from eemeter.ee.meter import EnergyEfficiencyMeter
import pandas as pd
import pytz

First, we import the energy data from the sample CSV and transform it into records.

energy_data = pd.read_csv(
'sample-energy-data_project-ABC_zipcode-50321.csv',
parse_dates=['date'], dtype={'zipcode': str})

records = [{
"start": pytz.UTC.localize(row.date.to_datetime()),
"value": row.value,
"estimated": row.estimated,

} for _, row in energy_data.iterrows()]

The records we just created look like this:

>>> records
[

{
'estimated': False,
'start': datetime.datetime(2011, 1, 1, 0, 0, tzinfo=<UTC>),
'value': 57.8

},
{

'estimated': False,
'start': datetime.datetime(2011, 1, 2, 0, 0, tzinfo=<UTC>),
'value': 64.8

},
{

'estimated': False,
'start': datetime.datetime(2011, 1, 3, 0, 0, tzinfo=<UTC>),
'value': 49.5

},
...

]

Next, we load our records into an EnergyTrace. We give it units "kWh" and interpretation
"ELECTRICITY_CONSUMPTION_SUPPLIED", which means that this is electricity consumed by the building and
supplied by a utility (rather than by solar panels or other on-site generation). We also pass in an instance of the record
serializer ArbitraryStartSerializer to show it how to interpret the records.

energy_trace = EnergyTrace(
records=records,
unit="KWH",
interpretation="ELECTRICITY_CONSUMPTION_SUPPLIED",
serializer=ArbitraryStartSerializer())
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The energy trace data looks like this:

>>> energy_trace.data[:3]
value estimated

2011-01-01 00:00:00+00:00 57.8 False
2011-01-02 00:00:00+00:00 64.8 False
2011-01-03 00:00:00+00:00 49.5 False

Though we only have one trace here, we will often have more than one trace. Because of that, projects expect an
EnergyTraceSet, which is a labeled set of EnergyTrace objects. We give it the trace_id supplied in the
CSV.

energy_trace_set = EnergyTraceSet([energy_trace], labels=["DEF"])

Now we load the rest of the project data from the sample project data CSV. This CSV includes the project_id (Which
we don’t use in this tutorial), the ZIP code of the building, and the dates retrofit work for this project started and
completed.

project_data = pd.read_csv(
'sample-project-data.csv',
parse_dates=['retrofit_start_date', 'retrofit_end_date']).iloc[0]

We create an Intervention from the retrofit start and end dates and wrap it in a list:

retrofit_start_date = pytz.UTC.localize(project_data.retrofit_start_date)
retrofit_end_date = pytz.UTC.localize(project_data.retrofit_end_date)

interventions = [Intervention(retrofit_start_date, retrofit_end_date)]

Then we create a ZIPCodeSite for the project by passing in the zipcode:

site = ZIPCodeSite(project_data.zipcode)

Now we can create a project using the data we’ve loaded:

project = Project(energy_trace_set=energy_trace_set,
interventions=interventions,
site=site)

This completes the eemeter data loading process.

Running meters

To run the EEmeter on the project, instantiate an EnergyEfficiencyMeter and run the
.evaluate(project) method, passing in the project we just created:

meter = EnergyEfficiencyMeter()
results = meter.evaluate(project)

That’s it! Now we can inspect and use our results.

Inspecting Results

Let’s quickly look through the results object so that we can understand what they mean. The results are embedded in
a nested python dict:
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>>> results
{

'weather_normal_source': TMY3WeatherSource("725460"),
'weather_source': ISDWeatherSource("725460"),
'modeling_period_set': ModelingPeriodSet(),
'modeled_energy_traces': {

'DEF': SplitModeledEnergyTrace()
},
'modeled_energy_trace_derivatives': {

'DEF': {
('baseline', 'reporting'): {

'BASELINE': {
'annualized_weather_normal': (11051.638608992347, 142.473017350216, 156.41867795302684, 365),
'gross_predicted': (31806.370855869744, 251.56911436695583, 276.19340851303582, 1138)

},
'REPORTING': {

'annualized_weather_normal': (8758.2778181960675, 121.92101539941024, 137.24631002750746, 365),
'gross_predicted': (25208.101373932539, 215.27979428803133, 242.34015188210202, 1138)

}
}

}
},
'project_derivatives': {

('baseline', 'reporting'): {
'ALL_FUELS_CONSUMPTION_SUPPLIED': {

'BASELINE': {
'annualized_weather_normal': (11051.638608992347, 142.473017350216, 156.41867795302684, 365),
'gross_predicted': (31806.370855869744, 251.56911436695583, 276.19340851303582, 1138)

},
'REPORTING': {

'annualized_weather_normal': (8758.2778181960675, 121.92101539941024, 137.24631002750746, 365),
'gross_predicted': (25208.101373932539, 215.27979428803133, 242.34015188210202, 1138)

}
},
'ELECTRICITY_CONSUMPTION_SUPPLIED': {

'BASELINE': {
'annualized_weather_normal': (11051.638608992347, 142.473017350216, 156.41867795302684, 365),
'gross_predicted': (31806.370855869744, 251.56911436695583, 276.19340851303582, 1138)

},
'REPORTING': {

'annualized_weather_normal': (8758.2778181960675, 121.92101539941024, 137.24631002750746, 365),
'gross_predicted': (25208.101373932539, 215.27979428803133, 242.34015188210202, 1138)

}
},
'ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED': None,
'NATURAL_GAS_CONSUMPTION_SUPPLIED': None

}
},

}

Note the contents of the dictionary:

• ’weather_source’: An instance of eemeter.weather.ISDWeatherSource. The weather source
used to gather observed weather data. The station at which this weather was recorded can be found by inspecting
weather_source.station. (Matched by ZIP code)

• ’weather_normal_source’: An instance of eemeter.weather.TMY3WeatherSource. The
weather normal source used to gather weather normal data. The station at which this weather normal data
was recorded can be found by inspecting weather_normal_source.station. (Matched by ZIP code)
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• ’modeling_period_set’: An instance of eemeter.structures.ModelingPeriodSet. The
modeling periods determined by the intervention start and end dates; includes groupings. The default grouping
for a single intervention is into two modeling periods called “baseline” and “reporting”.

• ’modeled_energy_traces’: SplitModeledEnergyTraces instances keyed by trace_id (as
given in the EnergyTraceSet; includes models and fit statistics for each modeling period.

• ’modeled_energy_trace_derivatives’: energy results specific to each modeled energy trace, orga-
nized by trace_id and modeling period group.

• ’project_derivatives’: Project-level results which are aggregated up from the
’modeled_energy_trace_derivatives’.

The project derivatives are nested quite deeply. The nesting of key-value pairs is as follows:

• 1st layer: Modeling Period Set id: a tuple of 1 baseline period id and 1 reporting period id, usually
(’baseline’, ’reporting’) - contains the results specific to this pair of modeling periods.

• 2nd layer: Trace interpretation: a string describing the trace interpretation; in our case
"ELECTRICITY_CONSUMPTION_SUPPLIED"

• 3rd layer: ’BASELINE’ and ’REPORTING’ - these are fixed labels that always appear at this level; they
demarcate the baseline aggregations and the reporting aggregations.

• 4th layer: ‘annualized_weather_normal’ and ‘gross_predicted’ - these are also fixed labels that always appear
at this level to indicate the type of the savings values.

At the final layers are a 4-tuple of results (value, lower, upper, n): value, indicating the estimated ex-
pected value of the selected result; lower, a number which can be subtracted from value to obtain the lower 95%
confidence interval bound; upper, a number which can be added to value to obtain the upper 95% confidence
interval bound, and n, the total number of records that went into calculation of this value.

To obtain savings numbers, the reporting value should be subtracted from the baseline value as described in Methods
Overview.

Let’s select the most useful results from the eemeter, the project-level derivatives. Note the modeling_period_set
selector at the first level: (‘baseline’, ‘reporting’)

project_derivatives = results['project_derivatives']

>>> project_derivatives.keys()
dict_keys([('baseline', 'reporting')])

modeling_period_set_results = project_derivatives[('baseline', 'reporting')]

Now we can select the desired interpretation; four are available.

>>> modeling_period_set_results.keys()
dict_keys(['NATURAL_GAS_CONSUMPTION_SUPPLIED', 'ALL_FUELS_CONSUMPTION_SUPPLIED', 'ELECTRICITY_CONSUMPTION_SUPPLIED', 'ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED'])

electricity_consumption_supplied_results = modeling_period_set_results['ELECTRICITY_CONSUMPTION_SUPPLIED']

The interpretation level results are broken into "BASELINE" and "REPORTING" in all cases in which they are
available; otherwise, the value is None.)

>>> electricity_consumption_supplied_results.keys()
dict_keys(['BASELINE', 'REPORTING'])

baseline_results = electricity_consumption_supplied_results["BASELINE"]
reporting_results = electricity_consumption_supplied_results["REPORTING"]

These results have two components as well - the type of savings.
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>>> baseline_results.keys()
dict_keys(['gross_predicted', 'annualized_weather_normal'])
>>> reporting_results.keys()
dict_keys(['gross_predicted', 'annualized_weather_normal'])

We select the results for one of them:

baseline_normal = baseline_results['annualized_weather_normal']
reporting_normal = reporting_results['annualized_weather_normal']

As described above, each energy value also includes upper and lower bounds, but can also be used directly to determine
savings.

percent_savings = (baseline_normal[0] - reporting_normal[0]) / baseline_normal[0]

>>> percent_savings
0.20751319075256849

This percent savings value (~20%) is consistent with the savings created in the fake data.

Weather Data Caching

In order to avoid putting an unnecessary load on external weather sources, weather data is cached by default using json
in a directory ~/.eemeter/cache. The location of the directory can be changed by setting:

$ export EEMETER_WEATHER_CACHE_DIRECTORY=<full path to directory>

1.2.3 API

eemeter.ee

eemeter.ee.derivatives

class eemeter.ee.derivatives.Derivative(label, value, lower, upper, n, serial-
ized_demand_fixture)

label
Alias for field number 0

lower
Alias for field number 2

n
Alias for field number 4

serialized_demand_fixture
Alias for field number 5

upper
Alias for field number 3

value
Alias for field number 1

class eemeter.ee.derivatives.DerivativePair(label, derivative_interpretation,
trace_interpretation, unit, baseline, report-
ing)
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baseline
Alias for field number 4

derivative_interpretation
Alias for field number 1

label
Alias for field number 0

reporting
Alias for field number 5

trace_interpretation
Alias for field number 2

unit
Alias for field number 3

eemeter.ee.derivatives.annualized_weather_normal(formatter, model,
weather_normal_source)

Annualize energy trace values given a model and a source of ‘normal’ weather data, such as Typical Meteoro-
logical Year (TMY) 3 data.

Parameters

• formatter (eemeter.modeling.formatter.Formatter) – For-
matter that can be used to create a demand fixure. Must supply the
.create_demand_fixture(index, weather_source) method.

• model (eemeter.modeling.models.Model) – Model that can be
used to predict out of sample energy trace values. Must supply the
.predict(demand_fixture_data) method.

• weather_normal_source (eemeter.weather.WeatherSource) – Weather-
Source providing weather normals.

Returns

out – Dictionary with the following item:

• "annualized_weather_normal": 4-tuple with the values (annualized,
lower, upper, n), where

– annualized is the total annualized (weather normalized) value predicted over the
course of a ‘normal’ weather year.

– lower is the number which should be subtracted from annualized to obtain the 0.025
quantile lower error bound.

– upper is the number which should be added to annualized to obtain the 0.975 quan-
tile upper error bound.

– n is the number of samples considered in developing the bound - useful for adding other
values with errors.

Return type dict

eemeter.ee.derivatives.gross_predicted(formatter, model, weather_source, report-
ing_period)

Find gross predicted energy trace values given a model and a source of observed weather data.

Parameters
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• formatter (eemeter.modeling.formatter.Formatter) – For-
matter that can be used to create a demand fixure. Must supply the
.create_demand_fixture(index, weather_source) method.

• model (eemeter.modeling.models.Model) – Model that can be
used to predict out of sample energy trace values. Must supply the
.predict(demand_fixture_data) method.

• weather_source (eemeter.weather.WeatherSource) – WeatherSource pro-
viding observed weather data.

• baseline_period (eemeter.structures.ModelingPeriod) – Period target-
ted by baseline model.

• reporting_period (eemeter.structures.ModelingPeriod) – Period tar-
getted by reporting model.

Returns

out – Dictionary with the following item:

• "gross_predicted": 4-tuple with the values (annualized, lower, upper,
n), where

– gross_predicted is the total gross predicted value over time period defined by the
reporting period.

– lower is the number which should be subtracted from gross_predicted to obtain
the 0.025 quantile lower error bound.

– upper is the number which should be added to gross_predicted to obtain the 0.975
quantile upper error bound.

– n is the number of samples considered in developing the bound - useful for adding other
values with errors.

Return type dict

eemeter.ee.meter

class eemeter.ee.meter.EnergyEfficiencyMeter(settings=None)
The standard way of calculating energy efficiency savings values from project data.

Parameters settings (dict) – Dictionary of settings (ignored; for now, this is a placeholder).

evaluate(project, weather_source=None, weather_normal_source=None)
Main entry point to the meter, taking in project data and returning results indicating energy efficiency
performance.

Parameters

• project (eemeter.structures.Project) – Project for which energy effien-
ciency performance is to be evaluated.

• weather_source (eemeter.weather.WeatherSource) – Weather source to be
used for this meter. Overrides weather source found using project.site. Useful for
test mocking.

• weather_normal_source (eemeter.weather.WeatherSource) – Weather
normal source to be used for this meter. Overrides weather source found using
project.site. Useful for test mocking.
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Returns

out – Results of energy efficiency evaluation, organized into the following items.

• "modeling_period_set": eemeter.structures.ModelingPeriodSet
determined from this project.

• "modeled_energy_traces": dict of dispatched modeled energy traces.

• "modeled_energy_trace_derivatives": derivatives for each modeled energy
trace.

• "project_derivatives": Project summaries for derivatives.

• "weather_source": Matched weather source

• "weather_normal_source": Matched weather normal source.

Return type dict

eemeter.io

eemeter.io.serializers

class eemeter.io.serializers.ArbitrarySerializer(parse_dates=False)
Arbitrary data at arbitrary non-overlapping intervals. Often used for montly billing data. Records must all have
the “start” key and the “end” key. Overlaps are not allowed and gaps will be filled with NaN.

For example:

>>> records = [
... {
... "start": datetime(2013, 12, 30, tzinfo=pytz.utc),
... "end": datetime(2014, 1, 28, tzinfo=pytz.utc),
... "value": 1180,
... },
... {
... "start": datetime(2014, 1, 28, tzinfo=pytz.utc),
... "end": datetime(2014, 2, 27, tzinfo=pytz.utc),
... "value": 1211,
... "estimated": True,
... },
... {
... "start": datetime(2014, 2, 28, tzinfo=pytz.utc),
... "end": datetime(2014, 3, 30, tzinfo=pytz.utc),
... "value": 985,
... },
... ]
...
>>> serializer = ArbitrarySerializer()
>>> df = serializer.to_dataframe(records)
>>> df

value estimated
2013-12-30 00:00:00+00:00 1180.0 False
2014-01-28 00:00:00+00:00 1211.0 True
2014-02-27 00:00:00+00:00 NaN False
2014-02-28 00:00:00+00:00 985.0 False
2014-03-30 00:00:00+00:00 NaN False
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class eemeter.io.serializers.ArbitraryStartSerializer(parse_dates=False)
Arbitrary start data at arbitrary non-overlapping intervals. Records must all have the “start” key. The last data
point will be ignored unless an end date is provided for it. This is useful for data dated to future energy use, e.g.
billing for delivered fuels.

For example:

>>> records = [
... {
... "start": datetime(2013, 12, 30, tzinfo=pytz.utc),
... "value": 1180,
... },
... {
... "start": datetime(2014, 1, 28, tzinfo=pytz.utc),
... "value": 1211,
... "estimated": True,
... },
... {
... "start": datetime(2014, 2, 28, tzinfo=pytz.utc),
... "value": 985,
... },
... ]
...
>>> serializer = ArbitrarySerializer()
>>> df = serializer.to_dataframe(records)
>>> df

value estimated
2013-12-30 00:00:00+00:00 1180.0 False
2014-01-28 00:00:00+00:00 1211.0 True
2014-02-28 00:00:00+00:00 NaN False

class eemeter.io.serializers.ArbitraryEndSerializer(parse_dates=False)
Arbitrary end data at arbitrary non-overlapping intervals. Records must all have the “end” key. The first data
point will be ignored unless a start date is provided for it. This is useful for data dated to past energy use, e.g.
electricity or natural gas bills.

For example:

>>> records = [
... {
... "end": datetime(2013, 12, 30, tzinfo=pytz.utc),
... "value": 1180,
... },
... {
... "end": datetime(2014, 1, 28, tzinfo=pytz.utc),
... "value": 1211,
... "estimated": True,
... },
... {
... "end": datetime(2014, 2, 28, tzinfo=pytz.utc),
... "value": 985,
... },
... ]
...
>>> serializer = ArbitrarySerializer()
>>> df = serializer.to_dataframe(records)
>>> df

value estimated
2013-12-30 00:00:00+00:00 1211.0 True
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2014-01-28 00:00:00+00:00 985.0 False
2014-02-28 00:00:00+00:00 NaN False

eemeter.io.parsers

class eemeter.io.parsers.ESPIUsageParser(xml)
Parse ESPI XML files.

Basic usage:

>>> from eemeter.io.parsers import ESPIUsageParser
>>> with open("/path/to/example.xml") as f:
... parser = ESPIUsageParser(f)
>>> energy_traces = list(parser.get_energy_traces())

Parameters xml (str, filepath, file buffer) – XML data to parse

get_energy_traces(service_kind_default=’electricity’)
Retrieve all energy trace records stored as IntervalReading elements in the given ESPI Energy Usage XML.

Energy records are grouped by interpretation and returned in EnergyTrace objects.

Parameters service_kind_default (str) – Default fuel type to use in parser if Read-
ingType/commodity field is missing.

Yields energy_trace (eemeter.structures.EnergyTrace) – Energy data traces as described in the
xml file.

has_solar()
Returns True if there is a “reverse” flow direction in this file, indicating presence of solar photo voltaics.

TODO: Verify that this is the correct way to determine this - are there false positives or false negatives? Is
there a more straightforward flag to use somewhere else?

eemeter.modeling

eemeter.modeling.formatters

class eemeter.modeling.formatters.ModelDataFormatter(freq_str)
Formatter for model data of known or predictable frequency. Basic usage:

>>> formatter = ModelDataFormatter("D")
>>> formatter.create_input(energy_trace, weather_source)

energy tempF
2013-06-01 00:00:00+00:00 3.10 74.3
2013-06-02 00:00:00+00:00 2.42 71.0
2013-06-03 00:00:00+00:00 1.38 73.1

...
2016-05-27 00:00:00+00:00 0.11 71.1
2016-05-28 00:00:00+00:00 0.04 78.1
2016-05-29 00:00:00+00:00 0.21 69.6
>>> index = pd.date_range('2013-01-01', periods=365, freq='D')
>>> formatter.create_input(index, weather_source)

tempF
2013-01-01 00:00:00+00:00 28.3
2013-01-02 00:00:00+00:00 31.0
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2013-01-03 00:00:00+00:00 34.1
...

2013-12-29 00:00:00+00:00 12.3
2013-12-30 00:00:00+00:00 26.0
2013-12-31 00:00:00+00:00 24.1

create_demand_fixture(index, weather_source)
Creates a DatetimeIndex ed dataframe containing formatted demand fixture data.

Parameters

• index (pandas.DatetimeIndex) – The desired index for demand fixture data.

• weather_source (eemeter.weather.WeatherSourceBase) – The source of
weather fixture data.

Returns input_df – Predictably formatted input data. This data should be directly usable as
input to applicable model.predict() methods.

Return type pandas.DataFrame

create_input(trace, weather_source)
Creates a DatetimeIndex ed dataframe containing formatted model input data formatted as follows.

Parameters

• trace (eemeter.structures.EnergyTrace) – The source of energy data for
inclusion in model input.

• weather_source (eemeter.weather.WeatherSourceBase) – The source of
weather data.

Returns input_df – Predictably formatted input data. This data should be directly usable as
input to applicable model.fit() methods.

Return type pandas.DataFrame

class eemeter.modeling.formatters.ModelDataBillingFormatter
Formatter for model data of unknown or unpredictable frequency. Basic usage:

>>> formatter = ModelDataBillingFormatter()
>>> energy_trace = EnergyTrace(

"ELECTRICITY_CONSUMPTION_SUPPLIED",
pd.DataFrame(

{
"value": [1, 1, 1, 1, np.nan],
"estimated": [False, False, True, False, False]

},
index=[

datetime(2011, 1, 1, tzinfo=pytz.UTC),
datetime(2011, 2, 1, tzinfo=pytz.UTC),
datetime(2011, 3, 2, tzinfo=pytz.UTC),
datetime(2011, 4, 3, tzinfo=pytz.UTC),
datetime(2011, 4, 29, tzinfo=pytz.UTC),

],
columns=["value", "estimated"]

),
unit="KWH")

>>> trace_data, temp_data = formatter.create_input(energy_trace, weather_source)
>>> trace_data
2011-01-01 00:00:00+00:00 1.0
2011-02-01 00:00:00+00:00 1.0
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2011-03-02 00:00:00+00:00 2.0
2011-04-29 00:00:00+00:00 NaN
dtype: float64
>>> temp_data
period hourly
2011-01-01 00:00:00+00:00 2011-01-01 00:00:00+00:00 32.0

2011-01-01 01:00:00+00:00 32.0
2011-01-01 02:00:00+00:00 32.0

... ...
2011-03-02 00:00:00+00:00 2011-04-28 21:00:00+00:00 32.0

2011-04-28 22:00:00+00:00 32.0
2011-04-28 23:00:00+00:00 32.0

>>> index = pd.date_range('2013-01-01', periods=365, freq='D')
>>> formatter.create_input(index, weather_source)

tempF
2013-01-01 00:00:00+00:00 28.3
2013-01-02 00:00:00+00:00 31.0
2013-01-03 00:00:00+00:00 34.1

...
2013-12-29 00:00:00+00:00 12.3
2013-12-30 00:00:00+00:00 26.0
2013-12-31 00:00:00+00:00 24.1

create_demand_fixture(index, weather_source)
Creates a DatetimeIndex ed dataframe containing formatted demand fixture data.

Parameters

• index (pandas.DatetimeIndex) – The desired index for demand fixture data.

• weather_source (eemeter.weather.WeatherSourceBase) – The source of
weather fixture data.

Returns input_df – Predictably formatted input data. This data should be directly usable as
input to applicable model.predict() methods.

Return type pandas.DataFrame

create_input(trace, weather_source)
Creates two DatetimeIndex ed dataframes containing formatted model input data formatted as follows.

Parameters

• trace (eemeter.structures.EnergyTrace) – The source of energy data for
inclusion in model input.

• weather_source (eemeter.weather.WeatherSourceBase) – The source of
weather data.

Returns

• trace_data (pandas.DataFrame) – Predictably formatted trace data with estimated data
removed. This data should be directly usable as input to applicable model.fit() methods.

• temperature_data (pandas.DataFrame) – Predictably formatted temperature data with a
pandas MultiIndex. The MultiIndex contains two levels - ‘period’, which corre-
sponds directly to the trace_data index, and ‘hourly’ or ‘daily’, which contains, respec-
tively, hourly or daily temperature data. This is intended for use like the following:

>>> temperature_data.groupby(level='period')

This data should be directly usable as input to applicable model.fit() methods.
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eemeter.modeling.models

class eemeter.modeling.models.seasonal.SeasonalElasticNetCVModel(cooling_base_temp=65,
heat-
ing_base_temp=65,
n_bootstrap=100)

Linear regression using daily frequency data to build a model of formatted energy trace data that takes into
account HDD, CDD, day of week, month, and holiday effects, with elastic net regularization.

Parameters

• cooling_base_temp (float) – Base temperature (degrees F) used in calculating cool-
ing degree days.

• heating_base_temp (float) – Base temperature (degrees F) used in calculating heat-
ing degree days.

• n_bootstrap (int) – Number of points to exclude during bootstrap error estimation.

class eemeter.modeling.models.billing.BillingElasticNetCVModel(cooling_base_temp=65,
heat-
ing_base_temp=65,
n_bootstrap=100)

Linear regression of energy values against CDD/HDD with elastic net regularization.

Parameters

• cooling_base_temp (float) – Base temperature (degrees F) used in calculating cool-
ing degree days.

• heating_base_temp (float) – Base temperature (degrees F) used in calculating heat-
ing degree days.

• n_bootstrap (int) – Number of points to exclude during bootstrap error estimation.

eemeter.processors

eemeter.processors.dispatchers

eemeter.processors.dispatchers.get_energy_modeling_dispatches(modeling_period_set,
trace_set)

Dispatches a set of applicable models and formatters for each pairing of modeling period sets and trace sets
given.

Parameters

• modeling_period_set (eemeter.structures.ModelingPeriodSet) –
ModelingPeriod s to dispatch.

• trace_set (eemeter.structures.EnergyTraceSet) – EnergyTrace s to
dispatch.

eemeter.processors.interventions

eemeter.processors.interventions.get_modeling_period_set(interventions)
Creates an applicable modeling period set given a list of interventions.

Parameters interventions (list of eemeter.structures.Intervention) – In-
terventions for which to build ModelingPeriodSet.
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eemeter.processors.location

eemeter.processors.location.get_weather_normal_source(site)
Finds most relevant WeatherSource given project site.

Parameters site (eemeter.structures.ZIPCodeSite) – Site to match to weather source
data.

Returns weather_source – Closest data-validated weather source in the same climate zone as
project ZIP code, if available.

Return type eemeter.weather.TMY3WeatherSource

eemeter.processors.location.get_weather_source(site)
Finds most relevant WeatherSource given project site.

Parameters site (eemeter.structures.ZIPCodeSite) – Site to match to weather source
data.

Returns weather_source – Closest data-validated weather source in the same climate zone as
project ZIP code, if available.

Return type eemeter.weather.ISDWeatherSource

eemeter.structures

class eemeter.structures.EnergyTrace(interpretation, data=None, records=None, unit=None,
placeholder=False, serializer=None)

Container for time series energy data.

Parameters

• interpretation (str) – The way this energy time series in the data attribute should
be interpreted. The complete list of supported options is as follows:

– ELECTRICITY_CONSUMPTION_SUPPLIED: Represents the amount of utility-
supplied electrical energy consumed on-site, as metered at a single usage point, such as
a utility-owned electricity meter. Specifically does not include consumption of electricity
generated on site, such as by locally installed solar photovoltaic panels.

– ELECTRICITY_CONSUMPTION_TOTAL: Represents the amount of
electrical energy consumed on-site, including both utility-supplied
and on-site generated electrical energy. Equivalent, for a single
electricity meter, to ELECTRICITY_CONSUMPTION_SUPPLIED -
ELECTRICITY_ON_SITE_GENERATION_CONSUMED.

– ELECTRICITY_CONSUMPTION_NET: Represents the amount of utility-
supplied electrical energy consumed on-site minus the amount of uncon-
sumed electrical energy generated on site and fed back into the grid at a sin-
gle usage point, such as a utility-owned electricity meter. Equivalent, for
a single electricity meter, to ELECTRICITY_CONSUMPTION_SUPPLIED -
ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED.

– ELECTRICITY_ON_SITE_GENERATION_TOTAL: Represents the amount of locally
generated electrical energy consumed on-site plus the amount of locally generated ele-
crical energy returned to the grid, as metered at a single usage point. Equivalent, for
a single electricity meter, to ELECTRICITY_ON_SITE_GENERATION_CONSUMED +
ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED.
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– ELECTRICITY_ON_SITE_GENERATION_CONSUMED: Represents the amount of lo-
cally generated electrical energy consumed on-site, such as energy generated by solar
photovoltaic panels.

– ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED: Represents the amount of
excess locally generated energy, which instead of being consumed on-site, is fed back
into the grid or sold back a utility.

– NATURAL_GAS_CONSUMPTION_SUPPLIED: Represents the amount of energy sup-
plied by a utility in the form of natural gas and used on site, as metered at a single usage
point. Though under the labeling scheme used for electricity interpretetations the labels
NATURAL_GAS_CONSUMPTION_TOTAL and NATURAL_GAS_CONSUMPTION_NET
would be equivalent for natural gas, NATURAL_GAS_CONSUMPTION_SUPPLIED is
prefered for its greater specificity.

• data (pandas.DataFrame, default None) – A pandas DataFrame with two
columns and a timezone-aware DatetimeIndex. Timestamps in the index are assumed to
refer to the start of each period, and the period ends are assumed to coincide with the start
of the following period. Thus, the value of the last datetime should always be NaN, since
is purpose is only to cap the end of the last period, and not to represent a time period over
which energy was consumed. The DatetimeIndex does not need to have uniform frequency,
such as those specified in pandas using the freq attribute.

– value: Amount of energy between this index and the next.

– estimated: Whether or not the value was estimated. Particularly relevant for monthly
billing data.

If serializer instance is provided, this should instead be records in the format expected
by the serializer.

• unit (str) – The name of the unit in which the energy time series is given. These names
are normalized to either ’KWH’ or ’THERM’ as follows:

– ’kwh’ becomes ’KWH’ with no unit conversion multiplier.

– ’kWh’ becomes ’KWH’ with no unit conversion multiplier.

– ’KWH’ becomes ’KWH’ with no unit conversion multiplier.

– ’therm’ becomes ’THERM’ with no unit conversion multiplier.

– ’therms’ becomes ’THERM’ with no unit conversion multiplier.

– ’thm’ becomes ’THERM’ with no unit conversion multiplier.

– ’THERM’ becomes ’THERM’ with no unit conversion multiplier.

– ’THERMS’ becomes ’THERM’ with no unit conversion multiplier.

– ’THM’ becomes ’THERM’ with no unit conversion multiplier.

– ’wh’ becomes ’KWH’ with a unit conversion multiplier of 0.001.

– ’Wh’ becomes ’KWH’ with a unit conversion multiplier of 0.001.

– ’WH’ becomes ’KWH’ with a unit conversion multiplier of 0.001.

• placeholder (bool) – Indicates that this instance is a placeholder - that while for some
reason the data associated with it is unavailable, its existence is still important in considering
a whole site.
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• serializer (consumption.BaseSerializer) – Serializer instance
to be used to deserialize records into a pandas dataframe. Must supply the
to_dataframe(records) method.

class eemeter.structures.EnergyTraceSet(traces, labels=None)
A container for energy traces which ensures that each is labeled.

Parameters

• traces (list or dict of eemeter.structures.EnergyTrace
objects) – EnergyTrace objects to be included in this list.

• labels (list of str) – Unique labels for traces, used only if traces is not a dictionary.

itertraces()
Iterates over traces, yielding (label, trace) pairs.

class eemeter.structures.Intervention(start_date, end_date=None)
Represents an intervention with a start date, and maybe an end date. Multiple interventions can be composed
within a project.

Parameters

• start_date (datetime.datetime) – Must be timezone aware

• end_date (datetime.datetime or None, default None) – Must be time-
zone aware. If None, intervention is assumed to be ongoing.

class eemeter.structures.ModelingPeriod(interpretation, start_date=None, end_date=None)
Represents a period of time over which to select data from a Trace for contiguous modeling. Carries an “in-
terpretation”, for which there are two options, “BASELINE” and “REPORTING”. The period is defined by a
single optional start date and a single optional end date. If the start date is not given, the start date is considered
to be negative infinity; if the end date is not given, the end date is considered to be positive infinity.

A ModelingPeriod is a time period, defined by start and end dates, over which the process behind a trace can
be expected, for modeling purposes, to have roughly the same energy response to end use demand. Note that
this criterion might not be particularly well specified without reference to a particular intervention and set of
modeling conditions.

Parameters

• interpretation (str, {"BASELINE", "REPORTING"}) – The way this Model-
ingPeriod should be interpreted.

– “BASELINE” means that this modeling period represents the time before an intervention
or set of interventions.

– “REPORTING” means that this modeling period represents the time after an intervention
or set of interventions.

• start_date (datetime.datetime or None) – The date marking the earliest date
of the ModelingPeriod. None indicates a start_date of negative infinity. If interpretation is
“REPORTING”, start_date cannot be None.

• end_date (datetime.datetime or None) – The date marking the latest date of
the ModelingPeriod. None indicates an end_date of positive infinity. If interpretation is
“BASELINE”, end_date cannot be None.

class eemeter.structures.ModelingPeriodSet(modeling_periods, groupings)
Represents a set of labeled modeling periods of interest, grouped into meaningful comparison sets. Labels can
be arbitrary.

Basic usage:
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>>> modeling_periods = {
... "modeling_period_1": ModelingPeriod(
... "BASELINE",
... end_date=datetime(2000, 1, 1, tzinfo=pytz.UTC),
... ),
... "modeling_period_2": ModelingPeriod(
... "REPORTING",
... start_date=datetime(2000, 2, 1, tzinfo=pytz.UTC),
... ),
... "modeling_period_3": ModelingPeriod(
... "REPORTING",
... start_date=datetime(2000, 2, 1, tzinfo=pytz.UTC),
... ),
... }
...
>>> grouping = [
... ("modeling_period_1", "modeling_period_2"),
... ("modeling_period_1", "modeling_period_3"),
... ]
...
>>> mps = ModelingPeriodSet(modeling_periods, grouping)

class eemeter.structures.Project(energy_trace_set, interventions, site)
Container for storing project data.

Parameters

• trace_set (eemeter.structures.TraceSet) – Complete set of energy traces for
this project. For a project site that has, for example, two electricity meters, each with two
traces (supplied electricity kWh, and solar-generated kWh) and one natural gas meter with
one trace (consumed natural gas therms), the trace_set should contain 5 traces, regardless
of the availablity of that data. Traces which are unavailable should be represented as ‘place-
holder’ traces.

• interventions (list of eemeter.structures.Intervention) – Com-
plete set of interventions, planned, ongoing, or completed, that have taken or will take place
at this site as part of this project.

• site (eemeter.structures.Site) – The site of this project.

class eemeter.structures.ZIPCodeSite(zipcode)
ZIP-code-based site location descriptor.

Parameters zipcode (str) – A five-digit zipcode identifier.

eemeter.weather

GSODWeatherSource

class eemeter.weather.GSODWeatherSource(station, cache_directory=None)
The GSODWeatherSource draws weather data from the NOAA Global Summary of the Day FTP site. It
stores fetched data locally by default in a SQLite database at ~/eemeter/cache/weather_cache.db,
unless you use set the following environment variable to something different:

$ export EEMETER_WEATHER_CACHE_DIRECTORY=/path/to/custom/directory

Basic usage is as follows:
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>>> from eemeter.weather import GSODWeatherSource
>>> ws = GSODWeatherSource("722880") # or another 6-digit USAF station

This object can be used to fetch weather data as follows, using an daily frequency time-zone aware pandas
DatetimeIndex covering any stretch of time.

>>> import pandas as pd
>>> import pytz
>>> index = pd.date_range('2015-01-01', periods=365,
... freq='D', tz=pytz.UTC)
>>> ws.indexed_temperatures(index, "degF")
2015-01-01 00:00:00+00:00 43.6
2015-01-02 00:00:00+00:00 45.0
2015-01-03 00:00:00+00:00 47.3

...
2015-12-29 00:00:00+00:00 48.0
2015-12-30 00:00:00+00:00 46.4
2015-12-31 00:00:00+00:00 47.6
Freq: D, dtype: float64

add_year(year, force_fetch=False)
Adds temperature data to internal pandas timeseries

Note: This method is called automatically internally to keep data updated in response to calls to .in-
dexed_temperatures()

Parameters

• year ({int, string}) – The year for which data should be fetched, e.g. “2010”.

• force_fetch (bool, default=False) – If True, forces the fetch; if False,
checks to see if locally available before actually fetching.

add_year_range(start_year, end_year, force_fetch=False)
Adds temperature data to internal pandas timeseries across a range of years.

Note: This method is called automatically internally to keep data updated in response to calls to .in-
dexed_temperatures()

Parameters

• start_year ({int, string}) – The earliest year for which data should be fetched,
e.g. “2010”.

• end_year ({int, string}) – The latest year for which data should be fetched, e.g.
“2013”.

• force_fetch (bool, default=False) – If True, forces the fetch; if false, checks
to see if year has been added before actually fetching.

indexed_temperatures(index, unit, allow_mixed_frequency=False)
Return average temperatures over the given index.

Parameters
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• index (pandas.DatetimeIndex) – Index over which to supply average tempera-
tures. The index should be given as either an hourly (‘H’) or daily (‘D’) frequency.

• unit (str, {"degF", "degC"}) – Target temperature unit for returned temperature
series.

Returns temperatures – Average temperatures over series indexed by index.

Return type pandas.Series with DatetimeIndex

ISDWeatherSource

class eemeter.weather.ISDWeatherSource(station, cache_directory=None)
The ISDWeatherSource draws weather data from the NOAA Integrated Surface Database
(ISD) FTP site. It stores fetched hourly data locally by default in a SQLite database at
~/eemeter/cache/weather_cache.db, unless you use set the following environment variable to
something different:

$ export EEMETER_WEATHER_CACHE_DIRECTORY=/path/to/custom/directory

Basic usage is as follows:

>>> from eemeter.weather import ISDWeatherSource
>>> ws = ISDWeatherSource("722880") # or another 6-digit USAF station

This object can be used to fetch weather data as follows, using an hourly or daily frequency time-zone aware
pandas DatetimeIndex covering any stretch of time.

>>> import pandas as pd
>>> import pytz
>>> daily_index = pd.date_range('2015-01-01', periods=365,
... freq='D', tz=pytz.UTC)
>>> ws.indexed_temperatures(daily_index, "degF")
2015-01-01 00:00:00+00:00 43.550000
2015-01-02 00:00:00+00:00 45.042500
2015-01-03 00:00:00+00:00 47.307500

...
2015-12-29 00:00:00+00:00 47.982500
2015-12-30 00:00:00+00:00 46.415000
2015-12-31 00:00:00+00:00 47.645000
Freq: D, dtype: float64
>>> hourly_index = pd.date_range('2015-01-01', periods=365*24,
... freq='H', tz=pytz.UTC)
>>> ws.indexed_temperatures(hourly_index, "degF")
2015-01-01 00:00:00+00:00 51.98
2015-01-01 01:00:00+00:00 50.00
2015-01-01 02:00:00+00:00 48.02

...
2015-12-31 21:00:00+00:00 62.06
2015-12-31 22:00:00+00:00 62.06
2015-12-31 23:00:00+00:00 62.06
Freq: H, dtype: float64

add_year(year, force_fetch=False)
Adds temperature data to internal pandas timeseries

Note: This method is called automatically internally to keep data updated in response to calls to .in-
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dexed_temperatures()

Parameters

• year ({int, string}) – The year for which data should be fetched, e.g. “2010”.

• force_fetch (bool, default=False) – If True, forces the fetch; if False,
checks to see if locally available before actually fetching.

add_year_range(start_year, end_year, force_fetch=False)
Adds temperature data to internal pandas timeseries across a range of years.

Note: This method is called automatically internally to keep data updated in response to calls to .in-
dexed_temperatures()

Parameters

• start_year ({int, string}) – The earliest year for which data should be fetched,
e.g. “2010”.

• end_year ({int, string}) – The latest year for which data should be fetched, e.g.
“2013”.

• force_fetch (bool, default=False) – If True, forces the fetch; if false, checks
to see if year has been added before actually fetching.

indexed_temperatures(index, unit, allow_mixed_frequency=False)
Return average temperatures over the given index.

Parameters

• index (pandas.DatetimeIndex) – Index over which to supply average tempera-
tures. The index should be given as either an hourly (‘H’) or daily (‘D’) frequency.

• unit (str, {"degF", "degC"}) – Target temperature unit for returned temperature
series.

Returns temperatures – Average temperatures over series indexed by index.

Return type pandas.Series with DatetimeIndex

TMY3WeatherSource

class eemeter.weather.TMY3WeatherSource(station, cache_directory=None, preload=True)
The TMY3WeatherSource draws weather data from the NREL’s Typical Meteorological Year 3 database. It
stores fetched data locally by default in a SQLite database at ~/eemeter/cache/weather_cache.db,
unless you use set the following environment variable to something different:

$ export EEMETER_WEATHER_CACHE_DIRECTORY=/path/to/custom/directory

Basic usage is as follows:

>>> from eemeter.weather import TMY3WeatherSource
>>> ws = TMY3WeatherSource("724830") # or another 6-digit USAF station
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This object can be used to fetch weather data as follows, using an daily frequency time-zone aware pandas
DatetimeIndex covering any stretch of time.

>>> import pandas as pd
>>> import pytz
>>> daily_index = pd.date_range('2015-01-01', periods=365,
... freq='D', tz=pytz.UTC)
>>> ws.indexed_temperatures(daily_index, "degF")
2015-01-01 00:00:00+00:00 38.6450
2015-01-02 00:00:00+00:00 40.4900
2015-01-03 00:00:00+00:00 43.9175

...
2015-12-29 00:00:00+00:00 43.7750
2015-12-30 00:00:00+00:00 43.6250
2015-12-31 00:00:00+00:00 46.9250
Freq: D, dtype: float64
>>> hourly_index = pd.date_range('2015-01-01', periods=365*24,
... freq='H', tz=pytz.UTC)
>>> ws.indexed_temperatures(hourly_index, "degF")
2015-01-01 00:00:00+00:00 51.80
2015-01-01 01:00:00+00:00 50.00
2015-01-01 02:00:00+00:00 50.00

...
2015-12-31 21:00:00+00:00 53.60
2015-12-31 22:00:00+00:00 55.40
2015-12-31 23:00:00+00:00 55.40
Freq: H, dtype: float64

indexed_temperatures(index, unit)
Return average temperatures over the given index.

Parameters

• index (pandas.DatetimeIndex) – Index over which to supply average tempera-
tures. The index should be given as either an hourly (‘H’) or daily (‘D’) frequency.

• unit (str, {"degF", "degC"}) – Target temperature unit for returned temperature
series.

Returns temperatures – Average temperatures over series indexed by index.

Return type pandas.Series with DatetimeIndex

Location

eemeter.weather.location.climate_zone_is_supported(climate_zone)
True if given Climate Zone is supported.

Parameters climate_zone (str) – String representing a climate_zone.

Returns supported – True if supported, otherwise False.

Return type bool

eemeter.weather.location.climate_zone_to_tmy3_stations(climate_zone)
Return TMY3 weather stations falling within in the given climate zone.

Parameters climate_zone (str) – String representing a climate zone.

Returns stations – Strings representing TMY3 station ids.

Return type list of str
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eemeter.weather.location.climate_zone_to_usaf_stations(climate_zone)
Return USAF weather stations falling within in the given climate zone.

Parameters climate_zone (str) – String representing a climate zone.

Returns stations – Strings representing USAF station ids.

Return type list of str

eemeter.weather.location.climate_zone_to_zipcodes(climate_zone)
Return ZIP codes with centroids in the given climate zone.

Parameters climate_zone (str) – String representing a climate zone.

Returns zipcodes – Strings representing USPS ZIP codes.

Return type list of str

eemeter.weather.location.haversine(lat1, lng1, lat2, lng2)
Calculate the great circle distance between two points on the earth (specified in decimal degrees)

Parameters

• lat1 (float) – Latitude coordinate of first point.

• lng1 (float) – Longitude coordinate of first point.

• lat2 (float) – Latitude coordinate of second point.

• lng2 (float) – Longitude coordinate of second point.

Returns distance – Kilometers between the two lat/lng coordinates.

Return type float

eemeter.weather.location.lat_lng_to_climate_zone(lat, lng)
Return the closest ZIP code using latitude and longitude coordinates.

Parameters

• lat (float) – Latitude coordinate.

• lng (float) – Longitude coordinate.

Returns climate_zone – String representing a climate zone.

Return type str, None

eemeter.weather.location.lat_lng_to_tmy3_station(lat, lng)
Return the closest TMY3 station ID using latitude and longitude coordinates.

Parameters

• lat (float) – Latitude coordinate.

• lng (float) – Longitude coordinate.

Returns station – String representing a TMY3 weather station ID or None, if none was found.

Return type str, None

eemeter.weather.location.lat_lng_to_usaf_station(lat, lng)
Return the closest USAF station ID using latitude and longitude coordinates.

Parameters

• lat (float) – Latitude coordinate.

• lng (float) – Longitude coordinate.
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Returns station – String representing a USAF weather station ID or None, if none was found.

Return type str, None

eemeter.weather.location.lat_lng_to_zipcode(lat, lng)
Return the closest ZIP code using latitude and longitude coordinates.

Parameters

• lat (float) – Latitude coordinate.

• lng (float) – Longitude coordinate.

Returns zipcode – String representing a USPS ZIP code, or None, if none was found.

Return type str, None

eemeter.weather.location.tmy3_station_is_supported(station)
True if given TMY3 weather station is supported. USAF IDs.

Parameters station (str) – 6-digit string representing a weather station.

Returns supported – True if supported, otherwise False.

Return type bool

eemeter.weather.location.tmy3_station_to_climate_zone(station)
Return the climate zone of the station.

Parameters station (str) – String representing a USAF Weather station ID

Returns climate_zone – String representing a climate zone.

Return type str

eemeter.weather.location.tmy3_station_to_lat_lng(station)
Return the latitude and longitude coordinates of the given station.

Parameters station (str) – String representing a TMY3 USAF Weather station ID

Returns lat_lng – Latitude and longitude coordinates.

Return type tuple of float

eemeter.weather.location.tmy3_station_to_zipcodes(station)
Return the zipcodes that map to this station.

Parameters station (str) – String representing a USAF Weather station ID

Returns zipcode – String representing a USPS ZIP code.

Return type list of str

eemeter.weather.location.usaf_station_is_supported(station)
True if given USAF weather station is supported. USAF IDs.

Parameters station (str) – 6-digit string representing a weather station.

Returns supported – True if supported, otherwise False.

Return type bool

eemeter.weather.location.usaf_station_to_climate_zone(station)
Return the climate zone of the station.

Parameters station (str) – String representing a USAF Weather station ID

Returns climate_zone – String representing a climate zone
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Return type str

eemeter.weather.location.usaf_station_to_lat_lng(station)
Return the latitude and longitude coordinates of the given USAF station.

Parameters station (str) – String representing a USAF Weather station ID

Returns lat_lng – Latitude and longitude coordinates.

Return type tuple of float

eemeter.weather.location.usaf_station_to_zipcodes(station)
Return the zipcodes that map to this USAF station.

Parameters station (str) – String representing a USAF Weather station ID

Returns zipcodes – Strings representing a USPS ZIP code mapped to from this station.

Return type list of str

eemeter.weather.location.zipcode_is_supported(zipcode)
True if given ZIP Code is supported. ZCTA only.

Parameters zipcode (str) – 5-digit string representing a zipcode.

Returns supported – True if supported, otherwise False.

Return type bool

eemeter.weather.location.zipcode_to_climate_zone(zipcode)
Return the climate zone of the ZIP code (by latitude and longitude centroid of ZIP code).

Parameters zipcode (str) – String representing a USPS ZIP code.

Returns climate_zone – String representing a climate zone

Return type str

eemeter.weather.location.zipcode_to_lat_lng(zipcode)
Return the latitude and longitude centroid of a particular ZIP code.

Parameters zipcode (str) – String representing a USPS ZIP code.

Returns lat_lng – Latitude and longitude coordinates.

Return type tuple of float

eemeter.weather.location.zipcode_to_tmy3_station(zipcode)
Return the nearest TMY3 station (by latitude and longitude centroid) of the ZIP code.

Parameters zipcode (str) – String representing a USPS ZIP code.

Returns station – String representing a TMY3 Weather station (USAF ID).

Return type str

eemeter.weather.location.zipcode_to_usaf_station(zipcode)
Return the nearest USAF station (by latitude and longitude centroid) of the ZIP code.

Parameters zipcode (str) – String representing a USPS ZIP code.

Returns station – String representing a USAF weather station ID

Return type str
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1.2.4 Development

Testing

This library uses the py.test framework. To develop locally, clone the repo, and in a virtual environment execute the
following commands:

$ git clone https://github.com/openeemeter/eemeter
$ cd eemeter
$ mkvirtualenv eemeter
$ pip install -r dev_requirements.txt
$ pip install -e .
$ tox

Building Documentation

Documentation is built using the sphinx package. To build documentation, make sure that dev requirements are
installed:

$ pip install -r dev_requirements.txt

And run the following from the root project directory.

$ make -C docs html

To clean the build directory, run the following:

$ make -C docs clean

1.3 datastore

The datastore is an application for housing energy and project data which provides a REST API for loading data,
computing energy savings, and inspecting results. Like the eemeter library, the datastore is open source and available
on github under an MIT license.

The datastore uses the django web framework with a PostgreSQL database.

1.3.1 Development Setup

Clone the repo and change directories

git clone git@github.com:openeemeter/datastore.git
cd datastore

Install required python packages

We recommend using virtualenv (or virtualenvwrapper) to manage python packages

mkvirtualenv datastore
pip install -r requirements.txt
pip install -r dev-requirements.txt
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Define the necessary environment variables

# django
export DJANGO_SETTINGS_MODULE=oeem_energy_datastore.settings
export SECRET_KEY=<django-secret-key> # random string

# postgres
export DATABASE_URL=postgres://user:password@host:5432/dbname

# for API docs - should reflect the IP or DNS name where datastore will be deployed
export SERVER_NAME=0.0.0.0:8000
export PROTOCOL=http # or https

# For development only
export DEBUG=true

# For celery background tasks
export CELERY_ALWAYS_EAGER=true

or

export BROKER_TRANSPORT=redis
export BROKER_URL=redis://user:password@host:9549

If developing on the datastore, you might consider adding these to your virtualenv postactivate script:

vim /path/to/virtualenvs/datastore/bin/postactivate

# Refresh environment
workon datastore

Run database migrations

python manage.py migrate

Seed the database

python manage.py dev_seed

Start a development server

python manage.py runserver

1.3.2 Topics

Basic Usage

This tutorial is also available as a jupyter notebook:

Before getting started, download some sample energy data and project data:

• energy data CSV

• project data CSV
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Running meters

This topic page covers scheduling and executing meter runs on the datastore.

Background

Running a meter means pulling trace data, matching it with relevant project data, and evaluating its energy effiency
performance. This is the central task performed by the datastore, so if the specifics are unfamiliar, there is a bit more
background information worthy of review in the Methods Overview section of the guides.

Note: We will use the requests python package for making requests, but you could just as easily use a tool like
cURL or Postman.

If you have the eemeter package installed, you will also have the requests package installed, but if not, you can install
it with:

$ pip install requests

A request using the requests library looks like this:

import requests
url = "https://example.com"
data = {

"first_name": "John",
"last_name": "Doe"

}
requests.post(url + "/api/users/", json=data)

which is equivalent to:

POST /api/users/ HTTP/1.1
Host: example.com
{

"first_name": "John",
"last_name": "Doe"

}

Setup

For this demonstration, we will assume that you have the following setup, although of course yours will likely differ:

1. a datastore application running at https://example.openeemeter.org/

2. a project with primary key 1, associated with traces 2, 3

3. a project with primary key 2, associated with trace 4

4. a trace primary key 2 (ELECTRICITY_CONSUMPTION_SUPPLIED)

5. a trace primary key 3 (NATURAL_GAS_CONSUMPTION_SUPPLIED)

6. a trace primary key 4 (NATURAL_GAS_CONSUMPTION_SUPPLIED)

You should run something like the following, which sets up the variables we will be using below.
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# setup
import requests

url = "https://example.openeemeter.org"
access_token = "INSERT_TOKEN_HERE"
headers = {"Authorization": "Bearer {}".format(access_token)}

Scheduling a single meter run

There are a few ways to schedule a meter run. The simplest is the following, which triggers a meter run with default
model and formatter for the specified trace (primary key 2):

data = {"trace": 2}
response = requests.post(url + "/api/v1/meter_runs/",

json=data, headers=headers)

>>> response.json()
{

'id': 1,
'project': 1,
'trace': 2,
'status': 'PENDING',
'meter_input': None,
'formatter_class': None,
'formatter_kwargs': None,
'model_class': None,
'model_kwargs': None,
'failure_message': None,
'traceback': None,
'added': '2016-09-28T23:57:21.454235Z',
'updated': '2016-09-28T23:57:21.454260Z'

}

The response shows us the complete specification of the meter run behavior, which is as follows:

1. the project was determined implicitly from the trace,

2. the status is "PENDING", which means the tasks is scheduled but not yet running or completed

3. the meter_input has not yet been created (this is the complete serialized input to the meter, as required by
the eemeter.)

4. the model class, formatter class, and keyword arguments are left blank, indicating that default values will be
used.

5. the failure message and traceback are unpopulated, indicating no errors in execution (yet)

If you wish, you can also specify many of these properties explicitly:

data = {
"trace": 2,
"project": 2,
"model_class": "MyModel",
"model_kwargs": {

"parameter_1": 1.5,
"parameter_2": [0.8, 0.2],

},
"formatter_class": "MyFormatter",
"formatter_kwargs": {},
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}
response = requests.post(url + "/api/v1/meter_runs/",

json=data, headers=headers)

>>> response.json()
{

'id': 2,
'project': 2,
'trace': 2,
'status': 'PENDING',
'meter_input': None,
'model_class': 'MyModel',
'model_kwargs': {

'parameter_1': 1.5,
'parameter_2': [0.8, 0.2],

},
'formatter_class': 'MyFormatter',
'formatter_kwargs': {},
'failure_message': None,
'traceback': None,
'added': '2016-09-28T23:58:35.233478Z',
'updated': '2016-09-28T23:58:35.233492Z'

}

Or, if you leave out the project and trace attributes, you can specify the exact serialized input:

data = {
"meter_input": {...},

}
response = requests.post(url + "/api/v1/meter_runs/",

json=data, headers=headers)

>>> response.json()
{

'id': 3,
'project': None,
'trace': None,
'status': 'PENDING',
'meter_input': 'https://example.storage.googleapis.com/media/meter_inputs/010f59ae-15e9-4c43-8431-d90f74504770.json',
'formatter_class': None,
'formatter_kwargs': None,
'model_class': None,
'model_kwargs': None,
'failure_message': None,
'traceback': None,
'added': '2016-09-28T23:59:02.667663Z',
'updated': '2016-09-28T23:59:02.667681Z'

}

Scheduling bulk meter runs

To schedule bulk meter runs, instead of specifying a project and/or trace, you specify a set of targets, which are sets of
project and/or trace.:

data = {
"targets": [

{
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"project": 1,
},
{

"project": 2,
}

]
}
response = requests.post(url + "/api/v1/meter_runs/bulk/", # note: different url!

json=data, headers=headers)

>>> response.json()
[

[
{

'id': 4,
'project': 1,
'trace': 2,
'status': 'PENDING',
'meter_input': None,
'formatter_class': None,
'formatter_kwargs': None,
'model_class': None,
'model_kwargs': None,
'failure_message': None,
'traceback': None,
'added': '2016-09-29T00:01:43.152522Z',
'updated': '2016-09-29T00:01:43.152545Z'

},
{

'id': 5,
'project': 1,
'trace': 3,
'status': 'PENDING',
'meter_input': None,
'formatter_class': None,
'formatter_kwargs': None,
'model_class': None,
'model_kwargs': None,
'failure_message': None,
'traceback': None,
'added': '2016-09-29T00:01:43.152557Z',
'updated': '2016-09-29T00:01:43.152576Z'

}
],
[

{
'id': 6,
'project': 2,
'trace': 4,
'status': 'PENDING',
'meter_input': None,
'formatter_class': None,
'formatter_kwargs': None,
'model_class': None,
'model_kwargs': None,
'failure_message': None,
'traceback': None,
'added': '2016-09-29T00:01:43.152578Z',
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'updated': '2016-09-29T00:01:43.152590Z'
}

]
]

Note how results are returned grouped by target; each of the traces associated with the specified project are triggered
simultaneously.

If model or formatter class or kwarg arguments are supplied, they will be applied to all meter_runs.

Once you have completed meter runs, you can create aggreations of the results.

See how to run aggregations: Running Aggregations.

Running aggregations

We assume the same setup we used in Running meters

Scheduling a single aggregation run

Aggregations of meter results are likewise scheduled through the API. They are scheduled as unions of derivatives
from 3 sets of objects: projects, traces, or derivatives. You may specify any set of projects, traces, or derivatives from
which to draw derivatives for aggregation.

Since aggregations must be across like objects, trace interpretation and derivative interpretation can be supplied as
filters, or left implicit (although you will get errors if there are inconsistencies).

The following will create an aggregation (sum) of derivatives from projects 1 and 2 with the interpretation annual-
ized_weather_normal from traces matching the interpretation “E_C_S”.

data = {
"projects": [1, 2],
"derivatives": [],
"traces": [],
"trace_interpretation": "E_C_S",
"derivative_interpretation": "annualized_weather_normal",
"aggregation_interpretation": "SUM",

}
response = requests.post(url + "/api/v1/aggregation_runs/",

json=data, headers=headers)

>>> response.json()
{

'id': 1,
'status': 'PENDING',
'projects': [1, 2],
'traces': [],
'derivatives': [],
'aggregation_input': 'https://example.storage.googleapis.com/media/aggregation_inputs/3cdfc090-ec80-4cc1-8faf-4ee8705393ab.json',
'trace_interpretation': 'E_C_S',
'derivative_interpretation': 'annualized_weather_normal',
'aggregation_interpretation': 'SUM',

}
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Scheduling bulk aggregation runs

The mechanism for scheduling bulk aggregation runs is analogous to the mechanism for scheduling bulk meter runs.
If interpretation fields are left off, the implication is that all types of aggregations should be attempted. Only aggre-
gations for which 1 or more derivative is available matching the interpretation will be included. For the bulk method,
interpretations should be supplied as lists, as shown in comments.

data = {
"targets": [

{
"projects": [1, 2],
"derivatives": [],
"traces": [],
# 'trace_interpretations': ['E_C_S', 'NG_C_S'],
# 'derivative_interpretations': ['annualized_weather_normal', 'gross_predicted'],

}
]

}
response = requests.post(url + "/api/v1/aggregation_runs/bulk/",

json=data, headers=headers)

>>> response.json()
[

[
{

'id': 2,
'status': 'PENDING',
'derivatives': [],
'projects': [1, 2],
'traces': [],
'aggregation_input': 'https://example.storage.googleapis.com/media/meter_inputs/010f59ae-15e9-4c43-8431-d90f74504770.json',
'trace_interpretation': 'E_C_S',
'derivative_interpretation': 'annualized_weather_normal',
'aggregation_interpretation': 'SUM',

},
{

'id': 3,
'status': 'PENDING',
'derivatives': [],
'projects': [1, 2],
'traces': [],
'aggregation_input': 'https://example.storage.googleapis.com/media/meter_inputs/30eca307-93e5-4666-bb1f-4cf5be219c9b.json',
'trace_interpretation': 'E_C_S',
'derivative_interpretation': 'gross_predicted',
'aggregation_interpretation': 'SUM',

},
{

'id': 5,
'status': u'PENDING',
'derivatives': [],
'projects': [1, 2],
'traces': [],
'aggregation_input': 'https://example.storage.googleapis.com/media/meter_inputs/7fc34cd6-e408-4a0d-bb3c-d504ae8f9357.json',
'trace_interpretation': 'NG_C_S',
'derivative_interpretation': 'annualized_weather_normal',
'aggregation_interpretation': 'SUM',

},
{
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'id': 5,
'status': u'PENDING',
'derivatives': [],
'projects': [1, 2],
'traces': [],
'aggregation_input': 'https://example.storage.googleapis.com/media/meter_inputs/c2d95844-4da1-475e-ae3d-d731dd5d3aa9.json',
'trace_interpretation': 'NG_C_S',
'derivative_interpretation': 'gross_predicted',
'aggregation_interpretation': 'SUM',

}
]

]

PostgreSQL tables

A data dictionary describing available datastore database tables.

Data loaded through ETL

Name of Table Name of Row Description of Row
datastore_project

id Primary key
project_id Unique project identifier provided by the user
project_owner_id Foreign key to datastore_projectowner table (not currently used, but could be used to associate a user with a project)
baseline_period_start [null]
baseline_period_end Populated through ETL from project data
reporting_period_start Populated through ETL from project data
reporting_period_end [null]
zipcode Populated through ETL from project data
added Date Added
updated Date updated

datastore_consumptionmetadata Refers to an energy trace (a time series of data from a meter)
id Primary key
project_id Foriegn key to datastore_project table
interpretation What type of Energy Data: Supplied from Grid; Unconsumed Onsite Generation (e.g., solar); Natural Gas Supplied
label Used to distinguish traces of the same interpretation and unit within a single project
unit Kwh, etc.
added Date that the data was added to the database
updated Timestamp for last updated

datastore_consumptionrecord Contains each consumption interval
id Primary key
metadata_id Foreign key to datastore_consumptionmetadata table
value Consumption within the particular interval
estimated T/F
start start time of interval; end is given by next record (as ordered by start timestamp).

datastore_projectattribute Custom attributes associated with a project.
id Primary key
key_id Foreign key to the datastore_projectattributekey table
project_id Foreign key to the datastore_project table
float_value [null] unless associated datastore_projectattributekey row with datatype FLOAT

Continued on next page
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Table 1.1 – continued from previous page
Name of Table Name of Row Description of Row

integer_value [null] unless associated datastore_projectattributekey row with datatype INTEGER
boolean_value [null] unless associated datastore_projectattributekey row with datatype BOOLEAN
char_value [null] unless associated datastore_projectattributekey row with datatype CHAR
date_value [null] unless associated datastore_projectattributekey row with datatype DATE
datetime_value [null] unless associated datastore_projectattributekey row with datatype DATETIME

datastore_projectattributekey Types of custom attributes associated with projects
id Primary key
datatype FLOAT/INTEGER/BOOLEAN/CHAR/DATE/DATETIME
name Unique Name of Project Attribute type
display_name Name of the Project Attribute type for display purposes

Meter run result data

Data here is all organized underneath the datastore_projectresult table.

Name of Table Name of Row Description of Row
datastore_projectresult One for each meter run/result for each project

id Primary key
project_id Foreign key to the datastore_project table
meter_settings [blank] would indicate any special settings used when running the meter
eemeter_version 0.4.0
meter_class EnergyEfficiencyMeter; refers to which class of meter, i.e., DR meter
weather_normal_source_station Uses TMY3 ‘normal’ weather for a particular region - station given by 6 digit USAF id
weather_source_station Observed temperatures - station given by 6-digit USAF id
added Date added
updated Date updated

datastore_derivative One per interpretation per modeling period per energy trace
id Primary key
energy_trace_model_result_id foreign key to datastore_energytracemodelresult table
value value of interpretation
upper number to be added to value to obtain 95% upper bound
lower number to be subtracted from value to obtain 95% lower bound
n number of modeled values used in determining the derivative
interpretation e.g., annualized weather normal; gross predicted

datastore_derivativeaggregation One per project per derivative interpretation per trace interpretation (guarantees consistency between the baseline and reporting periods)
id Primary key
project_result_id Foreign key to datastore_projectresult table
modeling_period_group_id Foreign key to datastore_modelingperiodgroup table
interpretation Type of output - e.g., annualized weather normal; gross predicted (corresponds with datastore_derivative.interpretation)
trace_interpretation electricity consumption supplied (e_c_s); all fuels; natural gas, etc. (corresponds with datastore_consumptionmetadata.interpretation)
baseline_value Sum of values that match interpretations
baseline_upper amount to be added to baseline_value to obtain 95% upper bound
baseline_lower amount to be subtracted from baseline_value to obtain 95% lower bound
baseline_n number of values that comprise the aggregation (sum of the n’s of the derivatives)
reporting_value Sum of values that match interpretations
reporting_upper number to be added to reporting_value to obtain 95% upper bound
reporting_lower number to be subtracted from reporting_value to obtain 95% lower bound
reporting_n number of values that comprise the aggregation (sum of the n’s of the derivatives)

datastore_energytracemodelresult One per modeling period per energy trace id
Continued on next page
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Table 1.2 – continued from previous page
Name of Table Name of Row Description of Row

id Primary key
energy_trace_id Foreign key to datastore_consumptionmetadata table
project_result_id Foreign key to datastore_projectresult table
modeling_period_id Foreign key to datastore_modelingperiod table
cvrmse Coefficient of Variation of Root Mean Square Error (normalized RMSE)
lower Amount to be subtracted from any individual modeled data point to obtain 95% lower bound
upper Amount to be added to any individual modeled data point to stay within 95% upper bound
n Number of datapoints in the section of the trace used for the model
r2 𝑟2 error; extent to which the model captures the variation in the data
rmse Error term (root mean square error)
model_serialization [blank] - the way that we store the model in case we want to rerun the model
status SUCCESS/FAILURE
traceback If status is ‘FAILURE’, the python traceback for the error that caused failure
input_start_date Start date of data used for model building
input_end_date End date of data used for model building
input_n_rows Number of data points used for model building
records_start_date Date of first available energy trace record, including those not explicitly used in model building
records_end_date Date of last available energy trace record, including those not explicitly used in model building
records_count Count of available energy trace records, including those not explicitly used in model building

datastore_modelingperiod Project baseline end and project reporting start constitute the end points of an intervention; reporting periods generated by model using intervention as date reference. This is a temporary solution probably to be deprecated in next version of EEmeter.
id Primary key
interpretation BASELINE/REPORTING
project_result_id Foreign key to datastore_projectresult table
start_date If baseline, start_date can be null; if reporting start_date required
end_date If baseline, end_date required; if reporting end_date can be null

datastore_modelingperiodgroup Meaningful pairs of Baseline and Reporting periods.
id Primary key
project_result_id Foreign key to datastore_projectresults table
baseline_period_id Foreign key to datastore_modelingperiod table
reporting_period_id Foreign key to datastore_modelingperiod table
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Other reference tables

Name of Table Name of
Row

Description of Row

datastore_projectrun Table of tasks used to trigger meter runs; should correspond to
project results

id Primary key
project_id Foreign key to the datastore_project table
project_result_id Foreign key to the datastore_projectresult table
meter_class EnergyEfficiencyMeter; refers to which class of meter, i.e., DR

meter
project_settings [blank] would indicate any special settings used when running the

meter
status Task status: one of SUCCESS/PENDING/FAILED/RUNNING
added Date added
updated Date updated

datastore_projectblock Groupings of projects
id Primary key
name Name for block
added Date added
updated Date updated

datas-
tore_projectblockprojects

Many-to-many through table for project block groupings

id Primary key
project_id Foreign key to the datastore_project table
project_block_id Foreign key to the datastore_projectblock table

datastore_projectowner The datastore-specific user model; created in one-to-one with
django User model.

id Primary key
user_id Foreign key to the django User table
added Date added
updated Date updated

Trace-centric metering tables

Name of Table Name of Row Description of Row
metering_aggregationderivativestatus Many-to-many through table storing how each derivative was included in a specific aggregation (ACCEPTED, REJECTED, DEFAULT)

id Primary key
status ACCEPTED/REJECTED
baseline_status ACCEPTED/REJECTED/DEFAULT
reporting_status ACCEPTED/REJECTED/DEFAULT
aggregation_result_id Primary key of aggregation result
derivative_id Primary key of derivative

metering_aggregationresult Describes results of aggregations
id Primary key
trace_interpretation Interpretation of all traces included in result
derivative_interpretation Interpretation of all derivatives included in result
aggregation_interpretation Aggregation function
aggregation_output Filename of JSON serialization of aggregation output
unit Unit of measure of all values, lower and upper bounds

Continued on next page
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Table 1.3 – continued from previous page
Name of Table Name of Row Description of Row

baseline_value Aggregated baseline value
baseline_lower Amount to be subtracted from baseline_value to obtain lower bound on 95% confidence interval
baseline_upper Amount to be added to baseline_value to obtain upper bound on 95% confidence interval
baseline_n Number of prediction points included in aggregation
reporting_value Aggregated reporting value
reporting_lower Amount to be subtracted from reporting_value to obtain lower bound on 95% confidence interval
reporting_upper Amount to be added to reporting_value to obtain upper bound on 95% confidence interval
reporting_n Number of prediction points included in aggregation
differential_direction BASELINE_MINUS_REPORTING/REPORTING_MINUS_BASELINE
differential_value Aggregated difference between baseline and reporting
differential_lower Amount to be subtracted from differential_value to obtain lower bound on 95% confidence interval
differential_upper Amount to be added to differential_value to obtain upper bound on 95% confidence interval
differential_n Number of prediction points included in aggregation
added Date added
updated Date updated
aggregation_run_id Primary key of corresponding aggregation_run

metering_aggregationrun Describes aggregation task to be performed
id Primary key
aggregation_input Filename of JSON serialization of aggregation input
status PENDING/RUNNING/SUCCESS/FAILURE
traceback Traceback of error, if any
trace_interpretation Interpretation of all traces included in result
derivative_interpretation Interpretation of all derivatives included in result
aggregation_interpretation Aggregation function
added Date added
updated Date updated

metering_aggregationrun_derivatives Many-to-many through table describing derivatives included in an aggregation run
id Primary key
aggregationrun_id Primary key of aggregation run
meterderivative_id Primary key of derivative

metering_aggregationrun_projects Many-to-many through table describing projects included in an aggregation run
id Primary key
aggregationrun_id Primary key of aggregation run
project_id Primary key of project

metering_aggregationrun_traces Many-to-many through table describing traces included in an aggregation run
id Primary key
aggregationrun_id Primary key of aggregation run
consumptionmetadata_id Primary key of trace

metering_meterderivative Table of predictive and descriptive summaries of savings
id Primary key
interpretation Interpretation of derivative (e.g., gross_predicted/annualized_weather_normal)
unit Unit of values, upper and lower bounds.
baseline_value Modeled counterfactual baseline value
baseline_lower Amount to be subtracted from baseline_value to obtain lower bound on 95% confidence interval
baseline_upper Amount to be added to baseline_value to obtain upper bound on 95% confidence interval
baseline_n Number of points in baseline demand fixture
reporting_value Modeled reporting period value
reporting_lower Amount to be subtracted from reporting_value to obtain lower bound on 95% confidence interval
reporting_upper Amount to be added to reporting_value to obtain upper bound on 95% confidence interval

Continued on next page
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Table 1.3 – continued from previous page
Name of Table Name of Row Description of Row

reporting_n Number of points in reporting demand fixture
added Date added
updated Date updated
meter_result_id Primary key of meter result this derivative was extracted from
modeling_period_group_id Primary key of modeling period group describing baseline and reporting period details
trace_id Primary key of trace this derivative applies to

metering_meterresult Table of meter run results
id Primary key
meter_output Filename of JSON serialization of meter output
status SUCCESS/FAILURE
eemeter_version Version of eemeter library used to calculate this result
datastore_version Version of datastore application used to calculate this result
model_class Name of model class
model_kwargs Keyword arguments to model class
formatter_class Name of formatter class
formatter_kwargs Keyword arguments to formatter class
added Date added
updated Date updated
meter_run_id Primary key of meter run
project_id Primary key of project data
trace_id Primary key of trace

metering_meterrun Table of meter runs
id Primary key
meter_input Filename of JSON serialiation
status PENDING/RUNNING/SUCCESS/FAILURE
failure_message Failure message, if any
traceback Traceback text, if error occured
model_class Name of model class supplied, if any
model_kwargs Model class keyword arguments supplied, if any
formatter_class Name of formatter class supplied, if any
formatter_kwargs Formatter class keyword arguments supplied, if any
added Date added
updated Date updated
project_id Primary key of project data
trace_id Primary key of trace

metering_modelingperiod Table describing a modeling period
id Primary key
label Label to distinguish from other baseine/reporting/periods in same meter result
interpretation BASELINE/REPORTING
start Date of modeling period start, if any (can be blank for baseline)
end Date of modeling period end, if any (can be blank for reporting)
meter_result_id Primary key of containing meter result

metering_modelingperiodgroup Table describing a pair of modeling periods (baseline + reporting)
id Primary key
baseline_id Primary key of baseline modeling period
meter_result_id Primary key of containing meter result
reporting_id Primary key of reporting modeling period

metering_modelresult Table storing results from modeling
id Primary key

Continued on next page
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Table 1.3 – continued from previous page
Name of Table Name of Row Description of Row

status SUCCESS/FAILURE
traceback Traceback, if any
start_date Start date of data used in modeling
end_date End date of data used in modeling
n_rows number of rows supplied as input to modeling
r2 R-squared model fit
cvrmse Coefficient of variation of root mean squared error (rmse normalized by mean)
rmse root mean squared error
lower Value to be subtracted from any individual predicted point to obtain lower bound on 95% confidence interval
upper Value to be added to aby individual predicted point to obtain upper bound on 95% confidence interval
added Date added
updated Date updated
meter_result_id Primary key of meter result
modeling_period_id Primary key of modeling period
trace_id Primary key of trace

1.3.3 API

1.4 ETL Toolkit

The ETL toolkit is provided to assist moving data from its source into the datastore.

“ETL” stands for Extract-Transform-Load. These three steps outline the actions the ETL toolkit helps with and are as
follows:

• Extract: obtain data from an external (non-datastore) source.

• Transform: convert that data into a form usable the datatore.

• Load: move the transformed data into the datastore.

The ETL library is not run directly. Rather, its components are used to build ETL pipelines that are specific to a
datastore instance.

1.4.1 Installation

To install the ETL library, run the following:

$ git clone https://github.com/openeemeter/etl
$ cd etl
$ pip install -r requirements.txt

For more information, see github.

1.4.2 API

...
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