

EDPC Mentoing Scheme Database

	Getting started
	Before you start

	Running a test instance with fake data

	Installing on UIS MWS3 (https://panel.mws3.csx.cam.ac.uk/)

	Notes on the test database

	Development

	Mentoring relationships
	Relationships

	Meetings

	Matchmaking
	Models

	Forms

	The CUED People database
	Members

	Departmental structure

	Settings

	Management commands

	Notifying and reminding users

Getting started

This section is intended for developers new to the database who want to get up
and running with a test instance quickly.

Before you start

You should have done the following things before starting to work on the
database:

	Get a machine running Unix-like OS or Mac OS X. (It makes life easier in the
long run when dealing with Python.)

	Install Python and virtualenv [https://virtualenv.pypa.io/en/latest/].

	Work through the Django tutorial [https://docs.djangoproject.com/en/stable/intro/tutorial01/].

Running a test instance with fake data

Clone the repository and cd to it. The remaining instructions assume
the repository root is the current working directory.

Create a virtualenv:

$ virtualenv -p $(which python2.7) env
$ echo "env" >>.git/info/exclude # To avoid any accidental commits
$. env/bin/activate

Install the requirements:

$ pip install -r requirements.txt -r dev-requirements.txt

Note

The requirements.txt file lists the Python packages required for
deployment. The dev-requirements.txt file lists the Python packages used
only by developers. For example, the “ipython” package, which is used to
improve the shell_plus command, is in the dev-requirements.txt file
since it is not required when deploying the database.

Perform the initial database migration and populate the database with
some fake data:

$./edpcmentoring/manage.py migrate
$./edpcmentoring/manage.py runscript loadtestfixtures

Start a local development server:

$./edpcmentoring/manage.py runserver_plus

Open http://127.0.0.1:8000 in your web browser. The admin interface is at
http://127.0.0.1:8000/admin.

Installing on UIS MWS3 (https://panel.mws3.csx.cam.ac.uk/)

You will need:

	To register and create an MWS3 server (see link above)

	The root password for MySQL server (available once you MWS3 has been setup)

ssh onto your MWS3 server (via putty, or a linux/unix console), then:

$ cd /var/www/default/admindir
$ git clone https://github.com/cuedpc/edpcmentoring.git
$ python edpcmentoring/deploy/setup_mws.py

You will be asked for

	The server’s MySQL root password.

	A short name which will be prefixed by ‘pc_‘ and used as the database name

	A password the Django applicatoin will use to connect to the MySQL server

	A unique passphrase / secret key for your application

	Whether you wish to load the sample test data into the application

Once complete you should be able to visit the mws3’s host name and, if you have loaded the test data, login as test000X.

Note

The local config is held in edpcmentoring/edpcmentoring/edpcmentoring/settings_local.py, and DEBUG is set to True - not advised for production systems.

Notes on the test database

	There is one superuser: test0001.

	The users test0001 and test0002 can log into the admin
interface.

	Users test0001 to test0099 are members of CUED but not all
are active.

	Users test0100 to test0199 exist in the database but are not
CUED members.

Development

This section contains some important information if you’re thinking of
developing a feature for the database.

Tests

The test suite for the mentoring database is run via the tox test-runner. If
you’re intending to develop a feature for the database, it is important that you
write tests. By default, tox will run tests using whichever Python version
correspond to the installed python and python3 binaries.

Install tox via pip:

$ pip install --user tox

You can now run the tests via the tox command:

$ tox

Any positional arguments are passed to the underlying invocation of manage.py
test and so you can specify a particular application to test by giving it’s
directory. For example:

$ tox edpcmentoring/cuedmembers

Code coverage

The tests are run under the coverage code-coverage utility and files which
do not have 100% test coverage are printed out after the tests are run.
Additionally, a HTML report is generated in htmlcov/ which is useful for
determining which lines are untested.

Although 100% code coverage is probably infeasible in general, we aim for as
close as possible in the database. Pull requests which increase test code
coverage are welcome.

Mentoring relationships

The mentoring application provides the core of the
mentorship management support.

Relationships

	
class mentoring.models.Relationship(*args, **kwargs)

	The mentoring database is structured around the concept of a “mentoring
relationship” between two users. One user will be the mentor and one will be
the mentee.

Note

This model is not yet completely set in stone. In particular, it’s
unclear whether the ending of the relationship should be recorded in the
model or in a related model.

	
mentor

	The user who is the mentor in this relationship.

	
mentee

	The user who is the mentee in this relationship.

	
is_active

	True iff this relationship is currently active.

	
class mentoring.models.RelationshipManager

	
	
active()

	A queryset of active relationships.

	
inactive()

	A queryset of inactive relationships.

	
mentees_for_user(user)

	A queryset returning all users who are the passed user’s mentees.
Only active relationships are considered.

	
mentors_for_user(user)

	A queryset returning all users who are the passed user’s mentors.
Only active relationships are considered.

Meetings

	
class mentoring.models.Meeting(*args, **kwargs)

	Meetings are recorded for a particular relationship.

Note

The in-database duration is likely to have a ludicrous resolution (maybe
microsecond) but using a DurationField in this model has the advantage
that it is exposed as a standard Python timedelta object.

Note

It is likely that a “happened” field will need to be added to this model
at some point to allow users to specify that a meeting was mistakenly
recorded.

	
relationship

	The Relationship this meeting is associated with.

	
held_on

	The date this meeting was held.

	
approximate_duration

	The approximate duration of the meeting.

	
class mentoring.forms.ReportMentorMeetingForm(*args, **kwargs)

	A form which allows a user to record a meeting where they were a mentor.
Much like a ModelForm this object provides a single
save() method which can be used to save the cleaned data to the
database.

	Parameters:	mentor (django.contrib.auth.models.User) – A required argument which
specifies the user who is the mentor.

	
save(*args, **kwargs)

	Save this meeting to the DB.

Matchmaking

The matching application adds support for so-called “matchmaking” of
mentors and mentees. This includes invitations to form matchmaking
relationships as represented by the mentoring.models.Relationship
model.

Models

	
class matching.models.Invitation(*args, **kwargs)

	An invitation to form a mentoring relationship.

Invites are the mechanism where mentor/mentee relationships are created. The
clean() method of this model is overridden to allow invites to be
created by anyone but, in that case, they need to be the mentor or mentee of
the invite. Users with the “add_invitation” permission can invite any two
users to form a mentor/mentee relationship.

Each invitation records who the mentor and mentee are to be and the user who
created the invite. (This is useful to determine which of the mentors and
mentees should actually be notified.) The creation date is also stored to
allow for some form of automatic expiry.

An “active” invite is one which is not expired and is still awaiting a
response from the mentor or mentee. An invitation which is declined by
either mentor or mentee should be marked as inactive even if the other party
has not responded.

The deactivated_on date records when this invite became inactive
either through being declined by one party, accepted by both or manually
deactivated.

Should the invite result in a new relationship, this is recorded in the
created_relationship field.

	
RESPONSES = (('A', 'Accept'), ('D', 'Decline'))

	The possible responses to an invitation.

	
clean()

	Extra validation for invitations.

Creating invitations when the creator is not the mentor or mentee
requires that the creator have the “add_invitation” permission.

	
created_by

	The User who created this invitation

	
created_on = None

	The date this invitation was created

	
created_relationship

	If this invite lead to a mentoring relationship, it is recorded here

	
deactivate()

	Deactivate this invite without creating a relationship.

Does nothing if the invite is already deactivated.

	
deactivated_on = None

	If inactive, when did this invite become so

	
is_accepted()

	Returns True iff both the mentee and mentor have accepted the
invite.

	
is_active()

	Returns True iff the invite is active (i.e. the “deactivated_on”
date is blank).

	
mentee

	The proposed mentee for this relationship

	
mentee_response = None

	The response from the mentee to the invite

	
mentor

	The proposed mentor for this relationship

	
mentor_response = None

	The response from the mentor to the invite

	
respond(user, accepted)

	Set the response of the specified user. If the user is neither the
mentor or mentee then a PermissionDenied exception is raised.

	
class matching.models.InvitationManager

	Model manager for Invitation model.

	
active()

	Return a query set giving only the active invitations.

	
class matching.models.Preferences(*args, **kwargs)

	Records the mentorship opinions of a User.

	
matching.models.invitation_create_relationships(instance, **_)

	A pre-save hook for Invitation instances which creates a mentoring
relationship if:

	The invitation is accepted

	The invitation is active

	There is no current relationship

Forms

	
class matching.forms.InvitationResponseForm(data=None, files=None, auto_id=u'id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None)

	A form for responding to an invitation.

Validates that the user responding to the invitation is one of the mentor or
the mentee and that the invitation is active.

Example:

invitation = # ... Retrieve Invitation instance
f = InvitationResponseForm(
 data={'user': request.user.id, 'response': Invitation.ACCEPT},
 instance=invitation
)
f.save()

	
response = None

	The response. One of Invitation.ACCEPT or
Invitation.DECLINE

	
user = None

	The database primary key for the user responding to the invitation.

The CUED People database

The cuedmembers application contains models and logic to maintain a
shadow copy of a list of CUED members. It augments the builtin
django.contrib.auth.User model with information about a member of
CUED. This includes:

	The full list of “first names”;

	Their research group and division (if any); and

	Whether they are a current member of CUED.

Members

	
class cuedmembers.models.Member(*args, **kwargs)

	An extension of the standard Django User to indicate that a particular
user is a member of the Department.

There is a one-to-one mapping of Users to Members however not every User is
necessarily a Member.

Note

While there is nothing stopping you adding a foreign-key to a Member in
models, its better to add a foreign-key to a User. That way you app’s
models are decoupled from relying on the CUED membership database and
may be of wider user.

The “Surname” and “Preferred name” fields from the Department are mapped
through to the associated User’s last_name and first_name. The
“First names” provided by the Department are stored in this model.

An “active” member is currently present at CUED.

Information in this model is expected to be provided by the Department. See
http://www-itsd.eng.cam.ac.uk/datadownloads/support/div_people.html for some
discussion of what the fields mean.

Note that is_active is the primary means by which one should judge if a
Member is currently a member of the Department.

This model does not include role/course, host/supervisor, room number or
phone number. The “arrived” flag is folded into the is_active field.

	
user

	The django.contrib.auth.models.User associated with this
Member.

	
first_names

	A string containing the first names for the member supplied by the
Department. Although it is tempting to use a space as a separator for
these, that way danger lies!

	
research_group

	The ResearchGroup which this member is a part of.

	
is_active

	Members are not usually deleted from the database. Instead they become
“active” or “inactive”. This is to allow for the same person to be
considered as the same person if they leave CUED and then subsequently
return.

	
crsid

	This member’s CRSid. The CRSid is the username of the associated
user.

This property merely returns the username of the associated User.

	
class cuedmembers.models.MemberManager

	A specialised Manager for Member instances.

	
active()

	A query-set of active users.

	
inactive()

	A query-set of inactive users.

	
update_or_create_by_crsid(crsid, defaults=None)

	Retrieve or create a new member from a crsid. If a corresponding user
does not exist, it is created. The newly created user has
set_unusable_password() called on it and is added to the database.

The first_name, last_name and email entries in defaults are set on the
corresponding user and any other values are set on the member.

See the update_or_create() documentation for discussion of the defaults
parameter.

	
cuedmembers.get_member_group()

	CUED members who are active are a member of a group. Membership of this
group is automatic for those members who have
is_active set to True when imported from CSV via
csv.read_members_from_csv().

Note

The group membership is not automatically updated when save()
is called on the models.Member model. This is because only
advanced users who know what they’re doing should be fiddling with the
database model directly!

By default this group is called “CUED Members” but the name may be
overridden by setting the CUED_MEMBERS_GROUP setting.

Departmental structure

The Department is structure into Divisions which comprise separate Research
Groups. The cuedmembers app ships with a fixture which is automatically
loaded into the database at migrate-time which contains the current Divisions
and Research Groups.

	
class cuedmembers.models.Division(*args, **kwargs)

	A division within CUED. The primary key for a division is actually its
letter, A-F.

	
letter

	The Divisional ID letter, A-F.

	
name

	A human-readable name for the Division.

	
class cuedmembers.models.ResearchGroup(*args, **kwargs)

	A research group in CUED.

	
division

	The Division which this research group is a part of.

	
name

	A human-readable name for the Research Group.

Settings

	CUED_MEMBERS_GROUP

	String giving the name of the group created or returned by
get_member_group().

Management commands

Synchronising membership data via CSV files

The importcuedmembers management command is used to synchronise the
membership database with an authoritative source.

The Department provide CSV dumps of CUED membership. See
http://www-itsd.eng.cam.ac.uk/datadownloads/support/div_people.html
for more details. This command allows the ingestion of a CSV file in the format
outlined at that page into the database.

Members listed in the CSV file are created if they don’t exist. Their personal
details, such as first name, surname, etc. are updated from the CSV. A
previously active member who does not appear in the CSV file is marked inactive.
Similarly, a previously inactive member who appears in the CSV file is marked
active.

By default, an email address of <crsid>@cam.ac.uk is used for each member.
This can be configured through the --email-domain argument.

This command can take either a path to a CSV file on the local system or a http
or https URL to a CSV file located on a remote server.

Notifying and reminding users

The autonag application takes care of notifying users of events
they should be aware of and reminding them of tasks they have yet to complete.

 Python Module Index

 a |
 c |
 m

 		 	

 		
 a	

 	
 	
 autonag	

 		 	

 		
 c	

 	[image: -]
 	
 cuedmembers	

 	
 	
 cuedmembers.management.commands.importcuedmembers	

 		 	

 		
 m	

 	[image: -]
 	
 matching	

 	
 	
 matching.forms	

 	
 	
 matching.models	

 	
 	
 mentoring	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U

A

 	
 	active() (cuedmembers.models.MemberManager method)

 	(matching.models.InvitationManager method)

 	(mentoring.models.RelationshipManager method)

 	
 	approximate_duration (mentoring.Meeting attribute)

 	autonag (module)

C

 	
 	clean() (matching.models.Invitation method)

 	created_by (matching.models.Invitation attribute)

 	created_on (matching.models.Invitation attribute)

 	
 	created_relationship (matching.models.Invitation attribute)

 	crsid (cuedmembers.models.Member attribute)

 	cuedmembers (module)

 	cuedmembers.management.commands.importcuedmembers (module)

D

 	
 	deactivate() (matching.models.Invitation method)

 	deactivated_on (matching.models.Invitation attribute)

 	
 	Division (class in cuedmembers.models)

 	division (cuedmembers.ResearchGroup attribute)

F

 	
 	first_names (cuedmembers.Member attribute)

G

 	
 	get_member_group() (in module cuedmembers)

H

 	
 	held_on (mentoring.Meeting attribute)

I

 	
 	inactive() (cuedmembers.models.MemberManager method)

 	(mentoring.models.RelationshipManager method)

 	Invitation (class in matching.models)

 	invitation_create_relationships() (in module matching.models)

 	InvitationManager (class in matching.models)

 	
 	InvitationResponseForm (class in matching.forms)

 	is_accepted() (matching.models.Invitation method)

 	is_active (cuedmembers.Member attribute)

 	(mentoring.Relationship attribute)

 	is_active() (matching.models.Invitation method)

L

 	
 	letter (cuedmembers.Division attribute)

M

 	
 	matching (module)

 	matching.forms (module)

 	matching.models (module)

 	Meeting (class in mentoring.models)

 	Member (class in cuedmembers.models)

 	MemberManager (class in cuedmembers.models)

 	mentee (matching.models.Invitation attribute)

 	(mentoring.Relationship attribute)

 	
 	mentee_response (matching.models.Invitation attribute)

 	mentees_for_user() (mentoring.models.RelationshipManager method)

 	mentor (matching.models.Invitation attribute)

 	(mentoring.Relationship attribute)

 	mentor_response (matching.models.Invitation attribute)

 	mentoring (module)

 	mentors_for_user() (mentoring.models.RelationshipManager method)

N

 	
 	name (cuedmembers.Division attribute)

 	(cuedmembers.ResearchGroup attribute)

P

 	
 	Preferences (class in matching.models)

R

 	
 	Relationship (class in mentoring.models)

 	relationship (mentoring.Meeting attribute)

 	RelationshipManager (class in mentoring.models)

 	ReportMentorMeetingForm (class in mentoring.forms)

 	
 	research_group (cuedmembers.Member attribute)

 	ResearchGroup (class in cuedmembers.models)

 	respond() (matching.models.Invitation method)

 	response (matching.forms.InvitationResponseForm attribute)

 	RESPONSES (matching.models.Invitation attribute)

S

 	
 	save() (mentoring.forms.ReportMentorMeetingForm method)

U

 	
 	update_or_create_by_crsid() (cuedmembers.models.MemberManager method)

 	
 	user (cuedmembers.Member attribute)

 	(matching.forms.InvitationResponseForm attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		EDPC Mentoing Scheme Database

 		Getting started

 		Before you start

 		Running a test instance with fake data

 		Installing on UIS MWS3 (https://panel.mws3.csx.cam.ac.uk/)

 		Notes on the test database

 		Development

 		Tests

 		Code coverage

 		Mentoring relationships

 		Relationships

 		Meetings

 		Matchmaking

 		Models

 		Forms

 		The CUED People database

 		Members

 		Departmental structure

 		Settings

 		Management commands

 		Synchronising membership data via CSV files

 		Notifying and reminding users

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

