

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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Introduction

This is EDGE’s developer guide.
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Continuity


Basic CI {#sec_basic_ci}

EDGE’s basic Continuous Integration (CI) has low resource requirements and uses a collection of tools.
The basic CI and corresponding webhooks are used for:


	Test of EDGE’s installation process, including all tools and dependencies, from scratch through Travis CI [https://travis-ci.org/3343/edge] (virtual machine).


	Very basic sanity checks of different compile modes and executions through Travis CI.


	Generation of code coverage reports through Codecov [https://codecov.io/gh/3343/edge].


	Test of EDGE’s container support through execution of a Singularity [http://singularity.lbl.gov] bootstrap (Singularity requires root-permissions for the bootstrap) in Travis CI.


	Test of EDGE’s BSD 3-Clause license and the compliance of submodules through FOSSA [https://app.fossa.io/projects/git%2Bhttps%3A%2F%2Fgithub.com%2F3343%2Fedge].







Continuous Delivery

Continuous Delivery (CD) of EDGE with moderate resource requirements uses GoCD [https://www.gocd.io].
Currently the GoCD web-interface and all computing resources are protected by a firewall.
If you want access to these, please get in touch.
In comparison to the Basic CI, the systems are preconfigured and only direct dependencies and EDGE itself are build.
EDGE’s CD through GoCD is used for:


	Test of EDGE’s installation process, including libraries, using GNU, LLVM and Intel compilers.


	Sanity checks of every commit covering a wide range of configurations, e.g., solved equations, used element types, structured/unstructured meshes, level of parallelization, vanilla kernels/runtime code generation, non-fused/fused runs, vector instruction sets. The sanity checks also include runs with the GNU and LLVM sanitizers, valgrind, and the Intel Inspector XE for detection of undefined behavior, memory leaks, etc.


	Sanity checks of machine-specific optimizations. Currently, optimizations targeting Haswell (AVX2) and KnightsLanding (AVX512) are tested.


	Automated convergence benchmarks of different configurations. Due to higher runtimes, the convergence benchmarks are executed on a time basis, currently once per week, and not after every commit.


	Automated wave propagation benchmarks for seismic simulations. These are also executed once a week.










          

      

      

    

  

    
      
          
            
  
Data Layout

EDGE uses a customized, fixed format for the storage of dense data (e.g., every element storing degrees of freedom) associated with entities.
The general scheme behind the layout is to emphasize linear access in the computational loops and an “as-is” communication of data.
The term “as-is” means that computational routines and communication routines share the same parts of memory.


Entities in Distributed Memory Settings

We distinguish between three types of entities: inner-entities, send-entities and receive-entities.
For element-entities, this usually translates 1-to-1 to the corresponding MPI-functions:
Values of inner-entities are not communicated, those of send-entities are send and values of receive entities are received.

In the setup we derive the inner-, send- and receive-entities in the following way.
First, we consider the owned elements of a partition.
If an element directly shares a face (bridge dimension) with an element owned by a neighboring partition, it is a send-element.
The corresponding element owned by the neighboring partition is a receive-element.
All elements not sharing faces with neighboring partitions are inner-elements.

Now considering faces, those faces who are owned by a partition but don’t bridge to an adjacent partition are inner-faces.
Faces owned by a partition bridging to an adjacent partition are send-entities.
Similar faces owned by an adjacent partition bridging to the partition under consideration are receive-faces.
Note that a bridging face is either a send-face or a receive-face, depending on the owning partition, never both.
Also note that only inner-faces and bridging faces exist, this implies that not all faces of ghost-elements are resolved.

For vertices, innner-vertices are those owned by the partition not adjacent to any send-elements.
Send-vertices are owned by the partition and adjacent to send-elements.
Receive-vertices are owned by a neighboring partition and adjacent to receive-elements.
Analogue to the faces, a vertex adjacent to a bridging face is either a send- or receive-vertex, never both.
This choice depends on which partition owns the vertex.
In contrast to the faces, we are also storing vertices adjacent to ghost-entities.




Local Time Stepping (LTS)

On the outermost level our memory layout we consider the time step of the elements.
Assume given element time step groups with fixed two-fold multiples of a fundamental time step $$\Delta t$$: $$1\cdot \Delta t$$, $$2\cdot \Delta t$$, $$4 \cdot \Delta t$$, etc.
Here, we store (withing one MPI-rank) all elements having time step $$1 \cdot \Delta t$$ first, then all elements having time step $$2 \cdot \Delta t$$, followed by all elements with $$4 \cdot \Delta t$$ and so on.

Now consider a time step group, let’s say $$2 \cdot \Delta t$$.
Within a group we store communication-independent inner-elements, with respect to one $$2 \cdot \Delta t$$ time step of this group, first.
Next, we store send-elements, those are elements, which belong to the partition owned by the given MPI-rank and own data, which is required by neighboring partitions.
Last we store, within a time step group, receive-elements.
Receive-elements are owned by neighboring partitions and own data, which is required by the send-elements of the considered partitions.

No particular sorting is performed for inner-elements.

Send-elements are sorted further. Here, we first sort by the time step group of the neighboring LTS-group.
In the case that an send-element has more than one neighboring LTS-group on a remote partition, it is duplicated and stored redundantly in the respective memory regions associated with the respective neighboring LTS-groups.
Now that we have sorted the elements per neighboring LTS-group, we sort the elements by the neighboring MPI-ranks within this group. Once again, if data of a send-element is required by more than one neighboring partition, we duplicate the element as often as required and store it redundantly.
The benefit of duplicating the element logically is that no separate buffers are required for MPI-sends. This means, that we can use the same linear storage of our send-elements for the messages.

The storage of the receive-elements reflects the scheme of the send-elements on the neighboring partition.
Here, we also sort by LTS-group and then by the neighboring rank.
Note that an element from the same rank can exist twice due to the LTS-constraints, since we will need different data in this case.

We follow the same approach for sorting vertices and faces.
In this case, a vertex or face might be adjacent to different time groups.
Thus, we assign the minimum adjacent time group to vertices and faces.




Global Time Stepping (GTS): A Special Case of LTS

GTS is a special case of LTS with only one time step group having the fundamental time step $$\Delta t$$.
Ignoring the steps above related to different time step groups, the LTS-scheme falls back to a native GTS-algorithm with no LTS-overhead in the data layout.

Since only one time step exists, the outermost level, in terms of GTS, is the splitting into inner-elements, send-elements and receive elements.

The send-elements are sorted by the neighboring MPI-ranks and elements having more than one neighbor are duplicated.

Analogue receive-elements are sorted by the neighboring MPI-ranks.
Since no duplication w.r.t. to time step groups exist, every receive-element is unique per partition.




Duplicated Entities

The duplication of send-elements leads to non-intuitive situations, one has to be aware of.
It is save to use data of adjacent faces or elements read-only.
However, be aware that writing data of adjacent entities requires special care.

Say, for example (see illustration below), that a mesh-element 00 on partition 0 computes data, which it adds afterwards to the adjacent elements 10 and 20, which reside on partitions 1 and 2 respectively.
Iterating over all send-elements, existing for 00, in our data structure and performing this operations leads to false-behavior:
Here, both redundant copies of element 00, would add data to their adjacent elements.
Further, the inner-element 01 is not aware of the redundant copies, therefore only one of the copies receives the respective update.

      ******.************   ...: MPI-boundary
       *01 *  .  20    *    ***: innter-boundary
        * * 00   .   *
         ...........
          *   10  *
            *   *
              *








Sparse Entities

Sparse entities are a small subset of either the vertices, faces or elements in our data layout.
We use sparse entities to encode a special behavior in our solvers.
Examples are faces with (internal) boundary conditions, elements with source terms or elements with receivers.
EDGE assigns every sparse entity an implicit identifier, which follows the storage scheme of the dense data-format:
The first appearing sparse entity of a certain sparse type, e.g. the first face with type “free-surface boundary”, has the id 0.
All following entities of this type have ascending ids.
We set the sparse type of an entity by setting a bit in the respective integral type of the entity.
In the integral type bits 0-13 are reserved for mesh-input, e.g. boundary conditions or material layers.
Bit 14 is only true if no mesh-input is present.
Bit 15 is reserved for receivers.
Bits 16-31 are reserved for application-specific parameters.
All remaining bits 32-63 are reserved for the management of time stepping.

Note that having one sparse-type for every dense entity in our dense data layout, means that MPI-duplicates of an entity are not required to have identical sparse types.
For example, first consider, the implementation of point sources in a seismic setup.
Here, all duplicate elements of an element with a source would be marked as entitites with source terms, since we have to apply the sources consistently.
On the contrary, if we would like to extract the solution point-wise through receivers, we only want to do this once.
Therefore, only one of the entities would have a receiver-flag.




Access of sparse face or vertex data

Sparse faces follow the layout of the dense faces.
As a result linear access to elements and their corresponding sparse faces is, as in the case of dense faces, unstructured in general.
Therefore, if our solver accesses sparse data of faces while iterating over elements, we have to introduce an additional sparse element data structure to cope with this access.

This sparse data structures stores for every element adjacent to one or more sparse faces, the respective sparse offset of all faces.
Faces of such element not having the respective sparse type simply hold an invalid offset.
This scheme is similar to adjacency of elements in the presence of certain boundary conditions, e.g. outflow boundaries.

The same considerations hold for vertex instead of face data.







          

      

      

    

  

    
      
          
            
  
Parallelization


Shared Memory

We separate between three type of threads.
Workers perform computations on entities.
The unique scheduling thread manages dependencies of the time groups by 1) deciding what work (time group+step) is allowed to be done by the workers and 2) posting communication messages for distributed memory parallelization.
The last type of threads are the communication threads progressing the MPI-communication.
A thread might be a pure worker, a pure scheduling thread or a pure communication thread.
However, combinations are also allowed meaning that a thread could be a worker and a scheduling thread, a worker and a communication thread, a worker+sched+comm thread, or a scheduling thread and a communication thread.

[image: Example showing the separation of threads into workers, a scheduling thread and communication threads.]

Based on all available threads $$n_\text{th}=n_\text{wo}+1+n_\text{co}$$, we assign the first $$1\ldots n_\text{wo}$$ threads to be the $$n_\text{wo}$$ workers.
Thread $$n_\text{wo}+1$$ is the scheduling thread and threads $$n_\text{wo}+2, \ldots, n_\text{wo}+2+n_\text{co}$$ are assigned to be the $$n_\text{co}$$ communication threads.


Work Packages

Each of the $$n_\text{wo}$$ workers is responsible for a set of work packages.
Following our entity setup, we equally distribute the entities of every time group-inner and time group-send combination to separate work packages.

Assume, for example, that rank 0 owns entities of time group #1.
Here, we distribute the inner-entities of time group #1 to $$n_\text{wo}$$ work packages, such that every worker has a unique set of entities of these inner-entities.
Analogue, we distribute the send-entities of time group #1 to $$n_\text{wo}$$ work packages, such that every worker has a unique set.
For inner-entities covering the largest time group, we can most probably ensure a good load balancing since the load is high general.
However, there might only exist a few inner- and especially send-entities for a specific time group.
A non-blocking shared memory implementation, allowing workers to jump to work packages as early as possible, is key.

For this purpose, we define a status for every work package, which is used to signal between the workers and the scheduling thread.
The possible values are RDY (ready), IPG (in progress), FIN (finished), or WAI (waiting to be scheduled).

[image: Possible statuses of a work package. Possible status changes made by the working thread responsible for the work package are shown in red. Possible changes by the scheduling thread in blue.]

From a worker’s perspective WAI means, that this work package is not ready to be progressed.
This could either be because of ongoing, unfinished communication or because other workers are not finished with work packages, imposing dependencies.
Once the scheduling threads decides, that a work package is ready to be worked on, it switches the corresponding status to RDY.
This means that the respective worker is allowed to jump in and work on the package.
However, each of the workers decides dynamically, which of the owned work packages with status RDY has highest priority.
We prioritize by 1) work packages built of send-entities and 2) time step groups with smaller time step having higher priority.

Once a worker decided to work on a specific package, it switches its state from RDY to IPG, signaling that it is working on the package.
Once the worked is finished with the package, it switches its state from IPG to FIN.
At this point, the scheduling thread can use this information to resolve possible dependencies.
If the work package is directly ready to be worked on again, the scheduling thread switches the status from FIN to RDY.
Otherwise, the scheduler switches it from FIN to WAI, meaning that the work package is idle for the time being until new information allows it to be RDY again.




Scratch Memory

If requested by the application, EDGE provides scratch memory for shared memory parallelizations (see parallel/global.h).
This memory is thread-private.






Message Passing Interface (MPI)

For interaction with MPI, we separate between a scheduling thread and communication threads.
The single scheduling thread posts new outgoing messages (send) and incoming messages (receives) via MPI_Isend and MPI_Irecv.
In addition, the scheduling thread assigns a communication thread to every message.
If the id -1 is used, the message is progressed by all communication threads, otherwise only by the corresponding thread.
The assigned communication thread might change with every new posted message.
Possible messages are given by send-elements and receive elements for all time groups.

[image: Example of shared send- and receive-messages (top) and communication threads exclusively responsible for certain messages (bottom).]

Communication threads continuously iterate over all possible messages and check if new requests arrived for them.
In the case any new responsibility arrived for a thread, it is added to a thread-private list hosting all of the thread’s messages.
Each communication thread iterates over its list (if not empty) multiple time using MPI_Test to progress MPI before checking for new messages again.

We assign each message a unique identifier (tag), which is based on all possible time group combinations.
If $$n_\text{tgrps}$$ describes the number of time groups for the entire domain, this gives a total of $$n_\text{tgrps} \times n_\text{tgrps}$$ possible values for the tag.

[image: Example of tags attached to send (top) and receive (bottom) messages. Rank 0 works on elements of time groups 2-4. The elements of time group 2 neighbor elements in time group 1-4 on different ranks, time group 3 neighbors 1-3, while time group number 4 only neighbors time groups 3 and 4.]




Scheduling

[image: Flow and dependencies of the ADER-DG scheme for the elastic wave equations with source terms.]

[image: Flow and dependencies of the ADER-DG scheme for the elastic wave equations with rupture physics. The indexing is shared with the source term implementation, resulting in a non-ascending numbering.]




Meshes

We support two type of meshes, regular meshes and unstructured meshes.
Regular meshes are generated at runtime and based on regular domain decompositions into lines (1D), quads (2D) or hexes (3D).
In contrast, the unstructured meshes are read from disk and parsed through the library MOAB [http://sigma.mcs.anl.gov/moab-library/].




Regular

Remark: The current implementation does not respect the inner-send-recv-ordering for the vertices; additionally global ids of entities are set to dummy values only.


Quad

In 2D we divide a given quadrilateral domain first in quadrilateral elements.
In the next step we derive the partitions.
Next, for each MPI-rank we derive the element ids and adjacency info.

[image: Decomposition of a non-periodic 100-element quadrilateral domain in four partitions. The element ids for partition 3 are given as an example.]




Tria

Triangular domain decomposition follow the quadrilateral layout by splitting each quad in two triangles.

[image: Decomposition of a non-periodic 200-element triangular domain in four partitions. The element ids for partition 3 are given as an example.]




Hex

[image: Decomposition of a 360-element hexahedral domain in eight partitions.]




Tet

The tetrahedral domain decomposition follows the hexahedral layout by splitting each hex in five tets.
We use the two splittings/types A and B in alternating order to reach a conforming tetrahedral mesh.

[image: The two basic splittings A (left) and B (right) of a hex into tets. The mapping of nodes to hex-local tet-ids and faces is shown on the left/right.]

Therefore, in the case of periodic boundaries, the number of hexes in every dimension is required to be a multiple of 2.






Unstructured

Unstructured triangular and tetrahedral meshes are support through MOAB [http://sigma.mcs.anl.gov/moab-library/].


Global Ids

We define global ids (unique identifiers across all ranks) for vertices, faces and elements.
In the case of vertices and elements we reproduce the initial ids as defined in the mesh-file (tested for gmsh-only), for faces we use the ids provided by MOAB’s assign_global_ids.
This differentiation is important since assign_global_ids overwrites the original mesh ids.
Therefore our approach ensures consistency for element- and vertex-ids, even when different numbers of ranks are involved.
For example, this allows following initialization-routines to perform unique mappings to reference elements and thus to ensure bit-reproducibility.









          

      

      

    

  

    
      
          
            
  
Performance


Instrumentation

EDGE’s performance-relevant functions are manually instrumented. The manual instrumentation uses the libraries Score-P [http://www.vi-hps.org/projects/score-p/] and Scalasca [http://www.scalasca.org/software/scalasca-2.x].


Installation of OTF2

OTF2 (Open Trace Format 2) is optional for installing Score-P and Scalasca.


	Download OTF2 from http://www.vi-hps.org/projects/score-p:




wget http://www.vi-hps.org/upload/packages/otf2/otf2-2.0.tar.gz -O otf2.tar.gz






	Extract OTF2 to the directory otf2:




mkdir otf2; tar -xzf otf2.tar.gz -C otf2 --strip-components=1






	Configure the installation and set libs as installation directory by running:




cd otf2; ./configure --prefix=$(pwd)/../libs






	Run make to build the library and make install to put it in the libs directory.







Installation of OPARI2

OPARI2 (OpenMP Pragma And Region Instrumentor) is optional for Score-P’s installation, but recommended.


	Download OPARI2 from http://www.vi-hps.org/projects/score-p:




wget http://www.vi-hps.org/upload/packages/opari2/opari2-2.0.2.tar.gz -O opari2.tar.gz






	Extract OPARI2 to the directory opari2:




mkdir opari2; tar -xzf opari2.tar.gz -C opari2 --strip-components=1






	Configure the installation and set libs as installation directory by running:




cd opari2; ./configure --prefix=$(pwd)/../libs






	Run make to build the library and make install to put it in the libs directory.







Installation of Score-P

Score-P uses EDGE’s high-level instrumentation to generate an executable, providing performance reports on completion.


	Download Score-P from http://www.vi-hps.org/projects/score-p/:




wget http://www.vi-hps.org/upload/packages/scorep/scorep-3.1.tar.gz -O scorep.tar.gz






	Extract Score-P to the directory scorep:




mkdir scorep; tar -xzf scorep.tar.gz -C scorep --strip-components=1






	Configure the installation and set libs as installation directory by running:




cd scorep; ./configure --with-otf2=$(pwd)/../libs --with-opari2=$(pwd)/../libs --prefix=$(pwd)/../libs






	Run make to build the library and make install to put it in the libs directory.




For the time being only GNU works as toolchain as Score-P throws error/segfaults in EDGE’s OMP when using the Intel compilers.
You can enforce GNU compilers by instructing the configure-script accordingly, for example on Stampede 2 using Intel-MPI:

module load gcc
. /opt/intel/compilers_and_libraries_2017/linux/bin/compilervars.sh intel64
cd scorep; ./configure --with-otf2=$(pwd)/../libs --with-opari2=$(pwd)/../libs --prefix=$(pwd)/../libs --with-nocross-compiler-suite=gcc --with-mpi=intel3
make
make install





You can work around the error configure: error: required option --interface-version not supported by cube-config. in Score-P’s (version 3.1) and Scalasca’s (version 2.3, see below) configure-script by disabling cube: --with-cube=no.




Installation of Scalasca

We use Scalasca to generate performance reports across multiple nodes.


	Download Scalasca from http://www.scalasca.org/:




wget http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/dist/scalasca-2.3.1.tar.gz -O scalasca.tar.gz






	Extract Scalasca to the directory scalasca:




mkdir scalasca; tar -xzf scalasca.tar.gz -C scalasca --strip-components=1






	Configure the installation and set libs as installation directory by running:




cd scalasca; ./configure --with-otf2=$(pwd)/../libs --prefix=$(pwd)/../libs






	Run make to build the library and make install to put it in the libs directory.







Performance Reports


	Build EDGE with the flag inst=yes: PATH=libs/bin:$PATH scons inst=yes.
Do not build in parallel (don’t use -j as SCons-flag).


	OMP: Run EDGE as usual


	MPI/MPI+OMP: Prepend program excecution with scalasca -analyze




Remark: For some reason Score-P 3.0 shows different number of visits across thread w.r.t. step and cflow-id in the time manager. Here, 5 and 6 visits for cflow_id=1:

cube_stat -% -m visits scorep-20161012_2200_367901509819854/profile.cubex -r step_id=0
cube::Metric,Routine,Count,Sum,Mean,Variance,Minimum,Quartile 25,Median,Quartile 75,Maximum
visits,INCL(step_id=0),3,68,22.6667,1.33333,22.0000,,22.0000,,24.0000
visits,EXCL(step_id=0),3,34.0000,11.3333,0.333333,11.0000,,11.0000,,12.0000
visits,cflow_id=1,3,16.0000,5.33333,0.333333,5.00000,,5.00000,,6.00000
visits,cflow_id=0,3,18.0000,6.00000,0.00000,6.00000,,6.00000,,6.00000





This seems to be a bug.
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