

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image:] [https://travis-ci.org/Warchant/ed25519]
[image: codecov] [https://codecov.io/gh/Warchant/ed25519]

Ed25519 digital signature algorithm

Ed25519 digital signature algorithm is described in RFC8032 [https://tools.ietf.org/html/rfc8032].
This repository aims to provide modularized implementation of this algorithm.

Originally Ed25519 consists of three modules:

	digital signature algorithm itself

	SHA512 hash function

	random number generator, to generate keypairs

This repository offers at least two different C implementations for every module.
Every implementation is tested and can be replaced with other at link-time.
New implementations can be added as well.

During CMake time, users are able to choose any of these implementations using cmake definitions:

	EDIMPL

	ref10 - portable C implementation.

	amd64-64-24k - optimized C and ASM implementation, works only on Linux amd64. This implementation can be selected only for BUILD=STATIC.

	amd64-64-24k-pic - same as amd64-64-24k, but has fixes in ASM files, to allow position independent code (-fPIC) builds.

	HASH

	sha2_openssl

	sha3_brainhub - default

	RANDOM

	rand_openssl

	dev_urandom - default

	dev_random

	BUILD

	STATIC

	SHARED - build ed25519 library as shared library (default)

Example:
We want to build shared library with fast amd64 implementation, SHA3 and PRNG, which reads entropy from /dev/urandom:

$ cmake .. -DAMD64_OPTIMIZED=ON -DEDIMPL=amd64-64-24k -DHASH=sha3_brainhub -DRANDOM=dev_urandom -DBUILD=SHARED
-- Target cppcheck enabled
-- Target gcovr enabled
-- EDIMPL=amd64-64-24k is selected (Ed25519 implementation)
-- HASH=sha3_brainhub is selected (SHA implementation)
-- RANDOM=dev_urandom is selected (RNG implementation)
-- BUILD=SHARED is selected (library build type)
-- Configuring done
-- Generating done
-- Build files have been written to: ...

Note: only those targets (including tests) will be built, which are specified in EDIMPL, HASH, RANDOM variables.

API

	API for Ed25519 is defined at ed25519.h

	API for SHA512 is defined at sha512.h

	API for RNG is defined at randombytes.h

Modules

ed25519 digital signature algorithm

	ref10 - portable but relatively slow C implementation, originally copied from supercop-20171020 [http://bench.cr.yp.to/supercop.html].
Its API was redesigned to separate signature data from the signed message content.

	amd64-64-24k - fast (4x ref10) but non-portable C and ASM implementation, only for AMD64.
Copied from supercop-20171020 [http://bench.cr.yp.to/supercop.html].
Adopted to be included as a module.

	amd64-64-24k-pic - same implementation as amd64-64-24k, but has Position Independent Code (-fPIC) fixes by @l4l.

SHA512 has function as a dependency of ed25519

	sha2_openssl - implementation of FIPS 180-4 SHA2 512 hash function, which uses openssl underneath

	sha3_brainhub - implementation of FIPS 202 SHA3 512 hash function taken from brainhub repository [https://github.com/brainhub/SHA3IUF].
Repository consists of a single C file, which was adopted to be included in a project as a module.

PRNG implementation as a dependency of ed25519

To generate keypair ed25519 needs a source of randomness (entropy).

This repository offers 3 implementations:

	rand_openssl uses RAND_bytes from openssl

	dev_urandom reads entropy from /dev/urandom

	dev_random reads entropy from /dev/random (blocking call, uses busy waiting when user asks for more entropy than device can offer)

Authors

@warchant [https://github.com/warchant] - maintainer.

@l4l [https://github.com/l4l] - added amd64-64-24k-pic.

 Ed25519 implementations:

	amd64-64-24k - original supercop-20171020 implementation.

	amd64-64-24k-pic - original supercop-20171020 implementation with fixes by @l4l, which allow to build shared library with -fPIC.

	ref10 - original supercop-20171020 implementation.

 Original implementations of Ed25519 is defined with use of SHA2 512.

Test data sign.input.with.sha2.txt is taken from http://ed25519.cr.yp.to/python/sign.input

However, with sha3 signatures will be different.

To test ed25519 with sha3 I generated own test vectors (sign.input.with.sha3.txt):

	use original structure, original message, original private key (public key differs)

	use ref10 implementation and sha3_brainhub implementation

Source code is available at tosha3 directory.

sign.input format

[
 32 bytes private key (hexencoded - 64 bytes)
 32 bytes public key (hexencoded - 64 bytes)
 :
 32 bytes public key (hexencoded - 64 bytes) - should be same as previous
 :
 hexencoded message. Can be arbitrary length, even 0
 :
 64 bytes signature (hexencoded - 128 bytes)
 hexencoded message. Same as previous msg field.
 :
 \n
]```

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

