
ECS-CommunityEdition Documentation
Release 3.2.2.0

Dell-EMC

Sep 18, 2018

Contents

1 Building ecs-install Image From Sources 1

2 ECS Community Edition Installation Guides 7

3 Standard Installation 9

4 OVA Installation 15

5 Island Installation 19

6 ECS Administrative Web UI 27

7 Migration 33

8 deploy.yml 35

9 ECS Community Edition Utilities 41

10 ECS Software 3.x - Troubleshooting Tips 47

11 Frequently Asked Questions 53

12 Description 55

13 Quick Start Guide 57

14 Hardware Requirements 59

15 Deployment Scenarios 61

i

ii

CHAPTER 1

Building ecs-install Image From Sources

The ECS-CommunityEdition git repository is also a build environment for the ecs-install image.

1.1 Building ecs-install Image During Bootstrap with boostrap.
sh

If you’re hacking around in the install node code, then you’ll probably want to build your own install node image at
some point. The bootstrap.sh script has options for accomplishing just this.

[Usage]
-h, --help

Display this help text and exit
--help-build

Display build environment help and exit
--version

Display version information and exit

[Build Options]
--zero-fill-ova

Reduce ephemera, defrag, and zerofill the instance after bootstrapping
--build-from <URL>

Use the Alpine Linux mirror at <URL> to build the ecs-install image locally.
Mirror list: https://wiki.alpinelinux.org/wiki/Alpine_Linux:Mirrors

All you’ll need is a URL that points to an Alpine Linux mirror. For a good default, you can use the GeoDB enabled
CDN mirror, which should auto-select a nearby mirror for you based on your public edge IP: http://dl-cdn.alpinelinux.
org/alpine/

To tell bootstrap to build the image for you, just include the --build-from argument on your command line, like
so:

[admin@localhost ECS-CommunityEdition]$./bootstrap.sh --build-from http://
dl-cdn.alpinelinux.org/alpine/

1

http://dl-cdn.alpinelinux.org/alpine/
http://dl-cdn.alpinelinux.org/alpine/

ECS-CommunityEdition Documentation, Release 3.2.2.0

1.2 Building ecs-install Image After Bootstrapping with
build_image

If you need to build the ecs-install image after bootstrapping, then you’ll need to give a valid Alpine Linux
mirror to your install node:

[admin@installer-230 ECS-CommunityEdition]$ build_image --update-mirror http://cache.
→˓local/alpine/
> Updating bootstrap.conf to use Alpine Linux mirror http://cache.local/alpine/

Once the mirror is configured, you can then build the image:

[admin@installer-230 ECS-CommunityEdition]$ build_image
> Building image ecs-install
> Build context is: local
> Using custom registry: cache.local:5000
> Tunneling through proxy: cache.local:3128
> Checking Alpine Linux mirror
> Generating Alpine Linux repositories file
> Collecting artifacts
> UI artifact is: ui/resources/docker/ecs-install.2.5.1-local.installer-230.4.tgz
INFO[0000] FROM cache.local:5000/alpine:3.6
INFO[0000] | Image sha256:37eec size=3.962 MB
INFO[0000] LABEL MAINTAINER='Travis Wichert <travis.wichert@emc.com>'
INFO[0000] ENV ANSIBLE_CONFIG="/etc/ansible/ansible.cfg"
INFO[0000] ENV ANSIBLE_HOSTS="/usr/local/src/ui/inventory.py"
INFO[0000] Commit changes
INFO[0000] | Cached! Take image sha256:302bc size=3.962 MB (+0 B)
INFO[0000] COPY ui/resources/docker/ecs-install-requirements.txt /etc/ecs-install-
→˓requirements.txt
INFO[0000] | Calculating tarsum for 1 files (465 B total)
INFO[0000] | Cached! Take image sha256:44a83 size=3.962 MB (+465 B)
INFO[0000] COPY ui/resources/docker/apk-repositories /etc/apk/repositories
INFO[0000] | Calculating tarsum for 1 files (239 B total)
INFO[0000] | Not cached
INFO[0000] | Created container 89e5a010f1b5 (image sha256:44a83)
INFO[0000] | Uploading files to container 89e5a010f1b5
INFO[0000] Commit changes
INFO[0001] | Result image is sha256:26c0f size=3.962 MB (+239 B)
INFO[0001] | Removing container 89e5a010f1b5
INFO[0001] ENV http_proxy=http://cache.local:3128
INFO[0001] ENV pip_proxy=cache.local:3128
INFO[0001] Commit changes
INFO[0002] | Created container 49b210eacd7c (image sha256:26c0f)
INFO[0002] | Result image is sha256:d9d58 size=3.962 MB (+0 B)
INFO[0002] | Removing container 49b210eacd7c
INFO[0003] RUN apk -q update && apk -q --no-cache upgrade
INFO[0003] | Created container 856a966289a6 (image sha256:d9d58)
INFO[0005] Commit changes
INFO[0006] | Result image is sha256:a2978 size=6.855 MB (+2.893 MB)
INFO[0006] | Removing container 856a966289a6
INFO[0006] RUN apk -q --no-cache add python2 py-pip
→˓openssh-client sshpass openssl ca-certificates libffi libressl@edge_main
→˓ pigz jq less opentracker aria2
→˓mktorrent@edge_community ansible@edge_main
INFO[0006] | Created container 2c940cb6c2e6 (image sha256:a2978)

(continues on next page)

2 Chapter 1. Building ecs-install Image From Sources

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

INFO[0016] Commit changes
INFO[0026] | Result image is sha256:b806e size=124.4 MB (+117.6 MB)
INFO[0026] | Removing container 2c940cb6c2e6
INFO[0026] RUN mv /etc/profile.d/color_prompt /etc/profile.d/color_prompt.sh &&
→˓ln -s /usr/local/src/ui/ansible /ansible && ln -s /usr/local/src/ui /ui &&
→˓ln -s /usr/local/src /src && ln -s /usr/bin/python /usr/local/bin/python &&
→˓mkdir -p /var/run/opentracker && chown nobody:nobody /var/run/opentracker
INFO[0027] | Created container a5a35a59e61a (image sha256:b806e)
INFO[0027] Commit changes
INFO[0029] | Result image is sha256:55ae2 size=124.4 MB (+295 B)
INFO[0029] | Removing container a5a35a59e61a
INFO[0029] RUN apk -q --no-cache add --update --virtual .build-deps musl-dev python2-
→˓dev libffi-dev build-base make openssl-dev linux-headers git
→˓gcc git-perl && if ! [-z "$pip_proxy"]; then export pip_proxy="--
→˓proxy $pip_proxy" && git config --global http.proxy "$http_proxy"
→˓ ;fi && pip install -q $pip_proxy --no-cache-dir -r /etc/ecs-install-
→˓requirements.txt && apk -q --no-cache --purge del .build-deps
INFO[0030] | Created container 4d07a461385a (image sha256:55ae2)
INFO[0184] Commit changes
INFO[0187] | Result image is sha256:79f09 size=151.1 MB (+26.68 MB)
INFO[0187] | Removing container 4d07a461385a
INFO[0187] RUN mkdir -p /etc/ansible
INFO[0188] | Created container 021968b10369 (image sha256:79f09)
INFO[0188] Commit changes
INFO[0190] | Result image is sha256:376dc size=151.1 MB (+0 B)
INFO[0190] | Removing container 021968b10369
INFO[0191] COPY ui/resources/docker/ansible.cfg /etc/ansible/ansible.cfg
INFO[0191] | Calculating tarsum for 1 files (5.437 kB total)
INFO[0191] | Created container acf602cb1215 (image sha256:376dc)
INFO[0191] | Uploading files to container acf602cb1215
INFO[0191] Commit changes
INFO[0193] | Result image is sha256:a3b7d size=151.1 MB (+5.437 kB)
INFO[0193] | Removing container acf602cb1215
INFO[0193] COPY ui/resources/docker/entrypoint.sh /usr/local/bin/entrypoint.sh
INFO[0193] | Calculating tarsum for 1 files (5.844 kB total)
INFO[0194] | Created container d2e1e94bba06 (image sha256:a3b7d)
INFO[0194] | Uploading files to container d2e1e94bba06
INFO[0194] Commit changes
INFO[0196] | Result image is sha256:c0530 size=151.1 MB (+5.844 kB)
INFO[0196] | Removing container d2e1e94bba06
INFO[0196] RUN chmod +x /usr/local/bin/entrypoint.sh
INFO[0197] | Created container 58814799d1c4 (image sha256:c0530)
INFO[0197] Commit changes
INFO[0199] | Result image is sha256:6fa79 size=151.1 MB (+0 B)
INFO[0199] | Removing container 58814799d1c4
INFO[0200] ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]
INFO[0200] Commit changes
INFO[0200] | Created container dc4494fd062f (image sha256:6fa79)
INFO[0202] | Result image is sha256:481e1 size=151.1 MB (+0 B)
INFO[0202] | Removing container dc4494fd062f
INFO[0202] COPY ui/resources/docker/torrent.sh /usr/local/bin/torrent.sh
INFO[0202] | Calculating tarsum for 1 files (890 B total)
INFO[0203] | Created container 9f15d6413cd2 (image sha256:481e1)
INFO[0203] | Uploading files to container 9f15d6413cd2
INFO[0203] Commit changes
INFO[0205] | Result image is sha256:35f06 size=151.1 MB (+890 B)
INFO[0205] | Removing container 9f15d6413cd2

(continues on next page)

1.2. Building ecs-install Image After Bootstrapping with build_image 3

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

INFO[0205] COPY ui/resources/docker/ecs-install.2.5.1-local.installer-230.4.tgz /usr/
→˓local/src/ui.tgz
INFO[0205] | Calculating tarsum for 1 files (3.958 MB total)
INFO[0206] | Created container e6542b37ddc7 (image sha256:35f06)
INFO[0206] | Uploading files to container e6542b37ddc7
INFO[0206] Commit changes
INFO[0208] | Result image is sha256:161f5 size=155.1 MB (+3.958 MB)
INFO[0208] | Removing container e6542b37ddc7
INFO[0208] ENV http_proxy=
INFO[0208] ENV pip_proxy=
INFO[0208] VOLUME ["/opt", "/usr", "/var/log", "/root", "/etc"]
INFO[0208] LABEL VERSION=cache.local:5000/emccorp/ecs-install:2.5.1-local.installer-
→˓230.4
INFO[0208] ENV VERSION=cache.local:5000/emccorp/ecs-install:2.5.1-local.installer-230.
→˓4
INFO[0208] Commit changes
INFO[0213] | Created container 7beb4650354e (image sha256:161f5)
INFO[0216] | Result image is sha256:7bd3d size=155.1 MB (+0 B)
INFO[0216] | Removing container 7beb4650354e
INFO[0217] TAG cache.local:5000/emccorp/ecs-install:2.5.1-local.installer-230.4
INFO[0217] | Tag sha256:7bd3d -> cache.local:5000/emccorp/ecs-install:2.5.1-local.
→˓installer-230.4
INFO[0217] Cleaning up
INFO[0217] Successfully built sha256:7bd3d | final size 155.1 MB (+151.1 MB from the
→˓base image)
> Tagging cache.local:5000/emccorp/ecs-install:2.5.1-local.installer-230.4 -> emccorp/
→˓ecs-install:latest

The new image is automatically tagged :latest in the local repository and replaces any previous :latest images.

You’ll then want to clean up the local Docker repository with this command:

[admin@installer-230 ECS-CommunityEdition]$ build_image --clean
> Cleaning up...
> [build tmp containers]
> [ecs-install data containers]
> [exited containers]
> [dangling layers]

1.3 Making Quick Iterative Changes to an Existing ecs-install Im-
age with update_image

Building an image can take a long time. If you have not made any changes to files that are used in the docker build
process, then you can update an existing ecs-install data container with code changes using the update_image
macro:

[admin@installer-230 ECS-CommunityEdition]$ update_image
> Updating image: ecs-install
> Build context is: local
> Tunneling through proxy: cache.local:3128
> Cleaning up...
> [build tmp containers]
> [ecs-install data containers]
> [exited containers]

(continues on next page)

4 Chapter 1. Building ecs-install Image From Sources

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

> [dangling layers]
> Collecting artifacts
> UI is: ui/resources/docker/ecs-install.2.5.1-local.installer-230.5.tgz
> Creating new data container
> Image updated.

1.4 Quickly Testing Ansible Changes with testbook

If you’re working with Ansible within ECS Community Edition, you might find yourself needing to test to see how
your Ansible role is being played from within the ecs-install image. You can do this by modifying the files
under the testing subdirectory of the Ansible roles directory: ui/ansible/roles/testing

After making your changes, run update_image as discussed above, and then run testbook to execute your role.
The testbook command will automatically initialize a new data container, configure access with the install node,
and test your role directives.

1.4. Quickly Testing Ansible Changes with testbook 5

ECS-CommunityEdition Documentation, Release 3.2.2.0

6 Chapter 1. Building ecs-install Image From Sources

CHAPTER 2

ECS Community Edition Installation Guides

For Standard installations (Internet connected, from source) use this guide.

For Island installations (Isolated environment, from source) use this guide.

For OVA installations (connectivity agnostic, from OVA) use this guide.

For information on deploy.yml file available options use this guide.

7

Standard_Installation.md
Island_Installation.md
OVA_Installation.md
deploy.yml.md
deploy.yml.md

ECS-CommunityEdition Documentation, Release 3.2.2.0

8 Chapter 2. ECS Community Edition Installation Guides

CHAPTER 3

Standard Installation

The standard installation assumes an Internet connected VM which will be bootstrapped and become an install node.
The ECS deployment will then proceed from the install node.

3.1 Prerequisites

Listed below are all necessary components for a successful ECS Community Edition installation. If they are not met
the installation will likely fail.

3.1.1 Hardware Requirements

The installation process is designed to be performed from either a dedicated installation node. However, it is possible,
if you so choose, for one of the ECS data nodes to double as the install node. The install node will bootstrap the ECS
data nodes and configure the ECS instance. When the process is complete, the install node may be safely destroyed.
Both single node and multi-node deployments require only a single install node.

The technical requirements for the installation node are minimal, but reducing available CPU, memory, and IO
throughput will adversely affect the speed of the installation process:

• 1 CPU Core

• 2 GB Memory

• 10 GB HDD

• CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

The minimum technical requirements for each ECS data node are:

• 4 CPU Cores

• 16 GB Memory

• 16 GB Minimum system block storage device

• 104 GB Minimum additional block storage device in a raw, unpartitioned state.

9

ECS-CommunityEdition Documentation, Release 3.2.2.0

• CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

The recommended technical requirements for each ECS data node are:

• 8 CPU Cores

• 64GB RAM

• 16GB root block storage

• 1TB additional block storage

• CentOS 7.4 Minimal installation

For multi-node installations each data node must fulfill these minimum qualifications. The installer will do a pre-flight
check to ensure that the minimum qualifications are met. If they are not, the installation will not continue.

3.1.2 Environmental Requirements

The following environmental requirements must also be met to ensure a successful installation:

• Network: All nodes, including install node and ECS data node(s), must exist on the same IPv4 subnet. IPv6
networking may work, but is neither tested nor supported for ECS Community Edition at this time.

• Remote Access: Installation is coordinated via Ansible and SSH. However, public key authentication during the
initial authentication and access configuration is not yet supported. Therefore, password authentication must be
enabled on all nodes, including install node and ECS data node(s). This is a known issue and will be addressed
in a future release

• OS: CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

3.1.3 All-in-One Single-Node Deployments

A single node can successfully run the installation procedure on itself. To do this simply input the node’s own IP
address as the installation node as well as the data node in the deploy.yml file.

3.2 1. Getting Started

It is recommended to use a non-root administrative user account with sudo privileges on the install node when per-
forming the deployment. Deploying from the root account is supported, but not recommended.

Before data store nodes can be created, the install node must be prepared. If acquiring the software via the GitHub
repository, run:

0. cd $HOME

1. sudo yum install -y git

2. git clone https://github.com/EMCECS/ECS-CommunityEdition.

If the repository is being added to the machine via usb drive, scp, or some other file-based means, please copy the
archive into $HOME/ and run:

• for .zip archive unzip ECS-CommunityEdition.zip

• for .tar.gz archive tar -xzvf ECS-CommunityEdition.tar.gz

If the directory created when unarchiving the release .zip or tarball has a different name than
ECS-CommunityEdition, then rename it with the following command:

10 Chapter 3. Standard Installation

ECS-CommunityEdition Documentation, Release 3.2.2.0

0. mv <directory name> ECS-CommunityEdition

This will help the documentation make sense as you proceed with the deployment.

3.3 2. Creating The Deployment Map (deploy.yml)

Installation requires the creation of a deployment map. This map is represented in a YAML configuration file called
deploy.yml.

Below are steps for creating a basic deploy.yml. All fields indicated below are required for a successful installation.

0. From the $HOME/ECS-CommunityEdition directory, run the commmand: cp docs/design/
reference.deploy.yml deploy.yml

1. Edit the file with your favorite editor on another machine, or use vi deploy.yml on the install node. Read
the comments in the file and review the examples in the examples/ directory.

2. Top-level deployment facts (facts:)

() Enter the IP address of the install node into the install_node: field.

(a) Enter into the management_clients: field the CIDR address/mask of each machine or subnet that
will be whitelisted in node’s firewalls and allowed to communicate with ECS management API.

• 10.1.100.50/32 is exactly the IP address.

• 192.168.2.0/24 is the entire /24 subnet.

• 0.0.0.0/0 represents the entire Internet.

3. SSH login details (ssh_defaults:)

() If the SSH server is bound to a non-standard port, enter that port number in the ssh_port: field, or
leave it set at the default (22).

(a) Enter the username of a user permitted to run commands as UID 0/GID 0 (“root”) via the sudo command
into the ssh_username: field. This must be the same across all nodes.

(b) Enter the password for the above user in the ssh_password: field. This will only be used during the
initial public key authentication setup and can be changed after. This must be the same across all nodes.

4. Node configuration (node_defaults:)

() Enter the DNS domain for the ECS installation. This can simply be set to localdomain if you will not
be using DNS with this ECS deployment.

(a) Enter each DNS server address, one per line, into dns_servers:. This can be what’s present in /etc/
resolv.conf, or it can be a different DNS server entirely. This DNS server will be set to the primary
DNS server for each ECS node.

(b) Enter each NTP server address, one per line, into ntp_servers:.

5. Storage Pool configuration (storage_pools:)

() Enter the storage pool name:.

(a) Enter each member data node’s IP address, one per line, in members:.

(b) Under options:, enter each block device reserved for ECS, one per line, in ecs_block_devices:.
All member data nodes of a storage pool must be identical.

6. Virtual Data Center configuration (virtual_data_centers:)

() Enter each VDC name:.

3.3. 2. Creating The Deployment Map (deploy.yml) 11

ECS-CommunityEdition Documentation, Release 3.2.2.0

(a) Enter each member Storage Pool name, one per line, in members:

7. Optional directives, such as those for Replication Groups and users, may also be configured at this time.

8. When you have completed the deploy.yml to your liking, save the file and exit the vi editor.

9. Move on to Bootstrapping

These steps quickly set up a basic deploy.yml file

3.3.1 More on deploy.yml

If you need to make changes to your deploy.yml after bootstrapping, there are two utilities for this.

0. The videploy utility will update the installed deploy.yml file in place and is the preferred method.

1. The update_deploy utility will update the installed deploy.yml file with the contents of a different
deploy.yml file.

See the [utilties][utilities] document for more information on these and other ECS CE utilities.

For more information on deploy.yml, please read the reference guide found here.

3.4 3. Bootstrapping the Install Node (bootstrap.sh)

The bootstrap script configures the installation node for ECS deployment and downloads the required Docker images
and software packages that all other nodes in the deployment will need for successful installation.

Once the deploy.yml file has been created, the installation node must be bootstrapped. To do this cd into the ECS-
CommunityEdition directory and run ./bootstrap.sh -c deploy.yml. Be sure to add the -g flag if building
the ECS deployment in a virtual environment and the -y flag if you’re okay accepting all defaults.

The bootstrap script accepts many flags. If your environment uses proxies, including MitM SSL proxies, custom
nameservers, or a local Docker registry or CentOS mirror, you may want to indicate that on the bootstrap.sh
command line.

[Usage]
-h, --help

Display this help text and exit
--help-build

Display build environment help and exit
--version

Display version information and exit

[General Options]
-y / -n

Assume YES or NO to any questions (may be dangerous).
-v / -q

Be verbose (also show all logs) / Be quiet (only show necessary output)
-c <FILE>

If you have a deploy.yml ready to go, give its path to this arg.

[Platform Options]
--ssh-private-key <id_rsa | id_ed25519>
--ssh-public-key <id_rsa.pub | id_ed25519.pub>

Import SSH public key auth material and use it when authenticating to remote
→˓nodes.
-o, --override-dns <NS1,NS2,NS*>

(continues on next page)

12 Chapter 3. Standard Installation

deploy.yml.md

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

Override DHCP-configured nameserver(s); use these instead. No spaces! Use of -o
→˓is deprecated, please use --override-dns.
-g, --vm-tools

Install virtual machine guest agents and utilities for QEMU and VMWare.
→˓VirtualBox is not supported at this time. Use of -g is deprecated, please use --vm-
→˓tools.
-m, --centos-mirror <URL>

Use the provided package <mirror> when fetching packages for the base OS (but not
→˓3rd-party sources, such as EPEL or Debian-style PPAs). The mirror is specified as '
→˓<host>:<port>'. This option overrides any mirror lists the base OS would normally
→˓use AND supersedes any proxies (assuming the mirror is local), so be warned that
→˓when using this option it's possible for bootstrapping to hang indefinitely if the
→˓mirror cannot be contacted. Use of -m is deprecated, please use --centos-mirror.

[Docker Options]
-r, --registry-endpoint REGISTRY

Use the Docker registry at REGISTRY instead of DockerHub. The connect string is
→˓specified as '<host>:<port>[/<username>]'. You may be prompted for your credentials
→˓if authentication is required. You may need to use -d (below) to add the registry's
→˓cert to Docker. Use of -r is deprecated, please use --registry-endpoint.

-l, --registry-login
After Docker is installed, login to the Docker registry to access images which

→˓require access authentication. This will authenticate with Dockerhub unless --
→˓registry-endpoint is also used. Use of -l is deprecated, please use --registry-
→˓login.

-d, --registry-cert <FILE>
[Requires --registry-endpoint] If an alternate Docker registry was specified with

→˓-r and uses a cert that cannot be resolved from the anchors in the local system's
→˓trust store, then use -d to specify the x509 cert file for your registry.

[Proxies & Middlemen]
-p, --proxy-endpoint <PROXY>

Connect to the Internet via the PROXY specified as '[user:pass@]<host>:<port>'.
→˓Items in [] are optional. It is assumed this proxy handles all protocols. Use of -
→˓p is deprecated, please use --proxy-endpoint.
-k, --proxy-cert <FILE>

Install the certificate in <file> into the local trust store. This is useful for
→˓environments that live behind a corporate HTTPS proxy. Use of -k is deprecated,
→˓please use --proxy-cert.
-t, --proxy-test-via <HOSTSPEC>

[Requires --proxy-endpoint] Test Internet connectivity through the PROXY by
→˓connecting to HOSTSPEC. HOSTSPEC is specified as '<host>:<port>'. By default
→˓'google.com:80' is used. Unless access to Google is blocked (or vice versa), there
→˓is no need to change the default.

[Examples]
Install VM guest agents and use SSH public key auth keys in the .ssh/ directory.

$ bash bootstrap.sh --vm-tools --ssh-private-key .ssh/id_rsa --ssh-public-key .
→˓ssh/id_rsa.pub

Quietly use nlanr.peer.local on port 80 and test the connection using EMC's
→˓webserver.

$ bash bootstrap.sh -q --proxy-endpoint nlanr.peer.local:80 -proxy-test-via emc.
→˓com:80

(continues on next page)

3.4. 3. Bootstrapping the Install Node (bootstrap.sh) 13

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

Assume YES to all questions. Use the CentOS mirror at http://cache.local/centos when
→˓fetching packages. Use the Docker registry at registry.local:5000 instead of
→˓DockerHub, and install the x509 certificate in certs/reg.pem into Docker's trust
→˓store so it can access the Docker registry.

$ bash bootstrap.sh -y --centos-mirror http://cache.local/centos --registry-
→˓endpoint registry.local:5000 --registry-cert certs/reg.pem

The bootstrapping process has completed when the following message appears:

> All done bootstrapping your install node.
>
> To continue (after reboot if needed):
> $ cd /home/admin/ECS-CommunityEdition
> If you have a deploy.yml ready to go (and did not use -c flag):
> $ sudo cp deploy.yml /opt/emc/ecs-install/
> If not, check out the docs/design and examples directory for references.
> Once you have a deploy.yml, you can start the deployment
> by running:
>
> [WITH Internet access]
> $ step1
> [Wait for deployment to complete, then run:]
> $ step2
>
> [WITHOUT Internet access]
> $ island-step1
> [Migrate your install node into the isolated environment and run:]
> $ island-step2
> [Wait for deployment to complete, then run:]
> $ island-step3
>

After the installation node has successfully bootstrapped you will likely be prompted to reboot the machine. If so, then
the machine MUST be rebooted before continuing to Step 4.

3.5 4. Deploying ECS Nodes (step1)

Once the deploy.yml file has been correctly written and the install node rebooted if needed, then the next step is to
simply run step1.

After the installer initializes, the EMC ECS license agreement will appear on the screen. Press q to close the screen
and type yes to accept the license and continue or no to abort the process. The install cannot continue until the license
agreement has been accepted.

3.6 5. Deploying ECS Topology (step2)

If you would prefer to manually configure your ECS topology, you may skip this step entirely.

Once step1 has completed, you may then direct the installer to configure the ECS topology by running step2.
Once step2 has completed, your ECS will be ready for use.

Assuming all went well, you now have a functioning ECS Community Edition instance and you may now proceed
with your test efforts.

14 Chapter 3. Standard Installation

CHAPTER 4

OVA Installation

The OVA installation assumes deployment in a network-isolated environment. One clone of the OVA will become an
install node. The ECS deployment will then proceed from the install node.

4.1 Prerequisites

Listed below are all necessary components for a successful ECS Community Edition installation. If they are not met
the installation will likely fail.

4.1.1 Hardware Requirements

The installation process is designed to be performed from either a dedicated installation node. However, it is possible,
if you so choose, for one of the ECS data nodes to double as the install node. The install node will bootstrap the ECS
data nodes and configure the ECS instance. When the process is complete, the install node may be safely destroyed.
Both single node and multi-node deployments require only a single install node.

The technical requirements for the installation node are minimal, but reducing available CPU, memory, and IO
throughput will adversely affect the speed of the installation process:

• 1 CPU Core

• 2 GB Memory

• 10 GB HDD

• CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

The minimum technical requirements for each ECS data node are:

• 4 CPU Cores

• 16 GB Memory

• 16 GB Minimum system block storage device

• 104 GB Minimum additional block storage device in a raw, unpartitioned state.

15

ECS-CommunityEdition Documentation, Release 3.2.2.0

• CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

The recommended technical requirements for each ECS data node are:

• 8 CPU Cores

• 64GB RAM

• 16GB root block storage

• 1TB additional block storage

• CentOS 7.4 Minimal installation

For multi-node installations each data node must fulfill these minimum qualifications. The installer will do a pre-flight
check to ensure that the minimum qualifications are met. If they are not, the installation will not continue.

4.1.2 Environmental Requirements

The following environmental requirements must also be met to ensure a successful installation:

• Network: All nodes, including install node and ECS data node(s), must exist on the same IPv4 subnet. IPv6
networking may work, but is neither tested nor supported for ECS Community Edition at this time.

• Remote Access: Installation is coordinated via Ansible and SSH. However, public key authentication during the
initial authentication and access configuration is not yet supported. Therefore, password authentication must be
enabled on all nodes, including install node and ECS data node(s). This is a known issue and will be addressed
in a future release

• OS: CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

4.1.3 All-in-One Single-Node Deployments

A single node can successfully run the installation procedure on itself. To do this simply input the node’s own IP
address as the installation node as well as the data node in the deploy.yml file.

4.2 1. Getting Started

4.2.1 1.1. Download and deploy the OVA to a VM

The OVA is available for download from the release notes page. Select the most recent version of the OVA for the best
experience.

4.2.2 1.2. Deploy a VM from the OVA and Adjust its resources to have a minimum
of:

• 16GB RAM

• 4 CPU cores

• (Optional) Increase vmdk from the minimum 104GB

16 Chapter 4. OVA Installation

https://github.com/EMCECS/ECS-CommunityEdition/releases

ECS-CommunityEdition Documentation, Release 3.2.2.0

4.2.3 1.3. Clone the VM

Clone the VM you created enough times to reach the number of nodes desired for your deployment. The minimum
number of nodes for basic functionality is one (1). The minimum number of nodes for erasure coding replication to
be enabled is four (4).

4.2.4 1.4. Collect and Configure networking information

Power on the VMs and collect their DHCP assigned IP addresses from the vCenter client or from the VMs themselves

You may also assign static IP addresses by logging into each VM and running nmtui to set network the network
variables (IP, mask, gateway, DNS, etc).

The information you collect in this step is crucial for step 2.

4.3 2. Creating The Deployment Map (deploy.yml)

Installation requires the creation of a deployment map. This map is represented in a YAML configuration file called
deploy.yml.

Below are steps for creating a basic deploy.yml. All fields indicated below are required for a successful installation.

0. Log into the first VM and run videploy.

1. Edit this deploy.yml file with your favorite editor on another machine, or use vi deploy.yml on the install
node. Read the comments in the file and review the examples in the examples/ directory.

2. Top-level deployment facts (facts:)

() Enter the IP address of the install node into the install_node: field.

(a) Enter into the management_clients: field the CIDR address/mask of each machine or subnet that
will be whitelisted in node’s firewalls and allowed to communicate with ECS management API.

• 10.1.100.50/32 is exactly the IP address.

• 192.168.2.0/24 is the entire /24 subnet.

• 0.0.0.0/0 represents the entire Internet.

3. SSH login details (ssh_defaults:)

() If the SSH server is bound to a non-standard port, enter that port number in the ssh_port: field, or
leave it set at the default (22).

(a) Enter the username of a user permitted to run commands as UID 0/GID 0 (“root”) via the sudo command
into the ssh_username: field. This must be the same across all nodes.

(b) Enter the password for the above user in the ssh_password: field. This will only be used during the
initial public key authentication setup and can be changed after. This must be the same across all nodes.

4. Node configuration (node_defaults:)

() Enter the DNS domain for the ECS installation. This can simply be set to localdomain if you will not
be using DNS with this ECS deployment.

(a) Enter each DNS server address, one per line, into dns_servers:. This can be what’s present in /etc/
resolv.conf, or it can be a different DNS server entirely. This DNS server will be set to the primary
DNS server for each ECS node.

(b) Enter each NTP server address, one per line, into ntp_servers:.

4.3. 2. Creating The Deployment Map (deploy.yml) 17

ECS-CommunityEdition Documentation, Release 3.2.2.0

5. Storage Pool configuration (storage_pools:)

() Enter the storage pool name:.

(a) Enter each member data node’s IP address, one per line, in members:.

(b) Under options:, enter each block device reserved for ECS, one per line, in ecs_block_devices:.
All member data nodes of a storage pool must be identical.

6. Virtual Data Center configuration (virtual_data_centers:)

() Enter each VDC name:.

(a) Enter each member Storage Pool name, one per line, in members:

7. Optional directives, such as those for Replication Groups and users, may also be configured at this time.

8. After completing the deploy.yml file to your liking, exit out of videploy as you would the vim editor (ESC,
:, wq, ENTER). This will update the deploy.yml file.

4.3.1 More on deploy.yml

If you need to make changes to your deploy.yml after bootstrapping, there are two utilities for this.

0. The videploy utility will update the installed deploy.yml file in place and is the preferred method.

1. The update_deploy utility will update the installed deploy.yml file with the contents of a different
deploy.yml file.

See the [utilties][utilities] document for more information on these and other ECS CE utilities.

For more information on deploy.yml, please read the reference guide found here.

4.4 4. Deploying ECS Nodes (ova-step1)

Once the deploy.yml file has been correctly written and the install node rebooted if needed, then the next step is to
simply run ova-step1.

After the installer initializes, the EMC ECS license agreement will appear on the screen. Press q to close the screen
and type yes to accept the license and continue or no to abort the process. The install cannot continue until the license
agreement has been accepted.

4.5 5. Deploying ECS Topology (ova-step2)

If you would prefer to manually configure your ECS topology, you may skip this step entirely.

Once ova-step1 has completed, you may then direct the installer to configure the ECS topology by running
ova-step2. Once ova-step2 has completed, your ECS will be ready for use.

Assuming all went well, you now have a functioning ECS Community Edition instance and you may now proceed
with your test efforts.

18 Chapter 4. OVA Installation

deploy.yml.md

CHAPTER 5

Island Installation

The island installation assumes an Internet connected VM which will be bootstrapped and become an install node. The
install node will be migrated into a network-isolated environment and the ECS deployment will then proceed from the
install node.

5.1 Prerequisites

Listed below are all necessary components for a successful ECS Community Edition installation. If they are not met
the installation will likely fail.

5.1.1 Hardware Requirements

The installation process is designed to be performed from either a dedicated installation node. However, it is possible,
if you so choose, for one of the ECS data nodes to double as the install node. The install node will bootstrap the ECS
data nodes and configure the ECS instance. When the process is complete, the install node may be safely destroyed.
Both single node and multi-node deployments require only a single install node.

The technical requirements for the installation node are minimal, but reducing available CPU, memory, and IO
throughput will adversely affect the speed of the installation process:

• 1 CPU Core

• 2 GB Memory

• 10 GB HDD

• CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

The minimum technical requirements for each ECS data node are:

• 4 CPU Cores

• 16 GB Memory

• 16 GB Minimum system block storage device

19

ECS-CommunityEdition Documentation, Release 3.2.2.0

• 104 GB Minimum additional block storage device in a raw, unpartitioned state.

• CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

The recommended technical requirements for each ECS data node are:

• 8 CPU Cores

• 64GB RAM

• 16GB root block storage

• 1TB additional block storage

• CentOS 7.4 Minimal installation

For multi-node installations each data node must fulfill these minimum qualifications. The installer will do a pre-flight
check to ensure that the minimum qualifications are met. If they are not, the installation will not continue.

5.1.2 Environmental Requirements

The following environmental requirements must also be met to ensure a successful installation:

• Network: All nodes, including install node and ECS data node(s), must exist on the same IPv4 subnet. IPv6
networking may work, but is neither tested nor supported for ECS Community Edition at this time.

• Remote Access: Installation is coordinated via Ansible and SSH. However, public key authentication during the
initial authentication and access configuration is not yet supported. Therefore, password authentication must be
enabled on all nodes, including install node and ECS data node(s). This is a known issue and will be addressed
in a future release

• OS: CentOS 7 Minimal installation (ISO- and network-based minimal installs are equally supported)

5.1.3 All-in-One Single-Node Deployments

A single node can successfully run the installation procedure on itself. To do this simply input the node’s own IP
address as the installation node as well as the data node in the deploy.yml file.

5.2 1. Getting Started

It is recommended to use a non-root administrative user account with sudo privileges on the install node when per-
forming the deployment. Deploying from the root account is supported, but not recommended.

Before data store nodes can be created, the install node must be prepared. If acquiring the software via the GitHub
repository, run:

0. cd $HOME

1. sudo yum install -y git

2. git clone https://github.com/EMCECS/ECS-CommunityEdition.

If the repository is being added to the machine via usb drive, scp, or some other file-based means, please copy the
archive into $HOME/ and run:

• for .zip archive unzip ECS-CommunityEdition.zip

• for .tar.gz archive tar -xzvf ECS-CommunityEdition.tar.gz

20 Chapter 5. Island Installation

ECS-CommunityEdition Documentation, Release 3.2.2.0

If the directory created when unarchiving the release .zip or tarball has a different name than
ECS-CommunityEdition, then rename it with the following command:

0. mv <directory name> ECS-CommunityEdition

This will help the documentation make sense as you proceed with the deployment.

5.3 2. Creating The Deployment Map (deploy.yml)

Installation requires the creation of a deployment map. This map is represented in a YAML configuration file called
deploy.yml.

Below are steps for creating a basic deploy.yml. All fields indicated below are required for a successful installation.

0. From the $HOME/ECS-CommunityEdition directory, run the commmand: cp docs/design/
reference.deploy.yml deploy.yml

1. Edit the file with your favorite editor on another machine, or use vi deploy.yml on the install node. Read
the comments in the file and review the examples in the examples/ directory.

2. Top-level deployment facts (facts:)

() Enter the IP address of the install node into the install_node: field.

(a) Enter into the management_clients: field the CIDR address/mask of each machine or subnet that
will be whitelisted in node’s firewalls and allowed to communicate with ECS management API.

• 10.1.100.50/32 is exactly the IP address.

• 192.168.2.0/24 is the entire /24 subnet.

• 0.0.0.0/0 represents the entire Internet.

3. SSH login details (ssh_defaults:)

() If the SSH server is bound to a non-standard port, enter that port number in the ssh_port: field, or
leave it set at the default (22).

(a) Enter the username of a user permitted to run commands as UID 0/GID 0 (“root”) via the sudo command
into the ssh_username: field. This must be the same across all nodes.

(b) Enter the password for the above user in the ssh_password: field. This will only be used during the
initial public key authentication setup and can be changed after. This must be the same across all nodes.

4. Node configuration (node_defaults:)

() Enter the DNS domain for the ECS installation. This can simply be set to localdomain if you will not
be using DNS with this ECS deployment.

(a) Enter each DNS server address, one per line, into dns_servers:. This can be what’s present in /etc/
resolv.conf, or it can be a different DNS server entirely. This DNS server will be set to the primary
DNS server for each ECS node.

(b) Enter each NTP server address, one per line, into ntp_servers:.

5. Storage Pool configuration (storage_pools:)

() Enter the storage pool name:.

(a) Enter each member data node’s IP address, one per line, in members:.

(b) Under options:, enter each block device reserved for ECS, one per line, in ecs_block_devices:.
All member data nodes of a storage pool must be identical.

5.3. 2. Creating The Deployment Map (deploy.yml) 21

ECS-CommunityEdition Documentation, Release 3.2.2.0

6. Virtual Data Center configuration (virtual_data_centers:)

() Enter each VDC name:.

(a) Enter each member Storage Pool name, one per line, in members:

7. Optional directives, such as those for Replication Groups and users, may also be configured at this time.

8. When you have completed the deploy.yml to your liking, save the file and exit the vi editor.

9. Move on to Bootstrapping

These steps quickly set up a basic deploy.yml file

5.3.1 More on deploy.yml

If you need to make changes to your deploy.yml after bootstrapping, there are two utilities for this.

0. The videploy utility will update the installed deploy.yml file in place and is the preferred method.

1. The update_deploy utility will update the installed deploy.yml file with the contents of a different
deploy.yml file.

See the [utilties][utilities] document for more information on these and other ECS CE utilities.

For more information on deploy.yml, please read the reference guide found here.

5.4 3. Bootstrapping the install node (bootstrap.sh)

The bootstrap script configures the installation node for ECS deployment and downloads the required Docker images
and software packages that all other nodes in the deployment will need for successful installation.

Once the deploy.yml file has been created, the installation node must be bootstrapped. To do this cd into the ECS-
CommunityEdition directory and run ./bootstrap.sh -c deploy.yml. Be sure to add the -g flag if building
the ECS deployment in a virtual environment and the -y flag if you’re okay accepting all defaults.

The bootstrap script accepts many flags. If your environment uses proxies, including MitM SSL proxies, custom
nameservers, or a local Docker registry or CentOS mirror, you may want to indicate that on the bootstrap.sh
command line.

[Usage]
-h, --help

Display this help text and exit
--help-build

Display build environment help and exit
--version

Display version information and exit

[General Options]
-y / -n

Assume YES or NO to any questions (may be dangerous).
-v / -q

Be verbose (also show all logs) / Be quiet (only show necessary output)
-c <FILE>

If you have a deploy.yml ready to go, give its path to this arg.

[Platform Options]
--ssh-private-key <id_rsa | id_ed25519>

(continues on next page)

22 Chapter 5. Island Installation

deploy.yml.md

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

--ssh-public-key <id_rsa.pub | id_ed25519.pub>
Import SSH public key auth material and use it when authenticating to remote

→˓nodes.
-o, --override-dns <NS1,NS2,NS*>

Override DHCP-configured nameserver(s); use these instead. No spaces! Use of -o
→˓is deprecated, please use --override-dns.
-g, --vm-tools

Install virtual machine guest agents and utilities for QEMU and VMWare.
→˓VirtualBox is not supported at this time. Use of -g is deprecated, please use --vm-
→˓tools.
-m, --centos-mirror <URL>

Use the provided package <mirror> when fetching packages for the base OS (but not
→˓3rd-party sources, such as EPEL or Debian-style PPAs). The mirror is specified as '
→˓<host>:<port>'. This option overrides any mirror lists the base OS would normally
→˓use AND supersedes any proxies (assuming the mirror is local), so be warned that
→˓when using this option it's possible for bootstrapping to hang indefinitely if the
→˓mirror cannot be contacted. Use of -m is deprecated, please use --centos-mirror.

[Docker Options]
-r, --registry-endpoint REGISTRY

Use the Docker registry at REGISTRY instead of DockerHub. The connect string is
→˓specified as '<host>:<port>[/<username>]'. You may be prompted for your credentials
→˓if authentication is required. You may need to use -d (below) to add the registry's
→˓cert to Docker. Use of -r is deprecated, please use --registry-endpoint.

-l, --registry-login
After Docker is installed, login to the Docker registry to access images which

→˓require access authentication. This will authenticate with Dockerhub unless --
→˓registry-endpoint is also used. Use of -l is deprecated, please use --registry-
→˓login.

-d, --registry-cert <FILE>
[Requires --registry-endpoint] If an alternate Docker registry was specified with

→˓-r and uses a cert that cannot be resolved from the anchors in the local system's
→˓trust store, then use -d to specify the x509 cert file for your registry.

[Proxies & Middlemen]
-p, --proxy-endpoint <PROXY>

Connect to the Internet via the PROXY specified as '[user:pass@]<host>:<port>'.
→˓Items in [] are optional. It is assumed this proxy handles all protocols. Use of -
→˓p is deprecated, please use --proxy-endpoint.
-k, --proxy-cert <FILE>

Install the certificate in <file> into the local trust store. This is useful for
→˓environments that live behind a corporate HTTPS proxy. Use of -k is deprecated,
→˓please use --proxy-cert.
-t, --proxy-test-via <HOSTSPEC>

[Requires --proxy-endpoint] Test Internet connectivity through the PROXY by
→˓connecting to HOSTSPEC. HOSTSPEC is specified as '<host>:<port>'. By default
→˓'google.com:80' is used. Unless access to Google is blocked (or vice versa), there
→˓is no need to change the default.

[Examples]
Install VM guest agents and use SSH public key auth keys in the .ssh/ directory.

$ bash bootstrap.sh --vm-tools --ssh-private-key .ssh/id_rsa --ssh-public-key .
→˓ssh/id_rsa.pub

Quietly use nlanr.peer.local on port 80 and test the connection using EMC's
→˓webserver. (continues on next page)

5.4. 3. Bootstrapping the install node (bootstrap.sh) 23

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

$ bash bootstrap.sh -q --proxy-endpoint nlanr.peer.local:80 -proxy-test-via emc.
→˓com:80

Assume YES to all questions. Use the CentOS mirror at http://cache.local/centos when
→˓fetching packages. Use the Docker registry at registry.local:5000 instead of
→˓DockerHub, and install the x509 certificate in certs/reg.pem into Docker's trust
→˓store so it can access the Docker registry.

$ bash bootstrap.sh -y --centos-mirror http://cache.local/centos --registry-
→˓endpoint registry.local:5000 --registry-cert certs/reg.pem

The bootstrapping process has completed when the following message appears:

> All done bootstrapping your install node.
>
> To continue (after reboot if needed):
> $ cd /home/admin/ECS-CommunityEdition
> If you have a deploy.yml ready to go (and did not use -c flag):
> $ sudo cp deploy.yml /opt/emc/ecs-install/
> If not, check out the docs/design and examples directory for references.
> Once you have a deploy.yml, you can start the deployment
> by running:
>
> [WITH Internet access]
> $ step1
> [Wait for deployment to complete, then run:]
> $ step2
>
> [WITHOUT Internet access]
> $ island-step1
> [Migrate your install node into the isolated environment and run:]
> $ island-step2
> [Wait for deployment to complete, then run:]
> $ island-step3
>

After the installation node has successfully bootstrapped you will likely be prompted to reboot the machine. If so, then
the machine MUST be rebooted before continuing to Step 4.

5.5 4. Deploying ECS Nodes (island-step1)

Once the deploy.yml file has been correctly written and the install node rebooted if needed, then the next step is to
simply run island-step1.

After the installer initializes, the EMC ECS license agreement will appear on the screen. Press q to close the screen
and type yes to accept the license and continue or no to abort the process. The install cannot continue until the license
agreement has been accepted.

The first thing the installer will do is create an artifact cache of base operating system packages and the ECS software
Docker image. The installer will stop after this step.

5.6 5. Migrate the Install Node

At this time, please shut down the install node VM and migrate it into your isolated environment.

24 Chapter 5. Island Installation

ECS-CommunityEdition Documentation, Release 3.2.2.0

Once the install node has been migrated into your island, you can begin deploying ECS by running island-step2.
The next tasks the installer will perform are: configuring the ECS nodes, performing a pre-flight check to ensure ECS
nodes are viable deployment targets, distributing the artifact cache to ECS nodes, installing necessary packages, and
finally deploying the ECS software and init scripts onto ECS nodes.

5.7 6. Deploying ECS Topology (island-step3)

If you would prefer to manually configure your ECS topology, you may skip this step entirely.

Once island-step2 has completed, you may then direct the installer to configure the ECS topology by running
island-step3. Once island-step3 has completed, your ECS will be ready for use.

Assuming all went well, you now have a functioning ECS Community Edition instance and you may now proceed
with your test efforts.

5.7. 6. Deploying ECS Topology (island-step3) 25

ECS-CommunityEdition Documentation, Release 3.2.2.0

26 Chapter 5. Island Installation

CHAPTER 6

ECS Administrative Web UI

6.1 Login to the Web UI

The WebUI uses SSL and a self-signed certificate to help protect your session from casual eves-dropping. Take the IP
of your first ECS node, fire up your browser, and point https:// at it. For this example, the latest Google Chrome
browser was used.

You cannot add, change, or remove administrative users in this build. Use the default below.

Username: rootPassword: ChangeMe

6.2 Input License

Open Settings, then Licensing and upload the license.xml file located in the ecs-single-node / ecs-multi-node
folder. The UI will not automatically update the license view in this release. Navigating away from page and
returning will prompt it to update. You may need to try a few times before it updates. Once it does, you should see
something like this:

6.3 Create Storage vPool

Open Manage, then Storage Pools and create a storage pool. Keep the name simple, and add all nodes to the pool.
Click Save.

There’s a known issue in this build that causes the Storage Pools view to appear frozen for about 1-2 minutes after
provisioning begins. Unlike with the license view case, this view will update on its own. Once it’s updated, you
should see something similar to:

27

ECS-CommunityEdition Documentation, Release 3.2.2.0

Fig. 1: Upload License file

Fig. 2: Create Storage VPool

28 Chapter 6. ECS Administrative Web UI

ECS-CommunityEdition Documentation, Release 3.2.2.0

6.4 Create Virtual Data Center

Open Manage, then Virtual Data Center and create a Virtual Data Center using the below screenshot as a guide. Please
wait for up to 20 minutes after creating a Storage vPool before creating a Virtual Data Center. There are several
background tasks that must complete, and for object to fully initialize.

Fig. 3: Create Virtual Data Center

6.5 Create Replication Group

Open Manage, then Replication Group and create a Replication Group using the below as an example. Currently only
one VDC in a replication group is supported.

6.6 Create Namespace

Open Manage, then Namespace. Set up a Simple Namespace with a name such as “ns”. Input a namespace username
to use with the namespace, such as “ecs_user”. Select the replication group for the namespace, and click Save at the
very bottom.

Namespace features available in this release

• Simple Namespace

• Retention Policies

6.4. Create Virtual Data Center 29

ECS-CommunityEdition Documentation, Release 3.2.2.0

Fig. 4: Create Replication Group

• Quotas

• Authentication Domains

6.7 Create Object User Account

Open Manage, then Users, then click on Object Users and New Object User to set up object store credentials.

Create secrets by filling the fields and clicking the buttons.

• S3 Key: Click Generate & Add Password to retrieve the server-generated key.

• Swift Password: Enter your own password and click Set Password.

30 Chapter 6. ECS Administrative Web UI

ECS-CommunityEdition Documentation, Release 3.2.2.0

Fig. 5: Create Namespace

Fig. 6: Create Namespace

6.7. Create Object User Account 31

ECS-CommunityEdition Documentation, Release 3.2.2.0

Fig. 7: Create User S3 and Swift Keys

32 Chapter 6. ECS Administrative Web UI

CHAPTER 7

Migration

7.1 General Cases

Most migration cases can be handled by a great tool we wrote called ecs-sync, found here.

7.2 HDFS

An HDFS migration is possible with s3distcp or distcp. Please note that if using s3distcp with the s3a driver, it needs
to be the latest version or you may run into issues. If using distcp, ECS’s HCFS driver “viprfs” will need to be set up
as a secondary FS and the distcp made from hdfs://... to viprfs://.... Instructions for installing the HCFS
driver can be found here.

33

https://github.com/EMCECS/ecs-sync
http://doc.isilon.com/ECS/3.0/DataAccessGuide/wwhelp/wwhimpl/js/html/wwhelp.htm#href=vipr_c_hdfs_ViPRHDFS_intro.html

ECS-CommunityEdition Documentation, Release 3.2.2.0

34 Chapter 7. Migration

CHAPTER 8

deploy.yml

The installer works off a configuration file called deploy.yml placed in /opt/emc/ecs-install.

8.1 deploy.yml Reference Diagram

The following is a visual overview of the deployment configuration file

8.2 deploy.yml Template

The following deploy.yml reference template can be found in docs/design/reference.deploy.yml in the
ECS-CommunityEdition repository on Github.

deploy.yml reference implementation

[Optional]
By changing the license_accepted boolean value to "true" you are
declaring your agreement to the terms of the license agreement
contained in the license.txt file included with this software
distribution.
licensing:

license_accepted: false

[Required]
Deployment facts reference
facts:

[Required]
Node IP or resolvable hostname from which installations will be launched
The only supported configuration is to install from the same node as the
bootstrap.sh script is run.
NOTE: if the install node is to be migrated into an island environment,

(continues on next page)

35

ECS-CommunityEdition Documentation, Release 3.2.2.0

Fig. 1: Reference Diagram

36 Chapter 8. deploy.yml

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

the hostname or IP address listed here should be the one in the
island environment.
install_node: 192.168.2.200

[Required]
IPs of machines that will be whitelisted in the firewall and allowed
to access management ports of all nodes. If a member of this list is set to
the wildcard mask (0.0.0.0/0) then anyone can access management ports!
management_clients:
- 0.0.0.0/0

[Required]
These credentials must be the same across all nodes. Ansible uses these
credentials to gain initial access to each node in the deployment and set
up ssh public key authentication. If these are not correct, the deployment
will fail.
ssh_defaults:
Username to login as
ssh_username: admin
Password to use with SSH login
ssh_password: ChangeMe

[Required]
Environment configuration for this deployment.
node_defaults:
dns_domain: local
dns_servers:

- 192.168.2.2
ntp_servers:

- 192.168.2.2
#
[Optional]
VFS path to source of randomness
Defaults to /dev/urandom for speed considerations. If you prefer
/dev/random, put that here.
If you have a /dev/srandom implementation or special entropy hardware,
you may use that too so long as it implements a /dev/random type device
abstraction.
entropy_source: /dev/urandom
#
[Optional]
Picklist for node names.
Available options:
- "moons" (ECS CE default)
- "cities" (ECS SKU-flavored)
autonaming: moons

[Optional]
Storage pool defaults. Configure to your liking.
All block devices that will be consumed by ECS on ALL nodes must be listed
under the ecs_block_devices option. This can be overridden by the storage
pool configuration. At least ONE (1) block device is REQUIRED for a
successful install. More is typically better.
storage_pool_defaults:
is_cold_storage_enabled: false
is_protected: false
description: Default storage pool description

(continues on next page)

8.2. deploy.yml Template 37

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

ecs_block_devices:
- /dev/vda

[Required]
Storage pool layout. You MUST have at least ONE (1) storage pool for a
successful install.
storage_pools:
- name: sp1

members:
- 192.168.2.220
- 192.168.2.221
- 192.168.2.222
- 192.168.2.223

options:
is_protected: false
is_cold_storage_enabled: false
description: My First SP
ecs_block_devices:
- /dev/vda

[Optional]
VDC defaults. Configure to your liking.
virtual_data_center_defaults:
description: Default virtual data center description

[Required]
Virtual data center layout. You MUST have at least ONE (1) VDC for a
successful install. WARNING: Multi-VDC deployments are not yet implemented.
virtual_data_centers:
- name: vdc1

members:
- sp1

options:
description: My First VDC

[Optional]
Replication group defaults. Configure to your liking.
replication_group_defaults:
description: Default replication group description
enable_rebalancing: true
allow_all_namespaces: true
is_full_rep: false

[Optional, required for namespaces]
Replication group layout. At least one replication_group is required to also
provision namespaces.
replication_groups:
- name: rg1

members:
- vdc1

options:
description: My First RG
enable_rebalancing: true
allow_all_namespaces: true
is_full_rep: false

[Optional]
(continues on next page)

38 Chapter 8. deploy.yml

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

Namespace defaults.
namespace_defaults:
is_stale_allowed: false
is_compliance_enabled: false

[Optional]
Namespace layout
namespaces:
- name: ns1

replication_group: rg1
administrators:

- root
options:

is_stale_allowed: false
is_compliance_enabled: false

8.2. deploy.yml Template 39

ECS-CommunityEdition Documentation, Release 3.2.2.0

40 Chapter 8. deploy.yml

CHAPTER 9

ECS Community Edition Utilities

9.1 ecsdeploy

The ecsdeploy utility responsible for executing Ansible playbooks and helper scripts responsible for deploying
ECS Community Edition to member data nodes.

Usage: ecsdeploy [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

Command line interface to ecs-install installer

Options:
-v, --verbose Use multiple times for more verbosity
--help Show this message and exit.

Commands:
access Configure ssh access to nodes
bootstrap Install required packages on nodes
cache Build package cache
check Check data nodes to ensure they are in compliance
deploy Deploy ECS to nodes
disable-cache Disable datanode package cache handling
enable-cache Enable datanode package cache handling
load Apply deploy.yml
reboot Reboot data nodes that need it
start Start the ECS service
stop Stop the ECS service

9.2 ecsconfig

The ecsconfig utility responsible for communicating with the ECS management API and configuring an ECS
deployment with administrative and organizational objects.

41

ECS-CommunityEdition Documentation, Release 3.2.2.0

Usage: ecsconfig [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

Command line interface to configure ECS from declarations in deploy.yml

Options:
-v, --verbose Use multiple times for more verbosity
--help Show this message and exit.

Commands:
licensing Work with ECS Licenses
management-user Work with ECS Management Users
namespace Work with ECS Namespaces
object-user Work with ECS Object Users
ping Check ECS Management API Endpoint(s)
rg Work with ECS Replication Groups
sp Work with ECS Storage Pools
trust Work with ECS Certificates
vdc Work with ECS Virtual Data Centers

9.3 ecsremove

The ecsremove utility is responsible for removing ECS instances and artifacts from member data nodes and the
install node.

Usage: ecsremove [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

Command line interface to remove ECS bits

Options:
-v, --verbose Use multiple times for more verbosity
--help Show this message and exit.

Commands:
purge-all Uninstall ECS and purge artifacts from all nodes
purge-installer Purge caches from install node
purge-nodes Uninstall ECS and purge artifacts from data nodes

9.4 enter

This utility has two functions: 1. To access member data nodes by name enter luna 2. To access the
ecs-install image directly and the contents of the data container.

Accessing the ecs-install image directly

[admin@installer-230 ~]$ enter
installer-230 [/]$

Accessing a member node

[admin@installer-230 ~]$ enter luna
Warning: Identity file /opt/ssh/id_ed25519 not accessible: No such file or directory.
Warning: Permanently added 'luna,192.168.2.220' (ECDSA) to the list of known hosts.

(continues on next page)

42 Chapter 9. ECS Community Edition Utilities

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

Last login: Thu Nov 9 16:44:31 2017 from 192.168.2.200
[admin@luna ~]$

9.5 catfacts

This utility displays all the facts Ansible has registered about a node in pretty-printed, colorized output from jq paged
through less.

Running catfacts without an argument lists queryable nodes.

[admin@installer-230 ~]$ catfacts
Usage: $ catfacts <Ansible inventory host>
Here is a list of hosts you can query:
Data Node(s):

hosts (1):
192.168.2.220

Install Node:
hosts (1):
192.168.2.200

Querying a node

[admin@installer-230 ~]$ catfacts 192.168.2.200
{

"ansible_all_ipv4_addresses": [
"172.17.0.1",
"192.168.2.200"

],
"ansible_all_ipv6_addresses": [
"fe80::42:98ff:fe85:2502",
"fe80::f0c5:a7d1:6fff:205e"

],
"ansible_apparmor": {
"status": "disabled"

},
"ansible_architecture": "x86_64",
"ansible_bios_date": "04/01/2014",
"ansible_bios_version": "rel-1.8.2-0-g33fbe13 by qemu-project.org",
"ansible_cmdline": {
"BOOT_IMAGE": "/vmlinuz-3.10.0-693.5.2.el7.x86_64",
"LANG": "en_US.UTF-8",

[... snip ...]

9.6 update_deploy

This utility updates the /opt/emc/ecs-install/deploy.yml file with the updated contents of the file
deploy.yml provided during bootstrapping. It can also set the path to the deploy.yml file from which to fetch
updates.

Running with no arguments

9.5. catfacts 43

ECS-CommunityEdition Documentation, Release 3.2.2.0

[admin@installer-230 ~]$ update_deploy
> Updating /opt/emc/ecs-install/deploy.yml from /home/admin/ecsce-lab-configs/local/
→˓local-lab-1-node-1/deploy.yml
37c37
< ssh_password: ChangeMe

> ssh_password: admin
> Recreating ecs-install data container
ecs-install> Initializing data container, one moment ... OK
ecs-install> Applying deploy.yml

Updating the deploy.yml file to a different source.

[admin@installer-230 ~]$ update_deploy ~/ecsce-lab-configs/local/local-lab-1-node-2/
→˓deploy.yml
> Updating bootstrap.conf to use deploy config from /home/admin/ecsce-lab-configs/
→˓local/local-lab-1-node-2/deploy.yml
> Updating /opt/emc/ecs-install/deploy.yml from /home/admin/ecsce-lab-configs/local/
→˓local-lab-1-node-2/deploy.yml
37c37
< ssh_password: admin

> ssh_password: ChangeMe
82c82
< - 192.168.2.221

> - 192.168.2.220
173a174
>
> Recreating ecs-install data container
ecs-install> Initializing data container, one moment ... OK
ecs-install> Applying deploy.yml

9.7 videploy

This utility modifies the deploy.yml file currently installed at /opt/emc/ecs-install/deploy.yml.

[admin@installer-230 ~]$ videploy

First, vim runs with the contents of deploy.yml, and then videploy calls update_deploy.

9.8 pingnodes

This utility pings nodes involved in the deployment using Ansible’s ping module to verify connectivity. It can be
used to ping groups or individual nodes.

Ping all data nodes (default)

[admin@installer-230 ~]$ pingnodes
192.168.2.220 | SUCCESS => {

"changed": false,
"failed": false,

(continues on next page)

44 Chapter 9. ECS Community Edition Utilities

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

"ping": "pong"
}

Ping all known nodes

[admin@installer-230 ~]$ pingnodes all
localhost | SUCCESS => {

"changed": false,
"failed": false,
"ping": "pong"

}
192.168.2.200 | SUCCESS => {

"changed": false,
"failed": false,
"ping": "pong"

}
192.168.2.220 | SUCCESS => {

"changed": false,
"failed": false,
"ping": "pong"

}

Ping the node identified as 192.168.2.220

[admin@installer-230 ~]$ pingnodes 192.168.2.220
192.168.2.220 | SUCCESS => {

"changed": false,
"failed": false,
"ping": "pong"

}

Ping members of the install_node group

[admin@installer-230 ~]$ pingnodes install_node
192.168.2.200 | SUCCESS => {

"changed": false,
"failed": false,
"ping": "pong"

}

9.9 inventory

This utility displays the known Ansible inventory and all registered group and host variables.

[admin@installer-230 ~]$ inventory
{

"ecs_install": {
"hosts": [

"localhost"
],
"vars": {

"ansible_become": false,
"ansible_python_interpreter": "/usr/local/bin/python",
"ansible_connection": "local"

(continues on next page)

9.9. inventory 45

ECS-CommunityEdition Documentation, Release 3.2.2.0

(continued from previous page)

}
},
"install_node": {
"hosts": [

"192.168.2.200"
],

[... snip ...]

46 Chapter 9. ECS Community Edition Utilities

CHAPTER 10

ECS Software 3.x - Troubleshooting Tips

This is a list of troubleshooting tips and nuggets that will help with issues. If you still have problems, please use the
support section.

10.1 Installation

10.1.1 If you change deploy.yml after running step1, you must run update_deploy
before running step1 again. Otherwise you will likely get the following error:

{"failed": true, "msg": "An unhandled exception occurred while running the lookup
→˓plugin 'file'.
Error was a <class 'ansible.errors.AnsibleFileNotFound'>, original message: the file_
→˓name
'/opt/ssh/id_ed25519.pub' does not exist, or is not readable"}

10.1.2 A block device configured in deploy.yml for data nodes is
already partitioned.

This error often shows up after a failed installation attempt. In order to clean up the block devices to start over run
ecsremove purge-nodes.

10.2 Provisioning of ECS

It takes roughly 30 minutes to get the system provisioned for Step2. ECS creates Storage Pools, Replication Groups
with the attached disks. If Step2 is successful, you should see something along these lines.

47

ECS-CommunityEdition Documentation, Release 3.2.2.0

10.2.1 Checking Step 2 Object provisioning progress

If you want to see if system is making progress:

1. Log into one of ECS data nodes.

2. Navigate to the /var/log/vipr/emcvipr-object/ directory

3. View the /var/log/vipr/emc-viprobject/ssm.log (tail -f /var/log/vipr/emcvipr-object/ssm.log)

Note: there are ~2k tables to be initialized for the provisioning to complete. You can check the following command
to see if the tables are close to that number and if all tables are ready. Run this from the node.

curl -X GET "http://<YourIPAddress>:9101/stats/dt/DTInitStat”

10.3 ECS Services

10.3.1 Docker Container immediately exits on startup

If your docker instance immediately exits when started, please ensure that the entries in /etc/hosts on the host
system and network.json in the install directory are correct (the latter should reflect the host’s public IP and the
corresponding network adapter).

10.3.2 ECS web portal will not start

The portal service will listen on ports 443 and 4443; check to make sure no other services (such as virtual hosts or
additional instances of ECSCE) are not attempting to utilize these same ports.

For multiple-node installations, the /etc/hosts file on the host VM should include entries for each node and their
hostname. Additionally, many services including the ECS web portal will not start until all nodes specified to the
installation step 1 script have been successfully installed and concurrently running; the installation script should be
run on all nodes in a cluster before attempting authentication or use of the GUI.

If attempting to authenticate results in a response of “Connection Refused”, review the below section and ensure all
necessary ports are open on all ECS nodes in the cluster.

10.4 NFS

10.4.1 Necessary NFS Ports

The following ports must be opened for NFS to function properly

Port Number
111
2049

10.4.2 NFS Volume Refuses to Mount

ECS does support the NFS file system. However, troubles can occur when ECS is installed on the full version, or
“Everything” version, of CentOS 7. *Note that the following solution is not necessary on CentOS 7 Minimal.*

48 Chapter 10. ECS Software 3.x - Troubleshooting Tips

ECS-CommunityEdition Documentation, Release 3.2.2.0

The Problem

CentOS 7 Everything starts with NFS/RPC/Portmap components running in the root scope. This is a problem as the
ECS-CE Docker container runs its own version of rpcbind. This is the instance of rpcbind that ECS is intended to
communicate with. When CentOS is running rpcbind in root scope in addition to the ECS Docker container, a conflict
is created and a NFS volume cannot be mounted.

This can be seen by # rpcinfo -p returning no NFS services.

The Solution

The conflict can be resolved by simply running systemctl disable rpcbind. This command will shut down
the rpc service running on the host OS while leaving the Docker instance untouched.

To confirm the CentOS service is gone, run rpcinfo -p in the CentOS shell. This should return
an error: rpcinfo: can't contact portmapper: RPC: Remote system error - No such
file or directory

The same command, rpcinfo-p, can be run in the Docker container, which should return something similar to:

program vers proto port service
100000 4 tcp 111 portmapper
100000 3 tcp 111 portmapper
100000 2 tcp 111 portmapper
100000 4 udp 111 portmapper
100000 3 udp 111 portmapper
100000 2 udp 111 portmapper
100005 3 tcp 2049 mountd
100005 3 udp 2049 mountd
100003 3 tcp 2049 nfs
100024 1 tcp 2049 status
100021 4 tcp 10000 nlockmgr
100021 4 udp 10000 nlockmgr

NFS should now function correctly.

10.5 IBM Tivoli Monitoring

10.5.1 Issue

ECS Community edition will fail to completely initialize the storage pool on machines that have the IBM Tivoli
Monitoring agent installed. The storage pool will forever stick in the “Initializing” state and attempts to create a VDC
will result in HTTP 400 errors.

10.5.2 Analysis

Doing a ps -ef inside the container will show that dataheadsvc and metering are restarting frequently. Looking at
/opt/storageos/logs/metering.log will show a bind exception on port 10110. This port is already bound
by Tivoli’s k10agent process.

10.5. IBM Tivoli Monitoring 49

ECS-CommunityEdition Documentation, Release 3.2.2.0

10.5.3 Workaround

1. Uninstall Tivoli Monitoring or

2. Change the port on impacted nodes.

Changing the port on ECS

On all nodes, you will need to edit /opt/storageos/conf/mt-var.xml to change the bind port from 10110
to 10109. Edit the file and change the line:

<property name="serviceUrl" value="service:jmx:rmi://127.0.0.1:10110/jndi/rmi://127.0.
→˓0.1:10111/sos" />

to:

<property name="serviceUrl" value="service:jmx:rmi://127.0.0.1:10109/jndi/rmi://127.0.
→˓0.1:10111/sos" />

Then restart the metering service:

kill `pidof metering`

10.6 Network Troubleshooting

10.6.1 For those operating behind EMC firewall

To install ECS Community Edition under these conditions, please view the readme file under /emc-ssl-cert for further
instructions in installing the necessary CA certificate.

10.6.2 Disabling IPv6

ECS Community Edition does not yet support IPv6. The following procedure can be used to disable IPv6 in CentOS
7.

10.6.3 To disable IPv6 on startup:

Add the following to /etc/sysctl.conf

net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1

10.6.4 To disable IPv6 running:

echo 1 > /proc/sys/net/ipv6/conf/all/disable_ipv6
echo 1 > /proc/sys/net/ipv6/conf/default/disable_ipv6

or

50 Chapter 10. ECS Software 3.x - Troubleshooting Tips

ECS-CommunityEdition Documentation, Release 3.2.2.0

sysctl -w net.ipv6.conf.all.disable_ipv6=1
sysctl -w net.ipv6.conf.default.disable_ipv6=1

10.6.5 Get correct interface name

CentOS 7 does not assign network interface names as eth0, eth1, etc, but rather assigns “predictable” names to each
interface that generally look like ens32 or similar. There are many benefits to this that can be read about here.

This can be disabled as documented in the above link, however, these names can otherwise be simply found and used
in the ECS-Community installer without issue. To find the names for each device enter the following command: ip
a. This command will output a list of network devices. Simply find the corresponding device and substitute it for eth0
in the stage1 installation script.

10.6.6 Port Conflicts

It is possible that on multinode installations ECS may run into a port conflict. So far there exists a port conflict with
the following:

• ScaleIO - Ports: 9011, 9099

In these instances the user can attempt to:

1. Enter the container

2. Change all instances of the conflicting ports to unused ports in /opt/storageos/conf

3. Reboot the nodes after altering the conf file.

10.6.7 List of open ports required on each ECS data node

Ensure the ports in the following table are open for communication. In the case of a multiple-node installation,
additionally ensure that each node is trusted to itself and to other nodes in the system by using the following command
on each node:

firewall-cmd --permanent --zone=trusted --add-source=<ECS-node-IP>/32

followed by firewall-cmd --reload for each host.

fwd_settings.sh in the main directory will invoke the firewalld service and permanently open necessary
ports. In the case of a failure in this setup referencing iptables, please ensure that your docker network bridge is
running and installed using yum install bridge-utils.

Port Name-Usage=Port Number
port.ssh=22
port.ecsportal=80
port.rcpbind=111
port.activedir=389
port.ecsportalsvc=443
port.activedirssl=636
port.ssm=1095
port.rm=1096
port.blob=1098
port.provision=1198

Continued on next page

10.6. Network Troubleshooting 51

https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/

ECS-CommunityEdition Documentation, Release 3.2.2.0

Table 1 – continued from previous page
Port Name-Usage=Port Number
port.objhead=1298
port.nfs=2049
port.zookeeper=2181
port.coordinator=2889
port.cassvc=3218
port.ecsmgmtapi=4443
port.rmmvdcr=5120
port.rmm=5123
port.coordinator=7399
port.coordinatorsvc=7400
port.rmmcmd=7578
port.objcontrolUnsecure=9010
port.objcontrolSecure=9011
port.s3MinUnsecure=9020
port.s3MinSecure=9021
port.atmosMinUnsecure=9022
port.atmosMinSecure=9023
port.swiftMinUnsecure=9024
port.swiftMinSecure=9025
port.apiServerMinUnsecure=9028
port.apiServerMinSecure=9029
port.hdfssvc=9040
port.netserver=9069
port.cm=9091
port.geoCmdMinUnsecure=9094
port.geoCmdMinSecure=9095
port.geoDataMinUnsecure=9096
port.geoDataMinSecure=9097
port.geo=9098
port.ss=9099
port.dtquery=9100
port.dtqueryrecv=9101
port.georeplayer=9111
port.stat=9201
port.statWebServer=9202
port.vnest=9203
port.vnesthb=9204
port.vnestMinUnsecure=9205
port.vnestMinSecure=9206
port.hdfs=9208
port.event=9209
port.objcontrolsvc=9212
port.zkutils=9230
port.cas=9250
port.resource=9888
port.tcpIpcServer=9898

52 Chapter 10. ECS Software 3.x - Troubleshooting Tips

CHAPTER 11

Frequently Asked Questions

11.1 Can I add storage to ECS-CommunityEdition after initializing an
installation?

No. Unfortunately because ECS Community Edition lacks the ‘fabric’ layer present in full featured ECS, it is not
possible to add storage space after a completed installation.

11.2 I am locked out of my ECS management console, can I reset the
root password?

Currently there is no procedure to reset the root password if you are locked out.

11.3 The storage capacity statistics presented on the ECS dashboard
seem wrong, what’s going on here?

ECS uses a data boxcarting strategy called “chunking”. Chunks are pre-allocated when ECS is first initialized. When
user data is written into ECS, pre-allocated chunks are filled and ECS pre-allocates however many new chunks ECS
“thinks” would be best for the future based on what it knows about the past.

Capacity statistics are calculated based on allocated and pre-allocated chunks at the time statistics are requested,
and don’t exactly reflect the actual amount of user data stored within ECS. We do this because it is a performance-
enhancing heuristic that is a “good enough” representation of capacities without having to churn through the whole
system to figure out the actual user data capacity numbers. In short, the numbers you are seeing are not designed to be
exact, but are close estimates.

53

ECS-CommunityEdition Documentation, Release 3.2.2.0

11.4 Can I use a data store node as an NTP server for the rest of the
nodes?

No, this is not a supported deployment option. An external NTP server is required.

11.5 My ECS functions but the storage pools never initialize.

If you can store objects in buckets without issue, then it’s likely that your storage pools and data stores are fully
initialized. ECS Community Edition is a bit weird in that there are some UI/display issues with storage pools showing
“Not Ready” and data stores showing “initializing” even after they have become fully initialized. If you can create
VDCs, replication groups, namespaces, and buckets, then your storage pools are certainly initialized as those higher
level abstractions require a working storage pool.

ECS Community Edition

See changelog.md file for release notes.

54 Chapter 11. Frequently Asked Questions

http://ecsce.readthedocs.io/en/latest/?badge=latest
https://github.com/EMCECS/ECS-CommunityEdition/blob/master/changelog.md

CHAPTER 12

Description

EMC ECS is a stateful containerized cloud storage. It provides persistence for your applications that can access data
through standardized Object protocols like AWS S3 or OpenStack Swift. ECS can be set up on one or more hosts
/ VMs in a single-site or a multi-site geo replicated configuration. We want the wider community to use ECS and
provide feedback. Usage of this software is under the following End User License Agreement.

ECS Community Edition is a free, reduced footprint, version of Dell EMC’s ECS software. Of course, this means
there are some limitations to the use of the software, so the question arises; how is the Community Edition of ECS
different from the production version?

12.1 License difference

As noted with the included license, ECS Community cannot be used in production environments and is intended to be
used for trial and proof of concept purposes only. This software is still owned and protected by Dell EMC.

12.2 Feature differences

It it important to note that ECS-Community Edition is not the same as ECS software and as such lacks some features
that are integral to the actual ECS software.

• ECS Community Edition does NOT support encryption.

• ECS Community Edition does NOT include ECS’ system management, or “fabric”, layer.

12.3 Notice

Because of these differences, ECS Community Edition is absolutely not qualified for testing failure scenarios. Failure
scenarios can only be adequately mimicked on the full version of ECS Software.

55

ECS-CommunityEdition Documentation, Release 3.2.2.0

56 Chapter 12. Description

CHAPTER 13

Quick Start Guide

If you have the following:

1. A CentOS 7.4 Minimal instance with:

(a) 16GB RAM

(b) 16GB block device for system

(c) 104GB block device for ECS

2. Internet access

3. No proxies, local mirrors, or special Docker registries

Then you should be able to get up and going with a Single-Node All-in-One install using these commands on your
VM:

git clone https://github.com/EMCECS/ECS-CommunityEdition
cd ECS-CommunityEdition
cp docs/design/reference.deploy.yml deploy.yml
echo "Edit this deploy.yml to match your VM's environment"
vi deploy.yml
./bootstrap.sh -y -c deploy.yml

And then after the node reboots (you did use a clean minimal install from ISO or netinstall right?):

step1
step2

And if all went well, you now have a working stand-alone ECS, mostly configured, and ready for use.

57

ECS-CommunityEdition Documentation, Release 3.2.2.0

58 Chapter 13. Quick Start Guide

CHAPTER 14

Hardware Requirements

Hardware or virtual machine with:

• 4 CPU Cores

• 16GB RAM

• 16GB root block storage

• 104GB additional block storage

• CentOS 7.4 Minimal installation

Hardware or virtual machine with:

• 8 CPU Cores

• 64GB RAM

• 16GB root block storage

• 1TB additional block storage

• CentOS 7.4 Minimal installation

59

ECS-CommunityEdition Documentation, Release 3.2.2.0

60 Chapter 14. Hardware Requirements

CHAPTER 15

Deployment Scenarios

15.1 ECS Multi-Node All-in-One Deployment with Install Node (rec-
ommended, full-featured)

Deploy a multi-node ECS instance to two or more hardware or virtual machines and enable all ECS features. Three
nodes are required for all ECS 3.0 and above features to be activated.

15.2 ECS Single-Node All-in-One Deployment (smallest footprint)

Deploy a stand-alone instance of a limited set of ECS kit to a single hardware or virtual machine.

15.2.1 Deployments into Soft-Isolated and Air-Gapped Island Environments

Important information regarding Island deployments

Please be aware that install node bootstrapping requires Internet access to the hardware or virtual machine that will
become the install node, but once this step is complete, the machine can be removed from the Internet and migrated
into the Island environment.

If you prefer to download a prefab install node as an OVF/OVA, follow one of the links below. Please note that OVAs
are produced upon each release and do not necessarily have the most current software.

Please see the release page for OVA download links.

61

https://github.com/EMCECS/ECS-CommunityEdition/releases

ECS-CommunityEdition Documentation, Release 3.2.2.0

15.3 ECS Multi-Node Deployment with Install Node (recommended,
most reusable, full-featured)

Using an install node for isolated environments, deploy a multi-node ECS instance to two or more hardware or virtual
machines and enable all ECS features. Three nodes are required for all ECS 3.0 and above features to be activated.

15.4 ECS Single-Node Deployment with Install Node

Using an install node for isolated environments, deploy a stand-alone instance of a limited set of ECS kit to a single
hardware or virtual machine.

62 Chapter 15. Deployment Scenarios

	Building ecs-install Image From Sources
	ECS Community Edition Installation Guides
	Standard Installation
	OVA Installation
	Island Installation
	ECS Administrative Web UI
	Migration
	deploy.yml
	ECS Community Edition Utilities
	ECS Software 3.x - Troubleshooting Tips
	Frequently Asked Questions
	Description
	Quick Start Guide
	Hardware Requirements
	Deployment Scenarios

