
ecopy Documentation
Release 0.1.2.2

Nathan Lemoine

Sep 01, 2017

Contents

1 Version 3

2 Installing EcoPy 5

3 Indices and tables 53

i

ii

ecopy Documentation, Release 0.1.2.2

EcoPy contains numerous numerical and statistical techniques for working with and analyzing multivariate data. Al-
though designed with ecologists in mind, many of the functions and features are widely applicable. In general, it
focuses on multivariate data analysis, which can be useful in any field, but with particular attention to those methods
widely used in ecology. This website contains documentation and examples for all functions.

Contents 1

ecopy Documentation, Release 0.1.2.2

2 Contents

CHAPTER 1

Version

Current Version - 0.1.2.2

3

ecopy Documentation, Release 0.1.2.2

4 Chapter 1. Version

CHAPTER 2

Installing EcoPy

pip install ecopy

Documentation

Base Functions

EcoPy contains several basic functions:

• wt_mean()

• wt_var()

• wt_scale()

• impute()

• spatial_median()

wt_mean(x, wt=None)
Calculates as weighted mean. Returns a float.

𝜇 =

∑︀
𝑥𝑖𝑤𝑖∑︀
𝑤𝑖

Parameters

x: numpy.ndarray or list A vector of input observations

wt: numpy.ndarray or list A vector of weights. If this vector does not sum to 1, this will be transformed
internally by dividing each weight by the sum of weights

Example

Weighted mean:

5

ecopy Documentation, Release 0.1.2.2

import ecopy as ep
print(ep.wt_mean([1,3,5], [1,2,1]))

wt_var(x, wt=None, bias=0)
Calculates as weighted variance. Returns a float.

𝜎2 =

∑︀
𝑤𝑖(𝑥𝑖 − 𝜇𝑤)2∑︀

𝑤𝑖

where 𝜇𝑤 is the weighted mean.

Parameters

x: numpy.ndarray or list A vector of input observations

wt: numpy.ndarray or list A vector of weights. If this vector does not sum to 1, this will be transformed
internally by dividing each weight by the sum of weights

bias: [0 | 1] Whether or not to calculate unbiased (0) or biased (1) variance. Biased variance is given by the
equation above. Unbiased variance is the biased variance multiplied by 1

1−
∑︀

𝑤2 .

Example

Weighted variance:

import ecopy as ep
print(ep.wt_var([1,3,5], [1,2,1]))

wt_scale(x, wt=None, bias=0)
Returns a vector of scaled, weighted observations.

𝑧 =
𝑥− 𝜇𝑤

𝜎𝑤

where 𝜇𝑤 is the weighted mean and 𝜎𝑤 is weighted standard deviation (the square root of weighted variance).

Parameters

x: numpy.ndarray or list A vector of input observations

wt: numpy.ndarray or list A vector of weights. If this vector does not sum to 1, this will be transformed
internally by dividing each weight by the sum of weights

bias: [0 | 1] Whether or not the weighted standard deviation 𝜎𝑤 should be calculated from the biased or unbi-
ased variance, as above

Example

Weighted variance:

import ecopy as ep
print(ep.wt_scale([1,3,5], [1,2,1]))

impute(Y, method=’mice’, m=5, delta=0.0001, niter=100)
Performs univariate missing data imputation using one of several methods described below. NOTE: This method
will not work with categorical or binary data (see TO-DO list). See van Buuren et al. (2006) and/or van Buuren
(2012) for descriptions of univariate, monotone, and MICE algorithms.

Parameters

Y: numpy.ndarray or pandas.DataFrame Data matrix containing missing values. Missing values need not
be only in one column and can be in all columns

6 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

method: [’mean’ | ‘median’ | ‘multi_norm’ | ‘univariate’ | ‘monotone’ | ‘mice’] Imputation method to be
used. One of the following:

mean: Replaces missing values with the mean of their respective columns. Returns a single numpy.ndarray.

median: Replaces missing values with the median of their respective columns. Returns a single
numpy.ndarray.

multi_norm: Approximates the multivariate normal distribution using the fully observed data. Replaces
missing values with random draws from this distribution. Returns m numpy.ndarrays.

univariate: Conducts univariate imputation based on posterior draws of Bayesian regression parameters.

monotone: Monotone imputation for longitudinally structured data.

mice: Implements the MICE algorithm for data imputation. Assumes the univariate model is the correct
model for all columns.

m: integer Number of imputed matrices to return

delta: float [0.0001 - 0.1] Ridge regression parameter to prevent non-invertible matrices.

niter: integer Number of iterations implemented in the MICE algorithm

Example

First, load in the urchin data:

import ecopy as ep
import numpy as np
import pandas as pd
data = ep.load_data('urchins')

Randomly replace mass and respiration values with NAs:

massNA = np.random.randint(0, 24, 5)
respNA = np.random.randint(0, 24, 7)
data.loc[massNA, 'UrchinMass'] = np.nan
data.loc[respNA, 'Respiration'] = np.nan

Impute using the MICE algorithm, then convert the returned arrays to dataframes:

imputedData = ep.impute(data, 'mice')
imputedFrame = [pd.DataFrame(x, columns=data.columns) for x in imputedData]

Alternatively, replace the missing values with the column means:

meanImpute = ep.impute(data, 'mean')

spatial_median(X)
Calculates the spatial median of a multivariate dataset. The spatial median is defined as the multivariate point 𝑎
that minimizes:

𝐸||𝑥− 𝑎||

where ||𝑥− 𝑎|| is the euclidean distance between the vector 𝑥 and 𝑎. Minimization is achieved by minimization
optimization using scipy.optimize.minimize and the ‘BFGS’ algorithm.

Parameters

X: numpy.ndarray or pandas.DataFrame A matrix of input observations

2.1. Documentation 7

ecopy Documentation, Release 0.1.2.2

Example

Calculate the spatial median for a random matrix:

import ecopy as ep
from scipy.stats import multivariate_normal

np.random.seed(654321)
cov = np.diag([3.,5.,2.])
data = multivariate_normal.rvs([0,0,0], cov, (100,))
spatialMed = ep.spatial_median(data)

Species Diversity

EcoPy contains several methods for estimating species diversity:

• diversity()

• rarefy()

• :py:func‘div_partition‘

• :py:func‘beta_dispersion‘

diversity(x, method=’shannon’, breakNA=True, num_equiv=True)
Calculate species diversity for every site in a site x species matrix

Parameters

x: numpy.ndarray or pandas.DataFrame (required) A site x species matrix, where sites are rows and
columns are species.

method: [’shannon’ | ‘gini-simpson’ | ‘simpson’ | ‘dominance’ | ‘spRich’ | ‘even’] shannon: Calculates
Shannon’s H

𝐻 = −
𝑘∑︁
1

𝑝𝑘 log 𝑝𝑘

where 𝑝𝑘 is the relative abundance of species k

gini-simpson: Calculates the Gini-Simpson coefficient

𝐷 = 1 −
𝑘∑︁
1

𝑝2𝑘

simpon: Calculates Simpson’s D

𝐷 =

𝑘∑︁
1

𝑝2𝑘

dominance: Dominance index. max 𝑝𝑘

spRich: Species richness (# of non-zero columns)

even: Evenness of a site. Shannon’s H divided by log of species richness.

breakNA: [True | False] Whether null values should halt the process. If False, then null values are removed
from all calculations.

8 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

num_equiv: [True | False] Whether or not species diversity is returned in number-equivalents, which has bet-
ter properties than raw diversity. Number equivalents are calculated as follows:

shannon: 𝑒𝑥𝑝(𝐻)

gini-simpson: 1
1−𝐷

simpson: 1
𝐷

‘spRich’: No conversion needed.

Example

Calculate Shannon diversity of the ‘varespec’ dataset from R:

import ecopy as ep
varespec = ep.load_data('varespec')
shannonH = ep.diversity(varespec, 'shannon')

rarefy(x, method=’rarefy’, size=None, breakNA=True)
Returns either rarefied species richness or draws a rarefaction curve for each row. Rarefied species richness is
calculated based on the smallest sample (default) or allows user-specified sample sizes.

Parameters

x: numpy.ndarray or pandas.DataFrame (required) A site x species matrix, where sites are rows and
columns are species.

method: [’rarefy’ | ‘rarecurve’] rarefy: Returns rarefied species richness.

𝑆 =

𝑖∑︁
1

1 −
(︀
𝑁−𝑁𝑖

𝑠𝑖𝑧𝑒

)︀(︀
𝑁

𝑠𝑖𝑧𝑒

)︀
where N is the total number of individuals in the site, 𝑁𝑖 is the number of individuals of species i, and size
is the sample size for rarefaction

rarecurve: Plots a rarefaction curve for each site (row). The curve is calculated as

𝑆𝑛 −
∑︀𝑖

1

(︀
𝑁−𝑁𝑖

𝑠𝑖𝑧𝑒

)︀(︀
𝑁

𝑠𝑖𝑧𝑒

)︀
where 𝑆𝑛 is the total number of species in the matrix and size ranges from 0 to the total number of
individuals in each site.

Example

Calculate rarefied species richness for the BCI dataset:

import ecopy as ep
BCI = ep.load_data('BCI')
rareRich = ep.rarefy(BCI, 'rarefy')

Show rarefaction curves for each site:

ep.rarefy(BCI, 'rarecurve')

div_partition(x, method=’shannon’, breakNA=True, weights=None)
Partitions diversity into alpha, beta, and gamma components. First, diversity is calculated for each site (see
diversity()). Then, a weighted average of each diversity metric is calculated to yield an average alpha
diversity. This average alpha diversity is converted to number equivalents 𝐷𝛼 (see diversity()). Next,

2.1. Documentation 9

ecopy Documentation, Release 0.1.2.2

gamma diversity is calculated using the species totals from the entire matrix (i.e. summing down columns) and
converted to a number equivalent 𝐷𝛾 . Beta diversity is then:

𝐷𝛽 =
𝐷𝛾

𝐷𝛼

Parameters

x: numpy.ndarray or pandas.DataFrame (required) A site x species matrix, where sites are rows and
columns are species.

method: [’shannon’ | ‘gini-simpson’ | ‘simpson’ | ‘spRich’] See diversity()

breakNA: [True | False] Whether null values should halt the process. If False, then null values are removed
from all calculations.

weights: list or np.ndarray Weights given for each row (site). Defaults to the sum of each row divided by the
sum of the matrix. This yields weights based on the number of individuals in a site for raw abundance data
or equal weights for relative abundance data.

Example

Partition diversity into alpha, beta, and gamma components for the ‘varespec’ data:

import ecopy as ep
varespec = ep.load_data('varespec')
D_alpha, D_beta, D_gamma = ep.div_partition(varespec, 'shannon')

beta_dispersion(X, groups, test=’anova’, scores=False, center=’median’, n_iter=99)
Calculate beta dispersion among groups for a given distance matrix. First, the data is subject to transformation as
described in PCoA. Next, eigenvalues and eigenvectors are calculated for the transformed matrix. Eigenvectors

10 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

are split into two matrices, those pertaining to non-negative eigenvalues and those pertaining to negative eigen-
values. Next, centroids for the positive and negative eigenvector matrices are determined (using spatial_median
if center=’median’). Z-distances are calculated as:

𝑧𝑖𝑗 = 𝑛𝑝.𝑠𝑞𝑟𝑡(𝛿2(𝑥𝑖𝑗 − 𝑐+𝑖) − 𝛿2(𝑥𝑖𝑗 − 𝑐−𝑖))

where 𝛿2(𝑥𝑖𝑗 , 𝑐
+
𝑖) is the squared euclidean distance between observation ij and the center of group i, and +/-

denote the non-negative and negative eigenvector matrices.

A one-way ANOVA is conducted on the z-distances.

Parameters

X: numpy.ndarray, pandas.DataFrame A square, symmetric distance matrix

groups: list, pandas.Series, pandas.DataFrame A column or list containing the group identification for each
observation

test: [’anova’ | ‘permute’] Whether significance is calculated using the ANOVA approximation or permutation
of residuals.

scores: [True | False] Whether or not the calculated z-distances should be returned for subsequent plotting

center: [’median’ | ‘centroid’] Which central tendency should be used for calculating z-distances.

n_iter: integer Number of iterations for the permutation test

Example

Conduct beta dispersion test on the ‘varespec’ dataset from R:

varespec = ep.load_data('varespec')
dist = ep.distance(varespec, method='bray')

groups = ['grazed']*16 + ['ungrazed']*8
ep.beta_dispersion(dist, groups, test='permute', center='median', scores=False)

Matrix Transformations

EcoPy makes it easy to prep matrices for analysis. It assumes that all matrices have observations as rows (i.e. sites)
and descriptors as columns (i.e. species). Although designed for site x species analyses, these techniques can apply to
any matrix.

• transform()

• distance()

transform(x, method=’wisconsin’, axis=1, breakNA=True)
Takes an input matrix, performs a transformation, and returns an output matrix. It will accept either a pan-
das.DataFrame or numpy.ndarray, and will return an object of the same class. Matrices consist of i rows and k
columns.

Parameters

x: a numpy.ndarray or pandas.DataFrame (required) A site x species matrix, where sites are rows and
columns are species.

method: [’total’ | ‘max’ | ‘normalize’, ‘range’, ‘standardize’, ‘hellinger’, ‘log’, ‘logp1’, ‘pa’, ‘wisconsin’]
total: Divides each observation by row or column sum.

max: Divides each observation by row or column max.

2.1. Documentation 11

ecopy Documentation, Release 0.1.2.2

normalize: Chord transformation, also euclidean normalization, making the length of each row or column
1.

𝑦𝑖𝑘 =
𝑦𝑖𝑘√︁∑︀𝑘
1 𝑦

2
𝑖𝑘

range: Converts the range of the data to 0 and 1.

standardize: Standardizes each observation (i.e. z-score).

hellinger: Square-root of the total transformation.

log: Returns ln(x+1)

logp1: Returns ln(x) + 1, if x > 0. Otherwise returns 0.

pa: Converts data to binary absence (0) presence (1) data.

wisconsin: First divides an observation by the max of the column, then the sum of the row. That is, it
applies ‘max’ down columns then ‘total’ across rows.

axis: [0 | 1] Axis for the transformation.

breakNA: [True | False] Whether NA values should halt the transformation.

Example

Convert the ‘varespec’ data to relative abundance:

import ecopy as ep
varespec = ep.load_data('varespec')
relAbund = ep.transform(varespec, method='total', axis=1)

distance(x, method=’euclidean’, transform=”1”, breakNA=True)
Takes an input matrix and returns a square-symmetric array of distances among rows. NOTE: Be sure the
appropriate transformation has already been applied. This function contains a variety of both similarity (S) and
distance (D) metrics. However, for consistency all similarities are converted to distances D = 1 - S. Methods
annotated with SIMILARITY follow this procedure.

In the case of binary 0/1 data, the two rows are converted to a contingency table, where A is the number of
double presences, B and C are the number of single presences in 𝑥1 and 𝑥2, respectively, and D is the number
of double absences. Matrices consist of i rows and k species. Methods that only work on binary data will result
in an error if non-binary data is passed. However, binary data can be passed to all methods, and sometimes give
equivalent results (i.e. passing binary data to method ‘bray’ is identical to using method ‘sorensen’).

Parameters

x: a numpy.ndarray or pandas.DataFrame (required) A site x species matrix, where sites are rows and
columns are species.

method: [’euclidean’ | ‘gow_euclidean’ | chord’ | ‘manhattan’ | ‘meanChar’ | ‘whittaker’ | ‘canberra’ | ‘hellinger’ | ‘mod_gower’ | ‘bray’ | ‘kulcznski’ | ‘gower’ | ‘simple’ | ‘rogers’ | ‘sokal’ | ‘jaccard’ | ‘sorensen’]
Note, some methods do not allow negative values.

euclidean: Calculates euclidean distance between rows.

gow_euclidean: Calculates euclidean distance between rows, removing missing values.

𝐷1,2 =

√︃∑︀𝑝
𝑘 𝛿𝑘(𝑥1𝑘 − 𝑥2𝑘)2∑︀𝑝

𝑘 𝛿𝑘

where 𝛿𝑘 =1 if the observation is present in both rows and 0 otherwise.

12 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

chord: Euclidean distance of normalized rows.

manhattan: ‘City-block’ distance

𝐷1,2 =

𝑘∑︁
1

|𝑥1𝑘 − 𝑥2𝑘|

meanChar: Czekanowski’s mean character difference, where M is the number of columns.

𝐷1,2 =
1

𝑀

𝑘∑︁
1

|𝑥1𝑘 − 𝑥2𝑘|

whittaker: Whittaker’s index of association. Rows are first standardized by row totals (if the transformation
as already been applied above, this will not affect it as row totals will equal 1)

𝐷1,2 = 0.5

𝑘∑︁
1

|𝑥1𝑘 − 𝑥2𝑘|

canberra: Canberra metric

1

𝑀

𝑘∑︁
1

𝑥1𝑘 − 𝑥2𝑘

𝑥1𝑘 + 𝑥2𝑘

hellinger: Hellinger distance. This is the same as ‘chord’, but square-root transformed first.

mod_gower: Modified Gower distance. This is the same as ‘meanChar’, except M is the number of
columns that are not double zero. This discounts double-absences from the ‘meanChar’ method.

bray: Bray-Curtis percentage dissimilarity coefficient

𝐷1,2 = 1 −
2 *

∑︀𝑘
1 min(𝑥1𝑘, 𝑥2𝑘)∑︀
𝑥1 +

∑︀
𝑥2

kulcznski: Kulcznski’s coefficient (SIMILARITY)

𝑆1,2 = 0.5(

∑︀𝑘
1 min(𝑥1𝑘, 𝑥2𝑘)∑︀

𝑥1
+

∑︀𝑘
1 min(𝑥1𝑘, 𝑥2𝑘)∑︀

𝑥2
)

gower: Gower asymmetrical coefficient (SIMILARITY)

𝑆1,2 =
1

𝑀
(1 −

𝑘∑︁
1

|𝑥1𝑘 − 𝑥2𝑘|
max𝑥𝑘 − min𝑥𝑘

)

The denominator is the maximum of column k minus the minimum of column k in the entire matrix.
Double zeroes are excluded in this calculation.

simple: simple matching of BINARY data (SIMILARITY)

𝑆1,2 =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷

rogers: Rogers and Tanimoto coefficient for BINARY data (SIMILARITY)

𝑆1,2 =
𝐴 + 𝐷

𝐴 + 2𝐵 + 2𝐶 + 𝐷

sokal: Sokal and Sneath coefficient for BINARY data (SIMILARITY)

𝑆1,2 =
2𝐴 + 2𝐷

2𝐴 + 𝐵 + 𝐶 + 2𝐷

2.1. Documentation 13

ecopy Documentation, Release 0.1.2.2

jaccard: Jaccard’s coefficient for BINARY data (SIMILARITY)

𝑆1,2 =
𝐴

𝐴 + 𝐵 + 𝐶

sorensen: Sorensen’s coefficient for BINARY data (SIMILARITY)

𝑆1,2 =
2𝐴

2𝐴 + 𝐵 + 𝐶

transform: [”1” | “sqrt”] Determines the final transformation of the distance metric. “1” returns the raw dis-
tance D. “sqrt” returns sqrt(D). Sometimes sqrt(D) has more desirable properties, depending on the subse-
quent analyses (see Legendre and Legendre - Numerical Ecology).

breakNA: [True | False] Whether null values should halt the process.

Examples

Calculate the Bray-Curtis dissimilarity among rows of the ‘varespec’ data:

import ecopy as ep
varespec = ep.load_data('varespec')
brayDist = ep.distance(varespec, method='bray')

If attempting a binary method with non-binary data, an error will be raise:

jacDist = ep.distance(varespec, method='jaccard')

>>ValueError: For method jaccard, data must be binary

varespec2 = ep.transform(varespec, method='pa')
jacDist = ep.distance(varespec2, method='jaccard')

Ordination

Ecopy contains numerous methods for ordination, that is, plotting points in reduced space. Techniques include, but
are not limited to, principle components analysis (PCA), correspondence analysis (CA), principle coordinates analysis
(PCoA), and multidimensional scaling (nMDS).

• pca (Principle Components Analysis)

• ca (Correspondance Analysis)

• pcoa (Principle Coordinates Analysis)

• MDS (Multidimensional Scaling)

• hillsmith (Hill and Smith Ordination)

• ord_plot() (Ordination plotting)

class pca(x, scale=True, varNames=None)
Takes an input matrix and performs principle components analysis. It will accept either pandas.DataFrames or
numpy.ndarrays. It returns on object of class :py:class: pca, with several methods and attributes. This function
uses SVD and can operate when rows < columns. NOTE: PCA will NOT work with missing observations, as it
is up to the user to decide how best to deal with those. Returns object of class pca.

Parameters

x: a numpy.ndarray or pandas.DataFrame A matrix for ordination, where objects are rows and descrip-
tors/variables as columns. Can be either a pandas.DataFrame or numpy. ndarray.

14 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

scale: [True | False] Whether or not the columns should be standardized prior to PCA. If ‘True’, the PCA then
operates on a correlation matrix, which is appropriate if variables are on different measurement scales. If
variables are on the same scale, use ‘False’ to have PCA operate on the covariance matrix.

varNames: list If using a numpy.ndarray, pass a list of column names for to help make PCA output easier to
interpret. Column names should be in order of the columns in the matrix. Otherwise, column names are
represented as integers during summary.

Attributes

evals
Eigenvalues in order of largest to smallest.

evecs
Normalized eigenvectors corresponding to each eigenvalue (i.e. the principle axes).

scores
Principle component scores of each object (row) on each principle axis. This returns the raw scores F
calculated as F = YU where U is the matrix of eigenvectors and Y are the original observations.

Methods

classmethod summary_imp()
Returns a data frame containing information about the principle axes.

classmethod summary_rot()
Returns a data frame containing information on axes rotations (i.e. the eigenvectors).

classmethod summary_desc()
Returns a data frame containing the cumulative variance explained for each predictor along each principle
axis.

classmethod biplot(xax=1, yax=2, type=’distance’, obsNames=False)
Create a biplot using a specified transformation.

xax: integer Specifies which PC axis to plot on the x-axis

yax: integer Specifies which PC axis to plot on the y-axis

type: [’distance’ | ‘correlation’] Type ‘distance’ plots the raw scores F and the raw vectors U of the first
two principle axes.

Type ‘correlation’ plots scores and vectors scaled by the eigenvalues corresponding to each axis:
FΛ−0.5 and UΛ0.5, where Λ is a diagonal matrix containing the eigenvalues.

obsNames: [True | False] Denotes whether to plot a scatterplot of points (False) or to actually show the
names of the observations, as taken from the DataFrame index (True).

Examples

Principle components analysis of the USArrests data. First, load the data:

import ecopy as ep
USArrests = ep.load_data('USArrests')
USArrests.set_index('State', inplace=True)

Next, run the PCA:

arrests_PCA = ep.pca(USArrests, scale=True)

Check the importance of the different axes by examining the standard deviations, which are the square root of
the eigenvalues, and the proportions of variance explained by each axis:

2.1. Documentation 15

ecopy Documentation, Release 0.1.2.2

impPC = arrests_PCA.summary_imp()
print(impPC)

PC1 PC2 PC3 PC4
Std Dev 1.574878 0.994869 0.597129 0.416449
Proportion 0.620060 0.247441 0.089141 0.043358
Cum Prop 0.620060 0.867502 0.956642 1.000000

Next, examine the eigenvectors and loadings to determine which variables contribute to which axes:

rotPC = arrests_PCA.summary_rot()
print(rotPC)

PC1 PC2 PC3 PC4
Murder 0.535899 0.418181 -0.341233 0.649228
Assault 0.583184 0.187986 -0.268148 -0.743407
UrbanPop 0.278191 -0.872806 -0.378016 0.133878
Rape 0.543432 -0.167319 0.817778 0.089024

Then, look to see how much of the variance among predictors is explained by the first two axes:

print(arrests_PCA.summary_desc())
PC1 PC2 PC3 PC4

Murder 0.712296 0.885382 0.926900 1
Assault 0.843538 0.878515 0.904153 1
Urban Pop 0.191946 0.945940 0.996892 1
Rape 0.732461 0.760170 0.998626 1

Show the biplot using the ‘correlation’ scaling. Instead of just a scatterplot, use obsNames=True to show the
actual names of observations:

arrests_PCA.biplot(type='correlation', obsNames=True)

class ca(x, siteNames=None, spNames=None, scaling=1)
Takes an input matrix and performs principle simple correspondence analysis. It will accept either pan-
das.DataFrames or numpy.ndarrays. Data MUST be 0’s or positive numbers. NOTE: Will NOT work with
missing observations, as it is up to the user to decide how best to deal with those. Returns on object of class ca.

Parameters

x: a numpy.ndarray or pandas.DataFrame A matrix for ordination, where objects are rows and descrip-
tors/variables as columns. Can be either a pandas.DataFrame or numpy.ndarray. NOTE: If the matrix
has more variables (columns) than objects (rows), the matrix will be transposed prior to analysis, which
reverses the meanings of the matrices as noted.

The matrix is first scaled to proportions by dividing each element by the matrix sum, 𝑝𝑖𝑘 = 𝑦𝑖𝑘/
∑︀𝑖

1

∑︀𝑘
1 .

Row (site) weights 𝑤𝑖 are calculated as the sums of row probabilities and column (species) weights 𝑤𝑘

are the sum of column probabilities. NOTE: If 𝑟 < 𝑐 in the original matrix, then row weights give species
weights and column weights give site weights due to transposition.

A matrix of chi-squared deviations is then calculated as:

Q =
𝑝𝑖𝑘 − 𝑤𝑖𝑤𝑘√

𝑤𝑖𝑤𝑘

This is then converted into a sum-of-squared deviations as

QQ = Q′Q

Eigen-decomposition of QQ yields a diagonal matrix of eigenvalues Λ and a matrix of eigenvectors U.
Left-hand eigenvectors Û (as determined by SVD) are calculated as Û = QUΛ−0.5. U gives the column

16 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

(species) loadings and Û gives the row (site) loadings. NOTE: If 𝑟 < 𝑐 in the original matrix, the roles of
these matrices are reversed.

siteNames: list A list of site names. If left blank, site names are taken as the index of the pandas.DataFrame or
the row index from the numpy.ndarray.

spNames: list A list of species names. If left blank, species names are taken as the column names of the
pandas.DataFrame or the column index from the numpy.ndarray.

scaling: [1 | 2] Which type of scaling to use when calculating site and species scores. 1 produces a site biplot,
2 produces a species biplot. In biplots, only the first two axes are shown. The plots are constructed as
follows:

Four matrices are constructed. Outer species (column) locations on CA axes V are given by the species
(column) weights multiplied by the species (column) eigenvalues:

V = Dk
−0.5U

where Dk is a diagonal matrix of species (column) weights w_k. Likewise, outer site (row) locations are
given by:

V̂ = Di
−0.5Û

Inner site locations F are given as:

F = V̂Λ0.5

Inner species locations are given as:

F̂ = VΛ0.5

2.1. Documentation 17

ecopy Documentation, Release 0.1.2.2

Scaling 1 Biplot: Scaling 1 shows the relationships among sites within the centroids of the species. This
plot is useful for examining relationships among sites and how sites are composed of species. In this, the
first two columns of inner site locations F are plotted against the first two columns of the outer species
locations V. NOTE: If 𝑟 < 𝑐 in the original matrix, this will be F̂ and V̂.

Scaling 2 Biplot: Scaling 2 shows the relationships among species within the centroids of the sites. This
plot is useful for examining relationships among species and how species are distributed among sites. In
this, the first two columns of inner species locations F̂ are plotted against the first two columns of the outer
site locations V̂. NOTE: If 𝑟 < 𝑐 in the original matrix, this will be F and V.

Attributes

w_col
Column weights in the proportion matrix. Normally species weights unless 𝑟 < 𝑐, in which case they are
site weights.

w_row
Row weights in the proportion matrix. Normally site weights unless 𝑟 < 𝑐, in which case they are species
weights.

U
Column (species) eigenvectors (see above note on transposition).

Uhat
Row (site) eigenvectors (see above note on transposition).

cumDesc_Sp
pandas.DataFrame of the cumulative contribution of each eigenvector to each species. Matrix U is scaled
by eigenvalues U2 = UΛ0.5. Then, the cumulative sum of each column is divided by the column total for
every row. If 𝑟 < 𝑐 in the original data, then this operation is performed on Û automatically.

cumDesc_Site
The same for cumDesc_Sp, but for each site. Normally calculated for Û unless 𝑟 < 𝑐, then calculated on
U.

siteScores
Site scores along each CA axis. All considerations for matrix transposition and scaling have been taken
into account.

spScores
Species scores along each CA axis. All considerations for matrix transposition and scaling have been taken
into account.

Methods

classmethod summary()
Returns a pandas.DataFrame of summary information for each correspondence axis, including SD’s
(square-root of each eigenvalue), proportion of inertia explained, and cumulative inertia explained.

classmethod biplot(coords=False, type=1, xax=1, yax=2, showSp=True, showSite=True, spCol=’r’,
siteCol=’k’, spSize=12, siteSize=12, xlim=None, ylim=None)

Produces a biplot of the given CA axes.

xax: integer Specifies CA axis to plot on the x-axis.

yax: integer Specifies CA axis to plot on the y-axis.

showSp: [True | False] Whether or not to show species in the plot.

showSite: [True | False] Whether or not to show sites in the plot.

spCol: string Color of species text.

siteCol: string Color of site text.

18 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

spSize: integer Size of species text.

siteSize: integer Size of site text.

xlim: list A list of x-axis limits to override default.

ylim: list A list of y-axis limits to override default.

Examples

In Legendre and Legendre (2012), there is an example of three species varying among three lakes. Write in that
data:

import ecopy as ep
import numpy as np
import pandas as pd
Lakes = np.array([[10, 10, 20], [10, 15, 10], [15, 5, 5]])
Lakes = pd.DataFrame(Lakes, index = ['L1', 'L2', 'L3'])
Lakes.columns = ['Sp1', 'Sp2', 'Sp3']

Next, run the CA:

lakes_CA = ep.ca(Lakes)

Check the variance explained by each CA axis (there will only be two):

CA_summary = lakes_CA.summary()
print(CA_summary)

CA Axis 1 CA Axis 2
Std. Dev 0.310053 0.202341
Prop. 0.701318 0.298682
Cum. Prop. 0.701318 1.000000

Next, see how well the two axes explained variance in species and sites:

print(lakes_CA.cumDesc_Sp)
CA Axis 1 CA Axis 2

Sp1 0.971877 1
Sp2 0.129043 1
Sp3 0.732340 1

print(lakes_CA.cumDesc_site)
CA Axis 1 CA Axis 2

L1 0.684705 1
L2 0.059355 1
L3 0.967209 1

Make a Type 1 biplot to look at the relationship among sites:

lakes_CA.biplot()

In a bigger example, run CA on the BCI dataset. NOTE: This is an example where 𝑟 < 𝑐:

BCI = ep.load_data('BCI')
bci_ca = ep.ca(BCI)
bci_ca.biplot(showSp=False)

class pcoa(x, correction=None, siteNames=None)
Takes a square-symmetric distance matrix with no negative values as input. NOTE: This will not work with
missing observations. Returns an object of class pcoa.

2.1. Documentation 19

ecopy Documentation, Release 0.1.2.2

20 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

Parameters

x: a numpy.ndarray or pandas.DataFrame A square, symmetric distance matrix with no negative values and
no missing observations. Diagonal entries should be 0.

For PCoA, distance matrix x is first corrected to a new matrix A, where 𝑎𝑖𝑗 = −0.5 * 𝑥2
𝑖𝑗 . Elements of

the new matrix A are centered by row and column means using the equation Δ1 = (I− 1′1
n)A(I− 1′1

n).
PCoA is eigenanalysis of Δ1. Eigenvectors U are scaled by the square root of each eigenvalue Uscl =
UΛ0.5 where Λ is a diagonal matrix of the eigenvalues.

correction: [None | 1 | 2] Which correction should be applied for negative eigenvalues. Accepts either ‘1’ or
‘2’ (must be a string). By default, no correction is applied.

Correction 1: Computes PCoA as described above. Adds the absolute value of the largest negative eigen-
value to the square original distance matrix (while keeping diagonals as 0) and then re-runs PCoA from
the beginning.

Correction 2: Constructs a special matrix [︂
0 2Δ1

−I −4Δ2

]︂
∆1 is the centered, corrected distance matrix as described above and ∆2 is a centered matrix (uncorrected)
of −0.5x. The largest, positive eigenvalue of this matrix is then added the original distances and PCoA
run from the beginning.

siteNames: list A list of site names. If not passed, inherits from the DataFrame index or assigns integer values.

Attributes

evals
Eigenvalues of each principle coordinate axis.

U
Eignevectors describing each axis. These have already been scaled.

correction
The correction factor applied to correct for negative eignvalues.

Methods

classmethod summary()
Returns a pandas.DataFrame summarizing the variance explained by each principle coordinate axis.

classmethod biplot(coords=False, xax=1, yax=2, descriptors=None, descripNames=None, sp-
Col=’r’, siteCol=’k’, spSize=12, siteSize=12)

Produces a biplot of the given PCoA axes.

coords: [True | False] If True, returns a dictionary of the plotted axes, where ‘Objects’ gives the coordi-
nates of objects and ‘Descriptors’ gives the coordinates of the descriptors, if any.

xax: integer Specifies PCoA axis to plot on the x-axis.

yax: integer Specifies PCoA axis to plot on the y-axis.

descriptors: numpy.ndarray or pandas.DataFrame An n x m matrix of descriptors to plot on the bi-
plot. These can be the original descriptors used to calculate distances among objects or an entirely
new set. Descriptors must be quantitative. It will work for binary descriptors, but may be meaningless.

Given a new matrix Y of descriptors, the matrix is standardized by columns to produce a new matrix
Yscl. The given principle coordinate axes denoted by xax and yax are placed into an n x 2 matrix

2.1. Documentation 21

ecopy Documentation, Release 0.1.2.2

V, which is also standardized by column. The covariance between the new descriptors and principle
coordinates is given by

S =
1

𝑛− 1
Y′

sclV

The covariance S is then scaled by the eigenvalues corresponding to the given eigenvectors:

Yproj =
√
𝑛− 1SΛ−0.5

Matrix Yproj contains the coordinates of each descriptor and is what is returned as ‘Descriptors’ if
coords=True.

descripNames: list A list containing the names of each descriptor. If None, inherits from the column
names of the pandas.DataFrame or assigned integer values.

spCol: string Color of species text.

siteCol: string Color of site text.

spSize: integer Size of species text.

siteSize: integer Size of site text.

classmethod shepard(xax=1, yax=2)
Plots a Shepard diagram of Euclidean distances among objects in reduced space vs. original distance
calculations. xax and yax as above.

Examples

Run PCoA on the ‘BCI’ data:

import ecopy as ep

BCI = ep.load_data('BCI')
brayD = ep.distance(BCI, method='bray', transform='sqrt')
pc1 = ep.pcoa(brayD)
print(pc1.summary()[['PCoA Axis 1', 'PCoA Axis 2']])

PCoA Axis 1 PCoA Axis 2
Std. Dev 1.094943 0.962549
Prop. 0.107487 0.083065
Cum. Prop. 0.107487 0.190552

pc1.biplot()

Attempting to show species on the above biplot results in a messy graph. To better illustrate its use, run PCoA
on the USArrests data:

USA = ep.load_data('USArrests')
USA.set_index('State', inplace=True)
standardize columns first
USA = USA.apply(lambda x: (x - x.mean())/x.std(), axis=0)
eucD = ep.distance(USA, 'euclidean')

pc2 = ep.pcoa(eucD, siteNames=USA.index.values)
pc2.biplot(descriptors=USA)

class MDS(distmat, siteNames=None, naxes=2, transform=’monotone’, ntry=20, tolerance=1E-4, max-
iter=3000, init=None)

Takes a square-symmetric distance matrix with no negative values as input. After finding the solution that

22 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

2.1. Documentation 23

ecopy Documentation, Release 0.1.2.2

provide the lowest stress, ecopy.MDS scales the fitted distances to have a maximum equal to the maximum
observed distance. Afterwards, it uses PCA to rotate the object (site) scores so that variance is maximized along
the x-axis. Returns an object of class MDS.

Parameters

distmat: np.ndarray or pandas.DataFrame A square-symmetric distance matrix.

siteNames: list A list of names for each object. If none, takes on integer values or the index of the pan-
das.DataFrame.

naxes: integer Number of ordination axes.

transform: [’absolute’ | ‘ratio’ | ‘linear’ | ‘monotone’] Which transformation should be used during scaling.

absolute: Conducts absolute MDS. Distances between points in ordination space should be as close as
possible to observed distances.

ratio: Ordination distances are proportional to observed distances.

linear: Ordination distances are a linear function of observed distances. Uses the technique of Heiser
(1991) to avoid negative ordination distances.

monotone: Constrains ordination distances simply to be ranked the same as observed distance. Typically
referred to as non-metric multidimensional scaling. Uses isotonic regression developed by Nelle Varo-
quaux and Andrew Tulloch from scikit-learn.

ntry: integer Number of random starts used to avoid local minima. The returned solution is the one with the
lowest final stress.

tolerance: float Minimum step size causing a break in the minimization of stress. Default = 1E-4.

maxiter: integer Maximum number of iterations to attempt before breaking if no solution is found.

init: numpy.ndarray Initial positions for the first random start. If none, the initial position of the first try is
taken as the site locations from classical scaling, Principle Coordinates Analysis.

Attributes

scores
Final scores for each object along the ordination axes.

stress
Final stress.

obs
The observed distance matrix.

transform
Which transformation was used.

Methods

classmethod biplot(coords=False, xax=1, yax=2, siteNames=True, descriptors=None, descrip-
Names=None, spCol=’r’, siteCol=’k’, spSize=12, siteSize=12)

Produces a biplot of the given MDS axes.

coords: [True | False] If True, returns a dictionary of the plotted axes, where ‘Objects’ gives the coordi-
nates of objects and ‘Descriptors’ gives the coordinates of the descriptors, if any.

xax: integer Specifies MDS axis to plot on the x-axis.

yax: integer Specifies MDS axis to plot on the y-axis.

24 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

descriptors: numpy.ndarray or pandas.DataFrame A matrix of the original descriptors used to create
the distance matrix. Descriptors (i.e. species) scores are calculated as the weighted average of site
scores.

descripNames: list A list containing the names of each descriptor. If None, inherits from the column
names of the pandas.DataFrame or assigned integer values.

spCol: string Color of species text.

siteCol: string Color of site text.

spSize: integer Size of species text.

siteSize: integer Size of site text.

classmethod shepard(xax=1, yax=2)
Plots a Shepard diagram of Euclidean distances among objects in reduced space vs. original distance
calculations. xax and yax as above.

classmethod correlations()
Returns a pandas.Series of correlations between observed and fitted distances for each site.

classmethod correlationPlots(site=None)
Produces a plot of observed vs. fitted distances for a given site. If site=None, then all sites are plotted on
a single graph.

Examples

Conduct nMDS on the ‘dune’ data:

import ecopy as ep
dunes = ep.load_data('dune')
dunes_T = ep.transform(dunes, 'wisconsin')
dunes_D = ep.distance(dunes_T, 'bray')
dunesMDS = ep.MDS(dunes_D, transform='monotone')

Plot the Shepard diagram:

dunesMDS.shepard()

Check the correlations for observed vs. fitted distances:

dunesMDS.correlationPlots()

Make a biplot, showing species locations:

dunesMDS.biplot(descriptors=dunes_T)

class hillsmith(mat, wt_r=None, ndim=2)
Takes an input matrix and performs ordination described by Hill and Smith (1976). Returns an object of class
hillsmith, with several methods and attributes. NOTE: This will NOT work when rows < columns or with
missing values.

Parameters

mat: pandas.DataFrame A matrix for ordination, where objects are rows and descriptors/variables as
columns. Can have mixed data types (both quantitative and qualitative). If all columns are quantitative,
this method is equivalent to PCA. If all columns are qualitative, this method is equivalent to MCA. Should
not be used with ordered factors. In order to account for factors, this method creates dummy variables for
each factor and then assigns weights to each dummy column based on the number of observations in each
column.

2.1. Documentation 25

ecopy Documentation, Release 0.1.2.2

26 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

wt_r: list or numpy.ndarray Optional vector of row weights.

ndim: int Number of axes and components to save.

Attributes

evals
Eigenvalues in order of largest to smallest.

pr_axes
The principle axes of each column.

row_coords
Row coordinates along each principle axis.

pr_components
The principle components of each row.

column_coords
Column coordinates along each principle component.

Methods

classmethod summary()
Returns a data frame containing information about the principle axes.

classmethod biplot(invert=False, xax=1, yax=2, obsNames=True)
Create a biplot using a specified transformation.

invert: [True|Fasle] If False (default), plots the row coordinates as points and the principle axes of each
column as arrows. If True, plots the column coordinates as points and the principle components of
each row as arrows.

2.1. Documentation 27

ecopy Documentation, Release 0.1.2.2

xax: integer Specifies which PC axis to plot on the x-axis.

yax: integer Specifies which PC axis to plot on the y-axis.

obsNames: [True | False] Denotes whether to plot a scatterplot of points (False) or to actually show the
names of the observations, as taken from the DataFrame index (True).

Examples

Hill and Smith analysis of the dune_env data:

import ecopy as ep
dune_env = ep.load_data('dune_env')
dune_env = dune_env[['A1', 'Moisture', 'Manure', 'Use', 'Management']]
print(ep.hillsmith(dune_env).summary().iloc[:,:2])

Axis 1 Axis 2
Std. Dev 1.594392 1.363009
Prop Var 0.317761 0.232224
Cum Var 0.317761 0.549985

ep.hillsmith(dune_env).biplot(obsNames=False, invert=False)

ord_plot(x, groups, y=None, colors=None, type=’Hull’, label=True, showPoints=True, xlab=’Axis 1’,
ylab=’Axis 2’)

Delineates different groups in ordination (or regular) space.

Parameters

x: numpy.ndarray, pandas.DataFrame, pandas.Series (required) Coordinates to be plotted. Can be either a
one or two column matrix. If only one column, then y must be specified.

28 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

groups: list, pandas.DataFrame, pandas.Series (required) Factor denoting group identification

y: numpy.ndarray, pandas.DataFrame, pandas.Series y coordinates to be plotted. Can only have one col-
umn, and must be specified is x is only one column.

colors: string, list, pandas.Series, pandas.DataFrame Gives custom colors for each group. Otherwise de-
fault colors are used.

type: [’Hull’ | ‘Line’] ‘Hull’ produces a convex hull, whereas ‘Line’ produces lines connected to the centroid
for each point.

label: [True | False] Whether or not a label should be shown at the center of each group.

showPoints: [True | False] Whether or not the points should be shown.

xlab: string Label for the x-axis.

ylab: string Label for the y-axis.

Example

Generate fake data simulating ordination results:

import numpy as np
import ecopy as ep
import matplotlib.pyplot as plt

nObs = 10
X = np.random.normal(0, 1, 10*2)
Y = np.random.normal(0, 1, 10*2)
GroupID = ['A']*nObs + ['B']*nObs

Z = np.vstack((X, Y)).T

Make a convex hull plot where groups are red and blue:

ep.ord_plot(x=Z, groups=GroupID, colors=['r', 'b'])

Make a line plot with coordinates in different matrices. Remove the points and the labels:

ep.ord_plot(x=X, y=Y, groups=GroupID, type='Line', xlab='PC1', ylab='PC2',
→˓showPoints=False, label=False)

Matrix Comparisons

Ecopy contains several methods for comparing matrices. Some of these are similar to ordination, while others are
more traditional null hypothesis testing.

• Mantel (Mantel test)

• anosim (Analysis of similarity)

• simper() (Percentage similarity calculations)

• procrustes_test (Procrustes test of matrix correlations)

• corner4 (Fourth corner analysis)

• rlq (RLQ analysis)

• rda (RDA analysis)

• cca (CCA analysis)

2.1. Documentation 29

ecopy Documentation, Release 0.1.2.2

30 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

• ccor (CCor analysis)

class Mantel(d1, d2, d_condition=None, test=’pearson’, tail=’both’, nperm=999)
Takes two distance matrices for a Mantel test. Returns object of class Mantel. Calculates the cross-product
between lower triangle matrices, using either standardized variables or standardized ranks. The test statistics is
the cross-product is divided by

𝑛(𝑛− 1)

2
− 1

where n is the number of objects.

If d_condition is provided, then Mantel conducts a partial Mantel test holding d_condition constant (Legendre
and Legendre 2012). Permutations are conducted using the residual matrix as described by Legendre (2000).

Parameters

d1: numpy.ndarray or pandas.DataFrame First distance matrix.

d2: numpy.nadarray or pandas.DataFrame Second distance matrix.

test: [’pearson’ | ‘spearman’] ‘pearson’ performs Mantel test on standardized variables.

‘spearman’ performs Mantel test on standardized ranks.

tail: [’both’ | ‘greater’ | ‘lower’] ‘greater’ tests the one-tailed hypothesis that correlation is greater than pre-
dicted.

‘lower’ tests hypothsis that correlation is lower than predicted.

‘both’ is a two-tailed test.

nperm: int Number of permutations for the test.

Attributes

r_obs
Observed correlation statistic.

pval
p-value for the given hypothesis.

tail
The tested hypothesis.

test
Which of the statistics used, ‘pearson’ or ‘spearman’.

perm
Number of permutations.

Methods

classmethod summary()
Prints a summary output table.

Examples

Load the data:

import ecopy as ep
v1 = ep.load_data('varespec')
v2 = ep.load_data('varechem')

Standardize the chemistry variables and calculate distance matrices:

2.1. Documentation 31

ecopy Documentation, Release 0.1.2.2

v2 = v2.apply(lambda x: (x - x.mean())/x.std(), axis=0)
dist1 = ep.distance(v1, 'bray')
dist2 = ep.distance(v2, 'euclidean')

Conduct the Mantel test:

mant = ep.Mantel(dist1, dist2)
print(mant.summary())

Pearson Mantel Test
Hypothesis = both

Observed r = 0.305 p = 0.004
999 permutations

class anosim(dist, factor1, factor2=None, nested=False, nperm=999)
Conducts analysis of similarity (ANOSIM) on a distance matrix given one or two factors (groups). Returns
object of anosim. Calculates the observed R-statistic as

𝑅 =
𝑟𝑏 − 𝑟𝑤
𝑛(𝑛−1)

4

where 𝑟𝑤 is the average within-group ranked distances, 𝑟𝑏 is the average between-group ranked distances, and n
is the number of objects (rows) in the distance matrix. The factor is then randomly permuted and R recalculated
to generate a null distribution.

Parameters

dist: numpy.ndarray or pandas.DataFrame Square-symmetric distance matrix.

factor1: numpy.nadarray or pandas.Series or pandas.DataFrame First factor.

factor2: numpy.nadarray or pandas.Series or pandas.DataFrame Second factor.

nested: [True | False] Whether factor1 is nested within factor2. If False, then factor1 and factor2 are permuted
independently. If Tue, then factor1 is permuted only within groupings of factor2.

nperm: int Number of permutations for the test.

Attributes

r_perm1
Permuted R-statistics for factor1.

r_perm2
Permuted R-statistics for factor1.

R_obs1
Observed R-statistic for factor1.

R_obs2
Observed R-statistic for factor2.

pval
List of p-values for factor1 and factor2.

perm
Number of permutations.

Methods

classmethod summary()
Prints a summary output table.

32 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

classmethod plot()
Plots a histogram of R values.

Examples

Load the data:

import ecopy as ep
data1 = ep.load_data('dune')
data2 = com.load_data('dune_env')

Calculate Bray-Curtis dissimilarity on the ‘dune’ data, save the ‘Management’ factor as factor1 and generate
factor2:

duneDist = ep.distance(data1, 'bray')
group1 = data2['Management']
group2map = {'SF': 'A', 'BF': 'A', 'HF': 'B', 'NM': 'B'}
group2 = group1.map(group2map)

Conduct the ANOSIM:

t1 = ep.anosim(duneDist, group1, group2, nested=True, nperm=9999)
print(t1.summary())

ANOSIM: Factor 1
Observed R = 0.299
p-value = 0.0217
9999 permutations

ANOSIM: Factor 2
Observed R = 0.25
p-value = 0.497
9999 permutations

t1.plot()

simper(data, factor, spNames=None)
Conducts a SIMPER (percentage similarity) analysis for a site x species matrix given a grouping factor. Returns
a pandas.DataFrame containing all output for each group comparison. Percent similarity for each species is
calculated as the mean Bray-Curtis dissimilarity of each species, given by:

∆𝑖 =
|𝑦𝑖𝑘 − 𝑦𝑖𝑗 |∑︀𝑛
𝑖 (𝑦𝑖𝑘 + 𝑦𝑖𝑗)

The denominator is the total number of individuals in both sites, 𝑦𝑖𝑘 is the number of individuals of species i
in site k, and 𝑦𝑖𝑗 is the number of individuals in site j. This is performed for every pairwise combination of
sites across two groups and then averaged to yield the mean percentage similarity of the species. This function
also calculates the standard deviation of the percentage similarity, the signal to noise ratio (mean / sd) such that
a higher ratio indicates more consistent difference, the percentage contribution of each species to the overall
difference, and the cumulative percentage difference.

The output is a multi-indexed DataFrame, with the first index providing the comparison and the second index
providing the species. The function lists the index comparison names as it progresses for reference.

Parameters

data: numpy.ndarray or pandas.DataFrame A site x species matrix.

factor: numpy.nadarray or pandas.Series or pandas.DataFrame or list Grouping factor.

2.1. Documentation 33

ecopy Documentation, Release 0.1.2.2

spNames: list List of species names. If data is a pandas.DataFrame, then spNames is inferred as the column
names. If data is a np.ndarray, then spNames is given integer values unless this argument is provided.

Examples

Conduct SIMPER on the ANOSIM data from above:

import ecopy as ep

data1 = ep.load_data('dune')
data2 = com.load_data('dune_env')
group1 = data2['Management']
fd = ep.simper(np.array(data1), group1, spNames=data1.columns)

Comparison indices:
BF-HF
BF-NM
BF-SF
HF-NM
HF-SF
NM-SF

print(fd.ix['BF-NM'])

sp_mean sp_sd ratio sp_pct cumulative
Lolipere 9.07 2.64 3.44 12.43 12.43
Poatriv 5.47 4.46 1.23 7.50 19.93
Poaprat 5.25 1.81 2.90 7.19 27.12
Trifrepe 5.13 2.76 1.86 7.03 34.15

34 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

Bromhord 3.97 2.92 1.36 5.44 39.59
Bracruta 3.57 2.87 1.24 4.89 44.48
Eleopalu 3.38 3.57 0.95 4.63 49.11
Agrostol 3.34 3.47 0.96 4.58 53.69
Achimill 3.32 2.34 1.42 4.55 58.24
Scorautu 3.14 2.03 1.55 4.30 62.54
Anthodor 2.81 3.29 0.85 3.85 66.39
Planlanc 2.73 2.19 1.25 3.74 70.13
Salirepe 2.68 2.93 0.91 3.67 73.80
Bellpere 2.35 1.91 1.23 3.22 77.02
Hyporadi 2.17 2.45 0.89 2.97 79.99
Ranuflam 2.03 2.28 0.89 2.78 82.77
Elymrepe 2.00 2.93 0.68 2.74 85.51
Callcusp 1.78 2.68 0.66 2.44 87.95
Juncarti 1.77 2.60 0.68 2.43 90.38
Vicilath 1.58 1.45 1.09 2.17 92.55
Sagiproc 1.54 1.86 0.83 2.11 94.66
Airaprae 1.34 1.97 0.68 1.84 96.50
Comapalu 1.07 1.57 0.68 1.47 97.97
Alopgeni 1.00 1.46 0.68 1.37 99.34
Empenigr 0.48 1.11 0.43 0.66 100.00
Rumeacet 0.00 0.00 NaN 0.00 100.00
Cirsarve 0.00 0.00 NaN 0.00 100.00
Chenalbu 0.00 0.00 NaN 0.00 100.00
Trifprat 0.00 0.00 NaN 0.00 100.00
Juncbufo 0.00 0.00 NaN 0.00 100.00

class procrustes_test(mat1, mat2, nperm=999)
Conducts a procrustes test of matrix associations on two raw object x descriptor matrices. Returns an object
of class procrustes_test. First, both matrices are column-centered. Then, each matrix is divided by the
square root of its sum-of-squares. The test statistic 𝑚2

12 is calculated as:

𝑚2
12 = 1 − (𝑇𝑟𝑎𝑐𝑒W)2

W is the diagonal matrix of eigenvalues for X′Y, which are the two transformed matrices. Then, rows of X are
randomly permuted and the test statistic recalculated. The p-value is the the proportion of random test statistics
less than the observed statistic.

Parameters

mat1: numpy.ndarray or pandas.DataFrame A raw object x descriptor (site x species) matrix.

factor1: numpy.nadarray or pandas.DataFrame A raw object x descriptor (site x descriptor) matrix.

nperm: int Number of permutations in the test.

Attributes

m12_obs
Observed 𝑚2

12 statistic.

pval
p-value.

perm
Number of permutations.

Methods

classmethod summary()
Prints a summary output table.

2.1. Documentation 35

ecopy Documentation, Release 0.1.2.2

Examples

Load the data and run the Mantel test:

import ecopy as ep

d1 = ep.load_data('varespec')
d2 = ep.load_data('varechem')
d = ep.procrustes_test(d1, d2)
print(d.summary())

m12 squared = 0.744
p = 0.00701

class corner4(mat1, mat2, nperm=999, model=1, test=’both’, p_adjustment=None)
Conducts fourth corner analysis examining associations between species traits and environmental variables.
Species traits are given in a species x trait matrix Q, species abundances given in a site x species matrix L, and
environmental traits given in a site x environment matrix R. The general concept of fourth corner analysis is to
find matrix D: [︂

L R
Q′ D

]︂
In a simple case, R and Q contain one environmental variable and one species trait. An expanded correspondance
matrix is created following Dray and Legendre (2008). The association between R and Q is the calculated as
follows:

•If both variables are quantitative, then association is described by Pearson’s correlation coefficient r

•If both variables are qualitative, then association is described by 𝜒2 from a contingency table (see Dray
and Legendre 2008, Legendre and Legendre 2011)

•If one variable is quantitative but the other is qualitative, then association is described using the F-statistic.

Significance of the statistics is determined using one of four permutation models (see below).

If R and Q contain more than one variable or trait, then the test iterates through all possible environment-trait
combinations. The method automatically determines the appropriates statistics, depending on the data types
(float=quantitative or object=qualitative). NOTE: As of now, this is quite slow if the number of traits and/or
environmental variables is large.

Parameters

R: pandas.DataFrame A site x variable matrix containing environmental variables for each site. pandas.Series
NOT allowed.

L: numpy.nadarray or pandas.DataFrame A site x species matrix of either presence/absence or abundance.
Only integer values allowed.

Q: pandas.DataFrame A species x trait matrix containing trait measurements for each species. pandas.Series
NOT allowed.

nperm: int Number of permutations in the test.

model: [1 | 2 | 3 | 4] Which model should be used for permutations.

1: Permutes within columns of L only (that is, shuffles species among sites).

2: Permutes entire rows of L (that is, shuffles entire species assemblages).

3: Permutes within rows of L (that is, shuffles the distribution of individuals within a site).

4: Permutes entire columns of L (that is, shuffles a species’ distribution among traits, while site distribu-
tions are kept constant).

36 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

test: [’both’ | ‘greater’ | ‘lower’] Which tail of the permutation distribution should be tested against the ob-
served statistic.

p_adjustment: [None, ‘bonferroni’, ‘holm’, ‘fdr’]: Which adjustment should be used for multiple compar-
isons. ‘bonferroni’ uses Bonferronni correction, ‘holm’ uses the Bonferroni-Holm correction, and ‘fdr’
uses the False Discovery Rate correction.

Methods

classmethod summary()
Returns a pandas.DataFrame of output.

Examples

Run fourth corner analysis on the aviurba data from R’s ade4 package:

import ecopy as ep

traits = ep.load_data('avi_traits')
env = ep.load_data('avi_env')
sp = ep.load_data('avi_sp')

fourcorn = ep.corner4(env, sp, traits, nperm=99, p_adjustment='fdr')
results = fourcorn.summary()

print(results[['Comparison','adjusted p-value']])
Comparison adjusted p-value

0 farms - feed.hab 1.000
1 farms - feed.strat 1.000
2 farms - breeding 1.000
3 farms - migratory 1.000
4 small.bui - feed.hab 0.322
5 small.bui - feed.strat 0.580
6 small.bui - breeding 1.000
7 small.bui - migratory 0.909
8 high.bui - feed.hab 0.111
...
41 veg.cover - feed.strat 1.000
42 veg.cover - breeding 0.033
43 veg.cover - migratory 1.000

class rlq(R, L, Q, ndim=2)
Conducts RLQ analysis which examines associations between matrices R (site x environment) and Q (species
x traits) as mediated by matrix L (site by species). In general, a matrix D is constructed by:

D = R′DrowLDcolQ

where Drow and Dcol are diagonal matrices of row and column weights derived from matrix L. L is first
transformed by dividing the matrix by the total number of individuals in the matrix. Column and row weights
are given by the sum of columns and rows of the transformed matrix. Matrix L is then transformed by diving
each column by the corresponding column weight, dividing each row by the corresponding row weight, and
subtracting 1 from all elements. This transformed L matrix is used in the above equation to generate matrix D.

NOTE: Both R and Q can contain a mix of factor and quantitative variables. A dummy dataframe is constructed
for both R and Q as in the Hill and Smith ordination procedure.

Matrix D is then subject to eigen decomposition, giving site (environment) and species (trait) scores, as well as
loading vectors for both environmental and trait variables.

2.1. Documentation 37

ecopy Documentation, Release 0.1.2.2

Parameters

R: pandas.DataFrame A site x environment matrix for ordination, where objects are rows and descrip-
tors/variables as columns. Can have mixed data types (both quantitative and qualitative). In order to
account for factors, this method creates dummy variables for each factor and then assigns weights to each
dummy column based on the number of observations in each column.

L: pandas.DataFrame A site x species for ordination, where objects are rows and descriptors/variables as
columns.

Q: pandas.DataFrame A species x trait matrix for ordination, where objects are rows and descriptors/variables
as columns. Can have mixed data types (both quantitative and qualitative). In order to account for factors,
this method creates dummy variables for each factor and then assigns weights to each dummy column
based on the number of observations in each column.

ndim: int Number of axes and components to save.

Attributes

traitVecs
A pandas.DataFrame of trait loadings.

envVecs
A pandas.DataFrame of environmental loadings.

normedTraits
Species coordinates along each axis.

normedEnv
Site coordinates along each axis.

evals
Eigenvalues for all axes (not just saved ones).

Methods

classmethod summary()
Returns a data frame containing information about the principle axes.

classmethod biplot(xax=1, yax=2)
Create a biplot. The plot contains four subplots, one each for species scores, site scores, trait vectors, and
environment vectors. Species scores are plotted from normedTraits, site scores are plotted from norme-
dEnv, trait vectors are plotted from traitVecs, and environmental vectors are plotted from envVecs. Users
can mix and match which vectors to overlay with which points manually using these four attributes.

xax: integer Specifies which PC axis to plot on the x-axis,

yax: integer Specifies which PC axis to plot on the y-axis.

Examples

RLQ analysis of the aviurba data:

vi_sp = ep.load_data('avi_sp')
avi_env = ep.load_data('avi_env')
avi_traits = ep.load_data('avi_traits')

rlq_test = ep.rlq(avi_env, avi_sp, avi_traits, ndim=2)
print(rlq_test.summary().iloc[:,:3])

Axis 1 Axis 2 Axis 3
Std. Dev 0.691580 0.376631 0.272509
Prop Var 0.657131 0.194894 0.102031

38 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

Cum Var 0.657131 0.852026 0.954056

rlq_test.biplot()

class rda(Y, X, scale_y=True, scale_x=False, design_x=False, varNames_y=None, varNames_x=None, row-
Names=None, pTypes=None)

Conducts RDA analysis which examines the relationship between sites (rows) based on their species compo-
sitions (columns). This information is contained in matrix Y. However, the relationships between sites are
constrained by environmental predictors contained in matrix X.

RDA performs a multivariate regression of Y against X, yielding linear predictors B:

B = (X′X)−1X′Y

These linear predictors are used to generated predicted values for each species at each site:

Ŷ = XB

The variance-covariance matrix of Ŷ is then subject to eigen-analysis, yielding eigenvalues L and eigenvectors
U of the predicted species values. Three new matrices are calculated:

F = YUZ = ŶUC = BU

2.1. Documentation 39

ecopy Documentation, Release 0.1.2.2

Species scores are given by UL−0.5. Site scores are given by FL−0.5. The scores of each predictor are given in
matrix C.

The residuals from the regression are then subject to PCA to ordinate the remaining, unconstrained variance.

Parameters

Y: pandas.DataFrame or numpy.ndarray A site x species for ordination, where objects are rows and descrip-
tors/variables as columns.

X: pandas.DataFrame or numpy.ndarray A site x environment matrix for ordination, where objects are rows
and descriptors/variables as columns. Only the pandas.DataFrame can have mixed data types (both quanti-
tative and qualitative). In order to account for factors, this method creates dummy variables for each factor
and then assigns weights to each dummy column based on the number of observations in each column.

scale_x: [True | False] Whether or not the matrix Y should be standardized by columns.

scale_y: [True | False] Whether or not the matrix X should be standardized by columns.

design_x: [True | False] Whether or not X has already been transformed to a design matrix. This enables the
user to formulate more complicated regressions that include interactions or higher order variables.

varNames_y: list A list of variables names for each column of Y. If None, then the column names of Y are
used.

varNames_x: list A list of variables names for each column of X. If None, then the column names of X are
used.

rowNames: list A list of site names for each row. If none, then the index values of Y are used.

pTypes: list A list denoting whether variables in X are quantitative (‘q’) or factors (‘f’). Can usually be ignored.

Attributes

spScores
A pandas.DataFrame of species scores on each RDA axis.

linSites
A pandas.DataFrame of linearly constrained site scores.

siteScores
A pandas.DataFrame of site scores on each RDA axis.

predScores
A pandas.DataFrame of predictor scores on each RDA axis.

RDA_evals
Eigenvalues for each RDA axis.

corr
Correlation of each predictor with each RDA axis.

resid_evals
Eigenvalues for residual variance.

resid_spScores
A pandas.DataFrame of species scores on PCA of residual variance.

resid_siteScores
A pandas.DataFrame of site scores on PCA of residual variance.

imp
Summary of importance of each RDA and PCA axis.

Methods

40 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

classmethod summary()
Returns a data frame containing summary information.

classmethod anova(nperm=999)
Conducts a permutational test of global significance. The F-statistic is the ratio of contrained variance
to unconstrained variance, where each is divided by their respective degrees of freedom. The original
Y matrix is permuted by row and a distribution of F-statistics is built. The p-value is the proportion of
permuted F-statistics that is greater than the observed.

classmethod triplot(xax=1, yax=2)
Creates a triplot of species scores, site scores, and predictor variable loadings. If predictors are factors,
they are represented by points. Quantitative predictors are represented by arrows.

xax: integer Specifies which RDA axis to plot on the x-axis.

yax: integer Specifies which RDA axis to plot on the y-axis.

Examples

RDA on dune data:

import ecopy as ep

dune = ep.load_data('dune')
dune_env = ep.load_data('dune_env')

RDA = ep.rda(dune, dune_env[['A1', 'Management']])
RDA.triplot()

class cca(Y, X, varNames_y=None, varNames_x=None, rowNames=None, scaling=1)
Conducts CCA analysis which examines the relationship between sites (rows) based on their species compo-

2.1. Documentation 41

ecopy Documentation, Release 0.1.2.2

sitions (columns). This information is contained in matrix Y. However, the relationships between sites are
constrained by environmental predictors contained in matrix X.

CCA first transforms the species matrix Y into matrix Q̄ as in correspondance analysis. The predictor matrix X
is then standardized using the row weights from matrix Y to calculate the mean and standard deviation of each
column, resulting in a new matrix X𝑠𝑐𝑎𝑙𝑒. This matrix, along with a diagonal matrix of row weghts D is used in
a multivariate regression of Q̄ against X𝑠𝑐𝑎𝑙𝑒, yielding linear predictors B:

B = (X′
𝑠𝑐𝑎𝑙𝑒DX𝑠𝑐𝑎𝑙𝑒)

−1X′
𝑠𝑐𝑎𝑙𝑒D

0.5Y

These linear predictors are used to generated predicted values for each species at each site:

Ŷ = D0.5XscaleB

The cross-product matrix of Ŷ is then subject to eigen-analysis, yielding eigenvalues L and eigenvectors U of
the predicted species values. Five new matrices are calculated using diagonal matrices of row D𝑟 and column
D𝑐 weights:

Û = Q̄UL−0.5V = D−0.5
c UV̂ = D−0.5

r ÛF = V̂L0.5F̂ = VL0.5

In scaling type 1, species scores are given by V and site scores are given by F. Fitted site scores are given by
DrŶU. To calculate the predictor scores, the fitted site scores are standardized using row weights as was done
for X𝑠𝑐𝑎𝑙𝑒, yielding Z𝑠𝑐𝑎𝑙𝑒. Predictor variable scores are then calculated as X′

𝑠𝑐𝑎𝑙𝑒DrZ𝑠𝑐𝑎𝑙𝑒L
0.5.

In scaling type 2, species scores are given by F̂ and site scores are given by V̂. Fitted site scores are given by
DrŶUL−0.5. To calculate the predictor scores, the fitted site scores are standardized using row weights as was
done for X𝑠𝑐𝑎𝑙𝑒, yielding Z𝑠𝑐𝑎𝑙𝑒. Predictor variable scores are then calculated as X′

𝑠𝑐𝑎𝑙𝑒DrZ𝑠𝑐𝑎𝑙𝑒.

Residuals from the constrained ordination are available in order to subject them to CA.

Parameters

Y: pandas.DataFrame or numpy.ndarray A pandas.DataFrame or numpy.ndarray containing species abun-
dance data (site x species).

X: pandas.DataFrame or numpy.ndarray A pandas.DataFrame or numpy.ndarray containing predictor vari-
ables for constrained ordination (site x variable).

varNames_y: list A list of variables names for each column of Y. If None, then the column names of Y are
used.

varNames_x: list A list of variables names for each column of X. If None, then the column names of X are
used.

rowNames: list A list of site names for each row. If none, then the index values of Y are used.

scaling: [1 | 2] Which scaling should be used. See above.

Attributes

r_w
Row weights.

c_w
Column weights.

evals
Constrained eigenvalues.

42 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

U
Constrained eigenvectors.

resid
A pandas.DataFrame of residuals from the constrained ordination.

spScores
A pandas.DataFrame of species scores.

siteScores
A pandas.DataFrame of site scores.

siteFitted
A pandas.DataFrame of constrained site scores.

varScores
A pandas.DataFrame variable scores.

res_evals
Residual eigenvalues

res_evecs
Residual eigenvectors

Methods

classmethod summary()
Returns summary information of each CA axis.

classmethod anova(nperm=999)
Conducts a permutational test of global CCA significance. The observed F-statistic is the ratio of con-
strained to unconstrained variance, each divided by their respective degrees of freedom. The original Y
matrix is permuted by rows, CCA recomputed and a new F-statistic calculated for each permutation. The
p-value is the proportion of permuted F values that are greater than the observed value.

classmethod triplot(xax=1, yax=2)
Creates a triplot of species scores, site scores, and predictor variable loadings.

xax: integer Specifies which CA axis to plot on the x-axis.

yax: integer Specifies which Ca axis to plot on the y-axis.

Examples

CCA on varespec data:

import ecopy as ep

varespec = ep.load_data('varespec')
varechem = ep.load_data('varechem')

cca_fit = ep.cca(varespec, varechem)
CCA.triplot()

class ccor(self, Y1, Y2, varNames_1=None, varNames_2=None, stand_1=False, stand_2=False, site-
Names=None)

Conducts canonical correlation analysis (CCor) which examines the relationship between matrices Y1 and Y2.
CCor first calculates the variance and covariance matrices for both Y1 and Y2, where S11 is the variance-
covariance matrix of Y1, S22 is the variance-covariance matrix of Y2, and S12 is the covariance matrix of Y1
and Y2.

A new matrix K is calculated as

2.1. Documentation 43

ecopy Documentation, Release 0.1.2.2

K = S𝑐
11S12S

𝑐
22

where S𝑐
11 is the Cholesky decomposition of S11 and same for S𝑐

22.

CCor then uses SVD to calculate matrices V, W, and U, where V contains the left-hand eigenvectors, W contains
the singular values, and U contains the right-hand eigenvectors. New matrices C1 and C2 are derived by Y1V
and Y2U, respectively. Scores for matrices Y1 are then

Scores1 = Y1C1

and the same for Y2. Variable loadings are the correlation between the original matrix and the scores.

Parameters

Y1: pandas.DataFrame or numpy.ndarray

A pandas.DataFrame or numpy.ndarray containing one set of variables.

Y2: pandas.DataFrame or numpy.ndarray

A pandas.DataFrame or numpy.ndarray containing a second set of variables.

varNames_1: list

A list of variables names for each column of Y1. If None, then the column names of Y1 are used.

varNames_2: list

A list of variables names for each column of Y2. If None, then the column names of Y2 are used.

siteNames: list

44 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

A list of site names for each row. If none, then the index values of Y1 are used.

stand_1: [True | False]

Whether to standardize Y1.

stand_2: [True | False]

Whether to standardize Y2.

Attributes

Scores1
Site scores from matrix 1.

Scores2
Site scores from matrix 2.

loadings1
Variable loadings from matrix 1.

loadings2
Variable loadings from matrix 2.

evals
Eigenvalues.

Methods

classmethod summary()
Returns summary information of each CA axis.

classmethod biplot(matrix=1, xax=1, yax=2)
Creates a biplot of site scores and predictor variable loadings.

matrix: [1 | 2] Which matrix, Y1 or Y2 to plot.

xax: integer Specifies which CCor axis to plot on the x-axis.

yax: integer Specifies which CCor axis to plot on the y-axis.

Examples

CCor analysis of random data:

import ecopy as ep
import numpy as np

Y1 = np.random.normal(size=20*5).reshape(20, 5)
Y2 = np.random.normal(size=20*3).reshape(20, 3)

cc = ep.ccor(Y1, Y2)
cc.summary()

Constrained variance = 1.37
Constrained variance explained be each axis
['0.722', '0.464', '0.184']
Proportion constrained variance
['0.527', '0.338', '0.135']

cc.biplot()

2.1. Documentation 45

ecopy Documentation, Release 0.1.2.2

Regression

EcoPy provides a wrapper for scipy.optimize.leastsq. This wrapper allows users to specify a non-linear function and
receive parameter estimates, statistics, log-likelihoods, and AIC.

• nls

class nls(func, p0, xdata, ydata)
nls takes a function (func), initial parameter estimates (p0), predictor variables (xdata), and a response (ydata)
and passes these to scipy.optimize.leastsq. It returns an object of class nls.

Parameters

func: function A function that returns the quantity to be minimized. See documentation for
scipy.optimize.leastsq.

p0: dictionary A dictionary of initial parameter estimates for every parameter to be estimated in the function.

xdata: numpy.ndarray A numpy.ndarray of predictor variables. See example below for how to include multi-
ple predictors.

ydata: numpy.ndarray A numpy.ndarray of the response variable.

Attributes

cov
Variance-covariance matrix of parameters

inits
Initial parameter estimates

logLik
Log-likelihood of the function

46 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

nparm
Number of parameters estimated

parmEsts
Parameter estimates

parmSE
Standard error of each parameter

RMSE
Root mean square error

pvals
p-values of each parameter

tvals
t-values of each parameter

Methods

classmethod AIC(k=2)
Returns AIC for the given model. Argument k determines the correction applied to the number of param-
eters

classmethod summary()
Returns a regression summary table

Examples

First, load the urchin data:

import ecopy as ep
import numpy as np

urchins = ep.load_data('urchins')

Next, make the X and Y matrices:

Y = np.array(urchins['Respiration])*24
X = np.array(urchins[['UrchinMass', 'Temp']])

Define the least-squares function to be optimized:

def tempMod(params, X, Y):
a = params[0]
b = params[1]
c = params[2]
mass = X[:,0]
temp = X[:,1]
yHat = a*mass**b*temp**c
err = Y - yHat
return(err)

Create a dictionary of initial estimates for each parameter:

p0 = {'a':1, 'b':1, 'c': 1}

Run the model and check the summary tables:

tMod = ep.nls(tempMod, p0, X, Y)
tMod.summary()

2.1. Documentation 47

ecopy Documentation, Release 0.1.2.2

Non-linear least squares
Model: tempMod
Parameters:

Estimate Std. Error t-value P(>|t|)
a 0.0002 0.0002 0.8037 0.4302
c 0.3346 0.1485 2.2533 0.0345
b 1.5209 0.3448 4.4112 0.0002

Residual Standard Error: 0.0371
Df: 22

tMod.AIC()

AIC: -88.9664797962

References

Borg and Groenen (2005) Modern multidimensional scaling: theory and applications.

Clarke and Warwick (2001) Change in marine communities: an approach to statistical analysis and interpretation.
PRIMER-E.

Doledec et al. (1996) Matching species traits to environmental variables: a new three-table ordination method. Envi-
ronmental and Ecological Statistics 3:143-166.

Dray and Dufour (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical
Software 22.

Dray and Legendre (2008) Testing the species-traits-environment relationships: the fourth-corner problem revisited.
Ecology 89:3400-3412.

Heiser (1991) A generalized majoration method for least squares multidimensional scaling of pseudodistances that
may be negative. Psychometrika 56:7-27.

Hill (1974) Correspondance analysis: a neglected multivariate method. Journal of the Royal Statistical Society - C
23:340-354.

Hill and Smith (1976) Principle component analysis of taxonomic data with multi-state discrete characters. Taxon
25:349-255.

Jost (2007) Partitioning diversity into alpha and beta components. Ecology 88:2427-2439.

Legendre (2000) Comparison of permutation methods for the partial correlation and partial mantel tests. Journal of
Statistical Computation and Simulation 67:37-73

Legendre and Legendre (2012) Numerical Ecology. Third Edition.

Little and Rubin (2002) Statistical analysis with missing data. Second Edition.

Pedregosa et al. (2001) Scikit-learn: marching learning in Python. Journal of Machine Learning Research 12:2825-
2830.

ter Braak and Verdonschot (1995) Canonical correspondence analysis and related multivariate methods in ecology.
Aquatic Sciences 57/3:255-289.

van Buuren et al. (2006) Fully conditional specification in multivariate imputation. Journal of Statistical Computation
and Simulation 76:1049-1064.

van Vuuren (2012) Flexible imputation of missing data.

48 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

License

EcoPy is distributed under the MIT License

Contact

If you need help or want to contribute, you can contact me at lemoine.nathan@gmail.com.

Version History

0.1.3

• Fixed an bug causing a float error

• Fixed an bug caused by numpy not rounding Euclidean Distances of 0 to 0 (resulting in negative Euclidean
distances that cannot be square-rooted)

0.1.2

• More Python 3.x compatibility

• Typos in examples

0.1.1

• More Python 3.x compatibility

• Fixed the transform function to not alter the original data matrix

0.1.0

• Updated the diversity function

• div_partition function for calculating alpha, beta, and gamma diversity

• spatial_median function for calculation multivariate medians

• fixed a bug in MDS function that provided incorrect results when using monotone transformation

• beta_dispersion function for assessing homogeneity of variances of distance matrices

0.0.9

• Missing data imputation

• nls Python 3 compatibility

• Gower’s Euclidean distance for missing data

• ord_plot function for convex hull and line plots of ordination results

• Fully incorporated non-linear regression, including documentation

• Incorporated partial Mantel test in Mantel class

• Global tests of RDA significance

2.1. Documentation 49

mailto:lemoine.nathan@gmail.com

ecopy Documentation, Release 0.1.2.2

• Updated CCA to include correspondence analysis of residual (unconstrained) variance

• Global tests of CCA significance

0.0.8

• Updated PCA to use SVD instead of eigen decomposition

0.0.7

• CCor

• CCA

• RDA

• RLQ analysis

• Hill and Smith ordination

• weighted mean, variance, scaling

0.0.6

• procrustes test of matrix associations

• anosim class for analysis of similarity

• mantel class for Mantel tests

• corner4 class for fourth corner analysis

• load_data function for importing datasets

0.0.5

• poca class for princple coordinate analysis

• MDS class for multidimensional scaling (uses isotonic regression from scikit-learn)

• small changes and fixes to previous functions

0.0.4

• ca class for simple correspondance analysis

0.0.3

• diversity function for calculation species diversity

• rarefy function for rarefaction

50 Chapter 2. Installing EcoPy

ecopy Documentation, Release 0.1.2.2

0.0.2

• distance function for calculating distance matrices using a wide variety of coefficients and metrics

• transform function for transforming matrices

0.0.1

• nls class for non-linear regression

• pca class for principle components analysis

2.1. Documentation 51

ecopy Documentation, Release 0.1.2.2

52 Chapter 2. Installing EcoPy

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

53

ecopy Documentation, Release 0.1.2.2

54 Chapter 3. Indices and tables

Index

A
AIC() (nls class method), 47
anosim (built-in class), 32
anova() (cca class method), 43
anova() (rda class method), 41

B
beta_dispersion() (built-in function), 10
biplot() (ca class method), 18
biplot() (ccor class method), 45
biplot() (hillsmith class method), 27
biplot() (MDS class method), 24
biplot() (pca class method), 15
biplot() (pcoa class method), 21
biplot() (rlq class method), 38

C
c_w (cca attribute), 42
ca (built-in class), 16
cca (built-in class), 41
ccor (built-in class), 43
column_coords (hillsmith attribute), 27
corner4 (built-in class), 36
corr (rda attribute), 40
correction (pcoa attribute), 21
correlationPlots() (MDS class method), 25
correlations() (MDS class method), 25
cov (nls attribute), 46
cumDesc_Site (ca attribute), 18
cumDesc_Sp (ca attribute), 18

D
distance() (built-in function), 12
div_partition() (built-in function), 9
diversity() (built-in function), 8

E
envVecs (rlq attribute), 38
evals (cca attribute), 42

evals (ccor attribute), 45
evals (hillsmith attribute), 27
evals (pca attribute), 15
evals (pcoa attribute), 21
evals (rlq attribute), 38
evecs (pca attribute), 15

H
hillsmith (built-in class), 25

I
imp (rda attribute), 40
impute() (built-in function), 6
inits (nls attribute), 46

L
linSites (rda attribute), 40
loadings1 (ccor attribute), 45
loadings2 (ccor attribute), 45
logLik (nls attribute), 46

M
m12_obs (procrustes_test attribute), 35
Mantel (built-in class), 31
MDS (built-in class), 22

N
nls (built-in class), 46
normedEnv (rlq attribute), 38
normedTraits (rlq attribute), 38
nparm (nls attribute), 46

O
obs (MDS attribute), 24
ord_plot() (built-in function), 28

P
parmEsts (nls attribute), 47
parmSE (nls attribute), 47

55

ecopy Documentation, Release 0.1.2.2

pca (built-in class), 14
pcoa (built-in class), 19
perm (anosim attribute), 32
perm (Mantel attribute), 31
perm (procrustes_test attribute), 35
plot() (anosim class method), 33
pr_axes (hillsmith attribute), 27
pr_components (hillsmith attribute), 27
predScores (rda attribute), 40
procrustes_test (built-in class), 35
pval (anosim attribute), 32
pval (Mantel attribute), 31
pval (procrustes_test attribute), 35
pvals (nls attribute), 47

R
r_obs (Mantel attribute), 31
R_obs1 (anosim attribute), 32
R_obs2 (anosim attribute), 32
r_perm1 (anosim attribute), 32
r_perm2 (anosim attribute), 32
r_w (cca attribute), 42
rarefy() (built-in function), 9
rda (built-in class), 39
RDA_evals (rda attribute), 40
res_evals (cca attribute), 43
res_evecs (cca attribute), 43
resid (cca attribute), 43
resid_evals (rda attribute), 40
resid_siteScores (rda attribute), 40
resid_spScores (rda attribute), 40
rlq (built-in class), 37
RMSE (nls attribute), 47
row_coords (hillsmith attribute), 27

S
scores (MDS attribute), 24
scores (pca attribute), 15
Scores1 (ccor attribute), 45
Scores2 (ccor attribute), 45
shepard() (MDS class method), 25
shepard() (pcoa class method), 22
simper() (built-in function), 33
siteFitted (cca attribute), 43
siteScores (ca attribute), 18
siteScores (cca attribute), 43
siteScores (rda attribute), 40
spatial_median() (built-in function), 7
spScores (ca attribute), 18
spScores (cca attribute), 43
spScores (rda attribute), 40
stress (MDS attribute), 24
summary() (anosim class method), 32
summary() (ca class method), 18

summary() (cca class method), 43
summary() (ccor class method), 45
summary() (corner4 class method), 37
summary() (hillsmith class method), 27
summary() (Mantel class method), 31
summary() (nls class method), 47
summary() (pcoa class method), 21
summary() (procrustes_test class method), 35
summary() (rda class method), 40
summary() (rlq class method), 38
summary_desc() (pca class method), 15
summary_imp() (pca class method), 15
summary_rot() (pca class method), 15

T
tail (Mantel attribute), 31
test (Mantel attribute), 31
traitVecs (rlq attribute), 38
transform (MDS attribute), 24
transform() (built-in function), 11
triplot() (cca class method), 43
triplot() (rda class method), 41
tvals (nls attribute), 47

U
U (ca attribute), 18
U (cca attribute), 42
U (pcoa attribute), 21
Uhat (ca attribute), 18

V
varScores (cca attribute), 43

W
w_col (ca attribute), 18
w_row (ca attribute), 18
wt_mean() (built-in function), 5
wt_scale() (built-in function), 6
wt_var() (built-in function), 6

56 Index

	Version
	Installing EcoPy
	Indices and tables

