

EcanAlloUsageTools - tools for extracting and integrating ECan allocation and usage data

This package contains a core class (AlloUsage) that provides a variety of methods to extract and combine allocation and usage data.
It is primarily designed to return the allocation and usage data as a time series over a period of time in the past.

At the moment, these tools are only usable from within the ECan network. A future installment will optionally utilize external facing web service calls once they have been established.

The GitHub repository is found here [https://github.com/mullenkamp/EcanAlloUsageTools].
Feedback and contributions are welcome.

Sections

	Installation
	Requirements

	How to use EcanAlloUsageTools
	Get time series data

	Package References
	Base class

	Get the time series data

	plotting methods

	API Pages

	License and terms of usage

Installation

Install via pip:

pip install EcanAlloUsageTools

Or conda:

conda install -c mullenkamp EcanAlloUsageTools

Requirements

The main dependencies are Pandas [http://pandas.pydata.org/pandas-docs/stable/], pdsql [https://pdsql.readthedocs.io], and seaborn [https://seaborn.pydata.org/].

How to use EcanAlloUsageTools

This section will describe how to use the EcanAlloUsageTools package. Nearly all result outputs are Pandas DataFrames.

Get time series data

The most common use case is to extract a variety of time series data in the form of allocation, metered allocation, lowflow restricted allocation, lowflow restricted metered allocation, and usage datasets. All numeric results returned have the units of m^3.

First, you will need to know which of the above datasets you want.
The associated dataset codes are the following:
allocation = allo
metered allocation = metered_allo
lowflow restricted allocation = restr_allo
lowflow restricted metered allocation = metered_restr_allo
usage = usage

Please see Package References for all possible input parameters and filters.

Example:

import pandas as pd
from allotools import AlloUsage

pd.options.display.max_columns = 10

Parameters
from_date = '2015-07-01'
to_date = '2018-06-30'

datasets = ['allo', 'restr_allo', 'metered_allo', 'metered_restr_allo', 'usage']
freq = 'A-JUN'
groupby = ['crc', 'wap', 'date']
site_filter = {'CatchmentGroupName': ['Ashburton River']}

export_path = r'E:\allousagetest'

Time series extraction
a1 = AlloUsage(from_date, to_date, site_filter=site_filter)

ts1 = a1.get_ts(datasets, freq, groupby, usage_allo_ratio=10).round()

Plotting
a1.plot_group('A-JUN', val='total', group='crc', with_restr=True, export_path=export_path)

a1.plot_stacked('A-JUN', val='total', export_path=export_path)

Package References

Base class

	
class allotools.AlloUsage(from_date='1900-07-01', to_date='2020-06-30', site_filter=None, crc_filter=None, include_hydroelectric=False)

	Class to to process the allocation and usage data at ECan.

	Parameters

	
	from_date (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The start date of the consent and the final time series. In the form of ‘2000-01-01’. None will return all consents and subsequently all dates.

	to_date (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The end date of the consent and the final time series. In the form of ‘2000-01-01’. None will return all consents and subsequently all dates.

	site_filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict in the form of {str: [values]} to select specific values from a specific column in the ExternalSite table.

	crc_filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict in the form of {str: [values]} to select specific values from a specific column in the CrcAllo table.

	crc_wap_filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict in the form of {str: [values]} to select specific values from a specific column in the CrcWapAllo table.

	in_allo (bool [https://docs.python.org/3/library/functions.html#bool]) – Should only the consumptive takes be included?

	include_hydroelectric (bool [https://docs.python.org/3/library/functions.html#bool]) – Should hydroelectric takes be included?

	Returns

	with all of the base sites, allo, and allo_wap DataFrames

	Return type

	AlloUsage object

Get the time series data

	
AlloUsage.get_ts(self, datasets, freq, groupby, irr_season=False, usage_allo_ratio=2, combine_meters=False)

	Function to create a time series of allocation and usage.

	Parameters

	
	datasets (list of str) – The dataset types to be returned. Must be one or more of {ds}.

	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pandas time frequency code for the time interval. Must be one of ‘D’, ‘W’, ‘M’, ‘A’, or ‘A-JUN’.

	groupby (list of str) – The fields that should grouped by when returned. Can be any variety of fields including crc, take_type, allo_block, ‘Wap’, CatchmentGroupName, etc. Date will always be included as part of the output group, so it doesn’t need to be specified in the groupby.

	irr_season (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the calculations and the resulting time series be only over the irrigation season? The irrigation season is from October through to the end of April.

	usage_allo_ratio (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The cut off ratio of usage/allocation. Any usage above this ratio will be removed from the results (subsequently reducing the metered allocation).

	combine_meters (bool [https://docs.python.org/3/library/functions.html#bool]) – When estimating the metered allocation, if one meter on a consent has usage data should all meters on the consent be considered metered? True, will be generous, False will not.

	Results –

	------- –

	DataFrame – Indexed by the groupby (and date)

plotting methods

	
AlloUsage.plot_group(self, freq, val='Total', group='SwazName', with_restr=True, yaxis_mag=1000000, yaxis_lab='Million', col_pal='pastel', export_path='', **kwargs)

	Function to plot the allocation, metered allocation, and usage as a time series barchart with three adjacent bars per time period. Optionally with restriction volumes.

	Parameters

	
	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Pandas time series freq.

	val (str [https://docs.python.org/3/library/stdtypes.html#str]) – The volume value columns. Must be one of ‘total’, ‘gw’, or ‘sw’.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) – The grouping of the plot sets. Where each plot will be broken into the group values.

	with_restr (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the restriction volumes be included in the plots?

	yaxis_mag (int [https://docs.python.org/3/library/functions.html#int]) – The magnitude that the volumes should be divided by and plotted with on the Y axis.

	yaxis_lab (str [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the Y axis.

	col_pal (str [https://docs.python.org/3/library/stdtypes.html#str]) – The seaborn color palette to use.

	export_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path where all the plots will be saved.

	**kwargs – Any kwargs to be passed to get_ts.

	Returns

	But outputs many png files to the export_path.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
AlloUsage.plot_stacked(self, freq, val='Total', stack='WaterUse', group='SwazName', yaxis_mag=1000000, yaxis_lab='Million', col_pal='pastel', export_path='', **kwargs)

	Function to plot the allocation stacked by a specific ‘stack’ group as a time series barchart.

	Parameters

	
	freq (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Pandas time series freq.

	val (str [https://docs.python.org/3/library/stdtypes.html#str]) – The allocation volume column. Must be one of ‘Total’, ‘Gw’, or ‘Sw’.

	stack (str [https://docs.python.org/3/library/stdtypes.html#str]) – The field of categories used for the volume stacking.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) – The grouping of the plot sets. Where each plot will be broken into the group values.

	with_restr (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the restriction volumes be included in the plots?

	yaxis_mag (int [https://docs.python.org/3/library/functions.html#int]) – The magnitude that the volumes should be divided by and plotted with on the Y axis.

	yaxis_lab (str [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the Y axis.

	col_pal (str [https://docs.python.org/3/library/stdtypes.html#str]) – The seaborn color palette to use.

	export_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path where all the plots will be saved.

	**kwargs – Any kwargs to be passed to get_ts.

	Returns

	But outputs many png files to the export_path.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

API Pages

License and terms of usage

This package is licensed under the terms of the Apache License Version 2.0 and can be found on the GitHub project page [https://github.com/mullenkamp/EcanAlloUsageTools/blob/master/LICENSE.txt].

Index

 A
 | G
 | P

A

 	
 	AlloUsage (class in allotools)

G

 	
 	get_ts() (allotools.AlloUsage method)

P

 	
 	plot_group() (allotools.AlloUsage method)

 	
 	plot_stacked() (allotools.AlloUsage method)

Methodology

Reference evapotranspiration (ETo)

The derivation of ETo had developed over many years with several different equations. The latest and hopefully last variant is derived from the Penman-Montieth equation.

Extensive documentation on the methods and concepts can be found in the UN-FAO 56 paper [http://www.fao.org/docrep/X0490E/X0490E00.htm] [1]

Hargreaves

The derivation for the Hargreaves equation can also be found in the UN-FAO 56 paper [http://www.fao.org/docrep/X0490E/x0490e07.htm#an%20alternative%20equation%20for%20eto%20when%20weather%20data%20are%20missing].

The History and Evaluation of Hargreaves Evapotranspiration Equation [http://onlinecalc.sdsu.edu/onlinehargreaves.pdf] [2] is a more detailed description and background of the Hargreaves method.

References

	1

	Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.

	2

	Hargreaves, G. and Allen, R. (2003). History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering. Vol. 129, Issue 1 (February 2003).

 nav.xhtml

 Table of Contents

 		
 EcanAlloUsageTools - tools for extracting and integrating ECan allocation and usage data

 		
 Installation

 		
 Requirements

 		
 How to use EcanAlloUsageTools

 		
 Get time series data

 		
 Package References

 		
 Base class

 		
 Get the time series data

 		
 plotting methods

 		
 API Pages

 		
 License and terms of usage

_static/minus.png

_static/plus.png

_static/file.png

