
EC3 Documentation
Release 1.0

EC3

Jan 09, 2020





Contents

1 Introduction 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Basic example with Amazon EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 EC3 in Docker Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Additional information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Architecture 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Infrastructure Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 RADL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 CLUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Deployment Models 11
3.1 Basic structure (homogeneous cluster) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Heterogeneous cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Cloud Bursting (Hybrid clusters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Command-line Interface 15
4.1 Command launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Command reconfigure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Command ssh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Command destroy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Command show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Command list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Command templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 Command clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 Command migrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10 Command stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.11 Command restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.12 Command transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14 Authorization file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.15 Usage of Golden Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Web Interface 23
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



5.2 Initial Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Configuration and Deployment of a Cluster in EGI Cloud Compute . . . . . . . . . . . . . . . . . . 23
5.4 Configuration and Deployment of a Cluster in HelixNebula Cloud . . . . . . . . . . . . . . . . . . . 28
5.5 Management of deployed clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Templates 31
6.1 Basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 EC3 types of Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Network Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5 Special EC3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.6 System and network inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.7 Configure Recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.8 Adding your own templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Frequently Asked Questions 41
7.1 General FAQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 EC3aaS Webpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 About 45

9 Indices and tables 47

Index 49

ii



EC3 Documentation, Release 1.0

Contents:

Contents 1



EC3 Documentation, Release 1.0

2 Contents



CHAPTER 1

Introduction

Elastic Cloud Computing Cluster (EC3) is a tool to create elastic virtual clusters on top of Infrastructure as a Service
(IaaS) providers, either public (such as Amazon Web Services, Google Cloud or Microsoft Azure) or on-premises
(such as OpenNebula and OpenStack). We offer recipes to deploy TORQUE (optionally with MAUI), SLURM, SGE,
HTCondor, Mesos, Nomad and Kubernetes clusters that can be self-managed with CLUES: it starts with a single-
node cluster and working nodes will be dynamically deployed and provisioned to fit increasing load (number of jobs
at the LRMS). Working nodes will be undeployed when they are idle. This introduces a cost-efficient approach for
Cluster-based computing.

1.1 Installation

1.1.1 Requisites

The program ec3 requires Python 2.6+, PLY, PyYAML, Requests, jsonschema and an IM server, which is used to
launch the virtual machines.

PyYAML is usually available in distribution repositories (python-yaml in Debian; PyYAML in Red Hat; and
PyYAML in pip).

PLY is usually available in distribution repositories (python-ply and ply in pip).

Requests is usually available in distribution repositories (python-requests and requests in pip).

jsonschema is usually available in distribution repositories (python-jsonschema and jsonschema in pip).

By default ec3 uses our public IM server in appsgrycap.i3m.upv.es. Optionally you can deploy a local IM server
following the instructions of the ‘IM manual‘_.

Also sshpass command is required to provide the user with ssh access to the cluster.

1.1.2 Installing

First you need to install pip tool. To install them in Debian and Ubuntu based distributions, do:

3

https://aws.amazon.com/
http://cloud.google.com/
http://azure.microsoft.com/
http://www.opennebula.org/
http://www.openstack.org/
http://www.adaptivecomputing.com/products/open-source/torque
http://www.adaptivecomputing.com/products/open-source/maui/
http://slurm.schedmd.com/
http://gridscheduler.sourceforge.net/
https://research.cs.wisc.edu/htcondor/
http://mesos.apache.org/
https://www.nomadproject.io/
https://kubernetes.io/
http://www.grycap.upv.es/clues/
http://www.dabeaz.com/ply/
http://pyyaml.org/wiki/PyYAML
http://docs.python-requests.org/
https://github.com/Julian/jsonschema
https://github.com/grycap/im
http://pyyaml.org/wiki/PyYAML
http://www.dabeaz.com/ply/
http://docs.python-requests.org/
https://github.com/Julian/jsonschema
https://github.com/grycap/im
https://github.com/grycap/im


EC3 Documentation, Release 1.0

sudo apt update
sudo apt install python-pip

In Red Hat based distributions (RHEL, CentOS, Amazon Linux, Oracle Linux, Fedora, etc.), do:

sudo yum install epel-release
sudo yum install which python-pip

Then you only have to call the install command of the pip tool with the ec3-cli package:

sudo pip install ec3-cli

You can also download the last ec3 version from this git repository:

git clone https://github.com/grycap/ec3

Then you can install it calling the pip tool with the current ec3 directory:

sudo pip install ./ec3

1.2 Basic example with Amazon EC2

First create a file auth.txt with a single line like this:

id = provider ; type = EC2 ; username = <<Access Key ID>> ; password = <<Secret
→˓Access Key>>

Replace <<Access Key ID>> and <<Secret Access Key>> with the corresponding values for the AWS
account where the cluster will be deployed. It is safer to use the credentials of an IAM user created within your AWS
account.

This file is the authorization file (see Authorization file), and can have more than one set of credentials.

Now we are going to deploy a cluster in Amazon EC2 with a limit number of nodes = 10. The parameter to indicate
the maximum size of the cluster is called ec3_max_instances and it has to be indicated in the RADL file that
describes the infrastructure to deploy. In our case, we are going to use the ubuntu-ec2 recipe, available in our github
repo. The next command deploys a TORQUE cluster based on an Ubuntu image:

$ ec3 launch mycluster torque ubuntu-ec2 -a auth.txt -y
WARNING: you are not using a secure connection and this can compromise the secrecy of
→˓the passwords and private keys available in the authorization file.
Creating infrastructure
Infrastructure successfully created with ID: 60

¨ Front-end state: running, IP: 132.43.105.28

If you deployed a local IM server, use the next command instead:

$ ec3 launch mycluster torque ubuntu-ec2 -a auth.txt -u http://localhost:8899

This can take several minutes. After that, open a ssh session to the front-end:

$ ec3 ssh mycluster
Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

(continues on next page)

4 Chapter 1. Introduction

https://github.com/grycap/ec3
http://ec3.readthedocs.org/en/devel/ec3.html#authorization-file
https://github.com/grycap/ec3/blob/devel/templates/ubuntu-ec2.radl
http://www.adaptivecomputing.com/products/open-source/torque
http://www.ubuntu.com/
https://github.com/grycap/im


EC3 Documentation, Release 1.0

(continued from previous page)

ubuntu@torqueserver:~$

Also you can show basic information about the deployed clusters by executing:

$ ec3 list
name state IP nodes

---------------------------------------------
mycluster configured 132.43.105.28 0

1.3 EC3 in Docker Hub

EC3 has an official Docker container image available in Docker Hub that can be used instead of installing the CLI.
You can download it by typing:

$ sudo docker pull grycap/ec3

You can exploit all the potential of EC3 as if you download the CLI and run it on your computer:

$ sudo docker run grycap/ec3 list
$ sudo docker run grycap/ec3 templates

To launch a cluster, you can use the recipes that you have locally by mounting the folder as a volume. Also it is
recommendable to mantain the data of active clusters locally, by mounting a volume as follows:

$ sudo docker run -v /home/user/:/tmp/ -v /home/user/ec3/templates/:/etc/ec3/
→˓templates -v /tmp/.ec3/clusters:/root/.ec3/clusters grycap/ec3 launch mycluster
→˓torque ubuntu16 -a /tmp/auth.dat

Notice that you need to change the local paths to the paths where you store the auth file, the templates folder and the
.ec3/clusters folder. So, once the front-end is deployed and configured you can connect to it by using:

$ sudo docker run -ti -v /tmp/.ec3/clusters:/root/.ec3/clusters grycap/ec3 ssh
→˓mycluster

Later on, when you need to destroy the cluster, you can type:

$ sudo docker run -ti -v /tmp/.ec3/clusters:/root/.ec3/clusters grycap/ec3 destroy
→˓mycluster

1.4 Additional information

• EC3 Command-line Interface.

• Templates.

• Information about available templates: ec3 templates [--search <topic>]
[--full-description].

1.3. EC3 in Docker Hub 5

https://hub.docker.com/r/grycap/ec3/
http://ec3.readthedocs.org/en/devel/ec3.html
http://ec3.readthedocs.org/en/devel/templates.html


EC3 Documentation, Release 1.0

6 Chapter 1. Introduction



CHAPTER 2

Architecture

2.1 Overview

EC3 proposes the combination of Green computing, Cloud computing and HPC techniques to create a tool that deploys
elastic virtual clusters on top of IaaS Clouds. EC3 creates elastic cluster-like infrastructures that automatically scale
out to a larger number of nodes on demand up to a maximum size specified by the user. Whenever idle resources are
detected, the cluster dynamically and automatically scales in, according to some predefined policies, in order to cut
down the costs in the case of using a public Cloud provider. This creates the illusion of a real cluster without requiring
an investment beyond the actual usage. Therefore, this approach aims at delivering cost-effective elastic Cluster as a
Service on top of an IaaS Cloud.

2.2 General Architecture

Fig. 1 summarizes the main architecture of EC3. The deployment of the virtual elastic cluster consists of two phases.
The first one involves starting a VM in the Cloud to act as the cluster front-end while the second one involves the
automatic management of the cluster size, depending on the workload and the specified policies. For the first step, a
launcher (EC3 Launcher) has been developed that deploys the front-end on the Cloud using the infrastructure deploy-
ment services described in Section 3.1. The sysadmin will run this tool, providing it with the following information:

• Maximum cluster size. This serves to establish a cost limit in case of a workload peak. The maximum cluster size
can be modified at any time once the virtual cluster is operating. Thus, the sysadmins can adapt the maximum
cluster size to the dynamic requirements of their users. In this case the LRMS must be reconfigured to add the
new set of virtual nodes and in some cases it may imply a LRMS service restart.

• RADL document specifying the desired features of the cluster front-end, regarding both hardware and software
(OS, LRMS, additional libraries, etc.). These requirements are taken by the launcher and extended to include
additional ones (such as installing CLUES and its requirements together with the libraries employed to interact
with the IaaS Cloud provider, etc.) in order to manage elasticity.

The launcher starts an IM that becomes responsible of deploying the cluster front-end. This is done by means of the
following steps:

7



EC3 Documentation, Release 1.0

Fig. 1: Fig 1. EC3 Architecture.

1. Selecting the VMI for the front-end. The IM can take a particular user-specified VMI, or it can contact the
VMRC to choose the most appropriate VMI available, considering the requirements specified in the RADL.

2. Choosing the Cloud deployment according to the specification of the user (if there are different providers).

3. Submitting an instance of the corresponding VMI and, once it is available, installing and configuring all the
required software that is not already preinstalled in the VM

One of the main LRMS configuration steps is to set up the names of the cluster nodes. This is done using a sysadmin-
specified name pattern (e.g. vnode-*) so that the LRMS considers a set of nodes such as vnode-1, vnode-2, . . . ,
vnode-n, where n is the maximum cluster size. This procedure results in a fully operational elastic cluster. Fig. 2
represents the sequence diagram and the interaction of the main components and actors during the deployment of the
frontend of the cluster using EC3.

Once the front-end and the elasticity manager (CLUES) have been deployed, the virtual cluster becomes totally au-
tonomous and every user will be able to submit jobs to the LRMS, either from the cluster front-end or from an external
node that provides job submission capabilities. The user will have the perception of a cluster with the number of nodes
specified as maximum size. CLUES will monitor the working nodes and intercept the job submissions before they
arrive to the LRMS, enabling the system to dynamically manage the cluster size transparently to the LRMS and the
user, scaling in and out on demand.

Just like in the deployment of the front-end, CLUES internally uses an IM to submit the VMs that will be used as
working nodes for the cluster. For that, it uses a RADL document defined by the sysadmin, where the features of the
working nodes are specified. Once these nodes are available, they are automatically integrated in the cluster as new
available nodes for the LRMS. Thus, the process to deploy the working nodes is similar to the one employed to deploy
the front-end.

Fig. 3 represents the sequence diagram and the interaction when a new job arrives to the LRMS and no nodes are

8 Chapter 2. Architecture

http://www.grycap.upv.es/vmrc


EC3 Documentation, Release 1.0

Fig. 2: Fig 2. Sequence diagram for the deployment of the frontend.

available for the execution of the job.

Fig. 3: Fig 3. Sequence diagram that represents when a new job arrives to the cluster.

Note that the EC3-L tool can be executed on any machine that has a connection with the Cloud system and it is
only employed to bootstrap the cluster. Once deployed, the cluster becomes autonomous and self-managed, and the
machine from which the EC3-L tool was used (the dashed rectangle in Fig. 1) is no longer required. The expansion of
the cluster while it is operating is carried out by the front-end node, by means of CLUES, as explained above.

2.3 Infrastructure Manager

The Infrastructure Manager (IM) is a tool that eases the access and the usability of IaaS clouds by automating the VMI
selection, deployment, configuration, software installation, monitoring and update of Virtual Appliances. It supports
APIs from a large number of virtual platforms, making user applications cloud-agnostic. In addition it integrates a
contextualization system to enable the installation and configuration of all the user required applications providing the
user with a fully functional infrastructure.

2.3. Infrastructure Manager 9

http://www.grycap.upv.es/im


EC3 Documentation, Release 1.0

2.4 RADL

The main purpose of the Resource and Application description Language (RADL) is to specify the requirements of
the resources where the scientific applications will be executed. It must address not only hardware (CPU number,
CPU architecture, RAM size, etc.) but also software requirements (applications, libraries, data base systems, etc.). It
should include all the configuration details needed to get a fully functional and configured VM (a Virtual Appliance or
VA). It merges the definitions of specifications, such as OVF, but using a declarative scheme, with contextualization
languages such as Ansible. It also allows describing the underlying network capabilities required.

2.5 CLUES

CLUES is an energy management system for High Performance Computing (HPC) Clusters and Cloud infrastructures.
The main function of the system is to power off internal cluster nodes when they are not being used, and conversely to
power them on when they are needed. CLUES system integrates with the cluster management middleware, such as a
batch-queuing system or a cloud infrastructure management system, by means of different connectors.

10 Chapter 2. Architecture

http://imdocs.readthedocs.org/en/devel/radl.html
http://www.grycap.upv.es/clues


CHAPTER 3

Deployment Models

EC3 supports a wide variety of deployment models (i.e. cluster behaviour). In this section, we provide information
about all of them and a example of configuration for each deployment model. For more details, you can follow reading
ec3_variables, which provides more information regarding EC3 special variables that support the specification of the
deployment model in the templates.

3.1 Basic structure (homogeneous cluster)

An homogeneous cluster is composed by working nodes that have the same characteristics (hardware and software).
This is the basic deployment model of EC3, where we only have one type of system for the working nodes.

In EC3, a template specifying this model would be, for instance:

system wn (
ec3_max_instances = 6 and
ec3_node_type = 'wn' and
cpu.count = 4 and
memory.size >= 2048M and
disk.0.os.name = 'linux' and
net_interface.0.connection = 'net'

)

This RADL defines a system with the feature cpu.count equal to four, the feature memory.size greater or
equal than 2048M , a operative system based on linux and with the feature net_interface.0.connection
bounded to 'net'. It also fixes the maximum number of working nodes to 6 with the EC3 special variable
ec3_max_instances, and indicates that this system is of type wn though ec3_node_type.

3.2 Heterogeneous cluster

This model allows that the working nodes comprising the cluster can be of different characteristics (hardware and
software). This is of special interest when you need nodes with different configuration or hardware specifications but

11

http://ec3.readthedocs.io/en/devel/templates.html#special-ec3-features


EC3 Documentation, Release 1.0

Fig. 1: Fig 1. EC3 Deployment Model for an homogeneous cluster.

all working together in the same cluster. It also allows you to configure several queues and specify from which queue
the working node belongs to.

In EC3, a template specifying this model would be, for instance:

system wn (
ec3_max_instances = 6 and
ec3_node_type = 'wn' and
ec3_node_queues_list = 'smalljobs' and
ec3_node_pattern = 'wn[1,2,3]' and
cpu.count = 4 and
memory.size >= 2048M and
disk.0.os.name = 'linux' and
net_interface.0.connection = 'net'

)

system largewn (
ec3_inherit_from = system wn and
ec3_node_queues_list = 'largejobs' and
ec3_node_pattern = 'wn[4,5,6]' and
cpu.count = 8 and
memory.size >= 4096M

)

This RADL defines two different system. The first one defines the wn with the feature cpu.count equal to four, the
feature memory.size greater or equal than 2048M , and with the feature net_interface.0.connection
bounded to 'net'. Again, it also fixes the maximum number of working nodes to 6 with the EC3 special vari-
able ec3_max_instances, and indicates that this system is of type wn though ec3_node_type. More sys-
tems can be defined, it is not limited to two types of working nodes, it’s only an example. The second defined sys-
tem, called largewn, inherits the already defined characteristics of system wn, by using the EC3 special feature

12 Chapter 3. Deployment Models



EC3 Documentation, Release 1.0

Fig. 2: Fig 2. EC3 Deployment Model for an heterogeneous cluster.

ec3_inherit_from, but it changes the values for cpu.count and memory.size. Regarding queue manage-
ment, the RADL defines two queues by using ec3_node_queues_list, and determines whose nodes belong to
them. It is also defined the pattern to construct the name of the nodes by the ec3_node_pattern variable.

3.3 Cloud Bursting (Hybrid clusters)

The third model supported by EC3 is Cloud Bursting. It consists on launching nodes in two or more different Cloud
providers. This is done to manage user quotas or saturated resources. When a limit is reached and no more nodes can
be deployed inside the first Cloud Provider, EC3 will launch new nodes in the second defined Cloud provider. This is
also called a hybrid cluster. The nodes deployed in different Cloud providers can be different also, so heterogeneous
clusters with cloud bursting capabilities can be deployed and automatically managed with EC3. The nodes would be
automatically interconnected by using VPN or SSH tunneling techniques.

In EC3, a template specifying this model would be, for instance:

system wn (
disk.0.os.name = 'linux' and
disk.0.image.url = 'one://mymachine.es/1' and
disk.0.os.credentials.username = 'ubuntu' and
ec3_max_instances = 6 and # maximum instances of this kind
cpu.count = 4 and
memory.size >= 2048M and
ec3_if_fail = 'wn_aws'

)

system wn_aws (
ec3_inherit_from = system wn and # Copy features from system 'wn'
disk.0.image.url = 'aws://us-east-1/ami-30519058' and # Ubuntu 14.04

(continues on next page)

3.3. Cloud Bursting (Hybrid clusters) 13



EC3 Documentation, Release 1.0

Fig. 3: Fig 3. EC3 Deployment Model for an hybrid cluster.

(continued from previous page)

disk.0.os.credentials.username = 'ubuntu' and
ec3_max_instances = 8 and # maximum instances of this kind
ec3_if_fail = ''

)

This RADL is similar to the upper ones. It also defines two different system, but the important detail here is the EC3
variable ec3_if_fail. It defines the next system type to be used when no more instances of system wn can be
launched.

14 Chapter 3. Deployment Models



CHAPTER 4

Command-line Interface

The program is called like this:

$ ec3 [-l <file>] [-ll <level>] [-q]
→˓launch|list|show|templates|ssh|reconfigure|destroy [args...]

-l <file>, --log-file <file>
Path to file where logs are written. Default value is standard output error.

-ll <level>, --log-level <level>
Only write in the log file messages with level more severe than the indicated: 1 for debug, 2 for info, 3 for
warning and 4 for error.

-q, --quiet
Don’t show any message in console except the front-end IP.

4.1 Command launch

To deploy a cluster issue this command:

ec3 launch <clustername> <template_0> [<template_1> ...] [-a <file>] [-u <url>] [-y]

clustername
Name of the new cluster.

template_0 ...
Template names that will be used to deploy the cluster. ec3 tries to find files with these names and extension
.radl in ~/.ec3/templates and /etc/ec3/templates. Templates are RADL descriptions of the
virtual machines (e.g., instance type, disk images, networks, etc.) and contextualization scripts. See Command
templates to list all available templates.

--add
Add a piece of RADL. This option is useful to set some features. The following example deploys a cluster with
the Torque LRMS with up to four working nodes:

15

http://imdocs.readthedocs.org/en/devel/radl.html


EC3 Documentation, Release 1.0

./ec3 launch mycluster torque ubuntu-ec2 –add “system wn ( ec3_max_instances = 4 )”

-u <url>, --restapi-url <url>
URL to the IM REST API service.

-a <file>, --auth-file <file>
Path to the authorization file, see Authorization file. This option is compulsory.

--dry-run
Validate options but do not launch the cluster.

-n, --not-store
The new cluster will not be stored in the local database.

-p, --print
Print final RADL description if the cluster after cluster being successfully configured.

--json
If option -p indicated, print RADL in JSON format instead.

--on-error-destroy
If the cluster deployment fails, try to destroy the infrastructure (and relinquish the resources).

-y, --yes
Do not ask for confirmation when the connection to IM is not secure. Proceed anyway.

-g, --golden-images
Generate a VMI from the first deployed node, to accelerate the contextualization process of next node deploy-
ments.

4.2 Command reconfigure

The command reconfigures a previously deployed clusters. It can be called after a failed deployment (resources
provisioned will be maintained and a new attempt to configure them will take place). It can also be used to apply a
new configuration to a running cluster:

ec3 reconfigure <clustername>

-a <file>, --auth-file <file>
Append authorization entries in the provided file. See Authorization file.

--add
Add a piece of RADL. This option is useful to include additional features to a running cluster. The following
example updates the maximum number of working nodes to four:

./ec3 reconfigure mycluster --add "system wn ( ec3_max_instances = 4 )"

-r, --reload
Reload templates used to launch the cluster and reconfigure it with them (useful if some templates were modi-
fied).

--template, -t
Add a new template/recipe. This option is useful to add new templates to a running cluster. The following
example adds the docker recipe to the configuration of the cluster (i.e. installs Docker):

./ec3 reconfigure mycluster -r -t docker

16 Chapter 4. Command-line Interface



EC3 Documentation, Release 1.0

4.3 Command ssh

The command opens a SSH session to the infrastructure front-end:

ec3 ssh <clustername>

--show-only
Print the command line to invoke SSH and exit.

4.4 Command destroy

The command undeploys the cluster and removes the associated information in the local database.:

ec3 destroy <clustername> [--force]

--force
Removes local information of the cluster even when the cluster could not be undeployed successfully.

4.5 Command show

The command prints the RADL description of the cluster stored in the local database:

ec3 show <clustername> [-r] [--json]

-r, --refresh
Get the current state of the cluster before printing the information.

--json
Print RADL description in JSON format.

4.6 Command list

The command prints a table with information about the clusters that have been launched:

ec3 list [-r] [--json]

-r, --refresh
Get the current state of the cluster before printing the information.

--json
Print the information in JSON format.

4.7 Command templates

The command displays basic information about the available templates like name, kind and a summary description:

ec3 templates [-s/--search <pattern>] [-f/--full-description] [--json]

4.3. Command ssh 17



EC3 Documentation, Release 1.0

-s, --search
Show only templates in which the <pattern> appears in the description.

-n, --name
Show only the template with that name.

-f, --full-description
Instead of the table, it shows all the information about the templates.

--json
Print the information in JSON format.

If you want to see more information about templates and its kinds in EC3, visit Templates.

4.8 Command clone

The command clones an infrastructure front-end previously deployed from one provider to another:

ec3 clone <clustername> [-a/--auth-file <file>] [-u <url>] [-d/--destination
→˓<provider>] [-e]

-a <file>, --auth-file <file>
New authorization file to use to deploy the cloned cluster. See Authorization file.

-d <provider>, --destination <provider>
Provider ID, it must match with the id provided in the auth file. See Authorization file.

-u <url>, --restapi-url <url>
URL to the IM REST API service. If not indicated, EC3 uses the default value.

-e, --eliminate
Indicate to destroy the original cluster at the end of the clone process. If not indicated, EC3 leaves running the
original cluster.

4.9 Command migrate

The command migrates a previously deployed cluster and its running tasks from one provider to another. It is manda-
tory that the original cluster to migrate has been deployed with SLURM and BLCR, if not, the migration process can’t
be performed. Also, this operation only works with clusters which images are selected by the VMRC, it does not work
if the URL of the VMI/AMI is explicitly written in the system RADL:

ec3 migrate <clustername> [-b/--bucket <bucket_name>] [-a/--auth-file <file>] [-u
→˓<url>] [-d/--destination <provider>] [-e]

-b <bucket_name>, --bucket <bucket_name>
Bucket name of an already created bucket in the S3 account displayed in the auth file.

-a <file>, --auth-file <file>
New authorization file to use to deploy the cloned cluster. It is mandatory to have valid AWS credentials in this
file to perform the migration operation, since it uses Amazon S3 to store checkpoint files from jobs running in
the cluster. See Authorization file.

-d <provider>, --destination <provider>
Provider ID, it must match with the id provided in the auth file. See Authorization file.

18 Chapter 4. Command-line Interface

http://ec3.readthedocs.org/en/latest/templates.html


EC3 Documentation, Release 1.0

-u <url>, --restapi-url <url>
URL to the IM REST API service. If not indicated, EC3 uses the default value.

-e, --eliminate
Indicate to destroy the original cluster at the end of the migration process. If not indicated, EC3 leaves running
the original cluster.

4.10 Command stop

To stop a cluster to later continue using it, issue this command:

ec3 stop <clustername> [-a <file>] [-u <url>] [-y]

clustername
Name of the new cluster to stop.

-a <file>, --auth-file <file>
Path to the authorization file, see Authorization file.

-u <url>, --restapi-url <url>
URL to the IM REST API external service.

-y, --yes
Do not ask for confirmation to stop the cluster. Proceed anyway.

4.11 Command restart

To restart an already stopped cluster, use this command:

ec3 restart <clustername> [-a <file>] [-u <url>]

clustername
Name of the new cluster to restart.

-a <file>, --auth-file <file>
Path to the authorization file, see Authorization file.

-u <url>, --restapi-url <url>
URL to the IM REST API external service.

4.12 Command transfer

To transfers an already launched cluster that has not been transfered to the internal IM, use this command:

ec3 transfer <clustername> [-a <file>] [-u <url>]

clustername
Name of the new cluster to transfer.

-a <file>, --auth-file <file>
Path to the authorization file, see Authorization file.

-u <url>, --restapi-url <url>
URL to the IM REST API external service.

4.10. Command stop 19



EC3 Documentation, Release 1.0

4.13 Configuration file

Default configuration values are read from ~/.ec3/config.yml. If this file doesn’t exist, it is generated with all
the available options and their default values.

The file is formated in YAML. The options that are related to files admit the next values:

• an scalar: it will be treated as the content of the file, e.g.:

auth_file: |
type = OpenNebula; host = myone.com:9999; username = user; password = 1234
type = EC2; username = AKIAAAAAAAAAAAAAAAAA; password =

→˓aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

• a mapping with the key filename: it will be treated as the file path, e.g.:

auth_file:
filename: /home/user/auth.txt

• a mapping with the key stream: it will select either standard output (stdout) or standard error (stderr),
e.g.:

log_file:
stream: stdout

4.14 Authorization file

The authorization file stores in plain text the credentials to access the cloud providers, the IM service and the VMRC
service. Each line of the file is composed by pairs of key and value separated by semicolon, and refers to a single
credential. The key and value should be separated by ” = “, that is an equals sign preceded and followed by one
white space at least, like this:

id = id_value ; type = value_of_type ; username = value_of_username ; password =
→˓value_of_password

Values can contain “=”, and “\n” is replaced by carriage return. The available keys are:

• type indicates the service that refers the credential. The services supported are InfrastructureManager,
VMRC, OpenNebula, EC2, OpenStack, OCCI, LibCloud, Docker, GCE, Azure, and LibVirt.

• username indicates the user name associated to the credential. In EC2 it refers to the Access Key ID. In Azure
it refers to the user Subscription ID. In GCE it refers to Service Account’s Email Address.

• password indicates the password associated to the credential. In EC2 it refers to the Secret Access Key. In
GCE it refers to Service Private Key. See how to get it and how to extract the private key file from here info).

• tenant indicates the tenant associated to the credential. This field is only used in the OpenStack plugin.

• host indicates the address of the access point to the cloud provider. This field is not used in IM and EC2
credentials.

• proxy indicates the content of the proxy file associated to the credential. To refer to a file you must use the
function “file(/tmp/proxyfile.pem)” as shown in the example. This field is only used in the OCCI plugin.

• project indicates the project name associated to the credential. This field is only used in the GCE plugin.

20 Chapter 4. Command-line Interface

http://yaml.org/
http://www.grycap.upv.es/im
http://www.grycap.upv.es/vmrc
https://cloud.google.com/storage/docs/authentication#service_accounts


EC3 Documentation, Release 1.0

• public_key indicates the content of the public key file associated to the credential. To refer to a file you must
use the function “file(cert.pem)” as shown in the example. This field is only used in the Azure plugin. See how
to get it here

• private_key indicates the content of the private key file associated to the credential. To refer to a file you
must use the function “file(key.pem)” as shown in the example. This field is only used in the Azure plugin. See
how to get it here

• id associates an identifier to the credential. The identifier should be used as the label in the deploy section in
the RADL.

An example of the auth file:

id = one; type = OpenNebula; host = oneserver:2633; username = user; password = pass
id = ost; type = OpenStack; host = ostserver:5000; username = user; password = pass;
→˓tenant = tenant
type = InfrastructureManager; username = user; password = pass
type = VMRC; host = http://server:8080/vmrc; username = user; password = pass
id = ec2; type = EC2; username = ACCESS_KEY; password = SECRET_KEY
id = gce; type = GCE; username = username.apps.googleusercontent.com; password = pass;
→˓ project = projectname
id = docker; type = Docker; host = http://host:2375
id = occi; type = OCCI; proxy = file(/tmp/proxy.pem); host = https://fc-one.i3m.upv.
→˓es:11443
id = azure; type = Azure; username = subscription-id; public_key = file(cert.pem);
→˓private_key = file(key.pem)
id = kub; type = Kubernetes; host = http://server:8080; username = user; password =
→˓pass

Notice that the user credentials that you specify are only employed to provision the resources (Virtual Machines, secu-
rity groups, keypairs, etc.) on your behalf. No other resources will be accessed/deleted. However, if you are concerned
about specifying your credentials to EC3, note that you can (and should) create an additional set of credentials, perhaps
with limited privileges, so that EC3 can access the Cloud on your behalf. In particular, if you are using Amazon Web
Services, we suggest you use the Identity and Access Management (IAM) service to create a user with a new set of
credentials. This way, you can rest assured that these credentials can be cancelled at anytime.

4.15 Usage of Golden Images

Golden images are a mechanism to accelerate the contextualization process of working nodes in the cluster. They
are created when the first node of the cluster is deployed and configured. It provides a preconfigured AMI specially
created for the cluster, with no interaction with the user required. Each golden image has a unique id that relates it
with the infrastructure. Golden images are also deleted when the cluster is destroyed.

There are two ways to indicate to EC3 the usage of this strategy:

• Command option in the CLI interface: as explained before, the launch command offers the option -g,
--golden-images to indicate to EC3 the usage of golden images, e.g.:

./ec3 launch mycluster slurm ubuntu -a auth.dat --golden-images

• In the RADL: as an advanced mode, the user can also specify the usage of golden images in the RADL file that
describes the system architecture of the working nodes, e.g.:

system wn (
cpu.arch = 'x86_64' and
cpu.count >= 1 and

(continues on next page)

4.15. Usage of Golden Images 21

https://msdn.microsoft.com/en-us/library/azure/gg551722.aspx
https://msdn.microsoft.com/en-us/library/azure/gg551722.aspx
http://aws.amazon.com/iam/
http://imdocs.readthedocs.org/en/devel/radl.html


EC3 Documentation, Release 1.0

(continued from previous page)

memory.size >= 1024m and
disk.0.os.name = 'linux' and
disk.0.os.credentials.username = 'ubuntu' and
disk.0.os.credentials.password = 'dsatrv' and
ec3_golden_images = 'true'

)

Currently this feature is only available in the command-line interface for OpenNebula and Amazon Web Services
providers. The list of supported providers will be uploaded soon.

22 Chapter 4. Command-line Interface

http://www.opennebula.org/
https://aws.amazon.com/


CHAPTER 5

Web Interface

5.1 Overview

EC3 as a Service (EC3aaS), is a web service offered to the community to facilitate the usage of EC3 to non-experienced
users. The EC3 portal integrated in the EGI Application on Demmand can be accessed by users of the vo.access.egi.eu
VO (read EGI AoD documentation to get more information). The users are enabled to try the tool by using the user-
friendly wizard to easily configure and deploy Virtual Elastic Clusters on EGI Cloud Compute or HelixNebula Cloud
(powered by Exoscale) resources. The user only needs to choose the Cloud provider and allow EC3 to provision VMs
on behalf of the user.

5.2 Initial Steps

The first step to access the EC3 portal is to autenticate with your EGI CheckIn credentials. Once logged you will see
on the rigth-top corner the obtained full name. These credentials will be used to interact with EGI Cloud Compute
providers. Then the user, in order to configure and deploy a Virtual Elastic Cluster using EC3aaS, accesses the
homepage and selects “Deploy your cluster!” (Fig. 1). With this action, the web page will show different Cloud
providers supported by the AoD web interface version of EC3: EGI Cloud Compute or HelxNebula Cloud.

The next step, then, is to choose the Cloud provider where the cluster will be deployed (Fig. 2).

5.3 Configuration and Deployment of a Cluster in EGI Cloud Compute

When the user chooses the EGI Cloud Compute provider a wizard pops up (Fig. 3). This wizard will guide the
user during the configuration process of the cluster, allowing the selection of the Cloud site where the VMs will be
deployed, the operating system, the type of LRMS system to use, the characteristics of the nodes, the maximum
number of cluster nodes or the software packages to be installed.

Specifically, the wizard steps are:

23

https://marketplace.egi.eu/42-applications-on-demand
https://egi-federated-cloud.readthedocs.io/en/latest/aod.html
https://www.egi.eu/services/cloud-compute/
https://www.helix-nebula.eu/
https://www.exoscale.com/
https://www.egi.eu/services/check-in/


EC3 Documentation, Release 1.0

Fig. 1: Fig 1. EC3aaS homepage.

Fig. 2: Fig 2. List of Cloud providers supported by EC3aaS.

24 Chapter 5. Web Interface



EC3 Documentation, Release 1.0

Fig. 3: Fig 3. Wizard to configure and deploy a virtual cluster in EGI Cloud Compute.

5.3. Configuration and Deployment of a Cluster in EGI Cloud Compute 25



EC3 Documentation, Release 1.0

1. Cluster Configuration: the user can choose the Local Resource Management System preferred to be auto-
matically installed and configured by EC3. Currently, SLURM, Torque, Grid Engine, Mesos (+ Marathon +
Chronos), Kubernetes, ECAS, Nomad and OSCAR are supported. Also a set of common software packages is
available to be installed in the cluster, Spark, Galaxy (only in case of SLURM clusters), GNUPlot or Octave.
EC3 will install and configure them automatically in the contextualization process. If the user needs another
software to be installed in his cluster, a new Ansible recipe can be developed and added to EC3 by using the
CLI interface.

2. Endpoint: the user has to choose one of the EGI Cloud Compute sites that provides support to the
vo.access.egi.eu VO. The list of sites is automatically obtained from the EGI AppDB information system. In
case that the site has some errors in the Argo Monitoring System a message (CRITICAL state!) will be added to
the name. You can still use this site but it may fail due to this errors.

3. Operating System: the user chooses the OS of the cluster from the list of available Operating Systems that are
provided by the selected Cloud site (also obtained from AppDB).

4. Instance details: the user must indicate the instance details, like the number of CPUs or the RAM memory, for
the front-end and also the working nodes of the cluster (also obtained from AppDB).

5. Cluster’s size & Name: here, the user has to select the maximum number of nodes of the cluster (from 1 to
10), without including the front-end node. This value indicates the maximum number of working nodes that
the cluster can scale. Remember that, initially the cluster only is created with the front-end, and the nodes are
powered on on-demand. Also a name for the cluster (that must be unique) is required to identify the cluster.

6. Resume and Launch: a summary of the chosen configuration of the cluster is shown to the user at the last step
of the wizard, and the deployment process can start by clicking the Submit button (Fig. 4).

Fig. 4: Fig 4. Resume and Launch: final Wizard step.

26 Chapter 5. Web Interface

https://portal.enes.org/data/data-metadata-service/processing/ecas
https://github.com/grycap/oscar
https://appdb.egi.eu/


EC3 Documentation, Release 1.0

Finally, when all the steps of the wizard are fulfilled correctly, the submit button starts the deployment process of
the cluster. Only the front-end will be deployed, because the working nodes will be automatically provisioned by
EC3 when the workload of the cluster requires them. When the virtual machine of the front-end is running, EC3aaS
provides the user with the necessary data to connect to the cluster (Fig. 5) which is composed by the username and
SSH private key to connect to the cluster, the front-end IP and the name of the cluster.

Fig. 5: Fig 5. Information received by the user when a deployment succeeds.

The cluster may not be configured when the IP of the front-end is returned by the web page, because the process of
configuring the cluster is a batch process that takes several minutes, depending on the chosen configuration. However,
the user is allowed to log in the front-end machine of the cluster since the moment it is deployed. To know if the
cluster is configured, the command is_cluster_ready can be used. It will check if the configuration process of cluster
has finished:

user@local:~$ssh -i key.pem <username>@<front_ip>
ubuntu@kubeserverpublic:~$ is_cluster_ready
Cluster configured!

If the the command is_cluster_ready is not found it means that the cluster is already being configured.

Notice that EC3aaS does not offer all the capabilities of EC3, like hybrid clusters or the usage of spot instances. Those
capabilities are considered advanced aspects of the tool and are only available via the EC3 Command-line Interface.

5.3. Configuration and Deployment of a Cluster in EGI Cloud Compute 27

http://ec3.readthedocs.org/en/latest/ec3.html


EC3 Documentation, Release 1.0

5.4 Configuration and Deployment of a Cluster in HelixNebula Cloud

In case of HelixNebula Cloud, the wizard is the same shown for EGI Cloud Compute but it has an additional step after
“Cluster Configuration”. In the “Provider Account” step (Fig. 6) the user must provide the API key and Secret Key of
the Exoscale cloud. To get them, follow the steps described in the Exoscale Vouchers for AoD documentation.

Fig. 6: Fig 6. Helix Nebula Provider Cccount wizard step.

5.5 Management of deployed clusters

You can get a list of all your deployed clusters choosing the “Manage your deployed clusters” option (right in Fig. 2).
It will show a list with the details of the clusters launched by the user. The list will show the following information:
Cluster name (specified by the user on creation), the state, front-end public IP, number of working nodes deployed. It
will also enable the user to download the SSH private key needed to access the front-end node and the contextualization
log to see all the configuration steps performed. This log will enable the user to verify the currect status of the
configuration of the cluster, and check for errors in case that the cluster is not correctily configured (unconfigured
state). Finally it also offers a button to delete the cluster.

When the deletion process finishes successfully, the front-end of the cluster and all the working nodes had been
destroyed and a message is shown to the user informing the success of the operation. If an error occurs during the
deleting process, an error message is returned to the user.

28 Chapter 5. Web Interface

https://egi-federated-cloud.readthedocs.io/en/latest/aod/exoscale-vouchers.html


EC3 Documentation, Release 1.0

Fig. 7: Fig 7. List of Clusters deployed by the active user.

5.5. Management of deployed clusters 29



EC3 Documentation, Release 1.0

30 Chapter 5. Web Interface



CHAPTER 6

Templates

EC3 recipes are described in a superset of RADL, which is a specification of virtual machines (e.g., instance type, disk
images, networks, etc.) and contextualization scripts.

6.1 Basic structure

An RADL document has the following general structure:

network <network_id> (<features>)

system <system_id> (<features>)

configure <configure_id> (<Ansible recipes>)

deploy <system_id> <num> [<cloud_id>]

The keywords network, system and configure assign some features or recipes to an identity <id>. The
features are a list of constrains separated by and, and a constrain is formed by <feature name> <operator>
<value>. For instance:

system tomcat_node (
cpu.count = 4 and
memory.size >= 1024M and
net_interface.0.connection = 'net'

)

This RADL defines a system with the feature cpu.count equal to four, the feature memory.size greater or equal
than 1024M and with the feature net_interface.0.connection bounded to 'net'.

The deploy keyword is a request to deploy a number of virtual machines. Some identity of a cloud provider can be
specified to deploy on a particular cloud.

31

http://imdocs.readthedocs.org/en/devel/radl.html


EC3 Documentation, Release 1.0

6.2 EC3 types of Templates

In EC3, there are three types of templates:

• images, that includes the system section of the basic template. It describes the main features of the machines
that will compose the cluster, like the operating system or the CPU and RAM memory required;

• main, that includes the deploy section of the frontend. Also, they include the configuration of the chosen
LRMS.

• component, for all the recipes that install and configure software packages that can be useful for the cluster.

In order to deploy a cluster with EC3, it is mandatory to indicate in the ec3 launch command, one recipe of kind
main and one recipe of kind image. The component recipes are optional, and you can include all that you need.

To consult the type (kind) of template from the ones offered with EC3, simply use the ec3 templates command
like in the example above:

$ ./ec3 templates

name kind summary
--------------------------------------------------------------------------------------
→˓-------------------------------

blcr component Tool for checkpoint the applications.
centos-ec2 images CentOS 6.5 amd64 on EC2.
ckptman component Tool to automatically checkpoint applications

→˓running on Spot instances.
docker component An open-source tool to deploy applications inside

→˓software containers.
gnuplot component A program to generate two- and three-dimensional

→˓plots.
nfs component Tool to configure shared directories inside a

→˓network.
octave component A high-level programming language, primarily

→˓intended for numerical computations
openvpn component Tool to create a VPN network.
sge main Install and configure a cluster SGE from

→˓distribution repositories.
slurm main Install and configure a cluster SLURM 14.11 from

→˓source code.
torque main Install and configure a cluster TORQUE from

→˓distribution repositories.
ubuntu-azure images Ubuntu 12.04 amd64 on Azure.
ubuntu-ec2 images Ubuntu 14.04 amd64 on EC2.

6.3 Network Features

Under the keyword network there are the features describing a Local Area Network (LAN) that some virtual ma-
chines can share in order to communicate to themselves and to other external networks. The supported features are:

outbound = yes|no Indicate whether the IP that will have the virtual machines in this network will be public
(accessible from any external network) or private. If yes, IPs will be public, and if no, they will be private.
The default value is no.

32 Chapter 6. Templates



EC3 Documentation, Release 1.0

6.4 System Features

Under the keyword system there are the features describing a virtual machine. The supported features are:

image_type = vmdk|qcow|qcow2|raw Constrain the virtual machine image disk format.

virtual_system_type = '<hypervisor>-<version>' Constrain the hypervisor and the version used
to deploy the virtual machine.

price <=|=|=> <positive float value> Constrain the price per hour that will be paid, if the virtual
machine is deployed in a public cloud.

cpu.count <=|=|=> <positive integer value> Constrain the number of virtual CPUs in the virtual
machine.

cpu.arch = i686|x86_64 Constrain the CPU architecture.

cpu.performance <=|=|=> <positive float value>ECU|GCEU Constrain the total computational
performance of the virtual machine.

memory.size <=|=|=> <positive integer value>B|K|M|G Constrain the amount of RAM memory
(main memory) in the virtual machine.

net_interface.<netId> Features under this prefix refer to virtual network interface attached to the virtual
machine.

net_interface.<netId>.connection = <network id> Set the virtual network interface is connected
to the LAN with ID <network id>.

net_interface.<netId>.ip = <IP> Set a static IP to the interface, if it is supported by the cloud provider.

net_interface.<netId>.dns_name = <string> Set the string as the DNS name for the IP assigned to
this interface. If the string contains #N# they are replaced by a number that is distinct for every virtual machine
deployed with this system description.

instance_type = <string> Set the instance type name of this VM.

disk.<diskId>.<feature> Features under this prefix refer to virtual storage devices attached to the virtual
machine. disk.0 refers to system boot device.

disk.<diskId>.image.url = <url> Set the source of the disk image. The URI designates the cloud
provider:

• one://<server>:<port>/<image-id>, for OpenNebula;

• ost://<server>:<port>/<ami-id>, for OpenStack;

• aws://<region>/<ami-id>, for Amazon Web Service;

• gce://<region>/<image-id>, for Google Cloud;

• azr://<image-id>, for Microsoft Azure Clasic; and

• azr://<publisher>/<offer>/<sku>/<version>, for Microsoft Azure; and

• <fedcloud_endpoint_url>/<image_id>, for FedCloud OCCI connector.

• appdb://<site_name>/<apc_name>?<vo_name>, for FedCloud OCCI connector using AppDB
info (from ver. 1.6.0).

• docker://<docker_image>, for Docker images.

• fbw://<fogbow_image>, for FogBow images.

Either disk.0.image.url or disk.0.image.name must be set.

6.4. System Features 33



EC3 Documentation, Release 1.0

disk.<diskId>.image.name = <string> Set the source of the disk image by its name in the VMRC server.
Either disk.0.image.url or disk.0.image.name must be set.

disk.<diskId>.type = swap|iso|filesystem Set the type of the image.

disk.<diskId>.device = <string> Set the device name, if it is disk with no source set.

disk.<diskId>.size = <positive integer value>B|K|M|G Set the size of the disk, if it is a disk
with no source set.

disk.0.free_size = <positive integer value>B|K|M|G Set the free space available in boot disk.

disk.<diskId>.os.name = linux|windows|mac os x Set the operating system associated to the con-
tent of the disk.

disk.<diskId>.os.flavour = <string> Set the operating system distribution, like ubuntu, centos,
windows xp and windows 7.

disk.<diskId>.os.version = <string> Set the version of the operating system distribution, like 12.04
or 7.1.2.

disk.0.os.credentials.username = <string> and disk.0.os.credentials.password = <string>
Set a valid username and password to access the operating system.

disk.0.os.credentials.public_key = <string> and disk.0.os.credentials.private_key = <string>
Set a valid public-private keypair to access the operating system.

disk.<diskId>.applications contains (name=<string>, version=<string>, preinstalled=yes|no)
Set that the disk must have installed the application with name name. Optionally a version can be specified.
Also if preinstalled is yes the application must have already installed; and if no, the application can be
installed during the contextualization of the virtual machine if it is not installed.

6.5 Special EC3 Features

There are also other special features related with EC3. These features enable to customize the behaviour of EC3:

ec3_max_instances = <integer value> Set maximum number of nodes with this system configuration;
a negative value means no constrain. The default value is -1. This parameter is used to set the maximum size of
the cluster.

ec3_destroy_interval = <positive integer value> Some cloud providers require paying in ad-
vance by the hour, like AWS. Therefore, the node will be destroyed only when it is idle and at the end of
the interval expressed by this option (in seconds). The default value is 0.

ec3_destroy_safe = <positive integer value> This value (in seconds) stands for a security mar-
gin to avoid incurring in a new charge for the next hour. The instance will be destroyed (if idle) in up to
(ec3_destroy_interval - ec3_destroy_safe) seconds. The default value is 0.

ec3_if_fail = <string> Set the name of the next system configuration to try when no more instances can be
allocated from a cloud provider. Used for hybrid clusters. The default value is ‘’.

ec3_inherit_from = <string> Name of the already defined system from which inherit its characteristics.
For example, if we have already defined a system wn where we have specified cpu and os, and we want to
change memory only for a new system, instead of writing again the values for cpu and os, we inherit these values
from the specified system like ec3_inherit_from = system wn. The default value is ‘None’.

ec3_reuse_nodes = <boolean> Indicates that you want to stop/start working nodes instead of powering
off/on them. The default value is ‘false’.

ec3_golden_images = <boolean> Indicates that you want to use the golden images feature. See golden
images for more info. The default value is ‘false’.

34 Chapter 6. Templates

http://ec3.readthedocs.io/en/devel/ec3.html#usage-of-golden-images
http://ec3.readthedocs.io/en/devel/ec3.html#usage-of-golden-images


EC3 Documentation, Release 1.0

ec3_additional_vm = <boolean> Indicates that you want this VM to be treated as an additional VM of the
cluster, for example, to install server services that you do not want to put in the front machine. The default value
is ‘false’.

ec3_node_type = <string> Indicates the type of the node. Currently the only supported value is wn. It
enables to distinguish the WNs from the rest of nodes. The default value is ‘None’.

ec3_node_keywords = <string> Comma separated list of pairs key=value that specifies some specific fea-
tures supported by this type of node (i.e. gpu=1,infiniband=1). The default value is ‘None’.

ec3_node_queues_list = <string> Comma separated list of queues this type of node belongs to. The
default value is ‘None’.

ec3_node_pattern = <string> A pattern (as a Python regular expression) to match the name of the virtual
nodes with the current node type The value of this variable must be set according to the value of the variable
ec3_max_instances. For example if ec3_max_instances is set to 5 a valid value can be: ‘wn[1-
5]’. This variable has preference over ec3_if_fail so if a virtual node to be switched on matches with the
specified pattern ‘‘ec3_if_fail‘ variable will be ignored. The default value is ‘None’.

6.6 System and network inheritance

It is possible to create a copy of a system or a network and to change and add some features. If fea-
ture ec3_inherit_from is presented, ec3 replaces that object by a copy of the object pointed out in
ec3_inherit_from and appends the rest of the features.

Next example shows a system wn_ec2 that inherits features from system wn:

system wn (
ec3_if_fail = 'wn_ec2' and
disk.0.image.url = 'one://myopennebula.com/999' and
net_interface.0.connection='public'

)

system wn_ec2 (
ec3_inherit_from = system wn and
disk.0.image.url = 'aws://us-east-1/ami-e50e888c' and
spot = 'yes' and
ec3_if_fail = ''

)

The system wn_ec2 that ec3 sends finally to IM is:

system wn_ec2 (
net_interface.0.connection='public' and
disk.0.image.url = 'aws://us-east-1/ami-e50e888c' and
spot = 'yes' and
ec3_if_fail = ''

)

In case of systems, if system A inherits features from system B, the new configure section is composed by the one from
system A followed by the one of system B. Following the previous example, these are the configured named after the
systems:

configure wn (
@begin
- tasks:

(continues on next page)

6.6. System and network inheritance 35



EC3 Documentation, Release 1.0

(continued from previous page)

- user: name=user1 password=1234
@end
)

configure wn_ec2 (
@begin
- tasks:

- apt: name=pkg
@end
)

Then the configure wn_ec2 that ec3 sends finally to IM is:

configure wn_ec2 (
@begin
- tasks:

- user: name=user1 password=1234
- tasks:

- apt: name=pkg
@end
)

6.7 Configure Recipes

Contextualization recipes are specified under the keyword configure. Only Ansible recipes are supported currently.
They are enclosed between the tags @begin and @end, like that:

configure add_user1 (
@begin
---

- tasks:
- user: name=user1 password=1234

@end
)

6.7.1 Exported variables from IM

To easy some contextualization tasks, IM publishes a set of variables that can be accessed by the recipes and have
information about the virtual machine.

IM_NODE_HOSTNAME Hostname of the virtual machine (without the domain).

IM_NODE_DOMAIN Domain name of the virtual machine.

IM_NODE_FQDN Complete FQDN of the virtual machine.

IM_NODE_NUM The value of the substitution #N# in the virtual machine.

IM_MASTER_HOSTNAME Hostname (without the domain) of the virtual machine doing the master role.

IM_MASTER_DOMAIN Domain name of the virtual machine doing the master role.

IM_MASTER_FQDN Complete FQDN of the virtual machine doing the master role.

36 Chapter 6. Templates



EC3 Documentation, Release 1.0

6.7.2 Including a recipe from another

The next RADL defines two recipes and one of them (add_user1) is called by the other (add_torque):

configure add_user1 (
@begin
---

- tasks:
- user: name=user1 password=1234

@end
)

configure add_torque (
@begin
---

- tasks:
- include: add_user1.yml
- yum: name=torque-client,torque-server state=installed

@end
)

6.7.3 Including file content

If in a vars map a variable has a map with key ec3_file, ec3 replaces the map by the content of file in the value.

For instance, there is a file slurm.conf with content:

ControlMachine=slurmserver
AuthType=auth/munge
CacheGroups=0

The next ansible recipe will copy the content of slurm.conf into /etc/slurm-llnl/slurm.conf:

configure front (
@begin

- vars:
SLURM_CONF_FILE:

ec3_file: slurm.conf
tasks:
- copy:

dest: /etc/slurm-llnl/slurm.conf
content: "{{SLURM_CONF_FILE}}"

@end
)

Warning: Avoid using variables with file content in compact expressions like this:

- copy: dest=/etc/slurm-llnl/slurm.conf content={{SLURM_CONF_FILE}}

6.7.4 Include RADL content

Maps with keys ec3_xpath and ec3_jpath are useful to refer RADL objects and features from Ansible vars. The
difference is that ec3_xpath prints the object in RADL format as string, and ec3_jpath prints objects as YAML
maps. Both keys support the next paths:

6.7. Configure Recipes 37



EC3 Documentation, Release 1.0

• /<class>/*: refer to all objects with that <class> and its references; e.g., /system/* and /network/
*.

• /<class>/<id> refer to an object of class <class> with id <id>, including its references; e.g., /
system/front, /network/public.

• /<class>/<id>/* refer to an object of class <class> with id <id>, without references; e.g., /system/
front/*, /network/public/*

Consider the next example:

network public ( )

system front (
net_interface.0.connection = 'public' and
net_interface.0.dns_name = 'slurmserver' and
queue_system = 'slurm'

)

system wn (
net_interface.0.connection='public'

)

configure slum_rocks (
@begin

- vars:
JFRONT_AST:

ec3_jpath: /system/front/*
XFRONT:

ec3_xpath: /system/front
tasks:
- copy: dest=/tmp/front.radl

content: "{{XFRONT}}"
when: JFRONT_AST.queue_system == "slurm"

@end
)

RADL configure slurm_rocks is transformed into:

configure slum_rocks (
@begin
- vars:

JFRONT_AST:
class: system
id: front
net_interface.0.connection:

class: network
id: public
reference: true

net_interface.0.dns_name: slurmserver
queue_system: slurm

XFRONT: |
network public ()
system front (

net_interface.0.connection = 'public' and
net_interface.0.dns_name = 'slurmserver' and
queue_system = 'slurm'

)
tasks:

(continues on next page)

38 Chapter 6. Templates



EC3 Documentation, Release 1.0

(continued from previous page)

- content: '{{XFRONT}}'
copy: dest=/tmp/front.radl
when: JFRONT_AST.queue_system == "slurm"

@end
)

6.8 Adding your own templates

If you want to add your own customized templates to EC3, you need to consider some aspects:

• For image templates, respect the frontend and working nodes nomenclatures. The system section for the
frontend must receive the name front, while at least one type of working node must receive the name wn.

• For component templates, add a configure section with the name of the component. You also need to add
an include statement to import the configure in the system that you want. See Including a recipe from another
for more details.

Also, it is important to provide a description section in each new template, to be considered by the ec3
templates command.

6.8. Adding your own templates 39

http://ec3.readthedocs.org/en/latest/templates.html#including-a-recipe-from-another


EC3 Documentation, Release 1.0

40 Chapter 6. Templates



CHAPTER 7

Frequently Asked Questions

These are some frequently asked questions that might solve your doubts when using EC3.

7.1 General FAQs

What Cloud Providers are supported by EC3 (Elastic Cloud Computing Cluster)?

Currently, EC3 supports OpenNebula, Amazon EC2, OpenStack, OCCI, LibCloud, Docker, Microsoft Azure, Google
Cloud Engine and LibVirt. All providers and interfaces are supported by the CLI interface. However, from the EC3aaS
interface, only support for Amazon EC2, Openstack, OpenNebula and EGI FedCloud is provided. More providers will
be added soon, stay tunned!

What Local Resource Management Systems (LRMS) are supported by EC3?

Currently, EC3 supports SLURM, Torque, Apache Mesos, SGE, HTCondor and Kubernetes.

Is it necessary to indicate a LRMS recipe in the deployment?

Yes, it is mandatory, because the cluster needs to have an LRMS system installed. This is why the LRMS recipes are
considered main recipes, needed to perform a deployment with EC3.

Is it secure to provide my credentials to EC3?

The user credentials that you specify are only employed to provision the resources (Virtual Machines, security groups,
keypairs, etc.) on your behalf. No other resources will be accessed/deleted. However, if you are concerned about
specifying your credentials to EC3, note that you can (and should) create an additional set of credentials, perhaps
with limited privileges, so that EC3 can access the Cloud on your behalf. In particular, if you are using Amazon Web
Services, we suggest you use the Identity and Access Management (IAM) service to create a user with a new set of
credentials. This way, you can rest assured that these credentials can be cancelled at anytime.

Can I configure different software packages than the ones provided with EC3 in my cluster?

Yes, you can configure them by using the EC3 CLI interface. Thus, you will need to provide a valid Ansible recipe to
automatically install the dependence. You can also contact us by using the contact section, and we would try to add
the software package you need.

41

http://www.opennebula.org/
https://aws.amazon.com/en/ec2
http://www.openstack.org/
http://occi-wg.org/
https://libcloud.apache.org/
https://www.docker.com/
http://azure.microsoft.com/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
http://libvirt.org/
http://ec3.readthedocs.org/en/latest/ec3.html
http://servproject.i3m.upv.es/ec3/
https://www.egi.eu/infrastructure/cloud/
http://www.schedmd.com/slurmdocs/slurm.html
http://www.adaptivecomputing.com/products/open-source/torque/
http://mesos.apache.org/
http://sourceforge.net/projects/gridscheduler/
https://research.cs.wisc.edu/htcondor/
https://kubernetes.io/
http://aws.amazon.com/iam/
http://ec3.readthedocs.org/en/latest/ec3.html


EC3 Documentation, Release 1.0

Why am I experimenting problems with Centos 6 when trying to deploy a Mesos cluster?

Because the recipe of Mesos provided with EC3 is optimized for Centos 7 as well as Ubuntu 14.04. If you want to
deploy a Mesos cluster, we encourage you to use one of each operative systems.

Which is the best combination to deploy a Galaxy cluster?

The best configuration for a elastic Galaxy cluster is to select Torque as a LRMS and install the NFS package. Support
for Galaxy in SGE is not provided. Moreover, we have detected problems when using Galaxy with SLURM. So, we
encourage you to use Torque and NFS in the EC3aaS and also with the EC3 CLI.

7.2 EC3aaS Webpage

Is my cluster ready when I receive its IP using the EC3aaS webpage?

Probably not, because the process of configuring the cluster is a batch process that takes several minutes, depending
on the chosen configuration. However, you are allowed to log in the front-end machine of the cluster since the moment
it is deployed. To know if the cluster is configured, you can use the command is_cluster_ready. It will check if the
cluster has been configured or if the configuration process is still in progress. If the command is_cluster_ready is not
recognised, wait a few seconds and try again, because this command is also installed in the configuration process.

Why can’t I deploy an hybrid cluster using the EC3aaS webpage?

Because no support is provided yet by the EC3aaS service. If you want to deploy a hybrid cluster, we encourage you
to use the CLI interface.

Why can I only access to Amazon EC2, Openstack, OpenNebula and EGI FedCloud Cloud providers while
other Cloud providers are supported by EC3?

Because no support is provided yet by the EC3aaS service. If you want to use another supported Cloud provider, like
Microsoft Azure or Google Cloud Engine, we encourage you to use the CLI interface.

What is the correct format for the “endpoint” in the OpenNebula and Openstack wizards?

The user needs to provide EC3 the endpoint of the on-premises Cloud provider. The correct format is
name_of_the_server:port. For example, for Openstack ostserver:5000, or for OpenNebula oneserver:2633. The same
format is employed in the authorization file required to use the CLI interface of EC3.

Why am I receiving this error “InvalidParameterCombination - Non-Windows instances with a virtualization
type of ‘hvm’ are currently not supported for this instance type” when I deploy a cluster in Amazon EC2?

This error is shown by the Cloud provider, because the instance type and the Amazon Machine Image selected are
incompatible. The Linux AMI with HVM virtualization cannot be used to launch a non-cluster compute instance.
Select another AMI with a virtualization type of paravirtual and try again.

Why am I receiving this error “VPCResourceNotSpecified - The specified instance type can only be used in a
VPC. A subnet ID or network interface ID is required to carry out the request.” when I deploy a cluster in
Amazon EC2?

This error is shown by the Cloud provider, because the instance type selected can only be used in a VPC. To use a
VPC, please, employ the CLI interface of EC3. You can specify the name of an existent VPC in the RADL file. More
info about Amazon VPC.

Why can’t I download the private key of my cluster?

If you are experimenting problems downloading the private key of your cluster (deployed in Amazon EC2), please,
try with another browser. The website is currently optimized for Google Chrome.

Where can I get the endpoint and VMI identifier for the EGI FedCloud wizard?

42 Chapter 7. Frequently Asked Questions

http://ec3.readthedocs.org/en/latest/ec3.html
http://azure.microsoft.com/
https://cloud.google.com/compute/
http://ec3.readthedocs.org/en/latest/ec3.html
http://ec3.readthedocs.org/en/latest/ec3.html
http://aws.amazon.com/vpc/


EC3 Documentation, Release 1.0

In the EGI FedCloud case, the endpoint and VMI identifier can be obtained from the AppDB portal. In the cloud
marketplace select the desired VMI then select the site to launch it (considering your VO) and click the “get IDs”
button. The field “Site endpoint” shows the value of the endpoint to specify in the wizard (without a “/” character after
the port) and the value after the “#” char of the OCCI ID field the VMI Indentifier. Finally the value after the “#” char
of the Template ID field shows the type of the instance type (In some OpenStack sites you must replace the “.” char
with a “-“, e.g. m1.small to m1-small).

Can I configure software packages in my cluster that are not available in the wizard?

You can configure them by using the EC3 CLI interface. Thus, you will need to provide a valid Ansible recipe to
automatically install the dependence. You can also contact us by using the contact section, and we would try to add
the software package you need.

What is the OSCAR option that appears as a LRMS?

In OpenNebula and EGI Fedcloud there is an option to deploy as an LRMS the OSCAR (Open Source Serverless
Computing for Data-Processing Applications ) framework, that is an open-source platform to support the Functions as
a Service (FaaS) computing model for file-processing applications. This option deploys a Kubernetes cluster with the
OSCAR framework and all its dependences.

7.2. EC3aaS Webpage 43

https://appdb.egi.eu
http://ec3.readthedocs.org/en/latest/ec3.html
https://github.com/grycap/oscar


EC3 Documentation, Release 1.0

44 Chapter 7. Frequently Asked Questions



CHAPTER 8

About

EC3 has been developed by the Grid and High Performance Computing Group (GRyCAP) at the Instituto de Instru-
mentación para Imagen Molecular (I3M) from the Universitat Politècnica de València (UPV).

This development has been supported by the following research projects:

• Advanced Services for the Deployment and Contextualisation of Virtual Appliances to Support Programming
Models in Cloud Environments (TIN2010-17804), Ministerio de Ciencia e Innovación

• Migrable Elastic Virtual Clusters on Hybrid Cloud Infrastructures (TIN2013-44390-R), Ministerio de Economía
y Competitividad

• Ayudas para la contratación de personal investigador en formación de carcter predoctoral, programa VALi+d
(grant number ACIF/2013/003), Conselleria d’Educació of the Generalitat Valenciana.

The following publications summarise both the development and integration in larger architecture. Please acknowledge
the usage of this software by citing the last reference:

• Caballer, M.; de Alfonso, C.; Alvarruiz, F. and Moltó, G.; “EC3: Elastic Cloud Computing Cluster”. Journal
of Computer and System Sciences, Volume 78, Issue 8, December 2013, Pages 1341-1351, ISSN 0022-0000,

45

http://www.grycap.upv.es
http://www.i3m.upv.es
http://www.i3m.upv.es
http://www.upv.es


EC3 Documentation, Release 1.0

10.1016/j.jcss.2013.06.005.

• Calatrava, A.; Caballer, M.; Moltó, G.; and de Alfonso, C.; “Virtual Hybrid Elastic Clusters in the Cloud”.
Proceedings of 8th IBERIAN GRID INFRASTRUCTURE CONFERENCE (Ibergrid), pp. 103 - 114 ,2014.

• “Custom elastic clusters to manage Galaxy environments”. In: EGI Inspired Newsletter (Issue 22), pp 2, January
2016. Available here.

• Calatrava, A,; Romero, E.; Caballer, M.; Moltó, G.; and Alonso, J.M.; “Self-managed cost-efficient
virtual elastic clusters on hybrid Cloud infrastructures”. Future Generation Computer Systems, 2016.
doi:10.1016/j.future.2016.01.018.

Preprints are available here.

Also, EC3 has been integrated in the EGI Platform for the long-tail of science (access available through here), and it
is available as one of the services of the European Open Science Cloud Marketplace

46 Chapter 8. About

http://www.egi.eu/news-and-media/newsletters/Inspired_Issue_22/Custom_elastic_clusters_to_manage_Galaxy_environments.html
http://www.grycap.upv.es/gmolto/publications.php
https://marketplace.egi.eu/42-applications-on-demand-beta
https://marketplace.eosc-portal.eu/services/elastic-cloud-compute-cluster-ec3


CHAPTER 9

Indices and tables

• genindex

• search

47



EC3 Documentation, Release 1.0

48 Chapter 9. Indices and tables



Index

Symbols
-add

ec3-launch command line option, 15
ec3-reconfigure command line

option, 16
-dry-run

ec3-launch command line option, 16
-force

ec3-destroy command line option, 17
-json

ec3-launch command line option, 16
ec3-list command line option, 17
ec3-show command line option, 17
ec3-templates command line option,

18
-on-error-destroy

ec3-launch command line option, 16
-show-only

ec3-ssh command line option, 17
-template, -t

ec3-reconfigure command line
option, 16

-a <file>, -auth-file <file>
ec3-clone command line option, 18
ec3-launch command line option, 16
ec3-migrate command line option, 18
ec3-reconfigure command line

option, 16
ec3-restart command line option, 19
ec3-stop command line option, 19
ec3-transfer command line option, 19

-b <bucket_name>, -bucket
<bucket_name>

ec3-migrate command line option, 18
-d <provider>, -destination <provider>

ec3-clone command line option, 18
ec3-migrate command line option, 18

-e, -eliminate
ec3-clone command line option, 18

ec3-migrate command line option, 19
-f, -full-description

ec3-templates command line option,
18

-g, -golden-images
ec3-launch command line option, 16

-l <file>, -log-file <file>
ec3 command line option, 15

-ll <level>, -log-level <level>
ec3 command line option, 15

-n, -name
ec3-templates command line option,

18
-n, -not-store

ec3-launch command line option, 16
-p, -print

ec3-launch command line option, 16
-q, -quiet

ec3 command line option, 15
-r, -refresh

ec3-list command line option, 17
ec3-show command line option, 17

-r, -reload
ec3-reconfigure command line

option, 16
-s, -search

ec3-templates command line option,
17

-u <url>, -restapi-url <url>
ec3-clone command line option, 18
ec3-launch command line option, 16
ec3-migrate command line option, 18
ec3-restart command line option, 19
ec3-stop command line option, 19
ec3-transfer command line option, 19

-y, -yes
ec3-launch command line option, 16
ec3-stop command line option, 19

49



EC3 Documentation, Release 1.0

C
clustername

ec3-launch command line option, 15
ec3-restart command line option, 19
ec3-stop command line option, 19
ec3-transfer command line option, 19

E
ec3 command line option

-l <file>, -log-file <file>, 15
-ll <level>, -log-level <level>, 15
-q, -quiet, 15

ec3-clone command line option
-a <file>, -auth-file <file>, 18
-d <provider>, -destination

<provider>, 18
-e, -eliminate, 18
-u <url>, -restapi-url <url>, 18

ec3-destroy command line option
-force, 17

ec3-launch command line option
-add, 15
-dry-run, 16
-json, 16
-on-error-destroy, 16
-a <file>, -auth-file <file>, 16
-g, -golden-images, 16
-n, -not-store, 16
-p, -print, 16
-u <url>, -restapi-url <url>, 16
-y, -yes, 16
clustername, 15
template_0 ..., 15

ec3-list command line option
-json, 17
-r, -refresh, 17

ec3-migrate command line option
-a <file>, -auth-file <file>, 18
-b <bucket_name>, -bucket

<bucket_name>, 18
-d <provider>, -destination

<provider>, 18
-e, -eliminate, 19
-u <url>, -restapi-url <url>, 18

ec3-reconfigure command line option
-add, 16
-template, -t, 16
-a <file>, -auth-file <file>, 16
-r, -reload, 16

ec3-restart command line option
-a <file>, -auth-file <file>, 19
-u <url>, -restapi-url <url>, 19
clustername, 19

ec3-show command line option

-json, 17
-r, -refresh, 17

ec3-ssh command line option
-show-only, 17

ec3-stop command line option
-a <file>, -auth-file <file>, 19
-u <url>, -restapi-url <url>, 19
-y, -yes, 19
clustername, 19

ec3-templates command line option
-json, 18
-f, -full-description, 18
-n, -name, 18
-s, -search, 17

ec3-transfer command line option
-a <file>, -auth-file <file>, 19
-u <url>, -restapi-url <url>, 19
clustername, 19

T
template_0 ...

ec3-launch command line option, 15

50 Index


	Introduction
	Installation
	Basic example with Amazon EC2
	EC3 in Docker Hub
	Additional information

	Architecture
	Overview
	General Architecture
	Infrastructure Manager
	RADL
	CLUES

	Deployment Models
	Basic structure (homogeneous cluster)
	Heterogeneous cluster
	Cloud Bursting (Hybrid clusters)

	Command-line Interface
	Command launch
	Command reconfigure
	Command ssh
	Command destroy
	Command show
	Command list
	Command templates
	Command clone
	Command migrate
	Command stop
	Command restart
	Command transfer
	Configuration file
	Authorization file
	Usage of Golden Images

	Web Interface
	Overview
	Initial Steps
	Configuration and Deployment of a Cluster in EGI Cloud Compute
	Configuration and Deployment of a Cluster in HelixNebula Cloud
	Management of deployed clusters

	Templates
	Basic structure
	EC3 types of Templates
	Network Features
	System Features
	Special EC3 Features
	System and network inheritance
	Configure Recipes
	Adding your own templates

	Frequently Asked Questions
	General FAQs
	EC3aaS Webpage

	About
	Indices and tables
	Index

