
EMBL-EBI Cloud Portal Documentation
Release 0.1.1

Gianni dalla Torre, Dario Vianello

Jan 25, 2019





Contents:

1 Using the EMBL-EBI Cloud Portal 1
1.1 How to access the EMBL-EBI Cloud Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Setting up up your Cloud Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Managing the Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Packaging Applications for the EMBL-EBI Cloud Portal 5
2.1 The tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The EMBL-EBI Cloud Portal packaging structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The deployment process: an end-to-end overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Avoid security credentials on git public repository 19
3.1 git-secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Setting a Jenkins job guarding a repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 API Endpoint documentation 25

5 Indices and tables 27

i



ii



CHAPTER 1

Using the EMBL-EBI Cloud Portal

The EMBL-EBI Cloud Portal is offered as a service to ELIXIR users as well as users coming from other research
communities and institutions.

1.1 How to access the EMBL-EBI Cloud Portal

The EMBL-EBI Cloud Portal is available at the address https://cloud-portal.ebi.ac.uk.

At the moment, users needs to sign-up for an ELIXIR account to access the EMBL-EBI Cloud Portal. You can easily
obtain your ELIXIR identity for free at the ELIXIR sign-up page, and go to the EMBL-EBI Cloud Portal login page
at https://cloud-portal.ebi.ac.uk/welcome/login.

1.2 Setting up up your Cloud Profile

Your Cloud Profile contains all the information required to deploy your applications to a given cloud provider. It’s
subdivided in three sections: Configurations , Cloud Credentials, and Deployment Parameters. Cloud Credentials are
combined with a set of Deployment Parameters and a SSH public key to give the Configuration required to deploy a
certain application in the cloud provider of choice.

You can access your current Cloud Profile here (You need to log-in first!)

1.2.1 Cloud Credentials

Interacting with clouds, being them private or public, usually requires authentication. Many of the tools used to
interact with cloud APIs rely on environment variables to source authentication tokens, with the clear advantage of
not requiring credentials to lie in some file with your filesystem. Terraform, the open-source tools that the EMBL-EBI
Cloud Portal uses to provision the required virtual infrastructure, is not an exception to this.

Each cloud provider requires a set of cloud credentials. While it’s possible somebody has shared some credentials
with you already via a Team, you can find the instructions to insert you personal Cloud Credentials below.

1

https://cloud-portal.ebi.ac.uk
https://www.elixir-europe.org
https://cloud-portal.ebi.ac.uk
https://www.elixir-europe.org
https://cloud-portal.ebi.ac.uk
https://www.elixir-europe.org
https://www.elixir-europe.org/register
https://cloud-portal.ebi.ac.uk/welcome/login
https://www.terraform.io
https://cloud-portal.ebi.ac.uk
https://cloud-portal.ebi.ac.uk


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

Amazon Web Service (AWS)

Add your Cloud Credentials like this:

Key Value
AWS_ACCESS_KEY_ID YOUR_ACCESS_KEY
AWS_SECRET_ACCESS_KEY YOUR_SECRED_KEY
AWS_DEFAULT_REGION (Optional) YOUR_AWS_REGION

You can find this information in you AWS user page under the section IAM —> USERS (or via the official docs).
AWS_DEFAULT_REGION is optional and can be omitted if the region is selected in another way (i.e. via a Terraform
variable specificied in the Deployment Parameters). A list of the AWS regions can be found here.

Azure

Add your Cloud Credentials like this:

Key Value
ARM_SUBSCRIPTION_ID YOUR_SUBSCRIPTION_ID
ARM_CLIENT_ID YOUR_CLIENT_ID
ARM_CLIENT_SECRET YOUR_CLIENT_SECRET
ARM_TENANT_ID YOUR_TENANT_ID
ARM_ENVIRONMENT public

In order to use Terraform with Azure it is required to create a Service Principal via the Azure portal. The
Terraform documentation provide an extensive explanation on how to obtain this in its official documentation.

OpenStack

Add your Cloud Credentials like this:

Key Value
OS_AUTH_URL YOUR_AUTH_URL
OS_USERNAME YOUR_USERNAME
OS_PASSWORD YOUR_PASSWORD
OS_TENANT_ID YOUR_TENANT_ID
OS_TENANT_NAME YOUR_TENANT_NAME
OS_REGION_NAME YOUR_REGION_NAME

The specific set of values for your OpenStack provider might be slightly different and is contained in the OpenStack
RC file, which is project-specific and contains the credentials used by all the OpenStack services.

You can download the OpenStack RC file file from the OpenStack dashboard as an administrative user or any
other user.

1. Log in to the OpenStack dashboard.

2. Choose the Project for which you want to download the OpenStack RC file

3. Click Compute—> API Access. (In older version of OpenStack click Compute—>‘‘Access & Security‘‘)

4. Click Download OpenStack RC File and save the file.

2 Chapter 1. Using the EMBL-EBI Cloud Portal

https://aws.amazon.com
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://www.terraform.io
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://www.terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal-in-the-azure-portal


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

Google Cloud Platform (GCP)

Authenticating with Google Cloud services requires the set up of the GOOGLE_CREDENTIALS variable, as described
in the official GCP documentation.

While locally GOOGLE_CREDENTIALS can simply point to a JSON file containing your access keys, in the EMBL-
EBI Cloud Portal you’re required to upload the JSON string directly.

The JSON file can be downloaded directly from the Google Developers Console following these steps:

1. Log into the Google Developers Console and select a project.

2. The API Manager view should be selected, click on Credentials on the left, then Create
credentials, and finally “Service account key”.

3. Select Compute Engine default service account in the Service account drop-down, and
select JSON as the key type.

4. Clicking Create will download your credentials.

Once you have your credentials you can add them to Cloud Credentials in this form:

Key Value
GOOGLE_CREDENTIALS { "type":"service_account", [..]}

1.2.2 Deployment parameters

Deployment parameters represent a set of inputs specific that are related to the cloud provider and eventually
to a specific application. In general, they provide information about the shared instances that you can have in place in
your cloud provider or just information that you prefer to set up just the first time and avoid to repeat every time you
deploy the instance.

The deployment parameters required by an appliance are expressed in the documentation page of the git repository of
the same appliance.

For your convenience you can use a single deployment parameter configuration for different appliances: it will
make use only of the share inputs ignoring the ones that are not relevant. A deployment parameter can also be used to
overwrite any of the variables defined in the terraform.tfvars file even when it is not reported as input in the
manifest file.

1.2.3 Configurations

Configurations represent a way to link a set of Cloud Credentials with a set of Deployment Parameters and an SSH
public key. The use of a configuration simplifies the deployment of the applications, allowing to store and reuse as
much configuration as possible.

Specify a new configuration is very easy:

• click on the + button;

• assign a name of your choice;

• choose one of the Cloud Provider that you have previously defined;

• choose one of the Deployment parameters that you have previously defined;

• (optionally) add a public SSH key.

1.2. Setting up up your Cloud Profile 3

https://developers.google.com/identity/protocols/application-default-credentials#howtheywork
https://console.developers.google.com/
https://console.developers.google.com/


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

1.3 Inputs

Inputs parameters represent a set of parameters that are likely going to change per deployment and thus cannot
determined in advance. The best example of this is the number of nodes a compute cluster you’re about to deploy will
need to have.

Inputs can also refer to variables defined in Deployment Parameters, and thus allow to override them only when
required.

1.4 Managing the Registry

1.4.1 How to add an Application to the Registry

Adding a new Application is very simple: you just need to know the URL of the git repository where the Applications is
stored. As a test, you can add one of the applications maintained by the TSI team: https://github.com/EMBL-EBI-TSI/
cpa-instance

Starting from the EMBL-EBI Cloud Portal Home: - Click Application Repository in the menu on the left-hand side; -
Click on the + button; - Enter the URL of the git repository; - Click Add.

Your new application is now included in your Repository!

1.4.2 Applications compliance

The EMBL-EBI Cloud Portal requires the presence of a well-formed Manifest file in the root directory of each
git repository containing an Application. This file is is a simple JSON file

The manifest.json file contains a simple dictinary specifying, for example, the Application name and mainainer
along with the supported Cloud Providers. Trying to add an Application repository that does not contain - or contains
a malformed manifest file, will result in an error.

4 Chapter 1. Using the EMBL-EBI Cloud Portal

https://github.com/EMBL-EBI-TSI/cpa-instance
https://github.com/EMBL-EBI-TSI/cpa-instance
https://portal.tsi.ebi.ac.uk/repository


CHAPTER 2

Packaging Applications for the EMBL-EBI Cloud Portal

Note: The EMBL-EBI Cloud Portal is still in a very active development phase. We strive to keep this documentation
in sync with the EMBL-EBI Cloud Portal developments, but there might be some minor delays.

The EMBL-EBI Cloud Portal has been built to provide an App-Store-like experience when deploying applications to
private as well as public clouds, independently from their complexity. Leveraging multiple open source tools (see The
tools), the Portal can orchestrate complex virtual infrastructures ranging from batch systems to Pipeline-as-a-service
scenarios, where the limit is only set by the application developer. This approach, called Infrastructure as Code, allows
to reproducibily deploy virtual resources in one or multiple cloud providers in an highly automated way. The EMBL-
EBI Cloud Portal builds on top of these tools to provide a resilient REST API and a web interface allowing users
with little to no knowledge of IT management to easily self-provision the infrastructure they require. The process of
wrapping infrastructure and workloads in an App that will be then understood and deployed by the EMBL-EBI Cloud
Portal is called packaging.

2.1 The tools

While the EMBL-EBI Cloud Portal can easily fall in the category of the Cloud Orchestrators, one of its streghts
is taking advantage of widely adopted Open Source tools to deploy and configure the infrastructure it is required to
manage. Adopting this approach limits the amount of efforts that are required to, for example, stay on top of all the
changes in the Cloud APIs that providers expose to access their services, to focus on its own very mission: support IT
staff as well as researchers in easily deploy the infrastructure they require for their needs.

As previously mentioned, the EMBL-EBI Cloud Portal takes advantage of two open source tools to orchestrate infras-
tructure, namely Terraform and Ansible. Let’s explore them a little bit further, then!

2.1.1 Terraform

Terraform allows to define the virtual infrastructure an application requires to run in an easily understandable declar-
ative template written in HCL (HashiCorp Configuration Language). VMs, networks, firewalls and storage volumes
can easily be defined in a single or multiple files, leaving to Terraform to understand dependencies between all these

5

https://en.wikipedia.org/wiki/Infrastructure_as_Code
https://www.terraform.io
https://www.ansible.com/
https://www.terraform.io
https://www.terraform.io/docs/configuration/syntax.html
https://www.terraform.io


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

resources and thus the order in which they must be created. Cloud providers offering are, however, too diverse to allow
a single template to be automatically deployed across several of them. Terraform doesn’t try to hide these differences,
For this reason, the person in charge of packaging applications will need to define a Terraform template for each cloud
provider he or she intends to support the application for. However, this usually comes down to a very reasonable
mapping exercise between each cloud provider object names. This can be seen as a downside of Terraform but, on the
other hand, it allows to take advantage many of the vendor-specific features and services that wouldn’t otherwise be
possible to access. At the time of writing, Terraform supports the major public cloud providers (AWS, Google Cloud
Platform, Microsoft Azure, and many more) as well as OpenStack. There are (as always) other cloud orchestrators that
are able to deliver similar functionalities, but they are usually bound to a single platform (i.e. AWS CloudFormation
or OpenStack Heat).

The Terraform lifecycle

Terraform is based on a declarative language, which allows you to define the desired layout of the infrastructure you
want to provision in the cloud. The state of each Terraform deployment is tracked in what is called a state file, which
is basically a list of all the resources Terraform has deployed in the previous run. Comparing the state file with the
desired state defined in the templates, Terraform can compute their diff and incrementally change a deployment, i.e.
increasing the number of nodes in a cluster, or recover from failures.

Planning

Depending on the initial state being an empty or a partially provisioned environment, the operations Terraform will
need to perform will be different. For this reason, the software allows listing all the tasks that will be carried out in
the following run, comparing the desired state defined in the template and the state file and defining a plan that you
can revise. This is obtained simply running terraform plan within the folder containing the Terraform template.
Keep in mind that if the state file reports that some components are already deployed, Terraform will check if they are
still in place and adjust the plan accordingly.

Applying

terraform apply is the operation that deploys a Terraform template to a cloud provider. Terraform will read the
template and the state file (if any) figuring out which operations must be carried out to reach convergence, and apply
them. This process may take a while, depending on the extent of the required changes and their dependencies, but can
usually be greatly speeded up increasing the parallelism, or the number of objects Terraform will act on at the same
time. Once the deployment is complete, Terraform will print out any output defined in the template and exit.

Destroying

After its honourable service, your infrastructure is ready to be torn down or destroyed, following Terraform’s nomen-
clature. Not violating dependencies is an important factor to consider here, as this might cause errors in the destroy
process (i.e. removing a subnetwork while instances are still hooked into it). Terraform wraps all this into an easy to
use a single command: terraform destroy.

2.1.2 Ansible

While Terraform provides some features to configure (or localise) VMs after they’re launched, this is limited to up-
loading bash scripts or run bash commands through SSH. Configuring and orchestrating complex deployments usually
requires a fully fledged configuration management system. Countless different software are available to solve this
problem, each of them having its own strong and weak points. We’ve eventually chosen Ansible as the configuration
management system for the EMBL-EBI Cloud Portal deployments for several reasons:

6 Chapter 2. Packaging Applications for the EMBL-EBI Cloud Portal

https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
https://azure.microsoft.com/en-gb/
https://www.terraform.io/docs/providers/index.html
https://www.openstack.org/
https://aws.amazon.com/cloudformation/
https://docs.openstack.org/heat/latest/
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.ansible.com/


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

• configuration is written in YAML, an easy-to-read and easy-to-write language.

• the learning curve is very gentle, and most bash scripts can be easily mapped (and improved!) in Ansible tasks.

• it doesn’t require any agent on the target VMs, only SSH access.

After a set of resources is created by Terraform, Ansible can take over and apply the configuration changes (i.e. install
packages, update configuration files and so on).

While Ansible represents our choice in all the deployment situations, it doesn’t imply that applications themselves are
forced to use this tool. For example, it would be quite easy to to use Ansible to bootstrap a Salt server (or a Puppet
master) that is then used by other VMs to configure themselves.

Note: Since version 2.0 Ansible has added several modules to provision virtual infrastructure as Terraform does.
However, Terraform still provides clear advantages, such as dependencies resolution, state tracking, and a much wider
range of supported clouds. For these reasons, it still represents our preferred choice.

Warning: While there’s nothing to stop you from using Ansible to provision the virtual infrastructure required by
your Application, doing so will prevent the EMBL-EBI Cloud Portal from tracking resource consumption as this
feature relies on inspecting the Terraform state file.

2.1.3 Linking Terraform and Ansible

Terraform outputs the final state of the deployment in a state file. However, Ansible relies on an inventory file to know
to IP addresses of the VMs it needs to talk with and their logical grouping. To bridge this gap, the EMBL-EBI Cloud
Portal supports terraform-inventory, a small GO app that is able to parse a Terraform state file and output its content
as an Ansible inventory.

Of course, developers are not bound to use this method to connect Terraform and Ansible. Solutions such as the
Terraform Ansible Provisioner or even custom scripts are viable options, depending on the needs of the App developer.

2.2 The EMBL-EBI Cloud Portal packaging structure

The EMBL-EBI Cloud Portal has been designed to provide as much flexibility as possible when dealing with Apps
development. However, some conventions need to be followed while designing your App in order for it to work
properly and to take advantage of all the features we provide.

2.2.1 Cloud providers

The Cloud world can be, as the name says, very cloudy. However, the EMBL-EBI Cloud Portal needs to be absolutely
sure of which cloud provider an application can be deployed to ensure it’s providing the right set of configurations to
the final user of your App. For this reason, the EMBL-EBI Cloud Portal relies on a homogeneous labelling of Cloud
Providers in the Apps definition as well as in the REST API and the web application. You must follow this convention:

Cloud Provider Label
Amazon Web Services AWS
Google Compute Platform GCP
Microsoft Azure AZURE
OpenStack OSTACK

2.2. The EMBL-EBI Cloud Portal packaging structure 7

https://en.wikipedia.org/wiki/YAML
https://www.terraform.io
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.ansible.com/
https://github.com/adammck/terraform-inventory
https://www.terraform.io
https://www.ansible.com/
https://www.terraform.io
https://www.ansible.com/
https://github.com/jonmorehouse/terraform-provisioner-ansible


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

If the Cloud Provider you want to write an App for isn’t listed here, please get in touch with us - we’ll be happy to add
it to the list!

2.2.2 Where to store your code

First things first, where do you need to store your code?

The code defining an application for the EMBL-EBI Cloud Portal must be tracked within a Git repository publicly
clonable over the internet. This is a fundamental requirement, as the way the Portal imports applications in your
Registry is cloning such repositories.

Adopting Git as our main delivery mechanisms allows us to easily track code changes, keep dev and prod deploy-
ments separated in different branches, and provides a well-established approach for final users to further customise
deployments above what initially foreseen by the App developer simply forking the original repository and applying
the required changes.

2.2.3 The general structure

Apps, especially those supporting multiple cloud providers, can consist of a reasonable number of lines of code
scattered across multiple files and written in several languages. It is thus important to keep some logical order in the
codebase to help other users - and yourself in a few months! - understand how your application has been defined and
operates. From the EMBL-EBI Cloud Portal perspective, there are a few requirements that must be satisfied when
writing your app, and we’ll cover those in the next sections.

Separate Cloud Providers

The code used to deploy to each cloud provider - being it Terraform, Ansible or anything else you require - must be
stored in a dedicated folder. The names of these folders are currently not subject to any restriction, but we suggest to
give them meaningful names (such as those suggested in the Cloud providers section above).

Following this convention ensures that the repository will be more easily understood by other developers and help
configuration matching.

Separate Terraform and Ansible

As for the Cloud Providers, we suggest keeping separate the Terraform and Ansible codebases as this improves the
readability and maintainability of the repository. Also, it allows for some tricks like sharing the same Ansible code
among different cloud providers (symlinks are good!) or using git submodules to share code between several deploy-
ments.

Manifest file

The manifest file is a file containing a JSON dict providing a description of the application parsed by the EMBL-EBI
Cloud Portal when loading it. You can find more information on its structure and the mandatory fields in the The
manifest file section below.

Deployment scripts

When deploying or destroying an Application, the EMBL-EBI Cloud Portal doesn’t directly execute Terraform or
Ansible, but executes the deploy.sh and destroy.sh scripts that it expects to find in each folder dealing with a

8 Chapter 2. Packaging Applications for the EMBL-EBI Cloud Portal

https://www.terraform.io
https://www.ansible.com/
https://www.terraform.io
https://www.ansible.com/
https://www.ansible.com/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.terraform.io
https://www.ansible.com/


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

cloud provider deployment. A third script, state.sh, is executed after the deployment succeeds to capture a snap-
shot of the deployed infrastructure. More details on how these scripts should be coded are available in the Deployment
scripts section.

Auxiliary scripts

There might be situations requiring additional scripts or tools to carry out the deployment successfully. Feel free to
add them to a folder within the repo, either in a cloud provider-specific folder if it’s needed only by a single cloud
provider or in a generic folder in the root of the repository if you need it in all clouds.

The final structure

Putting everything together, here’s how a repository hosting a packaged App looks like:

.gitignore
README.md
aws
ansible -> ../gcp/ansible/
deploy.sh
destroy.sh
state.sh
terraform

gcp
ansible
deploy.sh
destroy.sh
state.sh
terraform

manifest.json
ostack
ansible -> ../gcp/ansible/
deploy.sh
destroy.sh
state.sh
terraform
volume_parser.py

As you can see, there’s a file manifest.json at the root of it, and then folders storing code for each cloud provider.
In this particular repo, the Ansible code is shared among the cloud providers via symlinks, but this is not a strict
requirement. Being fully honest, there’s hardly strict requirements at all in the way the Portal consumes applications!

2.2.4 The manifest file

Each repository defining an application must contain a JSON file, called a manifest fine, at the root of the repo. This
file is parsed by the EMBL-EBI Cloud Portal when adding an application to the Registry to extract things such as
application name, version, contact email of the maintainer, and so on. Here’s an example of the manifest file defining
a Generic server instance App supporting both AWS and OSTACK:

{
"applicationName": "Generic server instance",
"contactEmail": "somebody@ebi.ac.uk",
"about": "A base virtual machine instance",
"version": "0.6",
"cloudProviders": [

(continues on next page)

2.2. The EMBL-EBI Cloud Portal packaging structure 9

https://www.ansible.com/


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

(continued from previous page)

{
"cloudProvider": "AWS",
"path": "aws",
"inputs": [

"instance_type"
]

},
{

"cloudProvider": "OSTACK",
"path": "ostack",
"inputs": [

"flavor_name"
]

}
],
"deploymentParameters": [
"network_name",
"floatingip_pool",
"subnet_id"

],
"inputs": [
"disk_image"

],
"outputs": [
"external_ip"

],
"volumes": [
]

}

Nothing too difficult, hopefully! The manifest is logically divided in two parts: one dealing with the general descrip-
tion of the application, and one dealing with configurations that are specific to a cloud provider. Let’s start from the
general one first

Cloud provider independent bits

This part of the manifest deals with all the information that is cloud provider independent, such as name of the App,
maintainer, version, as well as inputs and outputs. While many of the fields are self-explanatory, here’s a run down of
all of them:

applicationName (Required) The name of the application packaged in the git repo.

As users can have many applications in their Registries, going for a descriptive name is a good approach (some
server isn’t going to get you far!).

contactEmail (Required) The email address of the person (or group) in charge of maintaining the Application and
provide support for it. Mandatory

about (Required) A one-line description on what the Application does. Mandatory

This will be displayed below the title in the App card within the Repository.

version (Required) The current version of the application. This is also displayed in the App card in the Repository.

deploymentParameters (Optional) A list of the Deployment Parameters for this app.

Deployment parameters are all those parameter that do not change between deployments, but are cloud provider
or tenancy specific. For example, the name (or id) of the external network in an Openstack cloud depends on

10 Chapter 2. Packaging Applications for the EMBL-EBI Cloud Portal



EMBL-EBI Cloud Portal Documentation, Release 0.1.1

the cloud itself, but is always the same when deploying to a given cloud. It thus makes sense to separate these
parameters from deployment-dependent parameters (see inputs for those) to save the user the hassle to type them
every time.

Variables defined here will be injected by the EMBL-EBI Cloud Portal in the deployment environ-
ment prepended with the suffix TF_VAR_ to allow Terraform to use them directly. Values for the
deploymentParameters variables are sourced at deployment time from the Deployment parameters refer-
enced in the configuration selected by the user.

inputs (Optional) A list of the inputs required by the Application.

In this particular case the disk_image (also called image name) to be used when creating the virtual machine.
Inputs should preferred over deploymentParameters when their value needs to change at each deployment. In
our case, the base disk will be different each time the user wants to deploy a different OS (CentOS, Ubuntu,
BioLinux,. . . ) so it makes sense to keep it as input.

Input fields will be shown by the EMBL-EBI Cloud Portal for each of the inputs defined in the manifest to to
allow users to customise the deployment behaviour. As for the deploymentParameters, all the values will be
injected as environment variables with the TF_VAR prefix.

outputs (Optional) A list of the outputs the Application wants to show to the user.

A very common use case when deploying infrastructure to the cloud is the need to show back to the user some
information resulting from the deployment itself, for example the external IP address of the VM that has just
been deployed.

The EMBL-EBI Cloud Portal will scan the output of the Terraform state file looking for the strings defined in
this JSON array, and display the result to the user.

volumes (Optional) A list of the volumes the Application requires to work.

Sometimes, a deployment requires attaching a previously defined volume. For example, some data may be
staged in via a GridFTP server on a particular volume, that is then re-attached to an NFS server serving a batch
system. The EMBL-EBI Cloud Portal allows to completely separate the volumes lifecycle from the lifecycle of
applications. Adding a volume name (i.e. DATA_DISK_ID) to volumes automatically displays a drop-down
menu listing all the volumes deployed through the EMBL-EBI Cloud Portal on the deployment card. The id
of the selected volume (as provided by the cloud provider, not the portal internal id!) is then injected into the
deployment process as an environment variable (i.e. TF_VAR_DATA_DISK_ID in our example).

Warning: Variables defined in deploymentParameters, inputs and volumes will be injected by the EMBL-EBI
Cloud Portal in the deployment environment prepended with the suffix TF_VAR_ to allow Terraform to use them
directly. Keep this in mind when you’re using these variables in Ansible!

Defining supported cloud providers

Each App can support one or more cloud providers, and this is defined by the cloudProviders list in the manifest
file. This key is required in each manifest, and supported provider should be declared adding a dictionary (or hash
table, following the JSON nomenclature) to the cloudProviders list with the following schema:

{
"cloudProvider": "AWS",
"path": "aws",
"inputs": [
"instance_type"

]
}

2.2. The EMBL-EBI Cloud Portal packaging structure 11

https://www.terraform.io
https://www.terraform.io/docs/configuration/variables.html#environment-variables.
https://www.terraform.io
https://www.terraform.io/docs/configuration/variables.html#environment-variables.


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

Allowed keys in this dictionary are:

cloudProvider (Required) Specifies which cloud provider the dictionary specifies support for.

This values is used to filter the configurations a user can pick when deploying this applications. It’s thus required
to follow the nomenclature defined earlier for this filtering to work as expected.

path (Required) Specifies the path to the folder containing the deployment code for the specified cloud provider.

There is no restriction on the name these folders can have, and this is the very reason why this key exists, but
for the sake of understandability we warmly suggest to use the string defined in our nomenclature for Cloud
Providers in lowercase.

inputs (Optional) Specifies cloud provider specific inputs.

These inputs will be only shown when the users decides to deploy the App in this cloud provider. The EMBL-
EBI Cloud Portal will merge them with the generic inputs and ask the user to provide values during the deploy-
ment process.

Note: At the time of writing, the EMBL-EBI Cloud Portal doesn’t support cloud provider specific deploymentParam-
eters.

Variables precedence

If the same variable is defined both as a deployment parameter and as an input (both generic or cloud-specific), inputs
will always take precedence. This allows to override what defined in a Deployment parameters on ad-hoc basis.
However, this approach is not recommended as it obscures the flow of information in your App.

2.2.5 Deployment scripts

At the moment, the EMBL-EBI Cloud Portal doesn’t execute Terraform or Ansible directly, but relies on bash scripts
to interact with the deployments. These scripts needs to be provided by the App developer and should carry out all
the operations required to deploy, check and destroy the application. Bash scripts can easily be seen as an inelegant
way to deal with this, but it currently provides the best level of flexibility to Apps developers while we more closely
observe their needs - a fundamental step to a more organised approach. Some exploratory work is currently in progress
to move away from this approach, but this is likely to remain the paradigm the portal will follow in the close future.

Three deployment scripts are required for each cloud provider - deploy.sh, destroy.sh, state.sh - and they must be placed
in the folder containing the cloud provider specific codebase (you can have a look at the anatomy of a EMBL-EBI
Cloud Portal App here).

The deployment environment

On top of the environment variables required by Terraform to authenticate with the cloud providers and the variables
defined by deploymentParameters and inputs, the EMBL-EBI Cloud Portal will inject additional variables in the
deployment environment that you can use in your deploy scripts.

There are two main set of variables the EMBL-EBI Cloud Portal injects: deployment variables and ssh management
variables.

12 Chapter 2. Packaging Applications for the EMBL-EBI Cloud Portal

https://www.terraform.io
https://www.ansible.com/
https://www.terraform.io


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

Deployment variables

Deployment variables are variables that let the App developer know where to access the App repository in the filesys-
tem, place all the output files (i.e. the Terraform state file) and the unique ID that has been assigned to the deployment.
A list of these variables with their description is available below:

Environment variable Value
PORTAL_APP_REPO_FOLDERPath where the application code is stored (a copy of the cloned repo).

Only available to deploy.sh and destroy.sh, not to state.sh
PORTAL_DEPLOYMENTS_ROOTPath to the folder storing all the deployments.
PORTAL_DEPLOYMENT_REFERENCEThe unique ID assigned to the deployment by the EMBL-EBI Cloud Portal by the

portal

Why do you need these variables? A very common use-case is to place the Terraform output in the folder
belonging to your deployment: this path can be easily obtained joining PORTAL_DEPLOYMENTS_ROOT and
PORTAL_DEPLOYMENT_REFERENCE as follows:

"$PORTAL_DEPLOYMENTS_ROOT'/'$PORTAL_DEPLOYMENT_REFERENCE'/terraform.tfstate'"

This will ensure that your state file will end up in the right place in the filesystem, enabling the EMBL-EBI Cloud
Portal to parse it to obtain usage information.

Endpoint variables

There are API endpoints, that ECP exposes, that can be used by/from deployed applications. Following environment
variables can be used to build HTTP requests.

Environment variable Value
PORTAL_BASE_URL Base url of the ECP API portal for HTTP request.
PORTAL_CALLBACK_SECRET Alpha numeric string which is passed with http headers for authentication.

SSH variables

The EMBL-EBI Cloud Portal generates a new SSH keypair at each deployment to mitigate the risk of security issues
should a private key be compromised. Also, as part of a Configuration or during the deployment process, users can
provide a public key that needs to be injected in the VMs to grant them access to the deployed App.

These keys are exposed to the deployment environment via several variables:

Environment variable Value
portal_public_key_path Path where public deployment key is stored
TF_VAR_portal_public_key_path
portal_private_key_path Path where private deployment key is stored
TF_VAR_portal_private_key_path
profile_public_key String containing the public key provided by the user in the Configurations or

during the deployment processTF_VAR_profile_public_key

Note: Keep in mind that profile_public_key and TF_VAR_profile_public_key contain directly the
key as a string, while the other variables contain the path to the a file containing the keys.

2.2. The EMBL-EBI Cloud Portal packaging structure 13

https://www.terraform.io


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

Ideally, the flow of an App deployment when dealing with SSH keys should be

1. Inject the public part of the deployment key (portal_public_key_path) in the VM(s) being created.
Terraform can easily be used to create a keypair, for example in OpenStack, and then inject that keypair in the
VMs.

2. Use the private part of the deployment key (portal_private_key_path) to grant Ansible (or the Ter-
raform remote-exec provisioner) access to the VM(s) via SSH and apply the configuration.

3. As part of the configuration, replace the public part of the deployment key with the user-specified public key
(profile_public_key) in the target VMs.

This workflow allows the EMBL-EBI Cloud Portal to seamlessly configure the deployed infrastructure while ensuring
that only the user will have access to it once it is successfully deployed.

Warning: Resist the urge to immediately swap the deployment public key with the user public key at the beginning
of the deployment. If you do so, and for some reason the SSH connection drops the EMBL-EBI Cloud Portal will
not be able to re-establish the connection, causing the deployment to fail. Ideally, swapping the key should be as
close as possible to last step of the deployment.

deploy.sh

This script takes care of deploying the App, and usually consists of at least a Terraform call. Here’s a snippet of the
deploy.sh for a GridFTP server on GCP:

#!/usr/bin/env bash
set -e
# Provisions a GridFTP instance in GCP
# The script assumes that env vars for authentication with GCP are present.
export TF_VAR_name="$(awk -v var="$PORTAL_DEPLOYMENT_REFERENCE" 'BEGIN {print
→˓tolower(var)}')"

# Launch provisioning of the VM
terraform apply --input=false --state=$PORTAL_DEPLOYMENTS_ROOT'/'$PORTAL_DEPLOYMENT_
→˓REFERENCE'/terraform.tfstate' $PORTAL_APP_REPO_FOLDER'/gcp/terraform'

# Start local ssh-agent
eval "$(ssh-agent -s)"
ssh-add $KEY_PATH &> /dev/null

# Get ansible roles
cd gcp/ansible || exit
ansible-galaxy install -r requirements.yml

# Run Ansible
TF_STATE=$PORTAL_DEPLOYMENTS_ROOT'/'$PORTAL_DEPLOYMENT_REFERENCE'/terraform.tfstate'
→˓ansible-playbook -i /usr/local/bin/terraform-inventory -u centos -b --tags live
→˓deployment.yml > ansible.log 2>&1

# Kill local ssh-agent
eval "$(ssh-agent -k)

As you can see, there are a few additional things going on here rather than two simple Terraform and Ansible calls.
Let’s have a deeper look!

14 Chapter 2. Packaging Applications for the EMBL-EBI Cloud Portal

https://www.terraform.io
https://www.ansible.com/
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io/docs/provisioners/remote-exec.html
https://www.terraform.io
https://www.terraform.io
https://www.ansible.com/


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

#!/usr/bin/env bash
set -e
# Provisions a GridFTP instance in GCP
# For details about expected inputs and outputs, refer to https://github.com/EMBL-EBI-
→˓TSI/gridftp-server
# The script assumes that env vars for authentication with GCP are present.
export TF_VAR_name="$(awk -v var="$PORTAL_DEPLOYMENT_REFERENCE" 'BEGIN {print
→˓tolower(var)}')"

This initial block defines the shebang for the script (#!/usr/bin/env bash) and forces the bash script to exit im-
mediately if any command exits with a non-zero status (set -e). Then, it exports the TF_VAR_name environment
variable, which will in turn be used by Terraform to populate its own internal variable name. This application uses the
name variable to assign dynamic names to each resources it creates, for example the name of the VM is defined as

name = "${var.name}_server"

which ensures there will be no name collisions. Following this approach, each resource will be tagged the same
EMBL-EBI Cloud Portal deployment ID.

Next step, let’s get those VM(s) deployed!

# Launch provisioning of the VM
terraform apply --input=false --state=$PORTAL_DEPLOYMENTS_ROOT'/'$PORTAL_DEPLOYMENT_
→˓REFERENCE'/terraform.tfstate' $PORTAL_APP_REPO_FOLDER'/gcp/terraform'

This snippet is quite easy: run Terraform to deploy the defined template to in the cloud provider. Since the EMBL-EBI
Cloud Portal has already injected the correct environment variables to authenticate with the chosen cloud provider you
won’t need to specify anything else.

VM(s) are now up, let’s configure them!

# Start local ssh-agent
eval "$(ssh-agent -s)"
ssh-add $portal_private_key_path &> /dev/null

# Get ansible roles
cd gcp/ansible || exit
ansible-galaxy install -r requirements.yml

# Run Ansible
TF_STATE=$PORTAL_DEPLOYMENTS_ROOT'/'$PORTAL_DEPLOYMENT_REFERENCE'/terraform.tfstate'
→˓ansible-playbook -i /usr/local/bin/terraform-inventory -u centos -b --tags live
→˓deployment.yml

# Kill local ssh-agent
eval "$(ssh-agent -k)"

This block deals with everything that is required by Ansible to work. When the Portal launches the deployment script,
a new ssh-agent is spawned and the SSH key (portal_private_key_path) to access the VMs is pre-loaded.
Then, ansible-galaxy is used to pull all the requirements for the playbook to run. Next step, invoking Ansible itself.
It’s not a very plain invocation, though:

• prefixing the command with TF_STATE=... tells terraform-inventory where to look for the Terraform state
file;

• -i /usr/local/bin/terraform-inventory tells Ansible to use terraform-inventory to create the
inventory on the flight. Keep in mind that Ansible supports as arguments of the -i flag both text files containing
an inventory and executables returning an inventory;

2.2. The EMBL-EBI Cloud Portal packaging structure 15

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://www.terraform.io
https://www.terraform.io
https://www.ansible.com/
https://en.wikipedia.org/wiki/Ssh-agent
https://docs.ansible.com/ansible/latest/ansible-galaxy.html
https://www.ansible.com/
https://www.terraform.io
https://www.ansible.com/
https://www.ansible.com/


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

• -u centos -b force Ansible to use the user centos over ssh and to execute commands with sudo (b =
become).

The last step is to kill the previously spawned ssh-agent. Deployment (hopefully) done!

Note: When using Ansible Galaxy to download the required roles keep in mind that only public repos will be
accessible from the EMBL-EBI Cloud Portal.

destroy.sh

This script is executed by the EMBL-EBI Cloud Portal to destroy an Application. It usually consists of a single
Terraform call to destroy the provisioned infrastructure. Here’s an example, again from a GridFTP server.

#!/usr/bin/env bash
set -e
# Destroys a GridFTP deployment in GCP
# The script assumes that env vars for authentication with GCP are already present.

# Export input variable in the bash environment
export TF_VAR_name="$(awk -v var="$PORTAL_DEPLOYMENT_REFERENCE" 'BEGIN {print
→˓tolower(var)}')"

# Destroy everything
terraform destroy --force --input=false --state=$PORTAL_DEPLOYMENTS_ROOT'/'$PORTAL_
→˓DEPLOYMENT_REFERENCE'/terraform.tfstate' $PORTAL_APP_REPO_FOLDER'/gcp/terraform'

Nothing fancy, right?

state.sh

This script is executed by the Portal immediately after the deployment to grab an updated picture of all the deployed
resources. It’s basically a wrapper around the Terraform state command. Here’s the usual example!

#!/usr/bin/env bash
set -e
# Get the status of a GridFTP deployment in GCP
# The script assumes that env vars for authentication with GCP are present.

# Query Terraform state file
terraform show $PORTAL_DEPLOYMENTS_ROOT'/'$PORTAL_DEPLOYMENT_REFERENCE'/terraform.
→˓tfstate'

Note: If the state.sh script is not present, or fails, the EMBL-EBI Cloud Portal will report the deployment to be
in a RUNNING_FAILED state.

2.2.6 Testing locally

While the EMBL-EBI Cloud Portal allows you to see the deployment logs (or, to be more precise, stdout and
stderr of the deployment processes), it might be quicker, at least at the beginning of the packaging process, to test
deployments locally.

16 Chapter 2. Packaging Applications for the EMBL-EBI Cloud Portal

https://www.ansible.com/
http://docs.ansible.com/ansible/become.html
https://galaxy.ansible.com/
https://www.terraform.io
https://www.terraform.io


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

So, can you reproduce the Portal behaviour locally?

First, you need to install a few dependencies: Terraform, Ansible and terraform-inventory (click on the links to go to
their respective “How-to install pages”).

Second, you need to replicate the deployment environment. As you know by now, the EMBL-EBI Cloud Portal
interacts with the deployments setting (or exporting) variables in the deployment environment. Reproducing this
behaviour in a consistent way is easy thanks to source!

Open a new text file in your preferred text editor, write something similar to:

#!/bin/bash
# Define the three special env vars
export PORTAL_DEPLOYMENTS_ROOT="absolute/path/to/repo"
export PORTAL_DEPLOYMENT_REFERENCE="test_deployment"
export PORTAL_APP_REPO_FOLDER="."

# Define the volume id of the volume to be linked to our deployment
export TF_VAR_DATA_DISK_ID="vol-fb65c979"

and then run source filename. This will inject all the variables defined in the file into the bash environment,
mimicking the EMBL-EBI Cloud Portal behaviour and saving you to manually export all the variables one by one.

At the bare minimum, you’ll need to export the three deployment variables (PORTAL_DEPLOYMENTS_ROOT,
PORTAL_DEPLOYMENT_REFERENCE and PORTAL_APP_REPO_FOLDER) plus one variable for each deployment-
Parameter and input your Application requires (TF_VAR_DATA_DISK_ID in our example above).

Note: The EMBL-EBI Cloud Portal automatically prepends the TF_VAR_ prefix to all deploymentParameters and
inputs. You will most likely want to do the same in your local script to ensure everything will work as expected when
deploying through the EMBL-EBI Cloud Portal

Similarly, you need to source the credentials for the cloud provider you want to interact with. You can find all the
details on how to obtain your credentials, as well as the environment variables you need to export, in the Cloud
Credentials section.

Warning: Environment variables are bound to a given terminal and not persisted between restarts. If you want to
use multiple terminals, or you close the terminal you are testing your App with and open a new one, you’ll need to
source the environment variables again.

2.3 The deployment process: an end-to-end overview.

We’ve explored how an App for the EMBL-EBI Cloud Portal should be packaged, and how the deployment process
can be driven via the deployment environment. But what are all the steps the EMBL-EBI Cloud Portal takes every time
it needs to deploy or destroy an application? How the deploy.sh and destroy.sh scripts link into that?

Let’s lift the hood and have a look at all the operations the EMBL-EBI Cloud Portal carries out after an user has clicked
the “Deploy” or “Destroy” buttons!

2.3.1 Deployment

1. After selecting the right configuration and provided the required inputs, a user clicks on the “Deploy” button and
confirms the deployment. The web application of the EMBL-EBI Cloud Portal sends the request to the REST

2.3. The deployment process: an end-to-end overview. 17

https://www.terraform.io/intro/getting-started/install.html
http://docs.ansible.com/ansible/latest/intro_installation.html
https://github.com/adammck/terraform-inventory
https://en.wikipedia.org/wiki/Source_(command)


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

API and updates the status of the deployment to STARTING.

2. A new deployment environment is created, injecting cloud credentials and all the specified deployment parame-
ters, inputs and volumes.

3. The deploy.sh script for the selected cloud provider is executed. The web interface queries the API for near
real-time logs to let the user monitor the deployment.

4. The deployment environment monitors the deploy.sh script execution and, if it fails (returns a non-zero exit
code), updates the backend marking the deployment as DEPLOYMENT_FAILED and stops. The web interface
regularly polls for updates and, once it detects the failure, offers the user the choice to destroy the deployment.

5. If the deploy.sh script completes successfully, the backend executes the state.sh script to capture
a snapshot of the provisioned infrastructure and looks for the defined outputs in the log files. If the
state.sh script fails (returns with a non-zero exit code) the deployment environment marks the deployment
RUNNING_FAILED and the user is offered the choice to destroy the deployment. Otherwise, the deployment
is marked as RUNNING and the web interface will be able to pull the outputs from the REST API.

6. Done!

2.3.2 Destroy

1. The user clicks the “Destroy” button on the deployment card of a deployed App. The web application sends a
request to the REST API to terminate the destroy the deployment.

2. The same deployment environment that was created to deploy the application is re-created to destroy it. Cloud
credentials, deployment parameters, inputs and volumes are added to the environment. While Cloud credentials
needs to be present for obvious reasons (you still need to prove that you is you to remove your infrastructure!),
all the other variables are added for two reasons:

• support use-cases in which destroying the infrastructure requires information coming from any of the
deployment parameters or inputs variable. Say you want to send some logs back to a specific server and
its hostname is stored as a deployment parameter

• avoid issues when Terraform variables normally sourced via environment variables are not declared with
a default value. If Terraform is unable to assigned the value of one of its variables in any of the supported
ways then it will resolve to ask them interactively, which is of course a scenario the EMBL-EBI Cloud
Portal cannot support and will cause to deployment to get stuck. App developer are warmly encouraged to
use the --input=false option when invoking Terraform which would cause it to immediately fail if a
variable cannot be assigned in any way and not ask its value interactively.

3. The cloud-specific destroy.sh script is executed and monitored. If it fails (non-zero exit code) then the
deployment is marked as DESTROY_FAILED and the user will be offered the option of forcing the destroy. If
the destroy.sh script succeeds, the deployment is marked as DESTROYED.

Warning: A deployment that ends in an irreversible DESTROY_FAILED state might, depending on the stage
at which the error occurs, leave some infrastructure behind. It is imperative that users experiencing this issue
independently verify that all the provisioned infrastructure is correctly removed.

18 Chapter 2. Packaging Applications for the EMBL-EBI Cloud Portal

https://www.terraform.io
https://www.terraform.io
https://www.terraform.io/intro/getting-started/variables.html#assigning-variables
https://www.terraform.io/intro/getting-started/variables.html#assigning-variables
https://www.terraform.io/docs/commands/apply.html
https://www.terraform.io


CHAPTER 3

Avoid security credentials on git public repository

AWS accounts, passwords and other sensitive information are a valuable target: outside attackers are continuously
scraping GitHub for credentials embedded in the code.Security credential leaks expose sensitive data, resources uti-
lization on your costs, or details of your infrastructure that could lead to sabotage. It is therefore essential to protect
developers from releasing potentially harmful secrets on GitHub.

For our users, we strongly endorse the use of tools for automatic detection.

3.1 git-secrets

We found a helpful tool, preventing you from adding secrets to your Git repositories: git-secrets, which allows you to
create hooks for your local repositories.

The tool causes a commit fails, for every commit containing (detected) security credentials. It requires configuration
for each local repository that you want to protect.

It is possible to integrate its use in a CI system, detecting accidental commits, but this strategy will expose your
secret.For this reason, we suggest to use it just as second layer protection (in the unfortunate case a developer forget
to protect a local repository).

3.1.1 Installation

The following steps will download and install the latest version of git-secrets.

git clone https://github.com/awslabs/git-secrets
cd git-secrets
make install

Or, installing with Homebrew (for OS X users).

brew install git-secrets

19

https://github.com/awslabs/git-secrets


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

3.1.2 Configuration

It is mandatory to install the git hooks for every repo that you wish to use with git secrets --install.

Here’s a quick example of how to ensure a git repository is scanned for secrets on each commit:

cd /path/to/repository
git secrets --install
git secrets --register-aws

3.1.3 Advanced configuration

First of all, have a look at the official /git-secrets repository.

Add a configuration template if you want to add hooks to all repositories you initialize or clone in the future.

git secrets --register-aws --global

Add hooks to all your local repositories.

git secrets --install ~/.git-templates/git-secrets
git config --global init.templateDir ~/.git-templates/git-secrets

Add custom providers to scan for security credentials.

git secrets --add-provider -- cat /path/to/secret/file/patterns

3.1.4 Before making public a repository

With git-secrets is also possible to scan a repository including all revisions:

git secrets --scan-history

3.2 Setting a Jenkins job guarding a repository

We suggest to set up a second layer protection with a CI task for detect accidental commits.

• Define a GitHub project-Project url, under General i.e.:

https://github.com/EMBL-EBI-TSI/cpa-instance/

20 Chapter 3. Avoid security credentials on git public repository

https://github.com/awslabs/git-secrets


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

• Specify the same URL under: Source Code Management-Git-Repositories-Repository URL

• Flag GitHub hook trigger for GITScm polling under Build Triggers.

3.2. Setting a Jenkins job guarding a repository 21



EMBL-EBI Cloud Portal Documentation, Release 0.1.1

• Flag Delete workspace before build starts under Build Environment.

• Under Build-Execute shell-Command

git secrets --install
# Add support for AWS secret scan
git secrets --register-aws
# Scan the latest git push
git secrets --scan
if [ $? -eq 0 ]; then

echo "git secrets --scan OK"
else
echo "git secrets --scan FAIL"

22 Chapter 3. Avoid security credentials on git public repository



EMBL-EBI Cloud Portal Documentation, Release 0.1.1

For those with accounts on our jenkins server, this Jenkins job https://ci.tsi.ebi.ac.uk/job/app-testing/job/secret-check/
has the latest configuration and can be used as a template.

3.2. Setting a Jenkins job guarding a repository 23

https://ci.tsi.ebi.ac.uk/job/app-testing/job/secret-check/


EMBL-EBI Cloud Portal Documentation, Release 0.1.1

24 Chapter 3. Avoid security credentials on git public repository



CHAPTER 4

API Endpoint documentation

Create or Update Deployed Application Outputs A ‘PUT’ request to create or update application outputs/results.

Example request

PUT /deployment/$PORTAL_DEPLOYMENT_REFERENCE/outputs HTTP/1.1
Content-Type: application/json;charset=UTF-8
Deployment-Secret : $PORTAL_CALLBACK_SECRET
Host: $PORTAL_BASE_URL
Body:
[{"outputName":"internal ip","generatedValue":"192.168.3.14"},
{"outputName":"startTime","generatedValue":"2019-01-11 13:45"}]

Example response

HTTP/1.1 204 No content |

Stop Deployed Application A ‘PUT’ request to stop/destroy deployed application.

Example request

PUT /deployment/$PORTAL_DEPLOYMENT_REFERENCE/stopme HTTP/1.1
Deployment-Secret : $PORTAL_CALLBACK_SECRET
Host: $PORTAL_BASE_URL

Example response

HTTP/1.1 200 OK

Note: For more information about environmental variables $PORTAL_DEPLOYMENT_REFERENCE,$PORTAL_BASE_URL,
$PORTAL_CALLBACK_SECRET see Deployment variables.

25



EMBL-EBI Cloud Portal Documentation, Release 0.1.1

26 Chapter 4. API Endpoint documentation



CHAPTER 5

Indices and tables

• genindex

• modindex

• search

27


	Using the EMBL-EBI Cloud Portal
	How to access the EMBL-EBI Cloud Portal
	Setting up up your Cloud Profile
	Inputs
	Managing the Registry

	Packaging Applications for the EMBL-EBI Cloud Portal
	The tools
	The EMBL-EBI Cloud Portal packaging structure
	The deployment process: an end-to-end overview.

	Avoid security credentials on git public repository
	git-secrets
	Setting a Jenkins job guarding a repository

	API Endpoint documentation
	Indices and tables

