

 Navigation

 	
 index

 	
 next |

 	smartreport 0.1 documentation

Welcome to smartreport’s documentation!

	Introduction

	Todo

	Current Limitations and ideas

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Alexander Loew.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	smartreport 0.1 documentation

Introduction

easyreport is a template based engine to generate reports in multiple output formats based on very flexible input. The following figure gives an overview about the gernal structure.

[image: _images/flowchart.png]

Let us assume that you have a program which produces a lot of figures, statistics and other output. You want to present these results in a nice way and have full flexibility to allow for different output formats, like e.g. HTML, PDF and others. One solution to this might be that you generate your output directly from your program. Fine with that. Tools like e.g. <markup.py http://markup.sourceforge.net/>_ are very helpfull here.

However, could you imagine that the results of your code are also coming from parallel processes? If so, then generating a report from these results would be quite difficult in the end.

easyreport aims to completely separate the processing and the actual reporting. You can use it in a flexible way to generate reports based on arbitrary output. As it is based on templates it is highly customizable.

Objective

Major objectives are

	support reporting based on results from parallel processing

	support user based templates for customized report generation

	allow for flexible integration of report generating engines like e.g. Sphinx to maximize flexibility in output formats

	separate as much as possible the content from the actual format

	independency from code which generate the output

Philosophy

To achieve the above objectives, easyreport uses templates and separates the content and the format. The main steps to be undertaken when generating a report from arbitrary output are

	gather information from in output directory

	structure this information based on user template

	generate report in user defined output format

Implementation

The only interface which is needed for easyreport is an ASCII file written by the user programm in YAML [http://pyyaml.org/wiki/PyYAML] format. A sample ipython notebook, showing some basic functionality is provided in the repository and can be viewed online here [http://nbviewer.ipython.org/github/pygeo/easyreport/blob/master/generate_example.ipynb].

The basic components are:

	the data generated by the user programs (all need to be written in a single directory)

	an interface file which specifies arbitrary fields for the data. This needs to be written in YAML format and tells is required to specify the content.

	user templates: these are plain ASCII files which can contain python based variables and control structures following the syntax of makotemplates [http://www.makotemplates.org/].

Installation

Prerequesites

	makotemplates [http://www.makotemplates.org/]

	Sphinx [http://sphinx-doc.org/]

	python 2.7 (python 3.x not tested, please report if it works)

Installation steps

So far only cloning from the repository has been tested:

git clone git@github.com:pygeo/easyreport.git

Execution has been tested so far also only from the development directory

Example

Let’s give first an application example. Let’s say you have a program, which you runs three processes (A,B,C) in parallel. All the processes are writing output (graphics, statistics) to a particular output directory.

Thus in the end you end up with something like this:

/<some dir>/
 /A1.png
 /B1.png
 /C1.png
 /A1.gif
 /B1.gif
 /C1.gif
 /a.csv
 /b.csv
 /c.csv

You end up with lots of files, some of them are graphics, some of them are textfiles. What a mess, how could you structure and present your results? You need an easy way to do that. Here you go.

Define a template

Let’s say you want your results to be organized in restructured text [http://en.wikipedia.org/wiki/ReStructuredText] syntax (In principle it could be any format that can be written in a plain ASCII file). What you would typically do is to write a report yourself as follows:

Result A

blablablabla blabla blabla

.. figure:: images/A1.png
 :scale: 50 %

 This is the caption of figure A1.png

blablabla

statistic a.csv here

blablabla

.. figure:: images/A1.gif
 :scale: 50 %

 This is the caption of figure A1.gif

Result B

blablablabla blabla blabla

.. figure:: images/B1.png
 :scale: 50 %

 This is the caption of figure B1.png

blablabla

statistic b.csv here

blablabla

.. figure:: images/B1.gif
 :scale: 50 %

 This is the caption of figure B1.gif

Let us now assume that you have not results from 3 operations, but from 20 or even more. Wouldn’t it be nice to have some more automated approach to the report generation, which gives you nevertheless the flexibility to easily adapt the look-and-feel? Let’s make a template from the above:

Result <VARIABLE A>

blablablabla blabla blabla

.. figure:: <SOME A FILE>
 :scale: 50 %

 <<VAR.files.northern.file>>

blablabla

statistic <SOME STAT FILE> here

You see that we have replaced in the above code some of the content by variables, which are indicated by tags. easyreport follows the syntax of makotemplates [http://www.makotemplates.org/] to specify these tags.

Recipie to generate a template

	write the text like you would do it by hand

	replace components which you like to be flexible by hand

	define sections on which you would like to have itteration capabilities by adding controling structures based on the makotemplate syntax [http://www.makotemplates.org/].

An example for a proper working template file is provided here [https://github.com/pygeo/easyreport/blob/master/albedo_template.rst].

Define the interface

An example for a working interface file working with the above template looks like:

models:
- MPI-ESM-LR:
 graphic1: MPI-ESM-LR.png
 graphic_test: MPI-ESM-LR.jpg
 observations:
 - GlobSnow:
 caption: This is a testcaption using model MPI-ESM-LR and observation GlobSnow
 file: difference_MPI-ESM-LR_GLOBSNOW.png
 - GlobAlbedo:
 caption: This is a testcaption using model MPI-ESM-LR and observation GlobAlbedo
 file: difference_MPI-ESM-LR_GLOBALBEDO.png
 - CCI-Aerosol:
 caption: This is a testcaption using model MPI-ESM-LR and observation CCI-Aerosol
 file: difference_MPI-ESM-LR_CCI-AEROSOL.png
- GFDL:
 graphic1: GFDL.png
 graphic_test: GFDL.jpg
 observations:
 - GlobSnow:
 caption: This is a testcaption using model GFDL and observation GlobSnow
 file: difference_GFDL_GLOBSNOW.png
 - GlobAlbedo:
 caption: This is a testcaption using model GFDL and observation GlobAlbedo
 file: difference_GFDL_GLOBALBEDO.png
 - CCI-Aerosol:
 caption: This is a testcaption using model GFDL and observation CCI-Aerosol
 file: difference_GFDL_CCI-AEROSOL.png

Note that if you want to preserve the order of entries, you need to specify lists!

 Copyright 2015, Alexander Loew.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	smartreport 0.1 documentation

Todo

	implement unittests

Current Limitations and ideas

	develop template files for different kind of usecases –> user should invest as less time as possible into understanding makotemplates

	SPHINX layout based on default setup, allow users to specify customized setup

	implement classes on that allow user to easily register data and write final YAML file

	implement a help routine that writes code smippets already in a way the user might need them

	handling of images; links as perspective

 Copyright 2015, Alexander Loew.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	smartreport 0.1 documentation

Index

 Copyright 2015, Alexander Loew.
 Created using Sphinx 1.2.2.

 _images/flowchart.png
user program

smartreport

sphinx

report (html, PDF, ...)

| report |
: templates :

———

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		smartreport 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Alexander Loew.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

