
EasyMSXDoc Documentation
Release 2.1

Terrence C. Kim

Jul 10, 2019

Table of Contents:

1 Introduction 3

2 Projects 5
2.1 Prerequisites . 5
2.2 EasyMSX . 5
2.3 EasyMKT . 6
2.4 RuleMSX . 6
2.5 EMSX API in Julia language . 10

3 Resource 11
3.1 EMSX Route Status . 11
3.2 RuleMSX . 12
3.3 Earlier Version . 16
3.4 Full Code Samples . 17

4 License 19

i

ii

EasyMSXDoc Documentation, Release 2.1

The EasyMSX code samples are various projects to demonstrate how Bloomberg EMSX API along with other
Bloomberg API and industry standard algorithms can be implemented for building and implementing an efficient
trading environment.

Important: Please note that this is not a compiled binary. This is a CODE SAMPLE. There is no SLA (Service Level
Agreement) or quality assessment or guarantees.

Warning: Please do not reach out to Bloomberg for support or help.

Table of Contents: 1

EasyMSXDoc Documentation, Release 2.1

2 Table of Contents:

CHAPTER 1

Introduction

The EasyMSX wrappers consists of various code samples that can be compiled into a library. The EasyMSX are set
of files to build a project that demonstrates one possible way to build caching data or a starting place to work with
Bloomberg EMSX API and other Bloomberg APIs.

The EMSX API is just another service in Bloomberg API V3. The Bloomberg API follows an event-driven asyn-
chronous API paradigm.

The Bloomberg API is lightweight, thread safe and maintains extensible service-oriented data model. The Bloomberg
API generally understands the concept of subscription and request-response services.

3

EasyMSXDoc Documentation, Release 2.1

4 Chapter 1. Introduction

CHAPTER 2

Projects

There are currently three active projects written in C Sharp and Python. Other programming languages and projects
will follow shortly.

2.1 Prerequisites

• All C# projects requires .NET 4.0 but has no other external dependencies.

• The python projects runs in Python 3.

2.2 EasyMSX

The EasyMSX allows getting orders, routes, and static data from EMSX API service. The EasyMSX allows adding
notification handler on the real-time events. There is an observer pattern that can throw exceptions.

2.2.1 Installing

• For C#, Download the source code and build the library from the source. Once the Bloomberg API SDK has
been referenced in your project, create an instance of EasyMSX:-

• For python, create the new directory and extract easymsx-1.0.x into the new directory. Change the directory to
easymsx-1.0.x and in the directory run the following command:-

C:\Users\Me\>cd easymsx-1.0.x

C:\Users\Me\easymsx-1.0.x>C:\Python34\python.exe setup.py install

• Run easymsxdemo.py

5

https://en.wikipedia.org/wiki/Observer_pattern
https://easymsx.readthedocs.io/en/latest/resources.html#net-reference-for-rulemsx-project

EasyMSXDoc Documentation, Release 2.1

C:\Users\Me\>cd easymeasymsx-1.0.x

C:\Users\Me\easymsx-1.0.x>py -3 easymsxdemo.py

• The GitHub link to the EasyMSX sample in EasyMSX.

2.3 EasyMKT

The EasyMKT and EasyMKTSample are essentially an EasyMSX for market data where the project demonstrates one
possible way to build caching data on Bloomberg real-time market data.

2.3.1 Installing

• For C#, Download the source code and build the library from the source. Once the Bloomberg API SDK has
been referenced in your project, create an instance of EasyMKT:-

• For python, create the new directory and extract easymkt-1.0.x into the new directory. Change the directory to
easymkt-1.0.x and in the directory run the following command:-

C:\Users\Me\>cd easymkt-1.0.x

C:\Users\Me\easymkt-1.0.x>C:\Python34\python.exe setup.py install

• Run easymktdemo.py

C:\Users\Me\>cd easymsx-1.0.x

C:\Users\Me\easymkt-1.0.x>py -3 easymktdemo.py

• The GitHub link to the EasyMKT sample in EasyMSX.

2.4 RuleMSX

Rather than making use of domain specific language (DSL) to define the rules, it exposes a series of abstract classes.
It facilitates the creation of complex if-this-then-that behavior.

2.4.1 Installing

• For C#, Download the source code and build the library from the source.

• For python, create the new directory and extract easymsx-1.0.0 and rulemsx-1.0.0 into the new directory.

C:\Users\Me_rulemsx>dir
Volume in drive C is Windows
Volume Serial Number is ABCD-1234

Directory of C:\Users\Me_rulemsx

12/21/2017 09:08 AM <DIR> .
12/21/2017 09:08 AM <DIR> ..
12/21/2017 09:01 AM <DIR> easymsx-1.0.0

(continues on next page)

6 Chapter 2. Projects

https://github.com/tkim/EasyMSXRepository
https://easymsx.readthedocs.io/en/latest/resources.html#net-reference-for-rulemsx-project
https://github.com/tkim/EasyMSXRepository

EasyMSXDoc Documentation, Release 2.1

(continued from previous page)

12/21/2017 09:01 AM <DIR> rulemsx-1.0.0
12/21/2017 09:01 AM <DIR> RuleMSXDemo.py

1 File(s) 0 bytes
4 Dir(s) 11,538,878,464 bytes free

• Change the directory to rulemsx-1.0.0 and in the directory run the following command:-

C:\Users\Me_rulemsx>cd rulemsx-1.0.0

C:\Users\Me_rulemsx\rulemsx-1.0.0>C:\Python34\python.exe setup.py install

• Please make sure the path for python is set to where you currently have your python 3 installed. Change directory
to easymsx-1.0.0 and in the diretory run the following command:-

C:\Users\Me_rulemsx>cd easymsx-1.0.0

C:\Users\Me_rulemsx\easymsx-1.0.0>C:\Python34\python.exe setup.py install

• Run RuleMSXDemo.py

C:\Users\Me_rulemsx>py -3 RuleMSXDemo.py
Initialising RuleMSX...
RuleMSX initialised...
Initialising EasyMSX...
EasyMSX initialised...
Create RuleSet...
Building Rules...
Rules built.
RuleSet ready...
Press any to terminate

2.4.2 Getting Started

The following is the C# implementation of the RuleMSX sample. RuleMSX provides the core functionality of a rule
engine. Once the library has been referenced in your project, create an instance of RuleMSX:-

RuleMSX rmsx = new RuleMSX();

RuleMSX is divided into ‘Rules’_, ‘DataPoints’_ and ‘Actions’_. Rules are organized into ‘RuleSets’_:-

RuleSet myRuleSet = this.rmsx.CreateRuleSet("MyRuleSet");

A RuleSet contains one or more Rules, and each Rule is made up of one or more RuleConditions. Each RuleCondition
has a RuleEvaluator which is the code written by the developer. Each rule also has one or more RuleAction associated
with it. When all the RuleConditions are met, the RuleAction is excuted.

To create a Rule:-

Rule myNewRule = myRuleSet.AddRule("NewRule");

To create a RuleCondition:-

RuleCondition myRuleCondition = new RuleCondition("MyConditoin", new
→˓MyCondtionCode());

2.4. RuleMSX 7

https://easymsx.readthedocs.io/en/latest/resources.html#net-reference-for-rulemsx-project
https://easymsx.readthedocs.io/en/latest/resources.html#ruleconditions
https://easymsx.readthedocs.io/en/latest/resources.html#ruleevaluator
https://easymsx.readthedocs.io/en/latest/resources.html#ruleactions

EasyMSXDoc Documentation, Release 2.1

The ‘MyConditionCode’ class extends the RuleEvaluator abstract class, guarenteeing the presence of an Evalute()
method. This method must return a boolean value.

For example:-

class MyConditionCode : RuleEvaluator
{

public MyConditionCode()
{

// constructor code
}

public override bool Evalute(DataSet dataSet)
{

if(<sometest>) {
return True;

}
else
{

return False;
}

}
}

Add the RuleCondition to the Rule:-

myNewRule.AddRuleCondtion(myRuleCondition);

Alternatively:-

myRuleCondition.AddRuleConditino(new RuleCondition("MyCondition", new
→˓MyConditionCode()));

When the RuleEvaluator of each of the RuleConditions Associated with a Rule return True, then any Actions associated
with the Rule will be fired.

Actions are created independently of a Rule, so that a single action can be reused across multipel Rules, An action
consists of a Rule object, and an associated RuleEvaluator which is extended by the developer.

To create an Action:-

Action myAction = rmsx.CreateAction("MyAction", new MyActionCode());

The ‘MyActionCode’ class extends the ActionExecutor abstract class, guarenteeing the presence of an Execute()
method.

For example:-

class MyActionCode: ActionExecutor
{

public MyActionCode()
{

// constructor code
}

public void Execute(DataSet, dataset)
{

// do something here

(continues on next page)

8 Chapter 2. Projects

https://en.wikipedia.org/wiki/Boolean_data_type

EasyMSXDoc Documentation, Release 2.1

(continued from previous page)

}
}

Add the Action to the Rule:-

myNewRule.AddAction(myAction);

Alternatively:-

myNewRule.AddAction(rmsx.CreateAction("MyAction", new MyActionCode()));

The data to be processed is a RuleSet is defined as ‘DataPoints’_, which are organized into ‘DataSets’_.

A DataPoint is a single named item of data that has an assocated DataPointSource. The DataPointSource is an abstract
class that the developer extends, which guarentees teh presense of a GetValue() method. Think of the DataSet as an
object with properties. Think of the DataSet as a collection of DataPoints, each of which is a key-value pair.

You submit a DataSet for execution by a RuleSet’s execution agent, as follows:-

myRuleSet.execute(myDataSet);

To create a DataSet:-

DataSet myDataSet = rmsx.CreateDataSet("<some unique name>");

To create a DataPoint, you first need to create a DataPointSource. This is done by creating a class that extends
DataPointSource:-

private class ConstantDataPointSource : DataPointSource
{

string retValue;

public TestDataPointSource(string retValule)
{

this.retValue = retValue;
}
public override object GetValue()
{

return retValue;
}

}

An instance of thi sclass will return the value that was passesd to the constructor whenever the GetValue() method is
called.

Create the DataPoint as follows:-

DataPoint myDataPoint = new ConstantDataPointSource("Return this!");

Add the DataPoint to the DataSet:-

myDataSet.AddDataPoint("DataPoint1", myDataPoint);

Alternatively:-

myDataSet.AddDataPoint("DataPoint1", new ConstantDataPointSource("Return this!"));

2.4. RuleMSX 9

https://easymsx.readthedocs.io/en/latest/resources.html#datapointsource

EasyMSXDoc Documentation, Release 2.1

2.4.3 Operation

The execution agent that underlies a RuleSet operates in its own thread. When a RuleSets Execute() method is first
invoked, the execution agent is created. Thereafter, any further calls to Execute() will result in the DataSet simply
being passed to the already running agent.

When a DataSet is ingested by the execution agent, all the Rules will be tested. Once a rule is tested, it will not be
tested again, unless it is re-introduced. This happesn when a RuleCondition whin the rule has a delcared dependency
on a DataPoint whos DataPointSource has been marked as stale. This is done on the client side, by calling SetStale()
on a DataPointSource object. Any Rule that has a dependency on that DataPoint will be re-introduced into the queue
of Rules to be tested.

This means that RuleCondition can be created that depends on the value of a variable or field that will change over
time. When the rule is fist tested, perhpas the value is in a state that means that the Evaluate() method will return
False. However, it may change later. The rule will not be tested again under normal circumstances. But if the variable
or field changes values, simply call the SetStale() method on the DataPointSource object, and any and all Rules which
have a RuleCondition that depends on its value will be re-tested. This means that the RuleCondition may now return
True, and the associated ActionExecutor of Rule will be fired.

2.4.4 Tests

NUnit unit tests, as well as integration tests, are included in the project.

2.4.5 Deployment

Simply distribute the library with any application distribution.

2.4.6 License

This project is under the MIT License - see the License file for details.

2.5 EMSX API in Julia language

EMSX API in Julia Programming Language coming soon!

10 Chapter 2. Projects

https://easymsx.readthedocs.io/en/latest/resources.html#the-executionagent-process

CHAPTER 3

Resource

3.1 EMSX Route Status

Field Previous Value New Value Definition
EMSX_STATUS null SENT New route (placement) created.
EMSX_STATUS SENT SENT Field update on sent.
EMSX_STATUS SENT WORKING ACK received from the broker.
EMSX_STATUS WORKING PARTFILL First fill or multiple fills.

(<100%)EMSX_WORKING n <n and >0
EMSX_STATUS PARTFILL PARTFILL Middle fill or multiple

fills. (<100%)EMSX_WORKING n <n and >0
EMSX_STATUS PARTFILL FILLED Final fill or multiple fills.

(100%)EMSX_WORKING >0 0
EMSX_STATUS WORKING FILLED Full single fill.
EMSX_WORKING >0 0
EMSX_STATUS null FILLED Historic 100% fill on INIT_PAINT.
EMSX_STATUS null WORKING Working route (placement) on INIT_PAINT.
EMSX_STATUS null PARTFILL Part filled route (placement) on INIT_PAINT.
EMSX_STATUS null CXLREQ Cancel requested on route in INIT_PAINT.
EMSX_STATUS WORKING CXLREQ Cancel route request sent.
EMSX_STATUS CXLREQ WORKING Broker rejected cancel request.
EMSX_STATUS CXLREQ CXLPEN Broker sent ACK for cancel request.
EMSX_STATUS CXLPEN WORKING Broker rejected cancel request.
EMSX_STATUS CXLREQ CANCEL Broker cancelled route from request.
EMSX_STATUS CXLPEN CANCEL Broker cancelled route from request.
EMSX_STATUS PARTFILL CXLREQ Cancel requested on part filled route.
EMSX_STATUS CXLREQ PARTFILL Broker rejected cancel request.
EMSX_STATUS CXLPEN PARTFILL Broker rejected cancel request.
EMSX_STATUS WORKING CXLRPRQ Modify (cancel/replace) request sent to broker.
EMSX_STATUS CXLRPRQ REPPEN Broker sent ACK for modify request.

Continued on next page

11

EasyMSXDoc Documentation, Release 2.1

Table 1 – continued from previous page
Field Previous Value New Value Definition
EMSX_STATUS REPPEN WORKING Broker rejected modify

request on working route.EMSX_BROKER_STATUS n/a CXRPRJ
EMSX_STATUS REPPEN WORKING Broker accepted and ap-

plied the modify request
on working route. (place-
ment)

EMSX_BROKER_STATUS n/a MODIFIED

EMSX_STATUS PARTFILL CXLRPRQ Modify (cancel/replace) request sent to broker.
EMSX_STATUS REPPEN PARTFILL Broker rejected modify

request on part filled
route. (placement)EMSX_BROKER_STATUS n/a CXRPRJ

EMSX_STATUS REPPEN PARTFILL Broker accepted and
applied the modify re-
quest on part filled route.
(placement)

EMSX_BROKER_STATUS n/a MODIFIED

EMSX_STATUS SENT REJECTED Broker rejected the order from sent status.
EMSX_STATUS null REJECTED INIT_PAINT shows route (placement) rejected.
EMSX_STATUS null CANCEL INIT_PAINT shows route (placement) cancelled.
EMSX_STATUS CXLRPRQ WORKING Modify rejected from request.
EMSX_STATUS PARTFILL CANCEL Part filled route cancelled by broker.
EMSX_STATUS WORKING CANCEL Working route cancelled by broker.
EMSX_STATUS WORKING REJECTED Route rejected from working.

3.2 RuleMSX

The RuleMSX is a business rule management project using Bloomberg EMSX API for trading, Bloomberg Market
Data for market data and rete algorithm for efficient business rule management.

RuleMSX provides the core functionality of a rule engine. It is designed to inter-operate with the EasyMSX and
EasyMKT which use the Bloomberg API to access Bloomberg EMSX and market data. The RuleMSX is designed to
use the rete algorithm to create an efficient business rule management system to work with Bloomberg EMSX API for
automated trade execution for equities, futures, and options.

This functionality is provided in the shape of RuleSets, DataSets and Actions. By defining Rules and the
conditions that must exist for these Rules to be triggered, the user can build complex reasoning based on the content
of a DataSet, and how that DataSet changes over time. The Actions are the tasks performed as a result of a Rule being
triggered.

3.2.1 .NET Reference for RuleMSX Project

Bloomberg API SDK in CSharp
(e.g. c:\blp\DAPI\APIv3\DotnetAPI\v3.8.9.2\lib\Bloomberglp.Blpapi.dll)

EasyMKT.dll
(e.g. c:\... \cs_EasyMKT-master\EasyMKT\bin\Debug\EasyMKT.dll)

EasyMSX.dll
(e.g. c:\... \cs_EasyMSX-master\EasyMSX\bin\Debug\EasyMSX.dll)

RuleMSX.dll
(e.g. c:\... \cs_RuleMSX-master\RuleMSX\bin\Debug\RuleMSX.dll)

12 Chapter 3. Resource

EasyMSXDoc Documentation, Release 2.1

3.2.2 ActionExecutors

An ActionExecutor is the client-side code that is run when an Action is executed. It is an abstract class that
contains an Execute method that must be overridden.

When the RouteOrdertoBB action is executed, the Execute method of the instance of the abstract class would
be called. This is the code that would create and send the route to the broker. Just as with the RuleCondition
evaluators, the executors are passed the current dataset as a parameter when they are called.

3.2.3 DataPoints

A DataPoint is an object that represents a single piece of data. Fundamentally, it is a simple key-value pair. A
DataPoint doesn’t have value itself, but rather has an underlying DataPointSource which is used to provide
the value.

Examples of DataPoints would be OrderNumber, OrderStatus, OrderExchange, etc.

3.2.4 DataPointSource

A DataPointSource is a client-side code that provides a value for a named DataPoint. It is an abstract class
with a GetValue method that must be overridden. It also provides a SetStale method that is used to indicate to
the ExecutionAgent that the value must be re-examined. This will cause any WorkingRules for Rule that has
a dependency on this DataPoint to be the queue for re-evaluation on the next cycle.

The DataPointSources for the above example DataPoints would access the EMSX data to return the correct
EMSX_SEQUENCE and EMSX_STATUS, and perhaps use the reference data service to get the exchange code for the
ticker on the order.

3.2.5 DataSets

DataSets are named entities that represent a collection of DataPoint objects. They are only used to organize
DataPoints into logical groupings.

In our current example, we would create a DataSet object for each order. Once the DataSet object is defined, we
can add it to the list of DataSets being run through a RuleSet by the ExecutionAgent.

3.2.6 ExecutionAgent

When the application has completed the configuration of all the main elements (Rules, RuleConditions,
Evaluators, Action, Executors, and etc.), one or more RuleSets can be executed.

This involves taking a DataSet and asking the RuleSet to be executed against that DataSet: -

myRuleSet.Execute(dataSet_1);

If this is the first time this RuleSet has been executed, a new ExecutionAgent will be created for the RuleSet.
If the RuleSet already has an ExecutionAgent, it will be reused. The specified DataSet is then passed to the
RuleSet’s ExecutionAgent: -

executionAgent = new ExecutionAgent(myRuleSet, dataSet_1);

or

3.2. RuleMSX 13

EasyMSXDoc Documentation, Release 2.1

executionAgent.AddDataSet(dataSet_1);

Each ExecutionAgent has a DataSetQueue. Adding a DataSet to an ExecutionAgent simply adds the
DataSet reference into the DataSetQueue. This is used to ensure that new DataSets are only ingested at the
correct time, and not at the mid-point of a cycle.

A new ExecutionAgent will create a new internal thread that will operate a WorkingSetAgent. This
WorkingSetAgent is the main loop that controls the execution of the rules and actions for a RuleSet, and it
continues to run until stopped by an external request (a call to the stop() method).

Each cycle of the WorkingSetAgent begins with ingesting any DataSets in the ExecutionAgent’s
DataSetQueue. This is the process of creating a WorkingRule for each Rule in the RuleSet and the spec-
ified DataSet.

To create a WorkingRule, a Rule and a DataSet are required. A process known as dereferencing takes place,
which has two steps. The first step is to take each Action associated with the Rule and add the ActionExecutor
references to the WorkingRule’s Executors collection.

The second part of the dereferencing process is to iterate each RuleCondition of the Rule, and add it’s
RuleEvaluator to the Evaluators collection of the WorkingRule. Each RuleEvaluator has a col-
lection of DataPoint names that it depends on. For each of these dependant data point names, we find
the actual DataPoint in the DataSet that matches the name. The WorkingRule is then added to the
AssociatedWorkingRules collection of the DataPoint’s DataPointSource object.

The reason for doing this is that when a DataPointSource’s value changes, its SetStale() method is
(should be) fired. This forces each WorkingRule dependency of the DataPointSource to be added to the
OpenSetQueue in the WorkingSetAgent for execution in the next cycle, unless the WorkingRule is already
in the OpenSetQueue.

Following the ingestion process, the current OpenSetQueue becomes the OpenSet, and the OpenSetQueue
is then reset to empty. The OpenSet is now iterated, and each WorkingRule in the queue is processed. Each
Evaluator in the WorkingRule is fired, passing it the WorkingRule’s DataSet. If all Evaluators in
the WorkingRule return true, then the action process begins. Each action associated with the WorkingRule is
executed.

3.2.7 RETE Algorithm

The word rete is Latin for net or network. The rete algorithm is essentially a pattern matching algorithm.

The main objective behind rete algorithm for RuleMSX is to decouple the various trading or business rules from rule
execution or executing sequences on a particular data set.

The data set here can be both trading data obtained from EMSX API, market data, or non-trading based proprietary
data set.

The RuleMSX views each rule exists as a stand-alone rule that is either true or false at any given moment.

A pattern contains one or more rules. All the rules in a pattern must evaluate to true for the action attached to the
pattern to be executed. In this case, the action itself is responsible for introducing the new rules to be checked and/or
new patterns or patterns to be removed from the set.

3.2.8 Rules

Each Rule in a RuleSet is a named collection of RuleConditions and RuleActions. When all conditions in a Rule
evaluate to True, the associated actions are executed.

14 Chapter 3. Resource

EasyMSXDoc Documentation, Release 2.1

Following the above example, and single rule within the AutoRoute ruleset would be RouteUStoBB, which
would route any orders on the US exchange code to the broker known as BB. The other rule example could be
RouteLNtoBMTB.

3.2.9 RuleActions

A Rule can have many RuleActions. Each RuleAction has a client-side component called
an‘‘ActionExecutor‘‘. When a Rule evaluates to True, all associated RuleActions are executed.

For example, we would have a RuleAction called RouteOrdertoBB. which would be called as a consequence
of the RouteUStoBB rules all evaluating to True.

3.2.10 RuleConditions

A RuleCondition is a named item within a Rule, which evaluates to either True or False. It does this through
client-side code using a RuleEvaluator. A single Rule can have multiple RuleConditions, and they must all
evaluate to True for the associated RuleActions to be executed.

For our RouteUStoBB example, we would have a condition called MustBeUSExchange that checked the order
to ensure that it was for the US exchange. Another condition would be that the order must be in a NEW state, perhaps
called CheckNEWState, to ensure that this rule is only triggered once.

3.2.11 RuleEvaluator

A RuleEvaluator is an abstract class that must be implemented in the client-side code. This abstract class has an
Evaluate method that must be overridden. This method must return True or False. When the Evaluate method
is called, it is passed the current DataSet as a parameter, to support the determination of the return value.

The abstract class also provides a mechanism for creating a dependency between a Rule and named DataPoints. To do
this, we call the AddDependantDataPointName method of the class, as follows :-

this.AddDependantDataPointName("OrderStatus")

In this case, we are saying that this particular Rule uses the value of the OrderStatus DataPoint. The purpose of
using this mechanism is to ensure that if the value of OrderStatus in any DataSet changes, any WorkingRules
add queue to be re-tested in the next cycle. The change to the value of a DataPoint is indicated by calling the
SetStale method (see DataPointSource).

3.2.12 RuleSets

RuleSets are named entities that represent a collection of RuleSet objects. This is only used to organize rules into
logical groupings. A RuleSet is a named collection of Rules.

An example of a RuleSet would be to route new orders to a particular broker code, based on certain criteria, such as
the exchange. We will call this the “AutoRoute” ruleset.

Once we have a RuleSet and a DataSet object, we can execute the RuleSet. RuleSets need one or more supporting
DataSets to operate against.

3.2. RuleMSX 15

EasyMSXDoc Documentation, Release 2.1

3.3 Earlier Version

The initial approach to RuleMSX handled the rete in the following structure where each RuleSet consists of a single
rule. Each rule consisted of child rules and rule evaluator.

As part of the reiteration of RuleMSX, we have made the changes to reflect the rete algorithm in the following structure:

16 Chapter 3. Resource

EasyMSXDoc Documentation, Release 2.1

3.4 Full Code Samples

3.4.1 Full EasyMSX Code Samples

The link to the main EasyMSX Code Sample.

3.4.2 Full EMSX API Documentation

The link to the main EMSX API Documentation.

3.4.3 Full EMSX API Code Samples

The github link to the EMSX API Code Sample.

3.4.4 Full Bloomberg API Developer Guide

The link to the Open API Core Developer Guide.

3.4. Full Code Samples 17

https://github.com/tkim/EasyMSXRepository
http://emsx-api-doc.readthedocs.io/en/latest/
https://github.com/tkim/emsx_api_repository
https://data.bloomberglp.com/professional/sites/10/2017/03/BLPAPI-Core-Developer-Guide.pdf

EasyMSXDoc Documentation, Release 2.1

18 Chapter 3. Resource

CHAPTER 4

License

Copyright (c) 2018

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

19

	Introduction
	Projects
	Prerequisites
	EasyMSX
	EasyMKT
	RuleMSX
	EMSX API in Julia language

	Resource
	EMSX Route Status
	RuleMSX
	Earlier Version
	Full Code Samples

	License

