

EasyGUI

EasyGUI is a module for very simple, very easy GUI programming in Python. EasyGUI is different from other GUI generators in that EasyGUI is NOT event-driven. Instead, all GUI interactions are invoked by simple function calls.

EasyGui provides an easy-to-use interface for simple GUI interaction with a user. It does not require the programmer to know anything about tkinter, frames, widgets, callbacks or lambda.

EasyGUI runs on Python 2 and 3, and does not have any dependencies.

Example Usage

>>> import easygui
>>> easygui.ynbox('Shall I continue?', 'Title', ('Yes', 'No'))
True
>>> easygui.msgbox('This is a basic message box.', 'Title Goes Here')
'OK'
>>> easygui.buttonbox('Click on your favorite flavor.', 'Favorite Flavor', ('Chocolate', 'Vanilla', 'Strawberry'))
'Chocolate'

How to get easygui

The best method to get easygui on your system is to type:

pip install --upgrade easygui

, which will install the latest easygui. You may also download the file yourself by looking for the latest
release in sourceforge:

sourceforge download [http://sourceforge.net/projects/easygui/files/]

Table of Contents

	Support, Contacts
	Getting easygui and getting help

	Help develop easygui

	Thanks

	API

	Tutorial
	Introduction

	EasyGui’s demonstration routine

	Importing EasyGui

	Using EasyGui

	Default arguments for EasyGui functions

	Using keyword arguments when calling EasyGui functions

	Using buttonboxes
	msgbox

	ccbox

	ynbox

	buttonbox

	indexbox

	boolbox

	How to show an image in a buttonbox

	Letting the user select from a list of choices
	choicebox

	multchoicebox

	Letting the user enter information
	enterbox

	integerbox

	multenterbox

	Letting the user enter password information
	passwordbox

	multpasswordbox

	Displaying text
	textbox

	codebox

	Working with files
	diropenbox

	fileopenbox

	filesavebox

	Remembering User Settings
	EgStore

	Trapping Exceptions
	exceptionbox

	FAQ
	An FAQ consisting of far too few questions. Help please :)
	General Questions

	Specifics

	Cookbook
	A section to hold code snippets and recipes

	Links
	YouTube videos by Marcus Adams

	easygui for Students

	Previous Versions and website

	Stephen Ferg

	GitHub Site [https://github.com/robertlugg/easygui]

	Sourceforge Site [http://sourceforge.net/projects/easygui]

	Documentation Site [http://easygui.readthedocs.org/en/master]

	Development Docs Site [http://easygui.readthedocs.org/en/develop]

	Index

	Search Page

Background

easygui was started several years ago by Stephen Ferg [http://www.ferg.org/contact_info/index.html] and
was developed and supported by him through 2013. From there, work was restarted circa 2014. The first goal
was to update the then four year old release and address some bugs and minor enhancements.
That first release was 0.97

LICENSE INFORMATION

EasyGui version 0.98

Copyright (c) -2016, Stephen Raymond Ferg

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

	The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ABOUT THE EASYGUI LICENSE

This license is what is generally known as the “modified BSD license”,

aka “revised BSD”, “new BSD”, “3-clause BSD”.

See http://opensource.org/licenses/bsd-license.php

This license is GPL-compatible.

See http://en.wikipedia.org/wiki/License_compatibility

See http://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses

The BSD License is less restrictive than GPL.

It allows software released under the license to be incorporated into proprietary products.

Works based on the software may be released under a proprietary license or as closed source software.

http://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_.28.22Revised_BSD_License.22.2C_.22New_BSD_License.22.2C_or_.22Modified_BSD_License.22.29

EasyGui Support and Contacts

Getting easygui and getting help

The easygui project is developed on Github:
https://github.com/robertlugg/easygui

Releases are typically put in both sourceforge and pypi:
http://sourceforge.net/projects/easygui

You can use either place to download the latest version, submit bugs, and make requests for improvements.

We welcome any and all feedback!

Help develop easygui

If you want to delve into the inner workings of easygui, wish to preview the next release,
or if you want to contribute to develop easygui, feel free to explore our GitHub site [https://github.com/robertlugg/easygui]

You very welcome to fork and please let us know when you come up with cool stuff others might use!

Thanks

The following people (as well as many others) have contributed to easygui. Thank you for your work!

Alex Zawadzki - Project Management, Design, Testing

Horst JENS [http://spielend-programmieren.at] - Design, Documentation, Testing

Juan Jose Corrales - Development (Active)

Robert Lugg - Development (Active)

Stephen Ferg [http://www.ferg.org/index.html] - (retired) Created and developed easygui through 0.96

Andreas Noteng - Debian [https://www.debian.org/] Package Manager

easygui API

	
easygui.buttonbox(msg='', title=' ', choices=('Button[1]', 'Button[2]', 'Button[3]'), image=None, images=None, default_choice=None, cancel_choice=None, callback=None, run=True)

	Display a msg, a title, an image, and a set of buttons.
The buttons are defined by the members of the choices global_state.

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	choices (list) – a list or tuple of the choices to be displayed

	image (str) – (Only here for backward compatibility)

	images (str) – Filename of image or iterable or iteratable of iterable to display

	default_choice (str) – The choice you want highlighted when the gui appears

	Returns

	the text of the button that the user selected

	
easygui.diropenbox(msg=None, title=None, default=None)

	A dialog to get a directory name.
Note that the msg argument, if specified, is ignored.

Returns the name of a directory, or None if user chose to cancel.

If the “default” argument specifies a directory name, and that
directory exists, then the dialog box will start with that directory.

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	default (str) – starting directory when dialog opens

	Returns

	Normalized path selected by user

	
easygui.fileopenbox(msg=None, title=None, default='*', filetypes=None, multiple=False)

	A dialog to get a file name.

About the “default” argument

The “default” argument specifies a filepath that (normally)
contains one or more wildcards.
fileopenbox will display only files that match the default filepath.
If omitted, defaults to “*” (all files in the current directory).

WINDOWS EXAMPLE:

...default="c:/myjunk/*.py"

will open in directory c:myjunkand show all Python files.

WINDOWS EXAMPLE:

...default="c:/myjunk/test*.py"

will open in directory c:myjunkand show all Python files
whose names begin with “test”.

Note that on Windows, fileopenbox automatically changes the path
separator to the Windows path separator (backslash).

About the “filetypes” argument

If specified, it should contain a list of items,
where each item is either:

	a string containing a filemask # e.g. “*.txt”

	a list of strings, where all of the strings except the last one
are filemasks (each beginning with “*.”,
such as “*.txt” for text files, “*.py” for Python files, etc.).
and the last string contains a filetype description

EXAMPLE:

filetypes = ["*.css", ["*.htm", "*.html", "HTML files"]]

Note

If the filetypes list does not contain (“All files”,”*”), it will be added.

If the filetypes list does not contain a filemask that includes
the extension of the “default” argument, it will be added.
For example, if default=”*abc.py”
and no filetypes argument was specified, then
“*.py” will automatically be added to the filetypes argument.

	Parameters

	
	msg (str) – the msg to be displayed.

	title (str) – the window title

	default (str) – filepath with wildcards

	filetypes (object) – filemasks that a user can choose, e.g. “*.txt”

	multiple (bool) – If true, more than one file can be selected

	Returns

	the name of a file, or None if user chose to cancel

	
easygui.filesavebox(msg=None, title=None, default='', filetypes=None)

	A file to get the name of a file to save.
Returns the name of a file, or None if user chose to cancel.

The “default” argument should contain a filename (i.e. the
current name of the file to be saved). It may also be empty,
or contain a filemask that includes wildcards.

The “filetypes” argument works like the “filetypes” argument to
fileopenbox.

	Parameters

	
	msg (str) – the msg to be displayed.

	title (str) – the window title

	default (str) – default filename to return

	filetypes (object) – filemasks that a user can choose, e.g. ” *.txt”

	Returns

	the name of a file, or None if user chose to cancel

	
easygui.textbox(msg='', title=' ', text='', codebox=False, callback=None, run=True)

	Display a message and a text to edit

	msgstring

	text displayed in the message area (instructions…)

	titlestr

	the window title

	text: str, list or tuple

	text displayed in textAreas (editable)

	codebox: bool

	if True, don’t wrap and width is set to 80 chars

	callback: function

	if set, this function will be called when OK is pressed

	run: bool

	if True, a box object will be created and returned, but not run

	None

	If cancel is pressed

	str

	If OK is pressed returns the contents of textArea

	
easygui.ynbox(msg='Shall I continue?', title=' ', choices=('[<F1>]Yes', '[<F2>]No'), image=None, default_choice='[<F1>]Yes', cancel_choice='[<F2>]No')

	Display a msgbox with choices of Yes and No.

The returned value is calculated this way:

if the first choice ("Yes") is chosen, or if the dialog is cancelled:
 return True
else:
 return False

If invoked without a msg argument, displays a generic
request for a confirmation
that the user wishes to continue. So it can be used this way:

if ynbox():
 pass # continue
else:
 sys.exit(0) # exit the program

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	choices (list) – a list or tuple of the choices to be displayed

	image (str) – Filename of image to display

	default_choice (str) – The choice you want highlighted
when the gui appears

	cancel_choice (str) – If the user presses the ‘X’ close, which
button should be pressed

	Returns

	True if ‘Yes’ or dialog is cancelled, False if ‘No’

	
easygui.ccbox(msg='Shall I continue?', title=' ', choices=('C[o]ntinue', 'C[a]ncel'), image=None, default_choice='Continue', cancel_choice='Cancel')

	Display a msgbox with choices of Continue and Cancel.

The returned value is calculated this way:

if the first choice ("Continue") is chosen,
 or if the dialog is cancelled:
 return True
else:
 return False

If invoked without a msg argument, displays a generic
request for a confirmation
that the user wishes to continue. So it can be used this way:

if ccbox():
 pass # continue
else:
 sys.exit(0) # exit the program

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	choices (list) – a list or tuple of the choices to be displayed

	image (str) – Filename of image to display

	default_choice (str) – The choice you want highlighted
when the gui appears

	cancel_choice (str) – If the user presses the ‘X’ close,
which button should be pressed

	Returns

	True if ‘Continue’ or dialog is cancelled, False if ‘Cancel’

	
easygui.boolbox(msg='Shall I continue?', title=' ', choices=('[Y]es', '[N]o'), image=None, default_choice='Yes', cancel_choice='No')

	Display a boolean msgbox.

The returned value is calculated this way:

if the first choice is chosen, or if the dialog is cancelled:
 returns True
else:
 returns False

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	choices (list) – a list or tuple of the choices to be displayed

	image (str) – Filename of image to display

	default_choice (str) – The choice you want highlighted
when the gui appears

	cancel_choice (str) – If the user presses the ‘X’ close, which button
should be pressed

	Returns

	True if first button pressed or dialog is cancelled, False if
second button is pressed

	
easygui.indexbox(msg='Shall I continue?', title=' ', choices=('Yes', 'No'), image=None, default_choice='Yes', cancel_choice='No')

	Display a buttonbox with the specified choices.

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	choices (list) – a list or tuple of the choices to be displayed

	image (str) – Filename of image to display

	default_choice (str) – The choice you want highlighted
when the gui appears

	cancel_choice (str) – If the user presses the ‘X’ close,
which button should be pressed

	Returns

	the index of the choice selected, starting from 0

	
easygui.msgbox(msg='(Your message goes here)', title=' ', ok_button='OK', image=None, root=None)

	Display a message box

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	ok_button (str) – text to show in the button

	image (str) – Filename of image to display

	root (tk_widget) – Top-level Tk widget

	Returns

	the text of the ok_button

	
easygui.integerbox(msg='', title=' ', default=None, lowerbound=0, upperbound=99, image=None, root=None)

	Show a box in which a user can enter an integer.

In addition to arguments for msg and title, this function accepts
integer arguments for “default”, “lowerbound”, and “upperbound”.

The default, lowerbound, or upperbound may be None.

When the user enters some text, the text is checked to verify that it
can be converted to an integer between the lowerbound and upperbound.

If it can be, the integer (not the text) is returned.

If it cannot, then an error msg is displayed, and the integerbox is
redisplayed.

If the user cancels the operation, None is returned.

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	default (int) – The default value to return

	lowerbound (int) – The lower-most value allowed

	upperbound (int) – The upper-most value allowed

	image (str) – Filename of image to display

	root (tk_widget) – Top-level Tk widget

	Returns

	the integer value entered by the user

	
easygui.multenterbox(msg='Fill in values for the fields.', title=' ', fields=[], values=[], callback=None, run=True)

	Show screen with multiple data entry fields.

If there are fewer values than names, the list of values is padded with
empty strings until the number of values is the same as the number
of names.

If there are more values than names, the list of values
is truncated so that there are as many values as names.

Returns a list of the values of the fields,
or None if the user cancels the operation.

Here is some example code, that shows how values returned from
multenterbox can be checked for validity before they are accepted:

msg = "Enter your personal information"
title = "Credit Card Application"
fieldNames = ["Name","Street Address","City","State","ZipCode"]
fieldValues = [] # we start with blanks for the values
fieldValues = multenterbox(msg,title, fieldNames)

make sure that none of the fields was left blank
while 1:
 if fieldValues is None: break
 errmsg = ""
 for i in range(len(fieldNames)):
 if fieldValues[i].strip() == "":
 errmsg += ('"%s" is a required field.\n\n' % fieldNames[i])
 if errmsg == "":
 break # no problems found
 fieldValues = multenterbox(errmsg, title, fieldNames, fieldValues)

print("Reply was: %s" % str(fieldValues))

	Parameters

	
	msg (str) – the msg to be displayed.

	title (str) – the window title

	fields (list) – a list of fieldnames.

	values (list) – a list of field values

	Returns

	String

	
easygui.enterbox(msg='Enter something.', title=' ', default='', strip=True, image=None, root=None)

	Show a box in which a user can enter some text.

You may optionally specify some default text, which will appear in the
enterbox when it is displayed.

Example:

reply = enterbox(....)
if reply:
 ...
else:
 ...

	Parameters

	
	msg (str) – the msg to be displayed.

	title (str) – the window title

	default (str) – value returned if user does not change it

	strip (bool) – If True, the return value will have
its whitespace stripped before being returned

	Returns

	the text that the user entered, or None if he cancels
the operation.

	
easygui.exceptionbox(msg=None, title=None)

	Display a box that gives information about
an exception that has just been raised.

The caller may optionally pass in a title for the window, or a
msg to accompany the error information.

Note that you do not need to (and cannot) pass an exception object
as an argument. The latest exception will automatically be used.

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	Returns

	None

	
easygui.choicebox(msg='Pick an item', title='', choices=[], preselect=0, callback=None, run=True)

	Present the user with a list of choices.
return the choice that he selects.

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	choices (list) – a list or tuple of the choices to be displayed

	preselect – Which item, if any are preselected when dialog appears

	Returns

	List containing choice selected or None if cancelled

	
easygui.codebox(msg='', title=' ', text='')

	Display some text in a monospaced font, with no line wrapping.
This function is suitable for displaying code and text that is
formatted using spaces.

The text parameter should be a string, or a list or tuple of lines to be
displayed in the textbox.

	Parameters

	
	msg (str) – the msg to be displayed

	title (str) – the window title

	text (str) – what to display in the textbox

	
easygui.passwordbox(msg='Enter your password.', title=' ', default='', image=None, root=None)

	Show a box in which a user can enter a password.
The text is masked with asterisks, so the password is not displayed.

	Parameters

	
	msg (str) – the msg to be displayed.

	title (str) – the window title

	default (str) – value returned if user does not change it

	Returns

	the text that the user entered, or None if he cancels
the operation.

	
easygui.multpasswordbox(msg='Fill in values for the fields.', title=' ', fields=(), values=(), callback=None, run=True)

	Same interface as multenterbox. But in multpassword box,
the last of the fields is assumed to be a password, and
is masked with asterisks.

	Parameters

	
	msg (str) – the msg to be displayed.

	title (str) – the window title

	fields (list) – a list of fieldnames.

	values (list) – a list of field values

	Returns

	String

Example

Here is some example code, that shows how values returned from
multpasswordbox can be checked for validity before they are accepted:

msg = "Enter logon information"
title = "Demo of multpasswordbox"
fieldNames = ["Server ID", "User ID", "Password"]
fieldValues = [] # we start with blanks for the values
fieldValues = multpasswordbox(msg,title, fieldNames)

make sure that none of the fields was left blank
while 1:
 if fieldValues is None: break
 errmsg = ""
 for i in range(len(fieldNames)):
 if fieldValues[i].strip() == "":
 errmsg = errmsg + ('"%s" is a required field.\n\n' %
 fieldNames[i])
 if errmsg == "": break # no problems found
 fieldValues = multpasswordbox(errmsg, title,
 fieldNames, fieldValues)

print("Reply was: %s" % str(fieldValues))

	
easygui.multchoicebox(msg='Pick an item', title='', choices=[], preselect=0, callback=None, run=True)

	Same as choicebox, but the user can select many items.

	
class easygui.EgStore(filename)

	Bases: object

A class to support persistent storage.

You can use EgStore to support the storage and retrieval
of user settings for an EasyGui application.

First: define a class named Settings as a subclass of EgStore

class Settings(EgStore):
 def __init__(self, filename): # filename is required
 # specify default values for variables that this application wants to remember
 self.user_id = ''
 self.target_server = ''
 settings.restore()

Second: create a persistent Settings object*

settings = Settings('app_settings.txt')
settings.user_id = 'obama_barak'
settings.targetServer = 'whitehouse1'
settings.store()

run code that gets a new value for user_id, and persist the settings
settings.user_id = 'biden_joe'
settings.store()

Example C: recover the Settings instance, change an attribute, and store it again.

settings = Settings('app_settings.txt')
settings.restore()
print settings
settings.user_id = 'vanrossum_g'
settings.store()

	
kill()

	Delete this store’s file if it exists.

	
restore()

	

	
store()

	Save this store to a pickle file.
All directories in filename must already exist.

	
easygui.abouteasygui()

	shows the easygui revision history

	
easygui.egdemo()

	Run the EasyGui demo.

EasyGui Tutorial

Introduction

In easygui, all GUI interactions are invoked by simple function calls.

Here is a simple demo program using easygui.

from easygui import *
import sys

A nice welcome message
ret_val = msgbox("Hello, World!")
if ret_val is None: # User closed msgbox
 sys.exit(0)

msg ="What is your favorite flavor?\nOr Press <cancel> to exit."
title = "Ice Cream Survey"
choices = ["Vanilla", "Chocolate", "Strawberry", "Rocky Road"]
while 1:
 choice = choicebox(msg, title, choices)
 if choice is None:
 sys.exit(0)
 msgbox("You chose: {}".format(choice), "Survey Result")

EasyGui’s demonstration routine

To run EasyGui’s demonstration routine, invoke EasyGui from the command line this way:

python easygui.py

or from an IDE (such as IDLE, PythonWin, Wing, etc.) this way:

from easygui import *
egdemo()

This will allow you to try out the various EasyGui functions,
and will print the results of your choices to the console.

Importing EasyGui

In order to use EasyGui, you must import it. The simplest import statement is:

import easygui

If you use this form, then to access the EasyGui functions, you must prefix them with the name “easygui”, this way:

easygui.msgbox(...)

One alternative is to import EasyGui this way:

from easygui import *

This makes it easier to invoke the EasyGui functions; you won’t have to prefix the function names with “easygui”. You can just code something like this:

msgbox(...)

A third alternative is to use something like the following import statement:

import easygui as g

This allows you to keep the EasyGui namespace separate with a minimal amount of typing. You can access easgui functions like this:

g.msgbox(...)

This third alterative is actually the best way to do it once you get used to python and easygui.

Using EasyGui

Once your module has imported EasyGui, GUI operations are a simple a matter of invoking EasyGui functions with a few parameters. For example, using EasyGui, the famous “Hello, world!” program looks like this:

from easygui import *
msgbox("Hello, world!")

To see a demo of what EasyGui output looks like, invoke easyGui from the command line, this way:

python easygui.py

To see examples of code that invokes the EasyGui functions, look at the demonstration code at the end of easygui.py.

Default arguments for EasyGui functions

For all of the boxes, the first two arguments are for message and title,
in that order. In some cases, this might not be the most user-friendly
arrangement (for example, the dialogs for getting directory and filenames
ignore the message argument), but I felt that keeping this consistent
across all widgets was a consideration that is more important.

Most arguments to EasyGui functions have defaults.
Almost all of the boxes display a message and a title. The title defaults
to the empty string, and the message usually has a simple default.

This makes it is possible to specify as few arguments as you need in order to
get the result that you want. For instance, the title argument to msgbox
is optional, so you can call msgbox specifying only a message, this way:

msgbox("Danger, Will Robinson!")

or specifying a message and a title, this way:

msgbox("Danger, Will Robinson!", "Warning!")

On the various types of buttonbox, the default message is “Shall I continue?”,
so you can (if you wish) invoke them without arguments at all. Here we
invoke ccbox (the close/cancel box, which returns a boolean value) without
any arguments at all:

if ccbox():
 pass # user chose to continue
else:
 return # user chose to cancel

Using keyword arguments when calling EasyGui functions

It is possible to use keyword arguments when calling EasyGui functions.

Suppose for instance that you wanted to use a buttonbox, but
(for whatever reason) did not want to specify the title (second) positional
argument. You could still specify the choices argument (the third argument)
using a keyword, this way:

choices = ["Yes","No","Only on Friday"]
reply = choicebox("Do you like to eat fish?", choices=choices)

Using buttonboxes

There are a number of functions built on top of buttonbox() for common needs.

msgbox

msgbox displays a message and offers an OK button. You can send whatever message you want, along with whatever title you want. You can even over-ride the default text of “OK” on the button if you wish. Here is the signature of the msgbox function:

def msgbox(msg="(Your message goes here)", title="", ok_button="OK"):

The clearest way to over-ride the button text is to do it with a keyword
argument, like this:

msgbox("Backup complete!", ok_button="Good job!")

Here are a couple of examples:

msgbox("Hello, world!")

[image: _images/screenshot_msgbox.png]
msg = "Do you want to continue?"
title = "Please Confirm"
if ccbox(msg, title): # show a Continue/Cancel dialog
 pass # user chose Continue
else: # user chose Cancel
 sys.exit(0)

[image: _images/screenshot_ccbox.png]

ccbox

ccbox offers a choice of Continue and Cancel, and returns either True (for continue) or False (for cancel).

ynbox

ynbox offers a choice of Yes and No, and returns either True of False.

buttonbox

To specify your own set of buttons in a buttonbox, use the buttonbox() function.

The buttonbox can be used to display a set of buttons of your choice. When the user clicks on a button, buttonbox() returns the text of the choice. If the user cancels or closes the buttonbox, the default choice (the first choice) is returned.

buttonbox displays a message, a title, and a set of buttons. Returns the text of the button that the user selected.

indexbox

indexbox displays a message, a title, and a set of buttons. Returns the index of the user’s choice. For example, if you invoked index box with three choices (A, B, C), indexbox would return 0 if the user picked A, 1 if he picked B, and 2 if he picked C.

boolbox

boolbox (boolean box) displays a message, a title, and a set of buttons. Returns returns 1 if the first button is chosen. Otherwise returns 0.

Here is a simple example of a boolbox():

message = "What does she say?"
title = ""
if boolbox(message, title, ["She loves me", "She loves me not"]):
 sendher("Flowers") # This is just a sample function that you might write.
else:
 pass

How to show an image in a buttonbox

	When you invoke the buttonbox function (or other functions that display a button box, such as msgbox, indexbox, ynbox,

	etc.), you can specify the keyword argument image=xxx where xxx is the filename of an image. The file can be .gif.

Usually, you can use other image formats such as .png.

Note

The types of files supported depends on how you installed python. If other formats don’t work, you may need to install the PIL library.

If an image argument is specified, the image file will be displayed after the message.

Here is some sample code from EasyGui’s demonstration routine:

image = "python_and_check_logo.gif"
msg = "Do you like this picture?"
choices = ["Yes","No","No opinion"]
reply = buttonbox(msg, image=image, choices=choices)

If you click on one of the buttons on the bottom, its value will be returned in ‘reply’. You may also click on the image.
In that case, the image filename is returned.

[image: _images/screenshot_buttonbox_with_image.png]

Letting the user select from a list of choices

choicebox

Buttonboxes are good for offering the user a small selection of short choices. But if there are many choices, or the text of the choices is long, then a better strategy is to present them as a list.

choicebox provides a way for a user to select from a list of choices. The choices are specified in a sequence (a tuple or a list). The choices will be given a case-insensitive sort before they are presented.

The keyboard can be used to select an element of the list.

Pressing “g” on the keyboard, for example, will jump the selection to the first element beginning with “g”. Pressing “g” again, will jump the cursor to the next element beginning with “g”. At the end of the elements beginning with “g”, pressing “g” again will cause the selection to wrap around to the beginning of the list and jump to the first element beginning with “g”.

If there is no element beginning with “g”, then the last element that occurs before the position where “g” would occur is selected. If there is no element before “g”, then the first element in the list is selected:

msg ="What is your favorite flavor?"
title = "Ice Cream Survey"
choices = ["Vanilla", "Chocolate", "Strawberry", "Rocky Road"]
choice = choicebox(msg, title, choices)

[image: _images/screenshot_choicebox_icecream.png]
Another example of a choicebox:

[image: _images/screenshot_choicebox.png]

multchoicebox

The multchoicebox() function provides a way for a user to select from a list of choices. The interface looks just like the choicebox, but the user may select zero, one, or multiple choices.

The choices are specified in a sequence (a tuple or a list). The choices will be given a case-insensitive sort before they are presented.

[image: _images/screenshot_multchoicebox.png]

Letting the user enter information

enterbox

enterbox is a simple way of getting a string from the user

integerbox

integerbox is a simple way of getting an integer from the user.

multenterbox

multenterbox is a simple way of showing multiple enterboxes on a single screen.

[image: _images/screenshot_multenterbox_vista.png]
In the multenterbox:

	If there are fewer values than names, the list of values is padded with empty strings until the number of values is the same as the number of names.

	If there are more values than names, the list of values is truncated so that there are as many values as names.

Returns a list of the values of the fields, or None if the user cancels the operation.

Here is some example code, that shows how values returned from multenterbox can be checked for validity before they are accepted:

from __future__ import print_function
msg = "Enter your personal information"
title = "Credit Card Application"
fieldNames = ["Name", "Street Address", "City", "State", "ZipCode"]
fieldValues = multenterbox(msg, title, fieldNames)
if fieldValues is None:
 sys.exit(0)
make sure that none of the fields were left blank
while 1:
 errmsg = ""
 for i, name in enumerate(fieldNames):
 if fieldValues[i].strip() == "":
 errmsg += "{} is a required field.\n\n".format(name)
 if errmsg == "":
 break # no problems found
 fieldValues = multenterbox(errmsg, title, fieldNames, fieldValues)
 if fieldValues is None:
 break
print("Reply was:{}".format(fieldValues))

Note

The first line ‘from __future__’ is only necessary if you are using Python 2.*, and is only needed for this demo.

Letting the user enter password information

passwordbox

A passwordbox box is like an enterbox, but used for entering passwords. The text is masked as it is typed in.

multpasswordbox

multpasswordbox has the same interface as multenterbox, but when it is displayed, the last of the fields is assumed to be a password, and is masked with asterisks.

[image: _images/screenshot_passwordbox.png]

Displaying text

EasyGui provides functions for displaying text.

textbox

The textbox() function displays text in a proportional font. The text will word-wrap.

codebox

The codebox() function displays text in a monospaced font and does not wrap.

[image: _images/screenshot_codebox_vista.png]
Note that you can pass codebox() and textbox() either a string or a list of strings. A list of strings will be converted to text before being displayed. This means that you can use these functions to display the contents of a file this way:

import os
filename = os.path.normcase("c:/autoexec.bat")
f = open(filename, "r")
text = f.readlines()
f.close()
codebox("Contents of file " + filename, "Show File Contents", text)

Working with files

A common need is to ask the user for a filename or for a directory. EasyGui provides a few basic functions for allowing a user to navigate through the file system and choose a directory or a file. (These functions are wrappers around widgets and classes in lib-tk.)

Note that in the current version of EasyGui, the startpos argument is not supported.

diropenbox

diropenbox returns the name of a directory

fileopenbox

fileopenbox returns the name of a file

[image: _images/screenshot_fileopenbox_vista.png]

filesavebox

filesavebox returns the name of a file

Remembering User Settings

EgStore

A common need is to ask the user for some setting, and then to “persist it”, or store it on disk, so that the next time the user uses your application, you can remember his previous setting.

In order to make the process of storing and restoring user settings, EasyGui provides a class called EgStore. In order to remember some settings, your application must define a class (let’s call it Settings, although you can call it anything you want) that inherits from EgStore.

Your application must also create an object of that class (let’s call the object settings).

The constructor (the __init__ method) of the Settings class can initialize all of the values that you wish to remember.

Once you have done this, you can remember the settings simply by assigning values to instance variables in the settings object, and use the settings.store() method to persist the settings object to disk.

Here is an example of code using the Settings class:

from easygui import EgStore

define a class named Settings as a subclass of EgStore

class Settings(EgStore):

 def __init__(self, filename): # filename is required
 # ---
 # Specify default/initial values for variables that
 # this particular application wants to remember.
 # ---
 self.userId = ""
 self.targetServer = ""

 # ---
 # For subclasses of EgStore, these must be
 # the last two statements in __init__
 # ---
 self.filename = filename # this is required
 self.restore()

Create the settings object.
If the settingsFile exists, this will restore its values
from the settingsFile.
create "settings", a persistent Settings object
Note that the "filename" argument is required.
The directory for the persistent file must already exist.

settingsFilename = "settings.txt"
settings = Settings(settingsFilename)

Now use the settings object.
Initialize the "user" and "server" variables
In a real application, we'd probably have the user enter them via enterbox
user = "obama_barak"
server = "whitehouse1"

Save the variables as attributes of the "settings" object
settings.userId = user
settings.targetServer = server
settings.store() # persist the settings
print("\nInitial settings")
print settings

Run code that gets a new value for userId
then persist the settings with the new value
user = "biden_joe"
settings.userId = user
settings.store()
print("\nSettings after modification")
print settings

Delete setting variable
del settings.userId
print("\nSettings after deletion of userId")
print settings

Here is an example of code using a dedicated function to create the Settings class:

from easygui import read_or_create_settings

Create the settings object.
settings = read_or_create_settings('settings1.txt')

Save the variables as attributes of the "settings" object
settings.userId = "obama_barak"
settings.targetServer = "whitehouse1"
settings.store() # persist the settings
print("\nInitial settings")
print settings

Run code that gets a new value for userId
then persist the settings with the new value
user = "biden_joe"
settings.userId = user
settings.store()
print("\nSettings after modification")
print settings

Delete setting variable
del settings.userId
print("\nSettings after deletion of userId")
print settings

Trapping Exceptions

exceptionbox

Sometimes exceptions are raised… even in EasyGui applications. Depending on how you run your application, the stack trace might be thrown away, or written to stdout while your application crashes.

EasyGui provides a better way of handling exceptions via exceptionbox. Exceptionbox displays the stack trace in a codebox and may allow you to continue processing.

Exceptionbox is easy to use. Here is a code example:

try:
 someFunction() # this may raise an exception
except:
 exceptionbox()

[image: _images/screenshot_exceptionbox_vista.png]

EasyGui FAQ

An FAQ consisting of far too few questions. Help please :)

General Questions

	What other gui libraries can I use?

There are several. The two most popular as of 2014-12 are TkInter and PyQt.

TkInter is a library shipped with Python and it is the de-facto standard
for Python. You can find more about it at https://wiki.python.org/moin/TkInter

PyQt is a very popular library. More information on it is at
https://wiki.python.org/moin/PyQt

A library inspired by easygui is the EasyGUI_qt project at http://easygui-qt.readthedocs.org/en/latest/
“Under the hood” easygui uses Tkinter while EasyGUI_qt uses pyQt

	Why should I use easygui instead of some other library?

Well, sometimes you should start with those other (excellent) libraries.
However, we hope that you find easygui useful. Some of the cases for using
easygui are:

	You are starting to program and are tired of the command line >>>.
easygui allows you to quickly create GUIs without worrying about all
the details of Tk or Qt.

	You already have a program and want to make it easier for people to use
by building a GUI for it.

	Its easy! You can try it out in a couple of hours and decide for yourself

Don’t worry. With easygui you are learning the basics. We take only a
few shortcuts to make things easier. If you decide to move to a library
with more functionality, you will already understand some of the
GUI basics.

Specifics

	Can I specify a custom sort order for the items in a choicebox?

No, there is no way to specify a custom order. The reason is that
the data must be sorted in order for the “jump to” feature
(namely, to jump down in the list by pressing keyboard keys) to work.

For some tips on how to control the order of items in a choicebox,
see this recipe from the Easygui Cookbook.

	Button box images don’t appear and I get an error such as:

Cannot load C:UsersRobertSkyDriveGitHubeasyguieasyguipython_and_check_logo.jpg.
Check to make sure it is an image file.
PIL library isn’t installed. If it isn’t installed, only .gif files can be used.

Possibly you are trying to load files other than .gif. Unfortunately, the ‘PIL’ library must be installed
for this to work.

Cookbook

A section to hold code snippets and recipes

	Simple demo program

Here is a simple demo program using easygui. The screens that it
produces are shown on the easygui home page.

from easygui import *
import sys

while 1:
 msgbox("Hello, world!")

 msg ="What is your favorite flavor?"
 title = "Ice Cream Survey"
 choices = ["Vanilla", "Chocolate", "Strawberry", "Rocky Road"]
 choice = choicebox(msg, title, choices)

 # note that we convert choice to string, in case
 # the user cancelled the choice, and we got None.
 msgbox("You chose: " + str(choice), "Survey Result")

 msg = "Do you want to continue?"
 title = "Please Confirm"
 if ccbox(msg, title): # show a Continue/Cancel dialog
 pass # user chose Continue
 else:
 sys.exit(0) # user chose Cancel

	Controlling the order of items in choicebox

In a choicebox, the choices must be in sort order so that the keyboard
“jump to” feature (jump down in the list by pressing keyboard keys) will work.
But it often happens that a sort of first-cut listing of choices doesn’t sort
in a user-friendly order. So what can you do to control the order of the items
displayed in a choicebox?

A useful technique is to specify keys for the items in the choicebox.
For example, suppose you want a choicebox to display View, Update, Delete, Exit.
If you specified your choices this way:

choices = ["View", "Update", "Delete", "Exit"]

you’d get this:

	Delete

	Exit

	Update

	View

It is definitely in alphabetic order, but not very user-friendly.
But if you specified keys for your choices this way:

choices = ["V View", "U Update", "D elete", "X Exit"]

you’d get this (with “X” appearing at the bottom):

	D Delete

	U Update

	V View

	X Exit

Suppose you wanted to force View to the top, so it is the easiest choice to select.
You could change its key from “V” to “A”:

choices = ["A View", "U Update", "D elete", "X Exit"]

and you’d get this:

	A View

	D Delete

	U Update

	X Exit

Another technique is to prepend a space to the choice.
Since space characters always sorts before a non-space character,
you can use this trick to force something like “V View” to the top of the list:

choices = [" V View", "U Update", "D Delete", "X Exit"]

produces this:

	V View

	D Delete

	U Update

	X Exit

In the proportional font used by choicebox, the space before the “V” is almost imperceptible.

Personally, I prefer to use alphabetic keys rather than numeric keys for choicebox items.
It is easier to navigate the choices using alpha keys on the keyboard than by using
the number keys.

And it is possible to use multi-character keys, like this:

	L1 Log old version

	L2 Log new version

Using keys for choices also makes it relatively easy to check for the user’s selection:

choices = [" V View", "U Update", "D elete", "X Exit"]
choice = choicebox(msg,title,choices)

if choice == None:
 return
reply = choice.split()[0] # reply = the first word of the choice

if reply == "X":
 return
elif reply == "V":
 processView()
elif reply == "L1":
 saveLog(version="old")
elif reply == "L2":
 saveLog(version="new")

	Registration System demo

The Registration System demo application is a simple database application to maintain
a list of courses, and students who are registered for the courses.

It is not completely implemented – its purpose is to give you a feel for what is possible
with EasyGui and how you might do it, not to be a complete working application.

File: registration zip file

Screenshots:

[image: _images/screenshot_register_main.png]
[image: _images/screenshot_register_show.png]

EasyGui Links

_

YouTube videos by Marcus Adams

A nice series of tutorials were created to show off Message Box, Button Box, Continue Box and Choice:

Part 1 of many [https://www.youtube.com/watch?v=oMyd0ay2QhI&list=PLB5OAzwSBM2Yr3cIc4nrh1GR4RE2cw7SE]

easygui for Students

Austrian game-programming-for-children teacher Horst JENS [http://spielend-programmieren.at] says:

“I can proudly report that EasyGui is very popular with my students of all ages and one of the best ways to introduce young students to python in a short time.”

Horst and his students have made several videos showing their use of EasyGui:

	Lexi shows msgbox [http://showmedo.com/videotutorials/video?name=pythonJensFromKids2&fromSeriesID=57]

	Leo shows buttonbox [http://showmedo.com/videotutorials/video?name=pythonJensFromKids2&fromSeriesID=57]

	Mira and Teresa show a simple graphic adventure game [http://showmedo.com/videotutorials/video?name=8200010&fromSeriesID=820]

Previous Versions and website

In December 2014, this website was converted to a new format. A snapshot of the older website is still available, but is static as it won’t be updated:
easygui website up to version 0.96 [http://easygui.sourceforge.net/sourceforge_site_as_of_2014_11_21/index.html]

Stephen Ferg

Stephen developed easygui up through version 0.96. We are forever greatful for his insight and vision. He can be contacted at his website at:
http://www.ferg.org/index.html

You might also visit his blog where much of easygui is discussed at:
https://easygui.wordpress.com

Thank you Stephen.

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 easygui (Unix, Windows, Interpreted)	
 an easy-to-use interface for simple GUI interaction

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | K
 | M
 | P
 | R
 | S
 | T
 | Y

A

 	
 	abouteasygui() (in module easygui)

B

 	
 	boolbox() (in module easygui)

 	
 	buttonbox() (in module easygui)

C

 	
 	ccbox() (in module easygui)

 	
 	choicebox() (in module easygui)

 	codebox() (in module easygui)

D

 	
 	diropenbox() (in module easygui)

E

 	
 	easygui (module)

 	egdemo() (in module easygui)

 	
 	EgStore (class in easygui)

 	enterbox() (in module easygui)

 	exceptionbox() (in module easygui)

F

 	
 	fileopenbox() (in module easygui)

 	
 	filesavebox() (in module easygui)

I

 	
 	indexbox() (in module easygui)

 	
 	integerbox() (in module easygui)

K

 	
 	kill() (easygui.EgStore method)

M

 	
 	msgbox() (in module easygui)

 	multchoicebox() (in module easygui)

 	
 	multenterbox() (in module easygui)

 	multpasswordbox() (in module easygui)

P

 	
 	passwordbox() (in module easygui)

R

 	
 	restore() (easygui.EgStore method)

S

 	
 	store() (easygui.EgStore method)

T

 	
 	textbox() (in module easygui)

Y

 	
 	ynbox() (in module easygui)

 _static/tutorial/screenshot_fileopenbox_vista.png
Favorite Links

B Desktop
%5 Recent Places

More »

Folders
). current_version

cookbook

demos

docs

epydoc

faq

G828 =8 =4 =4

|

Name’

). cookbook
. demos
). docs
). epydoc
). faq
). pydoc
). tutorial
). work

| junktxt

| junka.txt

Date modified Type »

File name: jun® it

_static/tutorial/screenshot_msgbox.png
B o

Hello, world!

oK

_static/tutorial/screenshot_codebox_vista.png
EasyGui Help

codebox (msg=
Display some text in a monospaced font, with no line wrapping.
This function is suitable for displaying code and text that is
formatted using spaces.

The text parameter should be a string, or a list or tuple of lines to be
displayed in the textbox.

diropenbox (msg=None, title=None, default=None)
2 dialog to get a directory name.
Note that the msg argument, if specified, is ignored.

Returns the name of a directory, or None if user chose to cancel.

If the "default" argument specifies a directory name, and that
directory exists, then the dialog box will start with that directory.

enterbox (msg='Enter something.', title=' ', default: strip=True, image=None, root=None)
Show a box in which a user can enter some text.

You may optionally specify some default text, which will appear in the
enterbox when it is displayed.

Returns the text that the user entered, or Nome if he cancels the operation.

_static/tutorial/screenshot_exceptionbox_vista.png
An error (exception) has occurred in the program.

Traceback (most recent call last):
File "C:\pydev\easygui\current_version\easygui.py", line 1960, in egdemo
‘thisWillCauseADivideByZeroException = 1/0
ZeroDivisionError: integer division or modulo by zero

_images/screenshot_choicebox_icecream.png
1ol

oK

Whatis your favorite flavor?
Cancel

Rocky Road
Strawbery
Varilla

_static/tutorial/screenshot_multenterbox_vista.png
Enter your personal information

_images/screenshot_codebox_vista.png
EasyGui Help

codebox (msg=
Display some text in a monospaced font, with no line wrapping.
This function is suitable for displaying code and text that is
formatted using spaces.

The text parameter should be a string, or a list or tuple of lines to be
displayed in the textbox.

diropenbox (msg=None, title=None, default=None)
2 dialog to get a directory name.
Note that the msg argument, if specified, is ignored.

Returns the name of a directory, or None if user chose to cancel.

If the "default" argument specifies a directory name, and that
directory exists, then the dialog box will start with that directory.

enterbox (msg='Enter something.', title=' ', default: strip=True, image=None, root=None)
Show a box in which a user can enter some text.

You may optionally specify some default text, which will appear in the
enterbox when it is displayed.

Returns the text that the user entered, or Nome if he cancels the operation.

_static/tutorial/screenshot_passwordbox.png
=18
Demao of password box WITH default

Enter your secret password

_images/screenshot_ccbox.png
 Pleaze confirm T]

Do youwantta continue?

[own] o]

_static/tutorial/screenshot_multchoicebox.png
DEMO OF multchoicebox E =10) x|

Pick as many choices s you wish Select Al 3

Clear All

_images/screenshot_choicebox.png
Wyx (117) - ActiveDictionariesList
Welcorme, Stephen Ferg —

This is your ActiveDictionariesList

It contains st of directories (.. folders) that contain dictionaries thatyou are working with.

Selectthe directory that contains the dictianary you wish to open, orthe option thatyau wish to use
To exit click the CANCEL button or press the ESC key.

=lolx|
('S

Cancel

2 Open> cwyxskeletons\d_system_documentation_example
3 Open> cwyxskeletons\3_oo_system_specification_example
4 Open> cwyxskeletons\1_database_design_example

5 Open> clwyxskeletonsi2_use_case_sxample

‘Add & directory to your ActiveDictionariesList

Help with Wy

Remove & directory from your ActiveDictionariesList

User preferences and profile information

Z: AboutWyx

_static/tutorial/screenshot_multenterbox.png
Credit Card Appli

Name
Steet Acress
Ciy

State

ZpCode

Enter your personal information

~=lolx|

x|

_images/screenshot_msgbox.png
B o

Hello, world!

oK

_images/screenshot_multchoicebox.png
DEMO OF multchoicebox E =10) x|

Pick as many choices s you wish Select Al 3

Clear All

_images/screenshot_exceptionbox_vista.png
An error (exception) has occurred in the program.

Traceback (most recent call last):
File "C:\pydev\easygui\current_version\easygui.py", line 1960, in egdemo
‘thisWillCauseADivideByZeroException = 1/0
ZeroDivisionError: integer division or modulo by zero

_images/screenshot_fileopenbox_vista.png
Favorite Links

B Desktop
%5 Recent Places

More »

Folders
). current_version

cookbook

demos

docs

epydoc

faq

G828 =8 =4 =4

|

Name’

). cookbook
. demos
). docs
). epydoc
). faq
). pydoc
). tutorial
). work

| junktxt

| junka.txt

Date modified Type »

File name: jun® it

_images/screenshot_multenterbox_vista.png
Enter your personal information

_images/screenshot_passwordbox.png
=18
Demao of password box WITH default

Enter your secret password

_images/screenshot_buttonbox_with_image.png
I o

Doyoulike this picture?

Yes No No opirion

_images/screenshot_register_main.png
Course Register

Pick afunction
Curtent course i Phil106 (Introduction to Symbolic Logic)
Curtent studentis 8814

=lolx|
oK

JA0 —disploy alistof all su
CC-create anew course
CD - display alist of courses

CS-selecta course

CX- delete course Phill0s

SC- create anew studentfor course Phil106

SD - display alist of existing students for course Phil106
55 - selecta studentfor course Phil106

SU-update student Phill 06 8814

SX- delete student Phil106.8814

nav.xhtml

 Table of Contents

 		
 EasyGUI

 		
 Support, Contacts

 		
 Getting easygui and getting help

 		
 Help develop easygui

 		
 Thanks

 		
 API

 		
 Tutorial

 		
 Introduction

 		
 EasyGui’s demonstration routine

 		
 Importing EasyGui

 		
 Using EasyGui

 		
 Default arguments for EasyGui functions

 		
 Using keyword arguments when calling EasyGui functions

 		
 Using buttonboxes

 		
 msgbox

 		
 ccbox

 		
 ynbox

 		
 buttonbox

 		
 indexbox

 		
 boolbox

 		
 How to show an image in a buttonbox

 		
 Letting the user select from a list of choices

 		
 choicebox

 		
 multchoicebox

 		
 Letting the user enter information

 		
 enterbox

 		
 integerbox

 		
 multenterbox

 		
 Letting the user enter password information

 		
 passwordbox

 		
 multpasswordbox

 		
 Displaying text

 		
 textbox

 		
 codebox

 		
 Working with files

 		
 diropenbox

 		
 fileopenbox

 		
 filesavebox

 		
 Remembering User Settings

 		
 EgStore

 		
 Trapping Exceptions

 		
 exceptionbox

 		
 FAQ

 		
 An FAQ consisting of far too few questions. Help please :)

 		
 General Questions

 		
 Specifics

 		
 Cookbook

 		
 A section to hold code snippets and recipes

 		
 Links

 		
 YouTube videos by Marcus Adams

 		
 easygui for Students

 		
 Previous Versions and website

 		
 Stephen Ferg

_static/comment-bright.png

_images/screenshot_register_show.png
| cowsereaster R L

Here are all of the students 3

(=

Course: CA3D3 (Bricklaying)
CA303 8128 | Meeker, Ralph (402-887-3957)
CA3038321 | Albertson, William (502-896-1234)

Course: Phil106 (ntroduction to Symbolic Logic)
Phil106.8614| Meinong, Bertrand (703-223-2312)

Course: WC101 (ntroduction to Wester Civilization)
WC101.9875 | Ferg, Stephen (703-765-2366)
WCI01.7688 | Moris, William (703-998-2241)
WC101 6866 | Thorme, Damien (202-666-1234)

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/python-logo-master-v3-TM-flattened.png
& python’

_static/up-pressed.png

_static/plus.png

_static/registration_system/screenshot_register_show.png
| cowsereaster R L

Here are all of the students 3

(=

Course: CA3D3 (Bricklaying)
CA303 8128 | Meeker, Ralph (402-887-3957)
CA3038321 | Albertson, William (502-896-1234)

Course: Phil106 (ntroduction to Symbolic Logic)
Phil106.8614| Meinong, Bertrand (703-223-2312)

Course: WC101 (ntroduction to Wester Civilization)
WC101.9875 | Ferg, Stephen (703-765-2366)
WCI01.7688 | Moris, William (703-998-2241)
WC101 6866 | Thorme, Damien (202-666-1234)

_static/tutorial/python-logo.gif
@ python

_static/up.png

_static/registration_system/screenshot_register_main.png
Course Register

Pick afunction
Curtent course i Phil106 (Introduction to Symbolic Logic)
Curtent studentis 8814

=lolx|
oK

JA0 —disploy alistof all su
CC-create anew course
CD - display alist of courses

CS-selecta course

CX- delete course Phill0s

SC- create anew studentfor course Phil106

SD - display alist of existing students for course Phil106
55 - selecta studentfor course Phil106

SU-update student Phill 06 8814

SX- delete student Phil106.8814

_static/tutorial/screenshot3.png
_sorveyResut R]

“You chose: None

oK

_static/tutorial/screenshot4.png
 Pleaze confirm T]

Do youwantta continue?

[own] o]

_static/tutorial/screenshot2.png

_static/tutorial/screenshot_ccbox.png
 Pleaze confirm T]

Do youwantta continue?

[own] o]

_static/tutorial/screenshot_choicebox.png
Wyx (117) - ActiveDictionariesList
Welcorme, Stephen Ferg —

This is your ActiveDictionariesList

It contains st of directories (.. folders) that contain dictionaries thatyou are working with.

Selectthe directory that contains the dictianary you wish to open, orthe option thatyau wish to use
To exit click the CANCEL button or press the ESC key.

=lolx|
('S

Cancel

2 Open> cwyxskeletons\d_system_documentation_example
3 Open> cwyxskeletons\3_oo_system_specification_example
4 Open> cwyxskeletons\1_database_design_example

5 Open> clwyxskeletonsi2_use_case_sxample

‘Add & directory to your ActiveDictionariesList

Help with Wy

Remove & directory from your ActiveDictionariesList

User preferences and profile information

Z: AboutWyx

_static/tutorial/screenshot_buttonbox-with-image.gif
Ves

Do you like this picture?

No

o opinion

~=lolx|

_static/tutorial/screenshot_buttonbox_with_image.png
I o

Doyoulike this picture?

Yes No No opirion

_static/tutorial/screenshot_choicebox_with_multiple_buttons.gif
T cloid
This is an example of specifying muttiple "OK" buttons for choicebosx.
4

mmm

ppp

999
mr

ss5
This is an example of a very long option which you may or may not wish to choose This is an example of a very lor

i |

I- 1<

_static/tutorial/screenshot_choicebox_icecream.png
1ol

oK

Whatis your favorite flavor?
Cancel

Rocky Road
Strawbery
Varilla

_static/tutorial/screenshot_choicebox_monofonts_and_exit_button.gif
Pick the kind of box that you wish to demo.

In EasyGui, all GUl interactions are invoked by simple function calls.

EasyGui is different from other GUIs in that itis NOT event-driven. [t allows youto programin a
traditional Iinear fashion. and to put up dilogs for simple input and output when you need fo. If youare o
new 1o the event-driven paradig for GlUIs, EasyGui wil allow you to be productive with very basic tasks

immediately. Later. if you wish fo make the transition to an event-driven GUI paradigm. you canmove fo =%
an evenit-driven style with a more powerful GU| packagesuch as anygui, PythonCard, Tkinter, wxPython,

efc.

EasyGUi is running Tk version: 8.5

Python version: 2:6b1 (r26b1:64403, Jun 19 2008, 13:40:32) [MSC v.1500 32 bit (Intel)]

=lolx|

hout EasyGui

hoolbax - buttonbox that returns 1/o [i.e. boolean True/False)
buttonbox - choose from a set of buttons

buttonbox [inage] - example of buttombox with an 'image' specification
echox - msghox with continue/cancel buttons

choicehox - choose from a set of choices

codebox - display text in a monospaced font, no wrapping
decimalbox - enter & Decimal nurber

diropenbox - browse to find a directary

edithox - enter or edit a large chunk of text

enterbox - enter a single line of text

exceptionbox - displays exception information

fileoperbox - browse to find a file

filesavehox - specify the neme of a file to save (varning if file already exists)
floatbox - enter a binary floating-point mumber

fontsizenox - reset the font size

indexbox - buttonhox that returns the index of the clicked button
inthox - enter an integer

integerhox - enter an integer (deprecated)

