

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

EasyBasic

[image: Editor]

Easy Basic is a free educational app developed with the aim to help computer science students to overcome fundamental problems in learning program comprehension. Easy Basic can provide a complete modren envirnoment to write and execute GwBasic program. Easy Basic will able to visualize execution of GwBasic programming language as GwBasic programming language is adopted by all major computer science institutes as introductory programming language.

Teachers can also use EasyBasic to teach programming comprehension in class rooms. Easy Basic will be a best alternative for traditional teaching techniques, soon.

This project is built using Electron.js and is the continuity of GwBasic.Net [http://www.github.com/naumanumer/gwbasic.net].

For Developers

	Install other mode modules with npm install(Inside app folder)

	Run all apps or any of follwoing:

npm run home
npm run ide
npm run shell

	Open electron window using npm run electron

Documentation

Documentation of this project is not available yet.
you can see the documentation about GwBasic here:

	GwBasic (http://www.antonis.de/qbebooks/gwbasman/)

	PcBasic (http://robhagemans.github.io/pcbasic/doc/)

License

This Project is Licensed under GNU GENERAL PUBLIC LICENSE. See the licence at:
Licence

Credits

This project is made possible because of following opensource projects:

	PcBasic (http://robhagemans.github.io/pcbasic/)

	Electron.js (http://electron.atom.io/)

	MonacoEditor (https://microsoft.github.io/monaco-editor/)

	PhotonKit (http://photonkit.com/)

This project is also made possible because of following persons:

	Adnan Umer

	Saleem Hassan

Monaco Editor Change log

[0.8.1]

	CSS/JSON/HTML language supports updated:

	CSS: Support for @apply

	SCSS: Map support

	New HTML formatter options: unformatedContent, wrapAttributes

	Fixed issue where the editor was throwing in Safari due to Intl missing.

	Fixed multiple issues where the editor would not position the cursor correctly when using browser zooming.

API

	Added disableMonospaceOptimizations editor option that can be used in case browser zooming exposes additional issues.

	Added formatOnPaste editor option.

	Added IActionDescriptor.precondition.

	Breaking change: renamed registerTypeDefinitionProvider to registerImplementationProvider and associated types.

[0.8.0]

	This release has been brewing for a while and comes with quite a number of important changes.

	There are many bugfixes and speed/memory usage improvements.

	Now shipping TypeScript v2.1.5 in monaco-typescript (JS and TS language support).

No longer supporting IE9 and IE10

	we have not made the editor fail on purpose in these browsers, but we have removed IE9/IE10 targeted workarounds from our codebase;

	now using Typed Arrays in a number of key places resulting in considerable speed boosts and lower memory consumption.

Monarch Tokenizer

	Monarch states are now memoized up to a depth of 5. This results in considerable memory improvements for files with many lines.

	Speed improvements to Monarch tokenizer that resulted in one breaking change:

	when entering an embedded mode (i.e. nextEmbedded), the state ending up in must immediately contain a nextEmbedded: "@pop" rule. This helps in quickly figuring out where the embedded mode should be left. The editor will throw an error if the Monarch grammar does not respect this condition.

Tokens are styled in JS (not in CSS anymore)

	This is a breaking change

	Before, token types would be rendered on the span node of text, and CSS rules would match token types and assign styling to them (i.e. color, boldness, etc.to style tokens)

	To enable us to build something like a minimap, we need to know the text color in JavaScript, and we have therefore moved the token style matching all to JavaScript. In the future, we foresee that even decorations will have to define their color in JavaScript.

	It is possible to create a custom theme via a new API method monaco.editor.defineTheme() and the playground contains a sample showing how that works.

	Token types can be inspected via F1 > Developer: Inspect tokens. This will bring up a widget showing the token type and the applied styles.

API changes:

Namespaces

	added monaco.editor.onDidCreateEditor that will be fired whenever an editor is created (will fire even for a diff editor, with the two editors that a diff editor consists of).

	added monaco.editor.tokenize that returns logical tokens (before theme matching, as opposed to monaco.editor.colorize).

	added monaco.languages.registerTypeDefinitionProvider

Models

	removed IModel.getMode().

	structural changes in the events IModelLanguageChangedEvent, IModelDecorationsChangedEvent and IModelTokensChangedEvent;

	changed IModel.findMatches, IModel.findNextMatch and IModel.findPreviousMatch to be able to capture matches while searching.

Editors

	ICodeEditor.addAction and IDiffEditor.addAction now return an IDisposable to be able to remove a previously added action.

	renamed ICodeEditor.onDidChangeModelMode to ICodeEditor.onDidChangeModelLanguage;

	ICodeEditor.executeEdits can now take resulting selection for better undo/redo stack management;

	added ICodeEditor.getTargetAtClientPoint(clientX, clientY) to be able to do hit testing.

	added IViewZone.marginDomNode to be able to insert a dom node in the margin side of a view zone.

	settings:

	lineDecorationsWidth can now take a value in the form of "1.2ch" besides the previous accepted number (in px)

	renderLineHighlight can now take a value in the set 'none' | 'gutter' | 'line' | 'all'.

	added fixedOverflowWidgets to render overflowing content widgets as 'fixed' (defaults to false)

	added acceptSuggestionOnCommitCharacter to accept suggestions on provider defined characters (defaults to true)

	added emptySelectionClipboard - copying without a selection copies the current line (defaults to true)

	added suggestFontSize - the font size for the suggest widget

	added suggestLineHeight - the line height for the suggest widget

	diff editor settings:

	added renderIndicators - Render +/- indicators for added/deleted changes. (defaults to true)

Thank you

	Nico Tonozzi (@nicot) [https://github.com/nicot]: Register React file extensions PR monaco-typescript#12 [https://github.com/Microsoft/monaco-typescript/pull/12]

	Jeong Woo Chang (@inspiredjw) [https://github.com/inspiredjw]: Cannot read property ‘uri’ of null fix PR vscode#13263 [https://github.com/Microsoft/vscode/pull/13263]

	Jan Pilzer(@Hirse) [https://github.com/Hirse]: Add YAML samples PR monaco-editor#242 [https://github.com/Microsoft/monaco-editor/pull/242]

[0.7.1]

	Bugfixes in monaco-html, including fixing formatting.

[0.7.0]

	Adopted TypeScript 2.0 in all the repos (also reflected in monaco.d.ts).

	Added YAML colorization support.

	Brought back the ability to use editor.addAction() and have the action show in the context menu.

	Web workers now get a nice label next to the script name.

API changes:

	settings:

	new values for lineNumbers: 'on' | 'off' | 'relative'

	new values for renderWhitespace: 'none' | 'boundary' | 'all'

	removed model.setMode(), as IMode will soon disappear from the API.

Debt work

	Removed html, razor, php and handlebars from monaco-editor-core:

	the monaco-editor-core is now finally language agnostic.

	coloring for html, razor, php and handlebars is now coming in from monaco-languages.

	language smarts for html, razor and handlebars now comes from monaco-html.

	Packaging improvements:

	thanks to the removal of the old languages from monaco-editor-core, we could improve the bundling and reduce the number of .js files we ship.

	we are thinking about simplifying this further in the upcoming releases.

Thank you

	Sandy Armstrong (@sandyarmstrong) [https://github.com/sandyarmstrong]: csharp: allow styling #r/#load PR monaco-languages#9 [https://github.com/Microsoft/monaco-languages/pull/9]

	Nico Tonozzi (@nicot) [https://github.com/nicot]: Go: add raw string literal syntax PR monaco-languages#10 [https://github.com/Microsoft/monaco-languages/pull/10]

	Jason Killian (@JKillian) [https://github.com/JKillian]: Add vmin and vmax CSS units PR monaco-languages#11 [https://github.com/Microsoft/monaco-languages/pull/11]

	Jan Pilzer (@Hirse) [https://github.com/Hirse]: YAML colorization PR monaco-languages#12 [https://github.com/Microsoft/monaco-languages/pull/12]

	Sam El-Husseini (@microsoftsam) [https://github.com/microsoftsam]: Using Cmd+Scroll to zoom on a mac PR vscode#12477 [https://github.com/Microsoft/vscode/pull/12477]

[0.6.1]

	Fixed regression where editor.addCommand was no longer working.

[0.6.0]

	This will be the last release that contains specific IE9 and IE10 fixes/workarounds. We will begin cleaning our code-base and remove them.

	We plan to adopt TypeScript 2.0, so this will be the last release where monaco.d.ts is generated by TypeScript 1.8.

	javascript and typescript language services:

	exposed API to get to the underlying language service.

	fixed a bug that prevented modifying extraLibs.

	Multiple improvements/bugfixes to the css, less, scss and json language services.

	Added support for ATS/Postiats.

API changes:

	settings:

	new: mouseWheelZoom, wordWrap, snippetSuggestions, tabCompletion, wordBasedSuggestions, renderControlCharacters, renderLineHighlight, fontWeight.

	removed: tabFocusMode, outlineMarkers.

	renamed: indentGuides -> renderIndentGuides, referenceInfos -> codeLens

	added editor.pushUndoStop() to explicitly push an undo stop

	added suppressMouseDown to IContentWidget

	added optional resolveLink to ILinkProvider

	removed enablement, contextMenuGroupId from IActionDescriptor

	removed exposed constants for editor context keys.

Notable bugfixes:

	Icons missing in the find widget in IE11 #148 [https://github.com/Microsoft/monaco-editor/issues/148]

	Multiple context menu issues

	Multiple clicking issues in IE11/Edge (#137 [https://github.com/Microsoft/monaco-editor/issues/137], #118 [https://github.com/Microsoft/monaco-editor/issues/118])

	Multiple issues with the high-contrast theme.

	Multiple IME issues in IE11, Edge and Firefox.

Thank you

	Pavel Kolev (@paveldk) [https://github.com/paveldk]: Fix sending message to terminated worker PR vscode#10833 [https://github.com/Microsoft/vscode/pull/10833]

	Pavel Kolev (@paveldk) [https://github.com/paveldk]: Export getTypeScriptWorker & getJavaScriptWorker to monaco.languages.typescript PR monaco-typescript#8 [https://github.com/Microsoft/monaco-typescript/pull/8]

	Sandy Armstrong (@sandyarmstrong) [https://github.com/sandyarmstrong]: Support CompletionItemKind.Method. PR vscode#10225 [https://github.com/Microsoft/vscode/pull/10225]

	Sandy Armstrong (@sandyarmstrong) [https://github.com/sandyarmstrong]: Fix show in IE11 PR vscode#10309 [https://github.com/Microsoft/vscode/pull/10309]

	Sandy Armstrong (@sandyarmstrong) [https://github.com/sandyarmstrong]: Correct docs for IEditorScrollbarOptions.useShadows PR vscode#11312 [https://github.com/Microsoft/vscode/pull/11312]

	Artyom Shalkhakov (@ashalkhakov) [https://github.com/ashalkhakov]: Adding support for ATS/Postiats PR monaco-languages#5 [https://github.com/Microsoft/monaco-languages/pull/5]

[0.5.1]

	Fixed mouse handling in IE

[0.5.0]

Breaking changes

	monaco.editor.createWebWorker now loads the AMD module and calls create and passes in as first argument a context of type monaco.worker.IWorkerContext and as second argument the initData. This breaking change was needed to allow handling the case of misconfigured web workers (running on a file protocol or the cross-domain case)

	the CodeActionProvider.provideCodeActions now gets passed in a CodeActionContext that contains the markers at the relevant range.

	the hoverMessage of a decoration is now a MarkedString | MarkedString[]

	the contents of a Hover returned by a HoverProvider is now a MarkedString | MarkedString[]

	removed deprecated IEditor.onDidChangeModelRawContent, IModel.onDidChangeRawContent

Notable fixes

	Broken configurations (loading from file:// or misconfigured cross-domain loading) now load the web worker code in the UI thread. This caused a breaking change in the behaviour of monaco.editor.createWebWorker

	The right-pointing mouse pointer is oversized in high DPI - issue [https://github.com/Microsoft/monaco-editor/issues/5]

	The editor functions now correctly when hosted inside a position:fixed element.

	Cross origin configuration is now picked up (as advertised in documentation from MonacoEnvironment)

Monaco Editor

Demo page [https://microsoft.github.io/monaco-editor/]

The Monaco Editor is the code editor that powers VS Code [https://github.com/Microsoft/vscode], a good page describing the code editor’s features is here [https://code.visualstudio.com/docs/editor/editingevolved].

[image: image]

Try it out

See the editor in action here [https://microsoft.github.io/monaco-editor/index.html].

Learn how to extend the editor and try out your own customizations in the playground [https://microsoft.github.io/monaco-editor/playground.html].

Browse the latest editor API at monaco.d.ts [https://github.com/Microsoft/monaco-editor/blob/master/website/playground/monaco.d.ts.txt].

Issues

Please mention the version of the editor when creating issues and the browser you’re having trouble in. Create issues in this repository.

Known issues

In IE, the editor must be completely surrounded in the body element, otherwise the hit testing we do for mouse operations does not work. You can inspect this using F12 and clicking on the body element and confirm that visually it surrounds the editor.

Installing

npm install monaco-editor

You will get:

	inside dev: bundled, not minified

	inside min: bundled, and minified

	inside min-maps: source maps for min

	monaco.d.ts: this specifies the API of the editor (this is what is actually versioned, everything else is considered private and might break with any release).

It is recommended to develop against the dev version, and in production to use the min version.

Integrate

Here is the most basic HTML page that embeds the editor. More samples are available at monaco-editor-samples [https://github.com/Microsoft/monaco-editor-samples].

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</head>
<body>

<div id="container" style="width:800px;height:600px;border:1px solid grey"></div>

<script src="monaco-editor/min/vs/loader.js"></script>
<script>
 require.config({ paths: { 'vs': 'monaco-editor/min/vs' }});
 require(['vs/editor/editor.main'], function() {
 var editor = monaco.editor.create(document.getElementById('container'), {
 value: [
 'function x() {',
 '\tconsole.log("Hello world!");',
 '}'
].join('\n'),
 language: 'javascript'
 });
 });
</script>
</body>
</html>

Integrate cross domain

If you are hosting your .js on a different domain (e.g. on a CDN) than the HTML, you should know that the Monaco Editor creates web workers for smart language features. Cross-domain web workers are not allowed, but here is how you can proxy their loading and get them to work:

<!--
 Assuming the HTML lives on www.mydomain.com and that the editor is hosted on www.mycdn.com
-->
<script type="text/javascript" src="http://www.mycdn.com/monaco-editor/min/vs/loader.js"></script>
<script>
 require.config({ paths: { 'vs': 'http://www.mycdn.com/monaco-editor/min/vs' }});

 // Before loading vs/editor/editor.main, define a global MonacoEnvironment that overwrites
 // the default worker url location (used when creating WebWorkers). The problem here is that
 // HTML5 does not allow cross-domain web workers, so we need to proxy the instantion of
 // a web worker through a same-domain script
 window.MonacoEnvironment = {
 getWorkerUrl: function(workerId, label) {
 return 'monaco-editor-worker-loader-proxy.js';
 }
 };

 require(["vs/editor/editor.main"], function () {
 // ...
 });
</script>

<!--
 Create http://www.mydomain.com/monaco-editor-worker-loader-proxy.js with the following content:
 self.MonacoEnvironment = {
 baseUrl: 'http://www.mycdn.com/monaco-editor/min/'
 };
 importScripts('www.mycdn.com/monaco-editor/min/vs/base/worker/workerMain.js');
 That's it. You're good to go! :)
-->

More documentation

Find full HTML samples here [https://github.com/Microsoft/monaco-editor-samples].

Create a Monarch tokenizer here [https://microsoft.github.io/monaco-editor/monarch.html].
[image: image]

FAQ

❓ What is the relationship between VS Code and the Monaco Editor?

The Monaco Editor is generated straight from VS Code’s sources with some shims around services the code needs to make it run in a web browser outside of its home.

❓ What is the relationship between VS Code’s version and the Monaco Editor’s version?

None. The Monaco Editor is a library and it reflects directly the source code.

❓ I’ve written an extension for VS Code, will it work on the Monaco Editor in a browser?

No.

❓ Why all these web workers and why should I care?

Language services create web workers to compute heavy stuff outside the UI thread. They cost hardly anything in terms of resource overhead and you shouldn’t worry too much about them, as long as you get them to work (see above the cross-domain case).

❓ What is this loader.js? Can I use require.js?

It is an AMD loader that we use in VS Code. Yes.

❓ I see the warning “Could not create web worker”. What should I do?

HTML5 does not allow pages loaded on file:// to create web workers. Please load the editor with a web server on http:// or https:// schemes. Please also see the cross domain case above.

❓ Is the editor supported in mobile browsers or mobile web app frameworks?

No.

❓ Why doesn’t the editor support TextMate grammars?

	all the regular expressions in TM grammars are based on oniguruma [https://github.com/kkos/oniguruma], a regular expression library written in C.

	the only way to interpret the grammars and get anywhere near original fidelity is to use the exact same regular expression library (with its custom syntax constructs)

	in VSCode, our runtime is node.js and we can use a node native module that exposes the library to JavaScript

	in Monaco, we are constrained to a browser environment where we cannot do anything similar

	we have experimented with Emscripten to compile the C library to asm.js, but performance was very poor even in Firefox (10x slower) and extremely poor in Chrome (100x slower).

	we can revisit this once WebAssembly gets traction in the major browsers, but we will still need to consider the browser matrix we support. i.e. if we support IE11 and only Edge will add WebAssembly support, what will the experience be in IE11, etc.

Development setup

Please see CONTRIBUTING

Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct [https://opensource.microsoft.com/codeofconduct/]. For more information see the Code of Conduct FAQ [https://opensource.microsoft.com/codeofconduct/faq/] or contact opencode@microsoft.com with any additional questions or comments.

License

MIT [https://github.com/Microsoft/monaco-editor/blob/master/LICENSE.md]

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/5156a6fd8ca7e988b55409077b0ba2f12090fbcd.png
Monaco Editol HOME PLAYGROUND ~ MONARCH DOWNLOAD

+#Monarch Documentation

Language syntax definition Sample: | mylang v| Language editor Theme:|vs v
1 // Create your oun language definition here 1 // Type source code in your language here...
2 // You can safely look at other samples without losing modifications. 2 class MyClass {

3 // Modifications are not saved on browser refresh/close though -- copy oft 3 @attribute
4 return { 4 void main() {
5 // set defaultToken to invalid to see what you do not tokenize yet 5 Console.uriteln("Hello Monarch world\n");
6 // defaultToken: “invalid’, 5)}

7 7}

5 keywords: [8

° “abstract’, continue’, 'for’, 'new’, 'switch’, 'assert’, 'goto’, do’

10 "if', private’, 'this’, 'break’, 'protected’, "throw', ‘else’, 'publi

1 “enum’, ‘return’, ‘catch’, 'try’, 'interface’, 'static’, 'class’,

12 “finally’, "const’, 'super’, ‘while’, 'true’, 'false’

131,

14

15 typeKeywords: [

16 "boolean’, double’, 'byte', 'int’, 'short’, ‘char’, 'void’, 'long’, |

o1,

18

19 operators: [

20 RPN

2 &N, LT, e,

22 R

23 .

2

25

26 // we include these common regular expressions up-to-date

27 symbols: /[=><In2:&|N\-*\/\"K]+/,

28

29 // C# style strings
30 escapes: /\\(?:[abfrtv\\"']|x[0-9A-Fa-F]{1,4}|u[6-9A-Fa-f]{4}|U[0-0A-F¢

_static/down.png

_images/Editor.png
Easy Basic
File Edit Help

Explorer

Tabs

Recent Files

<

TAB4 x

MBS x

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/e0a01ab28e8e1059a23584b21aaac19a02f04b05.png
httpi/localhost..co-editorftest/ X | +

€ | @ localhost:8080/monaco-editor/test/#sample - | @ Q Search e ¥ a0

1 /% Game of Life
2 % Implemented in TypeScript
* To learn more about TypeScript, please visit http://ww.typescriptlang.org/
=/

export class Cell {

3
4
5
6 module Conway {
7
8
9 public row: number;

10 public col: number;

1 public live: boolean;

12

13 constructor(row: number, col: number, live: boolean) {
12 this.row = row;

15 this.col = cot;

16 this.live = live;

17 window.

18 by © addEventListener (method) Window.addEventlistener..
19 3 © alert

2 @ applicationCache

2 export class Ga @ atob

22 private gri @ Blob

23 private can © blur

L 24 norivate 1in @ btoa

© cancelAnimationFrame
captureEvents
clearInmediate
clearInterval

®
®
®
® clearTimeout

_static/ajax-loader.gif

_static/comment-close.png

