

Welcome to e24PaymentPipe’s documentation!

Contents:

	e24PaymentPipe
	Features

	Todo

	Installation

	Quickstart
	Payment Flow Diagram

	Minimal Example

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Development Lead

	Contributors

	History
	1.2.0 (2015-12-29)

	1.1.2 (2014-11-03)

	1.1 (2014-08-12)

	0.1.0 (2011-02-12)

	0.1.1 (2011-02-14)

	0.1.2 (2011-12-16)

	0.2.0 (2011-12-28)

	Module Reference
	Main Methods / Public Interface

	Properties

Indices and tables

	Index

	Module Index

	Search Page

e24PaymentPipe

[image: https://badge.fury.io/py/e24PaymentPipe.png]
 [http://badge.fury.io/py/e24PaymentPipe][image: https://travis-ci.org/burhan/e24PaymentPipe.png?branch=master]
 [https://travis-ci.org/burhan/e24PaymentPipe][image: https://img.shields.io/pypi/pyversions/e24PaymentPipe.svg]This package provides a Python implementation for ACI’s e24PaymentPipe Merchant Gateway

Note

For legacy reasons, the name of the module is kept the same as the one from ACI’s toolkit. This does not
conform to PEP-8 guidelines.

	Free software: BSD license

	Documentation: http://e24PaymentPipe.rtfd.org.

Features

	Written in Python from scratch (not an existing port)

	Supports both newer and legacy terminal resource (.cgn) file formats

	Reasonably well documented

	Proven code - running in production since 2011

	Compatible with Python 3.4, Python 2.7

Todo

	Add support for credit card payments, including refunds.

	Create comprehensive test suite

Installation

At the command line:

$ easy_install e24PaymentPipe

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv e24PaymentPipe
$ pip install e24PaymentPipe

Quickstart

In order to use this module, you need to obtain a resource file and the alias for your terminal
from your payment provider.

This file will allow the module to connect to the gateway server to initialize your transaction workflow.

Payment Flow Diagram

This diagram illustrates the typical flow for the e24PaymentPipe gateway, and how the various components fit together:

[image: _images/KNET-Flow.png]
This module provides the functionality contained in the block marked e24PaymentPipe. In a typical use case,
you would write the functionality defined in the blue box in order to integrate the payment gateway with
and existing system.

The green highlighted boxes show where the user will be redirected to.

For a sample implementation of this gateway, check out https://github.com/burhan/e24-sample-cart

Minimal Example

The quick demo for the impatient:

from e24PaymentPipe import Gateway

pgw = Gateway('resource.cgn', 'alias')
pgw.error_url = 'http://example.com/error'
pgw.response_url = 'http://example.com/response'
pgw.amount = 1.0
gw_info = pgw.get_payment_url()

The snippet above will create a transaction in KWD, the default currency for the system. To override this, see the module documentation.

The get_payment_url() method will return a dictionary with two keys paymentID and paymentURL. You need to store the paymentID in your database (as part of the transaction requirements) and then attach it at the end of the paymentURL to start the transaction initiation process.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/burhan/e24PaymentPipe/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

e24PaymentPipe could always use more documentation, whether as part of the
official e24PaymentPipe docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/burhan/e24PaymentPipe/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up e24PaymentPipe for local development.

	Fork the e24PaymentPipe repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/e24PaymentPipe.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv e24PaymentPipe
$ cd e24PaymentPipe/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 e24PaymentPipe tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7 and for PyPy. Check
https://travis-ci.org/burhan/e24PaymentPipe/pull_requests
and make sure that the tests pass for all supported Python versions.

Credits

Development Lead

	Burhan Khalid <burhan.khalid@gmail.com>

Contributors

None yet. Why not be the first?

History

1.2.0 (2015-12-29)

	Now compatible with Python 3.4!

	Added requests as a dependency

1.1.2 (2014-11-03)

	Fixed issue iterating over UDF dictionary keys

	Fixed issue where unicode was being passed to sanitize
unicode strings are not allowed in UDF fields

1.1 (2014-08-12)

	Refactored class methods to utils.py

	PEP-8 cleanup

	Version bump

0.1.0 (2011-02-12)

	First release on Github.

0.1.1 (2011-02-14)

	Added custom exceptions

0.1.2 (2011-12-16)

	Optimized error checking

	Added character filters for UDF as per latest payment provider update

0.2.0 (2011-12-28)

	Version branch created with major changes in the codebase

	Cleaned up the API and interface

Module Reference

If you haven’t already done so, please read the quickstart for an overview of the payment process
and a quick example on usage of this module.

Main Methods / Public Interface

	
class Gateway(resource, alias[, currency=414, lang='ENG'])

	This is the main class that creates
parses the terminal resource file
and creates the gateway link in order
to initiate the payment process.

	Parameters:	
	resource (str) – The full path name the the resource file provided by the
payment processor

	alias (str) – The alias for the terminal. See your payment processor for more
information

	currency (int) – The ISO 4217 numeric code for the currency of the transaction.
See ISO 4217 [http://en.wikipedia.org/wiki/ISO_4217] for more.

	lang (str) – The language supported by the gateway. See your payment processor’s
documentation for the languages supported. Defaults to ‘ENG’ for US English.

	
static sanitize(s) → string

	Returns the string stripped of characters
not allowed in the transaction id or the
UDF (user defined fields)

The following characters are stripped:

	Symbol
	Hex
	Name

	~
	x7E
	TILDE

	`
	x60
	LEFT SINGLE QUOTATION MARK, GRAVE ACCENT

	!
	x21
	EXCLAMATION POINT (bang)

	#
	x23
	NUMBER SIGN (pound sign)

	$
	x24
	DOLLAR SIGN

	%
	x25
	PERCENT SIGN

	^
	x5E
	CIRCUMFLEX ACCENT

	

	x7C
	VERTICAL LINE (pipe)

	
	x5C
	REVERSE SLANT (REVERSE SOLIDUS, backslash, backslant)

	:
	x3A
	COLON

	‘
	x27
	APOSTROPHE, RIGHT SINGLE QUOTATION MARK, ACUTE ACCENT (single quote)

	“
	x22
	QUOTATION MARK, DIAERESIS

	/
	x2F
	SLANT (SOLIDUS, slash)

	Parameters:	s (str) – The string to be sanitized

	Returns:	Sanitized string, with characters not allowed removed

	Return type:	str

	
get_payment_url() → dict

	This function returns a two element dictionary
with the paymentID and the paymentURL that
is needed to redirect the user to the gateway.

In order to call this method, the gateway needs
to be correctly initialized and configured.

	Raises:	ValueError – if the object is not configured correctly

	Returns:	A dictionary of payment id and payment url from the gateway

	Return type:	dict

Properties

Properties are used to set various gateway parameters, and to ensure that all
parameters are correctly sanitized.

All properties are accessed from instances of the gateway object.

	Property Name
	Description
	Required/Optional

	udf
	Set or get the user defined fields (UDF).
Please note the following restrictions:

	You can only send data for a maximum of 5 fields.

	If passing a dictionary, the keys must be named ‘UDF[1..5]’

	When setting the field, if a tuple or list is passed,
the keys are generated automatically.

	All values are automatically processed by sanitize()

	Optional

	error_url
	The fully qualified URL to the error handler for the gateway.
See the quickstart for more information
	Required

	amount
	The amount for this transaction, this should be a floating
point number. The default and the minimum is 1.0.
Invalid values will raise a TypeError.
	Required

	trackid
	The tracking id for this transaction. It must be a unique value.
Like the udf fields, it is also sanitized. A default value based
on the current timestamp is generated if not provided.
	Optional

	response_url
	The fully qualified URL for all affirmative responses from the
gateway. See quickstart
	Required

Index

 G
 | S

G

 	
 	Gateway (built-in class)

 	
 	get_payment_url()

S

 	
 	sanitize()

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/KNET-Flow.png
Your Shopping Cart

e24PaymentPipe

Payment Processor

®

Add to Shopping
Cart

Intilize Gateway
Class

get_payment_url

Confirm Checkout

[Customer Clicks on|
“Pay Now"

Payment
Gateway
Flow

Error Page

Thank You Page

Redirect User
toPGW

Wiite Log of
Transaction to
Database

et response.

which is the URL fo

redirect the customer|
o

onfirm Credentials

Creates PaymentiD
and logs into
transaction table

Retums PaymentiD
and Gateway URL

Displays payment
page with amount
due and clientinfo

No? Send POST,
requestio
ertor_ur

‘Yes? Send POST
requestio
response_url

Payment
Successful?

Read Response

‘And Redirect

nav.xhtml

 Table of Contents

 		Welcome to e24PaymentPipe's documentation!

 		e24PaymentPipe

 		Features

 		Todo

 		Installation

 		Quickstart

 		Payment Flow Diagram

 		Minimal Example

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Credits

 		Development Lead

 		Contributors

 		History

 		1.2.0 (2015-12-29)

 		1.1.2 (2014-11-03)

 		1.1 (2014-08-12)

 		0.1.0 (2011-02-12)

 		0.1.1 (2011-02-14)

 		0.1.2 (2011-12-16)

 		0.2.0 (2011-12-28)

 		Module Reference

 		Main Methods / Public Interface

 		Properties

_images/KNET-Flow.png
Your Shopping Cart

e24PaymentPipe

Payment Processor

®

Add to Shopping
Cart

Intilize Gateway
Class

get_payment_url

Creates PaymentiD
and logs into

Confirm Checkout

[Customer Clicks on|
“Pay Now"

Payment
Gateway
Flow

Error Page

Redirect User
toPGW

Wiite Log of
Transaction to
Database

et response.
which is the URL fo
redirect the customer|

o

transaction table

Retums PaymentiD
and Gateway URL

Displays payment
page with amount
due and clientinfo

No? Send POST,” paymen; "\ Yes? Send POST
requestto < g ontietiin requestio
ertor_ur response_url

Thank You Page

Read Response

‘And Redirect

_static/up-pressed.png

_static/comment-bright.png

