
E-CAM Documentation
Release 0.2

Alan O’Cais

Mar 26, 2022

Contents

1 Classical MD Modules 3

2 Electronic Structure Modules 139

3 Quantum Dynamics Modules 243

4 Meso- and Multi-scale Modules 331

5 What is a module? 561

6 E-CAM Activities 579

7 Contributing to this documentation 581

Bibliography 589

i

ii

E-CAM Documentation, Release 0.2

Links

Scientific Areas

• Classical MD Modules

• Electronic Structure Modules

• Quantum Dynamics Modules

• Meso- and Multi-scale Modules

Best Practices

• Scientific Software Best Practices

On this page

• The E-CAM Software Library
– What is a module?

* Scientific Software Development Best Practices
– E-CAM Activities

* Pilot Projects
* Extended Software Development Workshops

– Contributing to this documentation

• search

Formally, E-CAM is a European HPC Centre of Excellence supporting
HPC simulations in industry and academia through software development,
training and discussion in simulation and modeling. Collected in this web-
site we have a compilation of the software modules that have been docu-
mented by the E-CAM community within the four initial target areas of E-
CAM. These four areas represent the relative diversity of the broad domain
of interest relevant to E-CAM, and indeed the wider CECAM community,
and try to perform a rough categorisation of the areas of interest:

General Information

Contents

• Classical MD Modules
– Introduction
– Rare events and path sampling
– OpenPathSampling
– Machine Learning Potentials
– n2p2
– Pilot Projects
– Extended Software Development Workshops (ESDWs)
– European Environment for Scientific Software Installations

• How to contribute?

• search

Contents 1

https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.cecam.org/

E-CAM Documentation, Release 0.2

2 Contents

CHAPTER 1

Classical MD Modules

1.1 Introduction

This is a collection of the modules that have been created by E-CAM community within the area of Classical MD.
This documentation is created using ReStructured Text and the git repository for the documentation source files can be
found at https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library which are open to contributions from E-CAM members.

In the context of E-CAM, the definition of a software module is any piece of software that could be of use to the
E-CAM community and that encapsulates some additional functionality, enhanced performance or improved usability
for people performing computational simulations in the domain areas of interest to us.

This definition is deliberately broader than the traditional concept of a module as defined in the semantics of most
high-level programming languages and is intended to capture inter alia workflow scripts, analysis tools and test suites
as well as traditional subroutines and functions. Because such E-CAM modules will form a heterogeneous collection
we prefer to refer to this as an E-CAM software repository rather than a library (since the word library carries a
particular meaning in the programming world). The modules do however share with the traditional computer science
definition the concept of hiding the internal workings of a module behind simple and well-defined interfaces. It is
probable that in many cases the modules will result from the abstraction and refactoring of useful ideas from existing
codes rather than being written entirely de novo.

Perhaps more important than exactly what a module is, is how it is written and used. A final E-CAM module adheres
to current best-practice programming style conventions, is well documented and comes with either regression or unit
tests (and any necessary associated data). E-CAM modules should be written in such a way that they can potentially
take advantage of anticipated hardware developments in the near future (and this is one of the training objectives of
E-CAM).

3

https://www.e-cam2020.eu/
https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library

E-CAM Documentation, Release 0.2

1.2 Rare events and path sampling

In many simulations, we come across the challenge of bridging timescales. The desire for high resolution in space
(and therefore time) is inherently in conflict with the desire to study long-time dynamics. To study molecular dynamics
with atomistic detail, we must use timesteps on the order of a femtosecond. However, many problems in biological
chemistry, materials science, and other fields involve events that only spontaneously occur after a millisecond or
longer (for example, biomolecular conformational changes, or nucleation processes). That means that we would need
around 1012 time steps to see a single millisecond-scale event. This is the problem of “rare events” in theoretical and
computational chemistry.

While modern supercomputers are beginning to make it possible to obtain trajectories long enough to observe some
of these processes (such as millisecond dynamics of a protein), even then, we may only find one example of a given
transition. To fully characterize a transition (with proper statistics), we need many examples. This is where path
sampling comes in. Path sampling approaches obtain many trajectories using a Markov chain Monte Carlo approach:
An existing trajectory is perturbed (usually using a variant of the “shooting” move), and the resulting trial trajectory
is accepted or rejected according to conditions that preserve the distribution of the path ensemble. As such, path
sampling is Monte Carlo in the space of paths (trajectories). Conceptually, this enhances the sampling of transitions
by focusing on the transition region instead of the stable states. In direct MD, trajectories spend much more time in
stable states than in the transition region (exponential population differences for linear free energy differences); path
sampling skips over that time in the stable states.

The main path sampling approaches used in the modules below are transition path sampling (TPS) and transition
interface sampling (TIS). In practice, TPS is mainly used to characterize the mechanism of a transition, while TIS
(which is more expensive than TPS) is used to calculate rates and free energy landscapes. Overviews of these methods,
as well as other rare events methods, can be found in the following review articles:

• 2010 review by Bolhuis and Dellago in Reviews in Computational Chemistry

• 2008 review by Dellago and Bolhuis in Advances in Polymer Science

In addition, several other resources are available on the web to teach path sampling, including:

• Wikipedia entry on path sampling

• Aaron Dinner’s tutorial on path sampling

Since the problem of bridging timescales, which path sampling addresses, is a generic one, path sampling can be used
in many fields. Indeed, there’s nothing in the methodology that even restricts it to molecular simulation. However,
it is best known in the field of classical MD simulations, where path sampling methods have shown many successes,
including:

• Mechanisms of complex chemical reactions, such as autoionization of water

• Mechanism of hydrophobic assembly

• Evidence that the glass transition is a first-order phase transition

• Mechanism of crystal nucleation

• Mechanism of cavitation

• Identifying new mechanisms in catalytic systems

• Characterization of the conformational dynamics networks in proteins

As computational resources become more powerful, path sampling has the promise to provide insight into rare events
in larger systems, and into events with even longer timescales. For example:

• Drug/protein binding and unbinding (timescales of minutes), which is essential for predicting the efficacy of
drugs

4 Chapter 1. Classical MD Modules

http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.6b02024
http://aip.scitation.org/doi/abs/10.1063/1.475562
http://aip.scitation.org/doi/abs/10.1063/1.1562614
http://aip.scitation.org/doi/abs/10.1063/1.1562614
http://onlinelibrary.wiley.com/doi/10.1002/9780470890905.ch3/summary
https://link.springer.com/chapter/10.1007%2F978-3-540-87706-6_3
https://en.wikipedia.org/wiki/Transition_path_sampling
https://sites.google.com/site/aaronskeys/resources/tutorials/transition-path-sampling
http://science.sciencemag.org/content/291/5511/2121
http://pubs.acs.org/doi/abs/10.1021/jp077186+
http://science.sciencemag.org/content/323/5919/1309
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.085701
http://www.pnas.org/content/113/48/13582
http://www.sciencedirect.com/science/article/pii/S0920586105002099
http://www.pnas.org/content/107/6/2397

E-CAM Documentation, Release 0.2

• Association processes of proteins (large systems), which is at the core of communication in biochemical path-
ways

• Self assembly processes for complex systems (many intermediates), which can be important for the design of
new materials

Further, applying the known successes of path sampling methods to larger systems can also be quite valuable. Path
sampling can shed light on the networks of conformational dynamics for large proteins and protein complexes, and on
the mechanisms and rates of complex reactions and phase transitions. The range of possibilities is so broad that it is
impossible to enumerate – both academics and industry will benefit greatly from having software for these methods.

The modules listed here deal with software to perform path sampling methods, as well as other approaches to rare
events.

1.3 OpenPathSampling

Several modules were developed based on OpenPathSampling (OPS). These include modules that have been incorpo-
rated into the core of OPS, as well as some that remain separate projects. The modules that were incorporated into the
core are:

1.3.1 Path Density for OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module implements path density calculations for OpenPathSampling, including a generic multidimensional sparse
histogram, and plotting functions for the two-dimensional case.

1.3. OpenPathSampling 5

http://openpathsampling.org
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

Purpose of Module

Path density is one of the useful ways to visualize a path ensemble generated by path sampling. At first glance, a typical
path density plot may appear similar to a two-dimensional free energy landscape plot. They are both “heatmap”-type
plots, plotting a two-dimensional histogram in some pair of collective variables. However, path density differs from
free energy in several important respects:

• A path density plot is histogrammed according to the number of paths, not the number of configurations. So if
a cell is visited more than once during a path, it still only gets counted once.

• A path density plot may interpolate across cells that the path jumps over. This is because it is assumed that the
input must actually be continuous.

These differences can prevent metastable regions from overwhelming the transition regions in the plot. When looking
at mechanisms, the path density is a more useful tool than the raw configurational probability.

The implementation in this module includes:

• A SparseHistogram class for histogramming in arbitrary dimensions (allowing path densities in more than
the traditional two dimensional plot). This class can also be used for other purposes (such as free energy
histograms).

• A PathHistogram subclass of SparseHistogram, which includes the options to normalize either per-
path or per-configuration, and the tools for interpolating across skipped cells.

• A PathDensityHistogram subclass of PathHistogram, which includes the ability to convert trajecto-
ries to representations of the trajectories in some list of collective variables, and sets reasonable default behavior
for normalization and interpolation.

• A HistogramPlotter2D that is specialized for plotting a 2D histogram, especially a
PathDensityHistogram.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

The examples below link to both a notebook (in the OpenPathSampling GitHub repository) and that same notebook
in the context of the OpenPathSampling official documentation. Note that these examples represent the most recent
version of code, and may not be identical to what was included in the module. The original examples are included in
the source code, below.

• Options for PathHistogram [PathHistogram on GitHub | PathHistogram Docs]

6 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://github.com/openpathsampling/openpathsampling/blob/master/examples/misc/tutorial_path_histogram.ipynb
http://openpathsampling.org/latest/examples/miscellaneous/tutorial_path_histogram.html

E-CAM Documentation, Release 0.2

• Use of PathDensityHistogram within analysis of alanine dipeptide TPS: [PathDensityHistogram on
Github | PathDensityHistogram Docs]

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/504

• https://github.com/openpathsampling/openpathsampling/pull/506

• https://github.com/openpathsampling/openpathsampling/pull/511

1.3.2 Direct MD (on-the-fly) flux/rate in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module contains code to implement the direct (on-the-fly) calculation of flux and rate in OpenPathSampling.

Purpose of Module

This calculates the flux out of a state and through an interface, or the rate of the transition between two states, while
running a trajectory. This means that you don’t have to save all the frames of the trajectory. This is especially useful
for small (toy) systems, where you can easily run very long trajectories to get very accurate results, and would rather
re-run than save the full trajectory. A separate module calculates the rate and flux from an existing trajectory.

Calculating the flux out of a state and through an innermost interface is one of the steps required in transition interface
sampling (TIS). This module enables that. Although there are other ways to calculate the flux (for example, replica
exchange TIS can calculate the flux as a byproduct of the “minus move”), frequently a direct calculation gives the best

1.3. OpenPathSampling 7

https://github.com/openpathsampling/openpathsampling/blob/master/examples/alanine_dipeptide_tps/AD_tps_3a_analysis_flex.ipynb
https://github.com/openpathsampling/openpathsampling/blob/master/examples/alanine_dipeptide_tps/AD_tps_3a_analysis_flex.ipynb
http://openpathsampling.org/latest/examples/AD_tps.html
https://github.com/openpathsampling/openpathsampling/pull/504
https://github.com/openpathsampling/openpathsampling/pull/506
https://github.com/openpathsampling/openpathsampling/pull/511
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

statistics. In addition, an approximate flux should be calculated before running the simulation in order to ensure that
the state and innermost interface definitions have been chosen well.

In principle, this module also makes it possible to calculate rates directly by running long molecular dynamics simu-
lations. That won’t be useful for very rare events, but it can be useful for validation.

The primary object implemented in this module is the DirectSimulation subclass of PathSimulator, which
performs on-the-fly analysis of flux and rate.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

Flux for MISTIS: [GitHub | Docs]

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/495

1.3.3 Improved input for OPS networks

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

8 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://github.com/openpathsampling/openpathsampling/blob/master/examples/toy_model_mistis/toy_mistis_2_flux.ipynb
http://openpathsampling.org/latest/examples/mistis.html
https://github.com/openpathsampling/openpathsampling/pull/495
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module includes modifications to OpenPathSampling that simplify the setup of transition networks, including
providing a method so that extra information about interfaces can (optionally) be provided on setup in order to simplify
analysis.

Purpose of Module

In OpenPathSampling, “reactions” (which are often conformational changes) are represented by objects called
Transitions, and the set of all reactions of interest is represented by a TransitionNetwork. The
TransitionNetwork knows about all the reactions being sampled, as well as the path ensembles used to sample
them. In general, a full reaction network might involve hundreds of path ensembles, so the TransitionNetwork
is a factory that creates the ensembles so the user doesn’t have to, and also provides conveniences for analysis, such as
grouping the path ensembles according to the reaction they sample.

This module deals with two aspects of transition interface sampling methods. The first is the interface set, which is the
group of interfaces associated with a given transition. These interfaces are associated with volumes in phase space.
Those volumes are typically defined by a maximum value of some order parameter, 𝜆. Knowing this edge value is
essential for calculating rates.

The second aspect is the multiple state outer (MS-outer) interface ensemble. This is an ensemble used in some variants
of multiple state transition interface sampling to facilitate replica exchange between paths with different initial states.
In practice, this approach is likely to become less frequently used (there are more efficient approaches to achieve the
same goals), so requiring that the MS-outer interface exist is not very forward-thinking, although removing entirely is
also not the best approach.

Prior to the improvements made in this module, OpenPathSampling suffered from the following problems:

• An interface had no way of knowing what its “edge” value was, only whether a given snapshot was inside it or
outside it. This made it difficult to automatically determined the value at the outermost interface for calculating
the rate. The previous code relied on a hack that assumed that trajectories in the interface had a relatively low
probability of crossing to another state.

• All networks required a multiple state outer interface, even if it wasn’t used. This also meant that the outermost
interface a user defined was converted to an MS-outer interface, which could lead to confusion. This module
makes usage much easier to understand.

This module changes the setup of interface sets, such that they can identify their edge values (if it is uniquely identified;
the code still works if it is not unique). This obviates the need for an ugly hack to guess where the boundary was.

This module also changes the way that the multiple state outer interface is set up. Now the user must explicitly make
a multiple state outer interface object, which will then make the appropriate MS-outer ensemble. We wanted to keep
the ability to have an MS-outer ensemble. However, we did not want to require it, because there are, in general, better
approaches to accomplish the same things.

The primary new objects in this module are:

• InterfaceSet: replace the previous list of Volume objects with a proper set of interfaces, which can be
associated with a list of lambdas.

1.3. OpenPathSampling 9

E-CAM Documentation, Release 0.2

• VolumeInterfaceSet: subclass of InterfaceSet, intended to directly replace the old functions to
create several volumes at once. Also has the ability to automatically create a new interface based on the new
value of the maximum lambda. This also makes it potentially useful in methods where the interfaces should be
treated parametrically, such as adaptive multilevel splitting.

• MSOuterTISInterface: object to create the multiple state outer interface for transition interface sampling.
Mainly allows us to smoothly transition away from using this sort of object, since there are better approaches to
solve the same problems.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

The first example demonstrates how to use the new classes that have been incorporated in OpenPathSampling through
this module. This includes some of the new features of interface sets, such as identifying values of lambda and creating
new interfaces based on a desired “edge” value, as well as a couple approaches to building an MS-outer interface, and
how to build a TransitionNetwork with or without MS-outer interfaces.

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/network_input.ipynb [HTML]

The example below links to the official OpenPathSampling documentation. The notebooks that make up that example
can also be found in the OpenPathSampling GitHub repository. Note that this example represents the most recent
version of code, and may not be identical to what was included in the module. The original example is included in the
source code, below. In this second example, usage of this module is illustrated in the context of a larger example of
MSTIS.

• Multiple State TIS on a Toy Model

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/528

• https://github.com/openpathsampling/openpathsampling/pull/530

• https://github.com/openpathsampling/openpathsampling/pull/538

• https://github.com/openpathsampling/openpathsampling/pull/553

10 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/network_input.ipynb
https://nbviewer.jupyter.org/urls/gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/raw/master/network_input.ipynb
http://openpathsampling.org/latest/examples/mstis.html
https://github.com/openpathsampling/openpathsampling/pull/528
https://github.com/openpathsampling/openpathsampling/pull/530
https://github.com/openpathsampling/openpathsampling/pull/538
https://github.com/openpathsampling/openpathsampling/pull/553

E-CAM Documentation, Release 0.2

1.3.4 New WHAM code

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module includes a re-write of the OpenPathSampling reweighted histogram analysis code. This fixes limitations
and is more readable than the previous version.

Purpose of Module

Methods like transition interface sampling (TIS) sample multiple ensembles, and then combine the results from the
individual restricted ensembles to obtain results for the unrestricted (natural) ensemble, such as the rates of a reaction
or projections of the free energy surface. One approach to combining these ensembles is the weighted histogram
analysis method (WHAM). This module provides an implementation of WHAM that is specialized for path sampling.
Details about the WHAM method (as used for calculating free energies) can be found in Frenkel and Smit, section 7.3.

The module is a rewrite of previous code in OPS. The previous code had several limitations, most notably the assump-
tion that all ensembles had the same number of sampling. Practical cases required that the number of samples in each
ensemble be allowed to vary. In addition, the previous code was poorly documented and untested. This module fixes
all of that, and includes detailed comments connecting the code to the equations in Frenkel and Smit.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

1.3. OpenPathSampling 11

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
https://www.elsevier.com/books/understanding-molecular-simulation/frenkel/978-0-12-267351-1
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling

E-CAM Documentation, Release 0.2

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

An example of how to use this code can be found at:

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/wham.ipynb

Further cases where this has been used are implicit in the analysis notebooks in OpenPathSampling.

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/541

1.3.5 Flux/Rate Analysis in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module adds the ability to use existing trajectories to calculate the flux through an interface or the rate of a
transition in OpenPathSampling.

12 Chapter 1. Classical MD Modules

http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/wham.ipynb
https://github.com/openpathsampling/openpathsampling/pull/541
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

Purpose of Module

Calculating the flux out of a state and through a given interface is an important step in transition interface sampling
(TIS). It is required for the rate calculation, and can be used to determine the best location for the innermost interface
before performing the main TIS sampling.

In many cases, the main TIS sampling is only performed after a significant amount of direct MD has been performed.
For example, MD trajectories may have already been used to identify and test the stability of stable states. This module
calculates the flux (as well as the rate, a related quantity) from existing trajectories. These can be trajectories generated
with OPS or loaded into OPS from other simulation packages, such as Gromacs.

The flux calculation is used as part of obtaining the rate in TIS. While some variants of TIS calculate the flux as part
of their primary sampling, others need an auxiliary calculation. In addition, the flux calculation is always useful for
confirming a good definition of the innermost interface in TIS, and using an existing trajectory to select the location
of the innermost interface does not require re-running the dynamics.

The rate calculation will probably not be used very much, because rates require extremely long trajectories. Both flux
and rate are included as a single “module” because the code is very closely related.

This module analyses previously existing trajectories. Another module will calculate these things on-the-fly with an
OPS engine.

The primary new objects in this module are:

• TrajectoryTransitionAnalysis: Contains all the methods to perform the analysis. The overall ap-
proach is based on identifying subtrajectory segments that correspond to various conditions, e.g., time in one
volume before entering another volume (lifetimes, which are then related to the rate). By keeping these subtra-
jectories, this module also enables visualization on time traces of the trajectory.

• TrajectorySegmentContainer: Container class for a list of trajectory segments, created as results of the
TrajectoryTransitionAnalysis object. Also includes conveniences for reporting by either number of
frames or time: each is reported as a numpy array, so that numpy’s built in statistics can be used for, e.g., mean
or standard deviation.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

Examples for this have been provided in the ops_additional_examples repository. In particular, the Jupyter
notebooks:

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/transition_analysis_Abl.ipynb

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/DNA_flux_example.ipynb

1.3. OpenPathSampling 13

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/transition_analysis_Abl.ipynb
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/DNA_flux_example.ipynb

E-CAM Documentation, Release 0.2

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/435

• https://github.com/openpathsampling/openpathsampling/pull/448

• https://github.com/openpathsampling/openpathsampling/pull/451

• https://github.com/openpathsampling/openpathsampling/pull/654

1.3.6 OpenPathSampling Snapshot Features

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module includes several new OpenPathSampling snaphost “features,” which make attributes directly accessi-
ble from the snapshot object. In particular, this includes support for masses, n_degrees_of_freedom, and
instantaneous_temperature in both the toy and OpenMM engines.

Purpose of Module

In OpenPathSampling, certain quantities can be accessed directly from each snapshot. The standard examples of
such “features” are things like coordinates and velocities, which are stored for each snapshot. However, additional
features can also be added, which may not require per-snapshot storage. This approach makes them accessible from
the snapshot as snapshot.feature, just like a stored quantity, even if they are not stored. For example, the
snapshot.masses can actually be a pointer to a single array of masses for all snapshots from a given engine, and
snapshot.instantaneous_temperature can actually be a quantity that is computed on demand, rather than
stored. This module makes several new features available for snapshots from the OpenMM engine and from the toy
engine.

By adding a standard interface for snapshots to provide similar information, this provides several advantages:

14 Chapter 1. Classical MD Modules

https://github.com/openpathsampling/openpathsampling/pull/435
https://github.com/openpathsampling/openpathsampling/pull/448
https://github.com/openpathsampling/openpathsampling/pull/451
https://github.com/openpathsampling/openpathsampling/pull/654
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

• Many analysis tools require the masses. This module makes it easier to apply analysis tools for one MD engine
to the results from another MD engine.

• Other modules will require a standardized interface. In particular, the two-way shooting module will require
both the masses and the number of degrees of freedom, and future modules for collective variables are also
likely to need to masses.

• This provides examples of how to implement snapshot “features,” which are necessary for the implementation
of new engine modules.

• The instantaneous temperature, in particular, is an important check that a simulation has been well-behaved.
Drift of the instantaneous temperature is a sign of a problem in the simulation.

Included in this implementation are:

• masses: was already available in toy, but now also available in OpenMM. Only stored once (in the engine),
but accessible from any snapshot.

• n_degrees_of_freedom: added for both OpenMM and toy engines. Calculates the number of degrees of
freedom the fly.

• instantaneous_temperature: added for both OpenMM and toy engines. Calculated on the fly (requires
calculation of n_degrees_of_freedom and of kinetic energy).

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

An example of these features in use can be found at:

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/snapshot_features_1.ipynb
[HTML]

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/579

• https://github.com/openpathsampling/openpathsampling/pull/589

• https://github.com/openpathsampling/openpathsampling/pull/649

1.3. OpenPathSampling 15

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/snapshot_features_1.ipynb
https://nbviewer.jupyter.org/urls/gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/raw/master/snapshot_features_1.ipynb
https://github.com/openpathsampling/openpathsampling/pull/579
https://github.com/openpathsampling/openpathsampling/pull/589
https://github.com/openpathsampling/openpathsampling/pull/649

E-CAM Documentation, Release 0.2

1.3.7 Two-Way Shooting in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module adds the ability to do two-way shooting to OpenPathSampling.

Purpose of Module

Different types of dynamics are better suited for different kinds of Monte Carlo moves in path sampling. “One-way
shooting,” which was already implemented in OpenPathSampling, is an efficient approach for sampling paths when
the dynamics are chaotic or diffusive. However, it requires stochastic dynamics, and therefore isn’t appropriate for
deterministic dynamics, as should be used with ballistic processes. For ballistic processes and deterministic dynamics,
the “two-way shooting” move, which is implemented in this module, should be used. These moves differ in that
one-way shooting selects a frame as a shooting point and evolves the trajectory either forward or backward, keeping
part of the original trajectory, whereas two-way shooting selects a shooting point, modified it (usually by changing the
velocities) and evolves both forward and backward. In one-way shooting, the stochastic dynamics obviates the need
to modify the shooting point.

The shooting point selection methods used by one-way shooting can be re-used for two-way shooting. How-
ever, two-way shooting requires a SnapshotModifier, which one-way shooting does not. The basics of the
SnapshotModifier, as well as an implementation which completely randomizes the velocities according to the
Boltzmann distribution, were included in a module to do committor simulations.

This module implements the movers and move strategies necessary to support two-way shooting:

• AbstractTwoWayShootingMover, subclass of EngineMover. There’s a possibility that generalized
ensembles may behave differently if you shoot the forward part of the path first, versus the backward part of the
path. This isn’t the case for common TIS and TPS ensembles, but in case it is important for other ensembles,
we create separate forward-first and backward-first two way shooting movers. This class is a common abstract
base class for both.

16 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

• ForwardFirstTwoWayShootingMover, subclass of AbstractTwoWayShootingMover, which im-
plements two-way shooting where the forward half-trajectory is generated first.

• BackwardFirstTwoWayShootingMOver, subclass of AbstractTwoWayShootingMover, which
implements two-way shooting where the backward half-trajectory is generated first.

• TwoWayShootingMover, subclass of RandomChoiceMover, which randomly selects to either shoot
forward-first or backward-first.

• TwoWayShootingStrategy, subclass of MoveStrategy, which generates a
TwoWayShootingMover for every ensemble of interest.

In addition, this module implements new snapshot modifiers to change the velocities of the shooting point:

• GeneralizedDirectionModifier, subclass of SnapshotModifier, which acts as an abstract base
class for the specific velocity direction modifiers.

• VelocityDirectionModifier, subclass of GeneralizedDirectionModifier, which modifies
all the velocities of the selected subset of atoms.

• SingleAtomVelocityDirectionModifier, subclass of GeneralizedDirectionModifier,
which modifies the velocities on one of the selected subset of atoms.

Beyond these, the previously existing RandomVelocities snapshot modifier is also likely to be used with two-way
shooting.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

An example of this can be found at:

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/two_way_shooting.ipynb

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/600

• https://github.com/openpathsampling/openpathsampling/pull/650

• https://github.com/openpathsampling/openpathsampling/pull/652

1.3. OpenPathSampling 17

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/two_way_shooting.ipynb
https://github.com/openpathsampling/openpathsampling/pull/600
https://github.com/openpathsampling/openpathsampling/pull/650
https://github.com/openpathsampling/openpathsampling/pull/652

E-CAM Documentation, Release 0.2

1.3.8 Committor Analysis in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module adds a simulator to perform committor analysis in OpenPathSampling, given a set of initial points to
shoot from.

Purpose of Module

The committor for a given configuration (in the context of some transition𝐴→ 𝐵) is defined as 𝑝𝐵(𝑥), the probability
that a trajectory beginning at configuration 𝑥 will reach state 𝐵 before state 𝐴. The isosurfaces of the committor are a
good definition of the reaction coordinate (the probability of ending in the product state is certainly a measure of the
progress of the reaction). The transition state will have an equal chance of going to either state, so configurations with
a committor of approximately 50% are said to make up the “transition state ensemble.” As a result, a committor sim-
ulation is essential both for the definition of the reaction coordinate and for the identification of a proposed transition
state. This module provides a straightforward way of calculating the committor for a given set of initial conditions.

In addition to calculating the committor, this module can be used to generate more physical transition trajetories from
unphysical ones. A trajectory that connects the two states and has the same initial configuration could be a good
candidate for an initial path sampling trajectory. The only unphysical aspect of such a trajectory is the sudden kink in
velocities, which usually be removed after a short equilibration with path sampling.

The implementation in this module includes:

• SnapshotModifier abstract class to change a snapshot, along with concrete subclasses
NoModification (used in testing) and RandomVelocities (used for committor analysis). This
same class of object will be reused for two-way shooting.

• A CommittorSimulation subclass of PathSimulator to run the committor simulation.

• A generic TransformedDict object which acts as a dictionary, but applies an arbitrary key-altering function
before accessing the keys.

18 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

• SnapshotByCoordinateDict, a subclass of TransformedDict, which uses the coordinates of a snap-
shot as the internal keys. Thus multiple snapshots with the same coordinates can map to the same values,
regardless of their velocities.

• ShootingPointAnalysis, a subclass of SnapshotByCoordinateDict, which performs the analysis
of shooting points. This includes calculating the committor and making 1D and 2D histograms of the committor
(mapped with arbitrary axes).

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

• OPS docs committor example [Committor GitHub | Committor Docs]

• Alanine dipeptide committor example [Alanine dipeptide committor GitHub | Alanine dipeptide committor
Docs]

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/450

• https://github.com/openpathsampling/openpathsampling/pull/454

• https://github.com/openpathsampling/openpathsampling/pull/466

• https://github.com/openpathsampling/openpathsampling/pull/601

• https://github.com/openpathsampling/openpathsampling/pull/618

• https://github.com/openpathsampling/openpathsampling/pull/647

1.3.9 OPS Channel Analysis

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

1.3. OpenPathSampling 19

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://github.com/openpathsampling/openpathsampling/blob/master/examples/misc/committors.ipynb
http://openpathsampling.org/latest/examples/miscellaneous/committors.html
https://github.com/openpathsampling/openpathsampling/tree/master/examples/misc/alanine_dipeptide_committor
http://openpathsampling.org/latest/examples/miscellaneous/committors_alanine_dipeptide.html
http://openpathsampling.org/latest/examples/miscellaneous/committors_alanine_dipeptide.html
https://github.com/openpathsampling/openpathsampling/pull/450
https://github.com/openpathsampling/openpathsampling/pull/454
https://github.com/openpathsampling/openpathsampling/pull/466
https://github.com/openpathsampling/openpathsampling/pull/601
https://github.com/openpathsampling/openpathsampling/pull/618
https://github.com/openpathsampling/openpathsampling/pull/647

E-CAM Documentation, Release 0.2

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

In many cases, more than one channel is available to a system – either because there are multiple channels between
two states, or because there are multiple states, and transitions between each pair is a different channel. This module
provides tools to identify which paths are in each channel, and to study the statistical behavior of the switching between
channels.

Purpose of Module

In practical examples, more than one channel (i.e., mechanism) can occur during a path sampling simulation. This is
inherently the case if you have multiple stable states, since the transition between each pair of states will be of separate
interest. It can also be the case when you have a single pair of states, but multiple channels that connect the states.

This module uses the OPS Ensemble.split function to study how a simulation samples these channels. The user
must provide a list of possible channels, described as OPS Ensemble objects. From this, each path is analyzed, and
various statistical behavior about the sampling process can be determined.

The main object added in this module is the ChannelAnalysis object, which performs this analysis and stores the
results. Once the analysis has been performed, several properties can be extracted, including:

• switching_matrix: how many times a switch from one channel to another occurred

• residence_times: the number of MC steps spent with the path in each channel (returns the entire list so
the user can calculate distribution properties with, e.g., numpy)

• total_time: total number of MC steps spent in each channel

• status(step_num): the channel the simulation was in for a given step number

In principle, a path might satsify the requirement for more than one channel at a time. This analysis class allows for
that, and gives the user the option of setting its treat_multiples attribute:

• newest: use the most recent channel entered

• oldest: use the least recent channel entered

• multiple: treat multiple channels as a new type of channel, e.g., ‘a’ and ‘b’ because ‘a,b’

• all: treat each channel individually, despite overlaps. For status this is the same as ‘multiple’

20 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/channel_analysis.ipynb

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull request:

• https://github.com/openpathsampling/openpathsampling/pull/658

1.3.10 OPS New TIS Analysis

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

1.3. OpenPathSampling 21

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/channel_analysis.ipynb
https://github.com/openpathsampling/openpathsampling/pull/658
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

This module provides a new framework for analyzing transition interface sampling simulations using OpenPathSam-
pling. The previous analysis tools gave no flexibility to the user, were not easily extendable, and had no unit tests.
This module fixes all of that.

Purpose of Module

Transition interface sampling (TIS) is a powerful rare events method with a particular focus on calculating the rates of
reactions. The core idea starts by splitting the rate 𝑘𝐴𝐵 into a product:

𝑘𝐴𝐵 = 𝜑𝐴0
𝑃𝐴(𝐵|𝜆0)

where 𝑘𝐴𝐵 is the rate from state𝐴 to state𝐵, 𝜑𝐴0
is the flux out of state𝐴 and through an interface 𝜆0, and 𝑃𝐴(𝐵|𝜆0)

is the transition probability of that a trajectory enters 𝐵 before any other state given that has exited the interface 𝜆0,
starting in state 𝐴.

TIS further splits the transition probability into several conditional probabilities, by adding a set of 𝑚 interfaces
(surfaces in phase space) {𝜆𝑖}, with 𝜆0 as the innermost. Mathematically, this gives us:

𝑃𝐴(𝐵|𝜆0) = 𝑃𝐴(𝐵|𝜆𝑚)

𝑚−1∏︁
𝑖=0

𝑃𝐴(𝜆𝑖+1|𝜆𝑖)

By sampling trajectories that necessarily cross each given interface 𝜆𝑖, TIS provides the information that can be used
to determine 𝑃𝐴(𝜆𝑖+1|𝜆𝑖). However, there are several approaches have been developed/proposed to efficiently turn
the sampling data into a best estimate of the transition probability.

The previous analysis in OPS took one of those method, and provided very little room to customize the procedure.
This module makes it so that it is easier to customize the analysis or to use different approaches to calculate the various
terms that make up the TIS rate expression.

A much more detailed description of the TIS analysis as implemented here is given in the core OPS documen-
tation, which was also contributed as part of this module. That section of the documentation is online at http:
//openpathsampling.org/latest/topics/tis_analysis.html

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

Example in the OPS repository on using this:

• https://github.com/openpathsampling/openpathsampling/blob/master/examples/toy_model_mstis/toy_mstis_
A3_new_analysis.ipynb

22 Chapter 1. Classical MD Modules

http://openpathsampling.org/latest/topics/tis_analysis.html
http://openpathsampling.org/latest/topics/tis_analysis.html
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://github.com/openpathsampling/openpathsampling/blob/master/examples/toy_model_mstis/toy_mstis_A3_new_analysis.ipynb
https://github.com/openpathsampling/openpathsampling/blob/master/examples/toy_model_mstis/toy_mstis_A3_new_analysis.ipynb

E-CAM Documentation, Release 0.2

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull request:

• https://github.com/openpathsampling/openpathsampling/pull/686

1.3.11 Resampling Statistics

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

The module provides tools for resampling (e.g., statistical bootstrapping) in the context of pandas DataFrames in
general and specifically OpenPathSampling. This provides tools for estimating statistical error on multiple quantities
simultaneously.

Purpose of Module

Providing an estimate of uncertainty is essential when presenting scientific results. This module provides the ability
to perform statistical analysis of a large simulation from OpenPathSampling by using the sampled trajectories to
create subsamples, which are then assumed to be independent. The subsamples are analyzed separately, and this
module makes it easy to obtain mean, standard deviation, or percentile values. In particular, this module provides
the tools to do such an analysis on functions that return a table of data using a pandas.DataFrame object, as the
OpenPathSampling rate matrix calculation does.

Most of the code is generic, and could be used for any function that produces a pandas.DataFrame as its output.
Therefore this module may be useful for many projects other than OpenPathSampling. Within OpenPathSampling,
this can be used to obtain statistics on rates, fluxes, and other such quantities.

These tools are implemented in two main classes. The first is BlockResampling, which organizes the input (MC
steps in OPS) into blocks to be passed to a function that does the analysis. This allows us to obtain several results
for the analysis. The second is ResamplingStatistics, which takes those blocks and a function (that returns
a pandas.DataFrame) as input. It then applies that function to each of those blocks, and then makes it easy to
access properties such as the mean, standard deviation, or percentile values for each frame element.

1.3. OpenPathSampling 23

https://github.com/openpathsampling/openpathsampling/pull/686
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

While BlockResampling is the only resampling method implemented in the module (as it is the one needed for
TIS rate calculations), it would be straightforward to extend this framework with other resampling methods, such as
variants of bootstrapping.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command nosetests from the root directory of the repository.

Examples

• https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/resampling_statistics.ipynb

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/684

1.3.12 Gromacs engine in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7, 3.6, 3.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

Authors David W.H. Swenson

• Purpose of Module

• Background Information

24 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/dwhswenson/ops_additional_examples/blob/master/resampling_statistics.ipynb
https://github.com/openpathsampling/openpathsampling/pull/684
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

• Testing

• Examples

• Source Code

This module adds support for Gromacs as an engine for OpenPathSampling.

Purpose of Module

Different molecular dynamics (MD) codes have developed to serve different communities. Gromacs is one of the
major MD codes for the biomolecular community, and even though much of its functionality can be reproduced by
other MD codes, such as OpenMM, there are still some extensions that are built on top of Gromacs that haven’t been
ported to other codes. For example, the MARTINI coarse-grained model is not available other codes such as OpenMM.

Additionally, people who are familiar with a given MD package will prefer to continue to work with that. Therefore
codes that wrap around MD packages, as OpenPathSampling does, can expand their reach by adding ways to interface
with other MD packages.

This module adds the Gromacs engine for OpenPathSampling. It is the first practical test of the external engine API
of OPS.

Specific functionality in this module includes:

• GromacsEngine: the OPS dynamics engine, based on the ExternalEngine, that runs Gromacs as an
external tool. Option on initialization allow the user to customize the path to the Gromacs executable.

• ExternalMDSnapshot: an OPS snapshot for external MD engines, which contains coordinates, velocities,
and box vectors. Requires that the engine implement a read_frame_data method to load from a specific
MD trajectory.

• snapshot_from_gro: a function that creates an OPS snapshot from a Gromacs .gro file.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

This module is in a development branch of OpenPathSampling. If you have conda installed, this branch of OPS can
be installed by downloading the conda_ops_dev_install.sh script and running it with the command:

source conda_ops_dev_install.sh dwhswenson gromacs_engine

This will download a new copy of the OPS git repository, select the gromacs_engine branch from the
dwhswenson fork, install the requirements, and create an editable install of OPS. If you would like to do this in
a new conda environment, set the environment variable OPS_ENV, and it will install in a new environment with the
name $OPS_ENV.

To run tests, you may need pytest, which can be installed with conda install pytest.

1.3. OpenPathSampling 25

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling

E-CAM Documentation, Release 0.2

The entire OPS test suite can be run with run with py.test --pyargs openpathsampling. Tests
specific to the Gromacs engine can be run with py.test --pyargs openpathsampling.tests.
test_gromacs_engine.

Examples

• An example can be found here: https://github.com/dwhswenson/openpathsampling/tree/gromacs_engine/
examples/gromacs

Source Code

This module is contained in the following pull request:

• https://github.com/openpathsampling/openpathsampling/pull/819

1.3.13 OPS Visit All States Ensemble

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7, 3.6, 3.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

Software module developed by David W.H. Swenson

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

This module adds a convenient new OpenPathSampling ensemble that allows trajectories to continue until they have
visited all the states in the system. In addition, it provides real-time reporting about the progress.

Purpose of Module

One of the ways to get initial trajectories for path sampling is to use dynamics that aren’t physical for the ensemble
of interest, such as using an increased temperature. If a trajectory has a frame in every state, then it must have

26 Chapter 1. Classical MD Modules

https://github.com/dwhswenson/openpathsampling/tree/gromacs_engine/examples/gromacs
https://github.com/dwhswenson/openpathsampling/tree/gromacs_engine/examples/gromacs
https://github.com/openpathsampling/openpathsampling/pull/819
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

subtrajectories that connect from each state to another one, and therefore it has all the information to start a MSTIS
simulation. The ensemble definition tools in OPS make it easy to create such custom sequential ensembles1.

However, users often want to do simulation setup in an interactive mode, such as in a Jupyter notebook, or at a
minimum want to have a sense of the progress made on a long trajectory such as this. The default OPS ensemble gives
no output and therefore no sense of how much progress has been made.

This module provides a custom OPS ensemble that gives such output during its simulation. It outputs the length of the
trajectory so far, as well as the states that have and have not already been visited. This gives a much better sense of
how long the simulation will take to run.

This module includes:

• default_state_progress_report: A function to create the progress report string. This can be replaced
by another function to customize the output.

• VisitAllStatesEnsemble: A class that wraps an OPS SequentialEnsemble. The can_append
method, called while generating the dynamics, can output information about the progress. The behavior of this
output can be set with the initialization variable progress, which can take the values of default for the
default output, silent for no output, or can take a 2-tuple of callables where the first determines what to write,
and the second determined how to emit the information.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use pytest.

This module has been included in the OpenPathSampling core. Its tests can be run by installing pytest and OPS (with
commit 8e767872, which will be part of release 1.0 and later), and running the command py.test --pyargs
openpathsampling.

Examples

This module is used in the OPS alanine dipeptide MSTIS example, during the creation of initial trajectories.

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/826

1 D.W.H. Swenson, J.-H. Prinz, F. Noe, J.D. Chodera, and P.G. Bolhuis. J. Chem. Theory Comput. 15, 837 (2019); http://doi.org/10.1021/acs.
jctc.8b00627

1.3. OpenPathSampling 27

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://pytest.org/
https://github.com/openpathsampling/openpathsampling/blob/master/examples/alanine_dipeptide_mstis/AD_mstis_1_setup.ipynb
https://github.com/openpathsampling/openpathsampling/pull/826
http://doi.org/10.1021/acs.jctc.8b00627
http://doi.org/10.1021/acs.jctc.8b00627

E-CAM Documentation, Release 0.2

1.3.14 Interface-Constrained Shooting in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

Software module developed by Peter G. Bolhuis and David W.H. Swenson

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

This module adds interface-constrained shooting to OpenPathSampling. Interface-constrained shooting is a technique
that can improve the efficiency of transition interface sampling.

Purpose of Module

In transition interface sampling (TIS), one defines stable states (volumes in phase space) and interfaces (surfaces in
phase space). For a trajectory to be accepted in TIS, it must begin with exactly one frame in a given initial state, cross
the interface, and end with exactly one frame in any state volume (including the initial state).

New trajectories are generated with the shooting move, which selects a point along an initial trajectory from which
new frames can be made. In one-way shooting, the dynamics only needs to run in one direction (with the stochastic
nature of the dynamics ensuring that a new trajectory is generated).

However, if the interfaces are far from the initial state and if all frames are equally likely to be used for shooting, it
can be very likely for the shooting point to come before the trajectory has crossed the interface. This can then lead to
shooting moves that usually generate trajectories that don’t cross the interface, and therefore must be rejected. This
uses a lot of simulation effort without generating useful new trajectories.

Interface-constrained shooting (also called “constrained interface shooting”)1 is an approach to solve this problem.
Instead of selecting from anywhere along the trajectory, only the first point after crossing the interface is allowed
as a shooting point. This ensures that every trajectory that is generated will be valid (will cross the interface). In
addition, because the first crossing is still the first crossing in the new trajectory, this leads to the Metropolis acceptance
probability also being 1. Therefore, every trial trajectory is accepted.

In practice, this must be combined with the path reversal move in order to sample all of trajectory space. The result is
an approach with very high acceptance, although decorrelation of the trajectory is a little slower.

1 Bolhuis, P. G. (2008). Rare events via multiple reaction channels sampled by path replica exchange. The Journal of Chemical Physics, 129(11),
114108. https://doi.org/10.1063/1.2976011

28 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
https://doi.org/10.1063/1.2976011

E-CAM Documentation, Release 0.2

This module implements interface-constrained shooting using:

• ForwardShootingStrategy: An OPS MoveStrategy to do forward-only shooting. The interface-
constrained shooting approach uses forward-only stochastic dynamics, counting on path reversal to handle the
backward-time dynamics.

• InterfaceConstrainedSelector: A ShootingPointSelector that selects the first point outside
the given volume (the boundary of which defines the interface).

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use pytest.

This module has been included in the OpenPathSampling core. Its tests can be run by installing pytest and OPS (with
commit c340818, which will be part of release 0.9.6 and later), and running the command py.test --pyargs
openpathsampling.

Examples

An example of this is in the following notebook:

• https://github.com/openpathsampling/openpathsampling/blob/7e157661dd8633690ebfcae4a8265fc14e31c5b9/
examples/toy_model_mstis/toy_mstis_A4_constrained_shooting.ipynb

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/788

• https://github.com/openpathsampling/openpathsampling/pull/790

• https://github.com/openpathsampling/openpathsampling/pull/800

1.3.15 Progress meters in OPS analysis

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7, 3.6, 3.7, 3.8)

Documentation Tool Sphinx, numpydoc format (ReST)

1.3. OpenPathSampling 29

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://pytest.org/
https://github.com/openpathsampling/openpathsampling/blob/7e157661dd8633690ebfcae4a8265fc14e31c5b9/examples/toy_model_mstis/toy_mstis_A4_constrained_shooting.ipynb
https://github.com/openpathsampling/openpathsampling/blob/7e157661dd8633690ebfcae4a8265fc14e31c5b9/examples/toy_model_mstis/toy_mstis_A4_constrained_shooting.ipynb
https://github.com/openpathsampling/openpathsampling/pull/788
https://github.com/openpathsampling/openpathsampling/pull/790
https://github.com/openpathsampling/openpathsampling/pull/800

E-CAM Documentation, Release 0.2

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence MIT

Software module developed by David W.H. Swenson

• Purpose of Module

– The general and reusable approach

– Specific implementations

• Background Information

• Testing

• Examples

• Source Code

This module adds a general framework for progress meters within the analysis tools of OpenPathSampling, as well as
adding progress meters for several specific analysis functions.

Purpose of Module

Some analysis in OpenPathSampling can take a significant amount of time to perform. Previously, users had no
feedback on how long such an analysis would take, which can be a frustrating experience.

This module adds a standardized and straightforward approach to progress meters in OPS analysis functions. In
addition, it includes these progress meters in several OPS analysis tools.

The general and reusable approach

The primary goals of the OPS progress meter approach are to make it easy for contributors to add progress meters to
their analysis tools and to make it flexible with regards to the progress meter used, especially making it easy to silence
the output if desired.

Therefore, the approach used here is to create a mix-in class that provides a progress property, which wraps around
an iterable to provide a progress bar on that iterable. The progress meter was designed to wrap around the widely-used
package tqdm, and much of the API mimics the tqdm API.

The progress property can be set with the string 'tqdm' to use tqdm or 'silent' to not output anything.
In addition, it can be further customized by the user by setting it to a function that takes keyword desc (a string
description) and leave (a boolean indicating whether the progress bar should remain after completion) and returns a
closure that takes an iterable and yields the elements of that iterable.

In order to use the progress meter in an analysis tool, a developer must simply inherit from the mix-
in openpathsampling.progress.SimpleProgress and wrap the appropriate iterable with self.
progress, i.e., a loop for step in steps becomes for step in self.progress(steps).

If tqdm is present in the user’s environment, the default behavior is to use tqdm. If it is not present, the progress
meter is silent.

30 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
https://github.com/tqdm/tqdm

E-CAM Documentation, Release 0.2

Specific implementations

This has been implemented for several OPS analysis classes. Straightforward implementation have been performed
for:

• ShootingPointAnalysis

• PathHistogram

• MoveAcceptanceAnalysis

It has also been implemented as part of the OPS TIS analysis subpackage. This implementation was less straightfor-
ward, as progress in this analysis contains nested loops. However, it has been implemented for:

• MultiEnsembleSamplingAnalyzer, the base class for many TIS analysis classes

• StandardTISAnalysis has significant customized work to use the new progress bars

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

OpenPathSampling can be installed with either pip or conda:

pip install openpathsampling
or
conda install -c conda-forge openpathsampling

Tests in OpenPathSampling use pytest. The requirements for testing are pytest and nose, both of which can be
installed with either pip or conda.

With the package and its testing tools installed, tests can be run with:

py.test --pyargs openpathsampling

Examples

This will affect many existing analysis examples. OPS examples can be found:

• In the documentation: http://openpathsampling.org/latest/examples/index.html

• On GitHub: https://github.com/openpathsampling/openpathsampling/tree/master/examples

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/882

• https://github.com/openpathsampling/openpathsampling/pull/895

1.3. OpenPathSampling 31

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://pytest.org/
http://openpathsampling.org/latest/examples/index.html
https://github.com/openpathsampling/openpathsampling/tree/master/examples
https://github.com/openpathsampling/openpathsampling/pull/882
https://github.com/openpathsampling/openpathsampling/pull/895

E-CAM Documentation, Release 0.2

• https://github.com/openpathsampling/openpathsampling/pull/902

• https://github.com/openpathsampling/openpathsampling/pull/906

All of the functionality in this module will be included in OpenPathSampling 1.3.

1.3.16 Faster Path Density Analysis in OPS

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7, 3.7, 3.8, 3.9)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence MIT

Software module developed by David W.H. Swenson

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

A previous module introduced a path density analysis in OpenPathSampling. However, the interpolation scheme used
in that was rather slow. This module makes it so that users can change interpolation schemes, and introduces two faster
options.

Purpose of Module

As discussed in the module Path Density for OpenPathSampling, the path density is a useful tool for analyzing mech-
anisms in transition path sampling. One of the features of the path density, which distiguishes if from a frame-based
density, is that it uses interpolation over the trajectory. That is, histogram bins that are traversed are included, even if
no snapshot falls in them.

The interpolation approach introduced in the previous module worked by subdividing intervals to find all bins that are
crossed. This approach is exact, but slow. This module refactors the path density so that the interpolation algorithm
can be provided by the user, and also provides two new (and faster) interpolation approaches:

• BresenhamInterpolation: Interpolation using the Bresenham line drawing algorithm

• BresenhamLikeInterpolation: An interpolation scheme similar to Bresenham, but using floats instead
of integers.

32 Chapter 1. Classical MD Modules

https://github.com/openpathsampling/openpathsampling/pull/902
https://github.com/openpathsampling/openpathsampling/pull/906
http://openpathsampling.org
http://openpathsampling.org/latest/examples/
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

E-CAM Documentation, Release 0.2

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use pytest.

This module has been included in the OpenPathSampling core as of version 1.1. Its tests can be run by installing pytest
and OPS, and running the command py.test --pyargs openpathsampling.

Examples

An example for path densities can be found at:

• https://github.com/openpathsampling/openpathsampling/blob/master/examples/misc/tutorial_path_histogram.
ipynb

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull request:

• https://github.com/openpathsampling/openpathsampling/pull/875

1.3.17 SimStore: OPS New Storage Subsystem (part 1)

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (3.6+)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence MIT

• Purpose of Module

• Background Information

• Installation and Testing

• Examples

1.3. OpenPathSampling 33

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://pytest.org/
https://github.com/openpathsampling/openpathsampling/blob/master/examples/misc/tutorial_path_histogram.ipynb
https://github.com/openpathsampling/openpathsampling/blob/master/examples/misc/tutorial_path_histogram.ipynb
https://github.com/openpathsampling/openpathsampling/pull/875
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

• Source Code

Authors: David W.H. Swenson

This module provides the core of SimStore, a new storage subsystem for OpenPathSampling, which is more flexible
and has better performance than the older storage system. This module is also necessary to serialize data for transfer
over a network, as is needed for parallelization across multiple nodes.

Purpose of Module

OpenPathSampling has the following needs from a storage subsystem:

1. In addition to data objects (data created by the simulation), the simulation objects (i.e., the details of how the
simulation was run) should be stored. This helps track provenance and enhances reproducibility.

2. All objects should have universally unique identifiers (UUIDs). References in data objects to the UUIDs of the
simulation objects that generated them are important for provenance and reproducibility.

3. Because users may add new simulation objects, storing simulation objects should be very general, and should
place minimal burden on the users who create new simulations objects.

4. The results from functions that are calculated during a simulation should be stored in such a way that they can
be retrieved again, instead of recalculating them.

5. Path sampling generates large quantities of data. Because of this, and because analysis is frequently done in
layers (e.g., one can perform the TIS rate analysis without reloading any coordinate information), it should be
possible to reload some information without reloading the entire object.

6. Storage of simulation objects should be (nearly) human readable. While there are some exceptions to human
readability, it is important that, for the most part, simulation parameters can be read and interpreted if a user
wishes to load OPS data in, e.g, another programming language.

This set of requirements was met by the previous storage subsystem, netcdfplus. However, netcdfplus was
written in a recursive style, which means that every load from disk was a separate request. This made netcdfplus
very slow. Additionally, the storable function results (#4 above) were written in a way that was not compatible with
parallelization. Finally, the base storage class of netcdfplus inherits from netcdf4, meaning that it was tied to a
single backend.

With this module, we introduce SimStore, which is being added as an experimental module in OpenPathSampling, with
the intent of replacing netcdfplus in OPS 2.0. SimStore will have all the same features, with better performance,
more flexibility for users and developers, and a design that is prepared for parallelization. Until version 2.0, both
storage subsystems will coexist in the OPS library.

This module, in particular, provides the core storage capabilities (#1, #3, and #6 above) and the proxy-based lazy
loading (#5). The UUIDs (#2) and the are still provided by netcdfplus. A future module will address the problem
of storing function results (#4). Importantly, the API for flexible storage of general simulation objects (#3) remains
the same as in netcdfplus, facilitating the transition to SimStore.

Some of the specific functionality covered includes:

• SQL backend: The first backend for SimStore is SQL, defaulting to sqlite3. However, in principle, it should be
nearly trivial to use a MySQL or PostgreSQL instance instead, which would be suitable for parallel usage.

• Schema-based storage: The description of data objects, which does not vary much for a given application, is
provided by a human-readable schema, including specification of what objects should be loaded as lazy proxies.
This makes it easy for users or developers to see and understand the overall data model.

• Dynamic registration of new tables: Some aspects of the data model do not vary for a certain application
(e.g., in OpenPathSampling, trajectories are always lists of snapshots). However, some aspects do depend on the
specific use case (e.g., in OpenPathSampling, the size of the coordinates array depends on the specific molecular

34 Chapter 1. Classical MD Modules

E-CAM Documentation, Release 0.2

system being studied). SimStore allows dynamic registration of tables in order to create new tables of the correct
size for, e.g., snapshots coordinates.

• Extensible JSON-based simulation object serialization: In order to create a (mostly) human readable de-
scription of simulation objects, SimStore (like netcdfplus) uses JSON. However, some simulation objects
from outside packages (e.g., instances of simtk.Quantity, which pair a value with a unit, and are used in
OpenMM) require custom serialization. In netcdfplus, that custom serialization was inside a netcdfplus
function, and extension by the user required editing the netcdfplus code. SimStore uses a simple registration
protocol so that new custom JSON serialization can be provided by the user without digging into the internals.

This module only deals with the generic and reusable aspects of SimStore. Integration of SimStore and OpenPath-
Sampling will be the subject of a future module.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Installation and Testing

This was included in the version 1.4 release of OpenPathSampling. It can be installed via the conda package manager
with:

conda install -c conda-forge openpathsampling

In addition to previous OPS requirements, this module requires SQLAlchemy, and other parts of the new storage
require Dill. These can be installed with, e.g., conda install -c conda-forge sqlalchemy dill.

The tests for this module are split between unit tests included in the OpenPathSampling repository and integration tests
in a separate repository. The easiest way to run both sets of tests is to download or clone the integration test repository
at https://github.com/dwhswenson/ops-storage-notebooks. Install the required testing software, e.g., with:

conda install -c conda-forge pytest pytest-cov nbval

Then just run the test-storage.sh script in that repository. Note: although the module will work with Python
3.6+, some of the notebook tests are not compatible with more recent versions of Python, so the tests should be run
with Python 3.7.

Examples

An example for this module can be found at:

• https://github.com/dwhswenson/ops-storage-notebooks/blob/master/examples/02_load_old_cvs.ipynb

Source Code

This module includes the general SimStore components of the pull request at: https://github.com/openpathsampling/
openpathsampling/pull/928. In particular, this module is for the files in the openpathsampling.
experimental.simstore subpackage within that pull request.

1.3. OpenPathSampling 35

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
https://github.com/dwhswenson/ops-storage-notebooks
https://github.com/dwhswenson/ops-storage-notebooks/blob/master/examples/02_load_old_cvs.ipynb
https://github.com/openpathsampling/openpathsampling/pull/928
https://github.com/openpathsampling/openpathsampling/pull/928

E-CAM Documentation, Release 0.2

1.3.18 SimStore: Storable Functions

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (3.6+)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence MIT

• Purpose of Module

• Background Information

• Installation and Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module adds “storable functions” to SimStore, the new storage subsystem for OpenPathSampling. Storable
functions cache the results of previous calculations to disk. This new implementation will support future parallelization
approaches.

Purpose of Module

Trajectory-based methods to study rare events, such as transition path sampling (TPS), frequently require calculation
of some collective variables during the simulation. In some cases, these collective variables can be relatively expensive
to calculate, and my be calculated hundreds of thousands of times during simulation.

For some types of simulations, such as the one-way shooting variable in TPS, parts of trajectories can be reused,
making it advantageous to store the results of collective variables in memory. Furthermore, those same collective
variables are frequently used in analysis, make it advantageous to store the results to disk.

This module introduces the parts of SimStore that manage that storage. This includes the StorableFunction
class itself, which wraps around a user-defined function and handles caching results in memory, and looking up results
cached to disk. The user-defined function must take a data object (such as a snapshot or a trajectory), which has a
unique universal identifier (UUID), and must return the same value every time it operates on the same input (i.e., it
must be a “pure” function).

A StorableFunction can be used in different modes: in 'analysis' mode, it first searches the memory
cache, then the disk storage, then finally evaluates the internal function. In 'production' mode, it first searches
the memory cache, then evaluates the function. Finally, in 'no-caching' mode, it always evaluates the internal
function.

One of the challenges in designing the new storable function infrastructure was to ensure that it would be compatible
with parallelization. This module includes functionality so that the memory caches from different remote workers can

36 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

be returned with the other results, and combined into a master memory cache of the process that also stores results to
disk.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Installation and Testing

This was included in the version 1.4 release of OpenPathSampling. It can be installed via the conda package manager
with:

conda install -c conda-forge openpathsampling

In addition to previous OPS requirements, this module requires SQLAlchemy, and other parts of the new storage
require Dill. These can be installed with, e.g., conda install -c conda-forge sqlalchemy dill.

The tests for this module are split between unit tests included in the OpenPathSampling repository and integration tests
in a separate repository. The easiest way to run both sets of tests is to download or clone the integration test repository
at https://github.com/dwhswenson/ops-storage-notebooks. Install the required testing software, e.g., with:

conda install -c conda-forge pytest pytest-cov nbval

Then just run the test-storage.sh script in that repository. Note: although the module will work with Python
3.6+, some of the notebook tests are not compatible with more recent versions of Python, so the tests should be run
with Python 3.7.

Examples

An example for this module can be found at:

• https://github.com/dwhswenson/ops-storage-notebooks/blob/master/examples/02_load_old_cvs.ipynb

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull requests:

• https://github.com/openpathsampling/openpathsampling/pull/929

• https://github.com/openpathsampling/openpathsampling/pull/985

1.3.19 OPS New Storage Subsystem

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

1.3. OpenPathSampling 37

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
https://github.com/dwhswenson/ops-storage-notebooks
https://github.com/dwhswenson/ops-storage-notebooks/blob/master/examples/02_load_old_cvs.ipynb
https://github.com/openpathsampling/openpathsampling/pull/929
https://github.com/openpathsampling/openpathsampling/pull/985

E-CAM Documentation, Release 0.2

Language Python (3.6+)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Installation and Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module interfaces OpenPathSampling with the underlying storage subsystem designed for SimStore.

Purpose of Module

The motivation for this is described in depth in the module SimStore: OPS New Storage Subsystem (part 1). That
module focused on the underlying, reusable library SimStore that was developed to meet the storage needs of Open-
PathSampling. This module represents the software that integrates the generic code with OPS.

In particular, this includes:

• Design of the OPS serialization schema

• Custom handling of some objects, such as snapshots, for which the dimensionality is only known at runtime.

• Workarounds so that some objects could be stored.

• Custom subclass of the storable functions introduced in SimStore: Storable Functions that meet the requirements
of OpenPathSampling. For example, when a collective variable is calculated on a trajectory, it should return a
list with the value for each snapshot within the trajectory.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Installation and Testing

This was included in the version 1.4 release of OpenPathSampling. It can be installed via the conda package manager
with:

conda install -c conda-forge openpathsampling

38 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling

E-CAM Documentation, Release 0.2

In addition to previous OPS requirements, this module requires SQLAlchemy, and other parts of the new storage
require Dill. These can be installed with, e.g., conda install -c conda-forge sqlalchemy dill.

The tests for this module are split between unit tests included in the OpenPathSampling repository and integration tests
in a separate repository. The easiest way to run both sets of tests is to download or clone the integration test repository
at https://github.com/dwhswenson/ops-storage-notebooks. Install the required testing software, e.g., with:

conda install -c conda-forge pytest pytest-cov nbval

Then just run the test-storage.sh script in that repository. Note: although the module will work with Python
3.6+, some of the notebook tests are not compatible with more recent versions of Python, so the tests should be run
with Python 3.7.

Examples

An example for this module can be found at:

• https://github.com/dwhswenson/ops-storage-notebooks/blob/master/examples/02_load_old_cvs.ipynb

Source Code

This module includes the general SimStore components of the pull request at: https://github.com/openpathsampling/
openpathsampling/pull/928. In particular, this module is for the files in the openpathsampling.
experimental.storage subpackage within that pull request.

1.3.20 SimStore: Support for OpenMM Snapshots

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (3.7, 3.8, 3.9)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence MIT

Software module developed by David W.H. Swenson

• Purpose of Module

• Background Information

• Testing

• Source Code

This module adds support for OpenMM snapshots in SimStore, the new storage subsystem used by OpenPathSam-
pling.

1.3. OpenPathSampling 39

https://github.com/dwhswenson/ops-storage-notebooks
https://github.com/dwhswenson/ops-storage-notebooks/blob/master/examples/02_load_old_cvs.ipynb
https://github.com/openpathsampling/openpathsampling/pull/928
https://github.com/openpathsampling/openpathsampling/pull/928
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

Purpose of Module

Previous modules have provided the core of the SimStore storage interface for OPS, as well as integration for OPS
simulations using either the internal toy engine or using the Gromacs engine. However, one of the most commonly
used engines for OPS is OpenMM. Because OpenMM data carries explicit units, it requires special techniques for
storing. Additionally, OpenMM snapshots in OPS are split such that the configurational components can be reused
for multiple initial velocities, which also requires special treatment. This module adds those techniques, thus adding
support for OpenMM simulations in the new SimStore storage subsystem in OPS. SimStore is faster than the current
OPS storage, and is essential for the parallelization of OPS.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use pytest.

This was included in the version 1.4 release of OpenPathSampling. It can be installed via the conda package manager
with:

conda install -c conda-forge openpathsampling

In addition to previous OPS requirements, this module requires SQLAlchemy, and other parts of the new storage
require Dill. These can be installed with, e.g., conda install -c conda-forge sqlalchemy dill.

The tests for this module are split between unit tests included in the OpenPathSampling repository and integration tests
in a separate repository. The easiest way to run both sets of tests is to download or clone the integration test repository
at https://github.com/dwhswenson/ops-storage-notebooks. Install the required testing software, e.g., with:

conda install -c conda-forge pytest pytest-cov nbval

Then just run the test-storage.sh script in that repository. Note: although the module will work with Python
3.6+, some of the notebook tests are not compatible with more recent versions of Python, so the tests should be run
with Python 3.7.

Source Code

This module has been merged into OpenPathSampling. It is composed of the following pull request:

• https://github.com/openpathsampling/openpathsampling/pull/949

The modules that are based on OPS, but remain separate, are:

1.3.21 Annotated Trajectories

40 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://pytest.org/
https://github.com/dwhswenson/ops-storage-notebooks
https://github.com/openpathsampling/openpathsampling/pull/949

E-CAM Documentation, Release 0.2

Software Technical Information

This module is based on OpenPathSampling. This section includes information both for the specific module and
for OpenPathSampling as a whole.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/ https://github.com/dwhswenson/
annotated_trajectories/tree/master/examples

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module provides a data structure that adds annotations to frames of a trajectory, intended to label those frames
as being, for example, in a given metastable state. It also provides some tools to analysis whether a proposed state
definition is compatible with those annotations.

Purpose of Module

When dealing with biomolecular systems, one of the common challenges is to define the (meta)stable states. The ex-
istence of metastable states is easily determined by visually inspecting the trajectory. However, identifying geometric
criteria to characterize the states remains difficult.

This module provides a data structure that allows the user to easily annotate a trajectory with the visually identified
states, and to compare those annotations to proposed state definitions. It also includes tools to visualize where the
proposed state definition matches the annotations.

This implementation includes:

• An Annotation class, which is essentially a structure to connect the state label and a range of frames (marked
with their beginning and ending frames) that the user identifies as in the given state.

• Another data structure, ValidationResults, which contains the correctly identified frames, as well as false
positives and false negatives, for a given proposed state definition.

• The AnnotatedTrajectory class, which associates the annotations with an OpenPathSampling
Trajectory object and performs the analysis to compare the proposed states to those annotations.

• A method plot_annotated, which plots the annotations and the proposed state definition in order to visually
inspect the quality of the proposed state.

1.3. OpenPathSampling 41

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
https://github.com/dwhswenson/annotated_trajectories/tree/master/examples
https://github.com/dwhswenson/annotated_trajectories/tree/master/examples

E-CAM Documentation, Release 0.2

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

The tests for this module can be run by downloading its source code, installing its requirements (namely, OpenPath-
Sampling), and running the command nosetests from the root directory of the repository.

Once the requirements are installed, a standard installation of this package can be done with python setup.py
install.

Examples

The features in this code, including the ability to save the annotations associated with a trajectory, are highlighted in a
Jupyter notebook in its examples/ directory. It can be viewed here.

Source Code

This module is for the 0.1 release of annotated_trajectories. The source code for this module can be found
in: https://github.com/dwhswenson/annotated_trajectories/releases/tag/v0.1.0

1.3.22 OPS Piggybacker (legacy file converter)

Software Technical Information

This module is based on OpenPathSampling. This section includes information both for the specific module and
for OpenPathSampling as a whole.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation

• http://openpathsampling.org

• http://opspiggybacker.readthedocs.io (in progress)

Installation instructions

• OpenPathSampling: http://openpathsampling.org/latest/install.html

• OPSPiggybacker: https://github.com/dwhswenson/OPSPiggybacker

Relevant Training Material

• http://openpathsampling.org/latest/examples/

• https://github.com/dwhswenson/OPSPiggybacker/tree/master/examples

42 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://github.com/dwhswenson/annotated_trajectories/blob/master/examples/annotation_example.ipynb
https://github.com/dwhswenson/annotated_trajectories/releases/tag/v0.1.0
http://openpathsampling.org
http://opspiggybacker.readthedocs.io
http://openpathsampling.org/latest/install.html
https://github.com/dwhswenson/OPSPiggybacker
http://openpathsampling.org/latest/examples/
https://github.com/dwhswenson/OPSPiggybacker/tree/master/examples

E-CAM Documentation, Release 0.2

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: David W.H. Swenson

This module provides a library for converting path sampling simulations from legacy codes into a format that can
be analyzed by OpenPathSampling. The implementation in this module works with flexible-length transition path
sampling (TPS) with one-way shooting and uniform shooting point selection.

Purpose of Module

OpenPathSampling contains excellent tools for analyzing simulations, as well as excellent tools for sampling. How-
ever, since OpenPathSampling is a new software package, users may already have simulations that they have run with
other packages. The purpose of this module is to provide tools that allow the user to easily convert legacy script output
into a format that can be analyzed by OpenPathSampling. It is a library of tools that can be used with data from any
existing path sampling simulation output, and specifically includes tools to simplify the use of flexible-length TPS
with one-way shooting and uniform shooting point selection. Extending to the library to work with other simulation
types will be part of future work.

The OPSPiggybacker essentially fakes a simulation, based on data from another source. In this module, it has the
ability to read in data from one-way TPS. The user must create the appropriate OPS TransitionNetwork object
(including defining the correct collective variables and state volumes). Then the code creates a MoveScheme, but
instead of actually running the simulation, it reads in the results of an existing simulation and provides the same output
that the MoveScheme would have provided. We call this a “pseudo-simulation.”

Classes implemented in this module include:

• ShootingPseudoSimulator, subclass of openpathsampling.PathSimulator. This acts like the
OPS simulator, and runs the pseudo-simulation. Instead of taking an integer saying how many steps to run, it
takes a list of data that describes each shooting move.

• ShootingStub, subclass of openpathsampling.pathmovers.PathMover. This acts like the
openpathsampling.OneWayShootingMover. It reads in the data and creates the appropriate output
that can be analyzed by OPS.

• OneWayTPSConverter, subclass of ShootingPseudoSimulator. This pseudo-simulator is designed
to read a specific type of input file, which can be prepared based on the output from legacy simulation tools.
Depending on the nature of the input trajectory files, several options can be set to ensure that the resulting OPS
trajectories are correct. This is an abstract superclass, subclasses must define how to read trajectory files of the
appropriate format.

• GromacsOneWayTPSConverter, subclass of OneWayTPSConverter. Specialized for reading in GRO-
MACS files (using MDTraj).

1.3. OpenPathSampling 43

E-CAM Documentation, Release 0.2

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests use the nose package.

To test this module, first install its requirements (namely OpenPathSampling). Next, download OPSPiggybacker
code, either by git or by downloading the .tar or .zip of this release and decompressing it. Change into the root
directory of the OPSPiggybacker, and run python ops_piggybacker/tests/common_test_data.py to
prepare some test data. After that, use the nosetests command to run the actual tests (this can be done from the
same directory).

Installation of this package can be performed with python setup.py install. Installation can be done before
or after testing.

Examples

Several examples are in the examples/ directory of the code:

• Using the ShootingPseudoSimulator with partial (one-way) trajectories

• Using the ShootingPseudoSimulator with full (pre-joined) trajectories

Source Code

The module is for the 0.1 release of the OPSPiggybacker project. This includes all the work on that project through
pull request #15 (merged on 28 December, 2016).

The source code for this module can be found in: https://github.com/dwhswenson/OPSPiggybacker/releases/tag/v0.1.0

1.3.23 Contact Map

Software Technical Information

Language Python (2.7, 3.4, 3.5, 3.6)

Licence LGPL 2.1 or later

Documentation Tool Sphinx/RST

Application Documentation http://contact-map.readthedocs.io/

Relevant Training Material http://contact-map.readthedocs.io/en/latest/examples.html

• Purpose of Module

44 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://github.com/dwhswenson/OPSPiggybacker/blob/master/examples/example_one_way_shooting.ipynb
https://github.com/dwhswenson/OPSPiggybacker/blob/master/examples/example_prejoined.ipynb
https://github.com/dwhswenson/OPSPiggybacker/releases/tag/v0.1.0
http://contact-map.readthedocs.io/
http://contact-map.readthedocs.io/en/latest/examples.html

E-CAM Documentation, Release 0.2

• Background Information

• Testing

• Source Code

Frequently, we characterize states (especially in biomolecular systems) in terms of the contacts between specific
residues or atoms. When trying to identify the specific contacts of interest, it can be useful to look at all the contacts.
This module provides tools for mapping and identifying contacts in trajectories.

Purpose of Module

Contacts can be an important tool for defining (meta)stable states in processes involving biomolecules. For example,
an analysis of contacts can be particularly useful when defining bound states during a binding processes between
proteins, DNA, and small molecules (such as potential drugs).

The contacts analyzed by contact_map can be either intermolecular or intramolecular, and can be analyzed on a
residue-residue basis or an atom-atom basis.

This package makes it very easy to answer questions like:

• What contacts are present in a trajectory?

• Which contacts are most common in a trajectory?

• What is the difference between the frequency of contacts in one trajectory and another? (Or with a specific
frame, such as a PDB entry.)

• For a particular residue-residue contact pair of interest, which atoms are most frequently in contact?

It also facilitates visualization of the contact matrix, with colors representing the fraction of trajectory time that the
contact was present.

Background Information

This is an independent module, but it builds on tools developed in MDTraj.

Testing

This module can be installed with conda, using conda install -c conda-forge contact_map.
To install the specific version associated with this module, use conda install -c conda-forge
contact_map==0.2.0

Tests for this module can be run with pytest. Install pytest with pip install pytest and then run the com-
mand py.test from within the directory with the source code, or py.test --pyargs contact_map from
anywhere after installation.

Source Code

The source code for this module, and modules that build on it, is hosted at https://github.com/dwhswenson/contact_
map. This module specifically includes everything up to and including release 0.2.

Software Technical Information

1.3. OpenPathSampling 45

http://mdtraj.org
https://github.com/dwhswenson/contact_map
https://github.com/dwhswenson/contact_map
https://github.com/dwhswenson/contact_map/releases/tag/v0.2.0

E-CAM Documentation, Release 0.2

Language Python (2.7, 3.4, 3.5, 3.6)

Licence LGPL 2.1 or later

Documentation Tool Sphinx/RST

Application Documentation http://contact-map.readthedocs.io/

Relevant Training Material http://contact-map.readthedocs.io/en/latest/examples.html

Software Module Developed by David W.H. Swenson

1.3.24 Contact Map Parallelization

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module adds the ability to parallelize the calculation of contact frequencies (see the contact map module). It
includes improvements to the core of the contact_map package to facilitate parallelization, as well as integration with
a framework for practical parallelization.

Purpose of Module

Contacts are defined as when two atoms, or atoms within two groups of atoms (residues), are within some cutoff
distance of each other. The contact map is the set of all contacts in a given snapshot. The contact frequency is the
fraction of a trajectory in which each pair of contacts is present. The contact frequency therefore requires calculation
of the contact map for each individual frame in the trajectory.

The original contact_map code included OpenMP (shared-memory) parallelization of the calculation of a single
contact map (a loop over atoms). Each contact map in a contact frequency (the loop over the frames of a trajectory)
was done sequentially. However, each frame is completely independent, and can be processed on a separate node.
This module implements that parallelization.

This module interfaces with the dask.distributed package for task-based parallelization. The trajectory is
separated into segments, with the dask network calculating the contact frequency of each segment in parallel (reading
from a common file source). Then the partial contact frequencies are combined into one ContactFrequency
object. This also includes methods, such as serialization into JSON strings, that would be useful for parallelization by
other tools.

Background Information

This is part of the contact map package, which in turn builds on tools in MDTraj.

The parallelization is based on dask.distributed. See its docs for details on setting up a dask scheduler/worker
network.

46 Chapter 1. Classical MD Modules

http://contact-map.readthedocs.io/
http://contact-map.readthedocs.io/en/latest/examples.html
http://contact-map.readthedocs.io/
http://mdtraj.org
https://distributed.readthedocs.io/

E-CAM Documentation, Release 0.2

Building and Testing

The contact_map package can be installed with conda, using conda install -c conda-forge
contact_map. This module is included in version 0.3.0, which can be specifically installed with conda
install -c conda-forge contact_map==0.3.0.

dask.distibuted must be installed separately, which can be done with conda install -c conda-forge
dask distributed.

Tests for this module can be run with pytest. Install pytest with pip install pytest and then run the com-
mand py.test from within the directory with the source code, or py.test --pyargs contact_map from
anywhere after installation. Tests specific to integration with dask.distributed will be marked as “skipped” if
that framework is not installed.

Source Code

This module is composed of the following pull requests in the contact_map repository:

• https://github.com/dwhswenson/contact_map/pull/3

• https://github.com/dwhswenson/contact_map/pull/29

• https://github.com/dwhswenson/contact_map/pull/30

Software Technical Information

Name OpenMMTools

Language Python (3.6, 3.7)

Licence MIT

Documentation Tool Sphinx

Application Documentation http://openmmtools.readthedocs.org

Relevant Training Material http://openmmtools.readthedocs.org

Software Module Developed by David W.H. Swenson

1.3.25 Double-Well Dimer Testsystems

• Purpose of Module

• Background Information

• Building and Testing

• Examples

• Source Code

One of the common systems used to study rare events is the double-well dimer in a bath of repulsive particles. In this
system, two particles are linked by a “bond” that allows condensed and extended metastable states. This module adds
this system, and tools for created several variants of it, to the OpenMMTools package.

1.3. OpenPathSampling 47

https://github.com/dwhswenson/contact_map/pull/3
https://github.com/dwhswenson/contact_map/pull/29
https://github.com/dwhswenson/contact_map/pull/30
https://opensource.org/licenses/mit-license
http://openmmtools.readthedocs.org
http://openmmtools.readthedocs.org
http://openmmtools.readthedocs.org

E-CAM Documentation, Release 0.2

Purpose of Module

The symmetric double-well dimer is a widely-used model for developing new rare events methodologies. However,
implementing simple models in software packages that are designed for biological systems, such as OpenMM, can be
difficult for a novice user. As a result, many developers of new methods will implement their methods twice: first to
interface with simple models such as the double-well dimer using in-house MD codes, then a second time to interface
with more powerful tools, such as OpenMM, to simulate complex systems such as biomolecules. This module provides
tools that facilitate setting up custom versions of the double-well dimer for OpenMM, allowing users to develop their
new methodologies directly for the same platform that they will use for larger practical applications.

The widely-used double-well dimer model is a symmetric quartic potential, given by:

𝑉𝑑𝑤(𝑟) = ℎ

(︃
1 −

(︂
𝑟 − 𝑟0 − 𝑤

𝑤

)︂2
)︃2

where 𝑟 is the distance between the particles, ℎ is the height of the barrier, 𝑟0 is the energy minimum for the condensed
metastable state, and 𝑤 sets the distance for the extended metastable state according to 𝑟𝑒𝑥 = 𝑟0 + 2𝑤.

This “bonded” interaction is added for specific pairs of particles, on top of a background of WCA (purely repulsive)
“nonbonded” interactions between all particles. The WCA interaction is:

𝑉WCA(𝑟) =

{︃
4𝜖
(︁(︀

𝜎
𝑟

)︀12 − (︀𝜎𝑟)︀6)︁+ 𝜖 if 𝑟 ≤ 21/6𝜎

0 if 𝑟 > 21/6𝜎

where 𝜎 is a characteristic distance and 𝜖 is a characteristic energy scale.

The quartic double well is a simple model of rare events, where the expected reaction coordinate is obvious. However,
it is can be very useful for benchmarking new methods. The OpenMMTools package includes a suite of systems to be
used in testing and benchmarking, and was a natural place to add these.

Although the most widely-used approach has been to have a single dimer in the bath of WCA particles, this mod-
ule provides two possible extensions that have been previously used in the literature. The first extension is to al-
low multiple independent dimers, as was done in [Swenson2014]. This is done by changing the ndimers pa-
rameter in the DoubleWellDimer_WCAFluid test system. The other extension is to create a polymer chain
of double-well bonds, as was done in [Rogal2008]. This is done by changing the nchained parameter in the
DoubleWellChain_WCAFLuid test system.

Background Information

This builds on the testsystems module of OpenMMTools. The OpenMMTools source is hosted at http://github.
com/choderalab/openmmtools. These contributions will be included in OpenMMTools 0.17.0.

Building and Testing

This has been incorporated into OpenMMTools 0.17. Up-to-date installation information can be found in the Open-
MMTools documentation; as of this writing it simply requires installing conda, and then using the command conda
install -c conda-forge -c omnia openmmtools. Note that this requires a Python 3-based environ-
ment; OpenMMTools does not support Python 2.

Extra requirements for the tests can be installed with conda install -c conda-forge -c omnia nose
nose-timer pymbar. The full suite of tests can be run from the openmmtools directory with the command
nosetests. The tests specific to this (and other test systems) can be run from the root directory of the repository
with: nosetests openmmtools/tests/test_testsystem.py.

48 Chapter 1. Classical MD Modules

http://github.com/choderalab/openmmtools
http://github.com/choderalab/openmmtools

E-CAM Documentation, Release 0.2

Examples

Examples of the tools in this module can be seen in a Jupyter notebook that can be viewed or downloaded from a
GitHub gist at: https://gist.github.com/dwhswenson/bb79a137a1d65629c22e7b00aa569d76

Source Code

The source for this module was contributed to OpenMMTools. The relevant pull request is:

• http://github.com/choderalab/openmmtools/pull/389

1.3.26 Integrating LAMMPS with OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Examples

• Testing and Performance

• Source Code

Authors: Jan-Hendrick Prinz and Jony Castagna

This module shows how LAMMPS can be used as Molecular Dynamic (MD) engine in OpenPathSampling (OPS) and
it also provide a benchmark for the impact of OPS overhead over the MD engine.

Purpose of Module

OpenPathSampling uses OpenMM as default engine for calculating the sampled trajectories. Other engines as GRO-
MACS and LAMMPS can be used (despite not yet available in the official release) allowing to exploit different
computer architectures like hybrid CPU-GPU and to simulate more complex problems.

In general OPS gathers a frame (i.e. a state of the physical system at a point in time, typically consists of coordinates,
velocities, and periodic cell vectors) after a defined number of time steps. The MD engine has to produce the sequence
of frames and wait for OPS to provide new input values. This generate of course an overheads which has a negative
impact on the overall performance of the simulation.

1.3. OpenPathSampling 49

https://gist.github.com/dwhswenson/bb79a137a1d65629c22e7b00aa569d76
http://github.com/choderalab/openmmtools/pull/389
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

In this module we present the source code for the integration of OPS with LAMMPS as well as a benchmark for of a
simple test case to show the impact on the performance due to OPS overhead.

The integration with LAMMPS has been developed by Jan-Hendrick Prinz (https://github.com/jhprinz) and consists
of a Python script where the number of time steps per frame has to be specified (see below for the link to the source
file).

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Details about how to use OPS with LAMMPS are provided in the:

• iPython notebook for LAMMPS: https://github.com/jhprinz/openpathsampling/blob/
1235c472217d32b26011cdd6db0ac6287c994ab2/examples/misc/introduction_lammps.ipynb

Examples

The script which integrate LAMMPS with OPS can be applied to any case running in LAMMPS. For example, the
Lennard-Jones test (32K atoms) case presented in the ECAM deliverable D7.2 has been used to benchmark the OPS
overhead when using LAMMPS as presented in next section.

Testing and Performance

The table shows the performance of LAMMPS with OPS for the Lennar-Jones (32K atomes) test case using 100 time
steps per frame (more frequent queries) and 1000 time steps (less frequent queries) for a total of 100K time steps. The
MD engine time (i.e., LAMMPS only time) and the total time (OPS + LAMMPS) using different number of nodes
(with 24 cores per node) is presented.

Results have been obtained using the JURECA (http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JURECA/JURECA_node.html) supercomputer.

Steps between frames Nodes Md Engine Time [s] Total time [s]
100 1 106.25 108.48
100 2 61.40 62.31
100 4 36.46 37.28
1000 1 100.93 102.48
1000 2 53.56 54.45
1000 4 29.71 30.67

Using 100 or 1000 time steps per frame, the overhead due to the OPS is within a maximum of 3%. However, one should
note that when increasing the number of time steps per frame to 1000, the time spent in the MD engine decreases due
to less overhead from stopping and starting the engine. A suggested improvement to OPS has been to allow the engine
to continue the trajectory while the frame is being evaluated by OPS, which should help eliminate this overhead.
The OPS overhead remains relatively static and there is little discernible difference between the overheads for the two
measurements. Given that OPS is effectively a serialisation point for the calculation, more intensive trajectories should
also, therefore, lead to improved scalability results since they will reduce this ratio of serial to parallel workload.

50 Chapter 1. Classical MD Modules

https://github.com/jhprinz
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
https://github.com/jhprinz/openpathsampling/blob/1235c472217d32b26011cdd6db0ac6287c994ab2/examples/misc/introduction_lammps.ipynb
https://github.com/jhprinz/openpathsampling/blob/1235c472217d32b26011cdd6db0ac6287c994ab2/examples/misc/introduction_lammps.ipynb
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

E-CAM Documentation, Release 0.2

Source Code

The source code for integrating LAMMPS with OPS can be found at:

• https://github.com/openpathsampling/openpathsampling/pull/697

1.3.27 OpenPathSampling CLI Core

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (3.6+)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling-cli.readthedocs.io/

Relevant Training Material http://openpathsampling.org/

Licence MIT

Software module developed by David W.H. Swenson

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

This module provides the core infrastructure for the OpenPathSampling command line interface.

Purpose of Module

OpenPathSampling (OPS) is a powerful Python library for path sampling simulations. However, using it requires
expertise in Python programming. In order to make OPS more accessible to a broader audience, we have begun
development of a command line interface (CLI) to work with OPS files and to run OPS simulations.

The usage model is that there is a single command, openpathsampling, which takes subcommands and delegates
them to different routines. This is the same model as, e.g., git, which has subcommands like git commit and
git clone.

This module provides the underlying infrastructure/platform that the specific CLI subcommands will be built upon. A
subsequent module will provide several specific subcommands.

Key functionality included here:

• Parameter decorators: Different subcommands will frequently use the same options and arguments. In order
to maintain consistency in parameter usage and help statements, common parameters have been implemented
as a set of reusable decorators.

1.3. OpenPathSampling 51

https://github.com/openpathsampling/openpathsampling/pull/697
http://openpathsampling-cli.readthedocs.io/
http://openpathsampling.org/

E-CAM Documentation, Release 0.2

• Plug-in infrastructure: To promote customizability, the OPS CLI uses a plug-in infrastructure. This allows
us to ship a small set of default subcommands, but to allow users to easily create and share custom sub-
commands for their own projects or workflows. This module introduces two mechanisms by which a plug-
in can register with the CLI. One is based on native namespace packages, which makes it easy for develop-
ers to create and distribute plug-ins that automatically register with OPS when installed with standard Python
tools. The other approach is file-based, and simply involves placing the plug-in Python file in the user’s ~/.
openpathsampling/cli-plugins/ directory. This approach is useful for quick development of plug-ins
that may be intended to be shared within a specific research group or used to simplify reproducibility of work-
flows for a single project, but are not intended to be widely distributed and maintained for the long term.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Detailed documentation on the CLI can be found at https://openpathsampling-cli.readthedocs.io/

Testing

The OPS CLI can be installed with either pip or conda:

pip install openpathsampling-cli
or
conda install -c conda-forge openpathsampling-cli

Tests in the OpenPathSampling CLI use pytest. The requirements for testing are pytest and nose, both of which
can also be installed with either pip or conda.

With the package and its testing tools installed, tests can be run with:

py.test --pyargs paths_cli

Examples

This module deals with the underlying platform on which the rest of the OPS CLI is built. As such, there are no direct
examples. However, there are examples of how to use the platform, i.e., how to write plugins. Some of these can be
found in the example_plugins directory. Additionally, the specific commands implemented for the OPS CLI 0.1,
which will be the subject of a second module, can be thought of as examples.

Source Code

The source code for the OpenPathSampling CLI can be found in the its GitHub repository: http://github.com/
openpathsampling/openpathsampling-cli.

This module covers the “core” code for the OpenPathSampling CLI as of release version 0.1.

Specifically, it includes the following files, and their associated test suites:

• cli.py

• param_core.py

52 Chapter 1. Classical MD Modules

https://packaging.python.org/guides/packaging-namespace-packages/#native-namespace-packages
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
https://openpathsampling-cli.readthedocs.io/
http://pytest.org/
http://github.com/openpathsampling/openpathsampling-cli
http://github.com/openpathsampling/openpathsampling-cli

E-CAM Documentation, Release 0.2

• parameters.py

• plugin_management.py

1.3.28 OpenPathSampling CLI Commands

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (3.6+)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling-cli.readthedocs.io/

Relevant Training Material http://openpathsampling.org/

Licence MIT

Software module developed by David W.H. Swenson

• Purpose of Module

– Simulation commands

– Commands for dealing with files

• Background Information

• Testing

• Examples

• Source Code

This module provides the commands available to the OpenPathSampling command line interface as of version 0.1.

Purpose of Module

As discussed in the OpenPathSampling CLI Core module, a command line interface will make path sampling easier
for a broader range of users. The OPS CLI is initially designed to support a few functions that will be most useful to
users. More commands will be added over time, but the initial commands are outlined below.

Simulation commands

• visit-all: create initial trajectories by running MD until all states have been visited (works for MSTIS or
any 2-state system); must provide states, engine, and initial snapshot on command line

• equilibrate: run equilibration for path sampling (until first decorrelated trajectory); must provide move
scheme and initial conditions on the command line

• pathsampling: run path sampling with a given move scheme (suitable for custom TPS schemes as well as
TIS/RETIS); must provide move scheme, iniital conditions, and number of MC steps on command line

1.3. OpenPathSampling 53

http://openpathsampling-cli.readthedocs.io/
http://openpathsampling.org/

E-CAM Documentation, Release 0.2

Commands for dealing with files

• contents: list all the named objects in an OPS storage, organized by store (type); this is extremely useful to
get the name of an object to use

• append : add an object from once OPS storage into another one; this is useful for getting everything into a
single file before running a simulation

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Detailed documentation on the CLI can be found at https://openpathsampling-cli.readthedocs.io/

Testing

The OPS CLI can be installed with either pip or conda:

pip install openpathsampling-cli
or
conda install openpathsampling-cli

Tests in the OpenPathSampling CLI use pytest. The requirements for testing are pytest and nose, both of which
can also be installed with either pip or conda.

With the package and its testing tools installed, tests can be run with:

py.test --pyargs paths_cli

Examples

Basic examples of how to use the OPS CLI can be found in:

• http://openpathsampling.org/latest/cli.html

• https://gitlab.e-cam2020.eu:10443/dwhswenson/ops_tutorial/-/blob/master/5_advanced_customize_shooting.
ipynb

Source Code

The source code for the OpenPathSampling CLI can be found in the its GitHub repository: http://github.com/
openpathsampling/openpathsampling-cli.

This module covers the code for commands included in the OpenPathSampling CLI as of release version 0.1.

Specifically, it includes the following files, and their associated test suites:

• commands/append.py

• commands/contents.py

• commands/equilibrate.py

54 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
https://openpathsampling-cli.readthedocs.io/
http://pytest.org/
http://openpathsampling.org/latest/cli.html
https://gitlab.e-cam2020.eu:10443/dwhswenson/ops_tutorial/-/blob/master/5_advanced_customize_shooting.ipynb
https://gitlab.e-cam2020.eu:10443/dwhswenson/ops_tutorial/-/blob/master/5_advanced_customize_shooting.ipynb
http://github.com/openpathsampling/openpathsampling-cli
http://github.com/openpathsampling/openpathsampling-cli

E-CAM Documentation, Release 0.2

• commands/pathsampling.py

• commands/visit_all.py

Nine of these modules were part of E-CAM Deliverable 1.2. Those modules provided improvements and new features
in software for trajectory sampling and for studying the thermodynamics and kinetics of rare events.

1.4 Machine Learning Potentials

Many systems in computational physics and chemistry can be successfully studied with empirical force fields at the
atomistic level. In the context of these “molecular mechanics” models, atoms are treated as particles without internal
structure and their interactions are defined via rather simple expressions deduced from physical/chemical intuition.
Usually a small number of free parameters is enough to tune the potential to reproduce experimental properties with
good agreement. However, there are systems for which a satisfying description within this framework is not possible.
Take as an example the formation and breaking of covalent bonds. This is the territory of ab initio methods which use
quantum mechanics to accurately model the behavior of the system. Unfortunately the additional level of detail comes
at a cost. Even in small systems ab initio methods are usually many orders of magnitude slower than empirical force
fields. Moreover, the computational cost increases unfavorably with the number of atoms which makes it impractical
to perform large simulations.

With rising influence of machine learning algorithms in science and technology a new category of interatomic po-
tentials has emerged. Machine learning potentials (MLPs) aim at bridging the gap between ab initio methods and
empirical force fields. In contrast to the latter, MLPs are not bound by a predetermined fixed functional form of the in-
teraction but rather build on the flexibility of an underlying machine learning model, such as artificial neural networks.
These are known for their capability to reproduce any complicated function, which in this case is the desired potential
energy surface, but rely on a separate training stage before they are ready for use. During this phase the MLP “learns”
from a large data set how energies and forces depend on atomic positions. The reference energy landscape is typically
computed from expensive ab initio methods. Once the training is completed the MLP can accurately predict energies
and forces for new (unseen during training) atomic configurations at a fraction of the cost of the reference method.
Hence, with MLPs times scales become accessible in molecular dynamics simulations close to those of empirical
potentials while maintaining the ab initio level of accuracy.

Today MLPs exist in various forms and combine different atomic environment descriptors as inputs for all kinds of
machine learning models.

• Overview of machine learning potentials

A very successful variant is the high-dimensional neural network potential (HDNNP) which combines make use of
artificial neural networks to predict atomic energy contributions:

• Original publication introducing HDNNPs by Behler and Parrinello

• Descriptors used in HDNNPs: Atom-centered symmetry functions

• About the construction of HDNNPs

1.5 n2p2

The software n2p2 (NeuralNetworkPotentialPackage) implements the HDNNP method in a C++ library and applica-
tions for training and prediction. Its most important feature in the HPC context is the interface to the popular molecular
dynamics package LAMMPS which allows to use HDNNPs in massively parallelized simulation runs. Further infor-
mation can be found in these two publications:

• n2p2 design and LAMMPS parallel performance

• Parallel training implemented in n2p2

1.4. Machine Learning Potentials 55

https://www.e-cam2020.eu/deliverables/
https://doi.org/10.1063/1.4966192
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1063/1.3553717
https://doi.org/10.1002/qua.24890
https://compphysvienna.github.io/n2p2/
https://lammps.sandia.gov/
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1021/acs.jctc.8b01092

E-CAM Documentation, Release 0.2

The following modules extend the functionality of n2p2, some are already merged into the main repository, others will
also work independently and will be integrated in the future:

Software Technical Information

The information in this section describes n2p2 as a whole. Information specific to the additions in this module are
in subsequent sections.

Name n2p2 (NeuralNetworkPotentialPackage)

Language C++, Python (3.6+), Jupyter notebook

Licence GPL-3.0-or-later

Documentation Tool Doxygen, Sphinx

Application Documentation http://compphysvienna.github.io/n2p2/

Relevant Training Material http://compphysvienna.github.io/n2p2/

Software Module Developed by Andreas Singraber

1.5.1 n2p2 - CG descriptor analysis

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module adds tools to the n2p2 package which allow to assess the quality of atomic environment descriptors. This
is particularly useful when designing a neural network potential based coarse-grained model (NNP-CG).

Purpose of Module

Creating a coarse-grained (CG) model from the full description of a system is a two-step process: (1) selecting a
reduced set of degrees of freedom and (2) defining interactions depending on these coarse-grained variables. For
example, in a common coarse-graining approach for molecular systems the atomistic picture is replaced by a simpler
description with CG particles sitting at the center-of-mass coordinates of the actual molecules. The corresponding
interactions between CG sites can be modelled with empirical force fields but also, as has been recently shown in1

and2, with machine learning potentials. To simplify the construction of NNP based coarse-grained models in n2p2, this
module adds software to estimate the quality of atomic environment descriptors, which in turn hints on the expected
performance of the coarse-grained description.

The overall goal of the descriptor analysis is to show qualitatively whether there is a correlation between the raw
atomic environment descriptors (and their derivatives) and the atomic forces. If no or very little correlation can be
found we can assume that the descriptors do not encode enough information to construct a (free) energy landscape.
On the other hand, if “similar” descriptors correspond to “similar” forces there is a good chance that a machine learning
algorithm is capable of detecting this link and a machine learning potential can be fitted. In order to find a possible

1 Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W. DeePCG: Constructing Coarse-Grained Models via Deep Neural Networks. J. Chem. Phys. 2018,
149 (3), 034101.

2 John, S. T.; Csányi, G. Many-Body Coarse-Grained Interactions Using Gaussian Approximation Potentials. J. Phys. Chem. B 2017, 121 (48),
10934–10949.

56 Chapter 1. Classical MD Modules

https://github.com/CompPhysVienna/n2p2
https://www.gnu.org/licenses/gpl.txt
http://www.doxygen.nl/
http://www.sphinx-doc.org
http://compphysvienna.github.io/n2p2/
http://compphysvienna.github.io/n2p2/
https://doi.org/10.1063/1.5027645
https://doi.org/10.1063/1.5027645
https://doi.org/10.1021/acs.jpcb.7b09636
https://doi.org/10.1021/acs.jpcb.7b09636

E-CAM Documentation, Release 0.2

correlation between descriptors and forces the following approach is used: First, a clustering algorithm (k-means or
HDBSCAN) searches for groups in the high-dimensional descriptor space of all atoms. Then, for every detected
cluster the statistical distribution of the corresponding atomic forces is compared to the statistics of all remaining
atomic forces. A hypothesis test (Welch’s t-test) is applied to decide whether the link between descriptors and forces
is statistically significant. The percentage of clusters which show a clear link is then an indicator for a good descriptor-
force correlation.

In order to perform the analysis described above n2p2 was extended by two software pieces:

1. A new application based on the C++ libraries: nnp-atomenv

This application allows to generate files containing the atomic environment data required for the cluster analysis.

2. A new Jupyter notebook with the actual analysis: analyze-descriptors.ipynb

The script depends on common Python libraries (numpy, scipy, scikit-learn) and reads in data provided by
nnp-atomenv. It then clusters the data, performs statistical tests and presents graphical results.

Background Information

This module is based on n2p2, a C++ code for generation and application of neural network potentials used in molec-
ular dynamics simulations. The source code and documentation are located here:

• n2p2 documentation: http://compphysvienna.github.io/n2p2/

• n2p2 source code: http://github.com/CompPhysVienna/n2p2

Building and Testing

The code changes from this module are already merged with the main n2p2 repository (see the section below for
corresponding pull requests).

Note: By the time of reading these instructions n2p2 was most likely developed further. To recall the state of the
software at the time of writing these instructions please use these commands:

git clone https://github.com/CompPhysVienna/n2p2
cd n2p2
git checkout 3cfe391377d2792ac29baf8394b3dce712afdad2

To build the new tool nnp-atomenv the usual n2p2 build instructions apply:

cd src
make nnp-atomenv -j

The analyze-descriptors.ipynb Jupyter notebook requires some Python packages to be installed:

• numpy

• scipy

• matplotlib

• seaborn

• scikit-learn

• hdbscan

• pickle

1.5. n2p2 57

https://compphysvienna.github.io/n2p2/tools/nnp-atomenv.html
https://compphysvienna.github.io/n2p2/misc/cg_descriptor_analysis.html
http://compphysvienna.github.io/n2p2/
http://github.com/CompPhysVienna/n2p2
https://compphysvienna.github.io/n2p2/topics/build.html

E-CAM Documentation, Release 0.2

Step-by-step instructions on how the descriptor analysis is prepared and performed is available at this dedicated doc-
umentation page

Regression testing is used in n2p2 automatically for each commit to the main repository. This module also adds the
corresponding tests for the nnp-atomenv tool in test/cpp/. The build log showing the correct run of tests is
available here.

Source Code

The new functionality introduced by this module is collected in two pull requests:

• New tool for symmetry function quality analysis

• Complete coarse-graining/descriptor analysis documentation

The easiest way to view the source code changes is to use the Files changed tab in the above pull request pages.

Software Technical Information

The information in this section describes n2p2 and LAMMPS as a whole. Information specific to the additions in
this module are in subsequent sections.

Name n2p2, LAMMPS

Language C++

Licence GPL-3.0-or-later (n2p2), GPL-2.0 (LAMMPS)

Documentation Tool Doxygen, Sphinx

Application Documentation http://compphysvienna.github.io/n2p2/ (n2p2) https://lammps.sandia.gov/
(LAMMPS)

Relevant Training Material http://compphysvienna.github.io/n2p2/ (n2p2) https://lammps.sandia.gov/
(LAMMPS)

Software Module Developed by Andreas Singraber

1.5.2 n2p2 - Improved link to HPC MD software

• Purpose of Module

• Background Information

• Building and Testing

– LAMMPS user package

– CabanaMD interface

• Source Code

– Changes in LAMMPS

– Changes in n2p2

This module documents efforts to improve the interaction of n2p2 with existing HPC software, in particular the molec-
ular dynamics (MD) software package LAMMPS.

58 Chapter 1. Classical MD Modules

https://compphysvienna.github.io/n2p2/misc/cg_descriptor_analysis.html
https://compphysvienna.github.io/n2p2/misc/cg_descriptor_analysis.html
https://travis-ci.org/github/CompPhysVienna/n2p2/builds/762153549
https://github.com/CompPhysVienna/n2p2/pull/27
https://github.com/CompPhysVienna/n2p2/pull/95
https://www.gnu.org/licenses/gpl.txt
https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
http://www.doxygen.nl/
http://www.sphinx-doc.org
http://compphysvienna.github.io/n2p2/
https://lammps.sandia.gov/
http://compphysvienna.github.io/n2p2/
https://lammps.sandia.gov/
https://lammps.sandia.gov/

E-CAM Documentation, Release 0.2

Purpose of Module

Although n2p2 was already shipped with source files for patching LAMMPS before, the build process required man-
ual intervention of users. To avoid this in future versions of LAMMPS a pull request was created to include the
n2p2/LAMMPS interface by default as a user package. In order to conform with LAMMPS contribution guidelines
multiple issues were resolved, triggering these changes/additions to LAMMPS and n2p2:

• Modify the traditional build process (via makefiles) to include n2p2

• Modify the CMake build process to search and include n2p2

• Create additional documentation about the build settings

• Adapt documentation of the LAMMPS pair_style nnp command

• Create a suitable example which can be shipped with LAMMPS

• Change n2p2 to conform with LAMMPS bigbig settings (see here)

• Change the source files pair_nnp.(cpp/h) to conform with the LAMMPS coding style

Furthermore, the n2p2 build system was adapted to allow for multiple interfaces to other software packages, with an
option to select only those of interest to the user. This can be achieved by providing the INTERFACES variable in the
build stage, e.g. use

make libnnpif INTERFACES="LAMMPS CabanaMD"

to build both the LAMMPS and the CabanaMD interface and include it in the libnnpif library.

As a first application, the user contributed CabanaMD interface was integrated in the new build process. CabanaMD
is an ECP proxy application which makes use of the Kokkos performance portability library and n2p2 to port neural
network potentials in MD simulations to GPUs and other HPC hardware.

Background Information

This module is based on n2p2, a C++ code for generation and application of neural network potentials used in molec-
ular dynamics simulations. The source code and documentation are located here:

• n2p2 documentation: http://compphysvienna.github.io/n2p2/

• n2p2 source code: http://github.com/CompPhysVienna/n2p2

In addition the source files for the LAMMPS patch are based on LAMMPS, a C++ code for massively parallelized
molecular dynamics simulations. The source code and documentation are located here:

• LAMMPS documentation: https://lammps.sandia.gov/

• LAMMPS source code: http://github.com/lammps/lammps

Building and Testing

Important: By the time of reading these instructions the packages were most likely developed further and it cannot
be guaranteed that the procedures given below will give the desired results. To retrieve the state of each software at
the time of writing these lines please uncomment and use the lines with git checkout <commit-hash>.

1.5. n2p2 59

https://lammps.sandia.gov/doc/Packages_user.html
https://lammps.sandia.gov/doc/Modify_contribute.html
https://lammps.sandia.gov/doc/Build_settings.html#size
https://github.com/ECP-copa/CabanaMD
https://github.com/CompPhysVienna/n2p2/pull/49
https://proxyapps.exascaleproject.org/
https://github.com/kokkos/kokkos
http://compphysvienna.github.io/n2p2/
http://github.com/CompPhysVienna/n2p2
https://lammps.sandia.gov/
http://github.com/lammps/lammps

E-CAM Documentation, Release 0.2

LAMMPS user package

To test whether the LAMMPS user package USER-NNP works together with n2p2 as expected we have to download
LAMMPS from the pair-style-nnp feature branch and use the current master version of n2p2. First, to get and
compile n2p2:

git clone https://github.com/CompPhysVienna/n2p2
cd n2p2/src
git checkout 428db3ee61f9943feaeedfaaeb5e096289983d46
make libnnpif -j
cd ../..

Next we retrieve the LAMMPS feature branch:

git clone -b pair-style-nnp --single-branch https://github.com/singraber/lammps
cd lammps
git checkout ed53e2bbff2465dd05ba015a05843b2bb328360c

and compile the code with the USER-NNP package enabled using the CMake build approach:

mkdir build
cd build
cmake -D PKG_USER-NNP=yes -D N2P2_DIR=<path-to-n2p2> ../cmake
make -j

Alternatively, we could also use the traditional build process using makefiles:

cd src
make yes-user-nnp
make N2P2_DIR=<path-to-n2p2> mpi -j

In either case the LAMMPS binary should be created (lammps/build/lmp or lammps/src/lmp_mpi) and we
can test if it works correctly with the provided example:

cd ../examples/USER/nnp
Binary from CMake build process:
mpirun -np 4 ../../../build/lmp -in in.nnp
or from the traditional build process:
mpirun -np 4 ../../../src/lmp_mpi -in in.nnp

CabanaMD interface

While the n2p2 build process for the CabanaMD interface is trivial (it requires only the collection of some header
files) the compilation steps on the CabanaMD side are not trivial. Furthermore, testing requires a suitable GPU with
a compatible compiler environment. Hence it is not feasible to provide general build instructions for testing here.
However, the n2p2 documentation offers an example build procedure for a specific hardware setup here.

Source Code

Changes in LAMMPS

The easiest way to view the source code changes in LAMMPS covered by this module is to use the GitHub pull request
page. There, use the Files changed tab to review all changes.

60 Chapter 1. Classical MD Modules

https://compphysvienna.github.io/n2p2/misc/cabanamd_build_example.html
https://github.com/lammps/lammps/pull/2626
https://github.com/lammps/lammps/pull/2626
https://github.com/lammps/lammps/pull/2626/files

E-CAM Documentation, Release 0.2

Changes in n2p2

The following commits collect all changes required to follow the LAMMPS contribution guidelines:

• Updated makefiles for new LAMMPS build process

• Add flag information when n2p2 runs

• Changed build flags prefix from NNP_ to N2P2_

• Changed Atom::(Neighbor::)tag to int64_t

The commits which restructured the makefiles to allow multiple selectable interface library parts can be found here
(they are part of the CabanaMD pull request):

• Restructured interface library

• Renamed source files and updated docs

The CabanaMD example build instructions were added to the n2p2 documentation in this commit:

• Add CabanaMD build example docs for reference

Software Technical Information

The information in this section describes n2p2 as a whole. Information specific to the additions in this module are
in subsequent sections.

Name n2p2 (NeuralNetworkPotentialPackage)

Language C++

Licence GPL-3.0-or-later

Documentation Tool Doxygen, Sphinx

Application Documentation http://compphysvienna.github.io/n2p2/

Relevant Training Material http://compphysvienna.github.io/n2p2/

Software Module Developed by Martin P. Bircher and Andreas Singraber

1.5.3 n2p2 - Polynomial Symmetry Functions

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module introduces a new set of atomic environment descriptors for high-dimensional neural network potentials
(HDNNPs) in n2p2. Polynomial symmetry functions1 are designed to mimic closely the behavior of traditional Behler-
Parrinello symmetry functions2 but with a significantly reduced computational cost.

1 Bircher, M. P.; Singraber, A.; Dellago, C. Improved Description of Atomic Environments Using Low-Cost Polynomial Functions with Compact
Support. arXiv:2010.14414 [cond-mat, physics:physics] 2020.

2 Behler, J. Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials. J. Chem. Phys. 2011, 134 (7),
074106.

1.5. n2p2 61

https://github.com/CompPhysVienna/n2p2/commit/4b5c50030300f2060ba1cf214ca13c868c346d4b
https://github.com/CompPhysVienna/n2p2/commit/a3b3dadc75be445b80b9e3737f6176b14a98ad06
https://github.com/CompPhysVienna/n2p2/commit/d489a2491f6fdeb5dc39278418f21efc6341b289
https://github.com/CompPhysVienna/n2p2/commit/428db3ee61f9943feaeedfaaeb5e096289983d46
https://github.com/CompPhysVienna/n2p2/pull/49
https://github.com/CompPhysVienna/n2p2/pull/49/commits/e084cde64f4946c3885ab02e367ce9ad29343e37
https://github.com/CompPhysVienna/n2p2/pull/49/commits/887ba87cdbcf723aeeac80292c56d89307a6d123
https://github.com/CompPhysVienna/n2p2/commit/995f0b593615cb0270063c491226c9ee94ab5f2a
https://www.gnu.org/licenses/gpl.txt
http://www.doxygen.nl/
http://www.sphinx-doc.org
http://compphysvienna.github.io/n2p2/
http://compphysvienna.github.io/n2p2/
https://arxiv.org/abs/2010.14414
https://arxiv.org/abs/2010.14414
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717

E-CAM Documentation, Release 0.2

Purpose of Module

The symmetry functions proposed in the original work of Behler and Parrinello2 contain expressions of the form
𝑒𝑥𝑝(−𝜂𝑟2𝑖𝑗)𝑓𝑐(𝑟𝑖𝑗) in the innermost loop over all neighbors of atoms. Often the cutoff function 𝑓𝑐(𝑟) is chosen to be
a cosine or hyperbolic tangent. Considering the computational cost of these transcendental functions an alternative
formulation of symmetry functions based on polynomials like

((15 − 6𝑥)𝑥− 10)𝑥3 + 1

has been published recently1. Here, cheap polynomials are combined to form compact functions in the radial and
angular domain which mimic the behavior of Behler-Parrinello type symmetry functions at a significantly reduced
execution time. The benefits, benchmarks and many example applications are presented in great detail in1.

This module’s changes to the n2p2 code comprise of new classes for different types of polynomial symmetry functions
(PSFs), some helper classes and a redesign of the symmetry function caching mechanism:

• Helper classes CoreFunction and CompactFunction allow unified access to the compact function build-
ing blocks of PSFs.

• Six different types of PSFs were implemented in these classes:

– SymFncCompRad

– SymFncCompAngn

– SymFncCompAngw

– SymFncCompRadWeighted

– SymFncCompAngnWeighted

– SymFncCompAngwWeighted

Here, Rad and Angn/Angw indicate radial and angular symmetry functions variants, respectively. The suffix
Weighted refers to an element weighting proposed in3. For each new class in this list also a symmetry
function group4 version was implemented, following the same naming scheme prefixed with SymGrp. See also
this section of the n2p2 documentation for a more detailed description of the PSFs and their parameters.

• The computation of a set of descriptors allows the reuse of intermediate results across multiple symmetry
functions with varying parameters. The previously existing cutoff function caching4 of n2p2 was signifi-
cantly improved. By overriding the getCacheIdentifiers() member function each SymFnc.. class
can provide identifier strings for required cache fields. The Mode::setupSymmetryFunctionCache()
function collects the requirements of all symmetry functions and assigns cache positions in the
Atom::Neighbor::cache array.

Background Information

This module is based on n2p2, a C++ code for generation and application of neural network potentials used in molec-
ular dynamics simulations. The source code and documentation are located here:

• n2p2 documentation: http://compphysvienna.github.io/n2p2/

• n2p2 source code: http://github.com/CompPhysVienna/n2p2

3 Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.; Marquetand, P. WACSF—Weighted Atom-Centered Symmetry Functions as
Descriptors in Machine Learning Potentials. J. Chem. Phys. 2018, 148 (24), 241709.

4 Singraber, A.; Behler, J.; Dellago, C. Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials. J. Chem.
Theory Comput. 2019, 15 (3), 1827–1840.

62 Chapter 1. Classical MD Modules

https://compphysvienna.github.io/n2p2/topics/descriptors.html#low-cost-polynomial-symmetry-functions-with-compact-support
http://compphysvienna.github.io/n2p2/
http://github.com/CompPhysVienna/n2p2
https://doi.org/10.1063/1.5019667
https://doi.org/10.1063/1.5019667
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1021/acs.jctc.8b00770

E-CAM Documentation, Release 0.2

Building and Testing

The code changes from this module are already merged with the main repository of n2p2 (see pull request).

Because the introduction of a new set of symmetry function enhances the core library of n2p2 several applications
shipped with n2p2 will be affected by the changes. The easiest way to test the new functionality is to run the examples
provided in these examples/nnp-predict/ folders which make use of PSFs:

• Anisole_SCAN

• DMABN_SCAN

• Ethylbenzene_SCAN

First, since the changes from this module are already merged with the main repository of n2p2 (see pull request) it is
sufficient to download the latest version. Then, compile the nnp-predict tool by running

make nnp-predict -j

in the src directory. Next, switch to one of the above example directories and run the prediction tool:

../../../bin/nnp-predict 0

In the SETUP: SYMMETRY FUNCTIONS section of the output there should be symmetry functions with type (col-
umn tp) between 20 and 25 which identifies different variants of PSFs. In addition, the section SETUP: SYMMETRY
FUNCTION CACHE contains an overview of the cache usage.

Regression testing is implemented in n2p2 and automatically performed upon submission of a pull request via Travis
CI. The log file showing the successful pass of all tests for the specific pull request can be found here. The tests
include the above prediction examples and also perform a comparison of analytic and numeric derivatives of symmetry
functions.

Source Code

The easiest way to view the source code changes covered by this module is to use the GitHub pull request page. There,
use the Files changed tab to review all changes.

Software Technical Information

The information in this section describes n2p2 as a whole. Information specific to the additions in this module are
in subsequent sections.

Name n2p2 (NeuralNetworkPotentialPackage)

Language C++

Licence GPL-3.0-or-later

Documentation Tool Doxygen, Sphinx

Application Documentation http://compphysvienna.github.io/n2p2/

Relevant Training Material http://compphysvienna.github.io/n2p2/

Software Module Developed by Andreas Singraber

1.5. n2p2 63

https://github.com/CompPhysVienna/n2p2/pull/55
https://github.com/CompPhysVienna/n2p2/pull/55
https://github.com/CompPhysVienna/n2p2
https://compphysvienna.github.io/n2p2/topics/descriptors.html#low-cost-polynomial-symmetry-functions-with-compact-support
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org/github/CompPhysVienna/n2p2/builds/750366858
https://github.com/CompPhysVienna/n2p2/pull/55
https://github.com/CompPhysVienna/n2p2/pull/55/files
https://www.gnu.org/licenses/gpl.txt
http://www.doxygen.nl/
http://www.sphinx-doc.org
http://compphysvienna.github.io/n2p2/
http://compphysvienna.github.io/n2p2/

E-CAM Documentation, Release 0.2

1.5.4 n2p2 - Symmetry Function Memory Footprint Reduction

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module improves memory management in n2p2. More specifically, a new strategy to store symmetry function
derivatives is implemented. In this way the memory footprint during training is drastically reduced.

Purpose of Module

Training high-dimensional neural network potentials (HDNNPs) means to minimize the error between predictions and
the reference information in a data set of atomic configurations. There, the desired potential energy surface is supplied
in the form of an energy per configuration and forces acting on each atom. Consider the HDNNP expression for forces

𝐹𝑖,𝛼 = −
𝑁atoms∑︁
𝑗=0

𝑁sym.func.∑︁
𝑘=0

𝜕𝐸𝑗

𝜕𝐺𝑗,𝑘

𝜕𝐺𝑗,𝑘

𝜕𝑥𝑖,𝛼
,

where 𝐺𝑗,𝑘 denotes the 𝑘-th symmetry function of atom 𝑗. Only the first expression 𝜕𝐸𝑗

𝜕𝐺𝑗,𝑘
depends on the neural

network weights and therefore changes during the training process. The symmetry function derivatives with respect to
atom coordinates 𝜕𝐺𝑗,𝑘

𝜕𝑥𝑖,𝛼
, however, stay fixed for each atomic configuration in the data set. Given the high computational

cost of symmetry functions it is essential to pre-calculate and store them in memory. While this strategy speeds up
the training procedure significantly1 it also drastically increases the memory footprint, which easily reaches more than
100 GB for common data set sizes.

This module alters the core C++ library of n2p2 in order to reduce the memory consumption of all depending appli-
cations and provides benchmark results quantifying the improvement. The idea is to exploit that for specific combi-
nations of neighboring atoms 𝑖 and 𝑗, the expression 𝜕𝐺𝑗,𝑘

𝜕𝑥𝑖,𝛼
always equals zero. Consider a three-component system

with elements A, B and C. In addition, let atoms 𝑖 and 𝑗 be of element A and B, respectively. Then, the derivative
of a symmetry function 𝐺𝑗,𝑘 with signature B-C (i.e. only sensitive to neighbor atoms of type C) with respect to 𝑖’s
coordinates vanishes. Hence, by taking these element combination relations automatically into account a significant
portion of the memory usage can be avoided. Depending on the symmetry function setup, savings of about 30 to 50%
can be achieved for typical systems. These improvements will be particularly helpful for developing HDNNPs for
coarse-grained models.

Code changes cover most of the classes in the libnnp core library where they add functionality to identify relevant
(nonzero) element combinations for the symmetry function derivative computation. Additional CI tests ensure that
results are not affected.

Background Information

This module is based on n2p2, a C++ code for generation and application of neural network potentials used in molec-
ular dynamics simulations. The source code and documentation are located here:

• n2p2 documentation: http://compphysvienna.github.io/n2p2/

• n2p2 source code: http://github.com/CompPhysVienna/n2p2

1 Singraber, A.; Morawietz, T.; Behler, J.; Dellago, C. Parallel Multistream Training of High-Dimensional Neural Network Potentials. J. Chem.
Theory Comput. 2019, 15 (5), 3075–3092.

64 Chapter 1. Classical MD Modules

https://www.e-cam2020.eu/implementation-of-neural-network-potentials-for-coarse-grained-models/
https://www.e-cam2020.eu/implementation-of-neural-network-potentials-for-coarse-grained-models/
http://compphysvienna.github.io/n2p2/
http://github.com/CompPhysVienna/n2p2
https://doi.org/10.1021/acs.jctc.8b01092
https://doi.org/10.1021/acs.jctc.8b01092

E-CAM Documentation, Release 0.2

Building and Testing

Because the change in memory management affects the core library of n2p2 several applications shipped with n2p2
will benefit from reduced memory consumption. However, the biggest effect can be observed during training with the
nnp-train application. In the src directory type

make nnp-train

to build this n2p2 tool (see the build documentation for more details). Switch to one of the folders inside the
examples/nnp-train directory and run nnp-train (after a successful build the binary is copied to the bin
directory). The screen output will contain a section labelled SETUP: SYMMETRY FUNCTION MEMORY which will
highlight the memory savings.

The code changes from this module are already merged with the main repository of n2p2 (see pull request). The
improved memory management is enabled by default when n2p2 is compiled. However, there are use cases (see this
discussion) where the “full” memory layout is more desirable. Hence, a compilation flag allows to switch between the
two choices. The documentation also shows benchmark results which demonstrate the potential memory savings.

Regression testing is implemented in n2p2 and automatically performed upon submission of a pull request via Travis
CI. The log file showing the successful pass of all tests for the specific pull request can be found here.

Source Code

The easiest way to view the source code changes covered by this module is to use the GitHub pull request page. There,
use the Files changed tab to review all changes.

Software Technical Information

Name n2p2: Symmetry Function Parameter Generator

Language Python3 (3.7)

Licence GPL-3.0-or-later

Documentation Tool Sphinx, ReST

Application Documentation https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_
paramgen/doc

Relevant Training Material https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_
paramgen/examples

Software Module Developed by Florian Buchner

1.5.5 Symmetry Function Parameter Generator for n2p2

• Purpose of Module

• Background Information

• Building and Testing

• Examples

• Source Code

1.5. n2p2 65

https://compphysvienna.github.io/n2p2/Topics/build.html
https://github.com/CompPhysVienna/n2p2/pull/28
https://github.com/CompPhysVienna/n2p2/issues/68
https://github.com/CompPhysVienna/n2p2/issues/68
https://compphysvienna.github.io/n2p2/topics/build.html#improved-symmetry-function-derivative-memory
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org/github/CompPhysVienna/n2p2/builds/640902050
https://github.com/CompPhysVienna/n2p2/pull/28
https://github.com/CompPhysVienna/n2p2/pull/28/files
https://www.python.org/
https://www.gnu.org/licenses/gpl.txt
http://www.sphinx-doc.org/en/stable/markup/index.html
http://www.sphinx-doc.org/en/stable/rest.html
https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen/doc
https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen/doc
https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen/examples
https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen/examples

E-CAM Documentation, Release 0.2

This module implements schemes from the literature ([GaSc2018], [ImAn2018]) for automatically generating param-
eter sets for Behler-Parrinello-type symmetry functions ([BePa2007], [Beh2011]), and variations thereof, in neural
network potential applications. It is designed to work in conjunction with the n2p2 package, but can be used as a
standalone, too.

Purpose of Module

To represent potential energy surfaces via an artificial neural network, in a first step, the n2p2 software package
uses Behler-Parrinello-type symmetry functions ([BePa2007], [Beh2011]), and variations thereof. These serve as
descriptors of an atom’s local chemical environment, that make manifest, already at the input level, the output’s
invariance w.r.t. translations, rotations, and particle number permutations. They are obtained via a transformation
from the cartesian coordinates of the atom and its neighbor atoms.

The choice of these symmetry functions is an important step in the application of a neural network potential. Both
the number of symmetry functions to be used, and the parameters of those symmetry functions (symmetry functions
with different parameters being sensitive to different regions in an atom’s surroundings), need to be decided on. In
principle, using more symmetry functions yields a more complete description of an atom’s chemical environment and
thus improves accuracy. On the other hand, the numerical computation of those symmetry functions in fact tends to
be the most computationally expensive step in the application of a neural network potential, so it is undesirable to use
too many symmetry functions.

Now, what this module does is implement algorithms from the literature ([GaSc2018], [ImAn2018]) for automatically
generating sets of these symmetry function parameters. The aim of these algorithms is to create symmetry function
parameter sets that capture all the possible spatial correlations of atoms with their neighbors as completely as possible,
while still being economical (i.e., as few symmetry functions as possible), and to do so in a more systematic fashion
than when parameters are chosen by hand.

Note that the implemented procedures for generating symmetry function parameter sets are agnostic to the actual
dataset of atom configurations that the neural network potential is applied to, and the correlations of atoms therein.
They are merely a way of covering all regions in an atom’s environment as completely, yet at the same time as
parsimoniously, as possible, without any knowledge of where neighbor atoms in a given system are actually most
likely to be located. The symmetry functions generated this way are what is referred to as the ‘pool of candidate SFs’
in [ImAn2018]. This is alluding to the fact that this ‘pool of candidate SFs’ could then be further sparsified, keeping
only those symmetry functions that have the greatest descriptive power for a given dataset. Functionality for this is,
however, not currently implemented in this module.

The main module file is sfparamgen.py, in tools/python/symfunc_paramgen/src. It implements the
class SymFuncParamGenerator, which provides methods for the parameter generation described above, as well
as for outputting the parameter sets in the format that is required for the parameter file input.nn used by n2p2.

Background Information

This module is designed to be used in conjunction with n2p2, a software package for high-dimensional neural network
potentials in computational physics and chemistry. For more information on n2p2 itself, see:

• n2p2 documentation: https://compphysvienna.github.io/n2p2/index.html

• n2p2 source code: https://github.com/CompPhysVienna/n2p2

That being said, this module does not directly interface the core of n2p2 or call any of its functionality. The commu-
nication of this module with the core of n2p2 is limited to outputting symmetry function parameter sets in a format
that n2p2 can read (the format in which symmetry functions are specified in the parameter file input.nn of n2p2).
Therefore, the module’s functionality for generating symmetry function parameter sets can in principle be used inde-
pendently of n2p2.

66 Chapter 1. Classical MD Modules

https://compphysvienna.github.io/n2p2/index.html
https://github.com/CompPhysVienna/n2p2

E-CAM Documentation, Release 0.2

Building and Testing

Seeing as this module itself is just a lightweight Python tool and does not directly interface the core of n2p2, it does
not require building. Realistically, however, you will want to use it in conjunction with n2p2’s functionality for neural
network potentials, for which you need to build n2p2. This is described here.

Follow these steps to test the module:

1. Install the pytest package.

2. Navigate to the tools/python/symfunc_paramgen/tests directory.

3. Run pytest in your terminal.

4. For an additional code coverage report install the pytest-cov package.

5. Go to the tools/python/symfunc_paramgen/tests directory.

6. Execute pytest --cov=sfparamgen --cov-report=html ..

Examples

See the example.ipynb IPython notebook in the tools/python/symfunc_paramgen/examples direc-
tory (here is a direct link: https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen/
examples). Inside the examples folder, run the example by typing jupyter notebook example.ipynb in
your terminal.

Source Code

The source code for this module can be found here.

Ultimately, this module is intended to be merged into the official n2p2 code. For the status of the corresponding pull
request, see here.

Software Technical Information

Name NNTSSD - Tools for Neural Network Training Set Size Dependence

Language Python3

Licence GPL-3.0-or-later

Documentation Tool Sphinx

Application Documentation Available here

Relevant Training Material Included in the Documentation above.

Software Module Developed by Madlen Reiner

1.5.6 n2p2: Tools for Training Set Size Dependence

• Purpose of Module

• Background Information

1.5. n2p2 67

https://compphysvienna.github.io/n2p2/
https://docs.pytest.org/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen/examples
https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen/examples
https://github.com/flobuch/n2p2/tree/symfunc_paramgen/tools/python/symfunc_paramgen
https://github.com/CompPhysVienna/n2p2/pull/15
https://www.python.org/
https://www.gnu.org/licenses/gpl.txt
http://www.sphinx-doc.org/en/stable/markup/index.html
https://github.com/MadlenReiner/n2p2/blob/n2p2_training_size/src/doc/sphinx/source/Tools/NNTSSD.rst

E-CAM Documentation, Release 0.2

• Building, Testing and Examples

• Source Code

This module provides tools to analyse the training set size dependence of residual error of neural network potenials
(NNPs). It is specifically written to be used with the NNP n2p2.

Purpose of Module

NNTSSD is a module that allows

• automated dataset creation of varied sizes

• training of the neural network

• analysis of the learning curves obtained in the training process

in order to determine representative learning curves showing residual errors for varied sizes of training sets. It also
provides tools that allow

• the usage of external test sets, which might be useful for developing epoch optimization approaches

• the usage of separate validation datasets, which are used to obtain TSSD curves that are independent from test
sets that are used for epoch optimization

• graphic representation of learning curves and training performance

• a user-friendly way of running NNTSSD methods by filling in an input file

Other methods within the module allow

• processing of input data (namely splitting datasets)

• analysis of training performance (dependence of residual error of the number of training epochs)

Background Information

Neural network potentials are used in molecular dynamics simulation to reproduce potential energy surfaces of ab
initio methods. This module addresses the question of dependence of the NNP’s prediction error (characterized by the
RMSE in energy and forces) on the size of the training dataset.

Building, Testing and Examples

Building instructions for NNTSSD, information regarding software tests and and examples can be found here. The
additions to n2p2 presented here are not yet merged with the main n2p2 repository. Before following the above
instructions please check out the n2p2_training_size branch in the author’s fork of n2p2 using these commands:

git clone git@github.com:MadlenReiner/n2p2.git
cd n2p2
git checkout n2p2_training_size

Then, run the build process of n2p2

cd src
make

to create the training tools required for NNTSSD. In some cases it may be required to set paths to external libraries in
src/makefile.gnu.

68 Chapter 1. Classical MD Modules

https://compphysvienna.github.io/n2p2
https://github.com/MadlenReiner/n2p2/blob/n2p2_training_size/src/doc/sphinx/source/Tools/NNTSSD.rst
https://github.com/MadlenReiner/n2p2/tree/n2p2_training_size

E-CAM Documentation, Release 0.2

Source Code

The source code of this module can be found in the tools/python/NNTSSD/source of the
n2p2_training_size branch in the author’s fork:

• Link to NNTSSD source code

Another way of reviewing the code additions to n2p2 is to visit the corresponding pull request:

• Link to the pull request to include NNTSSD in n2p2

Change to the tab Files changed to get an overview of all changes.

1.6 Pilot Projects

One of primary activity of E-CAM is to engage with pilot projects with industrial partners. These projects are con-
ceived together with the partner and typically are to facilitate or improve the scope of computational simulation within
the partner. The related code development for the pilot projects are open source (where the licence of the underlying
software allows this) and are described in the modules associated with the pilot projects.

More information on Classical MD pilot projects can be found on the main E-CAM website:

• Project on binding kinetics

• Project on food and pharmaceutical proteins

The following modules were developed specifically for the Classical MD pilot projects.

Software Technical Information

This module extends the contact_maps project.

Name contact_maps

Language Python 2.7, 3.5, 3.6

Licence LGPL 2.1+

Documentation Tool Sphinx/RST

Application Documentation http://contact-map.readthedocs.io/

Relevant Training Material TODO

Software Module Developed by David W.H. Swenson

1.6.1 Contact Concurrences

• Purpose of Module

• Background Information

• Building and Testing

– Examples

• Source Code

1.6. Pilot Projects 69

https://github.com/MadlenReiner/n2p2/tree/n2p2_training_size/tools/python/NNTSSD/source
https://github.com/CompPhysVienna/n2p2/pull/21
https://www.e-cam2020.eu/pilot-project-biki/
https://www.e-cam2020.eu/pilot-project-food-proteins/
http://contact-map.readthedocs.io/

E-CAM Documentation, Release 0.2

This module deals with the analysis of contacts between parts of biomolecules based on “contact concurrences,”
i.e., what contacts occur simultaneously during a trajectory. This is useful when using contacts as a definition of a
metastable state in a trajectory.

Purpose of Module

Contact frequencies, as developed in the module Contact Map, are a useful tool for studying biomolecular systems,
such as binding/unbinding of a ligand from a protein. However, they suffer from one problem when trying to use them
to define metastable states: since they are averaged over time, they don’t show time-dependent behavior. To identify a
stable state, time-dependent behavior must be considered.

For example, a particular contact pair might have a frequency of 0.1 during a 100ns trajectory. But this could be
achieved in several ways. If the contact events are randomly distributed through time, this contact probably isn’t
characteristic of a metastable state. On the other hand, if the contact is constantly present during the last 10 ns
(and not otherwise present), it might represent a metastable state. More importantly, there might be multiple con-
tacts that are all present during those last 10 ns. Those concurrent contacts could be used to define a metastable
state. This module helps identify and analyze those concurrent contacts by providing a tool to visualize them.

The figure shows the output of the contact concurrence
visualization for the contacts between an inhibitor (la-
belled YYG) and various residues of the protein GSK3B.
The plot shows when each contact occurred. The x-axis
is time. Each dot represents that a specific contact pair
is present at that time. The contact pairs are separated
along the vertical axis.

This trajectory shows two groups of stable contacts be-
tween the protein and the ligand; i.e. there is a change
in the stable state. This allows us to visually identify the
contacts involved in each state. Both states involve the
ligand being in contact with Phe33, but the earlier state
includes contacts with Ile28, Gly29, etc., while the later state includes contacts with Ser32 and Gly168.

This is an important tool for identifying stable states based on long-lived groups of contacts, and is being used as part
of the E-CAM pilot project on binding kinetics. It has also been used a part of a bachelor’s thesis project to develop
an automated approach to identifying metastable intermediates during binding/unbinding processes.

Classes implemented in this module include:

• Concurrence: Superclass for contact concurrence objects, enabling future custom concurrence types.

• AtomContactConcurrence: Contact concurrences for atom-atom contacts.

• ResidueContactConcurrence: Contact concurrences for residue-residue contacts (based on minimum
distance between constituent atoms).

• ConcurrencePlotter and plot_concurrences: Class and convenience function (respectively) for
making plots of contact concurrence.

• ContactsDict: Dict-like object giving access to atom or residue contacts based on string keys. Also added
ContactObject.contacts property, which returns a ContactsDict object for the ContactObject.

Background Information

This module is part of the contact_map project, which builds on tools from MDTraj.

70 Chapter 1. Classical MD Modules

https://www.e-cam2020.eu/pilot-project-biki/
http://contact-map.readthedocs.io
http://mdtraj.org

E-CAM Documentation, Release 0.2

Building and Testing

This module will be included in the 0.4 release of contact_map. After that release, it can be easily in-
stalled with conda, using conda install -c conda-forge contact_map, or conda install -c
conda-forge contact_map==0.4.0 for the first version that includes this module. To see the current release,
go to https://pypi.org/project/contact-map/#history.

Until the release, this module can only be installed through a developer install of contact_map. This involves down-
loading the contact_map repository, installing the requirements, and then installing the contact_map package
from source. Instructions can be found on the installation page of the contact_map documentation.

Once installed, tests are run using pytest. To check that the code has been correctly installed, run python -c
"import contact_map" from the command line. To run the tests, install pytest and run the command py.test
--pyargs contact_map.

Examples

An example can be found in the documentation to the contact_map paper: [docs | GitHub]

Source Code

The source code for this module is contained in the following pull requests in the contact_map repository:

• https://github.com/dwhswenson/contact_map/pull/28

• https://github.com/dwhswenson/contact_map/pull/47

1.6.2 Particle Insertion Core

Software Technical Information

This is the core module for the particle insertion suite of codes

Languages C, Python 2.7, LAMMPS Scripting language

Licence MIT -however note that LAMMPS is now changing from GPL to LGPL so when used together with
LAMMPS LGPL applies

Documentation Tool ReST

Application Documentation See PIcore repository

Relevant Training Material None

• Purpose of the Module

• Background Information

• General Formulation

• Algorithms

• Source Code

• Compilation and Linking

1.6. Pilot Projects 71

https://pypi.org/project/contact-map/#history
http://contact-map.readthedocs.io/en/latest/installing.html#developer-installation
https://contact-map.readthedocs.io/en/latest/examples/nb/concurrences.html
https://github.com/dwhswenson/contact_map/blob/master/examples/concurrences.ipynb
https://github.com/dwhswenson/contact_map/pull/28
https://github.com/dwhswenson/contact_map/pull/47
https://gitlab.e-cam2020.eu/mackernan/particle_insertion/tree/master/PIcore

E-CAM Documentation, Release 0.2

• Scaling and Performance

Purpose of the Module

This software module computes the change in free energy associated with the insertion or deletion of Lennard Jones
particles in dilute or dense conditions in a variety of Thermodynamic Ensembles, where statistical sampling through
molecular dynamics is performed under LAMMPS but will be extended to other molecular dynamics engines at a later
date. Lennard-Jones type interactions are the key source of difficulty associated with particle insertion or deletion,
which is why this module is a core module, as other interactions including Coulombic and bond, angle and dihedral
interactions will be added in a second module. It differs from the main community approach used to date to compute
such changes as it does not use soft-core potentials. Its key advantages over soft-core potentials are: (a) electrostatic
interactions can in principle be performed simultaneously with particle insertion (this and other functionalities will be
added in a new module); and, (b) essentially exact long-range dispersive interactions using dispersion Particle Mesh
Ewald (PMME) or EWALD if desired can be selected at runtime by the user.

Background Information

Particle insertion can be used to compute the free energy associated with hydration/drying, the insertion of cavities
in fluids/crystals, changes in salt levels, changes in solvent mixtures, and alchemical changes such as the mutation
of amino-acids. in crystals. It can also be used to compute the free energy of solvent mixtures and the addition of
salts, which is used in the purification processing industrially, for instance in the purification of pharmaceutical active
ingredients. Particle insertion can in principle also be used to compute the free energy associated with changes in the
pH, that is the proton transfer from a titratable site to the bulk, for example in water.

Our approach consists of rescaling the effective size of inserted atoms through a parameter 𝜆 so that all interactions
between nserted atoms and interactions between inserted atoms and atoms already present in the system are zero
when 𝜆 = 0, creating at most an integrable singularity which we can safely handle. In the context of Lennard-Jones
type pair potentials, our approach at a mathematical level is similar to Simonson, who investigated the mathematical
conditions required to avoid the singularity of insertion. It turns out that a non-linear dependence of the interaction
on :math:’lambda’ between inserted atoms and those already present is required (i.e. a simple linear dependence on
:math: ‘lambda’ necessarily introduces a singularity).

This module and upcoming modules include computing the free energy changes associated with the following appli-
cations

(a) hydration and drying;

(b) the addition of multiple molecules into a condenses environment;

(c) residue mutation and alchemy;

(d) constant pH simulations, this also will also exploit modules created in E-CAM work package 3 (quantum dy-
namics); and,

(e) free energy changes in chemical potentials associated with changes in solvent mixtures.

General Formulation

Consider a system consisting of 𝑁 +𝑀 degrees of freedom and the Hamiltonian

𝐻(𝑟, 𝑝, 𝜆) =𝐻0 +𝐾𝐸𝑖𝑛𝑠𝑒𝑟𝑡 + ∆𝑉 (𝑟, 𝜆)

where𝐻0 corresponds to an unperturbed Hamiltonian, and the perturbation ∆𝑉 (𝑟, 𝜆) depends nonlinearly on a control
parameter 𝜆. The first set of N degrees of freedom is denoted by A and the second set of M degrees of freedom is

72 Chapter 1. Classical MD Modules

https://lammps.sandia.gov/
https://doi.org/10.1063/1.4764089
https://doi.org/10.1063/1.4764089
https://doi.org/10.1080/00268979300102371

E-CAM Documentation, Release 0.2

denoted by B. To explore equilibrium properties of the system, thermostats, and barostats are used to sample either
the NVT (canonical) ensemble or the NPT (Gibbs) ensemble. The perturbation is devised so that when 𝜆 = 0,
∆𝑉 (𝑟, 𝜆) = 0, B is in purely virtual. When 𝜆 = 1, B corresponds to a fully physical augmentation of the original
system.

In the present software module, we consider only interaction Lennard Jones atoms.

∆𝑉 (𝑟, 𝜆) = 𝑉𝑙𝑗(𝑟, 𝜆)

where for each inserted atom i

�̂�(𝜆)𝑖 = 𝜆𝜎𝑖

𝜖(𝜆)𝑖 = 𝜆𝜖𝑖

and the mixing rule for Van der Waals diameters and binding energy between different atoms uses the geometric mean.
The dependence of 𝜎 on 𝜆 has the consequence that the mean 𝜎 between a pair of inserted atoms scales as 𝜆, but scales
as

√
𝜆 when one atom in the pair is inserted and the other is already present. These choices of perturbations guarantees

that the particle insertion and deletion catastrophes are avoided.

Algorithms

At the core of the PI core module there are four functions/codes. The first written in python generates the interpolation
points which are the zero’s of suitably transformed Chebyshev functions.

The second code written ln LAMMPS scripting language performs the simulation in user-defined ensembles at the
selected interpolation values of :math:’lambda’, at a user-specified frequency, computing two-point central difference
estimates of derivatives of the potential energy needed for thermodynamic integration, computing the energy functions
for all values of :math:’lambda’ in the context of MBAR. The user also specifies the locations of the inserted particles.
The user also specifies whether Particle Mesh Ewald or EWALD should be used for dispersive interactions.

The third code written in python takes the output data from LAMMPS, prepares it so that free energy differences in
the selected ensemble can be computed using MBAR provided by the pymbar suite of Python codes of the Chodera
group.

The fourth code, also written in python take the LAMMPS output and performs the thermodynamic integration.

1.6. Pilot Projects 73

E-CAM Documentation, Release 0.2

74 Chapter 1. Classical MD Modules

E-CAM Documentation, Release 0.2

Source Code

All files can be found in the PIcore subdirectory of the particle_insertion git repository.

Compilation and Linking

See PIcore README for full details.

Scaling and Performance

As the module uses LAMMPS, the performance and scaling of this module should essentially be the same, provided
data for thermodynamic integration and MBAR are not generated too often, as is demonstated below. In the case of
thermodynamic integration, this is due to the central difference approximation of derivatives, and in the case of MBAR,
it is due to the fact that many virtual moves are made which can be extremely costly if the number of interpolating
points is large. Also, when using PMME, the initial setup cost is computationally expensive, and should, therefore,
be done as infrequently as possible. A future module in preparation will circumvent the use of central difference
approximations of derivatives. The scaling performance of PI-CORE was tested on Jureca multi node. The results for
weak scaling (where the number of core and the system size are doubled from 4 to 768 core) are as follows.

Weak Scaling:

Number of MPI Core timesteps/s
4 1664.793
8 1534.013
16 1458.936
24 1454.075
48 1350.257
96 1301.325
192 1263.402
384 1212.539
768 1108.306

and for the strong scaling (where the number of core are doubled from 4 to 384 but the system size is fixed equal to
768 times the original system size considered for one core/processor for weak scaling) Strong Scaling:

Number of MPI Core timesteps/s
4 9.197
8 17.447
16 34.641
24 53.345
48 104.504
96 204.434
192 369.178
384 634.022

1.6.3 Particle Insertion Hydration

1.6. Pilot Projects 75

https://gitlab.e-cam2020.eu/mackernan/particle_insertion
https://gitlab.e-cam2020.eu/mackernan/particle_insertion/tree/master/PIcore/README.rst

E-CAM Documentation, Release 0.2

Software Technical Information

This is the core module for the particle insertion suite of codes

Languages C, Python 2.7, LAMMPS Scripting language

Licence MIT -however, note that LAMMPS is GPL so when used together GPL applies

Documentation Tool All source code should be documented so please indicate what tool has been used for docu-
mentation. We can help you with Doxygen and ReST but if you use other tools it might be harder for us to
help if there are problems.

Application Documentation See PIhydration README file

Relevant Training Material Add a link to any relevant training material.

• Purpose of the Module

• Background Information

• General Formulation

• Algorithms

• Source Code

• Compilation and Linking

• Scaling and Performance

Purpose of the Module

This software module computes the change in free energy associated with the insertion or deletion of water in dilute or
dense conditions in a variety of Thermodynamic Ensembles, where statistical sampling through molecular dynamics
is performed under LAMMPS but will be extended to other molecular dynamics engines at a later date. It builds on
the PI Core module of codes by adding electrostatic, bond, and angle 𝜆 dependent interactions including SHAKE
to the Lennard-Jones interactions that were dealt with in PIcore. It differs from the main community approach used
to date to compute such changes as it does not use soft-core potentials. Its key advantages over soft-core potentials
are: (a) electrostatic interactions can in principle be performed simultaneously with particle insertion (this and other
functionalities will be added in a new module); and, (b) essentially exact long-range dispersive interactions using
dispersion Particle Mesh Ewald (PMME) or EWALD if desired can be selected at runtime by the user.

Background Information

Particle insertion can be used to compute the free energy associated with hydration/drying, the insertion of cavities
in fluids/crystals, changes in salt levels, changes in solvent mixtures, and alchemical changes such as the mutation
of amino-acids. in crystals. It can also be used to compute the free energy of solvent mixtures and the addition of
salts, which is used in the purification processing industrially, for instance in the purification of pharmaceutical active
ingredients. Particle insertion can in principle also be used to compute the free energy associated with changes in the
pH, that is the proton transfer from a titratable site to the bulk, for example in water.

Our approach consists of rescaling electrostatic charges of inserted atoms so that they converge to zero faster than in-
erted Van der Waals atoms where the later uses the geometric mean for Lennard Jones diameters and binding energies,
and that bond, angle, and dihedral spring constants and where necessary also bond lengths scale to zero in the same
fashion

76 Chapter 1. Classical MD Modules

https://gitlab.e-cam2020.eu/mackernan/particle_insertion/tree/master/PIhydration
https://lammps.sandia.gov/
https://doi.org/10.1063/1.4764089

E-CAM Documentation, Release 0.2

the effective size of inserted atoms through a parameter 𝜆 so that all interactions between inserted atoms and inter-
actions between inserted atoms and atoms already present in the system are zero when 𝜆 = 0, creating at most an
integrable singularity which we can safely handle. In the context of Lennard-Jones type pair potentials, our approach
at a mathematical level is similar to Simonson, who investigated the mathematical conditions required to avoid the
singularity of insertion. It turns out that a non-linear dependence of the interaction on :math: ‘\lambda’ between in-
serted atoms and those already present is required (i.e. a simple linear dependence on :math: ‘\lambda’ necessarily
introduces a singularity).

The applications of this module use in upcoming modules include computing the free energy changes associated with:

(a) hydration and drying;
(b) the addition of multiple molecules into a condenses environment;
(c) residue mutation and alchemy;
(d) constant pH simulations, this also will also exploit modules created in E-CAM
→˓work package 3

(quantum dynamics); and,
(e) free energy changes in chemical potentials associated with changes in solvent
→˓mixtures.

General Formulation

Consider a system consisting of 𝑁 +𝑀 degrees of freedom and the Hamiltonian

𝐻(𝑟, 𝑝, 𝜆) =𝐻0 +𝐾𝐸𝑖𝑛𝑠𝑒𝑟𝑡 + ∆𝑉 (𝑟, 𝜆)

where𝐻0 corresponds to an unperturbed Hamiltonian, and the perturbation ∆𝑉 (𝑟, 𝜆) depends nonlinearly on a control
parameter 𝜆. The first set of N degrees of freedom is denoted by A and the second set of M degrees of freedom is
denoted by B. To explore equilibrium properties of the system, thermostats, and barostats are used to sample either
the NVT (canonical) ensemble or the NPT (Gibbs) ensemble. The perturbation is devised so that when 𝜆 = 0,
∆𝑉 (𝑟, 𝜆) = 0, B is in purely virtual. When 𝜆 = 1, B corresponds to a fully physical augmentation of the original
system.

In the present software module, we include in the perturbation interaction Lennard Jones potenetials, harmonic bond
and angle interactions, and electostatic interactions:

∆𝑉 (𝑟, 𝜆) = 𝑉𝑙𝑗(𝑟, 𝜆) + 𝑉𝑏(𝑟, 𝜆) + 𝑉𝑎(𝑟, 𝜆) + 𝑉𝑒𝑙(𝑟, 𝜆).

where for each inserted atom i

�̂�(𝜆)𝑖 = 𝜆𝜎𝑖

𝜖(𝜆)𝑖 = 𝜆𝜖𝑖

𝑞(𝜆)𝑖 = 𝜆𝑝

and the mixing rule for Van der Waals diameters and binding energy between different atoms uses the geometric mean
for atoms pairs where one or more of the atoms is inserted but retains the mixing rule for atoms already present. The
dependence of 𝜎 on 𝜆 has the consequence that the mean 𝜎 between a pair of inserted atoms scales as 𝜆, but scales
as

√
𝜆 when one atom in the pair is inserted and the other is already present. The dependence of math:epsilon on 𝜆

ensures that forces behave regularly when 𝜆 is very small. These choices of perturbations guarantees that the particle
insertion and deletion catastrophes are avoided. Regarding electrostatic interactions, the exponent p allows the rate of
convergence electrostatic interactions to zero to be faster than the rate at which that the effective diameters between
corresponding Lennard Jones atoms go to zero, so as to ensure divergences are avoided. Currently p = 1.5. The spring
constants for harmonic, angular and torsional interactions involving inserted atoms are currently simply multiplied

1.6. Pilot Projects 77

https://doi.org/10.1080/00268979300102371
https://doi.org/10.1080/00268979300102371

E-CAM Documentation, Release 0.2

by 𝜆.It is also possible to replace bond, angle and torsional interactions involving only inserted atoms with shake
constraints. In such cases, the shake constraints are continuously on. For cases where arithmetic sum rules apply to
the original system, an additional lambda bases perturbation stage can be applied to transform geometric mean based
mixing rules for Lennard Jones interactions to arithmetic mean rules governing interactions between inserted atoms or
inserted atoms and original atoms.

Algorithms

At the core of the PI core module there are four functions/codes. The first written in python generates the interpolation
points which are the zero’s of suitably transformed Chebyshev functions.

The second code written ln LAMMPS scripting language performs the simulation in user-defined ensembles at the
selected interpolation values of :math:’lambda’, at a user-specified frequency, computing two-point central difference
estimates of derivatives of the potential energy needed for thermodynamic integration, computing the energy functions
for all values of :math:’lambda’ in the context of MBAR. The user also specifies the locations of the inserted particles.
The user also specifies whether Particle Mesh Ewald or EWALD should be used for dispersive interactions.

The third code written in python takes the output data from LAMMPPS, prepares it so that free energy differences in
the selected ensemble can be computed using MBAR provided by the pymbar suite of python codes of the Chodera
group.

The fourth code, also written in python take the LAMMPS output and performs the thermodynamic integration.

Source Code

All files can be found in the PIhydration subdirectory of the particle_insertion git repository.

Compilation and Linking

See PIhydration README for full details.

Scaling and Performance

As the module uses LAMMPS, the performance and scaling of this module should essentially be the same, provided
data for thermodynamic integration and MBAR is not generated too often. In the case of thermodynamic integration,
this is due to the central difference approximation of derivatives, and in the case of MBAR, it is due to the fact that
many virtual moves are made which can be extremely costly if the number of interpolating points is large. Also, when
using PMME, the initial setup cost is computationally expensive, and should, therefore, be done as infrequently as
possible. A future module in preparation will circumvent the use of central difference approximations of derivatives.

Software Technical Information

This module is extends the lammps python interface to allow accessing various force-field potential parameters
from python.

Language Python (3+)

Licence The software for this specific module is licensed under GNU General Lesser Public License
v3.0

Documentation Tool Sphinx, follows LAMMPS format (ReST)

Application Documentation Documentation

78 Chapter 1. Classical MD Modules

https://gitlab.e-cam2020.eu/mackernan/particle_insertion
https://gitlab.e-cam2020.eu/mackernan/particle_insertion/tree/master/PIhydration/README.rst
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/LGPL-3.0
http://www.sphinx-doc.org/en/stable/markup/index.html
https://gitlab.com/aestheses/lammps_patches/-/tree/master/docs

E-CAM Documentation, Release 0.2

Relevant Training Material Not currently available.

Software Module Developed by Shrinath Kumar, Zein Jaafar and Donal MacKernan

1.6.4 LAMMPS-pyinterfaceExt

• Purpose of Module

– Background Information

– Building and Testing

• Source Code

The module contains patch files for the Stable release 29 October 2020 version of LAMMPS, to enable accessing
simulation force-filed parameters from python.

Purpose of Module

When performing alchemical free energy calculations, it is necessary to change the attributes of various particles in
a simulations - Atom properties such as charge and mass or Force field properties such as 𝜖 or 𝜎 of Lennard-Jones
potentials.

The LAMMPS library along with its Python interface provides the ability to directly access and change many such
attributes in a running simulation. However, for pair potentials while it is possible to change their parameters it is
currently not possible to read the existing parameters from a running simulations. This is required for the alchemical
free energy calculations using the Particle Insertion approach as described in the Particle Insertion Core module, where
the scaling of the forcefield attribute depends on the existing attributes.

This module address this limitation by extending the LAMMPS library and the Python interface to add a function al-
lowing read access to pair-potential parameters. It also adds an extract method to the the pair_*.cpp files associated
with some commonly used pair-potential in LAMMPS as described in fix adapt.

Background Information

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a very versatile MD engine. The current
stable release of which can be obtained from the link LAMMPS stable 29Oct2020. In particular, due to it’s powerful
library and python interface it allows great control and easy scripting of any time of simulation

The Particle Insertion approach for alchemical free energy calculations is currently only implemented using the
LAMMPS MD engine. The set of patches in this module exist to accommodate the requirements of those modules.

Building and Testing

Download and extract the LAMMPS source. Before building LAMMPS download the patch file and apply the patch
using the patch command from the root of the LAMMPS source directory.

patch < lmp_pyExt.patch

Follow the normal LAMMPS building instructions at https://lammps.sandia.gov/doc/Build.html to build and install
LAMMPS along with the applied patch. Make sure to enable pkg_python when building.

1.6. Pilot Projects 79

https://github.com/lammps/lammps/releases/tag/stable_29Oct2020
https://lammps.sandia.gov/doc/fix_adapt_fep.html
https://github.com/lammps/lammps/releases/tag/stable_29Oct2020
https://lammps.sandia.gov/doc/Build.html

E-CAM Documentation, Release 0.2

Source Code

Available as a patch file from here

Software Technical Information

Name minDist2segments_KKT

Language C++

Licence MIT

Documentation Tool Sphinx

Application Documentation Doxygen documentation

Relevant Training Material PDF documentation

Software Module Developed by Pascal Carrivain

1.6.5 E-CAM minDist2segments_KKT module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The minDist2segments_KKT module returns the minimal distance between two line segments. It uses the Karush-
Kuhn-Tucker conditions (KKT) for the minimization under constraints.

Purpose of Module

To study the long term memory of the initial conformation of a highly entangled polymer we need to preserve the
topology. It means that two polymer bonds cannot cross. It is of great importance for the study of post-mitotic
chromosome unfolding. To resolve the excluded volume constraints one could use a soft or hard potential between the
two points associated to the minimal distance.

• Polymer simulation.

• To resolve the excluded volume constraints.

• It is used in a scientific collaborations.

• Publications: not currently available.

Note: We would use the present module to avoid topology violation in an entangled polymer system. This module is
used by other ongoing work.

80 Chapter 1. Classical MD Modules

https://gitlab.com/aestheses/lammps_patches/-/tree/master/
https://opensource.org/licenses/mit-license
https://gitlab.e-cam2020.eu/carrivain/mindist2segments_kkt/blob/master/refman.pdf
https://gitlab.e-cam2020.eu/carrivain/mindist2segments_kkt/blob/master/minDist2segments_KKT.pdf
https://en.wikipedia.org/wiki/Line_segment
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

E-CAM Documentation, Release 0.2

Background Information

You can find pdf file with a detailed derivation of the minimal distance between two segments using the Karush-Kuhn-
Tucker conditions on the minDist2segments_KKT GitLab repository.

Building and Testing

I provide a simple Makefile you can find at the same location that the source code. You need C++11 in order to use
the pseudo-random number generator. The example also has OpenMP acceleration, edit the Makefile to enable it.
Before the compilation you can clean the previous build with the make mrproper command.

The purpose of the module is to calculate the minimal distance between two segments. For each distance we compare
the result to an “exact enumeration” of all the possible distances and return a warning if the two results differ by more
than the enumeration precision.

Source Code

The source code and more information can be find at minDist2segments_KKT GitLab repository.

Software Technical Information

Name minDist2segments_KKT_for_SRP

Language C/C++, LAMMPS

Licence MIT

Documentation Tool sphynx

Application Documentation doxygen documentation

Relevant Training Material pdf documentation

Software Module Developed by Pascal Carrivain

1.6.6 E-CAM minDist2segments_KKT_for_SRP module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The minDist2segments_KKT_for_SRP module returns the minimal distance between two line segments. It uses the
Karush-Kuhn-Tucker conditions (KKT) for the minimization of distance under constraints. The module implements
the previous function for the SRP fix in LAMMPS. Indeed, the SRP function to compute the minimal distance does
not always give the correct solution.

1.6. Pilot Projects 81

https://gitlab.e-cam2020.eu/carrivain/mindist2segments_kkt
https://gitlab.e-cam2020.eu/carrivain/mindist2segments_kkt
https://opensource.org/licenses/mit-license
https://gitlab.com/pcarrivain/mindist2segments_kkt/-/tree/master/latex/refman.pdf
https://gitlab.com/pcarrivain/mindist2segments_kkt/-/tree/master/minDist2segments_KKT.pdf
https://en.wikipedia.org/wiki/Line_segment
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://lammps.sandia.gov/doc/pair_srp.html

E-CAM Documentation, Release 0.2

Purpose of Module

To study the long term memory of the initial conformation of a highly entangled polymer we need to preserve the
topology. That means that two polymer bonds cannot cross. It is of great importance for the study of post-mitotic
chromosome unfolding. Minimal distance between two bonds can be used in Dissipative-Particle-Dynamics to prevent
bond crossings (see the reference [Kumar2001] and [Sirk2012]) too. To resolve the excluded volume constraints
one could use a repulsive potential between the two points associated to the minimal distance (see the reference
[Kumar2001]). We propose a new option in the computation of the minimal distance in the SRP fix for LAMMPS.
Indeed, SRP fix computes the minimal distance between two infinite lines and reset the solution to occur along the
interior of the bond. This method is not always accurate. The KKT conditions allows to solve the problem of minimal
distance such finite segment length constraint holds.

Note: It is part of E-CAM post-doc pilot project.

Background Information

You can find pdf file with a detailed derivation of the minimal distance between two segments using the Karush-Kuhn-
Tucker conditions on the minDist2segments_KKT GitLab repository. The modifications are to an existing code base
SRP fix for LAMMPS.

Building and Testing

I provide simple modifications to the SRP fix files in the LAMMPS source code. In order to use minimal distance
between two segments with KKT conditions you need to pass min_KKT to the distance argument of the SRP fix.
The instructions to install, test and run the module can be found on the minDist2segments_KKT GitLab repository.
The purpose of the module is to calculate the minimal distance between two segments. For each distance we compare
the result to an “exact enumeration” of all the possible distances and return a warning if the two results differ by more
than the enumeration precision.

Source Code

You can find the modifications for the SRP fix files on the minDist2segments_KKT GitLab repository for_SRP folder.

Software Technical Information

Name velocities_resolve_EVC

Language C

Licence MIT

Documentation Tool Doxygen

Application Documentation Reference manual

Relevant Training Material PDF documentation

Software Module Developed by Pascal Carrivain

82 Chapter 1. Classical MD Modules

https://en.wikipedia.org/wiki/Dissipative_particle_dynamics
https://lammps.sandia.gov/doc/pair_srp.html
https://www.e-cam2020.eu/contact-joint-to-resolve-volume-constraints/
https://gitlab.com/pcarrivain/mindist2segments_kkt
https://lammps.sandia.gov/doc/pair_srp.html
https://lammps.sandia.gov/doc/pair_srp.html
https://lammps.sandia.gov/doc/pair_srp.html
https://gitlab.com/pcarrivain/mindist2segments_kkt
https://lammps.sandia.gov/doc/pair_srp.html
https://gitlab.com/pcarrivain/mindist2segments_kkt/-/tree/master/for_SRP
https://opensource.org/licenses/mit-license
https://gitlab.e-cam2020.eu/carrivain/velocities_resolve_evc/blob/master/refman.pdf
https://gitlab.e-cam2020.eu/carrivain/velocities_resolve_evc/blob/master/velocities_resolve_EVC.pdf

E-CAM Documentation, Release 0.2

1.6.7 E-CAM velocities_resolve_EVC module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

velocities_resolve_EVC is a module that resolves the excluded volume constraint with a velocity formula-
tion (no potential applied between two overlapped bonds). velocities_resolve_EVC uses the module E-CAM
minDist2segments_KKT module to find the minimal distance between two bonds.

Purpose of Module

To study the long term memory of the initial conformation of a highly entangled polymer we need to preserve the
topology. It means that two bonds cannot cross. It is of great importance for the study of post-mitotic chromosome
unfolding. To resolve the excluded volume constraints you could use a soft or hard potential between the two points
associated to the minimal distance. Here, we propose to change the relative velocity between overlapped bonds to
resolve the excluded volume constraint in one time-step of molecular dynamics.

• Polymer simulation.

• To resolve the excluded volume constraints.

• It is used in a scientific collaboration.

• Publications: not currently available.

Note: We would use the present module to avoid topology violation in an entangled polymer system. The present
module uses the E-CAM module E-CAM minDist2segments_KKT module.

Note: This module is a part of a pilot project (E-CAM post-doc). We would use it to avoid topology violation in an
entangled polymer system.

Background Information

You can find a PDF file with a detailed derivation of the velocity-based method we use to resolve the excluded volume
constraint in one time-step of molecular dynamics on the velocities_resolve_EVC GitLab repository.

Building and Testing

I provide a simple Makefile you can find at the same location as the source code. You need C++11 in order to use
pseudo-random number generator. Before the compilation you can clean the previous build with “make mrproper”
command. The purpose of the module is to resolve excluded volume constraints. Therefore, we provide a simple
example of a system of N bonds with volume interactions. We test every n iterations the average overlap pairwise.

1.6. Pilot Projects 83

https://gitlab.e-cam2020.eu/carrivain/velocities_resolve_EVC

E-CAM Documentation, Release 0.2

Source Code

The source code and more information can be find at velocities_resolve_EVC GitLab repository.

Software Technical Information

Name velocities_resolve_EVC_for_LAMMPS

Language C/C++, LAMMPS

Licence MIT

Documentation Tool doxygen

Application Documentation ‘https://gitlab.com/pcarrivain/velocities_resolve_evc/-/blob/master/refman.pdf’

Relevant Training Material ‘https://gitlab.com/pcarrivain/velocities_resolve_evc/-/blob/master/velocities_
resolve_EVC.pdf’

Software Module Developed by Pascal Carrivain

1.6.8 E-CAM velocities_resolve_EVC_for_LAMMPS module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The velocities_resolve_EVC_for_LAMMPS is a module that resolve the excluded volume constraint with a velocity
formulation (no potential applied between two bonds). It is an implementation for LAMMPS of an already existing
module velocities_resolve_EVC GitLab repository. The velocities_resolve_EVC_for_LAMMPS uses the module
minDist2segments_KKT_for_SRP (you can find on the minDist2segments_KKT_for_SRP GitLab repository) to
find the minimal distance between two bonds.

Purpose of Module

To study the long term memory of the initial conformation of a highly entangled polymer we need to preserve the
topology. It means that two bonds cannot cross. It is of great importance for the study of post-mitotic chromosome
unfolding. Preservation of topology is also used in the framework of Dissipative-Particle-Dynamics in particular for
the study of rheological properties. To resolve the excluded volume constraints one could use a soft or hard potential
between the two points (each point belong to one of the two overlapping bonds) associated to the minimal distance.
Here, we propose to change the relative velocity between overlapped bonds to resolve the excluded volume constraint
in one time-step of molecular dynamics. We propose to implement this functionality as a new fix for LAMMPS.

• It is used in a scientific collaboration.

• Publications: not currently available.

Note: The present module uses the E-CAM module minDist2segments_KKT_for_SRP you can find on the
minDist2segments_KKT GitLab repository. It also uses the E-CAM module velocities_resolve_EVC you can find on

84 Chapter 1. Classical MD Modules

https://gitlab.e-cam2020.eu/carrivain/velocities_resolve_EVC
https://opensource.org/licenses/mit-license
https://gitlab.com/pcarrivain/velocities_resolve_evc/-/blob/master/refman.pdf
https://gitlab.com/pcarrivain/velocities_resolve_evc/-/blob/master/velocities_resolve_EVC.pdf
https://gitlab.com/pcarrivain/velocities_resolve_evc/-/blob/master/velocities_resolve_EVC.pdf
https://lammps.sandia.gov
https://gitlab.com/pcarrivain/velocities_resolve_evc
https://gitlab.com/pcarrivain/mindist2segments_kkt
https://en.wikipedia.org/wiki/Dissipative_particle_dynamics
https://lammps.sandia.gov
https://gitlab.com/pcarrivain/mindist2segments_kkt

E-CAM Documentation, Release 0.2

the velocities_resolve_EVC GitLab repository. This module is a part of a E-CAM post-doc pilot project.

Background Information

You can find a pdf file with a detailed derivation of the velocity-based method we use to resolve the excluded volume
constraint in one time-step of molecular dynamics on the velocities_resolve_EVC GitLab repository.

Building and Testing

The instruction to build and run test are available on the GitLab repository. The purpose of the module is to resolve
excluded volume constraints for polymer system. Therefore, we provide a simple LAMMPS input file of a system
of C chains of N bonds each with volume interactions. In particular, we use the LAMMPS implementation of FENE
bond. The algorithm we propose here checks every time-step the maximal overlap and exit if it exceeds a threshold
you gave. It also compute a specific quantity to determine if two bonds cross during one time-step.

Source Code

The source code and more details can be find on the velocities_resolve_EVC GitLab repository.

Software Technical Information

Name Verlet_list_for_ODE

Language C/C++ and Open-Dynamics-Engine software API

Licence MIT

Documentation Tool Doxygen

Application Documentation Doxygen documentation

Relevant Training Material None

Software Module Developed by Pascal Carrivain

1.6.9 E-CAM Verlet_list_for_ODE module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The Verlet_list_for_ODE module introduces Verlet-list for the rigid-body dynamics Open-Dynamics-Engine
software.

1.6. Pilot Projects 85

https://gitlab.com/pcarrivain/velocities_resolve_evc
https://www.e-cam2020.eu/contact-joint-to-resolve-volume-constraints/
https://gitlab.com/pcarrivain/velocities_resolve_evc
https://lammps.sandia.gov
https://lammps.sandia.gov
https://en.wikipedia.org/wiki/FENE
https://en.wikipedia.org/wiki/FENE
https://gitlab.com/pcarrivain/velocities_resolve_evc
http://ode.org
https://opensource.org/licenses/mit-license
https://gitlab.com/pcarrivain/fibre_ode/-/blob/master/latex/refman.pdf
https://en.wikipedia.org/wiki/Verlet_list
http://ode.org
http://ode.org

E-CAM Documentation, Release 0.2

Purpose of Module

Rigid-body dynamics is useful for mechanical articulated systems. In addition, the tool allows the user to simulate
complex shape and resolve excluded volume constraints. It is used in the industry of video games to accurately
reproduce physics. However, a software like Open-Dynamics-Engine computes pairwise overlap every time-step. The
engine starts with a partition of the space and then loops over all the blocks of partition. For each blocks it runs nested
loops to check the overlaps between the objects inside the block.

The module implements external functions that can be used to compute the Verlet-list. Therefore, the user does not
call the pairwise overlap check every time-step. He only needs to loop over the Verlet-list with the pairwise objects
within a given cut-off distance. However, the Verlet-list has to be updated according to the displacement length of the
objects.

The module can be used to speed-up the Open-Dynamics-Engine simulation of polymers and complex objects system.

We test the module with two examples: chromatin fiber and bacterial circular DNA. Chromatin fiber is an assembly of
DNA wrapped around nucleosomes that compact the genome. We model the DNA at the scale of 10.5 base-pair (one
helix turn) as an articulated system. The nucleosomes is built with complex shape. We run a Langevin dynamics and
check that our Verlet-list implementation gives the same results Open-Dynamics-Engine would give.

Background Information

You can find a detailed description on the Verlet_list_for_ODE GitLab repository.

Building and Testing

First of all you need to download and build the 0.16 version of Open-Dynamics-Engine. You can find the steps on the
Verlet_list_for_ODE GitLab repository.

In order to compile the two examples (tests) I provide a template Makefile you can find at the same location that
the source code. You need C++11 in order to use pseudo-random number generator.

It has OpenMP acceleration, edit the Makefile to enable it. The example uses threads from std as well.

Before the compilation you can clean the previous build with make mrproper command. The Verlet-list imple-
mentation returns the number of collisions that can be confronted with the result returns by Open-Dynamics-Engine.

Source Code

The source code and more information can be find at Verlet_list_for_ODE GitLab repository.

Software Technical Information

Name openmm_copolymer

Language Python 3.7, OpenMM API

Licence MIT

Documentation Tool Sphinx

Application Documentation pydoc3.7

Relevant Training Material https://gitlab.com/pcarrivain/openmm_copolymer

Software Module Developed by Pascal Carrivain

86 Chapter 1. Classical MD Modules

http://ode.org
https://en.wikipedia.org/wiki/Verlet_list
https://en.wikipedia.org/wiki/Verlet_list
https://en.wikipedia.org/wiki/Verlet_list
http://ode.org
https://en.wikipedia.org/wiki/Nucleosome
https://en.wikipedia.org/wiki/Langevin_dynamics
https://en.wikipedia.org/wiki/Verlet_list
http://ode.org
https://gitlab.com/pcarrivain/fibre_ode
http://ode.org
https://gitlab.com/pcarrivain/fibre_ode
https://www.openmp.org
https://en.wikipedia.org/wiki/Verlet_list
http://ode.org
https://gitlab.com/pcarrivain/fibre_ode
http://openmm.org
https://opensource.org/licenses/mit-license
https://gitlab.com/pcarrivain/openmm_copolymer/-/blob/master/openmm_copolymer_functions.py
https://gitlab.com/pcarrivain/openmm_copolymer

E-CAM Documentation, Release 0.2

1.6.10 E-CAM openmm_copolymer module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

openmm_copolymer is a module that samples conformation of a block-copolymer given an epigenome state file. This
module takes advantage of the OpenMM API and GPU acceleration. It builds a Kremer-Grest polymer model with
uni-dimensional epigenetic information and constructs the epigenetic interactions based on the model you design. You
simply need to feed the module with an epigenome state file, the interaction model and the mechanical properties of
the polymer.

You can use the module to model small part of an epigenome or the whole genome confined inside the cell nucleus.

Purpose of Module

The epigenetic and the tri-dimensional structure of fly genome is studied by means of a block-copolymer (polymer
made of more than one monomer species). The epigenetic information does not involve alterations in the DNA but
histone tails modifications. This uni-dimensional information can be projected along the contour of a block-copolymer
model.

Then, there is pairwise interaction of monomers according to the epigenetic states, leading to specific pattern of
interactions. The interaction patterns can be visualized using contacts map: two-dimensional map with positions
along the polymer and a third dimension with color scale for the intensity of contacts.

Since 2000, biologists can produce this same kind of data thanks to the high-throughput-sequencing methods 3C, 4C,
5C and Hi-C: Chromosome-Conformation-Capture. Recently, biologists have shown that the interactions pattern is
correlated with the epigenetic information. However, the strength and model of interactions between epigenetic states
are not always clearly known.

In addition to the high-throughput-sequencing methods, we can study the spatial distances inside part of the genome
with the help of FISH and high-resolution methods. All the spatial distances can be simply extracted from the model
we built with the help of openmm_copolymer module.

The module we propose uses the OpenMM API with GPU acceleration to sample as many epigenetic parameters as
possible.

It is possible to use effective interactions (gaussian overlap or Lennard-Jones potential) to model the epigenetics. The
module introduces the possibility to replace effective epigenetic interactions with binders model too. In this case, the
binder is like a protein that can bind to a specific site of the genome. A simple input file is enough to tell the script
about the binder-binder and monomer-binder interactions.

The module includes pairing potential, nucleus confinement potential as-well-as genome examples.

It can be used by polymer physicists, biophysicists for epigenetic modeling, to understand the link between epigenetic
and tri-dimensional structure of a genome, to estimate first-passage-time encounter of two locii. It is used in a scientific
collaboration to study a specific promoter-enhancer system and homeotic gene complexes in the fruit-fly organism
(ENS Lyon, France). However, the publication is not currently available.

1.6. Pilot Projects 87

https://en.wikipedia.org/wiki/Copolymer#Block_copolymers
http://openmm.org
https://aip.scitation.org/doi/10.1063/1.458541
https://en.wikipedia.org/wiki/Copolymer#Block_copolymers
https://en.wikipedia.org/wiki/Histone
https://en.wikipedia.org/wiki/Copolymer#Block_copolymers
https://en.wikipedia.org/wiki/Chromosome_conformation_capture
https://en.wikipedia.org/wiki/Fluorescence_in_situ_hybridization
http://openmm.org
https://en.wikipedia.org/wiki/Lennard-Jones_potential
https://www.ncbi.nlm.nih.gov/pubmed/22988072
https://en.wikipedia.org/wiki/Homeotic_gene

E-CAM Documentation, Release 0.2

Background Information

We use the OpenMM API for molecular dynamics. We implemented functionalities to build a Kremer-Grest polymer
system with uni-dimensional epigenetic information. We also implement functions to build the quantities biologists
extract from high-throughput-sequencing and FISH experiments.

You can find pdf file with a detailed description on the openmm_copolymer GitLab repository. The module will be
constantly improved with new functionalities.

Building and Testing

The instructions to install, test and run the module can be find on the openmm_copolymer GitLab repository.

Source Code

The source code can be found on the openmm_copolymer GitLab repository.

Software Technical Information

Name OpenMM_Plectoneme

Language Python 3.7, OpenMM API

Licence MIT

Documentation Tool Sphinx

Application Documentation README.md

Relevant Training Material pdf documentation

Software Module Developed by Pascal Carrivain

1.6.11 E-CAM openmm_plectoneme module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The openmm_plectoneme is a module that introduces twist rigidity to a polymer and samples the accessible confor-
mations under torsional constraints. This module takes advantage of the OpenMM software and GPU acceleration to
perform simulation at the scale of the DNA helix. It builds a Kremer-Grest polymer model with virtual sites to attach a
frame to each bead. The frames are used to describe the contour of the molecule and to introduce bending and twisting
forces.

Purpose of Module

Bacterial DNA is known to form specific conformations called plectonemes because of internal twisting constraints.
This physical mechanism participates in the compaction of the genome. The plectonemes are braided structures you

88 Chapter 1. Classical MD Modules

http://openmm.org
https://aip.scitation.org/doi/10.1063/1.458541
https://en.wikipedia.org/wiki/Chromosome_conformation_capture
https://en.wikipedia.org/wiki/Fluorescence_in_situ_hybridization
https://gitlab.com/pcarrivain/openmm_copolymer
https://gitlab.com/pcarrivain/openmm_copolymer
https://gitlab.com/pcarrivain/openmm_copolymer
https://opensource.org/licenses/mit-license
https://gitlab.com/pcarrivain/openmm_plectoneme/-/blob/master/README.md
https://gitlab.com/pcarrivain/openmm_plectoneme/blob/master/openmm_plectoneme.pdf

E-CAM Documentation, Release 0.2

often compare with phone cables. In order to study such a system we need to introduce a linking number deficit into a
circular polymer.

The Linking number (𝐿𝑘 = 𝑇𝑤 + 𝑊𝑟) is the sum of the twist (𝑇𝑤, cumulative helicity of the DNA) and the writhe
(𝑊𝑟, global intracity). In the case of circular DNA that is topologically constrained any variation of the twist affects
the Writhe and therefore the conformation.

In particular, does a slow change of the twist lead to the same conformation that the one we get from a rapidly
change in the twist? We then tackle the question : does the introduction protocol of Linking number inside a circular
molecule matter? Indeed, does a rapidly Linking number injection freeze the conformation in braided structures where
plectonemes do not merge/move along the DNA ? Does the memory of initial conformation matter ?

We can use this module to model single-molecule DNA under magnetic or optical tweezers too. In this kind of setup
the molecule is clamped on a plate and to a magnetic bead at the other extremity. The bead is used to apply stretching
force and/or rotational constraint. The position of the bead is used to monitor the response of the molecule to the
mechanical constraints. From the mechanical constraints you can extract the mechanical properties of your molecule
of interest.

This module assist the creation of polymer described by FENE bond and WCA repulsive potential to resolve the
excluded volume constraints.

On top of that, the module introduces the twist and mechanical response to twisting constraint with the help of vir-
tual sites functionalities from OpenMM API. The module proposes functions to help the data analysis with High-
Performance-Computing Dask software and Python module Numba.

For example, the estimation of the Writhe that is a computation over all the possible pairwise of bonds is highly
expensive and can be fasten. In addition to that, we introduce an algorithm to detect the positions, length and shape of
plectonemes. It is useful to follow the dynamics of these braided structures and try to answer the previous questions.

This module can be used by polymer physicist to understand the conformation of bacterial DNA under torsional
constraints for example. Indeed, it used in a scientific collaboration with Ivan Junier from TIMC-IMAG, Grenoble,
France and Ralf Everaers, ENS Lyon, France. However, the publication is not currently available.

Background Information

We use the OpenMM toolkit for molecular dynamics. We implemented functionalities to build a frame (that follows
the contour of the polymer) and add twisting energy to a Kremer-Grest polymer system. We implemented function to
extract plectonemes, writhe and twist from polymer conformations.

Building and Testing

The instructions to install, test and run the module can be find on the openmm_plectoneme GitLab repository. The
test of the twist implementation can be find at the same location.

We are currently working on a benchmark between the present module and already published Monte-Carlo and rigid
body dynamics codes.

Source Code

The source code and more information can be find on the openmm_plectoneme GitLab repository.

Software Technical Information

Name polymer_data_analysis

1.6. Pilot Projects 89

https://en.wikipedia.org/wiki/Linking_number
https://en.wikipedia.org/wiki/Magnetic_tweezers
https://en.wikipedia.org/wiki/FENE
http://www.sklogwiki.org/SklogWiki/index.php/Weeks-Chandler-Andersen_perturbation_theory
https://en.wikipedia.org/wiki/Writhe
https://en.wikipedia.org/wiki/Twist_(mathematics)
https://gitlab.com/pcarrivain/openmm_plectoneme
https://www.sciencedirect.com/science/article/pii/S0378437119307204
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003456
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003456
https://gitlab.com/pcarrivain/openmm_plectoneme

E-CAM Documentation, Release 0.2

Language Python 3.7, Numba, Numpy, Dask

Licence MIT

Documentation Tool Sphinx

Application Documentation pydoc3.7

Relevant Training Material https://gitlab.com/pcarrivain/openmm_plectoneme/blob/master

Software Module Developed by Pascal Carrivain

1.6.12 E-CAM polymer_data_analysis module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The polymer_data_analysis module provides functions to compute quantities like gyration radius, internal distances,
contact maps, contact probabilities, etc. This module takes advantage of the Numba parallelisation implementation
and JIT (just-in-time) compilation. It also uses Dask to deploy numerous data analysis on job queuing systems.

Purpose of Module

The module takes advantage of the Python language as well as Numpy to write simple scripts that run complete data
analysis of polymer systems. It also uses Numba to perform fast computation and easily handle nested loops.

However, computation of quantities like contact maps or internal distances needs an algorithm that scales like the
square of the system size. If computation cannot use Numba, the modules proposes to deploy data analysis on job
queuing systems.

You can also compute quantities like twist and writhe to study bacteria conformation.

We would like to provide a pipeline to help biophysicist extract quantities from simulations.

Background Information

The module uses Python language, Numpy, Numba and Dask.

Building and Testing

The instructions to install, test and run the module can be find on the data analysis GitLab repository.

Source Code

The source code and more information can be find on the data analysis GitLab repository.

90 Chapter 1. Classical MD Modules

https://opensource.org/licenses/mit-license
https://gitlab.com/pcarrivain/openmm_plectoneme/blob/master/data_analysis.html
https://gitlab.com/pcarrivain/openmm_plectoneme/blob/master
https://numba.pydata.org/
https://dask.org
https://numpy.org
https://numba.pydata.org/
https://numba.pydata.org/
https://numpy.org
https://numba.pydata.org/
https://dask.org
https://gitlab.com/pcarrivain/bacteria_analysis
https://gitlab.com/pcarrivain/bacteria_analysis

E-CAM Documentation, Release 0.2

Software Technical Information

Name 2spaces_on_gpu

Language C, OpenCL

Licence MIT

Documentation Tool Doxygen

Application Documentation ‘https://gitlab.com/pcarrivain/2spaces_gpu/-/blob/master/latex/refman.pdf’

Relevant Training Material not available yet

Software Module Developed by Pascal Carrivain

1.6.13 E-CAM 2spaces_on_gpu module

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The 2spaces_on_gpu module implements the 2-spaces algorithm on a GPU (see “Background Information” section).
This algorithm is designed to move one-half of the polymer in one Monte-Carlo iteration. It also preserves the excluded
volume constraints. An OpenCL implementation has been written so it can be used on CPUs or GPUs.

Purpose of Module

A polymer of size L is supposed to reach equilibrium after a time of order 𝐿3. Therefore, it could be difficult to
study the equilibrium properties of large polymers. The 2-spaces algorithm improves the efficiency of each Monte-
Carlo iteration by moving half of the polymer. We can use the GPUs to take care of one of the sub-moves in each
Monte-Carlo step.

It is used in a scientific collaboration (ENS Lyon).

Background Information

Please consider reading the two research articles Massively Parallel Architectures and Polymer Simulation and Cellular
automata for polymer simulation with application to polymer melts and polymer collapse including implications for
protein folding for details about the method.

Building and Testing

I provide a simple Makefile as well as an OpenCL kernel and main source code to run the model. You need C++11
in order to use pseudo-random number generator. Before the compilation you can clean the previous build with the
make mrproper command. Details about building, testing and running the code is available in the 2spaces_on_gpu
GitLab repository.

1.6. Pilot Projects 91

https://www.khronos.org/opencl
https://opensource.org/licenses/mit-license
https://gitlab.com/pcarrivain/2spaces_gpu/-/blob/master/latex/refman.pdf
https://www.khronos.org/opencl
https://www.semanticscholar.org/paper/Massively-Parallel-Architectures-and-Polymer-Ostrovsky-Smith/f79694076e40eca0fae9b35a381e43b7abfa029c
https://www.sciencedirect.com/science/article/pii/S0167819100000818
https://www.sciencedirect.com/science/article/pii/S0167819100000818
https://www.sciencedirect.com/science/article/pii/S0167819100000818
https://www.khronos.org/opencl
https://gitlab.com/pcarrivain/2spaces_gpu
https://gitlab.com/pcarrivain/2spaces_gpu

E-CAM Documentation, Release 0.2

Source Code

The source code and more information can be find on the 2spaces_on_gpu GitLab repository.

1.7 Extended Software Development Workshops (ESDWs)

The first ESDW for the Classical MD workpackage was held in Traunkirchen, Austria, in November 2016, with a
follow-up to be held in Vienna in April 2017. The following modules have been produced:

1.7.1 Transition State Ensemble in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (3.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: Sander Roet

This module is an addition to OpenPathSampling to calculate the snapshots that correspond to the transition state
ensemble from a list of trajectories.

Purpose of Module

Often in transition path sampling we want to get an idea about the features of the transition. This is done by generating
an ensemble of snapshots that correspond to a committor of approximately 50%. This ensemble gives information
about the transition state and the shape of the barrier. This code provides a straightforward way of calculating this
ensemble for a given list of trajectories.

This module tries to efficiently find a single transition state frame from each trajectory. This is done by bisection of
the trajectory, depending on the current committor. For example, if the current committor is to high (to much ends up
in state B) the next index is selected halfway towards the left edge and the current index is set as the new right edge.
This is repeated until a committor within a given range is reached or no new frame can be selected.

92 Chapter 1. Classical MD Modules

https://gitlab.com/pcarrivain/2spaces_gpu
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

In the end this module returns a dictionary of shape {snapshot: comittor value} which then can be used
for analysis.

The implementation in this module includes:

• A TransitionStateEnsemble subclass of PathSimulator to run the transition state ensemble simu-
lation.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

To test this module you need to download the source files package (see the Source Code section below) and
install it using pip install -e . from the root directory of the package. In the ops_tse/tests folder type
nosetests test_ops_tse.py to test the module using the nose package.

Examples

• An IPython 2-D toy example can be found in the examples directory of the the source files (see the
Source Code section below). Open it using jupyter notebook simple_tse_example.ipynb
(see Jupyter notebook documentation at http://jupyter.org/ for more details)

Source Code

The source code for this module can be found in: https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/TSE/
tree/master

1.7.2 Reactive flux in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

1.7. Extended Software Development Workshops (ESDWs) 93

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
http://jupyter.org/
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/TSE/tree/master
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/TSE/tree/master
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: Andreas Singraber

This module implements the reactive flux method in OpenPathSampling.

Purpose of Module

The reactive flux method in combination with a free energy calculation allows to derive the rate constant of a rare
event. This is accomplished by a shooting algorithm similar to a committor analysis where fleeting trajectories starting
from the dividing surface are generated and statistics about their state with respect to a collective variable is collected.
There are many flavors of the reactive flux method, this module implements the effective positive flux method as
described by van Erp and Bolhuis (see e.g. http://dx.doi.org/10.1016/j.jcp.2004.11.003).

The implementation introduces the following new classes:

• ReactiveFluxSimulation inherits from ShootFromSnapshotsSimulation and implements the
shooting algorithm similar to CommittorSimulation. First, backward trajectories from the initial snap-
shots are started and followed until they either hit state A or recross the dividing surface. In the latter case
the trajectory is rejected. If instead the trajectory reaches A, a forward shot is performed until the trajectory
reaches either A (rejected) or B (accepted). The forward trajectory is allowed to recross the barrier any number
of times but must end up in B without reaching A. To implement this behaviour of a forward shot depending
on the final state of the backward trajectory a NonCanonicalConditionalSequentialMover and the
NonCanonicalConditionalSequentialMoveChange were derived from existing classes available in
OpenPathSampling. The stable states, the dividing surface and other regions are identified via a user-defined
reaction coordinate and resulting trajectories are saved in a Storage object.

• The class ReactiveFluxAnalysis provides functionality to analyze previously generated and stored tra-
jectories similar to its parent class ShootingPointAnalysis. In addition to trajectories the user needs to
provide the gradient of the reaction coordinate at the dividing surface. With the stored velocities at the trajectory
starting points it is possible to compute the time derivate of the reaction coordinate and therefore (together with
results from a free energy calculation) derive the total flux and the flux for each initial snapshot. Methods to
visualize e.g. per-snapshot results in 1D- and 2D-histograms are also provided.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

To test this module you need to download the source files package (see the Source Code section below) and install
it using python setup.py install from the root directory of the package. In the ops_rf/tests folder type
nosetests testrfanalysis.py to test the module using the nose package.

94 Chapter 1. Classical MD Modules

http://dx.doi.org/10.1016/j.jcp.2004.11.003
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/

E-CAM Documentation, Release 0.2

Examples

See the rf-example.ipynb IPython notebook in the source directory, here is the direct link: https://gitlab.
e-cam2020.eu/Classical-MD_openpathsampling/RF/blob/master/ops_rf/rf-example.ipynb To run the example execute
jupyter notebook rf-example.ipynb in your terminal.

Source Code

The source code for this module can be found in: https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/RF/
tree/master

1.7.3 Maximum likelihood optimization of reaction coordinates

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/MaxLikelihood/tree/
master/examples

Licence LGPL v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: Clemens Moritz and Raffaela Cabriolu

This module implements an OpenPathSampling library that provides a maximum likelihood analysis to obtain an
optimal reaction coordinate by combining multiple collective variables.

Purpose of Module

OpenPathSampling (OPS) is a software package that simulates complex processes using path sampling techniques and
yields reactive trajectories between states of interest in a given system. However, such trajectories do not automatically
lead to a physical understanding of the reaction mechanism. To gain such an understanding it is desirable to find a set
of collective variables (CVs) that carry physically important information about the process.

The size and the shape of a crystalline cluster in a freezing liquid, the number of native contacts in a folding protein
or bond length and bond angles in chemical reactions are examples of such CVs. The aim of this module is to find

1.7. Extended Software Development Workshops (ESDWs) 95

https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/RF/blob/master/ops_rf/rf-example.ipynb
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/RF/blob/master/ops_rf/rf-example.ipynb
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/RF/tree/master
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/RF/tree/master
http://openpathsampling.org
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/MaxLikelihood/tree/master/examples
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/MaxLikelihood/tree/master/examples

E-CAM Documentation, Release 0.2

an optimized combination of multiple CVs into a single coordinate, that monitors the progress of the reaction. Such a
coordinate is commonly called a reaction coordinate.

In methods used to study complex processes, having a good reaction coordinate either significantly improves their
efficiency or it is a prerequisite for the reliability of their results.

The reaction coordinate is constructed by optimizing the likelihood function

𝐿 =
∏︀

yes 𝑝(𝑟(𝑞𝑖))
∏︀

no(1 − 𝑝(𝑟(𝑞𝑖))),

where r is a reaction coordinate model that combines several CVs, q_i, into a reaction coordinate and p is the prob-
ability model that maps this coordinate to a probability of having a successful outcome (yes). The definition of a
successful outcome depends on the chosen probability model. Both r and p depend on a set of coefficients that are
used to maximize L.

For more details on the method, please refer to the references given in Background Information.

Classes and objects implemented in this module:

• TargetFunctionDescription class. Wrapper around functions that carries additional information such
as the number of parameters which shall be varied during subsequent optimization.

• REACTION_COORDINATE_MODELS dictionary of objects of the class TargetFunctionDescription.
Collection of commonly used reaction coordinate models. At the moment two combinations of collective vari-
ables are available: a linear function, and a quadratic function. Additionally the user can define custom func-
tions.

• PROBABILITY_MODELS dictionary of objects of the class TargetFunctionDescription. Collection
of commonly used probability models. At the moment two functions are available: a sigmoidal function as a
model for committor probabilities and a symmetric peaked function as a model for the probability of finding a
transition path starting from the configuration r.

• MaxLikelihoodCVAnalysis class. It implements the maximum likelihood analysis. There are two meth-
ods implemented: one for optimization based on committor probabilities, using an openpathsampling.
ShootingPointAnalysis object (optimize_from_spa), and an other one where the user can perform
optimizations for custom problems, using the optimize method.

Background Information

This module is built on the OpenPathSampling library. More information about it are given in the following links:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Information about the method can be found in these publications:

• Peters, B. & Trout, B. L. “Obtaining reaction coordinates by likelihood maximization.” J. Chem. Phys. 125,
54108 (2006).

• Peters, B., Beckham, G. T. & Trout, B. L. “Extensions to the likelihood maximization approach for finding
reaction coordinates.” J. Chem. Phys. 127, 34109 (2007).

• Peters, B. “Reaction Coordinates and Mechanistic Hypothesis Tests.” Annu. Rev. Phys. Chem. 67, annurev-
physchem-040215-112215 (2016).

Testing

To test this module you need to download the source files package (see the Source Code section below) and install
it using python setup.py install from the root directory of the package. In the ops_maxlikelihood/
tests folder type nosetests to test the module using the nose package.

96 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/

E-CAM Documentation, Release 0.2

Examples

The example of the Maximum Likelihood module on the 2D toy model implemented in OPS is given in the directory
examples. Open it using jupyter notebook ExampleMaximumLikelihood2DToyModel.ipynb (see
Jupyter notebook documentation at http://jupyter.org/ for more details).

Source Code

Source code can be found at https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/MaxLikelihood

1.7.4 Interface Optimization

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Author: Anastasiia Maslechko

This module consist of functions to evaluate the new values of the interface positions in Transition Interface Sampling
(TIS) calculation. Two approaches are implemented (for more details please look in the Background Information).

Purpose of Module

In TIS calculations the full path space is investigated through several ensembles by putting the interfaces. For each
interface during the simulation crossing probability is evaluated. At the end the reaction rate depends on the crossing
probabilities obtained from each ensemble. Without a full knowledge of the reaction mechanism and information
about free energy profile user most likely fails to set up manually initial setting, which are going to lead to the efficient
usage of the software resources, and most importantly to low statistical errors in the simulation run.

One of the challenges in Transition Path Sampling is to define a proper collective variable (CV). Interface-optimization
module is a way to improve code performance within selected CV.

1.7. Extended Software Development Workshops (ESDWs) 97

http://jupyter.org/
https://gitlab.e-cam2020.eu/Classical-MD_openpathsampling/MaxLikelihood
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

In the Interface Optimization module a search of the optimal set of the interfaces is done in iterative manner. The key
idea is described in the papers (please, see the references below), and the goal is to approach almost the same crossing
probabilities in each ensemble:

• Ernesto E. Borrero and Fernando A. Escobedo. Optimizing the sampling and staging for simulations of rare
events via forward flux sampling schemes. The Journal of Chemical Physics 129, 024115 (2008); doi: http:
//dx.doi.org/10.1063/1.2953325

• Ernesto E. Borrero, Marcus Weinwurm, and Christoph Dellago. Optimizing transition interface sampling simu-
lations. The Journal of Chemical Physics 134, 244118 (2011); doi: http://dx.doi.org/10.1063/1.3601919

The first thing to do is to start the simulation for some number of cycles with initial guess (set of interfaces). On
the basis of the obtained data analysis is done as follows: values of the current interface positions and the “crossing
probabilities” (these are most likely non-converged values due to the least number of cycles) are used in the interface-
optimization calculation. Note: termination of the simulation and getting of the interfaces and crossing probabilities
must be done by an experimenter.

The next step is to build a mapping function f, which satisfies several properties:

1. The form of the function helps to “equalize” the crossing probabilities on the next simulation run.

2. It is bijective.

3. It is monotonic in order to have inverse image.

The next step is to find the number of the interfaces (n_int) to satisfy users requirements. After that we need to divide
a region from the starting point til 1 on the ordinate on the n_int - 1 intervals: by mapping of the obtained points on
the function curve we can get a new set of interfaces.

Important functions implemented in this module:

• find_interface_and_cross : reads the output of the analyze-tool after a certain number of cycles (de-
fined by the user). Object like TISTransition must be used as an input.

• save_n_interfaces : a method to calculate the new interface positions, using first approach: the number
of interfaces kept the same, only the values of their positions are going to be changed.

• save_p_interfaces : a method to calculate the new interface positions, using second approach: the num-
ber of the interfaces might be changed, “expected” crossing probability for each ensemble has a predefined
value.

Testing

Tests in OpenPathSampling use the nose package.

The tests for this module can be run by downloading its source code (check the section Source Code below),
installing its requirements, and running the command nosetests in a root directory (or in particular for the file
test_interface_optimization.py).

98 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://dx.doi.org/10.1063/1.2953325
http://dx.doi.org/10.1063/1.2953325
http://dx.doi.org/10.1063/1.3601919
http://nose.readthedocs.io/en/latest/

E-CAM Documentation, Release 0.2

Examples

To check an example look for the file toy_mistis_interface_optimization.ipynb in the source code
(or in the directory toy_model_mistis from the OPS-examples section). To open it use jupyter notebook
toy_mistis_interface_optimization.ipynb (see Jupyter notebook documentation at http://jupyter.org/
for more details). In order to run it download the data from http://www.dropbox.com/s/qaeczkugwxkrdfy/toy_mistis_
1k_OPS1.nc, as described inside of the example-file.

Source Code

The source code for this module can be found in: https://gitlab.e-cam2020.eu:10443/Classical-MD_
openpathsampling/Interface.

The second ESDW for the Classical MD workpackage was held in Leiden, Holland, in August 2017. The following
modules have been produced:

1.7.5 Spring Shooting in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7, 3.7, 3.8, 3.9)

1.7. Extended Software Development Workshops (ESDWs) 99

http://jupyter.org/
http://www.dropbox.com/s/qaeczkugwxkrdfy/toy_mistis_1k_OPS1.nc
http://www.dropbox.com/s/qaeczkugwxkrdfy/toy_mistis_1k_OPS1.nc
https://gitlab.e-cam2020.eu:10443/Classical-MD_openpathsampling/Interface
https://gitlab.e-cam2020.eu:10443/Classical-MD_openpathsampling/Interface

E-CAM Documentation, Release 0.2

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence MIT

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: Sander Roet

This module implements the spring shooting method in OpenPathSampling

Purpose of Module

Transition path sampling is most efficient when paths are generated from the top of the free energy barrier. However,
complex (biomolecular) activated processes, such as nucleation or protein binding/unbinding, can have asymmetric
and peaked barriers. Using uniform selection on these type of processes will not be efficient, as it, on average, results
in selected points that are not on the top of the barrier. Paths generated from these points have a low acceptance
probability and accepted transition paths decorrelate slowly, resulting in a low overall efficiency. Spring shooting was
developed to increase the efficiency of path sampling of these types of barriers, without any prior knowledge of the
barrier shape. The spring shooting algorithm uses a shooting point selector that is biased with a spring potential. This
bias pulls the selection of points towards the transition state at the top of the barrier. The paths that are generated from
points selected by this biased selector therefore have an increased acceptance probability and decorrelation between
accepted transition paths is also increased. This results in a higher overall efficiency. The spring shooting algorithm is
described by Brotzakis and Bolhuis (http://dx.doi.org/10.1063/1.4965882).

In summary, the spring shooting selection algorithm is a selector for the one-way shooting method for transition path
sampling, which uses a bias. This bias is of the shape min[1, 𝑒𝑠𝜅Δ𝜏]. Where 𝑠 = −1 for forward shooting and 𝑠 = 1
for backward shooting, 𝜅 is the given spring constant and ∆𝜏 = 𝜏 ′ − 𝜏 is the number of shifted frames of the new
shooting point 𝜏 ′ compared to the previous accepted shooting point 𝜏 . The choice of 𝜏 ′ is limited to the interval
[−∆𝜏𝑚𝑎𝑥,∆𝜏𝑚𝑎𝑥]. The shooting move is rejected if a 𝜏 ′ is selected that is outside of the current path and is accepted
if the trajectory satisfies the path ensemble.

The main difference of this module compared to the paper is that instead of using a rejection algorithm to sample from
the correct distribution, the correct distribution is sampled directly.

The implementation introduces the following new classes:

• SpringShootingSelector inherits from ShootingPointSelector and implements the shooting
point selection, using a bias of the shape min[1, 𝑒𝑠𝜅Δ𝜏]. At initialization it also takes an initial_guess
as the initial reference point. This will default to floor(len(trajectory)/2). To correctly keep track
of the history the selector has to be the same instance for the forward and backward mover. The pick function
has to be called with a direction in order to be able to use the correct value for 𝑠. The selector then draws a
random number in the range [0, 1), multiplies it with the sum of the biases. It the sums the biases from −∆𝜏𝑚𝑎𝑥

to ∆𝜏𝑚𝑎𝑥 and returns the index when this sum is bigger than the random number. The restart_from_step
function makes it possible to restart the selector at a specific step. It takes an MCStep and reconstructs the
correct history from the MoveDetails.

100 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
http://dx.doi.org/10.1063/1.4965882

E-CAM Documentation, Release 0.2

• SpringMover inherits from EngineMover and is the parent class for the ForwardSpringMover and
BackwardSpringMover classes. It calls the selector.pick function with self.direction to get
the correct shooting point. It also build adds the needed MoveDetails in order to be able to restart the selector.
If an invalid snapshot has been chosen it will not run dynamics but will build a Sample with an acceptance
probability of 0.0.

• SpringShootingMover inherits from SpecializedRandomChoiceMover and behaves similar, ex-
cept it takes the extra arguments: delta_max, k_spring and initial_guess. These are then used to
make the SpringShootingSelector and this selector is given to both the forward and backward mover.

• SpringShootingStrategy inherits from SingleEnsembleMoveStrategy and will make the
SpringShootingMover for every ensemble, with the given values of delta_max, k_spring and
initial_guess.

• SpringShootingMoveScheme inherits from MoveScheme and it will use the
SpringShootingStrategy to build all the necessary movers for the given network, with the
given values of delta_max, k_spring and initial_guess. Also the functions to_dict and
from_dict have been adapted to save and load with all the data

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

This module has been included in the OpenPathSampling core. Its tests can be run by setting up a developer install of
OpenPathSampling and running the command py.test from the root directory of the repository.

Examples

• An example on how to set up a simulation using the SpringShootingMoveScheme and the comparison
with the UniformSelector can be found in spring_shooting_example.ipynb in the examples/
misc directory (https://github.com/openpathsampling/openpathsampling/tree/master/examples/misc). Open it
using jupyter notebook spring_shooting_example.ipynb (see Jupyter notebook docu-
mentation at http://jupyter.org/ for more details)

Source Code

This module has been merged into OpenPathSampling. It was added in the following pull request:

• https://github.com/openpathsampling/openpathsampling/pull/850

1.7.6 OPS-based module: Shooting range shooter

1.7. Extended Software Development Workshops (ESDWs) 101

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
https://github.com/openpathsampling/openpathsampling/tree/master/examples/misc
http://jupyter.org/
https://github.com/openpathsampling/openpathsampling/pull/850

E-CAM Documentation, Release 0.2

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7) [+Python (3.6)]

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

This module implements the “shooting from the top” algorithm as detailed in the paper “Transition path sampling of
rare events by shooting from the top”.

Purpose of Module

The purpose of this algorithm is to increase the number of generated transitions in a transition path sampling simulation
by exclusively shooting from the transition state ensemble (TSE)/the top of the barrier (hence the name). Naturally
this only works if the approximate location of the TSE is already known and can be given as a function of the atomic
coordinates. In this module any openpathsampling.Volume object can be used by the user to define the shooting
range volume. This enables the user to define the shooting range for example as a function of one or more collective
variables. See also the Transition State Ensemble in OpenPathSampling for finding the TSE.

The implementation in this module includes:

• A ShootingRangeSelector subclass of openpathsampling.ShootingPointSelector to pick
shooting points only in the predefined shooting range volume.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling and sr_shooter use the nose package.

To test this module you need to first install OpenPathSampling, then download the source files for this package (see
the Source Code section below) and install it using python setup.py install or pip install -e .

102 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
http://dx.doi.org/10.1063/1.4997378
http://dx.doi.org/10.1063/1.4997378
http://openpathsampling.org/latest/volume.html
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/

E-CAM Documentation, Release 0.2

from the root directory of the package. In the root folder then type nosetests to test the module using the nose
package.

Examples

There are two example jupyter notebooks in the example directory of the repository:
One shows the general setup of a two way shooting transition path sampling with a shooting range on a toy system.
The other is a comparison between one way shooting and two way shooting from the shooting range and shows that
path space is explored faster with two way shooting when using a (well placed) shooting range. The reason being that
the shots initiated at the barrier top have a high probability of success and two way shooting decorrelates faster (if
using randomized velocities even faster).

Source Code

The source code for this module can be found in https://gitlab.e-cam2020.eu/hejung/sr_shooter.

1.7.7 Web Throwing in OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7, 3.7, 3.8. 3.9)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: Sander Roet, Anders Lervik, Enrico Riccardi

This module implements the web throwing method in OpenPathSampling

Purpose of Module

Web throwing is a Monte Carlo move in path space designed to improve the efficiency of transition interface sampling
(TIS). It consists of a smart selection of shooting points and shooting moves that respects super detailed balance. The
web throwing algorithm generates paths that have a much lower correlation with their original paths, even if it is more

1.7. Extended Software Development Workshops (ESDWs) 103

http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/hejung/sr_shooter/tree/master/examples
https://gitlab.e-cam2020.eu/hejung/sr_shooter/blob/master/examples/toy_example.ipynb
https://gitlab.e-cam2020.eu/hejung/sr_shooter/blob/master/examples/OneWayShooting_vs_TwoWayShooting.ipynb
https://gitlab.e-cam2020.eu/hejung/sr_shooter
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

computational expensive than standard shooting. The strategy thus can significantly reduce the computational time
required to study transition events and to quantify their rates. The web throwing algorithm is described by Riccardi,
Dahlen, and van Erp (http://dx.doi.org/10.1021/acs.jpclett.7b01617)

The web throwing method is an shooting method for transition interface sampling that decorrelates the trajectory
between an interface 𝜆 and an associated surface of unlikely return 𝜆SOUR. It does this by doing n_cycles of
Transition Path Sampling (TPS) from 𝜆SOUR to 𝜆. The first frame in this volume is selected for a forwards shot and the
last frame in this volume is selected for a backwards shot. After the n_cycles the new sub-trajectory is extended in
both ways to satisfy the TIS ensemble. The sampling efficiency is increased significantly if 𝜆SOUR and 𝜆 are positioned
before and after the barrier in the potential, respectively.

The implementation introduces the following new classes:

• SecondFrameSelector inherits from ShootingPointSelector and selects the second frame (index
= 1) from a trajectory.

• SecondToLastFrameSelector inherits from ShootingPointSelector and selects the second to
last frame of a trajectory (index = len(trajectory)-2).

• WebEnsemble inherits from SequentialEnsemble and implements the sampling ensemble between the
Volume 𝜆SOUR and the Volume 𝜆 in which the web throwing occurs.

• WebBackwardExtendEnsemble inherits from SequentialEnsemble and implements the ensemble
the partial path has to fit in after the backwards extend. This ensemble consists of one frame in the initial state
followed by frames outside of any states. This should only be used in backward moves, as this only has an
acceptable stop in this direction.

• WebShootingMover inherits from RandomChoiceMover and implements the TPS shooting algo-
rithm in the WebEnsemble using the SecondFrameSelector for the ForwardShootMover and the
SecondToLastFrameSelector for the BackwardShootMover.

• WebCycleMover inherits from SequentialMover and implements n_cycles sequential
WebShootingMover in the WebEnsmeble.

• WebExtendMover inherits from ConditionalSequentialMover and extend the sub trajectory after
web throwing. It first simulates backwards to reach the initial TIS state. If this reaches any other state, the
whole move is rejected. If this indeed finds the correct state the sub trajectory is extended in the forward
direction to complete the TIS ensemble.

• WebThrowingMover inherits from SubPathMover and is the canonical mover for the web throwing algo-
rithm. From a TIS ensemble it first selects a random sub-trajectory in the web_ensemble. Then it calls the
WebCycleMover with n_cycles. Finally it calls the WebExtendMover to extend the sub-trajectory back
into the TIS ensemble.

• WebThrowingStrategy inherits from MoveStrategy and it builds the WebThrowingMover for
every {interface: lambda_sour} in the sours dictionary. Every interface should have only 1
lambda_sour associated with it.

• WebThrowingScheme inherits from MoveScheme. This is a MoveScheme that only does web throwing.
This is mostly a convenience class used in examples and testing.

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

104 Chapter 1. Classical MD Modules

http://dx.doi.org/10.1021/acs.jpclett.7b01617
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling

E-CAM Documentation, Release 0.2

Testing

The tests for this module can be run by installing OpenPathSampling, downloading source code for the module (see
the Source Code section below), and installing it by running by running python setup.py install from
the root directory of the package. Test this module with the nose package, by running the command nosetests
from the root directory of the repository.

Examples

All examples can be found in the examples directory (https://gitlab.e-cam2020.eu/sroet/web_throwing/tree/master/
examples). Open the ipython notebook (files with the extension .ipynb) of interest by running jupyter
notebook file_of_interest.ipynb in this directory, replacing file_of_interest.ipynb by the file
you want to open. (see Jupyter notebook documentation at http://jupyter.org/ for more details)

The examples are:

• An example on how to set up a multiple interface set TIS (MISTIS) simulation with only web throwing and the
analysis of the web throwing moves can be found in mistis_using_only_webthrowing.ipynb.

• An example on how to add the web throwing to a default MISTIS simulation can be found in
adding_webthrowing_to_mistis.ipynb. This example also shows how to change the selection weight of this
move and some analysis.

Source Code

The source code for this module can be found in: https://gitlab.e-cam2020.eu/sroet/web_throwing/tree/master.

1.7.8 PLUMED Wrapper for OpenPathSampling

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

1.7. Extended Software Development Workshops (ESDWs) 105

http://openpathsampling.org
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/sroet/web_throwing/tree/master/examples
https://gitlab.e-cam2020.eu/sroet/web_throwing/tree/master/examples
http://jupyter.org/
https://gitlab.e-cam2020.eu:10443/sroet/web_throwing/blob/master/examples/mistis_using_only_webthrowing.ipynb
https://gitlab.e-cam2020.eu:10443/sroet/web_throwing/blob/master/examples/adding_webthrowing_to_mistis.ipynb
https://gitlab.e-cam2020.eu/sroet/web_throwing/tree/master
http://openpathsampling.org
http://openpathsampling.org/latest/examples/

E-CAM Documentation, Release 0.2

Authors: Alberto Pérez de Alba Ortíz

This module interfaces OpenPathSampling (OPS) with PLUMED, an open-source library with a rich catalogue of
Collective Variables (CVs).

Special thanks to Gareth A. Tribello for facilitating the use of the PLUMED Cython wrapper.

• G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, PLUMED2: New feathers for an old bird,
Comp. Phys. Comm. 185, 604 (2014); https://doi.org/10.1016/j.cpc.2013.09.018

Purpose of Module

Transition path sampling simulations and analysis rely on accurate state definitions. Such states are typically defined
as volumes in a CV-space. OPS already supports a number of CVs, including the ones defined in the MDTraj Python
library. PLUMED, an open-source C++ library, offers a wide variety of extra CVs, which are enabled in OPS by this
module.

Many of PLUMED’s dozens of CVs have a biomolecular focus, but they are also general enough for other applications.
PLUMED’s popularity (over 500 citations in 4 years after the release of PLUMED2) is greatly based on the fact that it
works with many MD codes. OPS is now added to that list. The PLUMED code is well-maintained and documented
for both users and developers. Several tutorials and a mailing list are available to address FAQs. For more information
about the PLUMED code, visit: http://www.plumed.org/home

In this module, the class PLUMEDInterface is a subclass of the Cython wrapper class Plumed contained in
the PLUMED installation. For initialization, PLUMEDInterface requires an MDTrajTopology and accepts
additional PLUMED settings:

• pathtoplumed="" is the path to the PLUMED installation, where the sourceme.sh script is run to set all
relevant flags. By default, the string is empty and the currently sourced PLUMED is used.

• timestep=1. is the time step size in PLUMED units (ps).

• kbt=1. is k𝐵𝑇 in PLUMED units (kJ/mol).

• molinfo="" is a file to be used as STRUCTURE for the MOLINFO PLUMED command. It allows to provide
extra information about the molecules. Consult: https://plumed.github.io/doc-v2.4/user-doc/html/_m_o_l_i_n_
f_o.html

• logfile=plumed.log is the name of the log file written by the PLUMEDInterface.

The initialized PLUMEDInterface can be subsequently used to make functions that calculate CVs for a given
Trajectory. This is done via the PLUMEDCV class, a subclass of CoordinateFunctionCV.

In PLUMED input files, a common syntax is: label: keywords. The class PLUMEDCV takes name and
definition as arguments, which are respectively equivalent to PLUMED’s label and keywords. The
PLUMEDCV class also takes the PLUMEDInterface as argument. This allows for a single PLUMEDInterface to
contain the MDTrajTopology, additional PLUMED keywords and previously defined CVs that can be reused for
the same system. Both PLUMEDInterface and PLUMEDCV are storable.

This module supports (as listed in PLUMED documentation):

• Groups and Virtual Atoms: are directly set in the PLUMEDInterface via the PLUMEDInterface.
set(name, definition) function. The PLUMEDInterface.get() function allows to consult the
commands that have been already set. Some commands do not need a name, while some others must be run
before any other command (e.g. UNITS).

• CV Documentation: all CVs are created by calling PLUMEDCV(name, PLUMEDInterface,
definition). The returned function can be applied to a Trajectory. CVs with components should spec-
ify the components=["c1", "c2", "c3", ...] keyword and the corresponding PLUMED keywords
in the definition.

106 Chapter 1. Classical MD Modules

https://doi.org/10.1016/j.cpc.2013.09.018
http://www.plumed.org/home
https://plumed.github.io/doc-v2.4/user-doc/html/_m_o_l_i_n_f_o.html
https://plumed.github.io/doc-v2.4/user-doc/html/_m_o_l_i_n_f_o.html

E-CAM Documentation, Release 0.2

• Distances from reference configurations: also created by calling PLUMEDCV(name, PLUMEDInterface,
definition). Most of them require external files with reference configurations.

• Functions: also created by calling PLUMEDCV(name, PLUMEDInterface, definition). They
should be created using the same PLUMEDInterface that contains the previously defined CVs that are part
of the function.

• Multicolvar and Exploiting contact matrices are not tested.

For examples see the Examples section below.

For further PLUMED usage details see: http://plumed.github.io/doc-master/user-doc/html/index.html

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Tests in OpenPathSampling use the nose package.

The tests for this module can be run by downloading its source code (see the Source Code section below), installing
its requirements, and running the command nosetests from the root directory of the repository.

Examples

• Examples on how create and calculate PLUMED CVs can be found in plumed_wrapper_example.
ipynb in the examples directory (https://gitlab.e-cam2020.eu/apdealbao/plumed_wrapper/tree/master/
plumed_wrapper/examples). Open it using jupyter notebook plumed_wrapper_example.ipynb
(see http://jupyter.org/ for more details).

Source Code

The source code for this module can be found in: https://gitlab.e-cam2020.eu/apdealbao/plumed_wrapper/tree/master

It can be installed by running pip install -e . from the root directory of the package.

It requires to have the PLUMED development version (with the Cython wrapper) installed from: https://github.com/
plumed/plumed2; and to source the file /path/to/plumed2/sourceme.sh

For details on PLUMED installation, see: http://plumed.github.io/doc-master/user-doc/html/_installation.html

Before using this module, please test the Cython PLUMED wrapper by attempting to import plumed in
Python. If this is not successful, please refer to PLUMED installation documentation (above), or to the mailing list:
https://groups.google.com/forum/#!forum/plumed-users

1.7.9 S-shooting in OpenPathSampling

1.7. Extended Software Development Workshops (ESDWs) 107

http://plumed.github.io/doc-master/user-doc/html/index.html
http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/apdealbao/plumed_wrapper/tree/master/plumed_wrapper/examples
https://gitlab.e-cam2020.eu/apdealbao/plumed_wrapper/tree/master/plumed_wrapper/examples
http://jupyter.org/
https://gitlab.e-cam2020.eu/apdealbao/plumed_wrapper/tree/master
https://github.com/plumed/plumed2
https://github.com/plumed/plumed2
http://plumed.github.io/doc-master/user-doc/html/_installation.html
https://groups.google.com/forum/#!forum/plumed-users

E-CAM Documentation, Release 0.2

Software Technical Information

The information in this section describes OpenPathSampling as a whole. Information specific to the additions in
this module are in subsequent sections.

Language Python (2.7)

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation http://openpathsampling.org

Relevant Training Material http://openpathsampling.org/latest/examples/

Licence LGPL, v. 2.1 or later

• Purpose of Module

• Background Information

• Testing

• Examples

• Source Code

Authors: Andreas Singraber

This module implements the S-shooting method1 in OpenPathSampling.

Purpose of Module

S-shooting1 is a recently developed method to determine rate constants of rare events. It is similar in spirit to the
reactive flux method but its relaxed requirements help to overcome practical problems. The method is based on a
simple shooting algorithm where trajectories are propagated forward and backward in time for a fixed number of
timesteps. The starting points need to be provided and must lie in the saddle point region. This so-called S region
(hence the name S-shooting) is defined via a suitable reaction coordinate and must to separate the stable states A and
B in such a way that no trajectory can connect A with B without visiting S. In contrast to the reactive flux method the
time derivative of the reaction coordinate is not required, which makes this approach applicable to systems exhibiting
diffusive dynamics along the reaction coordinate. The S-shooting method can also be applied if the initial shooting
points are taken from a biased simulation. Thus, it is a natural follow-up to free energy calculations like umbrella
sampling and, in combination with free energy curves, allows the computation of rate constants.

The implementation of the S-shooting method in OpenPathSampling (OPS) is split into two main parts:

• Forward and backward trajectories started from initial snapshots are harvested and glued together calling the
SShootingSimulation class. The user needs to provide the initial snapshots, a suitable definition of the S
region and the desired trajectory length.

• The S-shooting analysis is performed upon calling the SShootingAnalysis class. Mandatory arguments
include the definition of the stable states (A and B) and of the S region. In case the initial snapshots are taken
from a biased simulation a bias function may be provided as an optional argument.

This module comes also with an IPython example notebook demonstrating the method by applying it to a one-
dimensional system (a brownian walker in a double-well potential).

1 Menzl, G., Singraber, A. & Dellago, C. S-shooting: a Bennett–Chandler-like method for the computation of rate constants from committor
trajectories. Faraday Discuss. 195, 345–364 (2017), https://doi.org/10.1039/C6FD00124F

108 Chapter 1. Classical MD Modules

http://openpathsampling.org
http://openpathsampling.org/latest/examples/
https://doi.org/10.1039/C6FD00124F

E-CAM Documentation, Release 0.2

Background Information

This module builds on OpenPathSampling, a Python package for path sampling simulations. To learn more about
OpenPathSampling, you might be interested in reading:

• OPS documentation: http://openpathsampling.org

• OPS source code: http://github.com/openpathsampling/openpathsampling

Testing

Follow these steps to test the module:

1. Download and install OpenPathSampling (see http://openpathsampling.org/latest/install.html).

Caution: This module has been developed alongside a specific OPS version available at that time. If
incompatibilities arise as OPS is further enhanced, please use version 0.9.5 available here: https://github.
com/openpathsampling/openpathsampling/releases/tag/v0.9.5 .

2. Install the nose package.

3. Download the source files of the module (see the Source Code section below).

4. Install the module: change to the S-Shooting directory and run python setup.py install.

5. Run the tests: execute nosetests in the S-Shooting directory.

Examples

See the sshooting-example.ipynb IPython notebook in the source directory, here is the direct link: https://
gitlab.e-cam2020.eu/singraber/S-Shooting/blob/master/ops_s_shooting/sshooting-example.ipynb To run the example
execute jupyter notebook sshooting-example.ipynb in your terminal.

Source Code

The source code for this module is located here: https://gitlab.e-cam2020.eu/singraber/S-Shooting

Tip: Ultimately, this module will be merged into the official OPS code. Check the status of the corresponding pull
request here: https://github.com/openpathsampling/openpathsampling/pull/787 .

The third ESDW for the Classical MD work package was held in Turin, Italy in July 2018. The following have been
produced as a result:

Software Technical Information

Name pyscal

Language Python (2.7, 3.4, 3.5, 3.6)

Licence GNU General Public License v3.0

Documentation Tool Sphinx/RST

1.7. Extended Software Development Workshops (ESDWs) 109

http://openpathsampling.org
http://github.com/openpathsampling/openpathsampling
http://openpathsampling.org/latest/install.html
https://github.com/openpathsampling/openpathsampling/releases/tag/v0.9.5
https://github.com/openpathsampling/openpathsampling/releases/tag/v0.9.5
http://nose.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/singraber/S-Shooting/blob/master/ops_s_shooting/sshooting-example.ipynb
https://gitlab.e-cam2020.eu/singraber/S-Shooting/blob/master/ops_s_shooting/sshooting-example.ipynb
https://gitlab.e-cam2020.eu/singraber/S-Shooting
https://github.com/openpathsampling/openpathsampling/pull/787
https://www.gnu.org/licenses/gpl-3.0.en.html

E-CAM Documentation, Release 0.2

Application Documentation https://pyscal.readthedocs.io/en/latest/

Relevant Training Material https://mybinder.org/v2/gh/srmnitc/pyscal/master?filepath=examples%2F

Software Module Developed by Sarath Menon Grisell Díaz Leines Jutta Rogal

1.7.10 pyscal

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

pyscal is a python module for the calculation of local atomic structural environments including Steinhardt’s bond
orientational order parameters1 during post-processing of atomistic simulation data. The core functionality of pyscal
is written in C++ with python wrappers using pybind11 which allows for fast calculations and easy extensions in
python.

Purpose of Module

Steinhardt’s order parameters are widely used for the identification of crystal structures3. They are also used to distin-
guish if an atom is in a solid or liquid environment4. pyscal is inspired by the BondOrderAnalysis code, but has since
incorporated many additional features and modifications. The pyscal module includes the following functionalities:

• calculation of Steinhardt’s order parameters and their averaged version2.

• links with the Voro++ code, for the calculation of Steinhardt parameters weighted using the face areas of Voronoi
polyhedra3.

• classification of atoms as solid or liquid4.

• clustering of particles based on a user defined property.

• methods for calculating radial distribution functions, Voronoi volumes of particles, number of vertices and face
area of Voronoi polyhedra, and coordination numbers.

Background Information

See the application documentation for full details.

The utilisation of Dask within the project came about as a result of the E-CAM High Throughput Computing ESDW
held in Turin in 2018 and 2019.

Building and Testing

Installation
1 Steinhardt, P. J., Nelson, D. R., & Ronchetti, M. (1983). Physical Review B, 28.
3 Mickel, W., Kapfer, S. C., Schröder-Turk, G. E., & Mecke, K. (2013). The Journal of Chemical Physics, 138.
4 Auer, S., & Frenkel, D. (2005). Advances in Polymer Science, 173.
2 Lechner, W., & Dellago, C. (2008). The Journal of Chemical Physics, 129.

110 Chapter 1. Classical MD Modules

https://pyscal.readthedocs.io/en/latest/
https://mybinder.org/v2/gh/srmnitc/pyscal/master?filepath=examples%2F
https://pybind11.readthedocs.io/en/stable/intro.html
https://homepage.univie.ac.at/wolfgang.lechner/bondorderparameter.html
http://math.lbl.gov/voro++/
https://pyscal.readthedocs.io/en/latest/
https://www.e-cam2020.eu/event/4424/?instance_id=71
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784
https://aip.scitation.org/doi/full/10.1063/1.4774084
https://link.springer.com/chapter/10.1007/b99429
https://aip.scitation.org/doi/full/10.1063/1.2977970

E-CAM Documentation, Release 0.2

pyscal can be installed directly using Conda by the following statement-

conda install -c pyscal pyscal

pyscal can be built from the repository by-

git clone https://github.com/srmnitc/pyscal.git
cd pyscal
python setup.py install --user

Testing

pyscal contains automated tests which use the pytest python library, which can be installed by pip install
pytest. The tests can be run by executing the command pytest tests/ from the main code directory.

Examples

Examples using pyscal can be found here. An interactive notebook using binder is also available.

Source Code

The source code. of the module can be found on GitHub.

Software Technical Information

Name jobqueue_features

Language Python

Licence MIT

Documentation Tool In-source documentation

Application Documentation Not currently available.. Example usage provided.

Relevant Training Material Not currently available.

Software Module Developed by Adam Włodarczyk (Wrocław Centre of Networking and Supercomputing), Alan
O’Cais (Juelich Supercomputing Centre)

1.7.11 E-CAM High Throughput Computing Library

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

E-CAM is interested in the challenge of bridging timescales. To study molecular dynamics with atomistic detail,
timesteps must be used on the order of a femtosecond. Many problems in biological chemistry, materials science,
and other fields involve events that only spontaneously occur after a millisecond or longer (for example, biomolecular
conformational changes, or nucleation processes). That means that around 1012 time steps would be needed to see a
single millisecond-scale event. This is the problem of “rare events” in theoretical and computational chemistry.

1.7. Extended Software Development Workshops (ESDWs) 111

https://docs.conda.io/en/latest/
https://docs.pytest.org/en/latest/
https://pyscal.readthedocs.io/en/latest/examples.html
https://mybinder.org/v2/gh/srmnitc/pyscal/master?filepath=examples%2F
https://github.com/srmnitc/pyscal
https://opensource.org/licenses/mit-license

E-CAM Documentation, Release 0.2

Modern supercomputers are beginning to make it possible to obtain trajectories long enough to observe some of these
processes, but to fully characterize a transition with proper statistics, many examples are needed. In order to obtain
many examples the same application must be run many thousands of times with varying inputs. To manage this kind of
computation a task scheduling high throughput computing (HTC) library is needed. The main elements of mentioned
scheduling library are: task definition, task scheduling and task execution.

While traditionally an HTC workload is looked down upon in the HPC space, the scientific use case for extreme-
scale resources exists and algorithms that require a coordinated approach make efficient libraries that implement this
approach increasingly important in the HPC space. The 5 Petaflop booster technology of JURECA is an interesting
concept with respect to this approach since the offloading approach of heavy computation marries perfectly to the
concept outlined here.

Purpose of Module

This module is the first in a sequence that will form the overall capabilities of the library. In particular this module
deals with creating a set of decorators to wrap around the Dask-Jobqueue Python library, which aspires to make the
development time cost of leveraging it lower for our use cases.

Background Information

The initial motivation for this library is driven by the ensemble-type calculations that are required in many scientific
fields, and in particular in the materials science domain in which the E-CAM Centre of Excellence operates. The scope
for parallelisation is best contextualised by the Dask documentation:

A common approach to parallel execution in user-space is task scheduling. In task scheduling we break
our program into many medium-sized tasks or units of computation, often a function call on a non-trivial
amount of data. We represent these tasks as nodes in a graph with edges between nodes if one task depends
on data produced by another. We call upon a task scheduler to execute this graph in a way that respects
these data dependencies and leverages parallelism where possible, multiple independent tasks can be run
simultaneously.

Many solutions exist. This is a common approach in parallel execution frameworks. Often task scheduling
logic hides within other larger frameworks (Luigi, Storm, Spark, IPython Parallel, and so on) and so is
often reinvented.

Dask is a specification that encodes task schedules with minimal incidental complexity using terms com-
mon to all Python projects, namely dicts, tuples, and callables. Ideally this minimum solution is easy to
adopt and understand by a broad community.

While we were attracted by this approach, Dask did not support task-level parallelisation (in particular multi-node
tasks). We researched other options (including Celery, PyCOMPSs, IPyParallel and others) and organised a workshop
that explored some of these (see https://www.cecam.org/workshop-0-1650.html for further details).

Building and Testing

The library is a Python module and can be installed with

python setup.py install

More details about how to install a Python package can be found at, for example, Install Python packages on the
research computing systems at IU

To run the tests for the decorators within the library, you need the pytest Python package. You can run all the
relevant tests from the jobqueue_features directory with

112 Chapter 1. Classical MD Modules

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
https://jobqueue.dask.org/en/latest/
https://dask.org/
https://www.cecam.org/workshop-0-1650.html
https://kb.iu.edu/d/acey
https://kb.iu.edu/d/acey

E-CAM Documentation, Release 0.2

pytest tests/test_decorators.py

Examples of usage can be found in the examples directory.

Source Code

The latest version of the library is available on the jobqueue_features GitHub repository, the file specific to this module
is decorators.py.

(The code that was originally created for this module can be seen in the specific commit 4590a0e427112f which can
be found in the original private repository of the code.)

Software Technical Information

Name jobqueue_features

Language Python, YAML

Licence MIT

Documentation Tool In-source documentation

Application Documentation Not currently available. Example usage provided.

Relevant Training Material Not currently available.

Software Module Developed by Adam Włodarczyk (Wrocław Centre of Networking and Supercomputing), Alan
O’Cais (Juelich Supercomputing Centre)

1.7.12 HTC Library Configuration in YAML

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module is the second in a sequence that will form the overall capabilities of the library (see E-CAM High Through-
put Computing Library for the previous module). This module deals with creating a more comprehensive configuration
format for the Dask-Jobqueue Python library in YAML format.

Purpose of Module

The goal is to allow numerous cluster instances (which is a place where tasks are executed) to be defined more
broadly and cover all possibilities that the queueing system might offer as well as in configurations that are required
to execute MPI/OpenMP tasks.

The implementation is generic but the specific example provided is for SLURM on the JURECA system.

1.7. Extended Software Development Workshops (ESDWs) 113

https://github.com/E-CAM/jobqueue_features
https://github.com/E-CAM/jobqueue_features/blob/master/jobqueue_features/decorators.py
https://gitlab.e-cam2020.eu/adam/jobqueue_features/tree/4590a0e427112fbf51edff6116e34c90e765baf0
https://opensource.org/licenses/mit-license
https://jobqueue.dask.org/en/latest/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

E-CAM Documentation, Release 0.2

Background Information

This module builds upon the work described in E-CAM High Throughput Computing Library and the mechanism
already provided by the Dask configuration and the Dask-Jobqueue configuration

Building and Testing

The library is a Python module and can be installed with

python setup.py install

More details about how to install a Python package can be found at, for example, Install Python packages on the
research computing systems at IU

To run the tests for the decorators within the library, you need the pytest Python package. You can run all the
relevant tests from the jobqueue_features directory with

pytest tests/test_cluster.py

Source Code

The latest version of the library is available on the jobqueue_features GitHub repository

The code that was originally created specifically for this module can be seen in the HTC/Yaml Merge Request which
can be found in the original private repository of the code.

Software Technical Information

Name jobqueue_features

Language Python, YAML

Licence MIT

Documentation Tool In-source documentation

Application Documentation Not currently available. Example usage provided.

Relevant Training Material Not currently available.

Software Module Developed by Adam Włodarczyk (Wrocław Centre of Networking and Supercomputing), Alan
O’Cais (Juelich Supercomputing Centre)

1.7.13 HTC Multi-node Tasks

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

114 Chapter 1. Classical MD Modules

https://docs.dask.org/en/latest/configuration.html
https://dask-jobqueue.readthedocs.io/en/latest/configuration-setup.html
https://kb.iu.edu/d/acey
https://kb.iu.edu/d/acey
https://github.com/E-CAM/jobqueue_features
https://gitlab.e-cam2020.eu/adam/jobqueue_features/merge_requests/2
https://opensource.org/licenses/mit-license

E-CAM Documentation, Release 0.2

This module is the third in a sequence that will form the overall capabilities of the HTC library (see HTC Library
Configuration in YAML for the previous module). This module deals with enabling tasks to be run over a set of nodes
(specifically MPI/OpenMP tasks).

Purpose of Module

The initial goal is to allow the HTC library to control tasks that are executed via the MPI launcher command. The
task tracked by Dask is actually the process created by the launcher. The launcher is a forked process from within the
library.

The implementation is intended to be generic but the specific example implementation provided is for srun launcher
that is used on JURECA system.

Background Information

This module builds upon the work described in HTC Library Configuration in YAML.

Building and Testing

The library is a Python module and can be installed with

python setup.py install

More details about how to install a Python package can be found at, for example, Install Python packages on the
research computing systems at IU

To run the tests for the decorators within the library, you need the pytest Python package. You can run all the
relevant tests from the jobqueue_features directory with

pytest tests/test_mpi_wrapper.py

Specific examples of usage for the JURECA system are available in the examples subdirectory.

Source Code

The latest version of the library is available on the jobqueue_features GitHub repository

The code that was originally created specifically for this module can be seen in the HTC/MPI Merge Request which
can be found in the original private repository of the code. Additional, more complex, examples were provided in the
HTC/MPI examples Merge Request

Software Technical Information

Name jobqueue_features

Language Python, YAML

Licence MIT

Documentation Tool In-source documentation

Application Documentation Not currently available. Example usage provided.

Relevant Training Material Not currently available.

1.7. Extended Software Development Workshops (ESDWs) 115

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
https://kb.iu.edu/d/acey
https://kb.iu.edu/d/acey
https://github.com/E-CAM/jobqueue_features
https://gitlab.e-cam2020.eu/adam/jobqueue_features/merge_requests/5
https://gitlab.e-cam2020.eu/adam/jobqueue_features/merge_requests/7
https://opensource.org/licenses/mit-license

E-CAM Documentation, Release 0.2

Software Module Developed by Adam Włodarczyk (Wrocław Centre of Networking and Supercomputing), Alan
O’Cais (Juelich Supercomputing Centre)

1.7.14 Adding HTC Library to EasyBuild

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module is the fourth in a sequence that will form the overall capabilities of the HTC library (see HTC Multi-node
Tasks for the previous module). This module deals with installing the software on HPC systems in a coherent manner
through the tool EasyBuild.

Purpose of Module

The HTC library requires configuration for the target system. Typically, this configuration is applicable system-wide.
If the software is provided in the main software stack of the system, this configuration can also be provided centrally.
The goal of the integration with EasyBuild is to highlight how this configuration can be made with an explicit example
of the configuration for the JURECA system.

Background Information

EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Per-
formance Computing (HPC) systems in an efficient way. Full details on can be found in the EasyBuild documentation.

EasyBuild already has support for Python packages, what we describe here is the specific configuration required to
install a particular version of the library on a specific software stack on JURECA.

Building and Testing

To build the software requires EasyBuild (see installation instructions for EasyBuild here) and the build command:

eb jobqueue_features-0.0.4-intel-para-2018b-Python-3.6.6.eb

However, please note that this will only work “out of the box” for those with software installation rights on the
JURECA system. The provided sources (as described below) are intended as templates for those who are familiar with
EasyBuild to adapt to their system (the only expected adaption would be to change the toolchain to suit their own
system).

Source Code

The latest version of the library itself is available on the jobqueue_features GitHub repository.

There is an open Pull Request for the JURECA software stack that provides all necessary dependencies for the library.

The configuration file required for JURECA is included below (a version for Python 2 can also be
created by simply changing the Python dependency version):

116 Chapter 1. Classical MD Modules

https://easybuild.readthedocs.io/en/latest/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
https://easybuild.readthedocs.io/en/latest/
https://easybuild.readthedocs.io/en/latest/Installation.html
https://github.com/E-CAM/jobqueue_features
https://github.com/easybuilders/JSC/pull/6

E-CAM Documentation, Release 0.2

easyblock = 'PythonBundle'

name = 'jobqueue_features'
version = '0.0.4'
versionsuffix = '-Python-%(pyver)s'

homepage = 'https://github.com/E-CAM/jobqueue_features'
description = """
A Python module that adds features to dask-jobqueue to handle MPI workloads and
→˓different clusters.
Examples of usage can be found in the examples folder of the installation ($JOBQUEUE_
→˓FEATURES_EXAMPLES)
"""

toolchain = {'name': 'intel-para', 'version': '2018b'}

dependencies = [
('Python', '3.6.6'),
('Dask', 'Nov2018Bundle', versionsuffix),

]

use_pip = True

exts_list = [
('typing', '3.6.6', {

'source_urls': ['https://pypi.python.org/packages/source/t/typing/'],
'checksums': [

→˓'4027c5f6127a6267a435201981ba156de91ad0d1d98e9ddc2aa173453453492d'],
}),
('pytest-cov', '2.6.0', {

'source_urls': ['https://pypi.python.org/packages/source/p/pytest-cov/'],
'checksums': [

→˓'e360f048b7dae3f2f2a9a4d067b2dd6b6a015d384d1577c994a43f3f7cbad762'],
}),
(name, version, {

'patches': ['jobqueue_features-%s.patch' % version],
'source_tmpl': 'v%(version)s.tar.gz',
'source_urls': ['https://github.com/E-CAM/jobqueue_features/archive/'],
'checksums': [

'0152ff89f237225656348865073f73f46bda7a17c97e3bc1de8227eea450fb09', # v0.
→˓0.4.tar.gz

'698204ef68f5842c82c5f04bfb614335254fae293f00ca65719559582c1fb181', #
→˓jobqueue_features-env.patch

],
}),

]

postinstallcmds = [
'cp -r %(builddir)s/%(name)s/%(name)s-%(version)s/examples %(installdir)s/examples

→˓',
'mkdir %(installdir)s/config && cp %(builddir)s/%(name)s/%(name)s-%(version)s/

→˓%(name)s/%(name)s.yaml %(installdir)s/config'
]

modextravars = {
'DASK_ROOT_CONFIG': '%(installdir)s/config',
'JOBQUEUE_FEATURES_EXAMPLES': '%(installdir)s/examples',

(continues on next page)

1.7. Extended Software Development Workshops (ESDWs) 117

E-CAM Documentation, Release 0.2

(continued from previous page)

}

sanity_check_paths = {
'files': ['config/jobqueue_features.yaml'],
'dirs': ['lib/python%(pyshortver)s/site-packages', 'examples', 'config'],

}

moduleclass = 'devel'

Software Technical Information

Name jobqueue_features

Language Python, YAML

Licence MIT

Documentation Tool In-source documentation

Application Documentation Not currently available. Example usage provided.

Relevant Training Material Not currently available.

Software Module Developed by Adam Włodarczyk (Wrocław Centre of Networking and Supercomputing), Alan
O’Cais (Juelich Supercomputing Centre)

1.7.15 HTC MPI-Aware Tasks

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module is the fifth in a sequence that form the overall capabilities of the HTC library (see HTC Multi-node Tasks
for the most relevant previous module where support for forked MPI workloads was added). This module deals with
enabling tasks to be run over a set of nodes(specifically MPI/OpenMP tasks) where the tasks themselves are MPI
aware.

Purpose of Module

In HTC Multi-node Tasks we added support for the HTC library to control tasks that are executed via the MPI launcher
command. In that case, the task tracked by Dask is actually the process created by the launcher. For fully MPI-aware
tasks, Dask itself is part of the MPI environment, running on the root process. The other processes wait for the code to
be executed to come from root process. This is possible because Python is JIT compiled so we can serialise and send
the instructions to the other processes (hiding complexity behind additional function calls).

The implementation is intended to be generic but the specific example implementation provided is for srun launcher
that is used on JURECA system.

118 Chapter 1. Classical MD Modules

https://opensource.org/licenses/mit-license
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

E-CAM Documentation, Release 0.2

Background Information

This module builds upon the work described in HTC Multi-node Tasks.

There is significant complexity in this use case since the task is only sent to the root process and must be packaged
and sent to other processes before they can execute anything. The other processes must then go into a waiting state for
next state to be sent from root, and when the workers are supposed to shut down, they should all exit cleanly.

Building and Testing

The library is a Python module and can be installed with

python setup.py install

More details about how to install a Python package can be found at, for example, Install Python packages on the
research computing systems at IU

To run the tests for the decorators within the library, you need the pytest Python package. You can run all the
relevant tests from the jobqueue_features directory with

pytest tests/test_mpi_wrapper.py

Specific examples of usage for the JURECA system are available in the examples subdirectory.

Source Code

The latest version of the library is available on the jobqueue_features GitHub repository

The code that was originally created specifically for this module can be seen in the MPI-capable tasks Merge Request.
This includes a specific example of the use case

Software Technical Information

Name jobqueue_features

Language Python, YAML

Licence MIT

Documentation Tool In-source documentation

Application Documentation Not currently available. Example usage provided.

Relevant Training Material Not currently available.

Software Module Developed by Alan O’Cais (Juelich Supercomputing Centre) Adam Włodarczyk (Wrocław
Centre of Networking and Supercomputing), Miłosz Białczak (Wrocław Centre of Networking and Super-
computing),

1.7.16 Extending available MPI runtime environments

• Purpose of Module

1.7. Extended Software Development Workshops (ESDWs) 119

https://kb.iu.edu/d/acey
https://kb.iu.edu/d/acey
https://github.com/E-CAM/jobqueue_features
https://github.com/E-CAM/jobqueue_features/pull/9
https://github.com/E-CAM/jobqueue_features/blob/6d3c6eae15fb0a11789114a7b0cfbdf4319e92b6/examples/mpi_tasks_srun.py
https://opensource.org/licenses/mit-license

E-CAM Documentation, Release 0.2

• Background Information

• Building and Testing

• Source Code

This module is another in a sequence that form the overall capabilities of the HTC library (see HTC MPI-Aware Tasks
for the most relevant previous module where support for forked MPI workloads was added). This module adds support
for additional MPI runtimes to make the library a more portable solution between HPC systems.

Purpose of Module

This module extends the supported MPI runtimes of jobqueue_features, beyond the original SLURM and
mpiexec, to OpenMPI, Intel MPI and MPICH. This support includes the relevant arguments to provide reason-
able process pinning arguments to the runtimes based on the system architecture and resources requested for each
worker.

Background Information

To date, we have only included MPI launchers that do not require complex configuration (srun and mpiexec). In order
to extend the supported MPI launchers we also need to be able to take into account the distribution of processes and
threads by the launcher. We have this information since it is dictated by the system configuration file and the arguments
the user provides when creating the Dask cluster to which they submit their tasks.

The main goal here is to make a best effort mapping between the user request and the MPI launcher options that will
distribute and pin the processes/threads across the target system.

Building and Testing

The library is a Python module and can be installed with

python setup.py install

More details about how to install a Python package can be found at, for example, Install Python packages on the
research computing systems at IU

To run the tests for the MPI launchers within the library, you need the pytest Python package. You can run all the
relevant tests from the jobqueue_features directory with

pytest tests/test_mpi_wrapper.py

Source Code

The latest version of the library is available on the jobqueue_features GitHub repository

The code that was originally created specifically for this module can be seen in the Merge Request that added support
for OpenMPI and Intel MPI, and the Merge Request that added support for MPICH.

Software Technical Information

Name Dask-traj.

120 Chapter 1. Classical MD Modules

https://kb.iu.edu/d/acey
https://kb.iu.edu/d/acey
https://github.com/E-CAM/jobqueue_features
https://github.com/E-CAM/jobqueue_features/pull/34
https://github.com/E-CAM/jobqueue_features/pull/34
https://github.com/E-CAM/jobqueue_features/pull/55

E-CAM Documentation, Release 0.2

Language Python (3.6, 3.7)

License LGPL 2.1 or later

Documentation Tool Sphinx, numpydoc format (ReST)

Application Documentation https://dask-traj.readthedocs.io/en/latest/

Relevant Training Material https://github.com/sroet/dask-traj/tree/master/examples

Software Module Developed by Sander Roet

1.7.17 Dask-traj

• Purpose of Module

• Current Limitations

• Building and Testing

– Examples

• Source Code

For analysis of MD simulations MDTraj is a fast and commonly used analysis. However MDTraj has limitations, such
as the requirement that the whole trajectory and result of the computation fits into memory. This module rewrites part
of MDTraj to work with Dask in order to achieve out-of-memory computations, and combined with dask-distributed
results in possible out-of-machine parallelization, essential for HPCs and a (surprising) speed-up even on a single
machine.

Purpose of Module

Using MDTraj is a fast and easy way to analyze MD trajectories. However, MDTraj has a couple limitations:

• The whole trajectory needs to fit into memory, or gathering results becomes inconvenient

• The result of the computation also needs to fit into memory

• All processes need access to all the memory, preventing out-of-machine parallelization, and HPC scaling

Dask-traj solves all 3 limitations by rewriting the MDTraj functions to work with dask.arrays. This is done for both
the trajectory and the computation functions. As dask.arrays know how to spill to disk, this lifts the requirement to fit
into memory on both.

Together with dask-distributed it also allows the computation to be executed in a distributed way, which allows scaling
out of a single machine. In preliminary tests this approach even leads to a speedup on a single machine, which is
surprising as MDTraj is already a parallel code.

The splitting of everything in Dask-traj is done in the time-axis of the MD trajectory and as a lot of analysis is
embarrassingly parallel, this leads to nice non-communicating compute graphs as shown here.

1.7. Extended Software Development Workshops (ESDWs) 121

https://dask-traj.readthedocs.io/en/latest/
https://github.com/sroet/dask-traj/tree/master/examples
http://mdtraj.org/
https://dask.org/
https://distributed.dask.org/en/latest/
http://mdtraj.org/
https://docs.dask.org/en/latest/array.html
https://distributed.dask.org/en/latest/

E-CAM Documentation, Release 0.2

Current Limitations

One very important point of dask-traj is that we seek in the trajectory file. So if your files are stored in a format that
does not have an efficient seek method, the loading of Trajectories will not get a speed-up, and might even be slower
than MDTraj.

Also, due to the way the code is written in MDTraj, only a subset of functions are available at the moment, but this
will be expanded further in the future. If you have a use-case that requires the conversion of a MDTraj functionality,
not yet present in dask-traj, please make an issue and I will focus on that.

Building and Testing

This code can be installed with conda using conda install -c dask_traj. To install the specific version
associated with this module, use conda install -c conda-forge dask_traj==0.2.2

122 Chapter 1. Classical MD Modules

https://github.com/sroet/dask-traj/issues/new

E-CAM Documentation, Release 0.2

This code can also be installed with pip by running pip install dask-traj

Finally, this code can also be installed by downloading the source code (see the Source Code section below), and
running python setup.py install from the root directory.

Tests for this module can be run with pytest. Install pytest with pip install pytest and then run the command
py.test from within the directory with the source code, or py.test --pyargs dask_traj from anywhere
after installation.

Examples

The examples require some extra dependencies to be installed, namely: * jupyter * distributed * python-graphviz

Which are all installable through conda and pip.

• An example on how to do analysis using Dask-traj can be found in dask-traj_example.ipynb

• An example on how to combine dask-traj with dask.distributed can be found in dask-traj_distributed exam-
ple.ipynb

These examples can also be found in the examples directory in the source code. They can be run by using jupyter
notebook from that directory (see Jupyter notebook documentation at http://jupyter.org/ for more details)

Source Code

The source code for this module, and modules that build on it, is hosted at https://github.com/sroet/dask-traj. This
module specifically includes everything up to and including release 0.2.2

1.7.18 ESDW Lyon 2019

Software Technical Information

Name pytbc

Language Python (3.7)

Licence GNU General Public License v3.0

Documentation Tool Sphinx/RST

Application Documentation https://clangi.gitlab.io/pytbc/

Relevant Training Material https://clangi.gitlab.io/pytbc/notebooks/example_TBC.html http://campari.
sourceforge.net/V3/tutorials.html

Software Module Developed by Cassiano Langini

Contributions by Marco Bacci Andreas Vitalis Davide Garolini

pytbc

• Purpose of Module

1.7. Extended Software Development Workshops (ESDWs) 123

https://github.com/sroet/dask-traj/blob/master/examples/dask-traj_example.ipynb
https://github.com/sroet/dask-traj/blob/master/examples/dask-traj_distributed%20example.ipynb
https://github.com/sroet/dask-traj/blob/master/examples/dask-traj_distributed%20example.ipynb
http://jupyter.org/
https://github.com/sroet/dask-traj
https://github.com/sroet/dask-traj/releases/tag/v0.2.2
https://www.gnu.org/licenses/gpl-3.0.en.html
https://clangi.gitlab.io/pytbc/
https://clangi.gitlab.io/pytbc/notebooks/example_TBC.html
http://campari.sourceforge.net/V3/tutorials.html
http://campari.sourceforge.net/V3/tutorials.html

E-CAM Documentation, Release 0.2

• Background Information

• Building and Testing

• Source Code

pytbc contains Python bindings to the tree-based clustering algorithm by Vitalis and Caflisch [Vitalis2012] imple-
mented in Campari. The algorithm is written in Fortran90 and the Python bindings allow for more flexibility and
possibility of integration with other packages avoiding file-based I/O. The binding interface is generated with f90wrap
to have access to derived types and then compiled with f2py.

Purpose of Module

The clustering algorithm published in [Vitalis2012] is a hierarchical multi-resolution clustering algorithm built on an
efficient tree data structure. It is based on the Birch clustering algorithm [CIT]. pytbc wraps the basic functionality of
the algorithm which can be used with the most common clustering distances.

Background Information

See the project page for full details.

Building and Testing

Installation

Up to date installation instructions can be found at https://gitlab.com/clangi/pytbc#installation

Testing and Examples

Example notebooks that leverage the package can be found at https://gitlab.com/clangi/pytbc/-/tree/master/docs/
source/notebooks

Source Code

The source code of ‘‘pytbc‘ is available on GitLab.com <https://gitlab.com/clangi/pytbc>‘_.

1.7.19 ESDW Clifden 2019

The ESDW on “Inverse Molecular Design & Inference: building a Molecular Foundry” in Clifden, Ireland in Novem-
ber 2019 was the starting point for the modules below.

Software Technical Information

This module is a python port of particle insertion suite of codes It also extends and generalizes the apporoch.

Language Python (3.6+)

Licence The software for this specific module is licensed under BSD-3-Clause

Documentation Tool pdoc, numpydoc format (ReST)

Application Documentation Documentation

124 Chapter 1. Classical MD Modules

http://campari.sourceforge.net/
https://github.com/jameskermode/f90wrap
https://docs.scipy.org/doc/numpy/f2py/
https://gitlab.com/clangi/pytbc
https://gitlab.com/clangi/pytbc#installation
https://gitlab.com/clangi/pytbc/-/tree/master/docs/source/notebooks
https://gitlab.com/clangi/pytbc/-/tree/master/docs/source/notebooks
https://gitlab.com/clangi/pytbc
https://opensource.org/licenses/BSD-3-Clause
\T1\textless {}https://pdoc3.github.io/pdoc/\T1\textgreater {}
https://gitlab.com/aestheses/insertion_utils/-/tree/master/docs

E-CAM Documentation, Release 0.2

Relevant Training Material Usage instructions in this document and usage examples here

Software Module Developed by Shrinath Kumar, Zein Jaafar and Donal MacKernan

PI-auto-utility

• Purpose of module

• Background Information

• Usage instructions

– Prerequisites

– Using python with lammps

– Using this module

* Setting up the simulation

* Inserting particles

* Deleting particles

• Examples

• Source Code

This module ports the already existing modules Particle Insertion Core and Particle Insertion Hydration from the
LAMMPS scripting language to Python. It allows to apply the method described in those modules to a larger variety
of systems. Additionally it also generalizes the method, thereby allowing use of different forcefields.

Purpose of module

This module performs particle insertion/deletion of any type of particle in dilute or dense conditions in a variety of
thermodynamic ensembles via a novel perturbative approach using LAMMPS and PyLammps, a python interface to
LAMMPS. This will be extended to other MD engines such as GROMACS at a later stage.

This type of alchemical insertion and deletion is useful in a whole host of situations, where one would like to compute
the free energy changes associated with adding or removing particle/molecule from a complex. Common applications
would include:

• Computing the binding energy of ligands to proteins

• Computing the binding energy of protein-protein complexes

• Computing the free energy change associated with increasing or decreasing solvent (hydration/dehydration)

• Computing the free energy change associated with mixing solvents

The main advantage of this type of alchemical free energy calculation is that it does not use soft-core potential as
many of the approaches to date do. As such, there are less alchemical pathways to compute as the electrostatic and
VdW interactions can be switched along with all other types of interactions. This results in being able to compute the
free free energy differences faster with less simulation time. The other main advatange is that due to the mathematical
form of rescaling used, the singularity of insertion can be avoided.

1.7. Extended Software Development Workshops (ESDWs) 125

https://gitlab.com/aestheses/insertion_utils/-/tree/master/examples
https://lammps.sandia.gov/
https://lammps.sandia.gov/doc/Python_pylammps.html
https://doi.org/10.1080/00268979300102371

E-CAM Documentation, Release 0.2

Background Information

Please see PIhydration background information. The only difference in this module is that the functional form of the
scaling parameter lambda can be chosen freely by the user.

Usage instructions

Prerequisites

For this module a custom fork of lammps is required. You can obtain it from here. Clone the repository and follow
the standard lammps installation procedure. This fork extends lammp’s python interface to provide some important
additional functionality. The module will not work with just the standard lammps installation.

Additionally you also need pymbar and numpy if you wish to compute free energies using mbar. You may install this
through conda or pip.

conda
conda install -c omnia pymbar
conda install numpy
pip
pip install pymbar numpy

Using python with lammps

A LAMMPS simulation can use python (and this module) in one of two ways:

• Using python to wrap lammps through the its library interface or using one of the provided wrappers. This then
allows for a python script to create one or more instance of LAMMPS and launch simulations.

• Calling python from a lammps input script using an embedded interpreter. For more details see here.

This module can be used both ways but when using the embedded interpreter, care must be taken to ensure that your
python script/module can be found on the search path for imports. The interactive version of Python will add the
current directory to the search path for convenience but this is not done automatically when embedded.

Using this module

The implementation in this module includes:

• An InsertionManager class for encapsulating all the information regarding coordinates and topology for
the system of particles to be inserted or deleted. Instances of this class can be used to store templates of
molecules. Which can then be used to repeatedly insert particles. This class also provides some basic function-
ality to change coordinates and topology of the system to be inserted. It is by no means fully comprehensive
and it is usually just easier to create a new data file if there are drastic changes to be made.

• Functions insert and delete, which operate on instances of the InsertionManager class. As their
name implies, they perform the insertion and deletion of particles into another system.

• A utility class and function named MbarWriter and compute_mbar_fe which allow for computing free
energies of insertion and deletion using MBAR. This uses choderalab’s pymbar implementation.

126 Chapter 1. Classical MD Modules

https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library/-/tree/master/Classical-MD-Modules/modules/PIhydration#id3
https://gitlab.com/aestheses/lammps
https://github.com/choderalab/pymbar
https://numpy.org/
https://lammps.sandia.gov/doc/Python_call.html
https://github.com/choderalab/pymbar

E-CAM Documentation, Release 0.2

Setting up the simulation

Before running a simulations you must ensure that your lammps simulation has allocated enough space for all the
types in your existing system plus the types in the system to be inserted or deleted. If you already have a data file this
is most eaisly done using the extras/<interaction_name>/types argument of the read_data command when you use it
for the first time.

Note: If the system you are inserting contains interactions that are not present in the original system you also need to
use the extras/<interaction_name>/per/atom argument of the read_data command to leave space for for the number
of interactions per atom. Consult the read_data documentation for more information.

Once you have your system setup you can begin to use this module by importing the pyinsertion module in your
python code. This contains the top level classes and functions that perform insertion and deletion of particles.

Inserting particles

To start, you require two files for corresponding to the system of particles to be inserted.

1. A file that contains the coordinates and topology of of the system. This file should be in a format that Lammps’s
read_data command can accept. However this file should not contain any force-field information, such as
pair_coeffcients, despite the fact that including such information is perfectly legal according to the read_data
command.

2. The force-field information for the system to be inserted should be in a separate file, the format of which is
described below.

• Comments begin with the ‘#’ character. They may appear at the start of a line or at the end of a line.

• The file must contain one or more force-field sections corresponding to standard interaction types (like
pairs,angles,dihedrals,bonds,impropers).

• A section begins by enclosing its name in square brackets, like so [pair].

• This must be immediately followed on the next line by the keyword style: and then the style of the
interaction along with any global arguments they require. Any valid Lammps interaction style can be used
expect for the style hybrid. Currently hydrid styles are not supported by this module.

• The next line must contain the keyword indices: followed by a list of integers which correspond to the
interaction coefficients that will be perturbed beginning with zero. For example, indices: 1 2 will
instruct the program to scale the second and third coefficient but leave the first coefficient unchanged. This
is useful in situations like bond interaction where one would typically like to scale the strength of the bond
but leave the equilibrium distance unchanged.

• Finally, one or more lines of coefficient data in the form type_id one or more args correspond-
ing to the specified style. Type ids must begin at with 1.

• A section is ended with a single newline.

• Sections can be in any order.

An example of a simple force-field file is shown below.

Final force-field coefficients for inserted particles
[pair]
style: lj/cut 1.0 1.0
indices: 0 1
type eps sigma rcut

1 1.0 1.0 5
2 0.5 1.2 5

1.7. Extended Software Development Workshops (ESDWs) 127

https://lammps.sandia.gov/doc/read_data.html
https://lammps.sandia.gov/doc/read_data.html

E-CAM Documentation, Release 0.2

These two files along with a pointer to an active lammps instance are required by the constructor of the
InsertionManager class which which is the main class of interest for insertions. In addition to these three manda-
tory arguments, there number of optional arguments you can specify to the constructor, such as list of λ
values to use for scaling the interaction coefficients. There are many other such optional arguments. See the code
documentation for a full description of all the parameters.

Once you have an instance of the InsertionManager class you can perform the actual insertion by calling it’s
insert member function. This requires two parameters. The length of the relaxation period in timesteps and the
number of samples required from each λ value.

The output from this is by default just the potential energy data at each λ point but can be changed to
include any Lammps thermo-style variables. This can be achieved by passing a string or a list of strings to the
output_style keyword of the insert function. The data is written out to a file named mbar.dat by default but
can be changed by using the outfile keyword of the insert function. It is written in a format that can be eaisly
used with the pymbar a python implementation of the multistate Bennett acceptance ratio.

Deleting particles

Deleting particles is much the same as inserting particles. In fact, the deletion procedure mathematically is just the
inverse of the insertion approach. The same method detailed above for insertion can be used. The only change is
to specify the λ values in descending order. Thus, the delete member function is just a thinly veiled
wrapper of the insert function with some additional error checking. It takes the exact same parameters as the
insert function.

Examples

The examples link to a collection of ipython-notebook which go through some “toy” examples. These attempt to
explain the functionality of this module in a practicle way.

Source Code

Module Source Code

However, please note that the source code is currently under embargo until associated works are published, if you
would like to be obtain a copy of the code, please contact Dr. Donal MacKernan at donal.mackernan@ucd.ie

Comparative Metadynamics

Software Technical information

This module facilitates extrapolating free energy surface (FES) feature information from short, non-converged
simulations of mutated systems

Language Python (3+)

Licence The software for this specific module “Comparative Metadynamics” is licensed under BSD-3-Clause

Documentation Tool pdoc, numpydoc format (ReST)

Application Documentation Documentation

Relevant Training Material See usage examples here

128 Chapter 1. Classical MD Modules

https://github.com/choderalab/pymbar
https://gitlab.com/aestheses/comparative-metadynamics
mailto:donal.mackernan@ucd.ie
https://opensource.org/licenses/BSD-3-Clause
\T1\textless {}https://pdoc3.github.io/pdoc/\T1\textgreater {}
https://gitlab.com/aestheses/comparative-metadynamics/-/tree/master/docs
https://gitlab.com/aestheses/comparative-metadynamics/-/tree/master/examples

E-CAM Documentation, Release 0.2

Software Module Developed by Zein Jaafar, Shrinath Kumar and Donal MacKernan

• Abstract

• Background Information

• Purpose of Module

• Applications

• Performance

• Software Prerequisites

• Usage

– Examples

• Source Code

Abstract

The module performs a long simulation of some given system and then many shorter simulations of mutations of
the aforementioned system. Using the Free Energy Surface (FES) of the original system as a basepoint allows for
meaningful information about the impact of a mutation on the system’s FES to be extracted from only the short
simulations.

Background Information

The use of Molecular Dynamics (MD) is highly relevant in nearly all STEM fields. Analysing MD simulations can
be done by defining Collective Variables (CVs), functions of the positions of some or all of the atoms in a simulation.
Then, periodically during the course of an MD simulations, the energy of the system is computed alongside all of the
defined CV’s. This allows the construction of a Free Energy Surface (FES) by expressing the free energy as a function
of the CV’s. In order to speed up the exploration of the CV space, a method called Metadynamics may be employed
where a biasing potential is added to force the system to explore the CV space rather then allowing it to naturally
explore the entire CV space as in regular MD.

Optimisation through mutation is a process whereby a system is optimised to perform some specific task by muta-
tion, which broadly encompasses altering the system in any way. If the system’s ability to perform said task can be
characterised through the use of CV’s then its ability to perform this task will manifest in some feature or collection
of features in the FES. Thus, the process of optimisation through mutation will break down broadly into three steps,
which are usually repeated many times.

1. Mutating the system

2. Simulating through Metadynamics

3. Analysing the FES

Purpose of Module

The purpose of this module is to speed up the process of optimisation through mutation by quickly classifying roughly
how much a mutation will optimise the system or not. This quick classification will allow a much wider exploration
of the possible mutations which might optimise a system.

1.7. Extended Software Development Workshops (ESDWs) 129

E-CAM Documentation, Release 0.2

This is done by using the FES of the original system as a starting point. In order to obtain this FES a well-converged
simulation for the original system must be conducted. Then a feature of interest on the FES is chosen and potential
walls are placed around it to limit the exploration of the CV space and further speed up simulation. The system is
mutated and then a very short metadyanmics run is performed on the mutated system. The key point is that when
simulating the mutated system with metadynamics, the biasing potential used to generate the original system’s FES is
used as the initial biasing potential for the mutated system.

The reason for this is so that, if run for sufficiently long, metadynamics will gradually alter the profile of the original
FES until it matches that of the mutated system’s FES. Therefore even after a very short simulation which has not
yet converged, it is possible to compare the original FES to the mutated system’s FES and extrapolate what effect the
mutation had on the FES; In particular it can be inferred whether the mutation has optimised the original system or
not.

By performing many such mutations and short simulations this module also allows a rough comparison between which
mutations best optimised the system by comparing which mutations caused the greatest change in the original FES
in a fixed time interval. Thus, this module allows one to test many mutations and narrow down which ones will best
optimise their system.

Applications

This module is particularly relevant to anywhere MD is being used to design systems through an iterative process such
as chemical or biological labs. However, it can also be applied to areas where one needs to analyse many similar
systems through MD.

Performance

For a simple water in salt system, when changing the charge on the salt ions a simulation time of 100ps was sufficient
to analyse the changes that had occurred in the FES. By contrast a full simulation of the system required at least 4ns
to converge.

Software Prerequisites

The core software requirements are:

1. Python 3

• Numpy

2. Plumed 2.5+

In addition, an MD engine is required needed to run the simulations. To run the example provided the following
additional software is required:

3. Lammps (MD engine)

4. Moltemplate (To perform mutations)

5. Additional Python

• mpi4py

• matplotlib

130 Chapter 1. Classical MD Modules

E-CAM Documentation, Release 0.2

Usage

All files discussed in this section can be found in the examples folder. This module mutates a system and then runs a
metadynamics simulation of them using lammps. Thus the user needs to provide 3 scripts in advance.

These three files are as follows:

1. A plumed data file for performing metadynamics

2. A python file which will mutate their system

3. A python file which will simulate their system

These files should all be stored in the same location as indicator_run.ipynb Example files are provided which explain
how the file should be constructed. Once these three files are in place indicator_run.ipynb may be run. It will guide
the user through any inputs required.

A brief summary of what indicator_run.ipynb does is provided below

1. Simulate the original system and save the metadynamics info into a file

2. Perform some mutations to the system using the user provided script.

3. Run multiple shorter simulations starting off where the initial simulation ended using the user provided script to
simulate

4. Save and store the resulting outputs from each simulation in an accessible manner

Once this is complete the user may use the Analysis subfolder to analyse the output of the simulations In this folder
a single plumed data file needs to be created. An example file is provided which may also be used Then the file
analyse.ipynb may be run. Again, this file will guide the user through the necessary steps

A brief summary of what Analyse.ipynb does is provided below

1. Reads in all the the data created by indicator_run.ipynb (the COLVAR files mainly)

2. Creates histograms/probability densities from the restarted simulations

3. Runs a function that analyses the histograms which is user defined (e.g. the function might return the difference
between the max and min value of the FES)

4. Visualises the resulting data

Examples

Examples can be found here.

Source Code

Module Source Code

However, please note that the source code is currently under embargo until associated works are published, if you
would like to be obtain a copy of the code, please contact Dr. Donal MacKernan at donal.mackernan@ucd.ie or Ali
Jaafar at ali.jafaar@ucd.ie.

1.8 European Environment for Scientific Software Installations

A number of modules related to the E-CAM support of the European Environment for Scientific Software Installations
EESSI which is is a collaboration between a number of academic and industrial partners in the HPC community.

1.8. European Environment for Scientific Software Installations 131

https://gitlab.com/aestheses/comparative-metadynamics/-/tree/master/examples
https://gitlab.com/aestheses/comparative-metadynamics
mailto:donal.mackernan@ucd.ie
mailto:ali.jafaar@ucd.ie
https://eessi.github.io/docs/

E-CAM Documentation, Release 0.2

Through the EESSI project, they want to set up a shared stack of scientific software installations to avoid not only
duplicate work across HPC sites but also the execution of sub-optimal applications on HPC resources.

For end users, EESSI wants to provide a uniform user experience with respect to available scientific software, re-
gardless of which system they use. The software stack is intended to work on laptops, personal workstations, HPC
clusters and in the cloud, which means the project will need to support different CPUs, networks, GPUs, and so on.
The intention is to make this work for any Linux distribution, and a wide variety of CPU architectures (Intel, AMD,
ARM, POWER, RISC-V).

The pilot instance of the EESSI software stack includes GROMACS, and benchmarking is being done by E-CAM
using that application, which is why we include these modules in this section.

Software Technical Information

Name European Environment for Scientific Software Installations

Language Ansible for infrastructure, Python for installation framework

Licence GPL v2

Documentation Tool Markdown (and MkDocs)

Application Documentation https://eessi.github.io/docs/

Relevant Training Material https://github.com/EESSI/eessi-demo

Software Module Developed by Alan O’Cais (for contribution described here)

1.8.1 MPI support for EESSI-based containers

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The European Environment for Scientific Software Installations (EESSI) is a collaboration between a number of
academic and industrial partners in the HPC community to set up a shared stack of scientific software installations to
avoid the installation and execution of sub-optimal applications on HPC resources. The software stack is intended to
work on laptops, personal workstations, HPC clusters and in the cloud, which means the project will need to support
different CPUs, networks, GPUs, and so on.

EESSI can be used through via containers, however this requires some additional settings for MPI workloads. This
module outlines the creation of an initialisation script that can facilitate this while also catering to systems which have
no direct connection to the internet.

Purpose of Module

The EESSI architecture is built upon the CernVM-FS distributed file system which provides a scalable, reliable and
low-maintenance software distribution service. CernVM-FS uses a cache so that a client only ever has local copies of
the files it actually needs. The cache is populated over the http protocol.

132 Chapter 1. Classical MD Modules

https://opensource.org/licenses/GPL-2.0
https://www.mkdocs.org/
https://eessi.github.io/docs/
https://github.com/EESSI/eessi-demo
https://eessi.github.io/docs/
https://cernvm.cern.ch/fs/

E-CAM Documentation, Release 0.2

If CernVM-FS is not available or configured where a user would like to use EESSI, it is still possible to use EESSI
via a Singularity container. The container approach, however, requires additional configuration when considering MPI
workloads.

In addition, there are many cases where worker nodes in HPC systems have no connection to the outside world, which
makes it impossible for them to populate their CernVM-FS cache.

This module describes a script created to address both of these issues.

Background Information

The European Environment for Scientific Software Installations EESSI is a collaboration between a number of aca-
demic and industrial partners in the HPC community. Through the EESSI project, they want to set up a shared stack of
scientific software installations to avoid not only duplicate work across HPC sites but also the execution of sub-optimal
applications on HPC resources.

The software stack is intended to work on laptops, personal workstations, HPC clusters and in the cloud, which means
the project will need to support different CPUs, networks, GPUs, and so on. When using singularity containers which
leverage EESSI on HPC systems there are additional requirements to ensure that MPI workloads can be correctly
launched and run.

Building and Testing

The script itself can be downloaded as described in the next section. It includes extensive commenting and, at the time
of writing, is configured to use the 2020.12 version of the EESSI pilot software stack. You should configure settings
in the script according to the system you have access to.

The script creates two layers of caching for CernVM-FS, a global one and a per-node cache. The script should be
run from a location that has external internet access and access to the shared file system of the HPC resource. The
script will inspect the architecture where it is run, and fully pre-populate the cache with the software stack for that
architecture. The per-node cache is then dynamically populated from the global cache.

After running the script, it will tell the user to set a number of environment variables, e.g.,

export EESSI_CONFIG="container:cvmfs2 cvmfs-config.eessi-hpc.org /cvmfs/cvmfs-config.
→˓eessi-hpc.org"
export EESSI_PILOT="container:cvmfs2 pilot.eessi-hpc.org /cvmfs/pilot.eessi-hpc.org"
export SINGULARITY_HOME="/p/project/cecam/singularity/cecam/ocais1/home:/home/ocais1"
export SINGULARITY_BIND="/p/project/cecam/singularity/cecam/alien_2020.12:/shared_
→˓alien,/tmp:/local_alien,/p/project/cecam/singularity/cecam/ocais1/home/default.
→˓local:/etc/cvmfs/default.local"
export SINGULARITY_SCRATCH="/var/lib/cvmfs,/var/run/cvmfs"

It will also tell you how to start a shell session within the container

singularity shell --fusemount "$EESSI_CONFIG" --fusemount "$EESSI_PILOT" /p/project/
→˓cecam/singularity/cecam/ocais1/client-pilot_centos7-x86_64.sif

Once inside the shell you are able to initialise the EESSI computing environment, which will give you access to all
the software available within EESSI, and which you can access via environment modules. You can use the modules
to access the software you are interested in, and to find the path to the executables you are interested in within the
container. Let’s do this for GROMACS executable gmx_mpi.

Singularity> source /cvmfs/pilot.eessi-hpc.org/2020.12/init/bash
Found EESSI pilot repo @ /cvmfs/pilot.eessi-hpc.org/2020.12!
Using x86_64/intel/skylake_avx512 as software subdirectory.

(continues on next page)

1.8. European Environment for Scientific Software Installations 133

https://sylabs.io/
https://eessi.github.io/docs/

E-CAM Documentation, Release 0.2

(continued from previous page)

Using /cvmfs/pilot.eessi-hpc.org/2020.12/software/x86_64/intel/skylake_avx512/modules/
→˓all as the directory to be added to MODULEPATH.
Found Lmod configuration file at /cvmfs/pilot.eessi-hpc.org/2020.12/software/x86_64/
→˓intel/skylake_avx512/.lmod/lmodrc.lua
Initializing Lmod...
Prepending /cvmfs/pilot.eessi-hpc.org/2020.12/software/x86_64/intel/skylake_avx512/
→˓modules/all to $MODULEPATH...
Environment set up to use EESSI pilot software stack, have fun!
[EESSI pilot 2020.12] $ module load GROMACS
[EESSI pilot 2020.12] $ which gmx_mpi
/cvmfs/pilot.eessi-hpc.org/2020.12/software/x86_64/intel/skylake_avx512/software/
→˓GROMACS/2020.1-foss-2020a-Python-3.8.2/bin/gmx_mpi

Now that we know the path to the executable within the container, we can call it directly from outside the container
and use it within a batch job. We show how one can execute a GROMACS benchwork using the installation found
inside EESSI (on JUWELS):

[juwels01 ~]$ SLURM_MPI_TYPE=pspmix OMP_NUM_THREADS=2 \
srun --time=00:05:00 --nodes=1 --ntasks-per-node=24 --cpus-per-task=2 \
singularity exec --fusemount "$EESSI_CONFIG" --fusemount "$EESSI_PILOT"

→˓\
/p/project/cecam/singularity/cecam/ocais1/client-pilot_centos7-x86_64.

→˓sif \
/cvmfs/pilot.eessi-hpc.org/2020.12/software/x86_64/intel/skylake_avx512/

→˓software/GROMACS/2020.1-foss-2020a-Python-3.8.2/bin/gmx_mpi \
mdrun -s ion_channel.tpr -maxh 0.50 -resethway -noconfout -nsteps 10 -g

→˓logfile

Source Code

EESSI is still in a pilot phase, and for this reason the final version of this script cannot be created until the underlying
requirements have stabilised. For the time being the script is contained in an issue in the EESSI filesystem layer
repository.

Software Technical Information

Name LearnHPC

Language Terraform for infrastructure

Licence GPL v2

Documentation Tool Markdown (and MkDocs)

Application Documentation https://learnhpc.eu/

Relevant Training Material https://learnhpc.eu/hpc-intro

Software Module Developed by Alan O’Cais (for contribution described here)

1.8.2 EESSI and vGPU support in Magic Castle

134 Chapter 1. Classical MD Modules

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html
https://github.com/EESSI/filesystem-layer/issues/37#issue-701122823
https://github.com/EESSI/filesystem-layer/issues/37#issue-701122823
https://opensource.org/licenses/GPL-2.0
https://www.mkdocs.org/
https://learnhpc.eu/
https://learnhpc.eu/hpc-intro

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

In the module MPI support for EESSI-based containers, we introduced the European Environment for Scientific
Software Installations (EESSI) which provides a shared stack of scientific software installations. That software stack
is intended to work on laptops, personal workstations, HPC clusters and in the cloud. That initiative is built upon the
previous efforts of Compute Canada to develop a pan-Canadian software infrastructure.

Another interesting project to come from Compute Canada, which leverages the software infrastructure, is Magic
Castle. Magic Castle which aims to recreate the Compute Canada user experience in public clouds, it uses the open-
source software Terraform and HashiCorp Language (HCL) to define the virtual machines, volumes, and networks
that are required to replicate a virtual HPC infrastructure. After deployment, the user is provided with a complete
HPC cluster software environment including a Slurm scheduler, a Globus Endpoint, JupyterHub, LDAP, DNS, and
over 3000 research software applications compiled by experts with EasyBuild.

Magic Castle is compatible with AWS, Microsoft Azure, Google Cloud, OpenStack, and OVH.

Purpose of Module

This module describes the inclusion and support of the EESSI software stack in Magic Castle. In addition we also in-
clude the generalisation of the virtual GPU (vGPU) support within Magic Castle for those found in the Fenix Research
Infrastructure.

Background Information

EU-wide requirements for HPC training are exploding as the adoption of HPC in the wider scientific community
gathers pace. However, the number of topics that can be thoroughly addressed without providing access to actual HPC
resources is very limited, even at the introductory level. In cases where such access is available, security concerns and
the overhead of the process of provisioning accounts make the scalability of this approach questionable.

EU-wide access to HPC resources on the scale required to meet the training needs of all countries is an objective that
we attempt to address with LearnHPC. The proposed solution leverages Magic Castle to provision virtual HPC systems
in a public cloud. This infrastructure will allow us to dynamically create temporary event-specific HPC clusters for
training purposes, including a scientific software stack from EESSI.

Building and Testing

Since EESSI is now already integrated in Magic Castle, one can simply follow the standard Magic Castle setup
instructions and use the switch for the EESSI software stack in the infrastructure configuration file.

If you use vGPU enabled instances for execution nodes in your virtual cluster, the vGPUs will be automatically
configured and included as available resources in the SLURM environment.

Source Code

For EESSI support in Magic Castle, see

• https://github.com/ComputeCanada/magic_castle/pull/124

• https://github.com/ComputeCanada/puppet-magic_castle/pull/77

1.8. European Environment for Scientific Software Installations 135

https://eessi.github.io/docs/
https://www.computecanada.ca/
https://github.com/ComputeCanada/magic_castle
https://github.com/ComputeCanada/magic_castle
https://fenix-ri.eu/
https://fenix-ri.eu/
https://www.learnhpc.eu/
https://github.com/ComputeCanada/magic_castle#setup
https://github.com/ComputeCanada/magic_castle#setup
https://github.com/ComputeCanada/magic_castle/blob/master/docs/README.md#417-software_stack-optional
https://github.com/ComputeCanada/magic_castle/pull/124
https://github.com/ComputeCanada/puppet-magic_castle/pull/77

E-CAM Documentation, Release 0.2

• https://github.com/EESSI/software-layer/pull/43

• https://github.com/EESSI/software-layer/pull/47

For the support of the vGPUs from the Fenix Infrastructure, see

• https://github.com/ComputeCanada/puppet-magic_castle/pull/93

• https://github.com/ComputeCanada/puppet-magic_castle/pull/95

• https://github.com/ComputeCanada/puppet-magic_castle/pull/94

Software Technical Information

Name EESSI GitHub Action

Language Yaml, bash

Licence MIT

Documentation Tool Markdown

Application Documentation https://github.com/marketplace/actions/eessi

Relevant Training Material None

Software Module Developed by Alan O’Cais (for contribution described here)

1.8.3 EESSI-based GitHub Action for Continuous Integration

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The European Environment for Scientific Software Installations (EESSI) is a collaboration between a number of
academic and industrial partners in the HPC community to set up a shared stack of scientific software installations to
avoid the installation and execution of sub-optimal applications on HPC resources. The software stack is intended to
work on laptops, personal workstations, HPC clusters and in the cloud, which means the project will need to support
different CPUs, networks, GPUs, and so on.

EESSI can be leveraged in continuous integration (CI) workflows to easily provide the dependencies of an application.
With this module we are a GitHub Action for EESSI so that it can be used with CI on GitHub.

Purpose of Module

To set up the European Environment for Scientific Software Installations (EESSI) for use in GitHub Workflows.

Background Information

The European Environment for Scientific Software Installations EESSI is a collaboration between a number of aca-
demic and industrial partners in the HPC community. Through the EESSI project, they want to set up a shared stack of

136 Chapter 1. Classical MD Modules

https://github.com/EESSI/software-layer/pull/43
https://github.com/EESSI/software-layer/pull/47
https://github.com/ComputeCanada/puppet-magic_castle/pull/93
https://github.com/ComputeCanada/puppet-magic_castle/pull/95
https://github.com/ComputeCanada/puppet-magic_castle/pull/94
https://opensource.org/licenses/MIT
https://github.com/marketplace/actions/eessi
https://eessi.github.io/docs/
https://docs.github.com/en/actions
https://eessi.github.io/docs/

E-CAM Documentation, Release 0.2

scientific software installations to avoid not only duplicate work across HPC sites but also the execution of sub-optimal
applications on HPC resources.

The software stack is intended to work on laptops, personal workstations, HPC clusters and in the cloud, which means
the project will need to support different CPUs, networks, GPUs, and so on. As such the stack can also be leveraged
to provide dependencies for applications within CI workflows.

Building and Testing

You can use this GitHub Action in a workflow in your own repository, see the EESSI action in the GitHub Marketplace
for further details.

A minimal job example for GitHub-hosted runners of type ubuntu-latest is:

jobs:
ubuntu-minimal:
runs-on: ubuntu-latest
steps:
- uses: eessi/github-action-eessi@v1
- name: Test EESSI

run: |
module avail

shell: bash

This means that one can potentially load any application provided by EESSI in your workflow. A further full example
that uses GROMACS from a particular version of the EESSI stack (2020.12) is:

name: ubuntu_gromacs
on: [push, pull_request]
jobs:

build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: eessi/github-action-eessi@main

with:
eessi_stack_version: '2020.12'

- name: Test EESSI
run: |

module load GROMACS
gmx --version

shell: bash

Source Code

We link here the GitHub repository of the EESSI GitHub Action.

General Information

Contents

• Electronic Structure Modules
– Introduction
– Extended Software Development Workshops
– Pilot Projects

1.8. European Environment for Scientific Software Installations 137

https://github.com/marketplace/actions/eessi
https://github.com/EESSI/github-action-eessi

E-CAM Documentation, Release 0.2

• How to contribute?

• search

138 Chapter 1. Classical MD Modules

CHAPTER 2

Electronic Structure Modules

2.1 Introduction

This is a collection of the modules that have been created by E-CAM community
within the area of Electronic Structure. This documentation is created using ReStruc-
tured Text and the git repository for the documentation source files can be found at
https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library which are public and open to con-
tributions.

In the context of E-CAM, the definition of a software module is any piece of software
that could be of use to the E-CAM community and that encapsulates some additional

functionality, enhanced performance or improved usability for people performing computational simulations in the
domain areas of interest to us.

This definition is deliberately broader than the traditional concept of a module as defined in the semantics of most
high-level programming languages and is intended to capture inter alia workflow scripts, analysis tools and test suites
as well as traditional subroutines and functions. Because such E-CAM modules will form a heterogeneous collection
we prefer to refer to this as an E-CAM software repository rather than a library (since the word library carries a
particular meaning in the programming world). The modules do however share with the traditional computer science
definition the concept of hiding the internal workings of a module behind simple and well-defined interfaces. It is
probable that in many cases the modules will result from the abstraction and refactoring of useful ideas from existing
codes rather than being written entirely de novo.

Perhaps more important than exactly what a module is, is how it is written and used. A final E-CAM module adheres
to current best-practice programming style conventions, is well documented and comes with either regression or unit
tests (and any necessary associated data). E-CAM modules should be written in such a way that they can potentially
take advantage of anticipated hardware developments in the near future (and this is one of the training objectives of
E-CAM).

139

https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library

E-CAM Documentation, Release 0.2

2.2 Extended Software Development Workshops

2.2.1 ESDW Zaragoza 2016

The first Electronic Structure ESDW in Zaragoza in June 2016 was the starting point for the modules below.

MatrixSwitch

Software Technical Information

The information in this section describes MatrixSwitch as a whole. Information specific to the additions in this
module are in subsequent sections.

Language Fortran 2008

Documentation Tool Sphinx, ReStructuredText

Application Documentation ESL wiki

Relevant Training Material See usage examples in the examples directory of the source code.

Licence Simplified BSD

• Purpose of Module

• Background Information

• Installation

• Testing

• Source Code

Purpose of Module

MatrixSwitch is a module which acts as an intermediary interface layer between high-level routines for physics-related
algorithms and low-level routines dealing with matrix storage and manipulation. This allows the high-level routines to
be written in a way which is physically transparent, and enables them to switch seamlessly between different software
implementations of the matrix operations.

Background Information

MatrixSwitch is a software library and module to be used within a calling code. It is developed within the same
repository project as other libraries (see Source Code Section), but all are self-contained within separate directories.

Installation

The source code of the MatrixSwitch module is bundled in the git repository of the omm-bundle software which you
can obtain using git:

140 Chapter 2. Electronic Structure Modules

http://esl.cecam.org/MatrixSwitch

E-CAM Documentation, Release 0.2

git clone https://gitlab.e-cam2020.eu/ESL/omm.git

The source code of the MatrixSwitch module itself is contained in a subdirectory with the same name,
MatrixSwitch.

Note: The information contained in the Installation and Testing sections are likely to work with the latest version
of the source code from the repository. If this is not the case you can revert to the commit where the information is
guaranteed to work:

git checkout 919d916f

1. Enter the src directory.

2. Copy make.inc.example to make.inc and modify it to suit your needs. Available options for FPPFLAGS
are:

• -DHAVE_MPI: enable MPI parallel routines

• -DHAVE_LAPACK: enable LAPACK routines

• -DHAVE_SCALAPACK: enable ScaLAPACK routines (requires MPI)

• -DHAVE_PSPBLAS: enable to link to pspBLAS (requires pspBLAS installed at first)

• -DCONV: enable automatic conversion of scalar types (real/complex) to agree with matrix definitions
(real/complex). Note that conversions from complex to real will simply discard the imaginary part.

3. Type make -f Makefile.manual.

4. Type make -f Makefile.manual install.

Note: We provide also the possibility to build modules with Autotools. You can find the related documentation in the
following files: omm-bundle and MatrixSwith/doc

Testing

The examples directory contains a number of small programs that make use of MatrixSwitch. These can be useful
both for testing the installation and for learning how to use the library. To compile them:

1. Enter the examples directory.

2. Copy make.inc.example to make.inc and modify it to suit your needs. Be aware that make.inc in the
src directory will also be used.

3. Type make -f Makefile.manual.

Each example contains a header explaining what the program does and providing sample output to compare against.

Source Code

The source code is available from the E-CAM Gitlab under the omm-bundle project. The MatrixSwitch directory can
be found here.

2.2. Extended Software Development Workshops 141

https://gitlab.e-cam2020.eu/ESL/omm
https://gitlab.e-cam2020.eu/ESL/omm/tree/master/MatrixSwitch/doc
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/omm/
https://gitlab.e-cam2020.eu/ESL/omm/tree/master/MatrixSwitch

E-CAM Documentation, Release 0.2

libOMM

Software Technical Information

Language Fortran 2008

Documentation Tool Sphinx, ReStructuredText

Application Documentation ESL wiki

Relevant Training Material See usage examples in the examples directory of the source code.

Licence Simplified BSD

• Purpose of Module

• Background Information

• Software Technical Information

• Installation

• Testing

• Source Code

Purpose of Module

libOMM solves the Kohn-Sham equation as a generalized eigenvalue problem for a fixed Hamiltonian. It implements
the orbital minimization method (OMM), which works within a density matrix formalism. The basic strategy of
the OMM is to find the set of Wannier functions (WFs) describing the occupied subspace by direct unconstrained
minimization of an appropriately-constructed functional. The density matrix can then be calculated from the WFs.
The solver is usually employed within an outer self-consistency (SCF) cycle. Therefore, the WFs resulting from one
SCF iteration can be saved and then re-used as the initial guess for the next iteration.

Background Information

libOMM is a software library to be used within a calling code. It is built on top of the MatrixSwitch library for dealing
with matrix storage and operations. Both libraries are developed within the same repository project (see Source Code),
but are self-contained within separate directories.

Software Technical Information

License Simplified BSD

Language Fortran 2008

Documentation Tool Source code documentation in progress.

Application Documentation The ESL wiki

Relevant Training Material See usage examples in the examples directory of the source code.

142 Chapter 2. Electronic Structure Modules

http://esl.cecam.org/LibOMM
http://esl.cecam.org/libOMM

E-CAM Documentation, Release 0.2

Installation

The source code of the LibOMM module is bundled in the git repository of the omm-bundle software which you can
obtain using git:

git clone https://gitlab.e-cam2020.eu/ESL/omm.git

The source code of the LibOMM module itself is contained in a subdirectory with the same name, LibOMM.

Note: The information contained in the Installation and Testing sections are likely to work with the latest version
of the source code from the repository. If this is not the case you can revert to the commit where the information is
guaranteed to work:

git checkout 7eda3275

1. Enter the src directory.

2. Copy make.inc.example to make.inc and modify it to suit your needs. MSLIBPATH should point to
the MatrixSwitch directory (default in make.inc.example is for the version included in the distribution).
LibOMM should be compiled with the -DCONV flag. Some available options for FPPFLAGS are:

• -DHAVE_MPI: enable MPI parallel routines

• -DHAVE_LAPACK: enable LAPACK routines (currently necessary for preconditioning/Cholesky factor-
ization)

• -DHAVE_SCALAPACK: enable ScaLAPACK routines (requires -DMPI)

• -DNORAND: fixed seed for the random number generator. Enable for testing purposes.

• -DCBIND: use ISO_C_BINDING for LOGICAL inputs in the wrapper interfaces. Enable for linking to
C.

3. Type make -f Makefile.manual.

4. Type make -f Makefile.manual install.

Note: We provide also the possibility to build modules with Autotools. You can find the related documentation in the
following files:omm-bundle and LibOMM/doc

Testing

The examples directory contains a number of small programs that make use of libOMM with MatrixSwitch. These
can be useful both for testing the installation and for learning how to use the library. To compile them:

1. Enter the examples directory.

2. Copy make.inc.example to make.inc and modify it to suit your needs. Be aware that make.inc in the
src directory will also be used.

3. Type make -f Makefile.manual.

Each example contains a header explaining what the program does and providing sample output to compare against.

2.2. Extended Software Development Workshops 143

https://gitlab.e-cam2020.eu/ESL/omm
https://gitlab.e-cam2020.eu/fcorsetti/omm/tree/master/libOMM/doc

E-CAM Documentation, Release 0.2

Source Code

The source code is available from the E-CAM Gitlab under the omm-bundle project. The libOMM directory can be
found here.

FDF - Flexible Data Format

Software Technical Information

Language Fortran 95

Documentation Tool Sphinx, ReStructuredText

Application Documentation ESL wiki

Licence GPL

• Purpose of Module

• Background Information

• Software Technical Information

• Installation

• Testing

• Source Code

Purpose of Module

FDF (Flexible Data Format) is an input file parser that offers an easy, transferable and practical way for a Fortran
program to read its input. It is text (ASCII) based, and conceived for small data (input parameters). Every input piece
of data is introduced in a line of an input file (which can be standard input) by writing a name-value pair, that is, a
name characterising the data, and its value. If the latter corresponds to a physical magnitude, the units can also be
specified after the value. Names can be long and should be descriptive of the value it corresponds to. FDF blocks are
used to input structured data, in which case, the program using FDF reads the inside of the block.

From the programming point of view, FDF allows for any data to be retrieved whenever, from any part of the code,
and in any order.

If a piece of data sought by FDF is not found in the input file, FDF will return a default value, as set up in the call to
the FDF routine.

Background Information

FDF is a software library and module to be used within a calling code. It is developed as part of the Siesta DFT code
(see Source Code), but is self-contained within a separate directory and can be used independently of the main code.

144 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/omm/
https://gitlab.e-cam2020.eu/ESL/omm/tree/master/libOMM
http://esl.cecam.org/FDF_-_Flexible_Data_Format

E-CAM Documentation, Release 0.2

Software Technical Information

License GPL

Language Fortran 95

Documentation Tool Source code documentation in progress.

Application Documentation ESL wiki

Relevant Training Material Creation of materials in progress.

Installation

Note: The information contained in the Installation and Testing sections are likely to work with the latest version of
the source code from the Siesta website. If this is not the case you can download the siesta-4.1-b2 release where the
information is guaranteed to work.

For now, FDF has to be compiled as part of Siesta; see the documentation in the Docs directory. Once compiled, the
FDF library and module files can be found in the fdf subdirectory of the building directory.

1.For the senquential version installation, go to Obj and issue the command:

sh ../Src/obj_setup.sh

• If the intel compiler is used, do:

cp intel.make arch.make

• If the gcc compiler is used, do:

cp gfortran.make arch.make

then do:

make

2. For parallel version installation, you should follow the same procedure except of using a appropriate parallel
arch.make. A arch.make file with gcc compiler is available in E-CAM website.

Testing

Choose one specific test under the Obj/Tests directory, do:

make

Compare the output files with those under Tests/Reference.

Source Code

The source code is available from the Launchpad under the siesta project. The FDF directory can be found here.

2.2. Extended Software Development Workshops 145

http://esl.cecam.org/FDF_-_Flexible_Data_Format
https://launchpad.net/siesta/4.1/4.1-b2
https://gitlab.e-cam2020.eu:10443/E-CAM/Electronic-Structure-Modules/uploads/5fb8a4bbd4612fcfb4ea932d30804d6f/arch.make
https://launchpad.net/
https://code.launchpad.net/siesta/
http://bazaar.launchpad.net/~siesta-maint/siesta/trunk/files/head:/Src/fdf/

E-CAM Documentation, Release 0.2

Libpspio

Software Technical Information

Language Libpspio is written in C, with bindings in Fortran 2003.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation Provide a link to any documentation

Application Documentation ESL wiki

Licence GNU Lesser GPL

• Purpose of Module

• Software Technical Information

• Installation

• Testing

• Source Code

Libpspio is a pseudopotentials I/O library for Density-Functional Theory (DFT) calculations. It can both read and
write pseudopotential data, which makes it suitable for use with pseudopotential generators and electronic structure
codes.

Purpose of Module

The main objective of Libpspio is to let any DFT code access or produce pseudopotential information without having
to care about file formats. Libpspio is a valuable alternative to most error-prone homemade implementations and is
helpful in improving file format specifications.

Software Technical Information

Language Libpspio is written in C, with bindings in Fortran 2003.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation Provide a link to any documentation

Application Documentation The ESL wiki

Licence GNU Lesser GPL

Installation

A release can be download from This link Current installation and testing are done with gcc compiler. GNU Scientific
Library (GSL, version>1.15) and Check (a unit test framework for C, version>0.94) is required for installation and
testing.

Here are the commands for installation:

146 Chapter 2. Electronic Structure Modules

http://esl.cecam.org/Libpspio
http://esl.cecam.org/Libpspio
https://gitlab.e-cam2020.eu/ESL/pspio/tags/v0.0.0

E-CAM Documentation, Release 0.2

$ tar xfvz libpspio-0.0.0.tar.gz
$./configure
$ make

Note: We provide also the possibility to build modules with Autotools. This is a useful document.

Testing

Libpspio contains several unit tests that can be used to check the compilation and to perform regression testing. These
tests can be executed by doing:

$ make check

Source Code

The source code is available from the E-CAM Gitlab under the pspio project. The Libpspio directory can be found
here.

Libescdf

Software Technical Information

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation The ESL wiki

Licence L-GPL v3

• Purpose of Module

• Software Technical Information

• Installation

• Testing

• Source Code

Libescdf is a library containing tools for reading and writing massive data structures related to electronic structure
calculations, following the standards defined in the Electronic Structure Common Data Format

Purpose of Module

Libescdf is a library created to exchange electronic-structure-related data in a platform-independent and efficient
manner. It is based on the Electronic Structure Common Data Format Specifications, as well as HDF5.

2.2. Extended Software Development Workshops 147

https://gitlab.e-cam2020.eu/ESL/omm/blob/master/libOMM/doc/hacking-the-build-system.md
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/pspio/
https://gitlab.e-cam2020.eu/ESL/pspio/tree/master
http://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format
http://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format

E-CAM Documentation, Release 0.2

Software Technical Information

License L-GPL v3

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen

Application Documentation ESL wiki

Installation

A release can be download from this link Current installation and testing are done with gcc compiler. HDF5 is required
for installation and testing.

Here are the commands for installation:

$ tar xfvz libescdf-0.1.0.tar.gz
$./configure
$ make

Note: We provide also the possibility to build modules with Autotools. Here are some useful documents.

Testing

Libescdf contains several unit tests that can be used to check the compilation and to perform regression testing. Check
(version>=0.9.4) is required for installation and testing. These tests can be executed by doing:

$ make check

Source Code

The source code is available from the E-CAM Gitlab under the escdf project. The Libescdf directory can
be found here.

POKE

Software Technical Information

Language Fortran 2008

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation ESL wiki

Licence L-GPL v3

148 Chapter 2. Electronic Structure Modules

http://esl.cecam.org/Libescdf
https://gitlab.e-cam2020.eu/ESL/escdf/tags/Version0.1.0
https://gitlab.e-cam2020.eu/ESL/escdf/tree/master/doc
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/escdf/
https://gitlab.e-cam2020.eu/ESL/escdf/tree/master
http://esl.cecam.org/POKE

E-CAM Documentation, Release 0.2

• Purpose of Module

• Software Technical Information

• Installation

• Testing

• Source Code

Poke is a solver for the Poisson equation designed for electronic structure codes

Purpose of Module

Poke is a solver for the Poisson equation designed for electronic structure codes. Similarly to the eigensolvers, the aim
is be to implement in a single package several different algorithms of use in different situations, providing a unified
and clean interface for the user. Special attention goes to allowing different FFT back ends to be connected to the
library.

Software Technical Information

License LGPL v3

Language Fortran 2008

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation The ESL wiki

Installation

A release can be download from this link Current installation and testing are done with gcc compiler. FFTW is required
for installation and testing.

Here are the commands for installation:

$ tar xfvz poke-ahi.tar.gz
$./configure
$ make

Note: We provide also the possibility to build modules with Autotools. This is a useful document.

Testing

Poke contains several unit tests that can be used to check the compilation and to perform regression testing. These
tests can be executed by doing:

$ make check

2.2. Extended Software Development Workshops 149

http://esl.cecam.org/POKE
https://gitlab.e-cam2020.eu/ESL/poke/tags/Version-Poke-ahi
https://gitlab.e-cam2020.eu/ESL/omm/blob/master/libOMM/doc/hacking-the-build-system.md

E-CAM Documentation, Release 0.2

Source Code

The source code is available from the E-CAM Gitlab under the poke project. The poke directory can be
found here.

SQARE radial grids and functions

Software Technical Information

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation ESL wiki

Licence L-GPL v3

• Purpose of Module

• Background Information

• Software Technical Information

• Installation

• Testing

• Source Code

SQARE (Solvers for quantum atomic radial equations) is a library of utilities intended for dealing with functions
discretized on radial meshes, wave-equations with spherical symmetry and their corresponding quantum states. The
utilities are segregated into three levels: radial grids and functions, ODE solvers, and states.

Purpose of Module

This module provides functions and structures to create radial meshes and define discretized radial functions on those
meshes.

Background Information

If the modifications are to an existing code base then this would be the place to describe that codebase and how to get
access to it.

Software Technical Information

License LGLP v3

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation The ESL wiki

150 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/poke/
https://gitlab.e-cam2020.eu/ESL/poke/tree/develop
http://esl.cecam.org/SQARE
http://esl.cecam.org/SQARE

E-CAM Documentation, Release 0.2

Installation

A release can be download from this link Current installation and testing are done with gcc compiler. Check (ver-
sion>=0.9.4) is required for installation and testing.

Here are the commands for installation:

$ tar xfvz libsqare-0.0.0.tar.gz
$./configure
$ make

Testing

SQARE contains several unit tests that can be used to check the compilation and to perform regression testing. These
tests can be executed by doing:

$ make check

Source Code

The source code is available from the E-CAM Gitlab under the sqare project. The SQARE Grids directory can be
found here.

SQARE ODE

Software Technical Information

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation ESL wiki

Licence L-GPL v3

• Purpose of Module

• Background Information

• Software Technical Information

• Installation

• Testing

• Source Code

SQARE (Solvers for quantum atomic radial equations) is a library of utilities intended for dealing with functions
discretized on radial meshes, wave-equations with spherical symmetry and their corresponding quantum states. The
utilities are segregated into three levels: radial grids and functions, ODE solvers, and states.

2.2. Extended Software Development Workshops 151

https://gitlab.e-cam2020.eu/ESL/sqare/tags/v0.0.0
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/sqare/
https://gitlab.e-cam2020.eu/ESL/sqare/tree/src_split/grids
http://esl.cecam.org/SQARE

E-CAM Documentation, Release 0.2

Purpose of Module

This module provides functions and structures to solve ordinary differential equations on a radial mesh.

Background Information

If the modifications are to an existing code base then this would be the place to describe that codebase and how to get
access to it.

Software Technical Information

License LGLP v3

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation The ESL wiki

Installation

A release can be download from This link Current installation and testing are done with gcc compiler. Check (ver-
sion>=0.9.4) is required for installation and testing.

Here are the commands for installation:

$ tar xfvz libsqare-0.0.0.tar.gz
$./configure
$ make

Testing

SQARE contains several unit tests that can be used to check the compilation and to perform regression testing. These
tests can be executed by doing:

$ make check

Source Code

The source code is available from the E-CAM Gitlab under the sqare project. The SQARE ODE-solvers direc-
tory can be found here.

SQARE states

Software Technical Information

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen,Sphinx,ReStructuredText

152 Chapter 2. Electronic Structure Modules

http://esl.cecam.org/SQARE
https://gitlab.e-cam2020.eu/ESL/sqare/tags/v0.0.0
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/sqare/
https://gitlab.e-cam2020.eu/ESL/sqare/tree/src_split/ode-solvers

E-CAM Documentation, Release 0.2

Application Documentation ESL wiki

Licence L-GPL v3

• Purpose of Module

• Background Information

• Software Technical Information

• Installation

• Testing

• Source Code

SQARE (Solvers for quantum atomic radial equations) is a library of utilities intended for dealing with functions
discretized on radial meshes, wave-equations with spherical symmetry and their corresponding quantum states. The
utilities are segregated into three levels: radial grids and functions, ODE solvers, and states.

Purpose of Module

This module provides functions and structures to solve radial wave-equations in various flavors and obtain the corre-
sponding eigenstates.

Background Information

If the modifications are to an existing code base then this would be the place to describe that codebase and how to get
access to it.

Software Technical Information

License LGLP v3

Language C with Fortran 2003 bindings.

Documentation Tool Doxygen,Sphinx,ReStructuredText

Application Documentation The ESL wiki

Installation

A release can be download from this link Current installation and testing are done with gcc compiler. Check (ver-
sion>=0.9.4) is required for installation and testing.

Here are the commands for installation:

$ tar xfvz libsqare-0.0.0.tar.gz
$./configure
$ make

2.2. Extended Software Development Workshops 153

http://esl.cecam.org/SQARE
http://esl.cecam.org/SQARE
https://gitlab.e-cam2020.eu/ESL/sqare/tags/v0.0.0

E-CAM Documentation, Release 0.2

Testing

SQARE contains several unit tests that can be used to check the compilation and to perform regression testing. These
tests can be executed by doing:

$ make check

Source Code

The source code is available from the E-CAM Gitlab under the sqare project. The SQARE States directory can
be found here.

Software Technical Information

Name ESL Demonstrator

Language Fortran 2003

Licence Mozilla Public License v2.0

Documentation Tool Doxygen

Application Documentation Not currently available

Relevant Training Material Not currently available

The ESL Demonstrator

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The ESL Demonstrator is a basic atomic-scale simulation software illustrating how to use and bring together the
various available components of the Electronic Structure Library (ESL). It is meant to be used as a concrete imple-
mentation example for both end-users and developers. For users, it evidences and explains the typical operations and
building blocks of an electronic structure code. For developers, it shows how to bring together the different ESL com-
ponents in a consistent way. Although it is not expected to produce production-grade results, the ESL Demonstrator
can be helpful for beginners who want to discover the field of electronic-structure calculations.

Purpose of Module

Since 2014, researchers, engineers and developers from all over the world have regularly gathered to design, coor-
dinate and develop software libraries and tools of common interest for the electronic-structure community. In 2017,
the available modules reached a sufficient level of usability and completeness to be used widely within the whole
community. However, documenting every single module properly so that developers of electronic-structure software
can integrate them seamlessly into their own codes would have been a daunting task. The challenge was two-fold:

154 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/ESL/sqare/
https://gitlab.e-cam2020.eu/ESL/sqare/tree/src_split/states
https://www.mozilla.org/en-US/MPL/2.0/
https://www.doxygen.org/
https://esl.cecam.org/

E-CAM Documentation, Release 0.2

• How do we provide usable and comprehensive documentation and keep it accurate, while all the ESL projects
are evolving asynchronously, each at its own pace?

• How do we make the process efficient enough, so that a small number of volunteers can continue focus mostly
on their own projects, while the rest of the community benefits from relevant information and guidelines on how
to use these projects?

The ESL Demonstrator, aka esl-demo, addresses this issue by providing a concrete and evolving example of a mini-
malistic electronic-structure program entirely based on ESL components. It constitutes a global “executable documen-
tation” for the ESL. It is itself documented in a standard way, using Doxygen, to provide relevant explanations about
how to use each ESL component in the appropriate context. In this case, such an approach is much more suitable than
traditional documentation, mainly because instead of having to document between 10 and 20 components separately,
the ESL developers only have to take care of one meta-component, therefore:

• it requires less effort from less people;

• it can be put into action by anyone with a working build environment;

• it provides feedback to developers across the whole ESL about the possible side effects their changes may
produce;

• ESL components are built and used together, which provides a proof that they are indeed compatible and inter-
operable;

• API changes are automatically detected, even if they have not been communicated or published;

• defects and incompatibilities are easily made obvious and can be discussed around a concrete occurrence of the
problems and side effects they may cause.

Background Information

The esl-demo program is able to perform simple ground-state calculations using plane-wave (PW) or atom-centered
(AC) basis sets, as well as norm-conserving pseudopotentials.

Its architecture is made of 3 logical blocks, spanning 3 levels of execution, as illustrated in the following table:

Plane Waves
(PW)

Atom-Centered
(AC)

Basis-Independent (BI)

Self-Consistent Field
Eigensolvers Eigensolvers Smearing Exchange-Correlation Poisson Solver Mixing Ion-

Ion InteractionHΨ Hamiltonian
Builder

Plane-Wave Ba-
sis

Atom-Centered
Basis

I/O: FDF, ESCDF - Pseudos: Pspio, PSML - FFT Wrappers

Column-wise, one block takes care of plane-wave-related data and processes, another one focuses on atom-centered
aspects, and the remaining one handles everything independent from the basis sets. At the lowest level, the program
interacts with the computer hardware, operating system and system libraries available, as well as imports/exports data
related to the current calculation. In the middle layer, itself divided into 3 sub-levels, it implements the quantum-
mechanical equations in the framework of Density-Functional Theory (DFT). At the top level, it drives the operations
of the lower layers and applies completion criteria. All cells of the table but the Self-Consistent Field correspond to
the use of one or more ESL components.

esl-demo is available on Gitlab and mirrored on GitHub. It can be downloaded with Git. Please note that only the
Gitlab version is guaranteed to be up-to-date.

2.2. Extended Software Development Workshops 155

https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary
https://github.com/ElectronicStructureLibrary/esl-demo

E-CAM Documentation, Release 0.2

Building and Testing

The esl-demo is based on the esl-bundle module, which should be installed before starting to do anything related to
the esl-demo.

The recommended way to get started with the esl-demo module is first to download it from Gitlab with Git:

git clone https://gitlab.com/esl/esl-demo.git
cd esl-demo

Before continuing, please read the README.rst file of esl-demo carefully and make sure you have installed all the
prerequisites on your computer.

The esl-demo module uses Cmake as its build system. Here is a typical sequence to follow to build the code:

mkdir my_build
cd my_build
cmake .. -DBUILD_TESTING=1
make -j8

To run esl-demo, you will need at least a pseudopotential and a FDF input file. Some examples are provided in the
tests/ subdirectory of the source tree (which will now also be found in your my_build directory). You can run the
test suite in the my_build directory with make test.

Note: The information contained in the Installation and Testing sections are likely to work with the latest version of
the source code from the repository. If this is not the case, you can go back to the commit where this information is
guaranteed to work after the download is complete:

git checkout de3dac2

Source Code

esl-demo is an original ESL product created from scratch. Its source code is available from Gitlab under the esl-demo
project.

2.2.2 ESDW San Sebastian 2016

The ESDW in San Sebastian in September 2016 was the starting point for the modules below.

Symmetry-Adapted-Wannier-Functions module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source Code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

156 Chapter 2. Electronic Structure Modules

https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-bundle
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://git-scm.org/
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://cmake.org/
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary
https://gitlab.com/ElectronicStructureLibrary/esl-demo
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

This module implements the symmetry-adapted Wannier functions.

Purpose of Module

Implementation of the symmetry-adapted Wannier functions
(see R. Sakuma, Phys. Rev. B 87, 235109 (2013), courtesy
of R. Sakuma (Lund University, Sweden), T. Koretsune (Riken, JP),
Y. Nomura (U. Tokyo, JP), Y. Nohara (Atomic-Scale Material
Simulations, Co., Ltd.), R. Arita (Riken, JP))

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of
the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

2.2. Extended Software Development Workshops 157

http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite

E-CAM Documentation, Release 0.2

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

https://github.com/wannier-developers/wannier90/pull/7
https://github.com/wannier-developers/wannier90/pull/57
https://github.com/wannier-developers/wannier90/pull/66
https://github.com/wannier-developers/wannier90/pull/81
https://github.com/wannier-developers/wannier90/pull/84
https://github.com/wannier-developers/wannier90/pull/88
https://github.com/wannier-developers/wannier90/pull/89

Wannier90-TB-Interface module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

Purpose of Module

Streamlined the interface between wannier90 and tight-binding
codes such as pythtb (new input variable: write_tb). Also,
matrix elements of the position operator can now be printed
(courtesy P. Garcia Fernandez, Unican, ES)

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of

158 Chapter 2. Electronic Structure Modules

https://github.com/wannier-developers/wannier90/pull/7
https://github.com/wannier-developers/wannier90/pull/57
https://github.com/wannier-developers/wannier90/pull/66
https://github.com/wannier-developers/wannier90/pull/81
https://github.com/wannier-developers/wannier90/pull/84
https://github.com/wannier-developers/wannier90/pull/88
https://github.com/wannier-developers/wannier90/pull/89
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html

E-CAM Documentation, Release 0.2

the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see Wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

https://github.com/wannier-developers/wannier91/pull/8
https://github.com/wannier-developers/wannier90/pull/46
https://github.com/wannier-developers/wannier91/pull/56
https://github.com/wannier-developers/wannier91/pull/60

Non-Collinear-Spin module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

2.2. Extended Software Development Workshops 159

http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite
https://github.com/wannier-developers/wannier91/pull/8
https://github.com/wannier-developers/wannier90/pull/46
https://github.com/wannier-developers/wannier91/pull/56
https://github.com/wannier-developers/wannier91/pull/60
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

This module implements the non-collinear spin with ultrasoft pseudos functionality.

Purpose of Module

Non-collinear spin with ultrasoft pseudos now implemented
in the pw2wannier90 interface with Quantum ESPRESSO, working
also in parallel (courtesy F. Thoele (ETHZ, CH), T. Koretsune
(Riken, JP), L. Paulatto (UPMC Paris))

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of
the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see Wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

160 Chapter 2. Electronic Structure Modules

http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite

E-CAM Documentation, Release 0.2

https://github.com/wannier-developers/wannier91/pull/81
https://github.com/wannier-developers/wannier90/pull/88

Adaptively-Refined-Mesh module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Wannier code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

Purpose of Module

Adaptively-refined mesh is implemented correctly for even sizes
(e.g., 4x4). This module contains one important bugfix (calculation of orbital magnetization),
another less serious bugfix (calculation of spin-colored Fermi contours) and a number of miscellaneous
smaller things noted down as TO DO since the last release. (More details in related pull-request 60, see link in source
code section.)

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of
the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see ‘ Wannier code history <http://www.wannier.org/history.html>‘_)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

2.2. Extended Software Development Workshops 161

https://github.com/wannier-developers/wannier91/pull/81
https://github.com/wannier-developers/wannier90/pull/88
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html
http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install

E-CAM Documentation, Release 0.2

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

https://github.com/wannier-developers/wannier90/pull/60

FORD-Documentation-Tool-Integration module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source Code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

Purpose of Module

This module add the first implementation of the FORD infrastructure for code documentation (courtesy D. Gresch,
ETHZ).

162 Chapter 2. Electronic Structure Modules

https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite
https://github.com/wannier-developers/wannier90/pull/60
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html

E-CAM Documentation, Release 0.2

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of
the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see Wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

https://github.com/wannier-developers/wannier90/pull/15
https://github.com/wannier-developers/wannier90/pull/45
https://github.com/wannier-developers/wannier90/pull/67
https://github.com/wannier-developers/wannier90/pull/86

Improvement-Wannier90-Z2pack-Interface module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

2.2. Extended Software Development Workshops 163

http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite
https://github.com/wannier-developers/wannier90/pull/15
https://github.com/wannier-developers/wannier90/pull/45
https://github.com/wannier-developers/wannier90/pull/67
https://github.com/wannier-developers/wannier90/pull/86
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

Purpose of Module

Improved the interface with the Z2pack code (courtesy D. Gresch, ETHZ)
This introduces the nnkpts input block, which specifies the nearest neighbours. The format is the same as in the .nnkp
file, except that the number of neighbours per k-point is not needed as input. The goal of this is to have a consistent
interface to ab initio codes, to be used with Z2Pack.

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of
the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see Wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

164 Chapter 2. Electronic Structure Modules

http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite

E-CAM Documentation, Release 0.2

https://github.com/wannier-developers/wannier90/pull/11

Improvements-Makefiles module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

Purpose of Module

Improvements to various Makefiles and changes to Make.inc file for Wannier90 code.

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of
the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see Wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

2.2. Extended Software Development Workshops 165

https://github.com/wannier-developers/wannier90/pull/11
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html
http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6

E-CAM Documentation, Release 0.2

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

https://github.com/wannier-developers/wannier90/pull/12
https://github.com/wannier-developers/wannier90/pull/87

Use_WS_Distance module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

Purpose of Module

This module add the use_ws_distance flag to improve the interpolation of
band structures (courtesy of L. Paulatto, UPMC Paris).

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of

166 Chapter 2. Electronic Structure Modules

https://github.com/wannier-developers/wannier90/tree/develop/test-suite
https://github.com/wannier-developers/wannier90/pull/12
https://github.com/wannier-developers/wannier90/pull/87
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html

E-CAM Documentation, Release 0.2

the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see Wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

https://github.com/wannier-developers/wannier91/pull/3
https://github.com/wannier-developers/wannier90/pull/9
https://github.com/wannier-developers/wannier90/pull/53
https://github.com/wannier-developers/wannier90/pull/65
https://github.com/wannier-developers/wannier90/pull/78
https://github.com/wannier-developers/wannier90/pull/79

Test-Suite-Travis-CI-Integration module

Software Technical Information

Language FORTRAN

Licence GPLv2

Documentation Tool FORD for source code documentation, see Source code documentation.

Application Documentation http://www.wannier.org/user_guide.html

Relevant Training Material http://www.wannier.org/user_guide.html

2.2. Extended Software Development Workshops 167

http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite
https://github.com/wannier-developers/wannier91/pull/3
https://github.com/wannier-developers/wannier90/pull/9
https://github.com/wannier-developers/wannier90/pull/53
https://github.com/wannier-developers/wannier90/pull/65
https://github.com/wannier-developers/wannier90/pull/78
https://github.com/wannier-developers/wannier90/pull/79
http://www.wannier.org/ford/
http://www.wannier.org/user_guide.html
http://www.wannier.org/user_guide.html

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Installing

• Testing

• Source Code

Purpose of Module

This module added a test-suite, and integrated with GitHub and Travis-CI for
continuous integration. A number of tests have been added
(contributed mainly by S. Ponce, Oxford). Also compilation on the
buildbot test farm at the Oxford Materials Modelling Laboratory has been activated

Background Information

This module is produced during the ECAM/Wannier90-developer workshop held in San Sebastian. This coincided
with the move of the Wannier90 repository to GitHub to enable easier integration of community contributions. One of
the first such contributions was the ability to compute symmetry-adapted Wannier Functions. (For more background
information, see Wannier code history)

Installing

Installation of wannier90 code is relatively simple. Detailed installing information is given by this link.

Testing

Test-Suite (Pull-Request 5) and Travis-CI integration (Pull-Request 6) are added to Wannier90 repository during this
workshop.

Thus, each Pull-Request within this ECAM module passed the Travis-CI continuous integration test before being
merged into the Wannier90 code. Within the Travis-CI test, a set of tests in Test-Suite are checked. Manual testing
can be done through the following command:

$ make run-tests

If ‘run-custom-test-parallel’, it runs the specified test in parallel (4 process with MPI):

$ make run-custom-test-parallel testdir=example01

For more details, please see HERE.

Source Code

The source code of this module can be found in the following Pull-Requests in Wannier90 repository under Github:

168 Chapter 2. Electronic Structure Modules

http://www.wannier.org/history.html
https://raw.githubusercontent.com/wannier-developers/wannier90/develop/README.install
https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/tree/develop/test-suite

E-CAM Documentation, Release 0.2

https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/pull/14
https://github.com/wannier-developers/wannier90/pull/17
https://github.com/wannier-developers/wannier90/pull/22
https://github.com/wannier-developers/wannier90/pull/23
https://github.com/wannier-developers/wannier90/pull/26
https://github.com/wannier-developers/wannier90/pull/49
https://github.com/wannier-developers/wannier90/pull/51
https://github.com/wannier-developers/wannier90/pull/59
https://github.com/wannier-developers/wannier90/pull/63
https://github.com/wannier-developers/wannier90/pull/79
https://github.com/wannier-developers/wannier90/pull/84

2.2.3 ESDW Lausanne 2018

The ESDW in Lausanne in February 2018 was the starting point for the modules below.

ESL Bundle

Software Technical Information

Language The building framework is written in Python. For the languages used in the different modules included
in the Bundle, please check the corresponding documentation.

Licence The building framework is distributed under the GPL. For the licenses used in the different modules
included in the Bundle, please check the corresponding documentation.

Documentation Tool ReStructuredText

Application Documentation README

Relevant Training Material Not currently available.

Software Module Developed by The ESL Bundle was created by Damien Caliste, Alin Marin Elena, Micael
Oliveira, and Yann Pouillon. The building framework is based on a modified version of JHBuild, which
was written by James Henstridge.

• Purpose of Module

• Installation

• Source Code

The ESL Bundle aims at incorporating all the CECAM Electronic Structure Library modules into a single package
and using a unified framework for compilation and installation.

2.2. Extended Software Development Workshops 169

https://github.com/wannier-developers/wannier90/pull/5
https://github.com/wannier-developers/wannier90/pull/6
https://github.com/wannier-developers/wannier90/pull/14
https://github.com/wannier-developers/wannier90/pull/17
https://github.com/wannier-developers/wannier90/pull/22
https://github.com/wannier-developers/wannier90/pull/23
https://github.com/wannier-developers/wannier90/pull/26
https://github.com/wannier-developers/wannier90/pull/49
https://github.com/wannier-developers/wannier90/pull/51
https://github.com/wannier-developers/wannier90/pull/59
https://github.com/wannier-developers/wannier90/pull/63
https://github.com/wannier-developers/wannier90/pull/79
https://github.com/wannier-developers/wannier90/pull/84
https://opensource.org/licenses/gpl-license
https://gitlab.e-cam2020.eu/esl/esl-bundle/blob/master/README.rst
https://developer.gnome.org/jhbuild/stable/
http://esl.cecam.org

E-CAM Documentation, Release 0.2

Purpose of Module

The ESL Bundle is a collection of libraries and utilities broadly used in electronic structure calculations, put together
to make their use easier by researchers and scientific software developers. It includes a building framework helping
users, developers and packagers in obtaining a working installation of complex combinations of software packages
without having to track the dependencies themselves.

Installation

The ESL Bundle comes with a version of JHBuild which has been tuned to fit the context of the ESL. JHBuild supports
a wide variety of build systems, although it is not a build system itself. It is rather a tool designed to ease the build of
collections of related source packages, that it calls “modules”. It was originally written for the Gnome Project, but its
use has then been extended to other situations.

Most of the operations are performed by executing the jhbuild.py script with appropriate parameters. The com-
mand line syntax is the following:

jhbuild.py [global-options] command [command-arguments]

The following global options are available:

-f, --file config Use an alternative configuration file instead of the default ~/.config/jhbuildrc.

-m, --moduleset moduleset Use a module set other than the module set listed in the configuration file.
This option can be a relative path if the module set is located in the JHBuild
moduleset folder, or an absolute path if located elsewhere.

--no-interact Do not prompt the user for any input. This option is useful if leaving a build
unattended, in order to ensure the build is not interrupted.

In the ESL Bundle, the default module set is esl. This module set provides a meta-module called esl-bundle,
which builds and installs all the packages included in the bundle. A second meta-module called esl-bundle-mpi
is provided, that builds the packages with MPI support. Note that not all packages can be compiled with MPI support.
In that case they will be built without it.

The jhbuild.py script does not need to be invoked from the directory where it is located.

Note: To keep the source directory clean, we highly recommended the use of a build directory.

Therefore, a typical way of installing the collection of ESL libraries is the following:

mkdir my_build_dir
cd my_build_dir
../jhbuild.py build

By default, the build command will compile all the modules from the esl-bundle meta-module and install them
in the current directory. This, and a few other options, can be changed in the configuration file. Several sample
configuration files are provided in the rcfiles directory. These files should be suitable to build the bundle in a
variety of systems, but they can also be used as a starting point to write configuration files more suited to your needs.

The configuration files use Python syntax. Here is a list of some important options:

• modules: dictionary of modules to build.

• prefix: directory where the modules should be installed.

• checkoutroot: where to unpack the module’s sources.

170 Chapter 2. Electronic Structure Modules

https://developer.gnome.org/jhbuild/stable/
https://developer.gnome.org/jhbuild/stable/
https://www.gnome.org/

E-CAM Documentation, Release 0.2

Configuration options to be passed to the modules build systems can also be specified in the configuration file. Here
is an example of how to do this:

Set the FC variable when invoking the configure script for all modules
autogenargs="FC=gfortran"

Run make in parallel with two threads
makeargs="-j2"

Here the futile module requires an extra configuration option.
Note that this will overwrite the global options set by autogenargs, so we
have to add it here explicitly.
module_autogenargs['futile'] = "--with-ext-linalg='-lopenblas' " + autogenargs

Source Code

The source code is available from the E-CAM Gitlab under the esl-bundle project. The ESL Bundle directory can be
found here.

Software Technical Information

Name EasyBuild

Language Python

Licence GPL-2.0

Documentation Tool ReST

Application Documentation https://easybuild.readthedocs.io

Relevant Training Material See documentation

Software Module Developed by Micael Oliveira

Add ELPA easyblock to EasyBuild

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

EasyBuild is used by a number of large HPC sites and integrating targeted support for ELPA ensures that those sites
use optimally built versions of ELPA.

Purpose of Module

Automate the selection of appropriate configuration flags for ELPA within EasyBuild depending on the type of CPU
and available features. Include additional options as appropriate. Build single and double precision versions of ELPA
and also ensure it is linked against the expected version of the linear algebra libraries.

2.2. Extended Software Development Workshops 171

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/esl/esl-bundle/
https://gitlab.e-cam2020.eu/esl/esl-bundle/tree/master/
https://opensource.org/licenses/GPL-2.0
http://www.sphinx-doc.org/en/stable/rest.html
https://easybuild.readthedocs.io

E-CAM Documentation, Release 0.2

Background Information

EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Per-
formance Computing (HPC) systems in an efficient way. Full details on can be found in the EasyBuild documentation.

EasyBuild already had limited support for ELPA, this module allows for automated hardware specific configuration
and optimisations.

Building and Testing

To build the software requires EasyBuild (see installation instructions for EasyBuild here) and an example build
command would be:

eb ELPA-2018.11.001-intel-2019a.eb

Source Code

There are two relevant Pull Requests in the main EasyBuild repositories:

• https://github.com/easybuilders/easybuild-easyblocks/pull/1621

• https://github.com/easybuilders/easybuild-easyconfigs/pull/8360

2.2.4 ESDW Dublin 2019

The ESDW in Dublin in January 2019 was the starting point for the modules below.

ESL Easyconfigs

Software Technical Information

Language The easyconfigs are written in Python.

Licence The building framework is distributed under the GPL. For the licenses used in the different modules
included in the Bundle, please check the corresponding documentation.

Documentation Tool ReStructuredText

Application Documentation README

Relevant Training Material Not currently available.

Software Module Developed by The ESL Easyconfigs was created by Micael Oliveira, Yann Pouillon and Alin
Marin Elena.

• Purpose of Module

• Installation

• Source Code

172 Chapter 2. Electronic Structure Modules

https://easybuild.readthedocs.io/en/latest/
https://easybuild.readthedocs.io/en/latest/Installation.html
https://github.com/easybuilders/easybuild-easyblocks/pull/1621
https://github.com/easybuilders/easybuild-easyconfigs/pull/8360
https://opensource.org/licenses/gpl-license
https://gitlab.com/ElectronicStructureLibrary/esl-easyconfigs/blob/master/Readme.rst

E-CAM Documentation, Release 0.2

The ESL Easyconfigs aims at providing for all the CECAM Electronic Structure Library modules and their dependen-
cies easybuild easyconfigs to allow easy installation on supercomputers around the world that use EasyBuild package
manager.

Purpose of Module

The ESL Easyconfig is a collection of Easybuild easyconfigs that allow to easily build on a supercomputer all the
libraries and utilities broadly used in electronic structure calculations, put together to make their use easier by re-
searchers and scientific software developers. It includes a set of recipes for building the libraries and their dependen-
cies helping users, developers and packagers in obtaining a working installation of complex combinations of software
packages without having to track the dependencies themselves. We are aiming at providing the recipes up to date for
two of the most common toolchains foss and intel. Once considered mature enough the recipes will be upstreamed to
EasyBuild official catalogue.

Installation

One needs to install firstly Easybuild by following the preferred instructions

To install the full set of ESL modules and their dependencies for foss toolchain version 2019a (latest release at time of
writing) one needs to do

eb easyconfigs/e/esl-bundle/esl-bundle-0.3.1-foss-2019a.eb -r .

One shall note that in organizing the files the easyconfig recipes and their needed patches we follow the same conven-
tion as EasyBuild itself.

Source Code

The source code is available from the Gitlab under the esl-easyconfigs project. The ESL Bundle directory can be found
here.

Software Technical Information

Name ELSI - ELectronic Structure Infrastructure

Language ELSI is written in Fortran, with bindings in C/C++.

Licence 3-Clause BSD License

Documentation Tool Doxygen for source code documentation. LaTeX for the user manual.

Application Documentation User Manual

Relevant Training Material ‘Not currently available.’

Software Module Developed by Victor Wu

ELSI - ELectronic Structure Infrastructure

• Purpose of Module

2.2. Extended Software Development Workshops 173

http://esl.cecam.org
EasyBuildhttps://easybuild.readthedocs.io
https://gitlab.com
https://gitlab.com/ElectronicStructureLibrary/esl-easyconfigs
https://gitlab.com/ElectronicStructureLibrary/esl-easyconfigs/tree/master
https://opensource.org/licenses/BSD-3-Clause
https://wordpress.elsi-interchange.org/index.php/download/

E-CAM Documentation, Release 0.2

• Building and Testing

• Source Code

ELSI provides and enhances scalable, open-source software library solutions for electronic structure calculations in
materials science, condensed matter physics, chemistry, molecular biochemistry, and many other fields. ELSI focuses
on methods that solve or circumvent eigenvalue problems in electronic structure theory. The ELSI infrastructure
should also be useful for other challenging eigenvalue problems.

Purpose of Module

ELSI deals with the Kohn–Sham eigenvalue problem, which is central to Kohn–Sham density-functional theory, one of
the most widely used methods in electronic structure. This problem is often the bottleneck in large scale calculations
by high-performance computation and many different algorithms and strategies exist to tackle it. ELSI acts as a unified
software interface to access different algorithms and their corresponding implementations. This greatly simplifies the
implementation and optimal use of the different strategies.

One of the key design pillars of ELSI is portability and support for various computing environments, from laptop-
type computers all the way to the most efficient massively parallel supercomputers and new architectures (GPU and
manycore processors).

The libraries currently supported in ELSI are:

• ELPA (massively parallel dense eigensolvers)

• libOMM (orbital minimization method)

• PEXSI (pole expansion and selected inversion)

• EigenExa (massively parallel dense eigensolvers)

• SLEPc-SIPs (sparse eigensolver based on shift-and-invert spectral transformations)

• NTPoly (density matrix purification)

ELSI is used in several electronic structure codes, such as DFTB+, DGDFT, FHI-aims, and SIESTA.

Building and Testing

ELSI can be installed as part of the ESL-Bundle. Instructions to build the ESL-Bundle are provided in the ESL Bundle
module.

ELSI can also be built with EasyBuild by using the ESL Easyconfigs module.

Detailed instructions on how to build ELSI without using the above options are provided in the User Manual. ELSI
uses the CMake build system and the procedure to build it is fairly standard:

mkdir build
cd build
cmake [options] /path/to/elsi/sources
make
make install

A complete list of options can be found in the User Manual.

ELSI also provides several test programs. To run the test programs one first needs to enable them when running CMake
with the following option:

174 Chapter 2. Electronic Structure Modules

http://elpa.mpcdf.mpg.de/
http://esl.cecam.org/LibOMM
http://pexsi.org/
http://www.r-ccs.riken.jp/labs/lpnctrt/en/projects/eigenexa
http://slepc.upv.es/
http://github.com/william-dawson/NTPoly
https://easybuild.readthedocs.io
https://wordpress.elsi-interchange.org/index.php/download/
https://wordpress.elsi-interchange.org/index.php/download/

E-CAM Documentation, Release 0.2

-DENABLE_TESTS=ON

The test programs can be launched with

make test

Source Code

The ELSI source code is available from the ELSI website or from the ELSI Gitlab server.

ELSI was added to the ESL Bundle in the following Merge Request:

• https://gitlab.com/ElectronicStructureLibrary/esl-bundle/merge_requests/9

2.2.5 ESDW Lausanne 2020

The ESDW in Lausanne in February/March 2020 was the starting point for the modules below.

Software Technical Information

Name libxc_in_fhi_aims

Language Fortran, C

Licence Proprietary

Documentation Tool Manual

Application Documentation FHI-AIMS User Manual

Relevant Training Material You can download training material for the use of FHI-aims from the program of the
Hands-On workshop here: FHI-aims tutorials.

Software Module Developed by Libxc Developers, FHI-AIMS Developers.

Support of GGA and MGGA functionals from Libxc in FHI-AIMS

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

– Implementation of a unified Libxc interface

– Interface to the scalar-relativistic atomic solver

Libxc provides hundreds of well-tested approaches to calculate interactions between electrons at the atomic scale.
Implementing them individually is long and tedious. With this integration, FHI-AIMS has undergone a paradigm shift
and greatly expanded its capabilities in this domain.

2.2. Extended Software Development Workshops 175

https://wordpress.elsi-interchange.org/
https://git.elsi-interchange.org/elsi-devel
https://gitlab.com/ElectronicStructureLibrary/esl-bundle/merge_requests/9
https://mycourses.aalto.fi/pluginfile.php/748992/mod_resource/content/2/FHI-aims-user-manual.pdf
https://th.fhi-berlin.mpg.de/meetings/dft-workshop-2019/index.php?n=Meeting.Program

E-CAM Documentation, Release 0.2

Purpose of Module

FHI-aims is an efficient, accurate all-electron, full-potential electronic structure code package for computational
molecular and materials science (non-periodic and periodic systems) using numeric atom-centered basis functions
(NAOs) [Blum2009]. The code supports DFT (semilocal and hybrid) and many-body perturbation theory. The numer-
ous implemented exchange-correlation (XC) functionals in the Libxc library extend the possibilities for the users and
their simulations in FHI-aims.

The purpose of the module is twofold:

1. Implementation of a unified Libxc interface in FHI-aims.

2. Enabling the use of Libxc functionals with the corresponding, properly generated minimal basis func-
tions for GGA and meta-GGA functionals (see detailed information in the Background Information Chap-
ter). This interfaces the scalar- relativistic atomic solver of FHI-aims (default version) with Libxc.

An interface to Libxc has been implemented before, but remained at a “proof-of-concept” stage. Libxc in FHI-aims
is not only used for DFT calculations, but is needed for DFPT and the calculation magnetic and optical response
properties. After full integration of Libxc, it will form an essential part of each simulation and will be used by most of
the FHI-aims user.

In the long term, we hope that Libxc can extend and finally replace the internal FHI-aims XC library helping to move
FHI-aims from a monolithic to a more modular software architecture. At the same time, we expect that the Libxc
project will benefit from the increase of usability and visibility.

Background Information

While point one from above (Implementation of a unified Libxc interface) is straightforward to implement from the
documentation of Libxc the second part needs some further explanation.

The XC potential is needed at two points of a regular DFT calculation in FHI-aims. First, during the initialization
generating the minimal basis (i.e. the NAOs) and the initial density. Second, during the usual SCF iterations.

The minimal basis is calculated by solving the scalar-relativistic Schrödinger equation of the free atom for each species.
In principle, due to the spherical symmetry of this problem, all contributions of the XC-potentials can be formulated in
analytical terms. Thus, this requires a separate routine as during the SCF-cycle. In practice, the one-dimensional radial
equations are solved on a dense logarithmic radial grid as described in [Fuchs1999]. An interface to Libxc for this
atomic solver and the implementation of the corresponding expressions (the functional derivatives of the XC potential
w.r.t the density) were needed. In principle, any XC functional could be used to generate the minimal basis. However,
it has been empirically become evident that using the same XC functional for generating the minimal basis and during
the SCF iterations guarantees a faster convergence with fewer basis functions – at least for LDA and GGA functionals.
This current module only implements the Libxc interface to the various LDA and GGA functionals, but not for the
meta-GGAs. Instead, still only the pw-LDA functional is used to generate the basis functions and initial density for all
meta-GGA calculations. It is planned to implement a finite-difference approach for generating the meta-GGA minimal
basis set in the future as the corresponding analytical expression are becoming more and more numerous (tedious to
implement).

Building and Testing

The build of FHI-aims for various compiler and compiler settings is integrated in the FHI-aims Gitlab CI pipeline,
where all implemented parts of this module are built, too. A test has been added to the regression test suite of FHI-
aims testing the newly implemented interface and the result of a DFT simulation for diamond silicon and the PBE
functional.

176 Chapter 2. Electronic Structure Modules

https://www.tddft.org/programs/libxc/manual/

E-CAM Documentation, Release 0.2

Source Code

Note: The source code of FHI-aims is in principle open, however, a separate license is needed to get access to it. In
case you need access, please ask via: mailto:aims-coordinators@fhi-berlin.mpg.de. A brief overview of the needed
steps are listed below.

Implementation of a unified Libxc interface

This first step was straightforward to implement. Already existing code blocks have been merged into a single module
libxc_interface.f90 and unified to have a consistent interface for all parts of the code. Some effort was needed
to synchronize XC functional dependent runtime variables, which was especially tedious for the range-separated hy-
brid functional. All requested resources from Libxc during runtime are denoted in the main output file and citations
are given for citation.

Interface to the scalar-relativistic atomic solver

Due to the rotational symmetry of the free-atom problem all terms of the XC potential 𝑣XC can be express analytically.
The current implementation considers all derivatives up to GGA functionals (here for spin-unpolarized case): 𝑣 =
𝛿𝐸XC
𝛿𝜌 = 𝜕𝑒

𝜕𝜌 −∇ · 𝜕𝑒
𝜕∇𝜌

The goal is to express all terms of the energy per volume 𝑒(𝜌,∇𝜌) as partial derivatives of the density or the density
gradient. In case of GGA functionals, this is straightforward by using the nabla operator in spherical coordinates and
using the chain rule for the appearing derivatives w.r.t to 𝑟. The final expressions have to be transformed in terms of
the reduced variables 𝜎 = 𝜕𝜌2 as the then appearing energy derivatives can be requested from the Libxc library. The
implemented routines can handle both spin-polarized and spin-unpolarized free atoms.

Software Technical Information

Name psolver_integration

Language Fortran 95, with YAML I/O.

Licence GPL

Documentation Tool Doxygen

Application Documentation The Solver Package page on the BigDFT Wiki

Relevant Training Material The Solver Package page on the BigDFT Wiki

Software Module Developed by BigDFT Developers, SIESTA Developers, Octopus Developers.

Integration of PSolver in SIESTA and Octopus

• Purpose of Module

• Background Information

• Building and Testing

2.2. Extended Software Development Workshops 177

mailto:aims-coordinators@fhi-berlin.mpg.de
https://opensource.org/licenses/gpl-license
http://bigdft.org/Wiki/index.php?title=The_Solver_Package
http://bigdft.org/Wiki/index.php?title=The_Solver_Package

E-CAM Documentation, Release 0.2

• Source Code

A Poisson solver is an efficient tool to determine electromagnetic fields produced by an electric charge distributed in
space. The integration of PSolver into SIESTA and Octopus has opened the way for these software programs to access
more complex physical systems. The PSolver library allows solving the Poisson equation in much more general ways
than using Fourier Transforms.

Purpose of Module

The PSolver library solves the Poisson equation using wavelets. With this approximation one can more easily take into
account certain boundary conditions such as molecules (no boundaries), wires (periodic along 1 direction) and slabs
(periodic along 2 directions). This is in contrast to Fourier transforms which assumes periodic boundary conditions
along all lattice vectors. Additionally it allows cavities for different dielectric constants.

This implementation integrates the PSolver library into the DFT codes SIESTA and Octopus such that they may be
used for end-users who require the functionalities.

Background Information

Users of the SIESTA code have always been using the Fourier transforms for solving the Poisson equation. However, a
great deal of users are dealing with, in particular, slab systems given the advent of graphene, 2D materials and surface
calculations. This integration allows users to control the boundaries in a very strict way without any approximations.
The latest PSolver library (shipped with BigDFT 1.9.0) will work.

Additional tests have been added to SIESTA to ensure that everything works.

The OCTOPUS code has various options to solve the Poisson equations. Amongst others were the ISF library, which
is a predecessor of the PSolver library. In the later OCTOPUS versions, an older version of PSolver was packaged
with the OCTOPUS sources. For the recently released OCTOPUS 10, the interface to PSolver has been updated, so
that both the old and the new API of PSolver can be used. This also prepares OCTOPUS to use the GPU version of
PSolver, once it becomes available. The configure scripts of OCTOPUS have been adapted to correctly detect and
configure an installed PSolver library, and tests using the library have been added to the OCTOPUS buildbot.

Building and Testing

To compile SIESTA with PSolver users should add this to their arch.make

LIBS += -L<build-dir>/install/lib -lPSolver-1 -latlab-1 -lfutile-1 -ldicts -lfmalloc-
→˓1 -lyaml
INCFLAGS += -I<build-dir>/install/include
FPPFLAGS += -DSIESTA__PSOLVER

After building there are two tests, h2o_psolver and si2x1h-psolver which can be compared with h2o and
si2x1h, respectively. They should be comparable.

In order to compile OCTOPUS with the PSolver library, add the options --with-psolver-prefix and
--with-futile-prefix to the configure command of OCTOPUS:

./configure --with-psolver-prefix=<PSolver-top-dir> --with-futile-prefix=<Futile-top-
→˓dir> ...

The OCTOPUS test components/16-hartree_3d_psolver.test is testing the correct functionality of the
PSolver library in OCTOPUS.

178 Chapter 2. Electronic Structure Modules

E-CAM Documentation, Release 0.2

Source Code

• PSolver in SIESTA

• PSolver in OCTOPUS

Software Technical Information

Name elsi_rci_in_dftb+

Language Fortran, C++.

Licence BSD 3-clause license <https://opensource.org/licenses/BSD-3-Clause>‘_

Documentation Tool Doxygen

Application Documentation ELSI-RCI USer Manual, DFTB+ Documentation

Relevant Training Material Not currently available.

Software Module Developed by ELSI-RCI Developers, DFTB+ Developers.

Integration of ELSI-RCI in DFTB+

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

DFTB+ is a software package for carrying out fast quantum mechanical atomistic calculations based on the Density
Functional Tight Binding method. ELSI-RCI provides and enhances open-source software packages which solve
mathematical equations related to the simulation of materials and molecules at the atomic scale.

Purpose of Module

Integrating the ELSI library into DFTB+ makes the the additional ELPA, OMM, PEXSI and NTPoly solvers available.
These solvers are particularly useful for large scale systems.

Background Information

This module is developed in connection with the Extended Software Development Workshop “Integration of ESL
modules into electronic-structure codes” held in Lausanne in February 2020.

An associated paper which includes a description of the ELSI integration is DFTB+ has also been published [DFTB].

Building and Testing

ELSI support is available in the latest releases of DFTB+. Full installation and testing documentation is available in
the Install.rst file of the DFTB+ release.

2.2. Extended Software Development Workshops 179

https://gitlab.com/siesta-project/siesta/-/merge_requests/10
https://gitlab.com/octopus-code/octopus/-/merge_requests?scope=all&utf8=%E2%9C%93&state=merged&search=psolver
https://opensource.org/licenses/BSD-3-Clause
https://git.elsi-interchange.org/elsi-devel/elsi_rci/-/blob/master/doc/elsi_rci_manual.pdf
https://dftbplus.org/documentation/
https://www.e-cam2020.eu/event/integration-of-esl-modules-into-electronic-structure-codes/
https://www.e-cam2020.eu/event/integration-of-esl-modules-into-electronic-structure-codes/
https://github.com/dftbplus/dftbplus/blob/20.2.1/INSTALL.rst

E-CAM Documentation, Release 0.2

Specifically to enable the ELSI support, one would require the CMake option -DWITH_ELSI (and also
-DWITH_PEXSI if the PEXSI solver is also to be supported).

Source Code

• Link to a merge request containing relevant source code changes

2.2.6 Other Modules

Modules not coming from ESDWs

flook

Software Technical Information

Language Fortran 1990/2003

Documentation Tool Doxygen

Application Documentation ESL wiki API

Relevant Training Material See usage examples in the src/test directory of the source code.

Licence MPL-2.0

• Purpose of Module

– Application

• Background Information

• Installation

• Testing

• Source Code

Purpose of Module

The flook library is a simplifiled API for communicating between fortran code and the Lua scripting language. A basic
method is to use flook as an interactive interpreter to pass variables back and forth between a parent fortran program.
It does not only serve as a simple input engine but also allows calling specific fortran functions from within Lua. Thus
by exposing fortran module procedures one can control the flow of programs as well as parameters in programs.

Application

The library is currently enabled in Siesta and ESL-demo where it can be used to change convergence parameters on
the fly and/or being used as an MD back-end. Since it allows exchange of data between Lua and fortran basically every
variable in fortran can be exposed to the user via a Lua script.

180 Chapter 2. Electronic Structure Modules

https://github.com/dftbplus/dftbplus/pull/175
http://esl.cecam.org/Flook
http://electronicstructurelibrary.github.io/flook/doxygen/index.html
https://www.lua.org
https://launchpad.net/siesta
https://esl.cecam.org/Esl-demo

E-CAM Documentation, Release 0.2

Background Information

The flook library is built on two libraries; 1) Lua and 2) AOTUS. Both are shipped together with the software and are
required when building. Lua is required to be able to run the Lua interpreter in-memory while the AOTUS library is
required for the low-level communication layer.

Installation

The source code of the flook module is hosted on Github and can be obtained using git or via the release page of
flook:

git clone https://github.com/ElectronicStructureLibrary/flook
cd flook
git submodule update --init --recursive

The source code of the flook module itself is contained in the src subdirectory. Lua depends on the readline library
(with headers) to be installed. Please install this library first.

Note: The information contained in the Downloading and installation section are likely to work with the latest version
of the source code from the repository.

1. Create an obj directory.

2. Create a Makefile in the obj directory containing:

TOP_DIR=.. include ../Makefile

3. Type make to compile flook, alternatively type make liball to create a unified library (with Lua, AOTUS
and flook linked together).

Testing

The src/test directory contains a number of small programs that make use of flook. These may be useful to
understand the flow of programming. You can build and test flook with the included shell script quick_test.sh.

Source Code

The source code is available from the `flook repo on Github <https://github.com/ElectronicStructureLibrary/
flook>‘_.

Software Technical Information

Name LibGridXC

Language Fortran

Licence BSD 3-Clause

Documentation Tool SIESTA Documentation Specifications (document available soon).

Application Documentation Source code can be browsed on GitLab.

Relevant Training Material Not currently available.

2.2. Extended Software Development Workshops 181

https://bitbucket.org/haraldkl/aotus
https://github.com/ElectronicStructureLibrary/flook
https://github.com/ElectronicStructureLibrary/flook
https://opensource.org/licenses/BSD-3-Clause
https://gitlab.com/siesta-project/libgridxc

E-CAM Documentation, Release 0.2

Software Module Developed by J.M. Soler, A. Garcia, M. Oliveira, Y. Pouillon, C. Balbás and N. R. Papior

LibGridXC - Exchange-correlation energies and potentials in radial and 3D grids

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module allows the calculation of electronic exchange and correlation energies and potentials on simulation grids,
both on serial and parallel computers.

Purpose of Module

LibGridXC provides routines to calculate the exchange and correlation energy and potential in spherical (i.e. an
atom) or periodic systems, using a variety of LDA and GGA functionals, as well as a variety of van der Waals DFT
functionals [DION2004] [KLIMES2009] [LEE2010] [VYDROV2010], implemented as described by Román-Pérez
and Soler [ROMAN2009].

Background Information

LibGridXC was originally developed within SIESTA, under the name SiestaXC, and then extracted as a stand-alone
module for the Electronic Structure Library, to be shared with other codes than SIESTA. The development efforts
carried out to make it a module include the design and implementation of an Autotools-based build system compat-
ible with the one of SIESTA, as well as the migration to Git for version control and the setting up of a Continuous
Integration (CI) process.

Building and Testing

LibGridXC provides an Autotools-based build system. Its build procedure is relatively straightforward:

cd libgridxc-x.y.x mkdir my_build_dir cd my_build_dir ../configure –prefix=/my/install/dir make make
check make install

where x.y.z is the version of LibGridXC you want to install, my_build_dir is the build directory where you will
compile the library, and /my/install/dir is the absolute path where you want to install it.

Build parameters can be adjusted by providing options to the configure script. To get a list of available options, you
can use the --help option of the configure script, e.g. run:

./configure –help

from the top source directory of LibGridXC, or:

../configure –help

from your build directory. By using the --enable-multiconfig option of configure, you will be able to install
both a serial and a MPI-aware version of LibGridXC with the same install prefix.

For more information about the Autotools, please consult the Autotools Mythbuster.

182 Chapter 2. Electronic Structure Modules

https://autotools.io/index.html

E-CAM Documentation, Release 0.2

Source Code

The source code of LibGridXC is hosted on GitLab.

Software Technical Information

Name libvdwxc

Language C, with Fortran and Python interfaces.

Licence GPL

Documentation Tool Inline text comments for now. Doxygen will be used in the future.

Application Documentation Home page of libvdwxc

Relevant Training Material Not currently available.

Software Module Developed by Mikael Kuisma, Ask Hjorth Larsen

libvdwxc - A library for vdW-DF exchange-correlation functionals

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module allows the description of long-range electronic interactions between atoms and molecules.

Purpose of Module

libvdwxc is a general library for evaluating energy and potential for exchange-correlation (XC) functionals from the
vdW-DF family that can be used with various density functional theory (DFT) codes. This work was inspired by the
success of libXC, a library for local and semilocal XC functionals. At the moment, libvdwxc provides access to the
vdW-DF1, vdW-DF2, and vdW-CX functionals. It provides interfaces for GPAW and Octopus. The library has been
tested with respect to the S22 test set, various bulk properties of metals and semiconductors, and surface energies.

In a previous effort Marques et al. created a C library called LibXC. This library consists of 400 different local and
semi-local functionals, and it is linked by 20 different codes. In other words, when using this library, scientists have
thousands different functional and code combinations to choose from. The publication process of a functional becomes
easier, because it needs just to be added into one place. In a similar spirit, libvdwxc is intended as a library that enables
calculations of a particular family of functionals, which cannot be readily added to LibXC.

Background Information

All relevant information about libvdwxc, as well as downloadable packages, can be found at:

• The home page of libvdwxc.

• The Git repository of libvdwxc.

2.2. Extended Software Development Workshops 183

https://gitlab.com/siesta-project/libgridxc
https://opensource.org/licenses/gpl-license
https://libvdwxc.org/
https://libvdwxc.org/
https://gitlab.com/libvdwxc/libvdwxc

E-CAM Documentation, Release 0.2

Building and Testing

libvdwxc provides an Autotools-based build system. Its build procedure is relatively straightforward:

cd libvdvwxc-x.y.x mkdir my_build_dir cd my_build_dir ../configure –prefix=/my/install/dir make make
check make install

where x.y.z is the version of libvdwxc you want to install, my_build_dir is the build directory where you will
compile the library, and /my/install/dir is the absolute path where you want to install it.

Build parameters can be adjusted by providing options to the configure script. To get a list of available options, you
can use the --help option of the configure script, e.g. run:

./configure –help

from the top source directory of libvdwxc, or:

../configure –help

from your build directory.

For more information about the Autotools, please consult the Autotools Mythbuster.

Source Code

The source code of libvdwxc is hosted on Gitlab.

DBCSR@MatrixSwitch

Software Technical Information

The information in this section describes DBCSR@MatrixSwitch as a whole. Information specific to the additions
in this module are in subsequent sections.

Language Fortran 2008

Documentation Tool Sphinx, ReStructuredText

Application Documentation ESL wiki

Relevant Training Material See a usage example in the omm/MatrixSwitch/examples directory of the
source code.

Software Module Developed by Alfio Lazzaro and David López-Durán

Licence Simplified BSD

• Purpose of Module

• Background Information

• Installation

• Testing

• Source Code

184 Chapter 2. Electronic Structure Modules

https://autotools.io/index.html
https://gitlab.com/libvdwxc/libvdwxc
http://esl.cecam.org/MatrixSwitch

E-CAM Documentation, Release 0.2

Purpose of Module

MatrixSwitch is a module which acts as an intermediary interface layer between high-level and low-level routines deal-
ing with matrix storage and manipulation. It allows a seamlessly switch between different software implementations
of the matrix operations.

DBCSR is an optimized library to deal with sparse matrices, which appear frequently in many kind of numerical
simulations. In DBCSR@MatrixSwitch DBCSR capabilities have been added to MatrixSwitch as an optional library
dependency.

Background Information

MatrixSwitch, DBCSR, and DBCSR@MatrixSwitch are software libraries to be used within a calling code. Ma-
trixSwitch has been developed within the same repository of other self-contained libraries, all them collected in the
omm-bundle project (see the Source Code section below). As DBCSR has been added to MatrixSwitch in a modular
way, all them can be used together or separated.

To carry out calculations in serial mode may be too slow sometimes and a paralellisation strategy is needed. In
serial/parallel MatrixSwitch employs Lapack/ScaLapack to perform matrix operations, irrespective of their dense or
sparse character. The disadvantage of the Lapack/ScaLapack schemes is that they are not optimized for sparse ma-
trices. DBCSR provides the necessary algorithms to solve this problem and in addition is specially suited to work in
parallel.

Installation

The source code of the MatrixSwitch module is contained in a subdirectory of of the omm-bundle package with the
same name, omm/MatrixSwitch. ‘omm-bundle’ is in a git repository and can be obtained in this way:

git clone https://gitlab.e-cam2020.eu/esl/omm.git

The DBCSR library was originally developed as part of the CP2K code, it is now available as a standalone library, and
can be found in the CP2K releases directory:

https://github.com/cp2k/dbcsr/releases/download/v1.0.0/dbcsr-1.0.0.tar.gz

Build instructions for the DBCSR library are available on the project page.

To enable DBCSR@MatrixSwitch in the omm-bundle package follow the steps below:

1. Enter the omm directory.

2. Copy make.inc.example to make.inc and modify it to suit your needs. To use DBCSR in MatrixSwitch
include in your make.inc the path to the DBCSR library and add to FPPFLAGS the new flag -DHAVE_DBCSR
(this requires that -DHAVE_MPI is also enabled).

3. Type make -f Makefile.manual.

4. Type make -f Makefile.manual install.

Testing

The examples directory of MatrixSwitch contains example_pdcsr_pddbc.F90. It explains the use of
DBCSR@MatrixSwitch and how DBCSR works. DBCSR results are compared to those obtained with Scapalack to
check the validity of the new procedure. If this comparison fails, the program will exit immediately. To compile it:

1. Enter the omm/MatrixSwitch/examples directory.

2.2. Extended Software Development Workshops 185

https://gitlab.e-cam2020.eu/esl/omm.git
https://www.cp2k.org/
https://github.com/cp2k/dbcsr/releases/download/v1.0.0/dbcsr-1.0.0.tar.gz
https://github.com/cp2k/dbcsr#dbcsr-distributed-block-compressed-sparse-row-matrix-library

E-CAM Documentation, Release 0.2

2. Copy make.inc.example to make.inc and modify it to suit your needs. Be aware that make.inc in the
src directory will also be used.

3. Type make -f Makefile.manual.

As in the other examples in MatrixSwitch, example_pdcsr_pddbc.F90 contains a header explaining what the
program does and provides a sample output to compare with.

Source Code

In the E-CAM Gitlab can be found all the source codes of MatrixSwitch and omm-bundle, while DBCSR itself is in
the set of CP2K Github repositories.

Software Technical Information

Name MaZe for OF-DFT.

Language C.

Licence MIT.

Documentation Tool Doxygen.

Application Documentation GitLab.

Relevant Training Material Not currently available.

Software Module Developed by Alessandro Coretti, Rodolphe Vuilleumier, Sara Bonella

Mass-Zero Constrained Dynamics for Orbital Free Density Functional Theory.

• Purpose of Module

• Background Information

• Installation

• Testing

• Source Code

• References

Purpose of Module

The program performs Orbital-Free Density Functional Theory Molecular Dynamics (OF-DFT-MD) using the Mass-
Zero (MaZe) constrained molecular dynamics approach as discussed in [BONELLA2020]. The method is based
on an extended Lagrangian and the dynamics enforces, at each timestep, the Born-Oppenheimer condition that the
system relaxes instantaneously to the ground state through the formalism of holonomic constraints of zero mass. The
adiabatic separation between the degrees of freedom is enforced rigorously, while the numerical algorithm is exactly
symplectic and time-reversible in both physical and additional set of degrees of freedom. Mathematical details about
the implementation of the methods are discussed at length in Alessandro Coretti’s Ph.D. thesis. The computation
of the electronic density is carried on in reciprocal space through a plane-waves expansion so that the mass-zero
degrees of freedom are represented by the Fourier coefficients of the electronic density field. The evolution of the

186 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/esl/omm/tree/master/MatrixSwitch/
https://gitlab.e-cam2020.eu/esl/omm/
https://github.com/cp2k/dbcsr/
https://github.com/cp2k/
https://github.com/
https://opensource.org/licenses/mit-license
https://www.doxygen.nl/
https://gitlab.e-cam2020.eu/acoretti/shake-dft

E-CAM Documentation, Release 0.2

ions is performed using Velocity-Verlet algorithm, while the SHAKE algorithm is used for evolution of the additional
degrees of freedom.

The code is intended for condensed matter physicists and for material scientists and it can be used for various purposes
related to the subject. Even though some analysis tool is included in the package, the main goal of the software is to
produce particles trajectories to be analyzed in post-production by means of external software.

In computing trajectories, MaZe is intended to stand in the middle between force-field based MD and Kohn-Sham MD
in terms of efficiency and accuracy. Indeed, while the forces are computed on-the-fly at each timestep, the optimization
is done on the electronic density field instead of the Kohn-Sham orbitals. This feature avoids the need for satisfying
the orthonormality constraint among orbitals and allows the computational complexity of the code to scale linearly
with the dimensionality of the system. On the other hand, no information on the orbitals is available. The accuracy of
the simulation relies on the choice of the kinetic energy functional, which has to be provided in terms of the electronic
density alone.

Background Information

The module is standalone and only relies on the libraries discussed in the next section.

Installation

The execution of the code depends on the following libraries:

• FFTW: a library for computing the discrete Fourier transform;

• Libxc: a library of exchange-correlation functionals for density-functional theory;

• BLAS: a library that provides standard building blocks for performing basic vector and matrix operations;

• Argp: an interface for parsing unix-style argument vectors;

On macOS, Homebrew is strongly recommended to install compiler and dependencies.

The installation is based on a Makefile. A few machine dependent variable must be defined in the file ‘./config.mk’
prior to invoking the make utility. Examples can be found in the ‘./configuration_files/’ folder. The structure of the
‘./config.mk’ file is as follows:

#Compiler Configuration
#Compiler command
CC =
#Compiler options
CFLAGS =
#Includefiles linkers
IFLAGS =
#Libraries linkers
LIBS =

#Test configuration
#Python command
TEST =

The command make will then build the executables. The command make clean cleans the files resulting from the
compilation. Detailed documentation can be build using Doxygen through the command make documentation.
The whole suite of regression tests can be run through the command make tests.

2.2. Extended Software Development Workshops 187

http://www.fftw.org
https://www.tddft.org/programs/Libxc/
https://www.netlib.org/blas/
https://www.gnu.org/software/libc/manual/html_node/Argp.html
https://brew.sh
https://www.doxygen.nl/

E-CAM Documentation, Release 0.2

Testing

Tests for the code and for regressions are launched through a python script which can be found in ‘./tests/’.
Move into this folder and run python regression_tests.py -s MaZe. The scripts can take other op-
tions in order to launch different suites of tests. Default is ‘all’ which can take up to 20 minutes. Run python
regression_tests.py --help for more information on regression tests script.

By default the script tests an MD simulation of solid Sodium using different parameters:

• Pseudopotential: ‘Gaussian (Gauss)’ pseudopotential and ‘Topp and Hopfield (Topp)’ pseudopotential;

• Jacob’s ladder rung: ‘LDA’ for Local Density Approximation and ‘GGA’ for Generalized Gradient Approx-
imation. The approximation refers only to the kinetic functional which is ‘Thomas-Fermi (TF)’ for LDA and
‘Thomas-Fermi plus von Weiszaecker correction (TFvW)’ and ‘Perrot’ functional for GGA;

• Kinetic functional: As above ‘Thomas-Fermi (TF)’, ‘Thomas-Fermi plus von Weiszaecker correction (TFvW)’
and ‘Perrot’ functionals;

• Explicit enforcing of additional constraint: When the suffix ‘_additional_constraint’ appears in the name of
the text, the conservation of the number of electrons is explicitly enforced as discussed in [BONELLA2020].

All the simulation in the tests are run using a Slater exchange functional and no correlation functional.

The subfolders inside ‘./tests’ can also be conveniently used as examples and references for the format of the input file
‘runtime.inpt’ and of the configuration file ‘configuration.inpt’.

Source Code

The source code is available from the E-CAM Gitlab under the MaZe project.

The repository contains the following directories:

• ./source/: contains the source code. The subfolder ‘./source/headers/’ contains the modules’ headers, while the
subfolder ‘./source/obj/’ is used for compilation file outputs;

• ./tests/: contains regression tests;

• ./scripts/: contains useful python scripts to run simulations over different sets of parameters;

• ./documentation/: contains the documentation generated with Doxygen together with the wiki of the project;

• ./configuration_files/: contains examples of configuration files to generate the executable on different machines;

References

Software Technical Information

Name MaZe for OF-DFT (HPC version).

Language C.

Licence MIT.

Documentation Tool Doxygen.

Application Documentation GitLab.

Relevant Training Material Not currently available.

188 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/acoretti/shake-dft/
https://opensource.org/licenses/mit-license
https://www.doxygen.nl/
https://gitlab.e-cam2020.eu/acoretti/shake-dft

E-CAM Documentation, Release 0.2

Software Module Developed by Alessandro Coretti, Marco Ferrarotti, Sergio Decherchi, Rodolphe Vuilleumier,
Sara Bonella

Mass-Zero Constrained Dynamics for Orbital Free Density Functional Theory (HPC Version).

• Purpose of Module

• Performance Evaluation

• Background Information

• Installation

• Testing

• Source Code

• References

Purpose of Module

The program performs Orbital-Free Density Functional Theory Molecular Dynamics (OF-DFT-MD) using the Mass-
Zero (MaZe) constrained molecular dynamics approach as discussed in [BONELLA2020b]. The method is based
on an extended Lagrangian and the dynamics enforces, at each timestep, the Born-Oppenheimer condition that the
system relaxes instantaneously to the ground state through the formalism of holonomic constraints of zero mass. The
adiabatic separation between the degrees of freedom is enforced rigorously, while the numerical algorithm is exactly
symplectic and time-reversible in both physical and additional set of degrees of freedom. Mathematical details about
the implementation of the methods are discussed at length in Alessandro Coretti’s Ph.D. thesis. The computation
of the electronic density is carried on in reciprocal space through a plane-waves expansion so that the mass-zero
degrees of freedom are represented by the Fourier coefficients of the electronic density field. The evolution of the
ions is performed using Velocity-Verlet algorithm, while the SHAKE algorithm is used for evolution of the additional
degrees of freedom.

The code is intended for condensed matter physicists and for material scientists and it can be used for various purposes
related to the subject. Even though some analysis tool is included in the package, the main goal of the software is to
produce particles trajectories to be analyzed in post-production by means of external software.

In computing trajectories, MaZe is intended to stand in the middle between force-field based MD and Kohn-Sham MD
in terms of efficiency and accuracy. Indeed, while the forces are computed on-the-fly at each timestep, the optimization
is done on the electronic density field instead of the Kohn-Sham orbitals. This feature avoids the need for satisfying
the orthonormality constraint among orbitals and allows the computational complexity of the code to scale linearly
with the dimensionality of the system. On the other hand, no information on the orbitals is available. The accuracy of
the simulation relies on the choice of the kinetic energy functional, which has to be provided in terms of the electronic
density alone.

Performance Evaluation

This version of the module has been optimized by the IIT in Genova through the following steps:

• Improved FFTW usage:

– single plan creation (reuse of same FFTW plan for all FFT/iFFT);

2.2. Extended Software Development Workshops 189

E-CAM Documentation, Release 0.2

– use FFTW patient planning;

– memory aligned allocation of FFT/iFFT vectors to exploit FFTW simd implementation;

• Async FFT/iFFT execution via pthread threadpool (C-Thread-Pool);

• ComputeForcesFromStructureFactor / ComputeStructureFactor loops parallelization through OpenMP;

The proposed optimizations on the FFT/iFFT routines allow a reduction of the execution time on all the GGA test
cases by roughly 50%.

The parallelized for loops, tested on a compute node with 24 cores, allow to reduce by roughly 60% the execution
time on the LDA test cases (with the exception of the ones using b-splines that needs further work).

Background Information

The module is standalone and only relies on the libraries discussed in the next section.

Installation

The execution of the code depends on the following libraries:

• FFTW: a library for computing the discrete Fourier transform;

• Libxc: a library of exchange-correlation functionals for density-functional theory;

• BLAS: a library that provides standard building blocks for performing basic vector and matrix operations;

• Argp: an interface for parsing unix-style argument vectors;

On macOS, Homebrew is strongly recommended to install compiler and dependencies.

The installation is based on a Makefile. A few machine dependent variable must be defined in the file ‘./config.mk’
prior to invoking the make utility. Examples can be found in the ‘./configuration_files/’ folder. The structure of the
‘./config.mk’ file is as follows:

#Compiler Configuration
#Compiler command
CC =
#Compiler options
CFLAGS =
#Includefiles linkers
IFLAGS =
#Libraries linkers
LIBS =

#Test configuration
#Python command
TEST =

The command make will then build the executables. The command make clean cleans the files resulting from the
compilation. Detailed documentation can be build using Doxygen through the command make documentation.
The whole suite of regression tests can be run through the command make tests.

Testing

Tests for the code and for regressions are launched through a python script which can be found in ‘./tests/’.
Move into this folder and run python regression_tests.py -s MaZe. The scripts can take other op-

190 Chapter 2. Electronic Structure Modules

https://github.com/Pithikos/C-Thread-Pool
http://www.fftw.org
https://www.tddft.org/programs/Libxc/
https://www.netlib.org/blas/
https://www.gnu.org/software/libc/manual/html_node/Argp.html
https://brew.sh
https://www.doxygen.nl/

E-CAM Documentation, Release 0.2

tions in order to launch different suites of tests. Default is ‘all’ which can take up to 20 minutes. Run python
regression_tests.py --help for more information on regression tests script.

By default the script tests an MD simulation of solid Sodium using different parameters:

• Pseudopotential: ‘Gaussian (Gauss)’ pseudopotential and ‘Topp and Hopfield (Topp)’ pseudopotential;

• Jacob’s ladder rung: ‘LDA’ for Local Density Approximation and ‘GGA’ for Generalized Gradient Approx-
imation. The approximation refers only to the kinetic functional which is ‘Thomas-Fermi (TF)’ for LDA and
‘Thomas-Fermi plus von Weiszaecker correction (TFvW)’ and ‘Perrot’ functional for GGA;

• Kinetic functional: As above ‘Thomas-Fermi (TF)’, ‘Thomas-Fermi plus von Weiszaecker correction (TFvW)’
and ‘Perrot’ functionals;

• Explicit enforcing of additional constraint: When the suffix ‘_additional_constraint’ appears in the name of
the text, the conservation of the number of electrons is explicitly enforced as discussed in [BONELLA2020b].

All the simulation in the tests are run using a Slater exchange functional and no correlation functional.

The subfolders inside ‘./tests’ can also be conveniently used as examples and references for the format of the input file
‘runtime.inpt’ and of the configuration file ‘configuration.inpt’.

Source Code

The source code is available from the E-CAM Gitlab under the MaZe project. The HPC version of the code can be
found on the branch HPC.

The repository contains the following directories:

• ./source/: contains the source code. The subfolder ‘./source/headers/’ contains the modules’ headers, while the
subfolder ‘./source/obj/’ is used for compilation file outputs;

• ./tests/: contains regression tests;

• ./scripts/: contains useful python scripts to run simulations over different sets of parameters;

• ./documentation/: contains the documentation generated with Doxygen together with the wiki of the project;

• ./configuration_files/: contains examples of configuration files to generate the executable on different machines;

References

Software Technical Information

Name NLCG for OF-DFT.

Language C.

Licence MIT.

Documentation Tool Doxygen.

Application Documentation GitLab.

Relevant Training Material Not currently available.

Software Module Developed by Alessandro Coretti, Rodolphe Vuilleumier, Sara Bonella

2.2. Extended Software Development Workshops 191

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/acoretti/shake-dft/
https://opensource.org/licenses/mit-license
https://www.doxygen.nl/
https://gitlab.e-cam2020.eu/acoretti/shake-dft

E-CAM Documentation, Release 0.2

Nonlinear Conjugate Gradient for Orbital Free Density Functional Theory.

• Purpose of Module

• Background Information

• Installation

• Testing

• Source Code

• References

Purpose of Module

The program performs Orbital-Free Density Functional Theory Molecular Dynamics (OF-DFT-MD) using the Born-
Oppenheimer approach. The condition that the system relaxes instantaneously to the ground state is enforced, at each
time step, finding the minimum of the energy for a given nuclear configuration using a nonlinear conjugate gradient
method. The results of these simulations are used as benchmarks in [BONELLA2020a] and in the simulations pre-
sented in Alessandro Coretti’s Ph.D. thesis. The computation of the electronic density is carried on in reciprocal space
through a plane-waves expansion so that the electronic degrees of freedom are represented by the Fourier coefficients
of the electronic density field. The evolution of the ions is performed using Velocity-Verlet algorithm.

The code is intended for condensed matter physicists and for material scientists and it can be used for various purposes
related to the subject. Even though some analysis tool is included in the package, the main goal of the software is to
produce particles trajectories to be analyzed in post-production by means of external software.

In computing trajectories, the orbital-free DFT is intended to stand in the middle between force-field based MD and
Kohn-Sham MD in terms of efficiency and accuracy. Indeed, while the forces are computed on-the-fly at each timestep,
the optimization is done on the electronic density field instead of the Kohn-Sham orbitals. This feature avoids the need
for satisfying the orthonormality constraint among orbitals and allows the computational complexity of the code to
scale linearly with the dimensionality of the system. On the other hand, no information on the orbitals is available.
The accuracy of the simulation relies on the choice of the kinetic energy functional, which has to be provided in terms
of the electronic density alone.

Background Information

The module is standalone and only relies on the libraries discussed in the next section.

Installation

The execution of the code depends on the following libraries:

• FFTW: a library for computing the discrete Fourier transform;

• Libxc: a library of exchange-correlation functionals for density-functional theory;

• BLAS: a library that provides standard building blocks for performing basic vector and matrix operations;

• Argp: an interface for parsing unix-style argument vectors;

On macOS, Homebrew is strongly recommended to install compiler and dependencies.

192 Chapter 2. Electronic Structure Modules

http://www.fftw.org
https://www.tddft.org/programs/Libxc/
https://www.netlib.org/blas/
https://www.gnu.org/software/libc/manual/html_node/Argp.html
https://brew.sh

E-CAM Documentation, Release 0.2

The installation is based on a Makefile. A few machine dependent variable must be defined in the file ‘./config.mk’
prior to invoking the make utility. Examples can be found in the ‘./configuration_files/’ folder. The structure of the
‘./config.mk’ file is as follows:

#Compiler Configuration
#Compiler command
CC =
#Compiler options
CFLAGS =
#Includefiles linkers
IFLAGS =
#Libraries linkers
LIBS =

#Test configuration
#Python command
TEST =

The command make will then build the executables. The command make clean cleans the files resulting from the
compilation. Detailed documentation can be build using Doxygen through the command make documentation.
The whole suite of regression tests can be run through the command make tests.

Testing

Tests for the code and for regressions are launched through a python script which can be found in ‘./tests/’.
Move into this folder and run python regression_tests.py -s CG. The scripts can take other options
in order to launch different suites of tests. Default is ‘all’ which can take up to 20 minutes. Run python
regression_tests.py --help for more information on regression tests script.

By default the script tests an MD simulation of solid Sodium using different parameters:

• Pseudopotential: ‘Gaussian (Gauss)’ pseudopotential and ‘Topp and Hopfield (Topp)’ pseudopotential;

• Jacob’s ladder rung: ‘LDA’ for Local Density Approximation and ‘GGA’ for Generalized Gradient Approx-
imation. The approximation refers only to the kinetic functional which is ‘Thomas-Fermi (TF)’ for LDA and
‘Thomas-Fermi plus von Weiszaecker correction (TFvW)’ and ‘Perrot’ functional for GGA;

• Kinetic functional: As above ‘Thomas-Fermi (TF)’, ‘Thomas-Fermi plus von Weiszaecker correction (TFvW)’
and ‘Perrot’ functionals;

All the simulation in the tests are run using a Slater exchange functional and no correlation functional.

The subfolders inside ‘./tests’ can also be conveniently used as examples and references for the format of the input file
‘runtime.inpt’ and of the configuration file ‘configuration.inpt’.

Source Code

The source code is available from the E-CAM Gitlab under the MaZe project.

The repository contains the following directories:

• ./source/: contains the source code. The subfolder ‘./source/headers/’ contains the modules’ headers, while the
subfolder ‘./source/obj/’ is used for compilation file outputs;

• ./tests/: contains regression tests;

• ./scripts/: contains useful python scripts to run simulations over different sets of parameters;

• ./documentation/: contains the documentation generated with Doxygen together with the wiki of the project;

2.2. Extended Software Development Workshops 193

https://www.doxygen.nl/
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/acoretti/shake-dft/

E-CAM Documentation, Release 0.2

• ./configuration_files/: contains examples of configuration files to generate the executable on different machines;

References

Additionally, a module from an ESDW of WP4 was more relevant to this Work Package and so is reported here

Software Technical Information

Name GPAW CUDA version: build instructions

Language Python, C, CUDA

Licence GPL

Documentation Tool Code comments. ReST and Sphinx for GPAW documentation.

Application Documentation https://wiki.fysik.dtu.dk/gpaw/

Software Module Developed by Martti Louhivuori (based on work by Samuli Hakala et al.)

GPAW CUDA version: build instructions

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

GPAW is a density-functional theory (DFT) program for ab initio electronic structure calculations using the projector
augmented wave method. An experimental CUDA version is under development that supports running GPAW on
GPUs. This module provides build instructions for the CUDA version and links to the development effort.

Purpose of Module

An experimental CUDA version of GPAW is under development with support for NVIDIA GPGPUS using CUDA,
CuBLAS, and PyCUDA. This module provides build instructions for the CUDA version and links to the development
effort.

Background Information

GPAW is a density-functional theory (DFT) program for ab initio electronic structure calculations using the projector
augmented wave method. It uses a uniform real-space grid representation of the electronic wavefunctions that allows
for excellent computational scalability and systematic converge properties.

GPAW is written mostly in Python, but includes also computational kernels written in C as well as leveraging external
libraries such as NumPy, BLAS and ScaLAPACK. Parallelisation is based on message-passing using MPI.

To add support for GPUs, an experimental CUDA version of GPAW that uses CUDA, CuBLAS, and PyCUDA was
developed (Samuli Hakala et al., PARA 2012, https://doi.org/10.1007/978-3-642-36803-5_4). This early effort was

194 Chapter 2. Electronic Structure Modules

https://opensource.org/licenses/gpl-license
https://wiki.fysik.dtu.dk/gpaw/
https://doi.org/10.1007/978-3-642-36803-5_4

E-CAM Documentation, Release 0.2

stalled for a while, but has now been continued in order to bring GPU support to modern GPAW versions. Current
version is based on GPAW version 1.5.2, but active development is on-going.

Building and Testing

In addition to the normal software requirements of GPAW, the GPU version requires the CUDA Toolkit and the
PyCUDA python module.

The only additional step to installing GPAW is that in the CUDA version one needs to build the CUDA kernels before
building the rest of the GPAW. This is done in the c/cuda/ directory that contains the CUDA kernels. There is a
customisable Makefile (make.inc) that can be edited before running the make command.

So, the steps to install the CUDA version of GPAW are:

1. Edit the Makefile for the CUDA kernels (c/cuda/make.inc).

Modify the default options and paths to match your system. The essential parts are the include paths for libraries
(MPI, CUDA) and the build options for nvcc to target the correct GPU architecture.

2. Build the CUDA kernels:

cd c/cuda
make
cd -

3. Edit the GPAW setup script (customize.py).

Add correct link and compile options for CUDA (and possibly other libraries). The relevant lines for CUDA are
e.g.:

define_macros += [('GPAW_CUDA', '1')]
libraries += ['gpaw-cuda', 'cublas', 'cudart', 'stdc++']
library_dirs += [

'./c/cuda',
'/path/to/cuda/lib64'

]
include_dirs += [

'/path/to/cuda/include'
]

4. Build and install GPAW:

python setup.py install --prefix=$TARGET_DIRECTORY

Source Code

An up-to-date development version of GPAW with CUDA support is currently available at: https://gitlab.com/
mlouhivu/gpaw. The current version is based on GPAW 1.5.2 and is available as commit 111567ee.

Once it is merged with the upstream, the CUDA version will be available as a separate branch called ‘cuda’ in the
main GPAW repository. Status of this work is tracked in Merge Request !580.

To obtain the latest development version of the code, use the following command:

git clone -b cuda https://gitlab.com/mlouhivu/gpaw.git

or to get the version based on version 1.5.2, use the following commands:

2.2. Extended Software Development Workshops 195

https://developer.nvidia.com/cuda-toolkit
https://pypi.org/project/pycuda/
https://gitlab.com/mlouhivu/gpaw
https://gitlab.com/mlouhivu/gpaw
https://gitlab.com/mlouhivu/gpaw/-/tree/111567ee39dd48e106b36b1aab4e6bc1b9961cae
https://gitlab.com/gpaw/gpaw/-/merge_requests/580

E-CAM Documentation, Release 0.2

git clone -b cuda https://gitlab.com/mlouhivu/gpaw.git
git checkout 111567ee39dd48e106b36b1aab4e6bc1b9961cae

2.3 Pilot Projects

One of primary activity of E-CAM is to engage with pilot projects with industrial partners. These projects are con-
ceived together with the partner and typically are to facilitate or improve the scope of computational simulation within
the partner. The related code development for the pilot projects are open source (where the licence of the underlying
software allows this) and are described in the modules associated with the pilot projects.

Below is a list of the modules developed directly within the context of the pilot projects within E-CAM:

2.3.1 Geomoltools

Software Technical Information

This section describes the module Geomoltools.

Language Fortran 95

Documentation Tool Sphinx, ReStructuredText

Relevant Training Material See usage examples in the tutorial directory.

Licence GNU General Public License (GPL) version 2.

• Purpose of Module

• Background Information

• Installation

• Testing

• Source Code

Purpose of Module

Geomoltools is a set of computer codes designed to manipulate molecules. From simple changes of coordinates (Z-
matrix to XYZ coordinates and vice versa) to more complicated operations as the generation of different stacking
arrangements between molecules are quick and easy to perform.

Background Information

Geomoltools is a set of standalone codes to be employed independently or taking part in the development of a more
general project.

196 Chapter 2. Electronic Structure Modules

E-CAM Documentation, Release 0.2

Installation

The module does not need installation because is formed by independent pieces. The dependency of each single code
with common subroutines are managed in the Makefile file, which leds an easy and straightforward compilation of the
desired codes.

Testing

In the tutorial directory input/output files for each code are found and constitute examples of test and usage.

Source Code

The package, including all the files as well as technical help, can be found in the E-CAM Gitlab webpage.

2.3.2 GRASP Sampling

Software Technical Information

Language C

Licence MIT

Documentation Tool Doxygen

Purpose of the Module

This module performs a stratified sampling of the configurations, described by vectors, of a system to build a repre-
sentative training set in a fitting procedure. Given a list of candidate configurations, and selected the size (N) of the
training set required, the module executes the combinatorial optimization that maximizes the following dissimilarity
score (DS) among the elements of the training set:

In this formula, the j-th configuration in the sum is the j-th nearest one to the l-th configuration and 𝑑𝑙𝑗 is the Euclidean
distance between the l-th and j-th configurations. M is the number of the nearest configurations considered in the
score. The exponential weight makes the score near independent from the particular value of M, if it is larger than 4-6.

The combinatorial optimization that maximizes the dissimilarity score is performed using the GRASP algorithm.
A stratified sampling can be performed without a combinatorial optimization using classical statistical techniques
(for example Latin hypercube sampling), the GRASP sampling becomes useful when the selection is restricted to a
predeterminated set of configurations, generated or sampled with specific internal constrains. This is the case of the
molecular configurations generated in a molecular dynamics simulation.

Background Information

The GRASP algorithm is illustrated in the paper “Feo T. A., Resende M. G., Greedy randomized adaptive search
procedures. Journal of global optimization 6, 109-133 (1995)”. The application of the GRASP algorithm to perform
a stratified sampling is described in the work “Force Field Parametrization of Metal Ions from Statistical Learning
Techniques. J. Chem. Theory Comput., 2018, 14(1), pp 255-273”.

2.3. Pilot Projects 197

https://gitlab.e-cam2020.eu/plesiat/geomoltools

E-CAM Documentation, Release 0.2

Input/Output Structure

The input file, “candidates.txt”, must have the form of an array 𝑁𝑆𝑎𝑚𝑝𝑙𝑒 × 𝑁𝑑𝑖𝑚, where 𝑁𝑆𝑎𝑚𝑝𝑙𝑒 is the number of
the candidates and 𝑁𝑑𝑖𝑚 is the dimension of the vectors. The application of the algorithm provides the files “so-
lution_v_A_B.txt” and “solution_i_A_B.txt” that includes the selected configurations and the corresponding indices
respectively. “A” and “B” in the files of the solutions are the number of the selected configurations in the current ap-
plication of the algorithm and the total number of configurations included in the solutions. A and B can differ because
the algorithm can be applied in cumulative mode. The parameters of the algorithm are set in the file “input.gra” (an
example is provided in the repository).

Source Code

The source code of the algorithm is included in the “grasp.c” file, available from the E-CAM Gitlab repository. To
compile the code execute the Makefile. The GNU Scientific Library is necessary.

Testing

In the example of the “candidates.txt” file are collected 10000 two-dimensional vectors generated randomly, the ap-
plication of the module produces the selection of a stratified subset that covers all the space of the basin sample. This
can be appreciated observing the scatter plot of the two sets. The command to run the test is

$./grasp

provided that the “candidates.txt” and “input.gra” files are in the same directory of the executable file. Examples
of “candidates.txt” and “input.gra” files are provided in the ./test directory. The name of “input.gra” file cannot be
changed, while the name of file where the candidate configurations are defined must be indicated in the first line of the
“input.gra” file.

2.3.3 GROMACS_Interface

Software Technical Information

Language Python

Licence MIT

Documentation Tool Doxygen

198 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/fracchia/GRASP_Sampling

E-CAM Documentation, Release 0.2

Purpose of the Module

This module reads the configurations of a molecular system generated by GROMACS and prepares the input for the
GRASP Sampling module. The molecular system must contain a metal ion, that in the module is identified with the
variable “metal_atom”. The module performs the following operations:

1. It reads the configurations stored as .gro files in the ./GROMACS_Configurations directory

2. It calculates, for each configuration, the Euclidean distances of all atoms from the metal ion.

3. It idenfifies the permutational equivalent atoms

4. It performs a Gaussian transformation of the distances

5. It calculates the variances of transformed distances

6. It selects the “v_len” coordinates with the higher variances

7. It prepares the input for the GRASP Sampling module as a matrix N_conf x v_len including the transformed
distances for all the configurations stored in the ./GROMACS_Configurations directory.

Input/Output Structure

The “input_gromacs.txt” file must contain the following information:

1. the path where the .gro files are stored

2. the path of the file of the selected coordinates

3. the path where the output files are written

4. the number of the atoms of the system minus one

5. the size of the output vectors that describe the configurations

6. the readable format file of the input files (.gro)

7. the sigma value of the Gaussian transformation

8. the ID of the reference atom (the metal ion) in the Gromacs configurations

The module produces the “selected_coords.txt” file that identifies the v_len coordinates of the output matrix. The
output files are: “d_store.txt” the matrix of the distances and “k_store.txt” the matrix of the transformed distances.

Source Code

The source code of the algorithm is available from the E-CAM Gitlab repository. It is included in the file gro-
macs_interfaces.py, it is exectuted as follows:

$ python3.6 gromacs_interface.py

Testing

To test the module an example of the “input_gromacs.txt” file and a set of 100 configurations is provided in the ./test
directory.

2.3. Pilot Projects 199

https://gitlab.e-cam2020.eu/fracchia/GROMACS_interface/

E-CAM Documentation, Release 0.2

2.3.4 Gaussian_interface

Software Technical Information

Language Python

Licence MIT

Documentation Tool Doxygen

Purpose of the Module

This module generates the Gaussian input files of clusters built by cutting of the configurations stored in .gro files. The
clusters are used as model systems to perform fitting of force fields. The user must specify an atom of the configuration
and a cut off distance (in nm). The module saturates the residues and prepares the input file for the calculation of the
energy and the forces of the cluster generated in the Gaussian format.

Input/Output Structure

An “input.txt” file must be included in the working directory. It must contain the following information:

1. the index of the central atom of the clusters

2. the cut off distance (in nm) in the case of heterogeneous systems or the number of the solvent molecules in the
case of solution systems

3. the extended path where the .gro files are stored

4. the extended path of the file of the output files

5. the level of theory for the calculation of energy and forces

The output module produces .com Gaussian input files.

Source Code

The source code of the algorithm is available from the E-CAM Gitlab repository. It is included in the file Gaus-
sian_interface.py. For the execution the following command line is required:

$ python3.6 Gaussian_interfaces.py

Testing

To test the module an example of the “input.txt” file and a set of 24 configurations is provided in the ./test directory.

2.3.5 Selectively-Localized-Wannier-Functions

Software Technical Information

Name Selectively Localized Wannier Functions

200 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/fracchia/Gaussian_interface/

E-CAM Documentation, Release 0.2

Language Fortran90

Licence GPL

Documentation Tool Ford online link to different Wannier90 source files http://www.wannier.org/ford/

Application Documentation Wannier90 User guide pdf and Tutorial pdf and Solution booklet pdf

Relevant Training Material ‘Not currently available.’

Software Module Developed by Valerio Vitale

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

Purpose of Module

This
mod-
ule
is
part
of
bun-
dle

to extend the capabilities of the Wannier90 code1. In particular, here we have implemented the algorithm from
Marianetti “et al.”2 to generate selectively localized Wannier functions which extend the method of Marzari and
Vanderbilt3 in two important ways: 1) it allows the user to focus on localizing a subset of orbitals of interest and 2) to
fix centres of these orbitals ensuring the preservation of the point-group symmetry. These features are very important
when Wannier functions are used in beyond-density-functional-theory methods, such as DMFT, to study transport
properties of novel technological relevant materials.

The module is part of the Wannier90 code.

Background Information

Wannier90 source code is available from the eponymous git-hub repository http://github.com/wannier-developers/
wannier90, which contains the official repository. Documentation about the source code is done via FORD, an online
version of this documentation is available online. Instructions on how to install Wannier90 on a variety of architectures
may be found in the user guide. Quantum ESPRESSO source code is available from the git-hub repository https:
//github.com/QEF/q-e, and a very detailed web documentation may be found here. Instruction for the installation of
the python-based AiiDA workflow are available online at http://aiida-core.readthedocs.io/en/stable/.

1 Comput. Phys. Commun. 185, 2309 (2014)
2 Phys. Rev. B 90, 165125 (2014)
3 Phys. Rev. B 56, 12847 (1997)

2.3. Pilot Projects 201

https://opensource.org/licenses/gpl-license
http://fortranwiki.org/fortran/show/FORD
http://www.wannier.org/ford/
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/user_guide.pdf
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/tutorial.pdf
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/solution_booklet.pdf
http://github.com/wannier-developers/wannier90
http://github.com/wannier-developers/wannier90
http://www.wannier.org/ford/
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/user_guide.pdf
https://github.com/QEF/q-e
https://github.com/QEF/q-e
http://www.quantum-espresso.org/Doc/user_guide/
http://aiida-core.readthedocs.io/en/stable/

E-CAM Documentation, Release 0.2

Building and Testing

For building the module one “simply” has to compile the Wannier90 code as explained in the online documentation.
This will produce the executable wannier90.x, which contains the module.

Source Code

• Link to a merge request containing my source code changes

• Link to my feature branch

2.3.6 Differential Evolution (SHADE)

Software Technical Information

Language C

Licence MIT

Documentation Tool Doxygen

Software Module Developed by Francesco Fracchia

Purpose of the Module

This module performs a single-objective global optimization in a continuous domain using the metaheuristic algo-
rithm Success-History based Adaptive Differential Evolution (SHADE). SHADE is a recent adaptive version of the
differential evolution algorithm, a stochastic population-based derivative-free optimizer. The module is a component
of the software tool LRR-DE, developed to parametrize force fields of metal ions. In particular, the role of the SHADE
algorithm in LRR-DE is the optimization of the hyperparameters of the model. However the module has general
applicability to the black-box minimization of a cost function.

The input of the module is the objective function, upper and lower limits of the domain for each dimension of the search
space, and the parameters of the algorithm. The parameters of the algorithm are the size of the vector population, the
maximum number of evaluations of the objective function, and the parameters of that govern the termination of the
optimization. The output provides the coordinates of the identified minimum and the corresponding value of the
objective function.

Background Information

The SHADE algorithm has been proposed by R. Tanabe and A. Fukunaga in the paper “Success-history based param-
eter adaptation for differential evolution.”, Evolutionary Computation (CEC), 2013 IEEE Congress on (pp. 71-78).
It is an adaptive version of the differential evolution algorithm [Storn1997]. It is an evolutionary algorithm based on
three main steps: mutation, crossover, selection.

Source Code

The source code of the algorithm is available from the Differential Evolution repository. To compile the code execute
the Makefile (including the demo.c file provided in the ./test directory). The GNU Scientific Library is necessary (2.4
version tested). The de.c file contains the core of the code, in the de.h file the data types are defined.

202 Chapter 2. Electronic Structure Modules

https://github.com/wannier-developers/wannier90/pull/187
https://github.com/VVitale/wannier90/tree/Marianetti
https://gitlab.e-cam2020.eu:10443/fracchia/Differential_Evolution
https://www.gnu.org/software/gsl/

E-CAM Documentation, Release 0.2

Testing

The demo.c file in the ./test directory includes three test functions: sphere function, ellipse function, and the
Michalewicz function. The command to run the test is

$./de NAMEFUNCTION

where NAMEFUNCTION can assume the values “sphere”, “ellips” or “michel”. The dimensionality of the functions
is set equal to 20, however it can be modified in the demo.c file. The correct application of the module should identify
the global minimum of the functions. They are provided in the file optima.dat in the ./test directory.

The termination of the optimization is defined by three criterions: 1) the maximum number of objective function
evaluations 2) the variation of the mean value of the objective function of the population calculated in two cycle
separated from a constant number of iterations 3) the difference between the mean value of the objective function
of the population and the best value of the population. The criterion are tuned by three parameters defined in the
demo.c file: settings.max_evaluations (default value equal to 200000), settings.step_delta is the number of the itera-
tions that separate two checks of the mean value of the objective function of the population (default value equal to 40),
settings.tolerance is the tolerance value for the criterions 2) and 3) (default value equal to 0.000001).

A further parameter is set in demo.c file, settings.size (default value equal to 100), that defines the size of the population
of the vectors.

Further functions can be added in the demo.c file defining the functional form and the domain of the search space.

Software Technical Information

Name Weighted Linear Ridge Regression

Language C

Licence MIT

Documentation Tool Doxygen

Relevant Training Material Not currently available.

Software Module Developed by Francesco Fracchia

2.3.7 Weighted Linear Ridge Regression

• Purpose of the Module

• Background Information

• Building and Testing

• Source Code

Purpose of the Module

This module solves the weighted linear ridge regression problem calculating the linear parameters of a model selected
by the user that minimize the deviations of the predictions from the references of the data set. Therefore, it is a
supervised learning tool that optimizes the linear parameters of an analytical expression in order to fit a data set. Each
element of the data set can be weighted according to the relative importance or reliability attributed by the user. The
regularization provides a protection from the over-fitting, this inconvenient can occur if the flexibility of the model is

2.3. Pilot Projects 203

E-CAM Documentation, Release 0.2

too high in relation to the available data. Moreover, the module calculates the leave-one-out cross-validation error for
the employed data set. The WLRR module is a component of the LRR-DE software tool, developed to parametrize
force fields of metal ions. In the LRR-DE software tool, the WLRR module is combined with the metaheuristic
optimization algorithm differential evolution in order to tune the hyper-parameters of the model (the regularization
parameter and the non-linear parameters of the model).

The LRR-DE module has been developed to parametrize force fields of metal ions, however the method can be applied
to optimize the parameters of a general functional form with respect to reference data.

Background Information

The theoretical background of the LRR-DE procedure is illustrated in the paper [FF2018]. The LRR-DE procedure is
a supervised learning methodology that combines the weighted linear ridge regression algorithm, to obtain the linear
patameters of the model, with the differential evolution optimizer, to obtain the non-linear parameters of the model,
using the leave-one-out cross-validation error as objective function. This module uses the GNU Scientific Library.

Building and Testing

To compile the code execute the Makefile (including the demo.c file provided in the ./test directory). In ./test directory
a multi-objective data set is provided. The demo.c file includes an example for the definition of a model. The example
is the parametrization of a force field with three components (Coulomb, Lennard-Jones 12-6) of the zinc ion in water
with respect the solvatation energy and the forces on the ion for a set of clusters. The linear parameters calculated by
the module should be 2.40203305, 0.00001364, and -0.10986800. They appear in the third column of the output. The
values of the first and second columns are the scaled parameters and the scaling factors respectively.

Source Code

The source code of the algorithm is available from the Weighted Linear Ridge Regression repository. The ./source
directory includes two files: i) wlrr.c contains the functions that perform the scaling of the data, the operation of fitting
and the calculation of the leave-one-out cross-validation error; ii) wlrr.h define the data types employed by wlrr.c.

Software Technical Information

Name Selected columns of density matrix Wannier functions

Language Fortran95

Licence GPL

Documentation Tool Ford online link to different Wannier90 source files http://www.wannier.org/ford/

Application Documentation Wannier90 User guide pdf and Quantum-ESPRESSO documentation

Relevant Training Material ‘Not currently available.’

Software Module Developed by Valerio Vitale

2.3.8 SCDM Wannier Functions

• Purpose of Module

204 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/fracchia/Weighted_Linear_Ridge_Regression/tree/master/test
https://gitlab.e-cam2020.eu/fracchia/Weighted_Linear_Ridge_Regression
https://opensource.org/licenses/gpl-license
http://fortranwiki.org/fortran/show/FORD
http://www.wannier.org/ford/
http://www.wannier.org/doc/user_guide.pdf
http://www.quantum-espresso.org/wp-content/uploads/Doc/user_guide/

E-CAM Documentation, Release 0.2

• Background Information

• Building and Testing

• Source Code

Purpose of Module

Wannier901 is a post-processing tool for the compu-
tation of the Maximally Localised Wannier Functions
(MLWFs)234, which have been increasingly adopted by
the electronic structure community for different pur-
poses. The reasons are manifold: MLWFs provide an in-
sightful chemical analysis of the nature of bonding, and
its evolution during, say, a chemical reaction. They play
for solids a role similar to localized orbitals in molecular
systems. In the condensed matter community, they are
used in the construction of model Hamiltonians for, e.g.,
correlated-electron and magnetic systems. Also, they are

pivotal in first-principles tight-binding Hamiltonians, where chemically-accurate Hamiltonians are constructed directly
on the Wannier basis, rather than fitted or inferred from macroscopic considerations, and many other applications, e.g.
dielectric response and polarization in materials, ballistic transport, analysis of phonons, photonic crystals, cold atom
lattices, and the local dielectric responses of insulators, for reference see2. This module is a first step towards au-
tomation of MLWFs. In the original Wannier90 framework, automation of MLWFs is hindered by the difficult step
of choosing a set of initial localized functions with the correct symmetries and centers to use as initial guess for the
optimization. As a result, high throughput calculations (HTC) and big data analysis with MLWFs have proved to be
problematic to implement.

The SCDM-k method5 removes the need for an initial guess altogether by using information contained in the
single-particle density matrix. In fact, the columns of the density matrix are localised in real space, 𝜌(r, r′) ∝
exp [−𝛾|r− r′|] and can be used as a vocabulary to build the localised Wannier Functions. The SCDM-k method
can be used in isolation to generate well localised WFs. More interestingly, is the possibility of coupling the SCDM-k
method to Wannier90. The core idea is to use WFs generated by the SCDM-k method as initial guess in the op-
timisation procedure within Wannier90. This module is a big step towards automation of Wannier Functions and
simplification of the use of the Wannier90 program. The module is therefore intendedfor all the scientists that benefit
from the use of Wannier Functions in their research. Furthermore, by making the code more accessible and easier to
use, this module will certainly increase the popularity of the Wannier90 code.

The module is part of the pw2wannier interface between the popular quantum ESPRESSO code link and Wannier90.
It will be part of the next version of quantum ESPRESSO v.6.3 and Wannier90. Moreover, it has been successfully
added in a developer branch of the AiiDA workflow6 to perform HTC on large material datasets.

Background Information

Wannier90 source code is available from the eponymous git-hub repository http://github.com/wannier-developers/
wannier90, which contains the official repository. Documentation about the source code is done via FORD, an online
version of this documentation is available online. Instrunction on how to install Wannier90 on a variety of architectures
may be found in the user guide. Quantum ESPRESSO source code is available from the git-hub repository https:

1 Com. Phys. Comm. 178, 685-699 (2008)
2 Rev. Mod. Phys. 84, 1419 (2012)
3 Phys. Rev. B 56, 12847 (1997)
4 Phys. Rev. B 65, 035109 (2001)
5 J.Comp.Phys. 334, 1-15 (2017)
6 Comp. Mat. Sci. 111, 218-230 (2016)

2.3. Pilot Projects 205

http://www.quantum-espresso.org
http://www.aiida.net
http://github.com/wannier-developers/wannier90
http://github.com/wannier-developers/wannier90
http://www.wannier.org/ford/
http://www.wannier.org/doc/user_guide.pdf
https://github.com/QEF/q-e
https://github.com/QEF/q-e
https://github.com/QEF/q-e
https://github.com/QEF/q-e
https://github.com/QEF/q-e
https://github.com/QEF/q-e
https://github.com/QEF/q-e
https://github.com/QEF/q-e

E-CAM Documentation, Release 0.2

//github.com/QEF/q-e, and a very detailed web documentation may be found here. Instruction for the installation of
the python-based AiiDA workflow are available online at http://aiida-core.readthedocs.io/en/stable/.

Building and Testing

For building the module one “simply” has to compile the quantum ESPRESSO program (v.6.2 and later), since the
actual routine is inside the pw2wannier90.f90 interface. This will produce the executable pw2wannier90.x.
Instructions on how to achieve this are given in the quantum ESPRESSO web documentation. For testing the module
one also needs the wannier.x executable.

Source Code

• Link to a merge request containing my source code changes

• Link to the pull request for the documentation and examples

• Link to my feature branch

Software Technical Information

Name Wannier90, AiiDA

Language Fortran90 for Wannier90, Python for AiiDA

Licence GPL for Wannier90, MIT for AiiDA

Documentation Tool Ford online link to different Wannier90 source files http://www.wannier.org/ford/, ReST for
AiiDA

Application Documentation Wannier90, AiiDA

Relevant Training Material See application documentation above

Software Module Developed by Giovanni Pizzi and Antimo Marrazzo in collaboration with Valerio Vitale

2.3.9 Automated high-throughput Wannierisation

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

Maximally-localised Wannier functions (MLWFs) are routinely used to compute from first- principles advanced ma-
terials properties that require very dense Brillouin zone integration and to build accurate tight-binding models for
scale-bridging simulations. At the same time, high-thoughput (HT) computational materials design is an emergent
field that promises to accelerate the reliable and cost-effective design and optimisation of new materials with target
properties. The use of MLWFs in HT workflows has been hampered by the fact that generating MLWFs automatically
and robustly without any user intervention and for arbitrary materials is, in general, very challenging. We address
this problem directly by proposing a procedure for automatically generating MLWFs for HT frameworks. Our ap-
proach is based on the selected columns of the density matrix method (SCDM, see SCDM Wannier Functions) and is
implemented in an AiiDA workflow.

206 Chapter 2. Electronic Structure Modules

https://github.com/QEF/q-e
https://github.com/QEF/q-e
http://www.quantum-espresso.org/wp-content/uploads/Doc/user_guide/
http://aiida-core.readthedocs.io/en/stable/
https://github.com/wannier-developers/wannier90/pull/167
https://github.com/wannier-developers/wannier90/pull/194
https://github.com/VVitale/wannier90/tree/SCDM_WFs
https://opensource.org/licenses/gpl-license
https://opensource.org/licenses/mit-license
http://fortranwiki.org/fortran/show/FORD
http://www.wannier.org/ford/
http://www.sphinx-doc.org/en/stable/rest.html
http://www.wannier.org/support/
https://aiida.readthedocs.io/projects/aiida-core/en/latest/

E-CAM Documentation, Release 0.2

Purpose of Module

Create a fully-automated protocol based on the SCDM algorithm for the construction of MLWFs, in which the two
free parameters are determined automatically (in our HT approach the dimensionality of the disentangled space is
fixed by the total number of states used to generate the pseudopotentials in the DFT calculations).

In the paper derived from this work [vitale2019], we apply our approach to a dataset of 200 bulk crystalline materials
that span a wide structural and chemical space. We assess the quality of our MLWFs in terms of the accuracy of
the band-structure interpolation that they provide as compared to the band-structure obtained via full first-principles
calculations.

Background Information

This module is a collaboration between the E-CAM and MaX HPC centres of excellence.

In SCDM Wannier Functions, E-CAM has implemented the SCDM algorithm in the pw2wannier90 interface code
between the Quantum ESPRESSO software and the Wannier90 code. We have used this implementation as the basis
for a complete computational workflow for obtaining MLWFs and electronic properties based on Wannier interpolation
of the BZ, starting only from the specification of the initial crystal structure. We have implemented our workflow
within the AiiDA materials informatics platform, and we used it to perform a HT study on a dataset of 200 materials.

Building and Testing

An AiiDA export file is provided with the full provenance of all simulations run in the project.

Source Code

See the Materials Cloud entry. A downloadable virtual machine is provided that allows to reproduce the results of the
associated paper and also to run new calculations for different materials, including all first-principles and atomistic
simulations and the computational workflows.

2.3.10 W90_solution_booklet

Software Technical Information

Name Wannier90 Solution Booklet

Language LaTeX

Licence GPL

Documentation Tool

Application Documentation Solution booklet pdf

Relevant Training Material ‘Not currently available.’

Software Module Developed by Valerio Vitale

• Purpose of Module

• Background Information

2.3. Pilot Projects 207

https://psi-k.net/download/highlights/Highlight_147.pdf
http://www.max-centre.eu/
https://archive.materialscloud.org/2019.0044/v2
https://opensource.org/licenses/gpl-license
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/solution_booklet.pdf

E-CAM Documentation, Release 0.2

• Building and Testing

• Source Code

Purpose of Module

This
is the
solution
booklet
for the
21 exam-
ples in
the Wan-
nier90
(v2.1)
Tutorial.
It is a
compre-
hensive
LaTeX
docu-
ment that
for each
example
de-
scribes
in details
the com-
mands
that need
to be run
and the

expected outputs, with texts, plots and figures. Moreover, in the text we tried to addresses most of the issues raised by
Users in the Wannier90 mailing list. This module is mostly aimed at reducing the steepness of the learning curve for
new Users.

The module is part of the Wannier90 code1.

Background Information

Wannier90 source code is available from the following Git-hub repo http://github.com/wannier-developers/wannier90,
which contains the official repository. Documentation about the source code is done via FORD, an online version
of this documentation is available online. Instructions on how to install Wannier90 on a variety of architectures
may be found in the user guide. Quantum ESPRESSO source code is available from the git-hub repository https:
//github.com/QEF/q-e, and a very detailed web documentation may be found here.

Building and Testing

For generating the PDF file for the solution booklet one has to navigate to the doc/solution_booklet/ folder and type
“make”. This will produce the solution_booklet.pdf file, which contains the compiled text. You will need

1 Comput. Phys. Commun. 185, 2309 (2014)

208 Chapter 2. Electronic Structure Modules

http://github.com/wannier-developers/wannier90
http://www.wannier.org/ford/
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/user_guide.pdf
https://github.com/QEF/q-e
https://github.com/QEF/q-e
http://www.quantum-espresso.org/Doc/user_guide/

E-CAM Documentation, Release 0.2

pdflatex and bibtex to be installed.

Source Code

• Link to a merge request containing my source code changes

• Link to my feature branch

2.3.11 FFTXlib

Software Technical Information

Language Fortran 1995

Documentation Tool Sphinx, ReStructuredText

Application Documentation Doc mirror

Relevant Training Material See usage examples in the examples directory of the source code.

Licence GNU Lesser General Public License v3.0

Author of Module Emine Kucukbenli

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

• Further Information

Purpose of Module

FFTXlib module is a collection of driver routines for complex 3D fast Fourier transform (FFT) libraries to be used
within planewave-based electronic structure calculation software.

Generally speaking, FFT algorithm requires a data array to act on, a clear description of the input-output sequence
and transform domains. In the context of planewave based electronic structure calculations, the data array may hold
elements such as electronic wavefunction 𝜓 or charge density 𝜌 or their functions. The transform domains are direct
(real) and reciprocal space, the discretization in real space is represented as a uniform grid of the unit cell and the
discretization of the reciprocal space is in the basis of planewaves whose wavevectors are multiples of reciprocal space
vectors (G) .

To understand the main motivation behind FFTXlib routines we need to clarify the differences between the represen-
tation of wavefunction and charge density in planewave based codes:

In these codes, the expansion of wavefunction in planewave basis is truncated at a cut-off wave-vector G𝑚𝑎𝑥. Since
density is the norm-square of the wavefunction, the expansion that is consistent with the one of wavefunctions requires
a cut-off wavevector twice that of wavefunctions: 2G𝑚𝑎𝑥. Meanwhile, the real space FFT domain is often only defined
by one uniform grid of the unit cell, so the array sizes of both 𝜌 and 𝜓 in their real space representation are the same.

2.3. Pilot Projects 209

https://github.com/wannier-developers/wannier90/pull/233
https://github.com/VVitale/wannier90/tree/Errata_solution_booklet
https://gitlab.com/kucukben/fftxlib-esl-ecam/tree/master/doc

E-CAM Documentation, Release 0.2

Therefore, to boost optimization and to reduce numerical noise, the library implements two possible options while
performing FFT: in one (‘Wave’) the wavevectors beyond G𝑚𝑎𝑥 are ignored, in the other (‘Rho’) no such assumption
is made.

Another crucial feature of FFTXlib is that some approximations in the electronic structure calculations (such as usage
of non-normconserving pseudopotentials) require that density is not just norm-square of wavefunctions, but has spa-
tially localized extra components. In that case, these localized contributions may require higher G-vector components
than the ones needed for density (> 2G𝑚𝑎𝑥). Hence, in such systems, the density array in reciprocal space has more
elements than the norm-conserving case (in other words a finer resolution or a denser grid is needed in real space)
while the resolution needed to represent wavefunctions are left unchanged.

To accommodate for these different requirements of grid size, and to be able to make Fourier transforms back and
forth between them, the FFTXlib routines explicitly require descriptor arguments which define the grids to be used.
For example, if potential is obtained from density, the FFT operations on it should use the denser grid; while FFT on
wavefunctions should use the smoother grid (corresponding to 2G𝑚𝑎𝑥 as defined before). When the Hamiltonian’s
action on wavefunctions are being calculated, the potential should be brought from dense to smooth grid. But when
the density is being calculated, wavefunction normsquare should be carried from smooth to dense grid.

A final important feature of FFTXlib is the index mapping. In the simple case of no parallelization, as a choice, the
reciprocal space arrays are ordered in increasing order of |𝐺|2 while the real space arrays are sorted in column major
order. Therefore for FFT to be performed, a map between these two orders must be known. This index map is created
and preserved by the FFTXlib.

In summary, FFTXlib allows the user to perform complex 3D fast Fourier transform (FFT) in the context of plane
wave based electronic structure software. It contains routines to initialize the array structures, to calculate the desired
grid shapes. It imposes underlying size assumptions and provides correspondence maps for indices between the two
transform domains.

Once this data structure is constructed, forward or inverse in-place FFT can be performed. For this purpose FFTXlib
can either use a local copy of an earlier version of FFTW (a commonly used open source FFT library), or it can also
serve as a wrapper to external FFT libraries via conditional compilition using pre-processor directives. It supports both
MPI and OpenMP parallelization technologies.

FFTXlib is currently employed within Quantum Espresso package, a widely used suite of codes for electronic structure
calculations and materials modeling in the nanoscale, based on planewave and pseudopotentials. FFTXlib is also
interfaced with “miniPWPP” module that solves the Kohn Sham equations in the basis of planewaves and soon to be
released as a part of E-CAM Electronic Structure Library.

Background Information

FFTXlib is mainly a rewrite and optimization of earlier versions of FFT related routines inside Quantum ESPRESSO
pre-v6; and finally their replacement. This may shed light on some of the variable name choices, as well as the
default of 2G𝑚𝑎𝑥 cut-off for the expansion of the smooth part of the charge density, and the required format for
lattice parameters in order to build the FFT domain descriptor. Despite many similarities, current version of FFTXlib
dramatically changes the FFT strategy in the parallel execution, from 1D+2D FFT performed in QE pre v6 to a
1D+1D+1D one; to allow for greater flexibility in parallelization.

Building and Testing

A stable version of the module can be downloaded using this link .. when fftxlib has its own repo, this link can be
moved there. Current installation and testing are done with gfortran compiler, version 4.4.7. The configuration uses
GNU Autoconf 2.69.

The commands for installation are:

210 Chapter 2. Electronic Structure Modules

https://gitlab.com/kucukben/fftxlib-esl-ecam

E-CAM Documentation, Release 0.2

$./configure
$ make libfftx

As a result, the library archive “libfftx.a” is produced in src directory, and symbolicly linked to a “lib” directory.

To see how the library works in a realistic case scenario of an electronic structure calculation, run:

$make FFTXexamples

A mini-app will be compiled in src directory and will be symbolicly copied into bin directory. The mini-app simulates
an FFT scenario with a test unit cell, and plane wave expansion cutoff. It creates the FFT structures and tests forward
and backward transform on sample array and reports timings. Read the README.examples documentation in the
examples subdirectory for further details.

Source Code

The FFTXlib bundle corresponding to the stable release can be downloaded from this link The source code itself can
be found under the subdirectory src.

The development is ongoing.

The version that corresponds to the one of examples and tests can be obtained with SHA
31a6f4ecbb7ce474b0c87702c716713758f99a0a. This will soon be replaced with a version tag.

Further Information

This documentation can be found inside the docs subdirectory.

The FFTXlib is developed with the contributions of C. Cavazzoni, S. de Gironcoli, P. Giannozzi, F. Affinito, P. Bonfa’,
Martin Hilgemans, Guido Roma, Pascal Thibaudeau, Stephane Lefranc, Nicolas Lacorne, Filippo Spiga, Nicola Varini,
Jason Wood, Emine Kucukbenli.

2.3.12 W90_cube_format_non-orthogonal

Software Technical Information

Name Cube format files for non-orthogonal cells

Language Fortran90

Licence GPL

Documentation Tool Ford online link to different Wannier90 source files http://www.wannier.org/ford/

Application Documentation Wannier90 User guide pdf and Tutorial pdf and Solution booklet pdf

Relevant Training Material Training material is accessible via tests and examples as well as a tutorial and its
solutions.

Software Module Developed by Valerio Vitale

• Purpose of Module

2.3. Pilot Projects 211

https://gitlab.com/kucukben/fftxlib-esl-ecam
https://opensource.org/licenses/gpl-license
http://fortranwiki.org/fortran/show/FORD
http://www.wannier.org/ford/
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/user_guide.pdf
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/tutorial.pdf
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/solution_booklet.pdf

E-CAM Documentation, Release 0.2

• Background Information

• Building and Testing

• Source Code

For many applications that rely on the detail of the electronic structure of solids, it is crucial to inspect the symmetries,
centres and shapes of the Wannier functions. To this end, one needs to use a visualisation program such as VESTA1 or
VMD2. One of the most popular format to encode volumetric data is the GAUSSIAN CUBE format, which is supported
by almost all molecular visualization programs. This module extends the cability of Wannier90 in generating output
files in the CUBE format for periodic calculations with non-orthogonal unit cells.

Purpose of Module

This modules allows the User to output volumetric data, e.g. the Wan-
nier functions on a real space grid, in the GAUSSIAN CUBE format
even when the unit cell lattice vectors of the periodic calculation are
non-orthogonal. The User can activate this feature by inserting the fol-
lowing two lines in the input file: wannier_plot = .true.

wannier_plot_format = cube

In addition, one can also specify the cut-off radius for the Wannier func-
tions, i.e. the radius of the sphere that must fit inside the parallelepiped
in which the Wannier function is plotted, via the wannier_plot_radius
keyword. The number of atoms to plot with the volumetric data can be
implicitly defined by the wannier_plot_scale keyword.

This module is part of the Wannier90 code3. The name of the subrou-
tine that implements it is internal_cube_format and can be found in the
plot.F90 file within the src folder.

Background Information

Wannier90 source code is available from the official repository on Git-
hub http://github.com/wannier-developers/wannier90. Documentation

of the source code is done via the FORD program, an online version of this documentation is available online. Instruc-
tions on how to install Wannier90 on a variety of architectures may be found in the user guide.

Building and Testing

For building the module one “simply” has to compile the Wannier90 code as explained in the online documentation.
This will produce the executable wannier90.x, which contains the module. The source code can be found in the
src folder within the plot.F90 module.

1

J. Appl. Crystallogr 44, 1272-1276 (2011)

2

J. Molec. Graphics 14, 33-38 (1996)

3 Comput. Phys. Commun. 185, 2309 (2014)

212 Chapter 2. Electronic Structure Modules

http://github.com/wannier-developers/wannier90
http://www.wannier.org/ford/
https://github.com/wannier-developers/wannier90/raw/v3.0.0/doc/compiled_docs/user_guide.pdf

E-CAM Documentation, Release 0.2

Source Code

• Link to a merge request containing my source code changes

2.3.13 miniPWPP

Software Technical Information

Language Fortran 1995.

Documentation Tool Sphinx,ReStructuredText

Application Documentation Doc mirror

Relevant Training Material See usage examples in the examples directory of the source code.

Licence GNU Lesser General Public License v3.0

• Purpose of Module

• Features

• Building and Testing

• Source Code

• Further Information

Purpose of Module

miniPWPP is a barebone DFT code that uses plane wave basis set. Its purpose is to serve as a testbed, benchmark
platform, and a demonstrator for modules and libraries that are created for pseudopotential-plane wave codes.

State of the art electronic structure packages cater to many possibilities: spin polarization, relativistic effects, several
different treatments of electronic temperature etc. Because of this, their structure get more complicated over time,
making it difficult to test new ideas, to benchmark core libraries, to profile different algorithms, or simply, to learn
what exactly is happening under the hood of an electronic structure engine.

With miniPWPP, we present a simple, modularized electronic structure engine, with core capabilities (less than 10
main routines, each belonging to a single step of a DFT workflow) and with minimum decoration.

Due to this simple structure, miniPWPP can also serve for didactic purposes, both in physics and in information
technologies. As a first example, in this module we demonstrate how the FFT interface library (FFTXlib) can be split
from the rest of the electronic structure code; while retaining the matrix algebra library (LAXlib) as a subdirectory.

Features

Currently it uses pseudopotential form factors as defined by Cohen and Bergstresser in 1966. Pseudopotentials in
Kleinman-Bylander form are not yet supported.

It supports solution of Kohn Sham equations at gamma or arbitrary k points. These two cases correspond to two
distinct executables, in order to increase the transparency of each: mpp_gamma.x and mpp.x

It supports MPI parallelization.

2.3. Pilot Projects 213

https://github.com/wannier-developers/wannier90/pull/162
https://gitlab.com/kucukben/minipwpp-esl-ecam/blob/master/doc/readme.rst

E-CAM Documentation, Release 0.2

It requires an FFT interface library (such as the one in E-CAM-Library: FFTXlib module

Building and Testing

A stable version of the module can be downloaded using this link

Current installation and testing are done with gfortran compiler, version 6.3.0. The configuration uses GNU Autoconf
2.69.

Here are the commands for installation:

$ tar -zxvf miniPWPP-1.0.tgz
$./configure
$ make miniPWPP

During configure, you can either specify the FFT interface library using the FFTX_LIBS and FFTX_INCLUDE vari-
ables:

$./configure FFTX_LIBS=/path/to/libfftx.a FFTX_INCLUDE=/path/to/fftx/modules/

If no library is specified, the FFTXlib module distributed from E-CAM-Library is downloaded, unpacked and used.

To test whether the module is working as expected, run:

.. $ make miniPWPP_ktest

.. $ make miniPWPP_gtest

The first tests the executable for the generic k point, while the second is for gamma point executable. The examples
cover three different systems: free electrons in a periodic box, Silicon and GaAs crystals. By changing the input files
in the examples directory, you can create your custom examples. Refer to README.examples file in the examples
directory for further details.

Source Code

The miniPWPP bundle corresponding to the stable release can be downloaded from this link. The source code itself
can be found under the subdirectory src.

Further Information

This documentation can be found inside the docs subdirectory. Further diagonalization techniques such as Davidson
and ParO will be added in the future.

The miniPWPP module is developed with the contributions of S. de Gironcoli, A. Chandran and E. Kucukbenli

2.3.14 PANNA-GVECT

Software Technical Information

Language Python 3.6.

Documentation Tool Sphinx,ReStructuredText

Application Documentation Doc mirror

214 Chapter 2. Electronic Structure Modules

https://gitlab.e-cam2020.eu/E-CAM-Library/tree/master/Electronic-Structure-Modules/modules/FFTXlib
https://gitlab.com/kucukben/minipwpp-esl-ecam/
https://gitlab.com/kucukben/minipwpp-esl-ecam/
https://gitlab.com/PANNAdevs/panna/tree/master/doc

E-CAM Documentation, Release 0.2

Relevant Training Material See usage examples in the doc/tutorial directory of the source code.

Licence The MIT License (MIT)

• Purpose of Module

• Features

• Building and Testing

• Usage

• Source Code

• Further Information

• References

Purpose of Module

PANNA-GVECT module demonstrates how to efficiently generate Behler-Parinello and modified Behler-Parinello
descriptors (see References1,2,3).

These descriptors can then be used in machine learning algorithms. Even though these descriptors were originally
designed for neural network models, they are equally suitable for other supervised learning schemes such as kernel
methods, or unsupervised ones such as clustering techniques.

PANNA-GVECT, unlike other modules within the PANNA project, does not use TensorFlow framework.

Features

PANNA-GVECT supports periodic and aperiodic structures, multiple species, derivative of the descriptors with respect
to atomic positions.

Building and Testing

A stable version of the module can be downloaded using the download button on this page

As a python module PANNA-GVECT does not require installation but it relies on numpy library version >= 1.15.0.

In order to set up and test the module, run the following:

$ tar -zxvf panna-master.tar.gz
$ cd panna-master
$ python3 ./panna/test-gvect_calculator.py

1 R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli. arxiv:1907.03055. Submitted (2019).
2 J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces, Phys. Rev. Lett.

98, 146401 (2007)
3 Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg. ANI-1: An extensible neural network potential with DFT accuracy at force field

computational cost. Chemical Science,(2017), DOI: 10.1039/C6SC05720A

2.3. Pilot Projects 215

https://gitlab.com/PANNAdevs/panna
https://arxiv.org/abs/1907.03055

E-CAM Documentation, Release 0.2

Usage

PANNA-GVECT main script requires a configuration file that specifies the parameter of the calculation such as de-
scriptor type, length etc. A typical command for using this module is as follows:

$ export PYTHONPATH=/path/to/panna/directory/panna
$ python3 gvect_calculator.py --config gvect_configuration.ini

A detailed tutorial about the contents of the configuration file can be found here.

In this comprehensive tutorial, how use this module with other modules such as PANNA-TOOLS and PANNA-TFR
is also demonstrated. Together, these modules cover all the steps necessary while going from raw data to descriptors
that can be used in machine learning workflow.

Source Code

PANNA-GVECT source is currently hosted on GitLab.

Further Information

The PANNA-GVECT module is developed with the contributions of R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli

References

PANNA manuscript:

and,

2.3.15 PANNA-TFR

Software Technical Information

Language Python 3.6.

Documentation Tool Sphinx,ReStructuredText

Application Documentation Doc mirror

Relevant Training Material See usage examples in the doc/tutorial directory of the source code.

Licence The MIT License (MIT)

• Purpose of Module

• Features

• Building and Testing

• Usage

• Source Code

• Further Information

216 Chapter 2. Electronic Structure Modules

https://gitlab.com/PANNAdevs/panna/blob/master/doc/tutorial/README_tutorial_2_data_preparation.md
https://gitlab.com/PANNAdevs/panna
https://gitlab.com/PANNAdevs/panna/tree/master/doc

E-CAM Documentation, Release 0.2

• References

Purpose of Module

PANNA-TFR module demonstrates how to efficiently pack the Behler-Parinello and modified Behler-Parinello de-
scriptor vectors (See References1,2,3) written in binary format, into TensorFlow data format for efficient reading
during training.

These descriptors can then be used within TensorFlow efficiently, reducing the overhead during batch creation.
PANNA-TFR is built on TensorFlow.

Features

PANNA-TFR supports descriptors that change size across records, i.e. data points with different number of atoms are
stored efficiently without padding.

Building and Testing

A stable version of the module can be downloaded using the download button on this page

As a python module PANNA-TFR does not require installation but it relies on numpy library version => 1.15.0 and
tensorflow version => 1.13.0.

In order to set up and test the module, run the following:

$ tar -zxvf panna-master.tar.gz
$ cd panna-master
$ python3 ./panna/test-tfr-packer.py

Usage

PANNA-TFR main script requires a configuration file that specifies the parameter of the calculation such as location of
descriptor files or how many descriptors to be packed in a single record file. A typical command for using this module
is as follows:

$ export PYTHONPATH=/path/to/panna/directory/panna
$ python3 tfr_packer.py --config tfr_configuration.ini

A detailed tutorial about the contents of the configuration file can be found here.

In this comprehensive tutorial, how use this module with other modules such as PANNA-GVECT and PANNA-TOOLS
is also demonstrated. Together, these modules cover all the steps necessary while going from raw data to descriptors
that can be used in machine learning workflow.

Source Code

PANNA-TFR source is currently hosted on GitLab.

1 R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli. arxiv:1907.03055. Submitted (2019).
2 J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces, Phys. Rev. Lett.

98, 146401 (2007)
3 Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg. ANI-1: An extensible neural network potential with DFT accuracy at force field

computational cost. Chemical Science,(2017), DOI: 10.1039/C6SC05720A

2.3. Pilot Projects 217

https://gitlab.com/PANNAdevs/panna
https://gitlab.com/PANNAdevs/panna/blob/master/doc/tutorial/README_tutorial_2_data_preparation.md
https://gitlab.com/PANNAdevs/panna
https://arxiv.org/abs/1907.03055

E-CAM Documentation, Release 0.2

Further Information

The PANNA-TFR module is developed with the contributions of R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli

References

PANNA manuscript:

and,

2.3.16 PANNA-TRAIN

Software Technical Information

Language Python 3.6.

Documentation Tool Sphinx,ReStructuredText

Application Documentation Doc mirror

Relevant Training Material See usage examples in the doc/tutorial directory of the source code.

Licence The MIT License (MIT)

• Purpose of Module

• Features

• Building and Testing

• Usage

• Source Code

• Further Information

• References

Purpose of Module

PANNA-TRAIN is a neural network training module for atomistic data, eg. prediction of total energy and forces given
a crystal structure. It implements a separate atomic network for each species, following the seminal work of Behler and
Parinello (see References1,2,3) which can later be used as interatomic potential in molecular dynamics simulations.

PANNA-TRAIN uses TensorFlow framework as the underlying neural network training and data i/o engine.

1 R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli. arxiv:1907.03055. Submitted (2019).
2 J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces, Phys. Rev. Lett.

98, 146401 (2007)
3 Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg. ANI-1: An extensible neural network potential with DFT accuracy at force field

computational cost. Chemical Science,(2017), DOI: 10.1039/C6SC05720A

218 Chapter 2. Electronic Structure Modules

https://gitlab.com/PANNAdevs/panna/tree/master/doc
https://arxiv.org/abs/1907.03055

E-CAM Documentation, Release 0.2

Features

PANNA-TRAIN supports all to all connected networks for each species. Networks with different number of nodes and
layers are allowed. It further supports controlling the training dynamics: eg. freeze/unfreeze layers, weight transfer,
decaying learning rates etc.

Building and Testing

A stable version of the module can be downloaded using the download button on this page

As a python module PANNA-TRAIN does not require installation but it relies on numpy library version >= 1.15.0,
tensorflow version >= 1.13.0, and tensorboard version >= 1.13.0. Note that with version 2.0.0, tensorflow libraries
went under substantial changes in structure, the 1.1X.X family supports the equally valid previous structure and is still
being maintained. PANNA-TRAIN requires tensorflow 1.1X.X family of versions.

In order to set up and test the module, run the following:

$ tar -zxvf panna-master.tar.gz
$ cd panna-master
$ python3 ./panna/test-train.py

Usage

PANNA-TRAIN main script requires a configuration file that specifies the parameter of the calculation such as number
of layers and nodes of each neural network layer, learning parameter etc. A typical command for using this module is
as follows:

$ export PYTHONPATH=/path/to/panna/directory/panna
$ python3 train.py --config train_configuration.ini

A detailed tutorial about the contents of the configuration file can be found here.

In this comprehensive tutorial, a neural network training scenario is demonstrated from beginning to end. Network
validation is a key step in network training, hence in the tutorial how to use this module together with PANNA-EVAL
module used in validation is also explained. Together, these two modules cover all the steps necessary to train an
atomistic neural network, starting from a data which specifies the machine learning task in (input, target output) pair
form.

Source Code

PANNA-TRAIN source is currently hosted on GitLab.

Further Information

The PANNA-TRAIN module is developed with the contributions of R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli

References

PANNA manuscript:

and

2.3. Pilot Projects 219

https://gitlab.com/PANNAdevs/panna
https://gitlab.com/PANNAdevs/panna/blob/master/doc/tutorial/README_tutorial_1_training.md
https://gitlab.com/PANNAdevs/panna

E-CAM Documentation, Release 0.2

2.3.17 PANNA-EVAL

Software Technical Information

Language Python 3.6

Documentation Tool Sphinx,ReStructuredText

Application Documentation Doc mirror

Relevant Training Material See usage examples in the doc/tutorial directory of the source code.

Licence The MIT License (MIT)

• Purpose of Module

• Features

• Building and Testing

• Usage

• Source Code

• Further Information

• References

Purpose of Module

PANNA-EVAL module evaluates an all to all connected neural network to predict atomistic quantities, e.g. total energy
and forces of a given crystal structure.

PANNA-EVAL can be used with other modules of the PANNA project for neural network validation, but it can also
serve to carry the information of the trianed network to other platforms such as molecular dynamics code LAMMPS.

Although PANNA-EVAL does not need the advanced capabilities of the TensorFlow framework, it uses the ‘check-
point’ information to automatically test the performance of a network from training data.

Features

PANNA-EVAL module has two user-end scripts: evaluate.py and extract_weights.py.

The main script of the PANNA-EVAL module, evaluate.py can evaluate all to all connected networks with various
sizes for each species. It can also calculate the derivative of the target function, ie. forces for an energy network.

This module was primarily created to validate TensorFlow networks stored during training in checkpoint format, hence
it has the functionality to look for checkpoint numbers in a training directory, and/or run several checkpoint evaluations
at once.

The extract_weights.py script allows one to save the network parameters from TensorFlow native checkpoint
format to other useful ones, such as human readable or LAMMPS potential formats. This last one allows neural
networks that are trained and validated using PANNA1 modules to be exported to LAMMPS as interatomic potentials.

1 R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli. arxiv:1907.03055. Submitted (2019).

220 Chapter 2. Electronic Structure Modules

https://gitlab.com/PANNAdevs/panna/tree/master/doc
https://arxiv.org/abs/1907.03055

E-CAM Documentation, Release 0.2

Building and Testing

A stable version of the module can be downloaded using the download button on this page

As a python module PANNA-EVAL does not require installation but it relies on numpy library version >= 1.15.0,
TensorFlow version >= 1.13.0. Note that with version 2.0.0, TensorFlow libraries went under substantial changes in
structure, the 1.1X.X family supports the equally valid previous structure and is still being maintained. PANNA-EVAL
requires TensorFlow 1.1X.X family of versions.

In order to set up and test the module, run the following:

$ tar -zxvf panna-master.tar.gz
$ cd panna-master
$ python3 ./panna/test-evaluate.py

Currently this test only assesses the evaluate.py script. Another test for extract_weights.py will be re-
leased in the near future.

Usage

PANNA-EVAL main script requires a configuration file that specifies the parameter of the calculation such as where
to find the network to evaluate, which checkpoints to evaluate etc.. A typical command for using this module is as
follows:

$ export PYTHONPATH=/path/to/panna/directory/panna
$ python3 evaluate.py --config val_config.ini

A detailed tutorial about the contents of the configuration file can be found here.

In this comprehensive tutorial, a neural network training scenario is demonstrated from beginning to end. Network
training and validation are two key steps of generating a predictive network, hence in the tutorial how to use this
module together with PANNA-TRAIN module used in training is also explained. Together, these two modules cover
all the steps necessary to train an atomistic neural network, starting from a data which specifies the machine learning
task in (input, target output) pair form.

Source Code

PANNA-EVAL source is currently hosted on GitLab.

Further Information

The PANNA-EVAL module is developed with the contributions of R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli.

References

PANNA manuscript:

2.3.18 PANNA-Charges

Software Technical Information

2.3. Pilot Projects 221

https://gitlab.com/PANNAdevs/panna
https://gitlab.com/PANNAdevs/panna/blob/master/doc/tutorial/README_tutorial_1_training.md
https://gitlab.com/PANNAdevs/panna

E-CAM Documentation, Release 0.2

Language Python 3.6

Documentation Tool Sphinx,ReStructuredText

Application Documentation Doc mirror

Relevant Training Material See usage examples in the doc/tutorial directory of the source code.

Licence The MIT License (MIT)

• Purpose of Module

• Features

• Building and Testing

• Usage

• Source Code

• Further Information

• References

Purpose of Module

PANNA-Charges module demonstrates how to train a neural network to predict local atomic charges. This network
can later be used to calculate the electrostatic energy density of a crystal. See Reference2 for the theoretical model
behind this approach.

PANNA-Charges, following other modules within the PANNA project1, uses TensorFlow framework.

Features

PANNA-Charge supports periodic and aperiodic structures, multiple species, and a different all-to-all connected net-
work architecture for each species. It further supports controlling the training dynamics: eg. freeze/unfreeze layers,
weight transfer, decaying learning rates etc.

Building and Testing

A stable version of the module can will be released in the near future, and will be available for download using the
download button on this page

As a python module PANNA-Charges does not require installation but it relies on numpy library version >= 1.15.0,
tensorflow version >= 1.13.0, and tensorboard version >= 1.13.0. Note that with version 2.0.0, tensorflow libraries
went under substantial changes in structure, the 1.1X.X family supports the equally valid previous structure and is still
being maintained. PANNA-TRAIN requires tensorflow 1.1X.X family of versions.

In order to set up and test the module, run the following:

2 N. Artrith, T. Morawietz, J. Behler. PRB 83, 153101 (2011). High-dimensional neural-network potentials for multicomponent systems:
Applications to zinc oxide. Erratum: PRB 86, 079914 (2012).

1 R. Lot, Y. Shaidu, F. Pellegrini, E. Kucukbenli. arxiv:1907.03055. Submitted (2019).

222 Chapter 2. Electronic Structure Modules

https://gitlab.com/PANNAdevs/panna/tree/master/doc
https://gitlab.com/PANNAdevs/panna
https://arxiv.org/abs/1907.03055

E-CAM Documentation, Release 0.2

$ tar -zxvf panna-master.tar.gz
$ cd panna-master
$ python3 ./panna/test-charges-train.py

Usage

PANNA-Charges main script, charges_train.py, requires a configuration file that specifies the parameter of the calcu-
lation such as number of layers and nodes of each neural network layer, learning parameter etc. A typical command
for using this module is as follows:

$ export PYTHONPATH=/path/to/panna/directory/panna
$ python3 charges_train.py --config charges_train_config.ini

A detailed tutorial about the contents of the configuration file will be released here.

In this comprehensive tutorial, a neural network training scenario for systems with long range interactions will be
demonstrated.

Source Code

PANNA-Charges source is not currently public, when it is released it will be hosted on GitLab.

Further Information

The PANNA-Charges module is developed with the contributions of Y. Shaidu, R. Lot, F. Pellegrini, E. Kucukbenli.

References

PANNA manuscript:

and

2.3.19 QMCPack interfaces

The following modules related to interfaces for the QMCPack code have been produced so far in the context of an
associated Pilot Project:

Software Technical Information

Name ESInterfaceBase

Language C++

Licence

Documentation Tool Doxygen

Relevant Training Material Not currently available

Software Module Developed by Michele Ruggeri, Raymond C. Clay III

2.3. Pilot Projects 223

https://gitlab.com/PANNAdevs/panna/blob/master/doc/tutorial/README_tutorial_3_charges_training.md
https://gitlab.com/PANNAdevs/panna
https://www.e-cam2020.eu/qmcpack-interfaces-for-es-computations/

E-CAM Documentation, Release 0.2

ESInterfaceBase

• Purpose of Module

• Background Information

• Building and testing

• Source Code

Purpose of Module

To obtain accurate results with ground state Quantum Monte Carlo methods (such as Variational and Diffusion Monte
Carlo) an accurate trial wave function is essential. Such a wave function for an electron system will be typically given
by the product of two factors: (1) a Jastrow term 𝐽 describing electronic correlations and (2) a Slater determinant of
suitable single particle orbitals 𝜑𝑖

Ψ(R) = 𝐽(R) · Det(𝜑𝑖(r𝑗))

where 𝑅 is the vector containing the position of all electrons and 𝑟𝑖 is the position of the 𝑖-th electron. While there is
great freedom in the definition of the Jastrow term, that can then be variationally optimized, the single particle orbitals
have to be computed in using Density Functional Theory.

The ESInterfaceBase module provides a base class for a general interface to generate single particle orbitals for QMC
simulations performed using QMCPack; implementations of specific interfaces as derived classes of ESInterfaceBase
are available as separate modules.

Background Information

QMCPack is available from the github repository https://github.com/QMCPACK/qmcpack, and the documentation can
be found at the QMCPack website https://qmcpack.org/documentation.

Building and testing

The ESInterfaceBase module can be found in the QMCQEPack branch of the QMCPack git repository https://github.
com/michruggeri/qmcpack/tree/QMCQEPack. After cloning and getting to the QMCQEPack branch with

git clone https://github.com/michruggeri/qmcpack.git

git checkout QMCQEPack

one can proceed to build the QMCPack software, as detailed in the official QMCPack documentation https://qmcpack.
org/documentation, or in the manual available in the manual subdirectory in the main QMCPack directory.

The tests for this code are part of the deterministic unit tests for QMCPack, that can be run with the command

ctest -R interface

Note that the code is tested using the GCC compiler and OpenMPI.

224 Chapter 2. Electronic Structure Modules

https://github.com/QMCPACK/qmcpack
https://qmcpack.org/documentation
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://qmcpack.org/documentation
https://qmcpack.org/documentation

E-CAM Documentation, Release 0.2

Source Code

The source code is available available from https://github.com/michruggeri/qmcpack/tree/QMCQEPack in the
QMCQEPack branch. Specifically relevant files for this module include:

• src/Interfaces/ESInterfaceBase.cpp

• src/Interfaces/ESInterfaceBase.h

• src/Interfaces/InterfaceBase.cpp

• src/Interfaces/InterfaceBase.h

Software Technical Information

Name ESHDF5Interface

Language C++

Licence

Documentation Tool Doxygen

Relevant Training Material Not currently available

Software Module Developed by Michele Ruggeri, Raymond C. Clay III

ESHDF5Interface

• Purpose of Module

• Background Information

• Building and testing

• Source Code

Purpose of Module

To obtain accurate results with ground state Quantum Monte Carlo methods (such as Variational and Diffusion Monte
Carlo) an accurate trial wave function is essential. Such a wave function for an electron system will be typically given
by the product of two factors: (1) a Jastrow term 𝐽 describing electronic correlations and (2) a Slater determinant of
suitable single particle orbitals 𝜑𝑖

Ψ(R) = 𝐽(R) · Det(𝜑𝑖(r𝑗))

where 𝑅 is the vector containing the position of all electrons and 𝑟𝑖 is the position of the 𝑖-th electron. While there is
great freedom in the definition of the Jastrow term, that can then be variationally optimized, the single particle orbitals
have to be computed in using Density Functional Theory.

The ESHDF5Interface module provides a derived class of ESInterfaceBase to generate single particle orbitals for
QMC simulations performed using QMCPack from a suitable HDF5 file.

2.3. Pilot Projects 225

https://github.com/michruggeri/qmcpack/tree/QMCQEPack

E-CAM Documentation, Release 0.2

Background Information

QMCPack is available from the github repository https://github.com/QMCPACK/qmcpack, and the documentation can
be found at the QMCPack website https://qmcpack.org/documentation.

Building and testing

The EHDF5Interface module can be found in the QMCQEPack branch of the QMCPack git repository https://github.
com/michruggeri/qmcpack/tree/QMCQEPack. After cloning and getting to the QMCQEPack branch with

git clone https://github.com/michruggeri/qmcpack.git

git checkout QMCQEPack

one can proceed to build the QMCPack software, as detailed in the official QMCPack documentation https://qmcpack.
org/documentation, or in the manual available in the manual subdirectory in the main QMCPack directory.

To use the interface one must use the interfaceh5 keyword in the determinantset block in a QMCPack input
file; further information can be found in Section 22.5.2 of the QMCPack manual, that can be compiled with the files
in the manual directory.

The tests for this code are part of the deterministic unit tests for QMCPack, that can be run with the command

ctest -R interface

Note that the code is tested using the GCC compiler and OpenMPI.

Source Code

The source code is available available from https://github.com/michruggeri/qmcpack/tree/QMCQEPack in the
QMCQEPack branch. Specifically relevant files for this module include:

• src/Interfaces/ESHDF5/ESHDF5Interface.cpp

• src/Interfaces/ESHDF5/ESHDF5Interface.h

and for the tests:

• src/Interfaces/tests/test_interface_HDF5.cpp

• src/Interfaces/tests/O.BFD.upf

Software Technical Information

Name ESPWSCFInterface

Language C++

Licence

Documentation Tool Doxygen

Relevant Training Material Not currently available

Software Module Developed by Michele Ruggeri, Raymond C. Clay III

226 Chapter 2. Electronic Structure Modules

https://github.com/QMCPACK/qmcpack
https://qmcpack.org/documentation
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://qmcpack.org/documentation
https://qmcpack.org/documentation
https://github.com/michruggeri/qmcpack/tree/QMCQEPack

E-CAM Documentation, Release 0.2

ESPWSCFInterface

• Purpose of Module

• Background Information

• Building and testing

• Source Code

Purpose of Module

To obtain accurate results with ground state Quantum Monte Carlo methods (such as Variational and Diffusion Monte
Carlo) an accurate trial wave function is essential. Such a wave function for an electron system will be typically given
by the product of two factors: (1) a Jastrow term 𝐽 describing electronic correlations and (2) a Slater determinant of
suitable single particle orbitals 𝜑𝑖

Ψ(R) = 𝐽(R) · Det(𝜑𝑖(r𝑗))

where 𝑅 is the vector containing the position of all electrons and 𝑟𝑖 is the position of the 𝑖-th electron. While there is
great freedom in the definition of the Jastrow term, that can then be variationally optimized, the single particle orbitals
have to be computed in using Density Functional Theory.

The ESPWSCFInterface module provides a derived class of ESInterfaceBase to generate single particle orbitals for
QMCPack via a DFT computation performed with Quantum Espresso.

Background Information

QMCPack is available from the github repository https://github.com/QMCPACK/qmcpack, and the documentation can
be found in the QMCPack website https://qmcpack.org/documentation.

Quantum Espresso can be installed using the module QMCQEPack_qepatch, and the documentation can be found in
the Quantum Espresso website https://www.quantum-espresso.org/resources/users-manual.

Building and testing

The ESPWSCFInterface module can be found in the QMCQEPack branch of the QMCPack git repository https://
github.com/michruggeri/qmcpack/tree/QMCQEPack. After cloning the repository and checking out the QMCQEPack
branch with

git clone https://github.com/michruggeri/qmcpack.git

git checkout QMCQEPack

one can proceed to download Quantum Espresso and build the libpwinterface.so library using the QMC-
QEPack_qepatch module.

Once the library is built one can proceed to build and compile QMCPack, as detailed in the official QMCPack doc-
umentation https://qmcpack.org/documentation, or in the manual available in the manual subdirectory in the main
QMCPack directory. Note that to use the Quantum Espresso interface the cmake options QE_INTERFACE must be
used, typically with

cmake -DQE_INTERFACE=1 -DQMC_COMPLEX=1 <QMCPack base directory>

2.3. Pilot Projects 227

https://github.com/QMCPACK/qmcpack
https://qmcpack.org/documentation
https://www.quantum-espresso.org/resources/users-manual
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://qmcpack.org/documentation

E-CAM Documentation, Release 0.2

before compiling with make.

To use the interface one must use the qmcqepack keyword in the determinantset block in a QMCPack input
file; further information can be found in Section 22.5.3 of the QMCPack manual, that can be compiled with the files
in the manual directory.

The tests for this code are part of the deterministic unit tests for QMCPack, that can be run with the command

ctest -R interface

Note that the code is tested using the GCC compiler and OpenMPI.

Source Code

The source code is available available from https://github.com/michruggeri/qmcpack/tree/QMCQEPack in the
QMCQEPack branch. Specifically relevant files for this module include:

• src/Interfaces/PWSCF/ESPWSCFInterface.cpp

• src/Interfaces/PWSCF/ESPWSCFInterface.h

• src/Interfaces/PWSCF/pwinterface.h

and for the tests:

• src/Interfaces/tests/pwscf.in

• src/Interfaces/tests/test_interface_PWSCF.cpp

Software Technical Information

Name QMCQEPack_qepatch

Language Fortran90

Licence

Documentation Tool Doxygen

Relevant Training Material Not currently available

Software Module Developed by Michele Ruggeri, Raymond C. Clay III

QMCQEPack_qepatch

• Purpose of Module

• Background Information

• Building and testing

• Source Code

Purpose of Module

To obtain accurate results with ground state Quantum Monte Carlo methods (such as Variational and Diffusion Monte
Carlo) an accurate trial wave function is essential. Such a wave function for an electron system will be typically given

228 Chapter 2. Electronic Structure Modules

https://github.com/michruggeri/qmcpack/tree/QMCQEPack

E-CAM Documentation, Release 0.2

by the product of two factors: (1) a Jastrow term 𝐽 describing electronic correlations and (2) a Slater determinant of
suitable single particle orbitals 𝜑𝑖

Ψ(R) = 𝐽(R) · Det(𝜑𝑖(r𝑗))

where 𝑅 is the vector containing the position of all electrons and 𝑟𝑖 is the position of the 𝑖-th electron. While there is
great freedom in the definition of the Jastrow term, that can then be variationally optimized, the single particle orbitals
have to be computed in using Density Functional Theory.

The QMCQEPack_qepatch provides the files to properly patch Quantum Espresso 5.3 to build the
libpwinterface.so library; this library is required to use the module ESPWSCFInterface to generate single
particle orbitals during a QMCPack computation using Quantum Espresso.

Background Information

QMCPack is available from the github repository https://github.com/QMCPACK/qmcpack, and the documentation can
be found in the QMCPack website https://qmcpack.org/documentation.

Quantum Espresso can be installed using this module, and the documentation can be found in the Quantum Espresso
website https://www.quantum-espresso.org/resources/users-manual.

Building and testing

The QMCQEPack_qepatch module can be found in the QMCQEPack branch of the QMCPack git repository https://
github.com/michruggeri/qmcpack/tree/QMCQEPack. After cloning the repository and checking out the QMCQEPack
branch with

git clone https://github.com/michruggeri/qmcpack.git

git checkout QMCQEPack

one can proceed to build the libpwinterface.so library using the using the script
QMCQEPack_download_and_patch_qe.sh in the external_codes/quantum_espresso direc-
tory. After patching the code one has to use the configure script in the resulting q-e-qe-5.3 directory and
finally compile the libpwinterface.so library with make pw. Note that when building the code it may be
required to use the internal Quantum Espresso version of the FFTW libraries. In order to do so if is sufficient to change
in the DFLAGS field of the make.sys file generated by the configure script -D__FFTW3 with -D__FFTW.

To use this library to perform DFT simulations QMCPack must be suitably compiled; the relevant information can be
found in the documentation of the ESPWSCFInterface module.

The tests for this code are part of the deterministic unit tests for QMCPack, that can be run with the command

ctest -R interface

Note that the code is tested using the GCC compiler and OpenMPI.

Source Code

The source code is available available from https://github.com/michruggeri/qmcpack/tree/QMCQEPack in the
QMCQEPack branch. Specifically relevant files for this module include:

• external_codes/quantum_espresso/QMCQEPack_qepatch.diff

• external_codes/quantum_espresso/QMCQEPack_download_and_patch_qe.sh

2.3. Pilot Projects 229

https://github.com/QMCPACK/qmcpack
https://qmcpack.org/documentation
https://www.quantum-espresso.org/resources/users-manual
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://github.com/michruggeri/qmcpack/tree/QMCQEPack
https://github.com/michruggeri/qmcpack/tree/QMCQEPack

E-CAM Documentation, Release 0.2

2.3.20 Caesar

The following modules related to the development of the Caesar software package which calculates the vibrational
free energy, and a number of related vibrational properties, of periodic crystals.

Software Technical Information

Name Caesar

Language Fortran

Licence GNU Lesser General Public License version 3

Documentation Tool Ford

Application Documentation See the Caesar repository

Software Module Developed by Mark Johnson

Caesar; a utility for calculating the vibrational free energy of periodic crystals

• Purpose of Module

• Building and Testing

– Compilation

– Dependencies

– Documentation and Helptext

– Unit Tests

– Output Visualisation

• Performing Calculations

• Source Code

Caesar calculates the vibrational free energy, and a number of related vibrational properties, of periodic crystals.

Purpose of Module

Caesar is intended to provide a vibrational method which is more accurate than the widely-used harmonic approxima-
tion [Hoja_ea] and the more sophisticated effective harmonic approximation [Errea_ea], but which is computationally
inexpensive enough to be integrated into high-throughput workflows.

Caesar can calculate vibrational properties using several vibrational methods. The Caesar Harmonic Calculation
Library performs calculations under the harmonic approximation [Hoja_ea]. The Caesar Anharmonic Calculation
Library performs calculations under the vibrational self-consistent harmonic approximation (VSCHA) [Errea_ea] or
using vibrational self-consistent field theory (VSCF) [Christiansen].

In order to perform vibrational calculations, Caesar must interface with an electronic structure code. A wide range of
electronic structure codes can be used, via the Caesar electronic structure interface.

230 Chapter 2. Electronic Structure Modules

https://github.com/veryreverie/caesar
https://www.gnu.org/licenses
https://github.com/Fortran-FOSS-Programmers/ford
https://github.com/veryreverie/caesar

E-CAM Documentation, Release 0.2

Building and Testing

The details of how to build and testing Caesar are given in the Caesar README.txt file.

Details of how the documentation and unit tests were written are presented in Caesar - Documentation and Testing.

Compilation

An out-of-source build is recommended. For this, a clean build directory should be made, and then CMake and
Make should be run from the build directory, e.g. as

mkdir build
cd build
cmake [options] path_to_src
make

where [options] are the desired CMake configuration options, and path_to_src is the path to the caesar/
src directory.

Caesar has been tested using version 10.1 of the gfortran compiler.

Dependencies

Caesar requires the spglib crystal symmetry library. CMake will search LIB for spglib’s lib directory, and will search
PATH for spglib’s include directory.

Caesar also requires the BLAS and LAPACK linear algebra libraries. These are located using CMake’s FindLAPACK
utility, which searches a range of standard install locations and can be configured using additional CMake configuration
options.

These dependencies can be suppressed by setting the CMake options LINK_TO_SPGLIB and LINK_TO_LAPACK
to false, although this will disable many of Caesar’s features.

Documentation and Helptext

The software documentation for Caesar can be generated using Ford. This should be generated in the doc directory,
by calling

ford caesar.md

Documentation will be generated in the doc/ford directory, and doc/ford/index.html can be viewed by
using an html reader (e.g. a web browser).

Caesar also has its own helptext system, which can be accessed through the caesar executable by calling caesar
--help. This system includes helptext for each of the modes in which Caesar can be called, including details of the
input settings for each mode.

Unit Tests

The unit tests for Caesar are generated using pFUnit. When building with tests, pFUnit becomes a dependency of
Caesar, and CMake will search PATH for pFUnit’s bin directory.

Unit tests can be run by calling

2.3. Pilot Projects 231

https://github.com/veryreverie/caesar
https://cmake.org/runningcmake
https://www.gnu.org/software/make/manual/make.html
https://cmake.org/runningcmake
https://github.com/spglib
https://cmake.org/runningcmake
https://github.com/spglib
https://github.com/spglib
http://www.netlib.org/blas
http://www.netlib.org/blas
https://cmake.org/runningcmake
https://cmake.org/cmake/help/latest/module/FindLAPACK.html
https://cmake.org/runningcmake
https://cmake.org/runningcmake
https://github.com/Fortran-FOSS-Programmers/ford
https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://cmake.org/runningcmake
https://github.com/Goddard-Fortran-Ecosystem/pFUnit

E-CAM Documentation, Release 0.2

ctest

from the build directory where CMake was run.

Unit tests are built by default, but can be suppressed by setting the CMake option ENABLE_TESTS to false.

Output Visualisation

Caesar uses python scripts to visualise output data. These can be run using Caesar, or can be run directly. When Caesar
is built, the python scripts will be written to the python directory within the build directory.

Performing Calculations

Caesar is a command line utility. The behaviour of Caesar can be controlled using command line options, a configu-
ration file, interactive input, or a combination of these. Detailed usage information can be obtained by calling

caesar --help

Source Code

The source code for Caesar is available from the Caesar repository

Software Technical Information

Name Caesar

Language Fortran

Licence GNU Lesser General Public License version 3

Documentation Tool Ford

Application Documentation See the Caesar repository

Software Module Developed by Mark Johnson

Caesar - Documentation and Testing

• Purpose of Module

– Unit Tests

– Documentation

– Helptext

– Submodules

• Source Code

232 Chapter 2. Electronic Structure Modules

https://cmake.org/runningcmake
https://cmake.org/runningcmake
https://www.python.org
https://www.python.org
https://github.com/veryreverie/caesar
https://www.gnu.org/licenses
https://github.com/Fortran-FOSS-Programmers/ford
https://github.com/veryreverie/caesar

E-CAM Documentation, Release 0.2

Purpose of Module

The features described in this module aim to make Caesar easier to use, maintain and develop, by anyone who is
interested in doing so.

Unit Tests

Caesar uses pFUnit to build and run unit tests. The unit test files used by pFUnit are preprocessed into fortran, and so
the unit tests can be built and run alongside the rest of the code, using CMake.

Each module file *.f90 has an accompanying test file, *_test.pf, containing the test procedures for that module.
It is impractical for the unit tests to be exhaustive, and so they aim to cover several standard use cases as well as
any obvious edge cases. In particular, use cases which were known to cause bugs in previous versions of Caesar are
included in the unit tests, as a form of regression testing.

Documentation

The documentation for Caesar is generated using Ford. Ford generates documentation directly from the fortran source
code, and so the documentation for each procedure is written in the same place as the interface for that procedure.

Each procedure has documentation describing what the procedure does, what the input and output arguments to the
procedure are, and what happens in the case of an error. The details of how each procedure works are presented
separately, as code comments in the implementation of each procedure.

Helptext

Caesar uses a custom system to process the input arguments for the various user-accessible procedures.

Each input argument is defined using a KeywordData type, which stores the name of the argument, a helptext
string describing the argument, and relevant metadata including whether or not the argument is optional, and what the
argument’s default value is, if relevant.

Once the array of input arguments for a given procedure has been created, it is passed to the input parsing system. The
input parsing system then gets the value of each argument from the user, either from command line arguments, from
an input file, or from an interactive procedure which describes each argument to the user in turn, and prompts them to
input the argument values.

Once the inputs are parsed, the relevant Caesar subroutine is called, with a dictionary-style container, containing the
input arguments as key-value pairs. Each input argument can then be accessed by name, and the container returns the
string representation of the argument’s value, which can be parsed by the subroutine.

In addition to driving the input parser, the list of arguments is used to generate helptext. Calling caesar [mode]
--help generates the list of arguments for the requested mode, and prints the helptext for each argument in turn.

Submodules

As part of the process of writing documentation and unit tests, every procedure in Caesar was separated into an
interface and and implementation, through the use of fortran submodules. This has a number of advantages:

• Submodules allow for circular dependencies which break free from fortran’s strict module hierarchy. This allow
modules to be separated into inter-dependent libraries, grouped together based on their functionality rather than
their dependencies.

2.3. Pilot Projects 233

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://cmake.org/runningcmake
https://github.com/Fortran-FOSS-Programmers/ford
https://software.intel.com/content/www/us/en/develop/blogs/doctor-fortran-in-we-all-live-in-a-yellow-submodule.html

E-CAM Documentation, Release 0.2

• Circular dependencies make it much easier to add new implementations of abstract classes, as functions which
“know about” (i.e. have dependencies on) all of the class implementations can be called by the methods of
the parent class. This means that Caesar can easily be updated to use new potential and state representations,
sampling methods, and convergence algorithms, without requiring future developers to modify the code in more
than a couple of places.

• The documentation for the procedure interfaces and the procedure implementations is separated. This allows
for easy browsing of interface documentation, with implementation documentation hidden until needed.

• Unit tests can be checked for code coverage by comparing the test files with the interface files, without having
to consider the implementation files.

• When procedure implementations are modified, only the modified submodules need to be re-compiled. This
avoids the compilation cascades which are endemic to module-only fortran projects, and dramatically reduces
total compilation time for developers.

Source Code

The source code for Caesar is available from the Caesar repository. The source code for the helptext system is found
in the src/common/arguments directory of this repository.

Software Technical Information

Name Caesar electronic structure interface

Language Fortran

Licence GNU Lesser General Public License version 3

Documentation Tool Ford

Application Documentation See the Caesar repository

Software Module Developed by Mark Johnson

Caesar electronic structure interface

• Purpose of Module

• The Electronic Structure Run Script

• Interfaces to Other Electronic Structure Interfaces

• Source Code

Purpose of Module

Calculating vibrational properties requires a mapping of the nuclear potential energy surface (PES) 𝑉 (r), where r is
the collective coordinate describing the locations of the nuclei. Caesar maps the PES by sampling it at a number of
nuclear configurations r𝑖.

In software terms, each PES sample represents a single electronic structure calculation, where the electronic structure
code is given the nuclear configuration r𝑖, and calculates the value of the PES at that configuration, 𝑉 (r𝑖), optionally
along with other quantities such as the forces f(r𝑖) = − 𝜕

𝜕r𝑉 |r𝑖 and the Hessian matrix 𝐻(r𝑖) = 𝜕
𝜕r

𝜕
𝜕r𝑉 |r𝑖 .

234 Chapter 2. Electronic Structure Modules

https://github.com/veryreverie/caesar
https://www.gnu.org/licenses
https://github.com/Fortran-FOSS-Programmers/ford
https://github.com/veryreverie/caesar

E-CAM Documentation, Release 0.2

The Caesar electronic structure interface enables Caesar to be used with a wide range of electronic structure codes,
by treating each electronic structure calculation as a black box.

The Electronic Structure Run Script

Caesar generates a nested directory structure, with the input file for each configuration r𝑖 written to its own calculation
directory. A user-provided run script is then called repeatedly, once for each calculation directory. This script is
expected to read any required parameters from the root directory, read the input file from the calculation directory,
and then call the electronic structure code and write the electronic structure results to an output file in the calculation
directory.

The calculation input and output files can be in a number of formats used by existing electronic structure codes, or
they can be in a simple plain-text format.

The plain-text input file, structure.dat is formatted as

Lattice
L_xx L_xy L_xz
L_yx L_yy L_yz
L_zx L_zy L_zz
Reciprocal Lattice
L'_xx L'_xy L'_xz
L'_yx L'_yy L'_yz
L'_zx L'_zy L'_zz
Atoms
z_1 r_1x r_1y r_1z
z_2 r_2x r_2y r_2z
...
z_n r_nx r_ny r_nz
Supercell
S_xx S_xy S_xz
S_yx S_yy S_yz
S_zx S_zy S_zz
Reciprocal Supercell
S'_xx S'_xy S'_xz
S'_yx S'_yy S'_yz
S'_zx S'_zy S'_zz
R-vectors
R_1x R_1y R_1z
R_2x R_2y R_2z
...
R_Nx R_Ny R_Nz
G-vectors
G_1x G_1y G_1z
G_2x G_2y G_2z
...
G_Nx G_Ny G_Nz
End

where:

• 𝐿 is the supercell lattice matrix, whose rows are the lattice vectors of the supercell in which the electronic
structure calculation should be performed.

• 𝐿′ is the reciprocal supercell lattice matrix of the supercell, defined as 𝐿′ = 𝐿−𝑇 .

• 𝑆 is the supercell matrix, which relates the supercell lattice matrix 𝐿 to the primitive cell lattice matrix 𝐿𝑝 as
𝐿 = 𝑆𝐿𝑝.

2.3. Pilot Projects 235

E-CAM Documentation, Release 0.2

• 𝑆′ is the reciprocal supercell matrix, defined as 𝑆′ = 𝑆−𝑇 .

• 𝑧𝑖 and r𝑖 are the species label and cartesian coordinate of the 𝑖’th atom.

• {𝑅𝑖} are the R-vectors of the primitive cell which are contained within the supercell.

• {𝐺𝑖} are the G-vectors of the reciprocal supercell which are contained within the reciprocal primitive cell.

• Subscripts 𝑥, 𝑦 and 𝑧 denote cartesian components.

The plain-text output file, electronic_structure.dat is formatted as

Energy (Hartree):
V
Forces (Hartree/Bohr):
f_1x f_1y f_1z
f_2x f_2y f_2z
...
f_nx f_ny f_nz
Hessian (Hartree/Borh^2):
Atoms: (1 1)
H_11_xx H_11_xy H_11_xz
H_11_yx H_11_yy H_11_yz
H_11_zx H_11_zy H_11_zz

Atoms: (2 1)
H_21_xx H_21_xy H_21_xz
H_21_yx H_21_yy H_21_yz
H_21_zx H_21_zy H_21_zz

...
Atoms: (n n)
H_nn_xx H_nn_xy H_nn_xz
H_nn_yx H_nn_yy H_nn_yz
H_nn_zx H_nn_zy H_nn_zz
Stress (Hartree/Bohr^3):
sigma_xx sigma_xy sigma_xz
sigma_yx sigma_yy sigma_yz
sigma_zx sigma_zy sigma_zz

where:

• 𝑉 is the energy of the supercell, normalised to energy per supercell.

• 𝑓𝑖 is the force on the 𝑖’th atom. The number and order of atom labels must match those in the input file (i.e. be
1 to 𝑛).

• 𝐻𝑖𝑗 is the block of the Hessian matrix corresponding to atoms 𝑖 and 𝑗, i.e. 𝜕
𝜕r𝑖

𝜕
𝜕r𝑗

𝑉 .

• 𝜎 is the stress tensor.

• Subscripts 𝑥, 𝑦 and 𝑧 denote cartesian components.

All sections but Energy are optional. All values must be given in atomic units.

This file is parsed by the ElectronicStructureData class, and the documentation for this class should be
consulted for the full specification of this file. Each line of the file is split into tokens by whitespace, so the exact
whitespace on each line does not matter as long as there is some whitespace between each token.

236 Chapter 2. Electronic Structure Modules

E-CAM Documentation, Release 0.2

Interfaces to Other Electronic Structure Interfaces

Rather than interfacing with an electronic structure code directly, Caesar can instead be interfaced with an external
package which in turn interfaces with the electronic structure code. Caesar has interfaces to two such packages: QUIP
and The Atomic Simulation Environment (ASE).

The QUIP interface needs to be linked at compile time, as detailed in the Caesar README.txt file. This is achieved
by setting the CMake configuration option LINK_TO_QUIP to true.

The ASE interface uses a python script and does not require additional compilation. An example script is provided
as doc/input_files/example_ase_run_script.py in the Caesar repository, and this script is intended to
serve as a template for an interface with any of the electronic structure codes which ASE can interface with.

Source Code

The source code for the Caesar electronic structure interface is available from the src/common/
electronic_structure directory of the Caesar repository

Software Technical Information

Name Caesar

Language Fortran

Licence GNU Lesser General Public License version 3

Documentation Tool Ford

Application Documentation See the Caesar repository

Software Module Developed by Mark Johnson

Caesar Harmonic Calculation Library

• Purpose of Module

• Theory

– The Harmonic Approximation

– Calculating the Hessian Matrix

– Supercells

• Performing Calculations

• Source Code

Purpose of Module

The Caesar harmonic calculation library aims to provide an efficient method for calculating vibrational properties
under the harmonic approximation [Hoja_ea1]. This can be done using a range of electronic structure codes, using the
Caesar electronic structure interface.

2.3. Pilot Projects 237

https://libatoms.github.io/QUIP/
https://wiki.fysik.dtu.dk/ase/
https://libatoms.github.io/QUIP/
https://github.com/veryreverie/caesar
https://cmake.org/runningcmake
https://wiki.fysik.dtu.dk/ase/
https://www.python.org
https://github.com/veryreverie/caesar
https://wiki.fysik.dtu.dk/ase/
https://github.com/veryreverie/caesar
https://www.gnu.org/licenses
https://github.com/Fortran-FOSS-Programmers/ford
https://github.com/veryreverie/caesar

E-CAM Documentation, Release 0.2

Theory

The Harmonic Approximation

The nuclear potential energy surface 𝑉 is a function of the 3𝑛-dimensional nuclear coordinate r. Under the harmonic
approximation [Hoja_ea1], this function is approximated as quadratic in the difference between r and the value of r
for the undisplaced structure, r(0). Formally, this is

𝑉 (r) = (r− r(0)) ·𝐻 · (r− r(0))

where 𝐻 is the Hessian matrix.

By making a coordinate transform from r =
∑︀

𝑖 𝑟𝑖r̂𝑖 to r =
∑︀

𝑗 𝑢𝑗û𝑗 , the Hessian matrix can be diagonalised, to give

𝑉 (u) =
∑︁
𝑗

1

2
𝑁𝜔2

𝑗𝑢
2
𝑗

where each 𝑢𝑗 is a normal mode of the system, each 𝜔𝑗 is the corresponding frequency of that mode, and 𝑁 is the size
of the supercell (defined as the ratio of the volume of the supercell to the volume of the primitive cell).

Provided that every value of 𝜔𝑗 is real, the simple form of 𝑉 means that the Hamiltonian can be diagonalised analyti-
cally, and so the free energy and other properties can be calculated analytically [Hoja_ea1].

Calculating the Hessian Matrix

Caesar calculates the Hessian matrix using a finite difference method. This involves calculating the forces on the
atoms in atomic configurations where the atomic displacement r − r(0) is small. Forces must be calculated by an
electronic structure code, via the Caesar electronic structure interface.

Caesar minimises the total computational cost of these electronic structure calculations by exploiting crystal sym-
metry, as calculated by the spglib crystal symmetry library, and by using the non-diagonal supercell method
[Lloyd-Williams_Monserrat].

Supercells

Most vibrations in crystals cause atoms to move in ways which break translational symmetry. This means that it is not
sufficient to calculate vibrational properties in the primitive unit cell alone. Instead, properties must be calculated in a
supercell containing multiple copies of the primitive unit cell. Properties should be calculated in a number of different
supercells, and the size of the supercell should be increased until the results of the calculations converge.

Performing Calculations

Running the Caesar Harmonic Calculation Library is a four-stage process.

• Firstly, caesar setup_harmonic parses the input data, calls spglib to calculate the crystal symmetries, and
generates a directory structure containing directories in which all the necessary electronic structure calculations
must be run.

• Secondly, caesar run_harmonic performs the electronic structure calculations, using the Caesar elec-
tronic structure interface. There is no connection between the separate electronic structure calculations, so they
can be run sequentially, in parallel, or across multiple computers as desired.

• Thirdly, caesar calculate_normal_modes uses the results of the electronic structure calculations to
calculate the Hessian matrix and the normal modes of the crystal.

238 Chapter 2. Electronic Structure Modules

https://github.com/spglib
https://github.com/spglib

E-CAM Documentation, Release 0.2

• Finally, caesar calculate_harmonic_observables calculates the vibrational properties of the crys-
tal under the harmonic approximation.

The stages are separated so that the potentially computationally costly run_harmonic can be run on a separate
computer or computers as needed, and so that calculate_harmonic_observables can be run repeatedly to
calculate different observables as required.

The calculated properties are written to a harmonic_observables directory. These can be visualised using the
various caesar plot_ utilities.

Each stage of the calculation has its own helptext, which can be accessed through the caesar executable by calling
caesar --help.

Source Code

The source code for the Caesar harmonic library is available from the src/harmonic directory of the Caesar
repository

Software Technical Information

Name Caesar

Language Fortran

Licence GNU Lesser General Public License version 3

Documentation Tool Ford

Application Documentation See the Caesar repository

Software Module Developed by Mark Johnson

Caesar Anharmonic Calculation Library

• Purpose of Module

• Theory

– Fitting the Potential Energy Surface

– The Vibrational Self-Consistent Harmonic Approximation

– Vibrational Self-consistent Field Theory

• Performing Calculations

• Source Code

Purpose of Module

The Caesar anharmonic calculation library aims to provide an efficient method for calculating vibrational proper-
ties beyond the harmonic approximation; under the vibrational self-consistent harmonic approximation (VSCHA)
[Errea_ea1] or using vibrational self-consistent field theory (VSCF) [Christiansen1].

2.3. Pilot Projects 239

https://github.com/veryreverie/caesar
https://github.com/veryreverie/caesar
https://www.gnu.org/licenses
https://github.com/Fortran-FOSS-Programmers/ford
https://github.com/veryreverie/caesar

E-CAM Documentation, Release 0.2

Theory

Fitting the Potential Energy Surface

Caesar models the nuclear potential energy surface (PES) using a truncated Taylor expansion in normal-mode coordi-
nates. Constructing and fitting this model happens over several steps:

• Firstly, a set of symmetry-invariant basis functions are generated, using the crystal symmetries as calculated by
spglib.

• Secondly, a set of nuclear coordinates r are generated at which the PES will be sampled.

• Thirdly, electronic structure calculations are performed at each coordinate, using the Caesar electronic structure
interface.

• Finally, the results of the electronic structure calculations, including calculated energies, forces and other infor-
mation, are used to calculate the basis function coefficients.

As with the harmonic calculation, the anharmonic calculation uses the non-diagonal supercell method
[Lloyd-Williams_Monserrat1] to reduce the total computational cost of the electronic structure calculations where
possible.

The Vibrational Self-Consistent Harmonic Approximation

VSCHA approximates the eigenstates of the system as those which diagonalise an effective harmonic potential
𝑉 effective. The effective harmonic potential 𝑉 effective implemented by Caesar has the same functional form and nor-
mal modes {𝑢𝑗} as the harmonic potential 𝑉 harmonic, but has a different set of frequencies {𝜔𝑗}.

The frequencies {𝜔𝑗} are calculated as those which minimise the free energy of the anharmonic PES with respect to
the VSCHA eigenstates [Errea_ea1].

Vibrational Self-consistent Field Theory

Traditional VSCF separates the PES 𝑉 (u) into a sum of single-mode effective potentials {𝑉𝑗(𝑢𝑗)}, each of which is
the expectation of 𝑉 with respect to all modes other than 𝑢𝑗 . The Hamiltonian corresponding to each mode is then
constructed in the VSCHA eigenbasis, and this is diagonalised to give the single-mode VSCF eigenstates {|𝜓𝑗𝑘 >}.
This process can be written as two equations,

(𝑇 + 𝑉𝑗)|𝜓𝑗𝑘 >= 𝐸𝑗𝑘|𝜓𝑗𝑘 >

and

𝑉𝑗 =< 𝑉 >𝑗′ ̸=𝑗

These equations are solved self-consistently, using a Pulay scheme [Pulay].

The VSCF method implemented by Caesar differs from traditional VSCF methods in that rather than separating the
PES single-mode potentials, the PES is instead separated into single-subspace potentials, where each subspace contains
a complete set of modes whose frequencies are degenerate as a result of symmetry. This implementation of VSCF is
symmetry invariant, unlike the single-mode methods.

240 Chapter 2. Electronic Structure Modules

https://github.com/spglib
Caesar

E-CAM Documentation, Release 0.2

Performing Calculations

Prior to performing anharmonic calculations, a harmonic calculation must be performed. This can be done using the
Caesar Harmonic Calculation Library, or the Hessian matrix of the undisplaced structure can be read using the Caesar
electronic structure interface.

Like running the Caesar Harmonic Calculation Library, running the Caesar Anharmonic Calculation Library is a
four-stage process.

• Firstly, caesar setup_anharmonic parses the input data and reads the output of the harmonic calculation.
It then generates a directory structure containing directories in which all the necessary electronic structure
calculations must be run.

• Secondly, caesar run_anharmonic performs the electronic structure calculations, using the Caesar elec-
tronic structure interface. There is no connection between the separate electronic structure calculations, so they
can be run sequentially, in parallel, or across multiple computers as desired.

• Thirdly, caesar calculate_potential uses the results of the electronic structure calculations to fit the
anharmonic potential.

• Finally, caesar calculate_anharmonic_observables calculates the vibrational properties of the
crystal under VSCHA and VSCF.

The calculated properties are written to an anharmonic_observables directory. These can be visualised using
the various caesar_plot_ utilities.

As with the harmonic stages, each anharmonic stage has its own helptext, which can be accessed through the caesar
executable by calling caesar --help.

Source Code

The source code for Caesar anharmonic library is available from the src/anharmonic directory of the Caesar
repository

General Information

Contents

• Quantum Dynamics Modules
– Introduction
– Objectives of E-CAM WP3 Quantum Dynamics
– Pilot Projects
– Extended Software Development Workshops
– List of available Modules

• How to contribute?

• search

2.3. Pilot Projects 241

https://github.com/veryreverie/caesar
https://github.com/veryreverie/caesar

E-CAM Documentation, Release 0.2

242 Chapter 2. Electronic Structure Modules

CHAPTER 3

Quantum Dynamics Modules

3.1 Introduction

This is a collection of the modules that have been created by the E-CAM community within the area of Quantum
Dynamics. This documentation is created using ReStructured Text and the git repository for the documentation.
Source files can be found at https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library which are open to contributions from
E-CAM members.

In the context of E-CAM, the definition of a software module is any piece of software that could be of use to the
E-CAM community and that encapsulates some additional functionality, enhanced performance or improved usability
for people performing computational simulations in the domain areas of interest to the project.

This definition is deliberately broader than the traditional concept of a module as defined in the semantics of most
high-level programming languages and is intended to capture internal workflow scripts, analysis tools and test suites
as well as traditional subroutines and functions. Because such E-CAM modules will form a heterogeneous collection
we prefer to refer to this as an E-CAM software repository rather than a library (since the word library carries a
particular meaning in the programming world). The modules do however share with the traditional computer science
definition the concept of hiding the internal workings of a module behind simple and well-defined interfaces. It is
probable that in many cases the modules will result from the abstraction and refactoring of useful ideas from existing
codes rather than being written entirely de novo.

243

https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library

E-CAM Documentation, Release 0.2

Perhaps more important than exactly what a module is, is how it is written and used. A final E-CAM module adheres to
current best-practice programming style conventions, is well documented and comes with either regression or unit tests
(and any necessary associated data). E-CAM modules should be written in such a way that they can potentially take
advantage of anticipated hardware developments in the near future (this is one of the training objectives of E-CAM).

3.2 Objectives of E-CAM WP3 Quantum Dynamics

Software development in quantum dynamics has so far been less systematic than in other fields of modelling, such
as classical molecular dynamics or electronic structure. Although some packages have been developed to implement
specific methods, e.g. Quantics for wave packet dynamics, or subroutines added to electronic structure packages, e.g.
Surface Hopping and Ehrenfest in CPMD, these efforts are not the standard.

One of the goals of E-CAM’s WP3 is then to provide an environment to stimulate the transition from in-house codes,
often developed and used by single groups, to the development of modular, well documented community-based soft-
ware packages capable of multiple functionalities and adopting a common set of standards and benchmarks.

To foster this development, we have initiated five parallel activities:

• Creating software for benchmarking and testing based on exact integration schemes for low dimensional systems
and standard potentials.

• Creating an environment to transform in-house software to modules that adhere to the E-CAM best practices.

• Disseminating this initiative to attract coding efforts from leading groups in the field to the E-CAM repository.

• Interact with industrial partners to enrich our repository with software targeted at their needs.

• Training young code developers.

3.3 Pilot Projects

One of primary activity of E-CAM is to engage with pilot projects with industrial partners. These projects are con-
ceived together with the partner and typically are to facilitate or improve the scope of computational simulation within
the partner. The related code development for the pilot projects are open source (where the licence of the underlying
software allows this) and are described in the modules associated with the pilot projects.

The pilot project of the WP3 in collaboration with IBM is related to quantum computing and improvements of the
quantum computer technology. One of our main topic was development of software for construction of control pulses
necessary for operating quantum logical gates between qubits in a universal quantum computer using the Local Control
Theory. [Curc] More information can be found on the pilot project web site. Below are listed the pilot project modules
created so far:

3.3.1 LocConQubit

Software Technical Information

Language Python 3.5

License MIT license (MIT)

Documentation Tool sphinx

Software Module Developed by Momir Mališ

244 Chapter 3. Quantum Dynamics Modules

http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
http://www.cpmd.org/
https://www.e-cam2020.eu/pilot-project-ibm/
https://www.zurich.ibm.com/
https://www.e-cam2020.eu/pilot-project-ibm/

E-CAM Documentation, Release 0.2

• Purpose of Module

• Local Control Theory (LCT)

• Applications of the Module

• Installation

• Testing

• Source Code

• Source Code Documentation

• References

Purpose of Module

LocConQubit is a code for constructing controlled pulses on isolated qubit systems that can either drive the population
between specific qubit states or work as a logical gates between qubits. LocConQubit implements the Local Control
Theory (LCT) which generates the required pulses on-the-fly. The generated pulses can be further post-processed with
a variety of tools accompanying the LocConQubit module in order to obtain an optimal control pulse.

Local Control Theory (LCT)

In general Local Control Theory is an on-the-fly procedure for updating the time-dependent Hamiltonian (�̂�(𝑡))
to achieve population transfer from some initial quantum state to a designated quantum target state (|𝜓⟩). [LCT1]
[LCT2] LCT achieves its full capacity if the time-dependent component of the full system Hamiltonian �̂�(𝑡) can be
decomposed as an external perturbation (𝑉 ′(𝑡) × �̂� ′) acting on a system with a time-independent Hamiltonian (�̂�0),

�̂�(𝑡) = �̂�0 + 𝑉 ′(𝑡) × �̂� ′,

and if the targeted quantum state |𝜓⟩ is an eigenstate of the same time-independent Hamiltonian �̂�0,

�̂�0|𝜓⟩ = 𝜖|𝜓⟩.

LCT in this case constructs a time-dependent perturbation 𝑉 ′(𝑡) from the expression

𝑉 ′(𝑡) = −𝑖⟨Ψ(𝑡)|
[︁
�̂� ′, |𝜓⟩⟨𝜓|

]︁
|Ψ(𝑡)⟩,

which will achieve the required population transfer from any initial state to the |𝜓⟩ target state. The new time-
dependent potential component 𝑉 ′(𝑡) updates the time-dependent component of the full Hamiltonian describing the
evolution of the system via the time-dependent Schrödinger equation

𝑖 𝜕
𝜕𝑡 |Ψ(𝑡)⟩ = �̂�(𝑡)|Ψ(𝑡)⟩.

The LCT procedure is applied sequentially in small integration steps [𝑡, 𝑡+𝛿𝑡] within the propagation of above equation
until the population has been completely transferred to the designated target state. The schematic below illustrates the
LCT procedure.

3.3. Pilot Projects 245

E-CAM Documentation, Release 0.2

Applications of the Module

Application of the LCT module can be found at the pilot project web page.

Installation

The LocConQubit is a Python based code. The module requires the presence of QuTip (version 4.1 or above) program
package and the modules accompanying QuTip (namely: numpy (version 1.13 or above), scipy (version 0.18 or above),
matplotlib (version 2.10 or above)). A Python interpreter 3.5 or above is required, because the module has not been
used with Python 2 versions. Instructions on how to install the QuTip and the accompanying program packages can be
found on this link. Upon the successful installation of QuTip, all other required packages will be present. It is highly
recommended to verify the QuTip after its installation. Instructions for QuTip testing are provided on the installation
page.

Testing

Proper functionality of LocConQubit module can be verified by performing the unit tests simply by executing the
below command in the directory containing all LocConQubit module files

python test_LCT.py

where python is an alias for a Python 3.5 version interpreter or higher. Five unit tests are executed sequentially and all
must pass successfully in order to use the LocConQubit module.

Source Code

The LocConQubit module source code is located at: https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/QC.

Source Code Documentation

The source code is accompanied with sphinx documentation located in sub-directory ./doc. Instructions for sphinx
installation can be found here. The html documentation files can be obtained by executing the following command in
the ./doc sub-directory

cd ./doc

make html

The generated documentation is located in the ./doc/_build/html/index.html.

246 Chapter 3. Quantum Dynamics Modules

https://www.e-cam2020.eu/pilot-project-ibm/
http://qutip.org/docs/4.1/index.html
http://qutip.org/docs/4.1/installation.html
http://qutip.org/docs/4.1/installation.html#verifying-the-installation
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/QC
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/tutorial.html#install-sphinx

E-CAM Documentation, Release 0.2

References

3.3.2 PerGauss: Periodic Boundary Conditions for gaussian bases

Software Technical Information

Language Fortran 90

Licence None

Documentation Tool Documentation provided as in-line comments within the source code

Application Documentation Quantics documentation can be found in quantics

Relevant Training Material Tutorial and exercises to test the code are available here

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

Purpose of Module

The module PerGauss (Per iodic Gauss ians) consists on an implementation of periodic boundary conditions for
gaussian bases for the Quantics program package.

In quantum dynamics, the choice of coordinates is crucial to obtain meaningful results. While xyz or normal mode
coordinates are linear and do not need a periodical treatment, particular angles, such as dihedrals, must be included to
describe accurately the (photo-)chemistry of the system under consideration. In these cases, periodicity can be taken
into account, since the value of the wave function and hamiltonian repeats itself after certain intervals.

This feature is already implemented for grid basis functions such as exponential-DVR and FFT to use in the frame-
work of the MCTDH method, within the quantics package. Using as wave function ansatz a linear combination of
gaussians, following the original idea of Heller, has enormous advantages: First, a gaussian that follows a classical
trajectory is the exact solution of the quantum harmonic oscillator and harmonic oscillators are generally the first step
into approximating potential energy surfaces. This also allows a smooth transition to dynamics methods based on
classical trajectories such as Ab-Initio Multiple Spawning (AIMS) and Surface Hopping. Second, one can easily take
advantage of the locality of gaussians and move towards on-the-fly methods, where the potential is calculated as the
basis functions span the conformational space.

In the case of methods that use gaussian basis functions, such as G-MCTDH1 , vMCG2 and its on-the-fly version
DD-vMCG within the quantics set of programs, no implementation of periodic boundary conditions has been made
until this contribution.

The module is expected to provide the quantum dynamics community with a more efficient way of treating large
systems whose excited state driving forces involve periodic coordinates. When used on precomputed potentials (in
G-MCTDH and vMCG), the model can improve the convergence since smaller grid sizes are needed. Used on-the-fly,

1 I. Burghardt, I, H.-D. Meyer, and L. S. Cederbaum J. Chem. Phys. 115 (1999) 2927
2 G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth, I. Burghardt, B. Lasorne Int. Rev. Phys. Chem. 34 (2015) 269

3.3. Pilot Projects 247

https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
https://www2.chem.ucl.ac.uk/worthgrp/quantics/
https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html

E-CAM Documentation, Release 0.2

it reduces considerably the amount of electronic structure computations needed compared to cartesian coordinates,
since conformations that seemed far in the spanned space may be closer after applying a periodic transformation.

Background Information

Currently pergauss resides within the Quantics software package available upon request through gitlab.

Testing

A test example (pergauss.inp) is provided to test the module and can be found in the directory
$quantics_path/inputs, where quantics_path is where Quantics is located. The test can be done through
the following command

$ quantics -mnd pergauss.inp

A more detailed test documentation for Quantics code developers can be found in this link

Source Code

The source code for pergauss can be found within the Quantics software which can be downloaded via gitlab. The
Quantics project has a private repository so you also need to be a member of the project to checkout. Then type into
terminal

$ git clone https://gitlab.com/quantics/quantics.git DIRECTORY

Within the Quantics program, the explicit code is located at the source code folder in files mctdhlib/
gwplib.f90, geninwf/eininwfmod.f90, geninwf/genphi1.f90, gendvr/einpbasmod.f90 and
include/global.f90. Every modified line will be preceded by a comment saying !pergauss to help users finding
the modifications.

References

LocConQubit is a code for the construction of controlled pulses on isolated qubit systems using the Local Control
Theory.

3.3.3 OpenQubit

Software Technical Information

Language Python 3.5

License MIT license (MIT)

Documentation Tool sphinx

Software Module Developed by Momir Mališ

• Purpose of Module

248 Chapter 3. Quantum Dynamics Modules

https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
https://gitlab.com/quantics
https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/quantics/elk.html
https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
https://gitlab.com/quantics
https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html

E-CAM Documentation, Release 0.2

• Applications of the Module

• Installation

• Testing

• Source Code

• Source Code Documentation

Purpose of Module

OpenQubit is a patch to the LocConQubit module which extends the capabilities of the latter module with function-
alities to generate control pulses in a more realistic systems with dissipating effects. The module incorporates the
Lindblad master equation into the system propagator upon which the Local Control Theory generates a control pulse.
For more information on LocConQubit module and Local Control Theory see LocConQubit.

Applications of the Module

Application of the OpenQubit module can be found at this link.

Installation

Before applying the patch LocConQubit code has to be installed and tested. For the installation and testing of Loc-
ConQubit code see the corresponding documentation. Git has to be also installed. The OpenQubit patch should be
downloaded from the repository and made available to insert it into the directory containing the LocConQubit module.
In the directory containing the branch with the LocConQubit module the installation of the OpenQubit is performed
by applying the OpenQubit patch. It is advised to make a new branch from the master branch first. The installation
should be made by following these instructions:

(Check that you are on the QC master branch,
e.g. command 'git status' should display master in output)

git checkout -b OpenLCTCode

(Download the OpenQubit.patch file here directly or
copy it from a directory containing the previous download:)
cp [Directory containing the OpenQubit.patch file]/OpenQubit.patch .

git apply OpenQubit.patch

Special care should be taken when patching the test_5.pkl binary file. If the above operation fails due to problems
with patching a binary file, the file can be separately downloaded from the patch source code webpage and inserted
into the reference_data subdirectory.

Testing

The application of the OpenQubit patch should be verified by executing the LocConQubit module standard test, which
is performed by executing the command below in the same directory containing all of the OpenQubit module files

python test_LCT.py

3.3. Pilot Projects 249

https://www.e-cam2020.eu/pilot-project-ibm/
https://git-scm.com/
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/QC/tree/OpenQubit
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/QC/tree/OpenQubit

E-CAM Documentation, Release 0.2

where python is an alias for a Python 3.5 version interpreter or higher. The test executes five LocConQubit standard test
and an additional OpenQubit test (test_5.pkl). Unit tests are sequentially executed and all must pass successfully
in order to use the OpenQubit module.

Source Code

The OpenQubit patch is located at: https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/QC/tree/OpenQubit. This
same link contains the test_5.pkl binary file for download.

Source Code Documentation

The source code is accompanied with sphinx documentation located in sub-directory ./doc. Instruction for sphinx
installation can be found here. The html documentation files can be obtained by executing the following command in
the ./doc sub-directory

cd ./doc

make html

The generated documentation is located in the ./doc/_build/html/index.html.

OpenQubit is an extension to the LocConQubit code for the construction of controlled pulses in a more realistic
environment with dissipating effects.

3.4 Extended Software Development Workshops

3.4.1 ESDW Maison de la Simulation (Paris 2016)

The first Quantum Dynamics ESDW was held in June-July 2016 at the Maison de la Simulation near Paris. 10 students
and 6 tutors, including Dr. Ivano Tavernelli representing the industrial partner of the WP3, IBM, worked to develop
software modules in the following areas:

• Exact quantum propagation methods for low dimensional systems to be used to provide benchmarks for approx-
imate schemes

• Development of a library of single and multi surface potentials for benchmark systems

• Calculation of approximate quantum time correlation functions

Work was performed by teams of 2-4 students, assisted by the senior participants and by E-CAM’s Software Manager,
Dr. Alan O’Cais, and the Software Developer associated to WP3, Dr. Liang Liang.

In addition to the software development activities, the Workshop enjoyed lively scientific discussions centered on
presentations made by the students and the senior participants. The on-line E-CAM tools for software development,
including the Git repository, and tools for the documentation (Doxygen) and performance analysis were presented by
E-CAM staff members and participants were instructed on their use via tutorials. The program was further enriched
by the interactions with experts on software and hardware development working at Maison de la Simulation who gave
talks on topics such as architectures and programming paradigms and the use of advanced visualization tools such as
the Image wall hosted by the Maison de la Simulation.

250 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/QC/tree/OpenQubit
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/tutorial.html#install-sphinx
http://www.maisondelasimulation.fr/en/index.php?a
https://www.zurich.ibm.com/

E-CAM Documentation, Release 0.2

3.4.2 ESDW University College Dublin (2017)

The second Quantum Dynamics ESDW was held in July 2017 (first part) and March 2018 (wrap up meeting) at
University College Dublin. 21 participants, including the representative of WP3’s current industrial partner IBM,
worked to develop and upload on the E-CAM repositories software modules in the following areas:

• Calculation of approximate quantum time correlation functions via the PaPIM code;

• Mixed quantum-classical algorithms, with specific reference to Surface Hopping and Wigner-Liouville methods;

• Implementation of the factorization scheme for quantum dynamics in CPMD;

• Interfacing of quantum codes with electronic structure codes;

• Grid based exact propagation schemes;

• Design and optimization of qubit control pulses.

Teams of coders assisted by senior tutors, E-CAM’s Software Manager, Dr. Alan O’Cais, and WP3 Software Devel-
oper, Dr. Liang Liang, performed the work. Specific discussions on optimal parallelization strategies for the E-CAM’s
quantum dynamical codes (PaPIM and Quantics) were also initiated and implemented. The coding work was accom-
panied by scientific presentations on the themes of the workshops and by the instruction from E-CAM personnel on
the CoE’s tools for software production, testing, documentation and maintaining. The participants benefitted also from
the proximity of software and hardware experts from the ICHEC supercomputing center that offered, in particular, a
set of lectures and tutorials on OpenMP parallelization.

Modules developed in this workshop not included in other subheadings are:

Trotter Based Quantum Classical Surface Hopping Propagator - correlated sampling

Software Technical Information

Language C++ (C++11 or higher)

Licence MIT licence (MIT)

Documentation Tool Doxygen

Application Documentation Documentation

Software Module Developed by Sean Kelly, Athina Lange, Shrinath Kumar and Donal MacKernan

• Abstract

• Purpose of Module

• Background Information

• Applications

• Algorithms and Software Implementation

• Compiling

• Checking for accuracy

• Testing, Performance and Scaling

• Source Code

3.4. Extended Software Development Workshops 251

http://www.ucd.ie/
https://www.zurich.ibm.com/
http://www.cpmd.org/
https://www.ichec.ie/
https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/blob/master/Doc/html/index.html

E-CAM Documentation, Release 0.2

• Source Code Documentation

• References

Abstract

The present module is a highly refactored version of a code based on a highly cited algorithm published by D. Macker-
nan, G.Ciccotti and R. Kapral [Mackernan1]. The module software has been entirely refactored in modern C++ (GNU
2011 or higher) so as to: (a) run with high-efficiency on massively parallel platforms under OpenMP or MPI; and
(b) be at the core of additional software modules aimed at addressing important issues such as improving the speed
of convergence of estimates using correlated sampling, and much more realistic treatment of the classical bath, and
connecting to other problems such as constant pH simulation through an effective Hamiltonian.

Purpose of Module

Quantum rate processes in condensed phase systems are often computed by combining quantum and classical descrip-
tions of the dynamics including non-adiabatic coupling, using propagators which amount to quantum path integrals in
a partial Wigner phase space representation, such as the mixed quantum-classical Dyson equation and variants thereof,
or the Trotter decomposition of the quantum-classical propagator.

Background Information

An understanding of the dynamical properties of condensed phase quantum systems underlie the description of a
variety of quantum phenomena in chemical and biological systems. The development of schemes for the efficient and
accurate simulation of the quantum dynamics of such systems is an an active area of research in chemical physics,
and is essential if problems of chemical interest involving complex molecular species in the condensed phase are
considered.

In investigations of the dynamical properties of quantum statistical mechanical systems, one is often interested in
the average value of some operator when the system evolves from a given initially prepared distribution described
by the density matrix 𝜌(0). In such cases the quantum mechanical average value of an operator �̂� is given by
𝐵(𝑡) = 𝑇𝑟�̂�𝜌(𝑡) = 𝑇𝑟�̂�(𝑡)𝜌(0). Here, �̂�(𝑡) evolves in time through the Heisenberg equation of motion. In many
applications, it is useful to partition the system into a subsystem and a bath. A phase space description of the bath
can be obtained by taking a partial Wigner transform over the bath coordinate {𝑄} representation of the full quantum
system. In this partial Wigner representation the expectation value of �̂�(𝑡) takes the

𝐵(𝑡) = 𝑇𝑟′
∫︁
𝑑𝑅𝑑𝑃 𝐵𝑊 (𝑅,𝑃, 𝑡)𝜌𝑊 (𝑅,𝑃)

where the prime on the trace indicates a trace over the subsystem degrees of freedom.

The software module developed here is based on a Trotter-based scheme for simulating quantum-classical Liouville
dynamics in terms of an ensemble of surface-hopping trajectories. The method can be used to compute the dynamics
for longer times with fewer trajectories than the sequential short-time propagation (SSTP) algorithm, which is also
based on surface-hopping trajectories. This module builds on the single path version of the trotter-based sampling
scheme [Mackernan1] but introduces a key improvement of correlated sampling to drastically reduce the variance
associated with sampling. It also builds on the C++ formulation of the single path code. For mathematical details, we
refer the reader to eq.30-35 of the paper.

252 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

Applications

The applications of quantum surface hopping include, among others, non-adiabatic chemical rate processes involving
electronic, vibrational or other degrees of freedom, decoherence in open quantum systems and quantum transport
processes. Decoherence due to coupling with the environment is a fundamental difficulty in the development of
quantum computing. The ability to predict, control and reduce decoherence requires an adequate description of the
associated non-adiabatic processes taking place. Quantum effects and frequently non-adiabaticity also underlie the
study of ultra-fast rate processes in solution.

Algorithms and Software Implementation

The current Single Path code has three main advantages over the original version. First it is separated into files based
on function for better readability. For example the ‘transition_matrix.cpp’ file is where the transition matrix and
associated functions are defined, etc. Secondly input parameters are read from an Input file, so the code no longer
needs to be recompiled to adjust these parameters. And finally the code has been altered to run in parallel which
allows for a significant reduction in runtime.

Compiling

All current versions of this code use the GNU scientific library version 2.5 for random number generation.

OpenMP version:

With the GNU compiler, gcc version 6.3.0 or greater is required.

On the Kay cluster this can be done as follows:

Load modules to give us the right environment
module load gcc/8.2.0
module load gsl/gcc/2.5

Compile command;
g++ -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_
→˓matrix.cpp opt_parser.cpp -lgsl -lgslcblas -lm -fopenmp -std=c++11

Run command:
OMP_NUM_THREADS=[number of OpenMP threads] ./run Input

With the Intel compiler:

Compile command;
icpc -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_
→˓matrix.cpp opt_parser.cpp -lgsl -lgslcblas -lm -qopenmp -std=c++11

Run command:
OMP_NUM_THREADS=[number of OpenMP threads] ./run Input

MPI version:

Load modules to give us the right environment
module load intel/2018u4
module load gsl/intel/2.5
module load gcc/8.2.0

3.4. Extended Software Development Workshops 253

https://www.gnu.org/software/gsl

E-CAM Documentation, Release 0.2

Compile command;
mpic++ -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_
→˓matrix.cpp opt_parser.cpp -lgsl -lgslcblas -lm -std=c++11

Run command:
mpirun -n [number of MPI processors] ./run Input

Note: A frequent error encountered while compiling is: “fatal error: gsl/gsl_rng.h: No such file or directory”

This can occur if the directory is not installed on the standard search path of the compiler. It can be fixed by adding
it’s location as a flag in the compile command as exaplained in this link: Using the GSL Library.

On Kay the flags ‘-I/ichec/packages/gsl/gcc/2.5/include’ and ‘-L/ichec/packages/gsl/gcc/2.5/lib’ must be added to the
compile command as:

g++ -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_matrix.cpp
→˓opt_parser.cpp -lgsl -lgslcblas -lm -fopenmp -std=c++11 -I/ichec/packages/gsl/gcc/2.
→˓5/include -L/ichec/packages/gsl/gcc/2.5/lib

Checking for accuracy

The original serial code was run 1000 times to generate an expected output and variance. These can be found in the
./Regression_testing sub-directory. A regression test is built into both the OpenMP and MPI versions which checks if
their output is within five standard deviations of the expected output (given a specific set of input parameters). If any
part of the output goes outside that limit the regression test will fail. (Note: To run a test ‘Regression_test=1’ must be
set in the Input file along with a standard set of parameters. All of this is specified in the Input file).

Testing, Performance and Scaling

Testing was performed on the Kay supercomputer from ICHEC. Kay is separated into nodes, each of which has 2 x (20
core) sockets. To test the parallel efficiency of both the OpenMP and MPI versions of the code they were benchmarked
on 20 - 200 cores (1 - 5 nodes).

The OpenMP version was run for 10,000,000 samples (Nsample = 10,000,000) and for a bath size of 200 (N_bath
= 200). As can be seen in the graph below OpenMP scales perfectly on a single node (i.e. less than 40 cores), but
provides little to no benefit over multiple nodes.

254 Chapter 3. Quantum Dynamics Modules

https://www.gnu.org/software/gsl/doc/html/usage.html

E-CAM Documentation, Release 0.2

The MPI version was run for 1,000,000 samples (Nsample = 1,000,000) and for a bath size of 2,000 (N_bath = 2,000).
MPI scales very well over the entire benchmark (up to 200 cores), with an average efficiency of 96.3%.

3.4. Extended Software Development Workshops 255

E-CAM Documentation, Release 0.2

Source Code

The source codes for the OpenMP and MPI versions of the code are:

Surface Hopping - OpenMP version

Surface Hopping - MPI version

Source Code Documentation

The source code documentation is given at https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/
master/Doc. These documentation files can be updated by executing the make command in the Doc directory.

References

3.4.3 ESDW Durham University (Durham 2019)

This modules have been developed at Durham ESDW

256 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Code_Parallel_Omp
https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Code_Parallel_MPI
https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Doc
https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Doc

E-CAM Documentation, Release 0.2

3.5 List of available Modules

Below are listed all the modules from the E-CAM ESDWs in Quantum Dynamic developed up-to-date:

3.5.1 CTMQC

Software Technical Information

Language Fortran 90

License GNU Lesser General Public License (LGPL)

Documentation Tool doxygen

Software Module Developed by Federica Agostini, Seung Kyu Min, Ivano Tavernelli, Graeme H. Gossel

• Purpose of Module

• Coupled-Trajectory Mixed Quantum-Classical Dynamics

• Applications of the Module

• Installation

• Testing

• Source Code

• References

Purpose of Module

CTMQC is a module for excited-state nonadiabatic dynamics, therefore it is used to simulate the coupled dynamics
of electrons and nuclei (ideally in gas phase molecular systems) in response to, for instance, an initial electronic
excitation.

The purpose of the module is to familiarize the user with a new simulation technique, i.e., the CTMQC method,
for treating problems where electronic excited states are populated during the molecular dynamics. Photo-activated
ultrafast processes are typical situations in which an approach like CTMQC can be used to predict molecular properties,
like structures, quantum yields, or quantum coherence.

As clarified below, the CTMQC module is based on the coupled-trajectory mixed quantum classical algorithm
[CTMQC1] [CTMQC2] that has been derived starting from the evolution equations in the framework the exact fac-
torization of the electron-nuclear wavefunction [EF1] [EF3] [EF4]. The CTMQC algorithm belongs to the family of
quantum-classical methods, as the time evolution of the nuclear degrees of freedom is treated within the classical ap-
proximation, whereas electronic dynamics is treated fully quantum mechanically. Basically, the nuclei evolve as point
particles, following classical trajectories, while the electrons generate the potential inducing such time evolution.

In its current implementation, the module cannot deal with arbitrary nuclear dimensions, but it is restricted to treat
3-dimensional problems, which gives the possibility to compare quantum-classical results easily and directly with
quantum wavepacket dynamics. CTMQC has been analyzed and benchmarked against exact propagation results on
typical low-dimensional model systems [CTMQC3], and applied for the simulation of the photo-initiated ring-opening
process of Oxirane [CTMQC4]. For this study, CTMQC has been implemented in a developer version of the CPMD

3.5. List of available Modules 257

E-CAM Documentation, Release 0.2

electronic structure package based on time-dependent density functional theory. Concerning electronic input proper-
ties, the CTMQC module requires a grid representation of the adiabatic potential energy surfaces and of the nonadi-
abatic coupling vectors, since the electronic dynamics is represented and solved in the adiabatic basis. This feature
allows the algorithm to be easily adaptable, in the current form, to any quantum chemistry electronic structure package.
The number of electronic states to be included is not limited, and can be specified as input.

Coupled-Trajectory Mixed Quantum-Classical Dynamics

The exact factorization of the electron-nuclear wavefunction [EF1] provides a prescription for decomposing the time-
dependent Schrödinger equation for a system of interacting electrons and nuclei into the coupled dynamics of the
subsystems, i.e., the electronic and the nuclear. The time-dependent molecular wavefunction, Ψ(r,R, 𝑡), is the solu-
tion of the time-dependent Schrödinger equation �̂�Ψ = 𝑖𝜕𝑡Ψ, with Hamiltonian �̂�(r,R) = 𝑇𝑛(R) + �̂�𝐵𝑂(r,R),
containing the nuclear kinetic energy, 𝑇𝑛, and the electronic Born-Oppenheimer Hamiltonian, �̂�𝐵𝑂, defined as the
sum of the electronic kinetic energy and of the interaction potentials. Here, the symbols r,R indicate all electronic
and nuclear coordinates, respectively. The full wavefunction can be exactly written as the product

Ψ(r,R, 𝑡) = 𝜒(R, 𝑡)ΦR(r, 𝑡),

where 𝜒(R, 𝑡) can be considered a genuine nuclear wavefunction, yielding the exact nuclear many-body density and
current density, and ΦR(r, 𝑡), the electronic function, depends parametrically on the nuclear configuration.

Inserting the exact-factorization form of the full wavefunction into the time-dependent Schrödinger equation yields
the coupled evolution equations for the two components of the molecular wavefunction, namely[︁
�̂�𝐵𝑂 + �̂� 𝑐𝑜𝑢𝑝

𝑒𝑛 − 𝜖
]︁
ΦR(r, 𝑡) = 𝑖~𝜕𝑡ΦR(r, 𝑡)[︃∑︀𝑁𝑛

𝜈=1
[−𝑖~∇𝜈+A𝜈]

2

2𝑀𝜈
+ 𝜖

]︃
𝜒(R, 𝑡) = 𝑖~𝜕𝑡𝜒(R, 𝑡)

where the new quantities introduced will be discussed below. The derivation of these equations can be found in [EF2].
Nuclear masses are indicated by the symbol 𝑀𝜈 , with the index 𝜈 running over the 𝑁𝑛 nuclei. In the electronic
equation, the operator �̂� 𝑐𝑜𝑢𝑝

𝑒𝑛 [ΦR, 𝜒] couples the electronic evolution to the nuclear dynamics as it depends on the
nuclear wavefunction,

�̂� 𝑐𝑜𝑢𝑝
𝑒𝑛 [ΦR, 𝜒] =

∑︀𝑁𝑛

𝜈=1
1

𝑀𝜈

[︃
[−𝑖~∇𝜈−A𝜈]

2

2 +
(︁

−𝑖~∇𝜈𝜒
𝜒 + A𝜈

)︁
· (−𝑖~∇𝜈 −A𝜈)

]︃
.

The scalar potential, or time-dependent potential energy surface 𝜖(R, 𝑡), and the time-dependent vector potential
A𝜈(R, 𝑡), are defined by

𝜖(R, 𝑡) = ⟨ΦR(𝑡)| �̂�𝐵𝑂 + �̂� 𝑐𝑜𝑢𝑝
𝑒𝑛 − 𝑖~𝜕𝑡 |ΦR(𝑡)⟩r

A𝜈(R, 𝑡) = ⟨ΦR(𝑡)| −𝑖~∇𝜈ΦR(𝑡)⟩r,

respectively, where ⟨ · ⟩r stands for an integration over the electronic coordinates. In the nuclear time-dependent
Schrödinger equation, the time-dependent potentials fully account for electronic nonadiabatic effects, i.e., excited-
state effects, on nuclear motion.

Approximating the nuclear time-dependent Schrödinger equation classically, the force generating the trajectory along
which the 𝜈-th nucleus evolve is determined

F𝜈 = FEh.
𝜈 + Fqm

𝜈 .

In this expression the classical force is decomposed in a – more standard – Ehrenfest-like contribution

FEh.
𝜈 = −

∑︀
𝑘 |𝐶𝑘(𝑡)|2 ∇𝜈𝜖

(𝑘)
𝐵𝑂 −

∑︀
𝑘,𝑙 𝐶

*
𝑙 (𝑡)𝐶𝑘(𝑡)

(︁
𝜖
(𝑘)
𝐵𝑂 − 𝜖

(𝑙)
𝐵𝑂

)︁
d𝑙𝑘,𝜈

and a new coupled-trajectory contribution, depending on the quantum momentum,

258 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

Fqm
𝜈
∑︀

𝑘 |𝐶𝑘(𝑡)|2
(︁∑︀𝑁𝑛

𝜈′=1
2Q𝜈′
~𝑀𝜈′

· f𝑙,𝜈′

)︁[︃
f𝑘,𝜈 −

∑︀
𝑙 |𝐶𝑙(𝑡)|2 f𝑙,𝜈

]︃
.

Several new symbols have been introduced in these expressions: 𝐶𝑘(𝑡) represents the 𝑘-th coefficient of the expansion
of the electronic wavefunction on the adiabatic basis, thus the index 𝑘 runs over the 𝑛 states that are included in
the expansion; 𝜖(𝑘)𝐵𝑂 is the energy eigenvalue of the Hamiltonian �̂�𝐵𝑂 on the 𝑘-th eigenstate; d𝑙𝑘,𝜈 stands for the
nonadiabatic coupling vector between the electronic adiabatic states 𝑙 and 𝑘 and calculated from the displacement
of the nucleus 𝜈; f𝑘,𝜈(𝑡) =

∫︀ 𝑡
[−∇𝜈𝜖

(𝑘)
𝐵𝑂(R𝑐𝑙(𝑡′))]𝑑𝑡′ is the adiabatic force integrated over time along the trajectory

(indicated here as the multi-dimensional vector R𝑐𝑙(𝑡)); Q𝜈(𝑡) is the quantum momentum, whose expression will be
given below. It is worth underlying at this point that all quantities depending on nuclear positions, such as the adiabatic
energies or the nonadiabatic coupling vectors, become, in the quantum-classical picture, functions of the trajectory.

Expressing the electronic evolution equation in the adiabatic basis (formed by the set of eigenstates of the Born-
Oppenheimer Hamiltonian �̂�𝐵𝑂), one gets a set of 𝑛 coupled evolution equations for the coefficients 𝐶𝑘(𝑡) of such
expansion, namely

�̇�𝑘(𝑡) = �̇�Eh.
𝑘 (𝑡) + �̇�qm

𝑘 (𝑡)

where, once again, the first term is a standard Ehrenfest-like contribution

�̇�Eh.
𝑘 (𝑡) = − 𝑖

~𝜖
(𝑘)
𝐵𝑂𝐶𝑘(𝑡) −

∑︀𝑁𝑛

𝜈=1 Ṙ
𝑐𝑙
𝜈 (𝑡) ·

∑︀
𝑙 d𝑘𝑙,𝜈𝐶𝑙(𝑡),

whereas the second term is a coupled-trajectory contribution, depending on the quantum momentum,

�̇�qm
𝑘 (𝑡) =

∑︀𝑁𝑛

𝜈=1
Q𝜈

~𝑀𝜈
·

[︃
f𝑘,𝜈 −

∑︀
𝑙 |𝐶𝑙(𝑡)|2 f𝑙,𝜈

]︃
𝐶𝑘(𝑡).

The quantum momentum is a function of nuclear positions, thus as consequence of the classical treatment of the nuclei,
it becomes a function of the trajectory, namely

Q𝜈(R𝑐𝑙(𝑡), 𝑡) = −~
2
∇𝜈 |𝜒(R𝑐𝑙(𝑡),𝑡)|2
|𝜒(R𝑐𝑙(𝑡),𝑡)|2 .

Notice that the quantum momentum tracks the spatial variation of the nuclear density, as it contains its spatial deriva-
tive. At each time step, the nuclear density has to be reconstructed, for instance by computing a histogram from the
distribution of classical trajectories. Such calculation requires that at the end of each step of dynamics, the trajectories
communicate – all at the same time – information about their positions, in order to compute the quantum momentum.
Once Q𝜈(R𝑐𝑙(𝑡), 𝑡) is known, the trajectories can perform a new step of dynamics. On-the-fly calculation of the
quantum momentum is possible only if the trajectories are propagated all at the same time, that is why the underlying
algorithm has been dubbed ‘’coupled-trajectory”-MQC.

Applications of the Module

The module is designed to apply the CTMQC procedure to one-, two-, and three-dimensional model systems where an
arbitrary number of electronic states are coupled via the nuclear dynamics. Tully model systems [Tully] are within the
class of problems that can be treated by the module, as well as a wide class of multidimensional problems involving,
for instance, ultrafast radiationless relaxation of photo-excited molecules [CI1] through conical intersections.

Installation

The CTMQC is a fortran90 based code. Compilation of the code requires the gfortran compiler, and Lapack libraries.
Tests have been performed with GCC 4.x 5.x and 6.x, 7.x, and confirmed that consistent results are obtained with these
three versions of the gfortran compiler.

Once the main directory CTMQC has been downloaded, go to the directory and

3.5. List of available Modules 259

E-CAM Documentation, Release 0.2

cd ./src

make

Running the command make will compile the source code and generate the executable main.x. Go back to the CTMQC
directory with the command

cd ../

and run the script

./create_dirs.sh

that creates the directory output where all output files will be generated. Notice that you should run this script in each
new directory where you run the executable. The program generates a series of output files that are saved in different
directories. Therefore, in order not to obtain errors during the execution of the program, the directories have to be
created.

Testing

CREATE THE OUTPUT DIRECTORY

The directory output contains several subdirectories. After successful execution of the program, those subdirectories
will contain 𝑁files = 𝑁steps/𝑁dump files, with 𝑁steps the number of total time steps and and 𝑁dump the number of time
steps after which a new output file is generated. In each subdirectory, the files are labelled with an index increasing
with time, from 0 to 𝑁files. In the current version of the code, up to 999 files can be created.

The following subdirectories of the directory output will be created.

coeff: [only for one-dimensional calculations]

Each file (named coeff.xxx.dat) in this directory contains the coefficients of the expansion of the electronic wavefunc-
tion in the adiabatic basis as a function of the position of the corresponding trajectory. Each file is in the form: first
column the position of the trajectory; following n x n columns the real part of 𝐶*

𝑘𝐶𝑙 with 𝑘, 𝑙 = 1, 𝑛; following n x n
columns the imaginary part of 𝐶*

𝑘𝐶𝑙 with 𝑘, 𝑙 = 1, 𝑛.

density: [only for one-dimensional calculations]

Each file (named density.xxx.dat) in this directory contains the nuclear density reconstructed as the sum of 𝑁𝑡𝑟𝑎𝑗

normalized Gaussian functions centered at the position of the trajectories, with 𝑁𝑡𝑟𝑎𝑗 the total number of trajectories.
The data listed in the file have the form: first column the grid in nuclear space, that is read as input from the files
containing the potential energy surfaces and nonadiabatic coupling vectors (see section INFORMATION ABOUT
THE INPUT FILES below); second column the nuclear density. Similarly to this set of files containing the density,
additional files are created (named smooth_density.xxx.dat) where the density is smoothed by convoluting the density
with a Gaussian function of fixed variance.

histo: [only for one-dimensional calculations]

Each file (named histo.xxx.dat) in this directory contains the nuclear density approximated as a histogram that is
constructed from the distribution of classical trajectories. The data listed in the file have the form: first column the
position along the nuclear coordinated (coarser that the original grid, but defined in the same domain); second column
the normalized histogram.

trajectories

260 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

Each file (named RPE.xxx.dat) in this directory contains the values of the phase-space variables and the value of the
gauge-invariant part of the time-dependent potential energy surface 𝜖(R, 𝑡), that is the first two terms of its expression
(see for instance [EF3]). The data listed in the file have the form: first 𝑛d.o.f. columns the positions of the trajectories,
with 𝑛d.o.f. the number of nuclear degrees of freedom, therefore ranging from 1 to 3; following 𝑛d.o.f. columns the
momenta of the trajectories; last column the gauge-invariant part of the time-dependent potential energy surface.

Additionally, the files BO_population.dat and BO_coherences.dat are created, containing the population of the adi-
abatic states and the indicator of coherence as functions of time (the first columns is the time). They are defined
as

𝜌𝑘(𝑡) = 1
𝑁𝑡𝑟𝑎𝑗

∑︀𝑁𝑡𝑟𝑎𝑗

𝐼=1

⃒⃒⃒
𝐶

(𝐼)
𝑘 (𝑡)

⃒⃒⃒2
and

𝜂𝑘𝑙(𝑡) = 1
𝑁𝑡𝑟𝑎𝑗

∑︀𝑁𝑡𝑟𝑎𝑗

𝐼=1

⃒⃒⃒
𝐶

(𝐼)
𝑘 (𝑡)𝐶

(𝐼)
𝑙 (𝑡)

⃒⃒⃒2
respectively, with 𝑘 = 1, . . . , 𝑛.

INFORMATION ABOUT THE INPUT FILES

The directory tests contains input files and input data, i.e. potential energy surfaces and nonadiabatic coupling vectors
on a grid, for the one-dimensional model systems known as Tully’s models. They are

Tully #1: single avoided crossing [panel (a) of the figure below]

Tully #2: dual avoided crossing [panel (b) of the figure below]

Tully #3: extended coupling with reflection [panel (c) of the figure below]

Tully #4: double arch [panel (d) of the figure below]

Analytical expressions of these models can be found in [Tully] [CTMQC2] [CTMQC3], and they are shown in the
figure below.

3.5. List of available Modules 261

E-CAM Documentation, Release 0.2

In the directory tests, the subdirectories are tully_1 (containing subdirectories k0_10au and k0_25au), tully_2 (con-
taining subdirectories k0_25au and k0_30au), tully_3 (containing subdirectories k0_10au and k0_30au), and tully_4
(containing subdirectories k0_20au and k0_40au). For the model Tully #1 examples are provided for initial momenta
of 𝑘0 = 10, 25 𝑎.𝑢. as clearly indicated by the name of the subdirectories; for the model Tully #2 examples are pro-
vided for initial momenta of 𝑘0 = 25, 30 𝑎.𝑢.; for the model Tully #3 examples are provided for initial momenta of
𝑘0 = 10, 30 𝑎.𝑢.; for the model Tully #4 examples are provided for initial momenta of 𝑘0 = 20, 40 𝑎.𝑢.. The bench-
mark data provided here are the output files BO_population.dat and BO_coherences.dat; each subdirectory contains
examples of input files.

The directories tully_1, tully_2, tully_3, and tully_4 contain as well input data: the adiabatic potential energy surfaces
k_bopes.dat with 𝑘 = 1, . . . , 𝑛 labelling the corresponding eigenstate (in the form: first column value of the energy;
following 𝑛d.o.f. columns the spatial grid in the 𝑥, 𝑦, 𝑧 directions); the nonadiabatic coupling vectors nac1-kl_x, nac1-
kl_y, nac1-kl_z between states 𝑘 and 𝑙 (the form is the same as for the potential energy surfaces), computed as spatial
derivatives along the 𝑥, 𝑦, 𝑧 directions, respectively.

262 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

EXECUTING THE PROGRAM

To run the executable from the chosen directory (after having run the script create_directories.sh), write the command

./src/main.x < path_to_input

where path_to_input is the path to the input file. As discussed above, examples of input files are provided in the tests
directory, e.g., tully_1/k0_10au/input.in.

After the run is completed, and from the main directory, you can run the script

./comparison.sh

and follow the indications shown in the terminal, to automatically plot the adiabatic populations and the indicator of
decoherence that you have generated, and to compare them with the reference results provided.

Source Code

The CTMQC source code and test files can be found at CTMQC.

References

3.5.2 EFAC

Software Technical Information

Language Fortran 90

License GNU Lesser General Public License (LGPL)

Software Module Developed by Hugo Bessone, Lea-Maria Ibele, Emanuele Marsili, Francesco Talotta, David
Lauvergnat, Basile F. E. Curchod, Federica Agostini

• Purpose of Module

• Short description

• Practical application and exploitation of the code

• Installation

• Testing

• Source Code

• References

Purpose of Module

This module is an analysis tool to be employed for excited-state, nonadiabatic dynamics simulations. The physical
situation to be studied is, for instance, the sub-picosecond response of a molecule to an UV/visible ultrashort laser
pulse, that excites the molecule electronically. The photo-excited molecule can relax via, so-called, radiationless
channels, i.e., internal conversion processes, towards the electronic ground state. To describe such ultrafast processes,

3.5. List of available Modules 263

https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/CT-MQC

E-CAM Documentation, Release 0.2

it is essential to account for (i) electronic transitions, thus changes of electronic states, that are induced by nuclear
motion, and (ii) the quantum mechanical nature of the nuclei. Various numerical approaches exist nowadays to perform
simulations of nonadiabatic processes, based on the – standard, and thus widely used – Born-Huang representation, and
on the Exact Factorization. The ultimate goal here is to provide the quantum dynamics community with an easy-to-use
analysis tool able to make the link between Born-Huang and Exact Factorization.

Short description

The Exact Factorization Analysis Code provides a post processing tool to transform the result of a molecular quantum
dynamics simulation from the Born-Huang representation to the one of the Exact Factorization.

Using the output provided by the grid-based quantum dynamics ElVibRot code [ElVibRot], this module calcu-
lates the two key quantities of the Exact Factorization: the time-dependent potential energy surface and time-
dependent vector potential that have been used to offer new perspectives on numerous nonadiabatic processes (see
Refs [Gross_PRL2010] , [Gross_JCP2012] , [Agostini_JPCL2017] , [Gross_JCP2015] , [Gross_MP2013]).

The purpose of EFAC is to familiarize the user with the framework of the Exact Factorization and to connect it with
the more commonly used quantum dynamics methods. Hence, the central purpose of this module is to make the Exact
Factorization of the electron-nuclear wavefunction easily accessible to the broad quantum dynamics community.

The two time-dependent potentials of the Exact Factorization can be easily recovered by expressing them in a diabatic
or adiabatic basis. This connection offers a bridge between quantum dynamics simulation conducted in the Born-
Huang representation and the Exact Factorization; a bridge exploited in this module.

In the framework of the Exact Factorization, the nuclear and electronic wavefunctions are unique up to gauge trans-
formation. While this gauge can in principle be chosen arbitrarily, the current implementation enforces two specific
gauges that have proved useful in previous studies (see references above). For one-dimensional simulations, the gauge
is fixed by making the time-dependent vector potential equal to zero. While being convenient, this gauge cannot be
generalized to higher dimensions. As such, the tool uses a different gauge for problems in higher dimensions where
the phase of the nuclear wavefunction is zero, i.e., the nuclear wavefunction will be real and non-negative at all times.

The module uses the result of a grid-based quantum dynamics calculation – (timedependent) nuclear wavefunctions
in a diabatic basis and corresponding diagonal and off-diagonal potential surfaces – to construct the time-dependent
potential energy surface (TDPES). The TDPES can be split into three components, two gauge-independent and one
gauge-dependent. It outputs separately the two gauge-independent contributions as well as the gauge-dependent one.
Additionally, the time dependent vector potential is obtained (TDVP).

Practical application and exploitation of the code

This code is intended to provide an easy access to the time-dependent potential energy surface and vector potential
of the Exact Factorization from the result of a quantum dynamics simulation in any arbitrary number of dimensions
and electronic states. This allows the user to study simple nonadiabatic model systems in low dimensions, but also the
more complex nonadiabatic dynamics of molecules through conical intersections.

Installation

The EFAC is a fortran90 based code. Compilation of the code requires the gfortran compiler.

Once the tarball EFAC.tar.gz from the EFAC repository has been downloaded, create a new directory and untar
the file typing

tar -zxvf EFAC.tar.gz

Compile the source code and generate the executable EF.x.

264 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu/marsili/efac/

E-CAM Documentation, Release 0.2

make

Testing

Go in the directory test/1d and copy there the executable EF.x. Run the compiled code.

./EF.x

The executable reads and analyses two files already present there: EF_parameter_dpsi and
EF_parameter_gV. It will generate, for each time-step, three files: Epsilon, Density and potential.dat.
In the Epsilon file is printed, for each grid point value, the TDPES and TDVP. In the Density file is printed, for
each grid point value, the modulus of the wavefunction and the diabatic densities.

processing.x is an additional tool provided whenever the number of degrees of freedom are more than 1. Copy
the executable in the test directory and run the code. It reads the output files, created with the EF.x executable, and
it prints the results along a specific degree of freedom. Therefore, it will generate two additional output files called
Epsilon-cut.out and Density-cut.out. In the current version, the program makes the one-dimensional
cuts only. In addition, when processing.x is run, it requires some parameters that have to be prompted in the
following order:

• the time at which the cut has to be performed,

• the number of states,

• the degree of freedom treated as the independent variable and

• the values at which all the other degrees of freedom are fixed.

./processing.x 1 2 2 0.2

In this 2d case, the 2nd degrees of freedom is the independent variable while the first degrees of freedom is fixed at
the value of 0.2. The processing.x will use Density001.dat and Epsilon001.dat files, containing the
information after 1 fs of propagation.

Source Code

The EFAC source code and test files can be found at EFAC.

References

The CTMQC module allows to simulate excited-state dynamics in model systems of one to three spatial (nuclear)
dimensions, with an arbitrary number of electronic states. The algorithm is based on the quantum-classical approxi-
mation of the equations of motion derived in the framework of the exact factorization of the electron-nuclear wave-
function. In practice, trajectories are used to mimic the nuclear evolution, that is, in turn, coupled to the quantum
evolution of the electronic degrees of freedom.

3.5.3 Trotter Based Quantum Classical Surface Hopping Propagator - Single Path

Software Technical Information

Language C++ (C++11 or higher)

3.5. List of available Modules 265

https://gitlab.e-cam2020.eu/marsili/efac/

E-CAM Documentation, Release 0.2

Licence MIT licence (MIT)

Documentation Tool Doxygen

Application Documentation Documentation

Software Module Developed by Sean Kelly, Athina Lange, Philip McGrath, Shrinath Kumar and Donal MacKer-
nan

• Abstract

• Purpose of Module

• Background Information

• Applications

• Algorithms and Software Implementation

• Compiling

• Checking for accuracy

• Testing, Performance and Scaling

• Source Code

• Source Code Documentation

• References

Abstract

The present module is a highly refactored version of a code based on a highly cited algorithm published by D. Macker-
nan, G.Ciccotti and R. Kapral [Mackernan]. The module software has been entirely refactored in modern C++ (GNU
2011 or higher) so as to: (a) run with high-efficiency on massively parallel platforms under OpenMP or MPI; and
(b) be at the core of additional software modules aimed at addressing important issues such as improving the speed
of convergence of estimates using correlated sampling, and much more realistic treatment of the classical bath, and
connecting to other problems such as constant pH simulation through an effective Hamiltonian.

Purpose of Module

Quantum rate processes in condensed phase systems are often computed by combining quantum and classical descrip-
tions of the dynamics including non-adiabatic coupling, using propagators which amount to quantum path integrals in
a partial Wigner phase space representation, such as the mixed quantum-classical Dyson equation and variants thereof,
or the Trotter decomposition of the quantum-classical propagator.

Background Information

An understanding of the dynamical properties of condensed phase quantum systems underlie the description of a
variety of quantum phenomena in chemical and biological systems. The development of schemes for the efficient and
accurate simulation of the quantum dynamics of such systems is an an active area of research in chemical physics,
and is essential if problems of chemical interest involving complex molecular species in the condensed phase are
considered.

266 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/blob/master/Doc/html/index.html

E-CAM Documentation, Release 0.2

In investigations of the dynamical properties of quantum statistical mechanical systems, one is often interested in
the average value of some operator when the system evolves from a given initially prepared distribution described
by the density matrix 𝜌(0). In such cases the quantum mechanical average value of an operator �̂� is given by
𝐵(𝑡) = 𝑇𝑟�̂�𝜌(𝑡) = 𝑇𝑟�̂�(𝑡)𝜌(0). Here, �̂�(𝑡) evolves in time through the Heisenberg equation of motion. In many
applications, it is useful to partition the system into a subsystem and a bath. A phase space description of the bath
can be obtained by taking a partial Wigner transform over the bath coordinate {𝑄} representation of the full quantum
system. In this partial Wigner representation the expectation value of �̂�(𝑡) takes the

𝐵(𝑡) = 𝑇𝑟′
∫︁
𝑑𝑅𝑑𝑃 𝐵𝑊 (𝑅,𝑃, 𝑡)𝜌𝑊 (𝑅,𝑃)

where the prime on the trace indicates a trace over the subsystem degrees of freedom.

The software module developed here is based on a Trotter-based scheme for simulating quantum-classical Liouville
dynamics in terms of an ensemble of surface-hopping trajectories. The method can be used to compute the dynamics
for longer times with fewer trajectories than the sequential short-time propagation (SSTP) algorithm, which is also
based on surface-hopping trajectories. The full derivation of the algorithm is given in [Mackernan]. Here the software
focus is to refactor the original code which until now was a purely serial so that it can be used efficiently on massively
parallel machines. For mathematical details, we refer the reader to eq.30-35 of the paper.

Applications

The applications of quantum surface hopping include, among others, non-adiabatic chemical rate processes involving
electronic, vibrational or other degrees of freedom, decoherence in open quantum systems and quantum transport
processes. Decoherence due to coupling with the environment is a fundamental difficulty in the development of
quantum computing. The ability to predict, control and reduce decoherence requires an adequate description of the
associated non-adiabatic processes taking place. Quantum effects and frequently non-adiabaticity also underlie the
study of ultra-fast rate processes in solution.

Algorithms and Software Implementation

The current Single Path code has three main advantages over the original version. First it is separated into files based
on function for better readability. For example the ‘transition_matrix.cpp’ file is where the transition matrix and
associated functions are defined, etc. Secondly input parameters are read from an Input file, so the code no longer
needs to be recompiled to adjust these parameters. And finally the code has been altered to run in parallel which
allows for a significant reduction in runtime.

Compiling

All current versions of this code use the GNU scientific library version 2.5 for random number generation.

OpenMP version:

With the GNU compiler, gcc version 6.3.0 or greater is required.

On the Kay cluster this can be done as follows:

module load gcc/8.2.0
module load gsl/gcc/2.5

Compile command;
g++ -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_matrix.cpp
→˓opt_parser.cpp -lgsl -lgslcblas -lm -fopenmp -std=c++11

(continues on next page)

3.5. List of available Modules 267

https://www.gnu.org/software/gsl

E-CAM Documentation, Release 0.2

(continued from previous page)

Run command:
export OMP_NUM_THREADS=[number of OpenMP threads]; ./run Input

With the Intel compiler:

Compile command;
icpc -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_matrix.cpp
→˓opt_parser.cpp -lgsl -lgslcblas -lm -qopenmp -std=c++11

Run command:
export OMP_NUM_THREADS=[number of OpenMP threads]; ./run Input

MPI version:

module load intel/2018u4
module load gsl/intel/2.5
module load gcc/8.2.0

Compile command;
mpic++ -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_matrix.
→˓cpp opt_parser.cpp -lgsl -lgslcblas -lm -std=c++11

Run command:
mpirun -n [number of MPI processors] ./run Input

Errors:

A frequent error encountered while compiling is: “fatal error: gsl/gsl_rng.h: No such file or directory”

This can occur if the directory is not installed on the standard search path of the compiler. It can be fixed by adding
it’s location as a flag in the compile command as exaplained in this link: Using the GSL Library.

On Kay the flags ‘-I/ichec/packages/gsl/gcc/2.5/include’ and ‘-L/ichec/packages/gsl/gcc/2.5/lib’ must be added to the
compile command as:

g++ -o run main.cpp bath_setup.cpp density.cpp propagation.cpp transition_matrix.cpp
→˓opt_parser.cpp -lgsl -lgslcblas -lm -fopenmp -std=c++11 -I/ichec/packages/gsl/gcc/2.
→˓5/include -L/ichec/packages/gsl/gcc/2.5/lib

Checking for accuracy

The original serial code was run 1000 times to generate an expected output and variance. These can be found in the
./Regression_testing sub-directory. A regression test is built into both the OpenMP and MPI versions which checks if
their output is within five standard deviations of the expected output (given a specific set of input parameters). If any
part of the output goes outside that limit the regression test will fail. (Note: To run a test ‘Regression_test=1’ must be
set in the Input file along with a standard set of parameters. All of this is specified in the Input file).

Testing, Performance and Scaling

Testing was performed on the Kay supercomputer from ICHEC. Kay is separated into nodes, each of which has 2 x (20
core) sockets. To test the parallel efficiency of both the OpenMP and MPI versions of the code they were benchmarked
on 20 - 200 cores (1 - 5 nodes).

268 Chapter 3. Quantum Dynamics Modules

https://www.gnu.org/software/gsl/doc/html/usage.html

E-CAM Documentation, Release 0.2

The OpenMP version was run for 10,000,000 samples (Nsample = 10,000,000) and for a bath size of 200 (N_bath
= 200). As can be seen in the graph below OpenMP scales perfectly on a single node (i.e. less than 40 cores), but
provides little to no benefit over multiple nodes.

The MPI version was run for 1,000,000 samples (Nsample = 1,000,000) and for a bath size of 2,000 (N_bath = 2,000).
MPI scales very well over the entire benchmark (up to 200 cores), with an average efficiency of 96.3%.

3.5. List of available Modules 269

E-CAM Documentation, Release 0.2

Source Code

The source codes for the OpenMP and MPI versions of the code are:

Surface Hopping - OpenMP version

Surface Hopping - MPI version

Source Code Documentation

The source code documentation is given at https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/
master/Doc. These documentation files can be updated by executing the make command in the Doc directory.

References

The SinglePath module uses combined quantum and classical descriptions of the dynamics to compute quantum
rate processes in condensed phase systems. The main purpose of this module is to act as the core of additional
software modules aimed at addressing important issues such as improving the speed of convergence of estimates using
correlated sampling, and much more realistic treatment of the classical bath, and connecting to other problems such as
constant pH simulation through an effective Hamiltonian.

270 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Code_Parallel_Omp
https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Code_Parallel_MPI
https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Doc
https://gitlab.e-cam2020.eu/Quantum-Dynamics/Surface-Hopping/tree/master/Doc

E-CAM Documentation, Release 0.2

Software Technical Information

Name G-CTMQC

Language Fortran 90

Licence GNU Lesser General Public License (LGPL)

Documentation Tool doxygen

Software Module Developed by Federica Agostini, Emanuele Marsili, Francesco Talotta

3.5.4 G-CTMQC

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

• References

Studies in the domain of photochemistry and photophysics strongly rely on simulation methods able to describe strong
coupling between electronic and nuclear motion on the femtosecond time scale, usually called nonadiabatic coupling.
Simulations give access to microscopic information in terms of molecular structures, electronic populations, vibra-
tional energies that can be easily compared to experiments, for instance in the domains of time-resolved spectroscopy
or 2D spectroscopy. In addition to this, molecular dynamics simulations allow to follow in real time the evolution of
molecular systems, thus providing support to interpret and even predict the outcome of experiments.

Photochemical and photophysical reactions are ubiquitous in nature, from photosynthesis to vision, and are more
and more exploited for technological advances, as for the photo-current production in organic photovoltaic devices.
In addition, it is becoming clear the importance to consider spin-orbit coupling even in those systems composed of
light elements, such as oxygen and carbon, to be able to describe processes such as intersystem crossings in organic
light-emitting diodes.

G-CTMQC module provides numerical tools to perform simulations of internal conversion (spin-allowed) and in-
tersystem crossing (spin-forbidden) phenomena underlying photochemical and photophysical reactions. G-CTMQC
gives the user the flexibility of employing different approaches and, thus, various approximation schemes, to achieve
dynamical information as accurate as possible, as well as ample flexibility in the choice of systems that be studied
thanks to the interface of G-CTMQC with QuantumModelLib (E-CAM module).

3.5. List of available Modules 271

E-CAM Documentation, Release 0.2

Purpose of Module

G-CTMQC is a module for excited-state molecular dynamics simulations with various trajectory-based algorithms,
including nonadiabatic coupling and spin-orbit coupling. Nuclear dynamics can be performed based on the quantum-
classical algorithm derived from the exact factorization of the electron-nuclear wavefunction [EF], dubbed CT-MQC
[CT-MQC]. Recently, the extension of the exact-factorization theory has been proposed to include spin-orbit coupling
[SOC]. Therefore, the “generalized” algorithm is now able to treat (i) standard nonadiabatic situations, where spin-
allowed electronic transitions among states with the same spin multiplicity are mediated by the coupling to nuclear
motion, and (ii) spin-orbit interactions, where spin-forbidden electronic transitions among states of different spin
multiplicity are induced by the spin-orbit coupling.

Electronic evolution is carried out in the adiabatic basis for standard nonadiabatic problems. In the case of spin-orbit
interactions, G-CTMQC offers the options to use the spin-diabatic or the spin-adiabatic representations. Information
about electronic-structure properties, ie, energies, gradients and couplings, is calculated and read on-the-fly at the
positions of the trajectories at each time step based on the QuantumModelLib library [4] of potentials (which G-
CTMQC is interfaced to).

In addition, the code offers the possibility of performing calculations with the trajectory surface hopping algorithm
[TSH] and the Ehrenfest approach [EH]. Concerning the trajectory surface hopping method, the fewest switches
scheme is implemented, along with the energy decoherence corrections to fix the overcoherence issue of surface
hopping [TSH-EDC]. For surface hopping and Ehrenfest, only nonadiabatic couplings are currently implemented.

Background Information

Detailed information about the exact factorization and CT-MQC [EF] can be found in CTMQC where the original
version of the module is described. The generalized CTMQC, G-CTMQC, includes various new features to original
module:

• spin-allowed, between electronic states of the same spin multiplicity, and spin-forbidden, between electronic
states of different spin multiplicity, transitions can be simulated; the former are mediated by the kinetic, also
called nonadiabatic, coupling between electronic and nuclear motion, whereas the latter are induced by spin-
orbit coupling;

• G-CT-MQC calculations, based on the generalized coupled-trajectory mixed quantum-classical algorithm, can
be performed in the spin-diabatic and spin-adiabatic basis for the electronic subsystem;

• nonadiabatic calculations based on trajectory surface hopping [TSH] and on the Ehrenfest approach [EH] can
be carried out, including energy decoherence corrections in surface hopping [TSH-EDC]; the fewest switches
scheme is used for surface hopping;

• on-the-fly dynamics can be performed based on the calculation of electronic structure information, namely
energies, gradients and couplings, along the trajectories via the interface to the QuantumModelLib library.

The new features introduced in G-CTMQC are documented in Refs. [SOC] and [G-CT-MQC] concerning the in-
clusion of spin-orbit coupling in the exact factorization and in G-CTMQC, in Refs. [PSB3] and [IC] concerning the
inclusion of trajectory surface hopping, Ehrenfest dynamics, and different possibilities of sampling the initial condi-
tions.

Building and Testing

G-CTMQC is a fortran90 based code. Compilation of the code requires the gfortran compiler, and Lapack libraries.
Tests have been performed with GCC 7.x. Note that, before compiling G-CTMQC it is necessary to compile the
potential library available here and copy the file libpot.a into the src directory of G-CTMQC.

Once the main directory CTMQC has been downloaded, go to the directory and

272 Chapter 3. Quantum Dynamics Modules

https://e-cam.readthedocs.io/en/latest/Quantum-Dynamics-Modules/modules/CTMQC/readme.html
https://e-cam.readthedocs.io/en/latest/Quantum-Dynamics-Modules/modules/QuantumModelLib/readme.html
https://e-cam.readthedocs.io/en/latest/Quantum-Dynamics-Modules/modules/QuantumModelLib/readme.html

E-CAM Documentation, Release 0.2

cd ./src

make

Running the command make will compile the source code and generate the executable main.x. Go back to the CTMQC
directory with the command

cd ../

and run the script

./create_dirs.sh

that creates the directory output where all output files will be generated. Notice that you should run this script in each
new directory where you run the executable. The program generates a series of output files that are saved in different
directories. Therefore, in order not to obtain errors during the execution of the program, the directories have to be
created.

CREATE THE OUTPUT DIRECTORY

The directory output contains several subdirectories. After successful execution of the program, those subdirectories
will contain 𝑁files = 𝑁steps/𝑁dump files, with 𝑁steps the number of total time steps and and 𝑁dump the number of time
steps after which a new output file is generated. In each subdirectory, the files are labelled with an index increasing
with time, from 0 to 𝑁files. In the current version of the code, up to 999 files can be created.

The following subdirectories of the directory output will be created.

coeff

Each file (named coeff.xxx.dat) in this directory contains the coefficients 𝐶(𝐼)
𝑘 (𝑡) of the expansion of the electronic

wavefunction in the used electronic basis as a function of the position of the corresponding trajectory 𝐼 . Each file is in
the form: the first 𝑁dof columns are the positions of the trajectories for each of the 𝑁dof nuclear degrees of freedom;
the following n x n columns are the real parts of [𝐶

(𝐼)
𝑘 (𝑡)]*[𝐶

(𝐼)
𝑙 (𝑡)] with 𝑘, 𝑙 = 1, 𝑛 and 𝑛 the number of electronic

states considered in the expansion; the following n x n columns are the imaginary parts of [𝐶
(𝐼)
𝑘 (𝑡)]*[𝐶

(𝐼)
𝑙 (𝑡)] with

𝑘, 𝑙 = 1, 𝑛.

histo: [only for one-dimensional calculations]

Each file (named histo.xxx.dat) in this directory contains the nuclear density approximated as a histogram that is
constructed from the distribution of classical trajectories. The data listed in the file have the form: first column the
position along the nuclear coordinated (coarser that the original grid, but defined in the same domain); second column
the normalized histogram.

trajectories

Each file (named RPE.xxx.dat) in this directory contains the values of the phase-space variables and the value of the
gauge-invariant part of the time-dependent potential energy surface. The data listed in the file have the form: the first
𝑁dof columns are the positions of the trajectories for each of the 𝑁dof nuclear degrees of freedom; the following 𝑁dof
columns are the momenta of the trajectories for each of the 𝑁dof nuclear degrees of freedom; the following column
is the gauge-invariant part of the time-dependent potential energy surface; the following 𝑛 columns are the adiabatic
energies.

Additionally, the files BO_population.dat and BO_coherences.dat are created, containing the population of the adia-
batic states and the indicator of coherence as functions of time (the first columns is the time in atomic units). They are
defined as

𝜌𝑘(𝑡) = 1
𝑁𝑡𝑟𝑎𝑗

∑︀𝑁𝑡𝑟𝑎𝑗

𝐼=1

⃒⃒⃒
𝐶

(𝐼)
𝑘 (𝑡)

⃒⃒⃒2
3.5. List of available Modules 273

E-CAM Documentation, Release 0.2

and

𝜂𝑘𝑙(𝑡) = 1
𝑁𝑡𝑟𝑎𝑗

∑︀𝑁𝑡𝑟𝑎𝑗

𝐼=1

⃒⃒⃒
𝐶

(𝐼)
𝑘 (𝑡)𝐶

(𝐼)
𝑙 (𝑡)

⃒⃒⃒2
respectively, with 𝑘 = 1, . . . , 𝑛.

PROVIDED TESTS AND INPUT FILE

In the main CTMQC directory the

tests

directory provides examples of input files to run one-dimensional calculations with CT-MQC, surface hopping and
Ehrenfest on Tully model #3 [TSH] and some reference calculations.

&SYSTEM
TYP_CAL = "XX" !*character* XX = CT (CT-MQC calculations), EH

→˓(Ehrenfest calculations), SH (surface hopping calculations)
SPIN_DIA = X !*logical* X = T only for calculations with spin-

→˓orbit coupling in the spin-diabatic basis, otherwise X = F
NRG_CHECK = X !*logical* X = T to switch off the spin-orbit

→˓coupling when the energy between states is larger than NRG_GAP
NRG_GAP = X !*real* only for calculations with spin-orbit

→˓coupling in the spin-diabatic basis
MODEL_POTENTIAL = "XXXXX" !*character* XXXXX = definition of the model as it

→˓appears in QuantumModelLib
OPTION = X !*integer* X = 1, 2, 3 for Tully's models #1, #2,

→˓#3 (only used for Tully's models calculations)
N_DOF = X !*integer* X = number of nuclear degrees of freedom
PERIODIC_VARIABLE = X,X,X... !*logical* one value for each nuclear degree of

→˓freedom with X = T (periodic coordinate) or F
PERIODICITY = X,X,X... !*real* one value for each nuclear degree of

→˓freedom with X = the period in units of PI
NSTATES = X !*integer* X = number of electronic states
M_PARAMETER = X,X,X... !*real* one value for each nuclear degree of

→˓freedom with X = typical distance to tune the coupling among the trajectories in CT
→˓calculations

QMOM_FORCE = X !*logical* X = F to switch off the force from the
→˓quantum momentum (only) in CT calculations

DECOHERENCE = X !*logical* X = F for surface hopping or T for
→˓surface hopping with energy decoherence corrections

C_PARAMETER = X !*real* energy parameter for the energy
→˓decoherence correction in surface hopping

JUMP_SEED = X !*integer* seed for random number generator for
→˓the hopping algorithm in SH calculation
/

&DYNAMICS
FINAL_TIME = X !*real* X = length of the simulation in atomic

→˓units
DT = X !*real* X = integration time step in atomic units
DUMP = X !*integer* X = number of time steps after which

→˓the output is written
INITIAL_BOSTATE = X !*integer* X = initial electronic state
NTRAJ = X !*integer* X = number of classical trajectories
R_INIT = X,X,X... !*real* one value for each nuclear degree of

→˓freedom with X = average position of the initial nuclear distribution
K_INIT = X,X,X... !*real* one value for each nuclear degree of

→˓freedom with X = average momentum of the initial nuclear distribution

(continues on next page)

274 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

SIGMAR_INIT = X,X,X... !*real* one value for each nuclear degree of
→˓freedom with X = variance in position space of the initial nuclear distribution
SIGMAP_INIT = X,X,X... !*real* one value for each nuclear degree of

→˓freedom with X = variance in momentum space of the initial nuclear distribution
MASS_INPUT = X,X,X... !*real* one value for each nuclear degree of

→˓freedom with X = the nuclear mass
/

&EXTERNAL_FILES
POSITIONS_FILE = "XXXXX" !*character* XXXXX = file containing the list of
→˓initial positions for the trajectories; if the field is empty, positions are
→˓sampled according to R_INIT and SIGMAR_INIT
MOMENTA_FILE = "XXXXX" !*character* XXXXX = file containing the list of
→˓initial momenta for the trajectories; if the field is empty, momenta are sampled
→˓according to K_INIT and SIGMAP_INIT
OUTPUT_FOLDER = "XXXXX" !*character* XXXXX = path to the location where
→˓the output is written
/

Source Code

The G-CTMQC source code and test files can be found following this link.

References

The G-CTMQC module extends the previous CTMQC module, introducing new methodological and technical fea-
tures. G-CTMQC is interfaced with the QuantumModelLib library of potentials, which gives more flexibility in the
choice of systems that can be studied. The present implementation allows to perform surface hopping calculations,
also with inclusion of energy decoherence corrections, and Ehrenfest dynamics, as well as CT-MQC calculations.
Finally, spin-orbit coupling is included in CT-MQC (G-CT-MQC algorithm).

3.5.5 E-CAM Physical Constant module

Software Technical Information

Language Fortran 95

Compiler gfortran, ifort

Licence GNU Lesser General Public License (LGPL)

Documentation Tool Doxygen

• Purpose of Module

• Background Information

• Installing

• Testing

3.5. List of available Modules 275

https://gitlab.com/agostini.work/g-ctmqc

E-CAM Documentation, Release 0.2

• Source Code

Purpose of Module

This module enables to use fundamental physical constants (speed of light in vacuum, Planck constant . . . and isotopic
masses). Two versions can be selected:

• The CODATA 2006 ones, downloaded from NIST and the NIST masses downloaded in 2012 (default).

• Constants and masses from the 70th edition of the Handbook of Chemistry and Physics.

From these fundamental constants, some conversion factors are calculated automatically and can be used easily.

Remark: the actual mass values of the NIST web page differ slightly from the module ones.

Background Information

This module has been extracted and modified from the ElVibRot-Tnum-Tnum code (ElVibRot_f90-v80.13-Tnum28.9-
Tana5.1). This pre-E-CAM version can be downloaded here.

Installing

Dependencies: this module needs the fortran modules in the Source_Lib/sub_system directory.

Build the module (with dependencies):

make PhysConst

Build the module documentation (with doxygen):

make doxy

Testing

Two example data/script files:

Examples/exa_PhysicalConstants/dat_PhysConst
Examples/exa_PhysicalConstants/dat_PhysConst_HandBook70ed

To test the installation, you can run both test examples.

cd Examples/exa_PhysicalConstants ; ./run_tests

The results will be compared to previous results in Examples/exa_PhysicalConstants/
output_17dec2016 file.

Source Code

The source code can be downloaded from the E-CAM GitLab service.

The PhysConst enables the use of physical constants and the correct isotopic masses.

276 Chapter 3. Quantum Dynamics Modules

http://physics.nist.gov/cuu/Constants/archive2006.html
https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses
http://pagesperso.lcp.u-psud.fr/lauvergnat/ElVibRot/preECAM-E.80.13.28.9.5.1.tar.gz
https://gitlab.e-cam2020.eu/lauvergn/ElVibRot

E-CAM Documentation, Release 0.2

3.5.6 Quantum Model Library module

Software Technical Information

Language Fortran 2003

Compiler

• gfortran (version 6.0.3 linux and OSX)

• ifort (version: 14.0.2, 16.0.3, 17.0.1 linux)

Licence GNU Lesser General Public License (LGPL)

Documentation Tool Doxygen

• Purpose of Module

• Applications of the Module

• Installing

• Testing

• Source Code

Purpose of Module

This module enables to use potential energy surfaces extracted from the literature. It has the following features:

• One or several degrees of freedom

• One or several electronic states

• For each electronic state, the energy, gradient and hessian can be obtained in the diabatic or adiabatic represen-
tations

• The gradient and the hessian can be computed analytically (even for the adiabatic representations) or numerically
(with finite differences)

Applications of the Module

In standard quantum dynamics approaches (when the wave function is expanded on a grid and/or on a basis set), it is
essential to use potential energy surfaces in an analytical form which have to be linked to the quantum dynamics code.

This module contains several model potentials from the literature, which can be called using simple fortran subroutines.

For instance, the phenol potential [1] (2 coordinates, 3 electronic surfaces) is called with the following fortran line:

CALL sub_model1_V(V,Q,ndim,nsurf,pot_name,option)

or

CALL sub_model1_V(V,Q,2,3,'phenol',option)

with pot_name=’phenol’ and where V is a 3x3 matrix representing the adiabatic potential (nsurf=3), Q a vector with
2 components (ndim=2) associated to the 2 coordinates.

3.5. List of available Modules 277

E-CAM Documentation, Release 0.2

The diabatic potential can be obtained by calling the “sub_model1_DiaV” subroutine with the same arguments.

[1] Z. Lan, W. Domcke, V. Vallet, A.L. Sobolewski, S. Mahapatra, J. Chem. Phys. 122 (2005) 224315

Installing

Dependencies: none

Build the library (with dependencies):

make lib

=> it creates a “libpot.a” library, where the subroutine “sub_model1_V” and others are present.

Build a driver to show how to call subroutines from an external program:

make driver

=> it creates a “Driver.x” executable file.

Build the module documentation (with doxygen):

make doxy

Testing

To test the installation, you can run the script “run_tests” in Tests directory:

cd Tests ; ./run_tests

The script tests two aspects:

• The “ModLib” library with the implemented potentials

• The “dnSLib” library in which the value, first, second and third derivatives of intrinsic fortran functions (sin,
cos . . .) are implemented as generic functions. Furthermore, the usual operations (+, - , *, /, **) and comparison
operators (==, > . . .) are also implemented.

The results will be compared to previous results in Tests/RES_old

Source Code

The source code can be downloaded from the E-CAM gitlab.

The QuantumModelLib use potential energy surfaces extracted from the literature and can be linked to quantum
dynamics codes.

Software Technical Information

Name FBTS-MPI

Language Fortran

Licence MIT

278 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu/lauvergn/QuantumModelLib
https://opensource.org/licenses/mit-license

E-CAM Documentation, Release 0.2

3.5.7 FBTS_MPI

• Purpose of Module

• Background Information

• Applications

• Building and Testing

• Source Code

• References

Purpose of Module

The FBTS-MPI module implements the Forward-Backward Trajectory Solution (FBTS) to the quantum-classical Li-
ouville equation [KapralCiccotti1999] developed by Hsieh and Kapral [HsiehKapral2012], [HsiehKapral2013].

In the case of a many-body system that can be partitioned into a quantum subsystem and classical environment, this
module can be used in the calculation of time-dependent observables. The purpose of this module is to provide an
efficient and approximate method to study the nonadiabatic dynamics of these systems.

Background Information

In this approximate quantum dynamics method both the quantum subsystem and classical-like environment are trans-
formed into a continuous phase space representation. This is achieved through a partial Wigner transform over the
environmental degrees of freedom and a mapping representation for the quantum subsystem, wherein the subsystem
degrees of freedom are represented by coherent state variables: 𝑧𝜆 = (𝑞𝜆 + 𝑖𝑝𝜆)/

√
2~.

Classical-like equations of motion are then used to evolve an ensemble of Monte Carlo sampled trajectories through
time and the matrix elements of the average value of a time-dependent operator, (having undergone the Wigner trans-
form):

⟨𝐵(𝑡)⟩ =
∑︀

𝜆𝜆′

∫︀
𝑑𝑋𝐵𝜆𝜆′

𝑊 (𝑋, 𝑡)𝜌𝜆
′𝜆

𝑊 (𝑋)

is calculated by the FBTS method using,

𝐵𝜆𝜆′

𝑊 (𝑋, 𝑡) =
∑︀

𝜇𝜇′

∫︀
𝑑𝑥𝑑𝑥′𝜑(𝑥)𝜑(𝑥′) 1√

2~ *(𝑞𝜆+𝑖𝑝𝜆)(𝑞′𝜆−𝑖𝑝′𝜆)𝐵𝜇𝜇′

𝑊 (𝑋𝑡)
1√
2~ *(𝑞𝜇(𝑡)−𝑖𝑝𝜇(𝑡))(𝑞′𝜇′(𝑡)+𝑖𝑝′𝜇′(𝑡))

where (𝑋,𝑥, 𝑥′) = (𝑅,𝑃, 𝑞, 𝑞′, 𝑝, 𝑝′) and 𝜑 = (2𝜋~−𝑁)𝑒−
∑︀

(𝑞2𝜈+𝑝2
𝜈/2~).

Applications

The particular system that this FBTS-MPI module has been built for is in the study of excitation energy transfer
in biological light harvesting systems, so-called protein-pigment complexes, through the use of the Frenkel exciton
model. [IshizakiFleming2009PNAS] The total Hamiltonian of this system is: �̂�𝑡𝑜𝑡𝑎𝑙 = �̂�𝑠 + �̂�𝑏 + �̂�𝑠𝑏.

In this model the quantum subsystem of interest, �̂�𝑠, is the electronic excited states of the pigment molecules, the
surrounding vibrational environment, �̂�𝑏, is represented as a collection of harmonic oscillatorsand the interaction
between the two, �̂�𝑠𝑏, is characterized by the spectral density.

Specifically, the subsystem Hamiltonian is built such that the diagonal elements is the site energy, 𝜖𝑗 of a particular
pigment, j, with the coupling between the pigments on the diagonals, ∆𝑘𝑗 :

�̂�𝑠 =
∑︀𝐽

𝑗=1 𝜖𝑗 |𝑗⟩⟨𝑗| +
∑︀

𝑘 ̸=𝑗 ∆𝑘𝑗 |𝑘⟩⟨𝑗|

3.5. List of available Modules 279

E-CAM Documentation, Release 0.2

The Hamiltonian of the bath is written as, where N is the total number of bath oscillators:

�̂�𝑏 = 1
2

∑︀𝐽,𝑁
𝑗,𝑛

(︁
𝑃 2
𝑗,𝑛 + 𝜔2

𝑗,𝑛�̂�
2
𝑗,𝑛

)︁
Lastly, the coupling Hamiltonian:

�̂�𝑠𝑏 = −
∑︀

𝑗,𝑛 𝑐𝑗,𝑛�̂�𝑗,𝑛|𝑗⟩⟨𝑗|

In this module an approximate form of the spectral density is used, known as the Debye spectral density given below:

𝐽𝐷(𝜔) = 2𝜆𝜔𝑐𝜔
𝜔2+𝜔2

𝑐

The initial application for this module is in examining the mechanisms of exciton transport, which can be studied
through the time-dependent exciton site populations for a given light-harvesting complex. The approximate nature
of this dynamics method combined with the parallelization of the trajectory ensemble allows one to model exciton
transport in large systems with many pigments that would otherwise be prohibitively expensive to simulate.

Building and Testing

In order to compile this module, two files are required, FBTS_MPI.f90 and luxury.f90, one contains the FBTS
method and the other returns a random number. Both of these files are located in the ./source sub-directory and
can be compiled using:

mpifort FBTS_MPI.f90 luxury.f90 -o FBTS_MPI.x

Upon successful compilation of the code execution of the code requires two input files, one containing relevant infor-
mation concerning the simulation and the subsystem Hamiltonian matrix in units of wavenumbers.

The file Input_Data.dat contains the simulation parameters and can be easily modified. The number of states of
the system, the state in which the initial excitation will occur and the number of trajectories this module will complete
can be changed. The influence of the bath can also be adjusted through the parameters that will define the Debye
spectral density, the characteristic frequency of the bath, :math:omega_c, the reorganization energy and the number of
bath oscillators.

There are three parameters that concern the time length of the simulation, num_timestep, timestep and
timestep_block. The total time length of the simulation is determined by: num_timestep * timestep.
The parameter timestep_block determines at what interval the time-dependent observables will be calculated
and collected.

An example of this Input_Data.dat file and subsystem Hamiltonian matrix can be found in the ./tests/
Dimer_Model sub-directory. In order to test the code move the executable to the this sub-directory and compare the
output site populations against the exact results from [IshizakiFleming2009] Figure 4(b). Remember that the output
provided by the module is given in atomic units of time and must be converted to femtoseconds to compare.

Another model is provided for testing, the light harvesting complex known as the Fenna-Matthews-Olson (FMO)
complex that contains 7 states, the exact results are from [WilkinsDattani2015].

The output from the FBTS_MPI module should be in good agreement to the exact results.

Source Code

The FBTS_MPI module source code is located at: FBTS_MPI.

References

The FBTS_MPI_ module implements the Forward-Backward Trajectory Solution (FBTS) to the quantum-classical
Liouville equation developed by Hsieh and Kapral.

280 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu/Quantum-Dynamics/FBTS_MPI

E-CAM Documentation, Release 0.2

3.5.8 PaPIM

PaPIM is a code for calculation of equilibrated system properties (observables). Some properties can be directly ob-
tained from the distribution function of the system, while properties that depends on the exact dynamics of the system,
such as the structure factor, [Mon2] infrared spectrum [Beu] or reaction rates, can be obtained from the evolution of
appropriate time correlation functions. PaPIM samples either the quantum (Wigner) or classical (Boltzmann) density
functions and computes approximate quantum and classical correlation functions.

The code is highly parallelized and suitable for use on large HPC machines. The code’s modular structure enables an
easy update/change of any of its modules. Furthermore the coded functionalities can be used independently of each
other. The code is specifically design with simplicity and readability in mind to enable any user to easily implement its
own functionalities. The code has been extensively used for the calculation of the infrared spectrum of the CH+

5 cation
in gas phase, while recently new calculations on the water dimer, and protonated water dimer systems were started.

PaPIM

Software Technical Information

Language Fortran 90/95

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Momir Mališ, Ari P. Seitsonen

• Purpose of Module

• Phase Integration Method (PIM)

• Applications of the Module

• Compiling

• Testing

– Performance and Benchmarking

• Source Code

• Source Code Documentation

• References

Purpose of Module

PaPIM is a code for computing time-dependent correlation functions and sampling of the phase space. It samples
the phase space either classically or quantum mechanically. For the classical sampling of the phase space a Monte
Carlo algorithm samples the Boltzmann distribution function, while for the quantum sampling a Phase Integration
Method (PIM) [PMon1] [PMon2] is utilized for an exact sampling of the quantum Wigner density distribution. From
the sampled phase space points trajectories are propagated in time using classical molecular dynamics in order to
obtain the appropriate time-dependent correlation functions. The code is designed so the user can easily couple it
with its own external potential energy code/library and/or correlation functions subroutines. Examples for the OH,
CH4 and CH+

5 systems are provided, where for the CH+
5 system an external subroutine for calculation of CH+

5 system

3.5. List of available Modules 281

E-CAM Documentation, Release 0.2

potential energy and electric dipole moment, based on fitted values, [PJin] is also provided. The first two systems
use Morse and harmonic potential, respectively. PaPIM comes with a direct interface to the CP2K program package
program package for calculation of system’s electronic structure properties. The CP2K package is coupled to PaPIM
as a library, thus avoiding the exchange of information process via writing and reading to an external file. For more
information see the corresponding PaPIM-CP2K_Interface module. .. Example external subroutines are provided
for the OH and CH4 systems, respectively, .. with potential energies described by the harmonic potential, .. and the
electric dipole moments by point charge approximation. .. An external subroutine for calculation of .. CH+

5 system
potential energy and electric dipole moment, based on fitted values, [PJin] is also given. The electric dipole moment
operator is currently implemented into the code for calculation of the electric dipole moment autocorrelation function
from which system IR spectra can be directly obtained.

Phase Integration Method (PIM)

The Phase Integration Method (PIM) is a novel approximate quantum dynamical technique developed for comput-
ing systems time dependent observables. [PMon1] [PMon2] [PBeu] PIM employs an algorithm in which the exact
sampling of the quantum thermal Wigner density is combined with a linearized approximation of the quantum time
propagators represented in the path integral formalism that reduces the evolution to classical dynamics. The quantities
of interest can then be computed by combining classical molecular dynamics algorithms with a generalized Monte
Carlo sampling scheme for sampling of the quantum initial conditions.

Applications of the Module

The PaPIM code has been extensively used for the calculation of the CH+
5 system infrared absorption spectrum in the

gas phase. These calculations also provided the benchmark of the PIM method as well as for the code performance
analysis. The results obtained on the CH+

5 system are currently under preparation for publication. One master thesis
was completed by applying the code. Investigations of the processes shaping the infrared spectrum of small water
cluster systems and a protoneted water dimer system are currently being investigated using the PaPIM code.

Compiling

Fortran compiler with a MPI wrapper together with lapack libraries have to be available to successfully compile the
code. The user is advised to examine the Makefile in the ./source sub-directory prior to code compilation in

282 Chapter 3. Quantum Dynamics Modules

https://www.cp2k.org/about

E-CAM Documentation, Release 0.2

order to select an appropriate compiler and to check or adapt the compiler options to his local environment, or to
generally modify the compiler options to his requirements.

Upon adapting the Makefile, the code compilation is executed by command make in the ./source sub-directory.
The executable PaPIM.exe is created at the same location upon successful compilation.

For module’s testing purposes the user is advise to have numdiff package installed before running the tests. More
details on the numdiff program package and its installation is available here.

For compiling the PaPIM with an interface to the CP2K package see here.

The PaPIM documentation is generated by executing the make command in the ./doc sub-directory.

Testing

Testing check and validates the successful compilation of the PaPIM code. Tests and all corresponding reference files
are located in sub-directory ./tests. If using the automated testing script all tests have to be performed in this
sub-directory.

The tests are performed on three systems, the OH, CH4 and CH+
5 . They are located in their corresponding sub-

directories, oh, ch4 and ch5, where each sub-directory contains corresponding classical and quantum input files
located in CLASSICAL and QUANTUM sub-directories, respectively.

Tests are performed automatically in the ./tests sub-directory by executing the command:

./test.sh -n [number of cores]

Flag -n [number of cores] controls the number of processor cores used in the tests. By default the tests are
performed on two processor cores, which can be changed by setting a different number of required processor cores.
Because the number of trajectories for sampling in certain tests are limited to 20, the number of processor cores should
not exceed 20.

For testing of the PaPIM code linked with the CP2K package see here.

For comparison of generated output values with reference data the test script uses numdiff command in order to
compensate for small numerical differences. By default the script looks first for the numdiff command on the
system, and in case it fails to locate it, the standard diff command will be used instead. However, the user is warned
that due to small numerical differences between generated output and corresponding reference values the automated
tests are most likely to fail. A local numdiff package copy can be included in the test by specifying its absolute path.
For this and other options of the test script list them with the command ./test.sh -h.

Performance and Benchmarking

PaPIM is designed as a highly scalable code. Its performance was extensively tested.

PaPIM code performance analysis

Two independent performance analyses of the PaPIM code are reported below. They were conducted by Dr. Liang
Liang (Maison de la Simulation and IDRIS), and by Dr. Alan O’Cais (Juelich Supercomputing Center), respectively.

A strong scaling analysis of the PaPIM code using the Scalasca analysis tools, and the internal PaPIM code calculation
time outputs was conducted on the CH+

5 system and performed on the JURECA cluster at the JSC. Figure 1 displays
the results of the performed tests.

A parallel efficiency test was made on the JUQUEEN cluster at JSC also using the CH+
5 system. Results are displayed

in Figure 2.

3.5. List of available Modules 283

http://www.nongnu.org/numdiff/
http://www.maisondelasimulation.fr/en/index.php?a
http://www.idris.fr
http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
http://www.scalasca.org
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html

E-CAM Documentation, Release 0.2

Fig. 3.1: Figure 1: PaPIM strong scaling test.

Fig. 3.2: Figure 2: PaPIM parallel efficiency test.

284 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

PaPIM scaling performance increases by increasing the number of sampling points.

Up to date the PaPIM code has been successfully run on 131,072 processor cores at JUQUEEN.

Source Code

The PaPIM module source code can be obtained from: https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/
tree/master/source.

Source Code Documentation

The source code documentation is located in the ./doc sub-directory. The documentation files (html and latex format)
are generated by executing the make command in the ./doc sub-directory.

References

PaPIM is the current version of the code, including all available functionalities.

The following modules make up the PaPIM code and can be used as stand-alone software libraries for e.g. sampling of
the Wigner distribution, sampling of the classical Boltzmann distribution, or building MPI parallelized Fortran codes.
Such libraries are rarely available to the community in a Fortran program format. Some of the functionalities within
the code are specifically designed for computation of infrared spectra, and serve as a template for the user to implement
its own functionalities.

PIM_wd

Software Technical Information

Language Fortran 90/95

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Momir Mališ

• Purpose of Module

• Applications of the Module

• Compiling

• Testing

• Source Code

• Source Code Documentation

• References

3.5. List of available Modules 285

https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/master/source
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/master/source

E-CAM Documentation, Release 0.2

Purpose of Module

Module PIM_wd implements the Phase Integration Method (PIM) [Mon1] [Mon2] for the exact sampling of the
quantum Wigner distribution in phase space representation. The PIM samples the thermal Wigner density using a gen-
eralized Monte Carlo scheme for sampling phase space points. The scheme combines the Penalty [Pen] and Kennedy
[Ken] algorithms to sample noisy probability densities. This is necessary because the estimator of the quantum thermal
density is not known analytically but must be computed via a statistical average affected by uncertainty. The sampled
points are the basis for the calculation of time-dependent correlation function with the PIM algorithm via the module
PaPIM. The user is required to provide the potential energy of the system by incorporating an external potential energy
subroutine into the PotMod potential energy library.

Applications of the Module

This module forms the basis for computing the time-dependent cross- and auto-correlation functions with the PIM
algorithm. It has been used in the calculation of CH+

5 infrared spectrum and in the gas phase as well as for the
computation of infrared spectrum of small water molecule clusters and protonated water dimer system.

Compiling

Fortran compiler with a MPI wrapper together with lapack libraries have to be available to successfully compile
the code. The user is advised to examine the Makefile in the ./source` sub-directory prior to code compilation
in order to select an appropriate compiler and to check or adapt the compiler options to his local environment, or to
generally modify the compiler options to his requirements.

cd source

make

Upon adapting the Makefile, the code compilation is executed by command make in the ./source sub-directory.
An executable PaPIM.exe is created upon successful compilation.

Testing

For PIM_wd test purposes the numdiff package is used for automatic comparison purposes and should be made
available before running the tests, otherwise the diff command will be used automatically instead but the user is
warned that the test might fail due to numerical differences. The user is advised to download and install numdiff from
here. Tests and corresponding reference values are located in sub-directories ./tests/. The tests are performed
over three systems, the OH, CH4 and CH+

5 . They are located in their corresponding oh, ch4 and ch5, where each
sub-directory contains corresponding classical and quantum input files located in CLASSICAL and QUANTUM sub-
directories, respectively. Before running the tests the code has to be properly compiled by running the make command
in the ./source sub-directory. The tests are performed automatically by executing the command ./test.sh in
the ./tests sub-directory for all three systems:

cd tests

./test.sh [number of cores]

Tests are by default performed using two processor cores, which can be changed by setting the value of required cores
as an integer number after the command ./test.sh (example ./test.sh 20, for the use of 20 processor cores
in the test). The number of processor cores should not exceed 20. Due to small numerical discrepancies between
generated outputs and reference values which can cause the tests to fail, the user is advised to manually examine the
numerical differences between generated output and the corresponding reference values in case the tests fail.

286 Chapter 3. Quantum Dynamics Modules

http://www.nongnu.org/numdiff/

E-CAM Documentation, Release 0.2

Source Code

The PIM_qcf module source code is located at: https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/
PIM_wd.

Source Code Documentation

The source code documentation can be generated automatically in ./doc sub-directory, html and latex format, by
executing the following command in the ./doc directory:

doxygen PIMwd_doxygen_settings

References

PIM_wd samples, via the Phase Integration Method, [Mon1] the system’s quantum Wigner density function. The
function is given in the phase-space representation and is the basis for any further calculation of system’s quantum
observables.

PIM_qcf

Software Technical Information

Language Fortran 90/95

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Momir Mališ

• Purpose of Module

• Applications of the module

• Compiling

• Testing

• Source Code

• Source Code Documentation

Purpose of Module

Module PIM_qcf is a library of quantum cross- and auto-correlation functions used for computation of quantum time-
dependent correlation functions within the Phase Integration Method (PIM). Two auto-correlation functions are cur-
rently implemented, the quantum position-position point charge dipole moment correlation function, and the velocity-
velocity point charge dipole moment correlation function, all in the Kubo representation of the correlation functions.
The user can follow the two examples to construct his/her own quantum correlation function.

3.5. List of available Modules 287

https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/PIM_wd
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/PIM_wd

E-CAM Documentation, Release 0.2

Applications of the module

This module has been used in the calculation of CH+
5 infrared spectrum in the gas phase as well as for the computation

of infrared spectrum of small water molecule clusters and protonated water dimer system.

Compiling

A Fortran 90/95 compiler with MPI wrapper is required for successful compilation of the code. Although the corre-
lation function subroutines are serial, the remaining code is parallelized so MPI wrappers have to be used. Quantum
correlation subroutines within PIM_qcf modules are compiled by executing the command make in the ./source
directory. The same make command generates a RunPIMqcf.exe executable for testing of the correlation functions.

Testing

For PIM_qcf test purposes the numdiff package is used for automatic comparison purposes and should be made
available before running the tests, otherwise the diff command will be used automatically instead but the user is
warned that the test might fail due to numerical differences. The user is advised to download and install numdiff
from here. Tests and corresponding reference values are located in sub-directories ./tests/xxx, where xxx stands
for oh, ch4, and ch5 systems. Before running the tests the code has to be properly compiled by running the make
command in the ./source sub-directory:

cd tests

./test.sh

Tests can be executed automatically by running the command ./test.sh in the ./tests sub-directory for all three
systems, or separately for each system by running the command ./test.sh within the corresponding sub-directory.
All test are executed on one processor core. Due to small numerical discrepancies between generated outputs and
reference values which can cause the tests to fail, the user is advised to manually examine the numerical differences
between generated output and the corresponding reference values in case the tests fail.

Source Code

The PIM_qcf module source code is located at: https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/
PIMqcf.

Source Code Documentation

The source code documentation can be generated automatically in ./doc sub-directory, html and latex format, by
executing the following command in the ./doc directory:

doxygen PIMqcf_doxygen_settings

PIM_qcf is a library of quantum correlation functions for computing system’s time-dependent properties.

PIM_qtb

288 Chapter 3. Quantum Dynamics Modules

http://www.nongnu.org/numdiff/
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/PIMqcf
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/PIMqcf

E-CAM Documentation, Release 0.2

Software Technical Information

Language Fortran 90/95

Licence MIT license (MIT)

Documentation Tool Sphinx Doxygen

• Purpose of Module

• Description of the module

– Classical Langevin dynamics

– Quantum Thermal Bath (QTB)

* Adaptive Quantum Thermal Bath (adQTB-r/f)

• Input file

• Output files

– Langevin trajectories

– QTB analysis files

• Tests on implemented potentials

– OH anharmonic potential

– Lennard-Jones 𝑁𝑒13 cluster

• Implementation

– Source files

– Other modifications

• Compiling

• Testing

• Source Code

• Source Code Documentation

• References

Purpose of Module

Module PIM_qtb generates trajectories according to one of the following stochastic methods:

• Classical Langevin dynamics

• Quantum Thermal Bath [Dam]

• Adaptive Quantum Thermal Bath [Man]

These trajectories can be used to sample initial conditions for Linearized Semi-Classical Initial Value Representation
(LSC-IVR) calculations.

3.5. List of available Modules 289

E-CAM Documentation, Release 0.2

Description of the module

The module implements different methods based on Langevin dynamics. The trajectories generated can be exploited
directly or used to sample initial conditions for LSC-IVR calculations. The methods implemented are: classical
Langevin dynamics, Quantum Thermal Bath (QTB) and two variants of adaptive QTB (adQTB-r and adQTB-f).

Classical Langevin dynamics

Classical Langevin dynamics is described by a stochastic differential equation :

�̇� = −∇𝑈 − 𝛾𝑝+ 𝐹 (𝑡) (3.1)

where 𝑝 is the momentum vector of the set of atoms, interacting via the potential 𝑈 , 𝛾 is the damping coefficient and
𝐹 (𝑡) is the stochastic force. The random force 𝐹 (𝑡) is a Gaussian white noise: to enforce the classical fluctuation-
dissipation theorem, its autocorrelation spectrum is given by :

𝐶𝐹𝐹 (𝜔) =

+∞∫︁
−∞

𝑑𝑡⟨𝐹 (𝑡)𝐹 (𝑡+ 𝜏)⟩𝑒−𝑖𝜔𝑡 = 2𝑚𝛾𝑘𝐵𝑇

where 𝑘𝐵 is the Boltzmann constant and 𝑇 the temperature.

Quantum Thermal Bath (QTB)

The Quantum Thermal Bath uses a generalized Langevin equation in order to approximate nuclear quantum effects
[Dam] . In QTB dynamics, the stochastic force is no longer a white noise but is colored according to the following
formula :

𝐶𝐹𝐹 (𝜔) = 2𝑚𝛾𝜃(𝜔, 𝑇) (3.2)

with

𝜃(𝜔, 𝑇) = ~𝜔
[︂

1

2
+

1

𝑒~𝛽𝜔 − 1

]︂
where 𝛽 = 1

𝑘𝐵𝑇 and 2𝜋~ is the Planck constant. The function 𝜃(𝜔, 𝑇) describes the energy of a quantum harmonic
oscillators of angular frequency 𝜔 at a temperature 𝑇 . The colored random force allows approximating zero-point
energy contributions to the equilibrium properties of the system. The QTB method is known to lead to qualitatively
good results [Bri] but as many semi-classical methods, it suffers from zero-point energy leakage (ZPEL) [Hern].

Adaptive Quantum Thermal Bath (adQTB-r/f)

The Adaptive Quantum Thermal Bath is an extension of the QTB method, designed to eliminate the zero-point energy
leakage by enforcing the energy distribution prescribed by the quantum fluctuation-dissipation theorem for each degree
of freedom and each frequency, all along the trajectories [Man] .

In practice, this is done by minimizing the fluctuation-dissipation spectrum ∆𝐹𝐷𝑇 defined as:

∆𝐹𝐷𝑇 (𝜔) = Re [𝐶𝑣𝐹 (𝜔)] −𝑚𝛾𝑟(𝜔)𝐶𝑣𝑣(𝜔) (3.3)

where 𝐶𝑣𝐹 is the velocity random force cross-correlation spectrum, 𝐶𝑣𝑣 the velocity autocorrelation spectrum and 𝛾𝑟
a set of damping coefficients dependent (or not) on the frequency.

290 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

This minimization is carried out on the fly during the QTB simulation by dissymetrizing the system-bath coupling
coefficients corresponding to the damping force (dissipation) and to the random force (energy injection). This can be
done either by directly modifying the random force spectrum 𝐹 (𝑡) with frequency dependent damping term 𝛾𝑟(𝜔)
(adQTB-r variant) or by modifying the memory kernel of the dissipative force 𝛾𝑓 (𝜔) within the framework of a non-
Markovian generalized Langevin equation (adQTB-f variant).

The coefficients 𝛾𝑟 or 𝛾𝑓 are slowly adjusted with a first-order differential equation and an adaptation coefficient 𝐴𝛾 :

𝑑

𝑑𝑡
𝛾𝑟/𝑓 (𝜔) ∝ 𝐴𝛾𝛾∆𝐹𝐷𝑇,𝑟/𝑓 (𝜔, 𝑡) (3.4)

during a preliminary “adaptation time” until they reach convergence. Observables are then computed while the adap-
tive process is kept active. Further information and precise implementation details can be found in ref. [Man].

Two implementations are currently available in PaPIM:

1. Random force adaptive QTB (adQTB-r):

In this variant, the dissipation kernel is left unchanged, i.e. 𝛾𝑓 (𝜔) = 𝛾 while the random force is modified
according to a frequency-dependent set of damping coefficients 𝛾𝑟(𝜔) to satisfy ∆𝐹𝐷𝑇 = 0 (eq. (3.3)):

𝐶𝐹𝐹 (𝜔) = 2𝑚𝛾𝑟(𝜔)𝜃(𝜔, 𝑇) (3.5)

This method is applicable only if the initial damping coefficient 𝛾 is large enough to compensate effects of a
possible zero-point energy leakage.

2. Dissipative kernel adaptive QTB (adQTB-f)

In this approach, the random force is not modified, i.e. 𝛾𝑟(𝜔) = 𝛾 and remains the same as in the standard QTB
method (eq. (3.2))) but the dissipation term is not described by a viscous damping term anymore (−𝑚𝛾𝑣) but
corresponds to a non-Markovian dissipative force. This leads to the following generalized Langevin equation:

�̇� = −∇𝑈 −
∫︁ ∞

0

𝛾𝑓 (𝜏)𝑝(𝑡− 𝜏) 𝑑𝜏 + 𝐹 (𝑡) (3.6)

In order to avoid solving with brute force this integro-differential equation, the dissipative memory kernel is
expressed as a sum of equally spaced (∆𝜔) lorentzian functions of width 𝛼 :

𝛾𝑓 (𝜔) =
∆𝜔

𝜋

𝑛𝜔∑︁
𝑗=0

𝛾𝑓,𝑗
𝛼+ 𝑖(𝜔 − 𝜔𝑗)

+
𝛾𝑓,𝑗

𝛼+ 𝑖(𝜔 + 𝜔𝑗)
(3.7)

The parameter 𝛾𝑓,𝑗 are then modified to satisfy ∆𝐹𝐷𝑇 = 0 (eq. (3.3)).

Input file

To run PaPIM using one of the Langevin methods, one must set the parameter sampling_type in the sampling section
to one of the following values:

• classical_langevin

• qtb

• adqtbr

• adqtbf

In this case the parameters n_equilibration_steps and n_mc_steps are ignored and the section langevin is read.

3.5. List of available Modules 291

E-CAM Documentation, Release 0.2

The section langevin must specify the following parameters:

• dt : time step of the Langevin dynamics (REAL)

• lgv_nsteps : number of Langevin steps between each IVR sample (INTEGER)

• lgv_nsteps_therm : number of thermalization steps (INTEGER)

• integrator : integration method (two splitting methods are currently implemented: BAOAB, ABOBA (see ref-
erence [Lei])) (STRING, default=“ABOBA”)

• damping : base damping coefficient for production runs (𝛾 in eq. :eq:eqLGV) (REAL)

• damping_therm : base damping coefficient for thermalization (𝛾 in eq. :eq:eqLGV) (REAL)

• qtb_frequency_cutoff : cutoff frequency for the QTB kernel (REAL)

• adqtb_agammas : (Only for adqtbr and adqtbf) adaptation speed coefficient for adQTB (𝐴𝛾 in eq. (3.4))(REAL)

• adqtb_alpha : (Only for adqtbf) Width of the lorentzian used to represent the dissipative kernel 𝛾𝑓 (𝜔) (𝛼 in eq.
(3.7)) (REAL)

• write_spectra : write average random force autocorrelation function ff, velocity autocorrelation function vv and
velocity random force cross-correlation function vf spectra (LOGICAL, default=.FALSE.)

• write_trajectories : write Langevin trajectories in x,y,z,px,py,pz format (LOGICAL, default=.FALSE.)

Remark: all physical quantities are specified in Hartree atomic units.

Output files

The Langevin module is plugged to the IVR subroutines and thus can output the same correlation functions as the
classical MC sampling. Additionally, it can write the Langevin trajectories and spectra obtained directly from them.

Langevin trajectories

If the parameter write_trajectories of the langevin section of the input file is set to TRUE, Langevin trajectories are
saved. Trajectory files follow the following format:

num_of_atoms

At_symbol(1) X Y Z Px Py Pz
At_symbol(2) X Y Z Px Py Pz

.

.
At_symbol(n) X Y Z Px Py Pz

num_of_atoms

At_symbol(1) X Y Z Px Py Pz
At_symbol(2) X Y Z Px Py Pz

.

.
At_symbol(n) X Y Z Px Py Pz

.

.

.

292 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

This corresponds to an extended XYZ format with information on momenta. It is readable by visualization software
such as VMD to display the trajectories.

The module outputs multiple trajectory files depending on the number of independent trajectories (blocks) and the
number of MPI processes. The naming follows the rules:

• xp.traj.xyz for 1 block and 1 process

• xp_proci.traj.xyz for 1 block and multiple processes

• xp_proci_blockj.traj.xyz for multiple blocks and processes

QTB analysis files

In addition to the trajectories, several files can be edited during the simulations. They are useful to carefully check the
convergence of the adaptive QTB, notably by calculating ∆𝐹𝐷𝑇 (𝜔) (eq. (3.3)).

• ff_vv_vf_spectra.out spectra of random force and velocity autocorrelation and random force velocity
cross-correlation functions (in atomic units)

𝜔 𝐶𝐹𝐹 (𝜔) 2𝑚𝛾𝜃(𝜔, 𝑇) 𝐶𝑣𝑣(𝜔) 𝑚𝛾𝐶𝑣𝑣(𝜔) 𝐶𝑣𝐹 (𝜔)

• gamas.out (for adQTB-r and adQTB-f only) final set of 𝛾𝑟/𝑓 (𝜔) optimized during the adaptive procedure (in
atomic units)

𝜔 𝛾𝑟/𝑓 (𝜔) 𝛾

Tests on implemented potentials

OH anharmonic potential

The classical Langevin has been tested on the OH anharmonic potential. The left panel of Figure Fig. 3.3 shows time
correlation functions obtained with IVR using initial conditions sampled from classical (Boltzmann) Monte Carlo and
from classical Langevin. Its right panel shows the corresponding spectra obtained by Fourier transform.

Lennard-Jones 𝑁𝑒13 cluster

A Lennard-Jones potential has been implemented in LennardJonesPot.f90 with the following pair potential:

𝑉 (𝑟𝑖𝑗) =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

4𝜖

(︃(︂
𝜎

𝑟𝑖𝑗

)︂12

−
(︂
𝜎

𝑟𝑖𝑗

)︂6
)︃

(3.8)

A confining pair potential (useful in the cases of small clusters) can be added to eq. (3.8). A 4th order polynomial is
used for distances greater than a chosen distance 𝑟𝑐𝑜𝑛𝑡:

𝑉𝑐𝑜𝑛𝑓 (𝑟𝑖𝑗) =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

𝜖 (𝑟𝑖𝑗 − 𝑟𝑐𝑜𝑛𝑡)
4 (3.9)

Parameters for this potential are specified in an external text file. The file name is given in the input file using the
parameter lennard_jones_parameters in section system. The parameters to specify are:

• epsil : depth of the potential well 𝜖 (in Kelvin) (eq. (3.8))

• sigma : distance for which the potential cancels 𝜎 (in Å) (eq. (3.8))

• r_cont : minimum distance for which a confining potential 𝑟𝑐𝑜𝑛𝑡 defined in eq. (3.9) is applied (in Å)

3.5. List of available Modules 293

E-CAM Documentation, Release 0.2

Fig. 3.3: Left panel: OH time correlation function using IVR with initial conditions sampled from MC and from
Langevin. Right panel: corresponding spectra obtained by FFT.

The QTB and both adaptive methods were tested on a Ne13 cluster in order to reproduce results from reference
[Man]. The Lennard-Jones parameters which have been used are 𝑒𝑝𝑠𝑖𝑙 = 34.9, 𝑠𝑖𝑔𝑚𝑎 = 2.78 and 𝑟_𝑐𝑜𝑛𝑡 = 10. 5
runs of 8000 steps with 16000 initial time steps are used with all four methods (Langevin, QTB, adQTB-r,adQTB-f).
Damping term is set to 5.0e-5 atomic units and adaptive coefficients𝐴𝛾 and 𝛼 for adQTB-f to 5.0e-6 atomic units. Pair
correlation function is then computed from the trajectories output with a Python script compute_g2r.py. Results
are shown in figure Fig. 3.4 and are in agreement with the ones of ref. [Man].

In this particular case, adaptive QTB leads to significantly better results than both classical Langevin and QTB when
comparing them to the reference results obtained with PIMD (Path Integral Molecular Dynamics).

Implementation

Langevin module is built with the fewest modifications possible in the main and previous code of PaPIM. The main
program of the sampler is in the file langevin.f90. It is structured in the same fashion as the existing samplers
(PIM.f90 and ClassMC.f90) and only provides the subroutine langevin_sampling to the main program.

Source files

The Langevin module is divided in multiple files:

• langevin.f90: contains the Langevin sampler and links the main code with the other files of the module

• langevin_integrator.f90: subroutines to integrate Langevin equations

• langevin_analysis.f90: spectral analysis tools for Langevin and (ad)QTB trajectories

• qtb_random.f90: generation of QTB colored noise and adaptation subroutines for adQTB

294 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

Fig. 3.4: Pair correlation function of Ne13 cluster obtained with Langevin, QTB, adQTB-r and adQTB-f implemented
with Langevin module in PaPIM. Reference curve calculated with Path Integral Molecular Dynamics (PIMD)

3.5. List of available Modules 295

E-CAM Documentation, Release 0.2

Other modifications

Some other routines have been modified during the implementation of Langevin module.

• PaPIM.f90: main code ; add calls to Langevin module

• GlobType.f90: add declarations for Langevin

• ReadFiles.f90: read input files

Compiling

A Fortran 90/95 compiler with MPI wrapper is required for successful compilation of the code. Although the corre-
lation function subroutines are serial, the remaining code is parallelized so MPI wrappers have to be used. The code
must be compiled using the FFTW library. Quantum correlation subroutines within PIM_qtb modules are compiled
by executing the command make in the ./source directory. The same make command generates a PaPIM.exe
executable for testing of the correlation functions.

Testing

For PIM_qtb test purposes the numdiff package is used for automatic comparison purposes and should be made
available before running the tests, otherwise the diff command will be used automatically instead but the user is
warned that the test might fail due to numerical differences. The user is advised to download and install numdiff
from here. Tests and corresponding reference values are located in sub-directories ./tests/xxx, where xxx stands
for oh and lj systems. lj tests also requires a Python distribution. Before running the tests the code has to be
properly compiled by running the make command in the ./source sub-directory:

Tests can be executed automatically by running the command in the ./tests sub-directory : #. ./test+lgv.sh
for tests on OH bonds compared to previous classical implementation #. ./test_lj.sh for tests on a Ne:. All test
are executed on one processor core. Due to small numerical discrepancies between generated outputs and reference
values which can cause the tests to fail, the user is advised to manually examine the numerical differences between
generated output and the corresponding reference values in case the tests fail.

Source Code

The PIM_qtb module source code is located at: https://gitlab.e-cam2020.eu:10443/thomas.ple/PIM.git (Temporary
link).

Source Code Documentation

The documentation can also be compiled by executing the following commands in ./doc/QTB_doc directory with
“Sphinx” (documentation tool) python module installed:

sphinx-build -b html source build
make html

The source code documentation can be generated automatically in ./doc sub-directory, html and latex format, by
executing the following command in the ./doc directory:

doxygen PIMqcf_doxygen_settings

296 Chapter 3. Quantum Dynamics Modules

http://www.nongnu.org/numdiff/
https://gitlab.e-cam2020.eu:10443/thomas.ple/PIM.git

E-CAM Documentation, Release 0.2

References

PIM_qtb implements different methods based on Langevin dynamics. The trajectories generated can be exploited
directly or used to sample initial conditions for Linearized Semi-Classical Initial Value Representation (LSC-IVR)
calculations. The methods implemented are: classical Langevin dynamics, Quantum Thermal Bath (QTB) and two
variants of adaptive QTB (adQTB-r and adQTB-f).

ClassMC

Software Technical Information

Language Fortran 95/90

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Momir Mališ

• Purpose of Module

• Applications of the Module

• Compiling

• Testing

• Source Code

• Source Code Documentation

Purpose of Module

Module ClassMC samples the system phase space using the classical Boltzmann distribution function and calculates
the time correlation functions from the sampled initial conditions. The sampling is achieved by the Monte Carlo
Metropolis algorithm. The corresponding system properties can be calculated from the sampled phase space with
appropriate operators. The sampled phase space points can be propagated in time using classical molecular dynamics
in order to investigate the time evolution of the system and calculate the corresponding correlation functions. Currently
the electric dipole moment operator is implemented for the calculation of electric dipole moment autocorrelation
functions from which system IR spectra can be directly obtained. The system potential energy is calculated using
external subroutines provided by the user. Example external subroutines are provided for the OH and CH4 systems,
with potential energies are described by an harmonic potential, and the electric dipole moments by point charge
approximation. An external subroutines for calculation of CH+

5 system potential energy and electric dipole moment,
based on fitted values, is also given.

Applications of the Module

The main application of ClassMC code is classical sampling of the system’s phase space and computing classical
observables, which are necessary for comparison with the real experimental data or quantum simulations in order to
detect and explain the, sometimes hardly detectable, quantum effects which are responsible for exact system properties.
In this respect, the ClassMC module was extensively used in the study of the CH+

5 system classical distribution and its

3.5. List of available Modules 297

E-CAM Documentation, Release 0.2

classically obtained infrared spectrum in order to identify the quantum tunnelling effects responsible for the redshift
of C-H stretching bands and the overall shape of the infrared spectrum.

Compiling

Fortran compiler with a MPI wrapper together with lapack libraries have to be available to successfully compile
the code. The user is advised to examine the Makefile in the ./source` sub-directory prior to code compilation
in order to select an appropriate compiler and to check or adapt the compiler options to his local environment, or to
generally modify the compiler options to his requirements. Upon adapting the Makefile, the code compilation is
executed by command make in the ./source sub-directory:

cd source

make

An executable ClassMCRun.exe is created upon successful compilation.

Testing

For ClassMC test purposes the numdiff package is used for automatic comparison purposes and should be made
available before running the tests, otherwise the diff command will be used automatically instead but the user is
warned that the test might fail due to numerical differences. The user is advised to download and install numdiff
from here. Tests and corresponding reference values are located in sub-directories ./tests/xxx/CLASSICAL,
where xxx stands for oh, ch4, and ch5 systems. Before running the tests the module ClassMC has to be properly
compiled by running the make command in the ./source sub-directory. Tests can be executed automatically by
running the command ./test.sh in the ./tests sub-directory for all three systems, or separately for each system
by running the command ./test.sh within the corresponding system CLASSICAL sub-directory:

cd tests

./test.sh [number of cores]

Tests are by default executed on two processor cores. This can be changed by setting the value of required cores as an
integer number after the command ./test.sh (example ./test.sh 20, for the use of 20 processor cores in the
test). The number of processor cores should not exceed 50. Due to small numerical discrepancies between generated
outputs and reference values which can cause the tests to fail, the user is advised to manually examine the numerical
differences between generated output and the corresponding reference values in case the tests fail.

Source Code

The ClassMC module source code is located at: https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/ClassMC.

Source Code Documentation

The source code documentation is given at https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/ClassMC/doc.
The documentation files (html and latex format) are obtained by executing the make command in the ./doc directory:

cd ./doc

make

298 Chapter 3. Quantum Dynamics Modules

http://www.nongnu.org/numdiff/
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/ClassMC
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/ClassMC/doc

E-CAM Documentation, Release 0.2

ClassMC samples, via Metropolis Monte Carlo algorithm, the system’s classical Boltzmann distribution function and
calculates the classical time-dependent correlation functions from the sampled phase space. Results obtained from
classical sampling can be used to assess the relevance of quantum effects for a given system.

PotMod

Software Technical Information

Language Fortran 95/90

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Momir Mališ

• Purpose of Module

• Applications of the Module

• Compiling

• Testing

• Source Code

• Source Code Documentation

• References

Purpose of Module

Module PotMod is a library of potential energy subroutines and interfaces to external potential energy calculation
codes. It provides potential energies and corresponding gradients for included potentials or calls an external code to
compute the required quantities. Currently, two subroutines are implemented within this module. A subroutine for the
calculation of harmonic and Morse potential energies which requires a set of input parameters provided as an external
file, and a subroutine containing the analytic ground state electronic energy for the CH+

5 system. [Jin]

Applications of the Module

This module is extensively used by the PaPIM code and PIM_wd and ClassMC modules for providing the necessary
potentials and gradients of studied systems.

Compiling

The code should be compiled in the ./source sub-directory using a Fortran compiler. A Makefile is present for
an automatic compilation. Execute command ‘make’ in the ./source sub-directory to generate the PotModRun.
exe executable:

3.5. List of available Modules 299

E-CAM Documentation, Release 0.2

cd source

make

Testing

For PotMod test purposes the numdiff package is used for automatic comparison purposes and should be made
available before running the tests, otherwise the diff command will be used automatically instead but the user is
warned that the test might fail due to numerical differences. The user is advised to download and install numdiff
from here. The module is accompanied by a corresponding Fortran 90 test subroutine and a reference output. The
reference output is located in sub-directory ./tests/REFERENCE_VALUE. The test can be executed automatically
by running the script ./test.sh:

cd tests

./test.sh

or manually by executing the compiled PotModRun.exe code within the sub-directory ./tests (exam-
ple ../source/PotModRun.exe > out) and comparing the output with the reference values in file
REFERENCE_VALUE/tested_potentials.

Source Code

The source code is given at https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/PotMod. File
harmonic_potential.f90 contains the subroutines for harmonic and Morse potential energy calculations,
while file ch5_pes.f90 contains the subroutines for calculation of CH5

+ potential energy. File PotMod.f90
controls and calls the included subroutines (harmonic_potential.f90 and ch5_pes.f90). The remaining
subroutines (GlobType.f90, kinds.f90, ReadFiles.f90, PotModRun.f90) are subroutines for test
purposes, where GlobType.f90 contains the definition of derived types used by PotMod module.

Source Code Documentation

The source code documentation is given at https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/PotMod/doc/.
The documentation files (html and latex format) are obtained by executing the make command in the ./doc sub-
directory:

cd doc

make

References

PotMod is a library of potential energy functions and interfaces for external potential energy calculation codes. Cur-
rently available in the library are the harmonic and Morse potentials (different molecular systems can be simulated
depending on parameters provided by the user); empirical potential of the ground state of CH+

5 based on high level
electronic structure calculations [ZJin]; and the call to the ab initio CP2K code using the PaPIM-CP2K_Interface
module.

300 Chapter 3. Quantum Dynamics Modules

http://www.nongnu.org/numdiff/
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/PotMod
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/PotMod/doc/
https://www.cp2k.org/

E-CAM Documentation, Release 0.2

PaPIM-CP2K_Interface

Software Technical Information

Language Fortran 90/95

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Momir Mališ, Ari P. Seitsonen

• Purpose of Module

• Applications of the Module

• Compiling

• Testing

• Source Code

• Parallelization scheme

• Source Code Documentation

Purpose of Module

Module PaPIM-CP2K_Interface couples the PaPIM code with the CP2K program package, where the latter is used
for calculation of system electronic structure properties. It directly links CP2K as a library for potential energy
calculations to the PaPIM code and avoids the significantly slower exchange of information between the two codes
by reading and writing to an external file. The CP2K program package provides a general framework for different
modeling methods such as DFT using the mixed Gaussian and plane waves approaches, semi-empirical methods and
classical force fields. This enables virtually any calculation of time-dependent correlation functions for any system,
without depending on the availability of analytical potentials for the studied system, as was the previous case in PaPIM
code. Using the MPI split communicator approach the CP2K subroutines can be executed on multiple cores for each
sampling trajectory, enabling a parallel calculation of system potential energy and gradient values.

Applications of the Module

The inclusion of CP2K for computation of system’s electronic structure properties enables calculation of time-
dependent correlation functions to a vast range of systems, while CP2K can perform atomistic simulations of solid
state, liquid, molecular, periodic, material, crystal, and biological systems. The PaPIM code has also been upgraded
with periodic boundary conditions to enable simulations of solid and liquid state systems. For any system whose prop-
erties can be determined with the CP2K code, a corresponding time-dependent correlation function can be computed
now with the PaPIM code.

Compiling

In order to compile this module the CP2K program package has to be properly set-up and the CP2K has to be compiled
as a library as well. In the latter case, the CP2K root directory contains a sub-directory lib which contains the corre-
sponding library files. In the absence of the latter, CP2K cannot be linked to PaPIM code. For information on installing

3.5. List of available Modules 301

https://www.cp2k.org/about

E-CAM Documentation, Release 0.2

the CP2K code and compiling it as a library the user is advised to examine the CP2K installation documentation at
this link.

Fortran compiler with a MPI wrapper together with lapack libraries have to be available to successfully compile the
code. The user is advised to examine the Makefile in the ./source sub-directory prior to code compilation in
order to select an appropriate compiler and to check or adapt the compiler’s options to his local environment, or to
generally modify the compiler options to his requirements. Special care should be made on the CP2K paths to the
corresponding library files on certain systems. The Makefile contains two example cases encountered on cluster
systems (which use Intel compilers) but any other variation is possible.

The compilation flag --D__USE_CP2K controls the inclusion of CP2K into the PaPIM code. In the default compila-
tion settings the flag is commented out. To include CP2K into compilation the user is required to enable the flag in the
Makefile. If the flag is omitted the PaPIM code will be compiled without CP2K and without the split communicator
parallelization scheme. The latter is not used with any current analytic potential subroutine so it is omitted (for more
details on the potential subroutine see here). We advise to compile the PaPIM code first successfully (by verifying the
compilation by executing and checking the standard tests) before recompiling and linking it to CP2K.

Upon adapting the Makefile, the code compilation is executed by command make in the ./source sub-directory.
The executable PaPIM.exe is created at the same location upon successful compilation.

For module’s testing purposes the user is advised to have numdiff package installed before running the tests. More
details on the numdiff program package and its installation are available here.

The PaPIM documentation is generated by executing the make command in the ./doc sub-directory.

Testing

Testing comprises of a set of tests for the analytic potentials and a set of tests for the CP2K interface to PaPIM code.
Tests and all corresponding reference files are located in sub-directory ./tests. All tests have to be performed in
this sub-directory. Details of the structure of the test files/sub-directories are explained in the PaPIM code testing
section. CP2K tests and reference files are located in the sub-directory cp2k.

Tests are performed automatically in the ./tests sub-directory by executing the command:

./test.sh -c -n [number of cores]

The optional flag -c includes running of the CP2K tests and should only be used if PaPIM code was compiled with
CP2K. If omitted only the tests using the analytic potential will be performed. Flag -x omits the analytic potential
tests and executes only the CP2K tests.

Flag -n [number of cores] controls the number of processor cores used in the tests. Omitting this flag the
tests will be performed on two processor cores (default value). Because the number of trajectories for sampling in
certain tests are limited to 20, the number of processor cores should not exceed 20. In all cases the CP2K potential
is calculated on one processor core for each trajectory. In order to change that, a different group_size variable
should be specified manually in the corresponding CONTROL files located in sub-directory of each test case. Note that
the total number of processor cores used in the tests should be divisible by the group_size value (see details in
Parallelization and Benchmarking section).

For comparison of generated output values with reference data the test script uses numdiff command in order to
compensate for small numerical differences. By default the script looks first for the numdiff command on the
system, and in case it fails to locate it, the standard diff command will be used instead. However, the user is warned
that due to small numerical differences between generated output and corresponding reference values the automated
tests are most likely to fail. A local numdiff package copy can be included in the test by specifying its absolute path.
For this and other options of the test script list them with the command ./test.sh -h.

302 Chapter 3. Quantum Dynamics Modules

https://www.cp2k.org/howto:compile
http://www.nongnu.org/numdiff/

E-CAM Documentation, Release 0.2

Source Code

The full PaPIM code with the interface subroutine to the CP2K is located at: https://gitlab.e-cam2020.eu:10443/
Quantum-Dynamics/PIM/tree/master/source.

Git is recommended for downloading the full copy of the code.

The main interface subroutines for linking PaPIM to CP2K are located in the Fortran module file cp2k_module.
f90. Corresponding commands used throughout the code can be located by searching for the __USE_CP2K keyword.

Parallelization scheme

Parallelization of linked PaPIM and CP2K codes is achieved with a MPI split communicator approach. A separate
communicator is given for the PaPIM code and for the CP2K part. The latter is split into groups, each of a number
of processor cores given by the group_size value. Therefore, the number of trajectories which can be sampled
simultaneously is given by the quotient of the total number of used processor cores with the value of the group_size.
For the same reason the total number of cores must be divisible by the group_size value. The figure below explains
in a simplified graphical manner the parallelization used in the PaPIM code linked to CP2K.

Fig. 3.5: Graphical representation of the MPI split communicator scheme used in parallelization of PaPIM-
CP2K_interface module. An example with CP2K group_size of 4 is displayed.

Source Code Documentation

The source code documentation is located in the ./doc sub-directory. The documentation files (html and latex format)
are generated by executing the make command in the ./doc sub-directory.

PaPIM-CP2K_Interface module links the PaPIM code with the CP2K program package as an internal library for
calculation of system’s electronic structure properties.

AuxMod

3.5. List of available Modules 303

https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/master/source
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/master/source
https://www.cp2k.org/

E-CAM Documentation, Release 0.2

Software Technical Information

Language Fortran 95/90

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Ari P. Seitsonen, Momir Mališ

• Purpose of Module

• Applications of the Module

• Compiling

• Testing

• Source Code

• Source Code Documentation

Purpose of Module

Module AuxMod contains a set of subroutines which can be used for an easier construction of any program input
file reader, and a library of common MPI commands adapted for easier implementation when programming a Fortran
MPI parallel code. The module consists of an input parser designed to read any formatted file with the possibility to
find a specific set of user pre-defined keywords and examine whether the read in variable types are consistent with
the code requirements. The library of parallel subroutines contains a number of MPI commands for communicating
information between all or a pair of processor cores, and are adapted for easier user implementation into his/her own
code. The provided subroutines/libraries can also be considered as a Fortran template which the user can adapt or
update depending on his/her specific requirements.

Applications of the Module

The AuxMod module was used to construct the input parser for the PaPIM code, while its modified MPI commands
enable to parallelize the PaPIM code and the ClassMC module. Based on these example, the AuxMod provides a
pre-constructed input reader and adapted MPI library for any future Fortran code development.

Compiling

The code should be compiled in the ./source sub-directory using a Fortran compiler with a MPI wrapper. A Makefile
is present for an automatic compilation. Execute command make in the ./source sub-directory to generate the
AuxModRun.exe executable:

cd source

make

304 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

Testing

For AuxMod test purposes the numdiff package is used for automatic comparison purposes and should be made
available before running the tests, otherwise the diff command will be used automatically instead but the user is
warned that the test might fail due to numerical differences. The user is advised to download and install numdiff
from here. The module is accompanied with an example input file TESTINPUT located in the tests sub-directory
together with the reference output in sub-directory REFERENCE_OUTPUT:

cd tests

../source/AuxModRun.exe < TESTINPUT

The user is also advised to test the code manually by changing the values in the TESTINPUT input file.

Source Code

The source code is given at https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/AuxMod. The file parser.
F90 contains all the subroutines for the within-one-line data type recognition, while the auxmod.F90 contains the
direct subroutines for input file reading, and can be considered as a template for further modification. The prl.F90
contains the adapted MPI commands.

Source Code Documentation

The source code documentation is given at https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/
AuxMod/doc. The documentation files (html and latex format) are obtained by executing the make command in
the ./doc sub-directory:

cd doc

make

AuxMod is a library of subroutines which enables any user to easily construct its own Fortran input parser. It also
contains a library of adapted MPI subroutines for easier programming of Fortran MPI parallel codes.

Openmpbeads

Software Technical Information

Language Fortran 90/95

Licence MIT license (MIT)

Documentation Tool Doxygen

Software Module Developed by Przemyslaw Juda, Momir Mališ

• Purpose of Module

• Compiling

• Testing

3.5. List of available Modules 305

http://www.nongnu.org/numdiff/
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/AuxMod
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/AuxMod/doc
https://gitlab.e-cam2020.eu:10443/Quantum-Dynamics/PIM/tree/AuxMod/doc

E-CAM Documentation, Release 0.2

• Source Code

• Source Code Documentation

Purpose of Module

Sampling of quantum properties is performed via the so-called classical isomorphism of path integral. In this scheme ,
a quantum degree of freedom is mapped into a classical polymer with a certain number of beads. This number of beads
increases with the relevance of quantum effects and can become very large. Because in the sampling procedure, gener-
ally, for each polymer bead a potential energy evaluation is required within a single sampling step, polymer sampling
subroutines become a bottleneck. Openmpbeads is a patch to the PaPIM code which increases the code’s perfor-
mance by parallelizing the polymer chain sampling subroutines. The module introduces the OpenMP parallelization
loops for the polymer sampling subroutines. In this way, a considerable increase of performance can be achieved.

Compiling

The PaPIM program source code (for PaPIM download see here) and Git should be available. The downloaded
Openmpbeads patch should be placed in the PaPIM main directory, and applied to the PaPIM source code by executing
the following command:

git apply openmpbeads.patch

After the patch has been successfully applied, the OpenMP parallelized PaPIM code can be re-compiled as described
in the PaPIM documentation.

Testing

The successful Openmpbeads patch application and compilation should be verified by executing the codes standard
tests. The code’s tests are located in the directory ./tests. The same set of tests as for the verification of the PaPIM
code is executed, but now with the addition of utilizing OpenMP parallelization. Thus a number of processor cores
available for the test should be at least two. For details of the PaPIM code standard tests see here. Before running
the tests the code has to be properly compiled by running the make command in the ./source sub-directory (see
compilation of PaPIM code here). The numdiff package is used for automatic comparison purposes and should
be made available before running the tests, otherwise the diff command will be used automatically instead but the
user is warned that the test might fail due to small numerical differences. The tests are performed automatically by
executing the following command in the ./tests sub-directory:

cd tests

./test.sh -m [number of MPI cores] -o [number of OpenMP cores]

The [number of MPI cores] should not exceed 20, and the [number of OpenMP cores] should not
exceed 5. The product of [number of MPI cores] and [number of OpenMP cores] should not exceed
to the total number of available cores on the system and should also not exceed number 100. Due to small numerical
discrepancies between generated outputs and reference values which can cause the tests to fail, the user is advised to
manually examine the numerical differences between generated output and the corresponding reference values in case
the tests fail.

306 Chapter 3. Quantum Dynamics Modules

https://git-scm.com/

E-CAM Documentation, Release 0.2

Source Code

The Openmpbeads module patch is located at: https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/
openmpbeads.

Source Code Documentation

The Openmpbeads patch also adds additional description to the PaPIM code’s documentation. Details how to access
and generate PaPIM documentation are given here.

Openmpbeads is a patch to the PaPIM code which enables parallelization of the sampling of the polymer chains
within the PIM algorithm, improving efficiency in sampling of the Wigner density.

PerGauss is an implementation of periodic boundary conditions for gaussian basis functions to be used within the
quantics program package.

3.5.9 Quantics

Quantics is suite of programs for molecular quantum dynamics simulations. The package is able to set up and prop-
agate a wavepacket using the MCTDH method [Beck]. Numerically exact propagation is also possible for small
systems using a variety of standard integration schemes [Lefo], as is the solution of the time-independent Schrödinger
equation using Lanczos diagonalisation. The program can also be used to generate a ground state wavefunction us-
ing energy relaxation (i.e. propagation in imaginary time) and with the “improved relaxation” it is even possible
to generate (low lying) excited states. Within the Quantics package there are also programs to propagate density
operators (by solving the Liouville-von Neumann equation for open or closed system) [Mey], a program for fitting
complicated multi-dimensional potential energy function, programs for determining bound or resonance energies by
filter-diagonalisation, parameters of a vibronic coupling Hamiltonian, and many more. Recent developments include
the use of Gaussian wavepacket based methods (G-MCTDH) and interfaces to quantum chemistry programs such as
Gaussian and Molpro allow direct dynamics calculations using the vMCG method [Ric]. The following modules are
extension of Quantics functionalities developed at E-CAM Extended Software Development Workshops.

Second-Order Differencing Scheme (SOD)

Software Technical Information

Language Fortran 90

Licence None

Documentation Tool Documentation provided as in-line comments within the source code

Application Documentation Useful documentation can be found here

Relevant Training Material Training material is available through the test examples

Software Module Developed by Graham Worth, Kaite Spinlove, Marcus Taylor

• Purpose of Module

• Background Information

• Testing

3.5. List of available Modules 307

https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/openmpbeads
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/openmpbeads
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html

E-CAM Documentation, Release 0.2

• Source Code

• References

Purpose of Module

This module provides exact wavefunction propagation using the second-order differencing (SOD) integrator scheme
to solve the time-dependent Schrödinger equation as described by Leforestier et al. [Lef] Within this scheme the time
interval is determined through dividing ~ by the eigenvalue of the Hamiltonian operator with the largest absolute value.

Background Information

Currently the SOD integration scheme resides within the Quantics software package available through CCPForge.

Testing

A test example (test90.inp) is provided for the SOD integration scheme and can be found in the directory ~/
quantics/elk_inputs. This test works for Quantics Revision 787. The Quantics README file will help you
to install the Quantics code. The test can be done through the following command

$ quantics test90.inp

A more detailed test documentation for Quantics code developers can be found in this link

Source Code

The source code for the second-order differencing propagator can be found within the Quantics software which can be
downloaded via gitlab. You firstly need to make an account (at gitlab). The Quantics project has a private repository
so you also need to be a member of the project to clone it into your computer, then type:

git clone https://gitlab.com/quantics/quantics.git

Within the Quantics program, explicit code for the SOD routine is located in file ~/quantics/source/lib/
ode/sodlib.f90.

References

The SodLib module provides exact wavefunction propagation using the second-order differencing (SOD) integrator
scheme to solve the time-dependent Schrödinger equation. This routine has been implemented and tested as an added
functionality within the Quantics quantum dynamics package.

The Chebyshev Scheme (CH)

Software Technical Information

Language Fortran 90

Licence None

308 Chapter 3. Quantum Dynamics Modules

http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
https://ccpforge.cse.rl.ac.uk/gf/project/quantics/
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/quantics/elk.html
https://gitlab.com/quantics/quantics.git
https://gitlab.com/quantics/quantics.git
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html

E-CAM Documentation, Release 0.2

Documentation Tool Documentation provided as in-line comments within the source code

Application Documentation Useful documentation can be found here

Relevant Training Material Training material is available through the test examples

Software Module Developed by Graham Worth, Ceridwen Ash

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

Purpose of Module

This module implements the Chebyshev integration scheme for exact wavefunction propagation on the grid. This rou-
tine has been implemented and tested within the Quantics quantum dynamics package which is available on CCPForge.
The purpose of the module is to be used in quantum dynamical propagation problems as described by Leforestier et
al. [1Lef]

Background Information

Currently, the Chebyshev integration scheme resides within the Quantics software package available through CCP-
Forge.

The module consists of a main routine, chebstep, which uses a separate routine bessjn to generate the real
Bessel coefficients of integer order. Both are referenced and documented within the cheblib routine, and for further
information on the Chebyshev integration scheme see Tal-Ezer et al. [1Tal]

Testing

A test example (test89.inp) is provided for the Chebyshev integration scheme and can be found in the directory
~/quantics/elk_inputs. This test works for Quantics Revision 787. The Quantics README file will help
you to install the Quantics code. The test can be done through the following command

$ quantics test89.inp

A more detailed test documentation for Quantics code developers can be found in this link

Source Code

The source code for the Chebyshev propagator can be found within the Quantics software which can be downloaded
via gitlab. You firstly need to make an account (at gitlab). The Quantics project has a private repository so you also
need to be a member of the project to clone it into your computer, then type:

git clone https://gitlab.com/quantics/quantics.git

3.5. List of available Modules 309

http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
https://ccpforge.cse.rl.ac.uk/gf/project/quantics/
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
https://ccpforge.cse.rl.ac.uk/gf/project/quantics/
https://ccpforge.cse.rl.ac.uk/gf/project/quantics/
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/quantics/elk.html
https://gitlab.com/quantics/quantics.git
https://gitlab.com/quantics/quantics.git

E-CAM Documentation, Release 0.2

Within the Quantics program, explicit code for the Chebyshev routine is located in the file ~/quantics/source/
lib/ode/cheblib.f90.

References

The ChebLib module implements the Chebyshev integration scheme for exact wavefunction propagation on the grid.
This routine has been implemented and tested as an added functionality within the Quantics quantum dynamics pack-
age.

Software Technical Information

Name Quantics

Language Fortran90

Licence GNU General Lesser Public License

Documentation Tool Documentation provided as in-line comments within the source code and in the Quantics
online documentation

Application Documentation Useful documentation can be found here

Relevant Training Material Useful training can be found here

Software Developed by Johannes Ehrmaier, Graham Worth

QQ-Interface (Quantics-QChem-Interface)

• Purpose of Module

• Applications

• Building and Testing

• Source Code

Purpose of Module

The Quantics-Qchem-Interface module connects the full quantum nonadiabatic wavefunction propagation code Quan-
tics to the time-dependent density functional (TDDFT) module of the electronic structure program QChem. QChem
provides analytic gradients, hessians and derivative couplings at TDDFT level. With this module it is possible to use
the QChem TDDFT module for excited state direct dynamics calculations. Quantics will prepare the input file from
a template, start QChem calculations whenever needed and will read the output of QChem. The QChem results are
stored in the Quantics database and can be used in dynamics simulations. Due to the modular design of Quantics the
TDDFT module of QChem can be used for all dynamics simulations, e.g. dd-vMCG (direct-dynamics with variational
multi-configurational gaussians) or surface hopping simulations.

Applications

The module will be used to examine the nonadiabatic excited state dynamics of small to medium sized molecules. The
TDDFT module of QChem allows to treat systems that are too large for efficient CASSCF calculations. Until today

310 Chapter 3. Quantum Dynamics Modules

http://chemb125.chem.ucl.ac.uk/worthgrp/quantics
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/

E-CAM Documentation, Release 0.2

photoinduced dynamics simulations of such molecules were only possible using trajectory based algorithms. With
Quantics a full quantum-mechanical description of the nuclear motion is possible.

Building and Testing

To use the module, get the latest version of Quantics from the repository and build it as usual. Moreover you have to
have a running version of QChem installed on your system. An example calculation, simulating the photodissociation
of water using 4 coupled states is added to the Quantics repository, the documentation of the example can be found
at this link After you have copied the ‘water.inp’ and the ‘run_qchem’ files to your directory, you have specified the
template for the electronic structure calculations and you performed the preparatory calculations, you can start the
simulation with:

quantics -mnd water.inp

In the specific example, Quantics will search for a script called ‘run_qchem’ (specified in the input file) to start a
QChem calculation. The file ‘run_qchem’ script is of course dependent on your system configuration and has to be
adapted. For more information how to run the test simulation please refer to the Quantics documentation.

As vMCG dynamics is very sensitive to numerical issues it is possible, depending on your compiler and machine,
that your results differ slightly from the provided reference values (in the order of a few percent), but the qualitative
behavior of the results should be preserved.

Source Code

The source code for the QQ-Interface can be found within the Quantics software which can be downloaded via gitlab.
You firstly need to make an account (at gitlab). The Quantics project has a private repository so you also need to be a
member of the project to clone it into your computer, then type:

git clone https://gitlab.com/quantics/quantics.git

Within the Quantics program, explicit code for the QQ-Interface routine is located in the file ~/quan-
tics/source/opfuncs/funcqchemmod.f90. Most changes can be found in the subroutines ‘ddqchem’ and ‘wrqchem’.

The Quantics-QChem-Interface is an interface between Quantics and QChem. The DFT algorithm implemented in
QChem can be used to provide electronic structure information for direct dynamics simulations using the Quantics
program package.

Zagreb surface hopping code

Software Technical Information

Language Fortran 2003

Licence GNU General Lesser Public License

Documentation Tool Documentation provided as in-line comments within the source code

Application Documentation Useful documentation can be found here

Relevant Training Material Training material is available through the test examples

Software Module Developed by Surface hopping code: Nadja Doslic, Marin Sapunar and Momir Malis. Module:
Graham Worth, Cristina Sanz-Sanz.

3.5. List of available Modules 311

http://www.q-chem.com
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/howtos/run_dd.html
https://gitlab.com/quantics/quantics.git
https://gitlab.com/quantics/quantics.git
http://www.q-chem.com/
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Application

• Testing

• Source Code

Purpose of Module

This module implements an interface between the Tully’s fewest switch surface hopping code, written and maintained
by the group of Nadja Doslic in Zagreb, and Quantics code. The module has been added and tested within the
Quantics quantum dynamics package which is available on Gitlab. The purpose of the module is to add the solution of
Hamilton classical equation using the surface hopping approach into Quantics code, at the same time as Zagreb code
benefits from all functionalities implemented in Quantics as input definitions, Hamiltonian operator description, direct
dynamics calculations and parallel running.

Background Information

Currently, the Zagreb surface hopping quasiclassical trajectory code resides within the Quantics software package
available through gitlab.

The module consists of an interface between Quantics package and Zagreb surface hopping code. The module is
fully integrated into Quantics code so that initial conditions, wavefunction definition, analysis programs, direct dy-
namics etc. . . can be used in the usual way described in Quantics documentation. The interface creates the required
input files to run separate trajectories using the Zagreb surface hopping code. Although the module is implemented
and run under Quantics, the Zagreb code requires some directives that must be given in the input file under the
SH_ZAGREB_SECTION. This directives are described in the Zagreb code input manual which can be found in a
separate pdf file in the Quantics documentation under the Zagreb surface hopping program.

Application

The Tully’s surface hopping technique has been widely used in molecular dynamics simulations to incorporate the
non-adiabatic effects. The module can be apply to all classical propagations in multistate systems, specially in those
systems where the dynamics cannot be explained using only one electronic state.

Testing

A test example is provided for the excitation of an initial wavepacket into an excited state that is coupled with another
excited state. The relevant input file is ‘ferrety_tsh.inp’ (which can be found in the ‘inputs’ subdirectory of the
sources) and corresponding operator file is ‘ferreti.op’ (found in the ‘operators’ subdirectory). The test example is
a simple analytical model provided by Ferreti et al. (JCP, 104,5517 (1996), https://doi.org/10.1063/1.471791). The
documentation under the Zagreb surface hopping code will help you to install the Zagreb code. The test can be done
through the following command:

$ quantics -mnd ferretti_tsh

312 Chapter 3. Quantum Dynamics Modules

https://gitlab.com/quantics/quantics.git
https://doi.org/10.1063/1.471791

E-CAM Documentation, Release 0.2

A more detailed test documentation file ‘sh_zagreb.html’ can be found in the subdirectory ‘sh_zagreb’ of the docu-
mentation subdirectory ‘doc’ of the sources. The html file has been provided by the Zagreb code developers.

An output directory is provided for testing and comparison (it is available to download as a tarball, output.tgz).
The output directory includes the output file (Quantics common output file) and the zagreb_trj directory. This directory
only includes the first trajectory directory (traj.1 directory) of a run of a total of 5 trajectories, for space saving reasons.

The run of this test would produce a directory called ‘ferretti_tsh’ in which there are the typical output files produced
by Quantics program run, plus a directory ‘zagreb_trj’ in which all the individual trajectories appear (traj.1, traj.2,
etc. . .) as independent directories. Inside any of the trajectory directory, there are the output files of the classical
trajectories run for this test. In order to compare that the run of the test has gone well the file ‘dynamics.out’ inside the
‘traj.1’ directory should be compared. After the propagation of the total number of trajectories the output file inside
the ‘ferretti_tsh’ directory is written and this output file should be as well compared. Please notice that, due to the
random number generation, required by the algorithms of classical trajectories, some numerical deviation should be
expected in both output files.

Source Code

The source code for the Zagreb surface hopping code can be found within the Quantics software which can be down-
loaded via gitlab. You firstly need to make an account (at gitlab). The Quantics project has a private repository so you
also need to be a member of the project to clone it into your computer, then type:

git clone https://gitlab.com/quantics/quantics.git

Within the Quantics program, explicit code for the Zagreb surface hopping code is located in the subdirectory
‘sh_zagreb’ into the subdirectory ‘source’ of the sources.

The Zagreb_sh module is an interface between between Quantics package and the Tully’s surface hoping code pro-
vided by the group of Nadja Doslic in Zagreb.

Quantics OpenMP Improvements Module

Software Technical Information

Language Fortran 90

Licence Academic License

Documentation Tool Documentation provided as in-line comments within the source code

Application Documentation Useful documentation can be found on the Quantics documentation website.

Relevant Training Material Training material is available through the tests and examples

• Purpose of Module

• Background Information

• Install

• Testing

• Source Code

3.5. List of available Modules 313

https://gitlab.com/quantics/quantics.git
https://gitlab.com/quantics/quantics.git
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html

E-CAM Documentation, Release 0.2

Purpose of Module

This module is related to code developed for 2 SVN revisions targeting OpenMP improvement: v855 and v878 of
Quantics (which is available in the E-CAM branch of Quantics).

31 source files are changed in v855 compared to v854, such as openmpmod.f90, quantics.F90, mmomplib.
f90 and so on. In v878, OpenMP in database reading/interpolation (dd_db.f90) improved. To highlight the relevant
sourcecode changes we include them here as patch files: patch v855 and patch v878.

Background Information

Currently the code developed related to this module within the Quantics software package is available through the
CCPForge Qunatics page with the relevant specific changes highlighted above.

Install

1. Under the install folder, once the fortran compile is available, do ./install_quantics.

2. Once the quantics serial version is correctly installed, in the same folder, do source QUANTICS_client.

3. Run compile -O quantics in order to install the OpenMP version of Quantics.

Testing

Several test example are provided for this module and can be found at inputs/. For example the p24+.inp.
This test works for Quantics’s ECAM branch Revision v974 . The Quantics README file will help you to install the
Quantics code. After creating a folder named p24+ and put p24+.inp in this folder then change its name to input.
The test can be done through the following command:

$ quantics.omp -omp np -w -I p24+.inp

Source Code

The source code for this module can be found within the Quantics software which can be downloaded via CCPForge.
You firstly need to make an account (at CCPForge). The quantics project has a private repository so you also need to
be a member of the project to checkout. then type into terminal:

$ svn checkout --username your-user-name https://ccpforge.cse.rl.ac.uk/svn/quantics/
→˓gmctdh/quantics/branches/ecam17

The Quantics_openmp module is an initial effort at OpenMP parallelisation improvements to Quantics.

Quantics Direct Dynamics MPI and OMP code

Software Technical Information

Language Fortran 2003

Licence GNU General Lesser Public License

314 Chapter 3. Quantum Dynamics Modules

https://ccpforge.cse.rl.ac.uk/svn/quantics/gmctdh/quantics/branches/ecam17
https://ccpforge.cse.rl.ac.uk/svn/quantics/gmctdh/quantics/branches/ecam17
https://ccpforge.cse.rl.ac.uk/gf/project/quantics/

E-CAM Documentation, Release 0.2

Documentation Tool Documentation provided as in-line comments within the source code

Application Documentation Useful documentation can be found here

Relevant Training Material Training material is available through the test examples

Software Module Developed by Quantics code: G. A. Worth, K. Giri, G. W. Richings, M. H. Beck, A. J ackle,
and H.-D. Meyer. Module: Thierry Tran and Graham Worth.

• Purpose of Module

• Background Information

• Application

• Testing

• Source Code

Purpose of Module

The module focuses on improving the parallel version of Direct Dynamics variational multi-configuration Gaussian
wavepacket (DD-vMCG) method. At every step of the Direct dynamics propagation, the energies, gradients and
hessians are evaluated at the center of each gaussian wavepacket by calling an external program. One of the challenge
of Direct Dynamics is the cost of computation for the evaluation of the potential energy surfaces. The electronic
structure calculations are performed for each gaussian wavepacket individually and thus, parallelizing the call to the
electronic structure method greatly decreased the time of computation between each nuclear step. There is already an
existing OpenMP parallelization of the code and the purpose of this module is to add an extra MPI layer to it to allow
affordable simulation of large system by spreading the calculations across multiple computation nodes. The module
has been added and tested within the Quantics quantum dynamics package which is available on Gitlab.

Background Information

The latest version of quantics package and the code developed related to this module within the Quantics software
package are merged and available through Quantics.gitlab.

Application

This module will be extensively used in the near future to study the photochemistry of large systems, whose size
limited the application of the previous version of the DD-vMCG code.

Testing

After Quantics code has been successfully installed. The Quantics README file will help you to install the Quantics
code. All the tests available for Direct Dynamics are suitable to test this module and can be found at inputs/. A
good example to test the MPI version of Quantics is butatriene . After you have copied the but_dd.inp file in
inputs/butatriene and the but_dddata directory, the test can be done through the following command:

$ mpirun quantics.mpi -mpi test.inp

The following command should be in case the code is compiled with both OMP and MPI:

3.5. List of available Modules 315

http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/
https://gitlab.com/quantics

E-CAM Documentation, Release 0.2

$ mpirun quantics.mix -mpi test.inp

Source Code

The source code for this module can be found within the Quantics software which can be downloaded via Quan-
tics.gitlab. You firstly need to make an account (gitlab). The quantics project has a private repository so you also need
to ask for access by emailing Graham Worth (g.a.worth@ucl.ac.uk). In order to clone it into your computer, then type:

$ git clone https://gitlab.com/quantics/quantics.git

The Quantics_DD_MPIOMP module is a further improvement on the parallel version of DD-vMCG in Quantics by
adding an extra layer of MPI parallelization to the existing OpenMP parallelization.

Software Technical Information

Name Quantics, SHARC

Language Fortran90, Python 2.7.

Licence None

Documentation Tool In-code comments

Application Documentation http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/quantics/input.html

Relevant Training Material Not currently available.

Software Module Developed by Moritz Heindl, Sandra Gomez-Rodriguez

SHARC-gym

Purpose of Module

This module aims at building a bridge between surface hopping (SH)1 and more accurate methods (summarized with
the term QUANTUM in the following) like multiconfigurational time dependent hartree (MCTDH)2 and variational
multiconfigurational gaussian (vMCG)3 by exploiting both types of methods to overcome the shortcomings of the
other in a hybrid approach called the SHARC-gym4.

In the computational simulation of molecular movements and reactions various degrees of simplification have been
introduced. From exact quantum dynamics available only to model a few degrees of freedom up to huge coarse-grained
simulations capable to model whole proteins different levels of sophistication are available. Exact quantum dynamics
and methods that will converge to the exact result are capable to shed insight into the most intricate of mechanisms
at the heart of processes like photosynthesis. Unfortunately, the use of these methods is hampered by the unfavorable
scaling of the simulation time with the size of the investigated system, limiting those approaches to a few dozen
degrees of freedom. During the last decades, surface hopping has risen to be one of the most popular approaches for
the simulation of events that involve more than a single electronic state and more than 10 atoms. This popularity is

1 J.C. Tully, R. K. Preston: Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2,J. Chem.
Phys,55, 562 (1971).

2 M.H. Beck,A. Jackle, G. A. Worth, H.-D. Meyer: The multiconfiguration time-dependent hartree (MCTDH) method: a highly efficient algo-
rithm for propagating wavepackets,Phys. Rep.,324, 1 (2000).

3 G.W. Richings, I. Polyak, K.E. Spinlove, G.A. Worth,I. Burghardt, B. La-sorne: Quantum dynamics simulations using Gaussian wavepackets:
the vMCG method,Int Rev Phys Chem,34, 269 (2015).

4 S.Gomez, M. Heindl, A. SzabadiandL. Gonzalez: From Surface Hopping to Quantum Dynamics and Back. Finding Essential Electronic and
Nuclear Degrees of Freedom and Optimal Surface Hopping Parameters,J. Phys. Chem. A,123, 8321 (2019).

316 Chapter 3. Quantum Dynamics Modules

https://gitlab.com/quantics
https://gitlab.com/quantics
mailto:g.a.worth@ucl.ac.uk
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/quantics/input.html

E-CAM Documentation, Release 0.2

due to the ease of implementation of an SH algorithm and the possibility to plug in properties calculated using any of
the most popular quantum chemistry packages. However, while the foundations of SH are easy to grasp, the ad hoc
nature of SH means that there is never any guarantee that the simulated dynamics for a given system resembles results
obtained via more elaborate methods that do not suffer from such crude approximations. Many of the shortcomings
of SH have been highlighted in the scientific literature and remedies to overcome those have been proposed. This
means that a whole range of various additional parameters and flavours of SH exist at present that are combined or
used exclusively at the will of the user, hoping that these corrections will result in a more accurate modelling of the
problem at hand.

The SHARC-gym allows the user to overcome this uncertainty by combining SH and QUANTUM methods in a hybrid
fashion. The method follows an iterative procedure which is briefly stated here (see also Ref4):

1. Hamiltonian loop: The aim of this loop is to select the most important degrees of freedom using SH so that
a stripped-down Hamiltonian can be used in QUANTUM dynamics. For this,a full-dimensional SH dynamics
is conducted which serves as a reference throughout this loop.From this full-D SH reference, the degrees of
freedom (molecular vibrations, movement or even electronic states) that drive the observed dynamics can be
determined. Using these essential degrees of freedom, a new model with reduced dimensionality is constructed
and a new SH simulation calculated. If this new simulation still contains the most important features of the
dynamics, even more degrees of freedom can be cut from the Hamiltonian and the SH dynamics is repeated.
Once too many modes have been stripped away and the results diverge from the full-D SH reference, this process
is stopped and the Hamiltonian that was used before this last dynamics is used in the subsequent Parameter loop.

2. Parameter loop: In this loop, the reduced Hamiltonian is used in a QUANTUM simulation which serves as a
QUANTUM reference throughout the loop. Now that a QUANTUM reference in this reduced Hamiltonian is
available, the plethora of parameters available in SH can be validated for this system. If the initially used set
of SH parameters was found to perform well, then the SHARC-gym is finished, resulting in a QUANTUM-
validated set of parameters for the full-D SH dynamics and a reduced Hamiltonian that captures the essential
dynamics of the much bigger system. If the best set of SH parameters diverges from the set that has been used
to determine the reduced Hamiltonian, this new set of parameters has to be used again in the Hamiltonian loop
and the process has to be repeated as a whole until the best agreement is found.

The hybrid approach of the SHARC-gym enables the use of more accurate QUANTUM methods on a subset of
degrees of freedom of larger systems that - as a whole - cannot be treated using a QUANTUM method. This selection
of important degrees of freedom is based solely on another dynamics result, eliminating the bias of selecting a set
of reactive coordinates beforehand. The SH dynamics benefit from a validation of the chosen parameters against the
QUANTUM reference. Furthermore, the SHARC-gym provides a huge amount of possible test systems to quantify
the shortcomings of different parameters of SH or even SH as a whole as the SHARC-gym may result in a QUANTUM
reference which disagree with all the different flavours of SH.The current implementation of the SHARC-gym uses
the SH code SHARC56 and the set of QUANTUM methods implemented in QUANTICS7.

Background Information

The SHARC-gym is currently available from a GitHub repository. It needs a working SHARC installation which is
available for free from https://sharc-md.org/. Future development will make the SHARC-gym available as a built-in
in SHARC and will feature improved functionalities to easily use the QUANTICS set of quantum dynamics methods
in combination with SHARC-gym.

5 S.Mai, P. Marquetand, L. Gonzalez: Nonadiabatic Dynamics: The SHARC Approach, WIREs Comput. Mol. Sci.,8, e1370 (2018)
6 S.Mai, M. Richter, M. Heindl, M. F. S. J. Menger, A. Atkins, M. Ruckenbauer, F. Plasser, L. M. Ibele, S. Kropf, M. Oppel, P. Marquetand, L.

Gonzalez:SHARC2.1: Surface Hopping Including Arbitrary Couplings — Program Package for Non-Adiabatic Dynamics, (2019)
7 G.A. Worth, K. Giri, G. W. Richings, M. H. Beck, A. J ackle, H.-D. Meyer:QUANTICS, a suite of programs for molecular QUANTum

dynamICS simulations, Version1.1 (2015)

3.5. List of available Modules 317

https://sharc-md.org/

E-CAM Documentation, Release 0.2

Building and Testing

The SHARC-gym consists of a set of Python scripts written in Python 2.7. To build a working SHARC installation
follow the corresponding installation guide (SHARC installation).

A test example for the SHARC-gym is available on the SHARC-gym GitHub page. Entering the testcase directory,
follow the instructions written in instructions.txt.

Source Code

The source code can be found in the SHARC-gym repository on GitHub.

The SHARC-gym module uses the surface hopping code SHARC and enables the use of a more accurate set of
quantum methods implemented in QUANTICS.

3.5.10 CLstunfti

CLstunfti is an extendable Python toolbox to compute scattering of electrons with a given kinetic energy in liquids
and amorphous solids. It uses a continuum trajectory model with differential ionization and scattering cross sections
as input to simulate the motion of the electrons through the medium.

Software Technical Information

Name CLstunfti

Language Python, Fortran

Licence GNU General Public License v3

Documentation Tool ReST, Sphinx

Application Documentation https://gitlab.com/axelschild/CLstunfti

Relevant Training Material https://gitlab.com/axelschild/CLstunfti/tree/master/examples

Software Module Developed by Axel Schild

CLstunfti

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

Purpose of Module

CLstunfti is an extendable Python toolbox to compute scattering of electrons with a given kinetic energy in liquids
and amorphous solids. It uses a continuum trajectory model with differential ionization and scattering cross sections
as input to simulate the motion of the electrons through the medium.

318 Chapter 3. Quantum Dynamics Modules

https://sharc-md.org/?page_id=50#tth_chAp2
https://github.com/moritzH7/SHARC-gym
https://gitlab.com/axelschild/CLstunfti
https://gitlab.com/axelschild/CLstunfti
https://gitlab.com/axelschild/CLstunfti/tree/master/examples

E-CAM Documentation, Release 0.2

Originally, CLstunfti was developed to simulate two experiments: A measurement of the effective attenuation length
(EAL) of photoelectrons in liquid water1 and a measurement of the photoelectron angular distribution (PAD) of pho-
toelectrons in liquid water2. These simulations were performed to determine the elastic mean free path (EMFP) and
the inelastic mean free path (IMFP) of liquid water3. Additionally, a program based on CLstunfti is currently being
developed which simulates electron scattering in liquids in the presence of laser fields. This extension of CLstunfti is
used for simulation of attosecond experiments in liquid water.

The EMFP and IMFP are two central theoretical parameters of every simulation of electron scattering in liquids, but
they are not directly accessible experimentally. As CLstunfti can be used to determine the EMFP and IMFP from
experimental data, and as it can be easily extended to simulate other problems of particle scattering in liquids, it was
decided to make the source code publicly available. For thus purpose, within the E-CAM module a documentation for
the code was written and examples were designed to test the code and learn how to use CLstunfti.

Background Information

Within this E-CAM module, the necessary steps were taken to make CLstunfti a useful toolbox for other researchers
by providing a documentation, examples, and also extensive inline documentation of the source code. CLstunfti is
available at https://gitlab.com/axelschild/CLstunfti and is published together with the E-CAM module.

Building and Testing

To use CLstunfti, the following steps are necessary:

• A few Python packages are needed. Specifically, you need:

– h5py==2.10.0

– matplotlib==3.2.2

– scipy==1.5.0

– numexpr==2.7.1

– numpy==1.19.0

• Move the main folder CLstunfti in a folder named e.g. My_Python_Modules. Then, either run

python setup.py build_ext --inplace

in the main folder or change to the CLstunfti subfolder and run

f2py -c --opt='-O3 -ffast-math' ftools.f95 -m ftools

to compile the Fortran code as a module. To make Python know where CLstunfti is, run

export PYTHONPATH=$PYTHONPATH:$HOME/My_Python_Modules/CLstunfti

in your shell or add the line to the end of your .bashrc (or .zshrc or .cshrc) file.

• Build the documentation by running
1 Suzuki, Nishizawa, Kurahashi, Suzuki, Effective attenuation length of an electron in liquid water between 10 and 600 eV, Phys. Rev. E 90,

010302 (2014).
2 Thürmer, Seidel, Faubel, Eberhardt, Hemminger, Bradforth, Winter, Photoelectron Angular Distributions from Liquid Water: Effects of Elec-

tron Scattering, Phys. Rev. Lett. 111, 173005 (2013).
3 Schild, Peper, Perry, Rattenbacher, Wörner, An alternative approach for the determination of mean free paths of electron scattering in liquid

water based on experimental data, submitted.

3.5. List of available Modules 319

https://gitlab.com/axelschild/CLstunfti

E-CAM Documentation, Release 0.2

make html

It is found in _build/html (actually, it should already be there).

• Use CLstunfti!

The examples created for this E-CAM module are in the folder examples. Each example comes with a sample
output which has the same name as the files created by the scripts, but appended with _ref. Some of the examples
have a rather long runtime, as indicated below. This is because the examples should also show what is needed to
compute the relevant targets correctly. If a quick test is preferred, the number of trajectories can be decreased.

The following examples are provided (note that part of the code is in the file tools_eal_pad.py in the example
folder):

• Example 01 shows how to prepare an input for CLstunfti. It is run as

python 01_create_input.py

It will create the HDF5 file prop_data.h5 which can be compared with the reference file
prop_data_ref.h5.

• Example 02 shows how to compute the effective attenuation length (EAL), i.e., the effective/average depth from
which photoelectrons are ionized. This is done by selecting many ionization depths 𝑧0 and by fitting the number
of electrons detected outside the liquid to

𝑃 (𝑧0) ∝ 𝑒−𝑧0/EAL

It is run as

python 02_compute_eal.py

and creates 02_eal.pdf which can be compared with 02_eal_ref.pdf. The calculation takes ca. 1
minute on a 3.40GHz CPU.

• Example 03 shows how to compute the photoelectron angular distribution (PAD) of electrons that leave the
liquid after photoionization. This is done by rotating the PAD for photoionization (which simulates a rotation of
the laser used for ionization) away from its default direction (the 𝑧-axis, as the default is that 𝑧 < 0 is the liquid
and 𝑧 = 0 is the surface) and by detecting the number of electrons outside the liquid depending on the polar
angle 𝜃 of the rotation. The PAD has the functional form

PAD(𝜃) ∝ 1 + 𝛽𝑃2(cos(𝜃))

where 𝑃2 is the Legendre polynomial of second order. Hence, the PAD is fully characterized by the parameter
𝛽.

Two ways to do the calculation are provided. The first uses importance sampling of the ionization depth with an
exponential distribution, is run with

python 03a_compute_pad.py

and creates 03a_pad.pdf which can be compared with 03a_pad_ref.pdf. The calculation takes ca. 1
hour on a 3.40GHz CPU.

The second way uses a linear sampling, where initial positions are added until deeper and deeper in the liquid
until no trajectories are leaving it anymore. It is run with

python 03b_compute_pad.py

and creates 03b_pad.pdf which can be compared with 03b_pad_ref.pdf. The calculation takes a few
hours on a 3.40GHz CPU.

320 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

• Example 04 shows how to find elastic and inelastic mean free paths if an EAL and PAD are given. From an
initial guess for the EMFP and IMFP, it optimizes their values by comparing the calculated EAL and PAD with
a target EAL and PAD. It is run with

python 04_find_emfp_imfp.py

and provides the terminal output given in 04_find_emfp_imfp_output.txt for comparison. The calcu-
lation takes ca. 1 hour on a 3.40GHz CPU.

• Example 05 compares the angular distribution of photoelectrons after ionization, one scattering, two scatterings,
etc. in the bulk (no surface) with the known solution. There are four parts. The calculations should be performed
in the right order because the results are saved to files.

In the first part, the angular distribution of the electrons after up to nine scatterings in the bulk without inelastic
scattering is computed. It is run with

python 05a_bulk_prep.py

and creates 05a_bulk.pdf and 05a_bulk.h5 which can be compared with 05a_bulk_ref.pdf and
05a_bulk_ref.h5, respectively. The calculation takes ca. 1.5 hours on a 3.40GHz CPU.

In the second part, results of the first part are compared with a convolution of the initial PAD with the DSCS
and with doing the exact equivalent of the convolution (the convolution only gives the exact result in 2D, in 3D
it is more complicated). It is run with

python 05b_compare_bulk_convolution.py

and creates 05b_compare_bulk_convolution.pdf which can be compared with
05b_compare_bulk_convolution_ref.pdf. The calculation takes a few seconds on a 3.40GHz
CPU.

In the third part, the angular distribution of the electrons after up to nine scatterings is computed outside the
surface. It is run with

python 05c_surface.py

and creates 05c_surface.pdf which can be compared with 05c_surface_ref.pdf. The calculation
takes ca. 10 minutes on a 3.40GHz CPU.

In the fourth part, the results of the first and third part are compared. It is run with

python 05d_comparison_bulk_surface.py

and creates 05d_comparison_bulk_surface.pdf which can be compared with
05d_comparison_bulk_surface_ref.pdf. The calculation takes a few seconds on a 3.40GHz
CPU.

Source Code

For the module, the documentation and the examples were developed and the source code of CLstunfti was extensively
commented.

The module CLstunfti makes CLstunfti available to the world by providing a documentation of the toolbox and inline
documentations of the source code, as well as a set of examples that can also be used for testing.

3.5. List of available Modules 321

https://gitlab.com/axelschild/CLstunfti/blob/master/README.rst
https://gitlab.com/axelschild/CLstunfti/tree/master/examples

E-CAM Documentation, Release 0.2

Spin orbit coupling smoothing

Software Technical Information

Name Guessoc

Language Fortran 90

Licence GNU General Lesser Public License

Documentation Tool Documentation provided in a README file together with the source code.

Application Documentation Detailed documentation related to the running of the module can found here ‘https:
//gitlab.e-cam2020.eu:10443/sanz/durham-ecam/blob/master/README’

Relevant Training Material Training material is available through the test example

Software Module Developed by Cristina Sanz Sanz

• Purpose of Module

• Building and Testing

• Source Code

Purpose of Module

This module is a standalone program that allows to smooth the off diagonal values (this program is created for spin-
orbit couplings) of an electronic structure calculation. The purpose of the module is to remove the sudden changes in
the off-diagonal elements (spin-orbit couplings) due to the swap between near states and sign changes that electronic
structure calculation programs produce along one of the coordinates (internuclear distance in the test example). The
way to remove the discontinuities is based in the idea that after the diagonalisation of the matrix, the eigenvalues are
the spin-orbit states that are obtained from the electronic structure calculation, so the (spin-orbit) coupling elements
can be optimised (using conjugate gradient in this program) so that after the diagonalisation using the optimised value
the eigenvalue is as near as possible as the one obtained from the electronic structure calculation. We ensure the
continuity using the couplings of a point near to the point that we want to optimised. Further details can be found in
PCCP, 21, 14429 (2019).

The module is particularly thought for computational chemists that need to fit the spin-orbit couplings to use them in
quantum and/or classical dynamics simulations.

It is a very practical code that save time to scientist that need to remove discontinuities in the off-diagonal values of the
(spin-orbit) couplings. It is particularly useful for matrices bigger 3x3 or 4x4 where the number of couplings makes it
difficult to smooth manually.

The applicability of the code is general for all type of dynamical simulations that require the (spin-orbit) couplings as
an analytical function or requires the derivatives of the (spin-orbit) couplings.

The code has been already used for the control of the photodissociation of IBr system, where the total number of the
states for the simulations is 36, producing a total number of (spin-orbit) couplings equal to 1260. All the couplings
needed to be fit to use them in a wavepacket propagation. (Sanz-Sanz C., Worth, G.A., PCCP, 21, 14429-14439
(2019)).

322 Chapter 3. Quantum Dynamics Modules

https://gitlab.e-cam2020.eu:10443/sanz/durham-ecam/blob/master/README
https://gitlab.e-cam2020.eu:10443/sanz/durham-ecam/blob/master/README

E-CAM Documentation, Release 0.2

Building and Testing

The module includes a Makefile. To compile you need: a Fortran compiler (gfortran); lapack and blas libraries
installed. Adjust library path according to your installation. The compiler included in the Makefile is gfotran and no
specification is given for the location of lapack and blas subroutines. Be sure that you have access to the compiler and
libraries. Otherwise, change the compiler to use and include the full path of the libraries.

Once the executable is created the user can run it just typing ./guessSO.exe. The program reads the input files from
the directory inpmat/. For the testing run there are 36x36 elements, each element of the matrix is in a different file.
Open one of the files to see the structure of the input files. The program creates intermediate files, ssXX-XX.dat, so
that the user can see the evolution of the running. The final output files are adia.dat, adiai.dat, soXX-XX.dat. Where
adiai.dat are the initial eigenvalues of the non-optimised matrix (spin-orbit states in this example), adia.dat are the
eigenvalues with the optimised matrix and the soXX-XX.dat are the individual elements of the optimised matrix in
which the off-diagonal values should be now smooth and suitable for fitting.

Source Code

The source code for this module can be download via gitlab. You firstly need to make an account (at gitlab). The code
of the guessoc module has its own repository so you can clone it typing:

git clone ssh://git@gitlab.e-cam2020.eu:10022/sanz/durham-ecam.git or git clone https://gitlab.e-cam2020.eu:10443/
sanz/durham-ecam.git

The Spin orbit coupling smoothing module is to smooth spin orbit couplings along internuclear distance.

Direct Dynamics Database improvements code

Software Technical Information

Language Fortran 2003

Licence GNU General Lesser Public License

Documentation Tool Documentation provided as in-line comments within the source code

Application Documentation Useful documentation can be found here

Relevant Training Material Training material is available through the test examples

Software Module Developed by Quantics code: G. A. Worth, K. Giri, G. W. Richings, M. H. Beck, A. J ackle,
and H.-D. Meyer. Module: Georgia Christopoulou and Graham Worth.

• Purpose of Module

• Background Information

• Application

• Testing

• Source Code

3.5. List of available Modules 323

https://gitlab.e-cam2020.eu:10443/sanz/durham-ecam.git
ssh://git@gitlab.e-cam2020.eu:10022/sanz/durham-ecam.git
https://gitlab.e-cam2020.eu:10443/sanz/durham-ecam.git
https://gitlab.e-cam2020.eu:10443/sanz/durham-ecam.git
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/

E-CAM Documentation, Release 0.2

Purpose of Module

The module focuses on improving the efficiency of Direct Dynamics variational multi-configuration Gaussian
wavepacket (DD-vMCG) method. During every Direct Dynamics propagation step the calculated energies, gradients
and hessian matrix are stored in a database. One important challenge of this method is the time needed to continually
reread, sort and analyze this database which makes the calculation of a large system very expensive. Employing a
dynamic and smaller version of the database with selected points only relevant to each basis function, each time the
program needs to use stored data points, reduces massively the cost of the calculation. Thus, treatment of larger sys-
tems is now possible. The module has been added and tested within the Quantics quantum dynamics package which
is available on Gitlab and at the same time the code benefits from parallel running.

Background Information

The latest version of quantics package and the code developed related to this module within the Quantics software
package are merged and available through Quantics.gitlab.

Application

This module will be extensively used in the near future to study the photochemistry of large systems, whose size
limited the application of the previous version of the DD-vMCG code.

Testing

After Quantics code has been successfully installed. The Quantics README file will help you to install the Quantics
code. All the tests available for Direct Dynamics are suitable to test this module and can be found at inputs/. A
good and quick example is Butatriene. After you have copied the but_dd.inp file and the but_dddata directory,
the test can be done through the following command:

$ quantics but_dd.inp

Source Code

The source code for this module can be found within the Quantics software which can be downloaded via Quan-
tics.gitlab. You firstly need to make an account (gitlab). The quantics project has a private repository so you also need
to ask for access by emailing Graham Worth (g.a.worth@ucl.ac.uk). In order to clone it into your computer, then type:

$ git clone https://gitlab.com/quantics/quantics.git

The Direct Dynamics Database The Direct Dynamics Database module is an improved, more efficient version of the
database used to provide the potential energy surfaces in the Direct Dynamics variational multi-configuration Gaussian
wavepacket (DD-vMCG) method [Wor1] which is included in the powerful and flexible Quantics package program
[Wor2].

3.5.11 ElVibRot

ElVibRot is a package for general quantum dynamics simulation using curvilinear coordinates. The code has no built-
in limitation in terms of the number of degrees of freedom. It applied a numerical but exact kinetic energy operator
with Tnum (Automatic differentiation), which enables much flexibility in the choice of the curvilinear coordinates

324 Chapter 3. Quantum Dynamics Modules

https://gitlab.com/quantics
https://gitlab.com/quantics
https://gitlab.com/quantics
mailto:g.a.worth@ucl.ac.uk
http://chemb125.chem.ucl.ac.uk/worthgrp/quantics/doc/index.html
https://github.com/lauvergn/ElVibRot-TnumTana

E-CAM Documentation, Release 0.2

[Tnum]. Moreover, the Smolyak algorithm [Smo] is employed to avoid the conventional direct-product basis sets and
grids, which allows the simulation of larger systems. Typically, the package could be used for

1) Vibrational levels, intensities for floppy molecular systems;

2) Wave-packet propagation with or without time dependent Hamiltonian;

3) Quantum gate and optimal control;

4) Optimization with the given set of curvilinear coordinates.

Software Technical Information

Name ElVibRot Time-independent MPI

Language Fortran 90

Licence GNU Lesser General Public License (http://www.gnu.org/licenses/)

Documentation Tool Doxygen

Application Documentation See ElVibRot doc and Tnum doc

Relevant Training Material Not currently available

Software Module Developed by David Lauvergnat, Ahai Chen

ElVibRot-TID-MPI

• Purpose of Module

• Background Information

• Applications of the Module

• Building and Testing

• Source Code

• References

Purpose of Module

The ElVibRot-TID-MPI (ElVibRot time-independent MPI) module is a parallelized time-independent quantum simu-
lation program. The Davidson algorithm is the main method employed for getting the Eigen levels of the Hamiltonian.
This module is a part of the ElVibRot package designed for general quantum dynamics simulation using curvilinear
coordinates. The code has no built-in limitation in terms of the number of degrees of freedom. It applied a numerical
but exact kinetic energy operator with Tnum [Tn1], which enables much flexibility in the choice of the curvilinear
coordinates. To avoid the conventional direct-product basis sets and grids, the Smolyak algorithm [Sm1] is employed
to make possible the simulation of larger systems.

Background Information

The core of the quantum simulation lies in solving the Schrodinger equation with the Hamiltonian of the considered
system. The principle fence of the simulation comes from the exponential growth of computational demand with the

3.5. List of available Modules 325

http://www.gnu.org/licenses/
https://github.com/lauvergn/ElVibRot-TnumTana/tree/master/doc/
http://pagesperso.lcp.u-psud.fr/lauvergnat/ElVibRot/Tnum-manual-v24.4-09_09_2013.pdf
https://github.com/lauvergn/ElVibRot-TnumTana

E-CAM Documentation, Release 0.2

increasing of the degrees of freedom of the system, the curse of dimensionality. It prompts numbers of algorithms in
the past decades to deal with this difficulty. The Smolyak algorithm, proposed by Smolyak in 1963 [Sm1], provides
a powerful method to deal with high-dimensional problems. By introducing the Smolyak algorithm in this module,
the wavefunction is expanded as a weighted sum of small Smolyak wavefunction contributions, thus significantly
reduce the computational demand of the simulation. Taking advantage of the structure of the newly transformed
wavefunction, the MPI can be well implemented. As a result, the simulation could be performed with high accuracy,
and in the meantime, impressive parallel efficiency. The code is designed to works on different levels of clusters.
The module provides three MPI schemes to adapt the simulation of different kinds of systems and working machines.
The default setting will automatically choose the scheme according to the balance of resource consumed and the
parallelization efficiency.

Applications of the Module

This module is intended to provide a parallel program for the quantum simulation of general molecular system. Typ-
ically, it could be used to calculate the vibrational levels of molecular systems. The general capability of the simu-
lation could be up to tens of degrees of freedom. The code has been applied for the simulation of Malondialdehyde
(𝐶3𝐻4𝑂2), which is of 21 degrees of freedom. The parallelization of the code enables the simulation of larger systems.

Building and Testing

The code is compatible with gfortran, mpifort, ifort, pgf90, etc. Building the program requires OpenMPI
v2.0 or above. OpenMPI should be built as 64-bit for the simulation of very large system.

• build with MPI

set makefile:

F90=mpifort
MPICORE=gfortran ! gfortran or ifort according to the compiler for MPI

other main options:

F90=gfortran ! compile with gfortran
F90=ifort ! compile with ifort
F90=pgf90 ! compile with pgf90
parallel_make=1 ! enable parallel make with -j argument
OMP=1 ! enable openMP
OPT=1 ! enable code optimization
INT=4 ! 4 or 8 for 32-bits or 64-bits integer
LAPACK=1 ! enable LAPACK
ARPACK=1 ! enable ARPACK
QML=1 ! enable QMLib

To build:

make

To test:

make test

To clean test files

make cleantest

326 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

Three MPI schemes will be tested for 6 and 21 degrees of freedom systems. In directory

./Working_tests/MPI_tests

check folders 6D_Davidson_* and 21D_Davidson_* for examples. For more details, see ElVibRot.

Source Code

See the MPI branch of ElVibRot

References

The ElVibRot-TID-MPI (ElVibRot Time-independent MPI) module is a parallelized time-independent quantum sim-
ulation program. The Davidson algorithm is the main method employed for getting the Eigen levels of the Hamiltonian.

Software Technical Information

Name ElVibRot Time-dependent MPI

Language Fortran 90

Licence GNU Lesser General Public License (http://www.gnu.org/licenses/)

Documentation Tool Doxygen

Application Documentation See ElVibRot doc and Tnum doc

Relevant Training Material Not currently available

Software Module Developed by David Lauvergnat, Ahai Chen

ElVibRot-TD-MPI

• Purpose of Module

• Background Information

• Applications of the Module

• Building and Testing

• Source Code

• References

Purpose of Module

The ElVibRot time-dependent MPI (ElVibRot-TD-MPI) module is a parallelized time-dependent quantum simulation
program. It is a part of the ElVibRot package designed for general quantum dynamics simulation using curvilinear
coordinates. There is no built-in limitation on the degrees of freedom for the target system. The code employed a
numerical but exact kinetic energy operator with Tnum [Tn]. The Smolyak algorithm [Sm] is applied to avoid the
direct-product basis sets and grids in the simulation.

3.5. List of available Modules 327

https://github.com/lauvergn/ElVibRot-TnumTana
https://github.com/lauvergn/ElVibRot-TnumTana/tree/MPI_working
http://www.gnu.org/licenses/
https://github.com/lauvergn/ElVibRot-TnumTana/tree/master/doc/
http://pagesperso.lcp.u-psud.fr/lauvergnat/ElVibRot/Tnum-manual-v24.4-09_09_2013.pdf
https://github.com/lauvergn/ElVibRot-TnumTana

E-CAM Documentation, Release 0.2

Background Information

Quantum dynamics simulation has provided powerful insight into the underlying mechanism of chemical reactions,
laser molecular interaction, etc. The simulation, with the conventional expansion on the direct-product basis, is lim-
ited by the exponential growth of computational cost with the increase of degrees of freedom. The multi-configuration
time-dependent Hartree, a well-known package developed with the aim of generality, expands the wavefunction as a
sum of Hartree products with single-particle functions, leading to a very efficient wavepackage propagation. The quan-
tum diffusion Monte Carlo and the Feynman path integral approaches get around the problem by avoiding expending
the wavefunction on a basis set. The variational multi-configuration Gaussian applies on-the-fly quantum chemical
calculation of the potential energy to approach the quantum effects in the photochemistry. However, the Smolyak
method provides another way to deal with high-dimensional problems, without losing accuracy and universality. The
application of Smolyak algorithm enables the simulation of large systems (> 12 degrees of freedom) as the wavefunc-
tion is expanded as a weighted sum of small Smolyak wavefunction contributions. MPI is implemented depends on
this framework. The module is designed to works on different levels of clusters. Three MPI schemes are provided
in accord with a series of well-known propagation methods, including the Chebyshev, Runge-Kunta, short iterative
Lanczos and Taylor expansion, etc. The three MPI schemes correspond to the simulation with the mode of most effi-
ciency, memory saving, and massive cluster parallelization, respectively. The default setting will automatically choose
the scheme according to the balance of resource consumed and the parallelization efficiency.

Applications of the Module

This module is intended to provide a parallel program for general wavepackage propagation. The general capability
of the simulation could be up to tens of degrees of freedom. The propagation time could be up to hundreds of fem-
toseconds with general computation time, according to the selected propagation method. The code has been applied
for the simulation of Pyrazine (𝐶4𝐻4𝑁2), which is of 24 degrees of freedom. This module could be a practical tool
for general quantum molecular simulation, supporting the further study of molecular dynamics in chemical reactions,
ultrafast processes, etc.

Building and Testing

The code is compatible with gfortran, mpifort, ifort, pgf90, etc. Building the program requires OpenMPI
v2.0 or above. OpenMPI should be built as 64-bit for the simulation of very large systems.

• build with MPI

set makefile:

F90=mpifort
MPICORE=gfortran ! gfortran or ifort according to the compiler for MPI

other main options:

F90=gfortran ! compile with gfortran
F90=ifort ! compile with ifort
F90=pgf90 ! compile with pgf90
parallel_make=1 ! enable parallel make with -j argument
OMP=1 ! enable openMP
OPT=1 ! enable code optimization
INT=4 ! 4 or 8 for 32-bits or 64-bits integer
LAPACK=1 ! enable LAPACK
ARPACK=1 ! enable ARPACK
QML=1 ! enable QMLib

To build:

328 Chapter 3. Quantum Dynamics Modules

E-CAM Documentation, Release 0.2

make

To test:

make test

To clean test files

make cleantest

Three MPI schemes will be tested for 12 and 24 degrees of freedom systems. In directory

./Working_tests/MPI_tests

check folders 12D_propagation_* and 24D_propagation_* for examples. For more details, see ElVibRot.

Source Code

See the MPI branch of ElVibRot

References

The ElVibRot-TD-MPI (ElVibRot Time-dependent MPI) module is a parallelized time-dependent quantum simu-
lation program. The available propagation methods include Chebyshev, Runge-Kunta, short iterative Lanczos and
Taylor expansion, etc.

3.5.12 References

General Information

Contents

• Meso- and Multi-scale Modules
– Introduction
– Pilot Projects
– Software related to Extended Software Development Workshops

• How to contribute?

• search

3.5. List of available Modules 329

https://github.com/lauvergn/ElVibRot-TnumTana
https://github.com/lauvergn/ElVibRot-TnumTana/tree/MPI_working

E-CAM Documentation, Release 0.2

330 Chapter 3. Quantum Dynamics Modules

CHAPTER 4

Meso- and Multi-scale Modules

4.1 Introduction

This is a collection of the modules that have been created by E-CAM community within the area of Meso- and Multi-
scale Modelling. This documentation is created using ReStructured Text and the git repository for the documentation
source files can be found at https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library which are public and open to contri-
butions.

In the context of E-CAM, the definition of a software module is any piece of software that could be of use to the
E-CAM community and that encapsulates some additional functionality, enhanced performance or improved usability
for people performing computational simulations in the domain areas of interest to us.

This definition is deliberately broader than the traditional concept of a module as defined in the semantics of most
high-level programming languages and is intended to capture inter alia workflow scripts, analysis tools and test suites
as well as traditional subroutines and functions. Because such E-CAM modules will form a heterogeneous collection
we prefer to refer to this as an E-CAM software repository rather than a library (since the word library carries a
particular meaning in the programming world). The modules do however share with the traditional computer science
definition the concept of hiding the internal workings of a module behind simple and well-defined interfaces. It is
probable that in many cases the modules will result from the abstraction and refactoring of useful ideas from existing
codes rather than being written entirely de novo.

Perhaps more important than exactly what a module is, is how it is written and used. A final E-CAM module adheres
to current best-practice programming style conventions, is well documented and comes with either regression or unit
tests (and any necessary associated data). E-CAM modules should be written in such a way that they can potentially
take advantage of anticipated hardware developments in the near future (and this is one of the training objectives of
E-CAM).

331

https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library

E-CAM Documentation, Release 0.2

4.2 Pilot Projects

One of primary activity of E-CAM is to engage with pilot projects with industrial partners. These projects are con-
ceived together with the partner and typically are to facilitate or improve the scope of computational simulation within
the partner. The related code development for the pilot projects are open source (where the licence of the underlying
software allows this) and are described in the modules associated with the pilot projects.

4.3 Software related to Extended Software Development Workshops

4.3.1 DL_MESO_DPD

The following modules connected to the DL_MESO_DPD code (master version) have been produced so far:

Analysis of charge dipole moments in DL_MESO_DPD

Software Technical Information

Language Fortran 2003

Licence BSD

Documentation Tool RST and LaTex-generated .pdf file

Application Documentation Click to download the manual with more details

Relevant Training Material See the Testing section

• Purpose of Module

• Background Information

• Testing

• Source Code

Purpose of Module

This module, gen_dipole.f90, is a generalization of the dipole.f90 post-processing utility of
DL_MESO_DPD, the Dissipative Particle Dynamics (DPD) code from the DL_MESO package.

It processes trajectory (HISTORY) files to obtain the charge dipole moments of all the (neutral) molecules in the
system. It produces files dipole_* containing the time evolution of relevant quantities (see below). In the case of
a single molecular species, it also prints to the standard output the Kirkwood number 𝑔𝑘 and the relative electric
permittivity 𝜖𝑟 for this species, together with an estimate for their errors (standard deviation).

The module can be applied to systems including molecules with a generic charge structure, as long as each molecule
is neutral (otherwise the charge dipole moment would be frame-dependent).

The charge dipole moment of a neutral molecule is 𝑝𝑚𝑜𝑙 =
∑︀

𝑖∈𝑚𝑜𝑙 𝑞𝑖�⃗�𝑖 where �⃗�𝑖 are the bead positions and 𝑞𝑖 their
charges. The total charge dipole moment of the simulated volume 𝑉 is 𝑃 =

∑︀
𝑚𝑜𝑙∈𝑉 𝑝𝑚𝑜𝑙. If more than one molecular

species are present, one can split 𝑃 into the different species’ contributions.

332 Chapter 4. Meso- and Multi-scale Modules

http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

In general:

For any molecular species a file dipole_{molecule name} is produced, whose columns are
snapshot index, 𝑃𝑥, 𝑃𝑦, 𝑃𝑧,

∑︀𝑁𝑚𝑜𝑙

𝑖=1
𝑝2
𝑖

𝑁𝑚𝑜𝑙
, 𝑃

2

𝑉 . It is intended that for any quantity the contribution given from
the species {molecule name} is reported (i.e., the sums are restricted to molecules of a single type).

Possible uses of the output files are: monitoring the polarization in response to an external electric field, measuring
the fluctuations in molecular/total charge dipole moments.

Extra output for a single molecular species:

The Kirkwood number for a pure system is 𝑔𝑘 = ⟨𝑃 2⟩
𝑁𝑚𝑜𝑙⟨𝑝2⟩ , where ⟨. . . ⟩ indicates an average over trajectories. If

the dipoles’ orientations are not correlated, then 𝑔𝑘 ≃ 1. Also, the relative dielectric permittivity of the medium
is calculated from linear response theory: 𝜖𝑟 = 1 + 4𝜋

3 𝑙𝐵
⟨𝑃 2⟩
𝑉 , where 𝑙𝐵 is Bjerrum length and tin-foil boundary

conditions are used.

Background Information

The base code for this module is DL_MESO_DPD, the Dissipative Particle Dynamics code from the mesoscopic
simulation package DL_MESO, developed by M. Seaton at Daresbury Laboratory. This open source code is available
from STFC under both academic (free) and commercial (paid) licenses. The module is to be used with DL_MESO in
its last released version, version 2.7 (dating December 2018).

A variant of this module for use with a previous version of DL_MESO, version 2.6 (dating November 2015), can be
found in the old-v2.6 directory1.

Testing

The present module gen_dipole.f90 is compiled with the available Fortran90 compiler, e.g.:

gfortran -o gen_dipole.exe gen_dipole.f90

and the executable must be in the same directory of the HISTORY file to be analyzed. The user will be asked to
provide the Bjerrum length used in single molecule simulations: all other information (including electric charges on
all bead types) required for analyses is provided in the HISTORY file.

To input the Bjerrum length, one can either enter it from the keyboard or write it into a text file (say, input.txt) and run
the program in this way:

gen_dipoleaf.exe < input.txt

We propose two tests to familiarize users with the utility and a third one on a physically relevant system.

The first two tests involve two (toy) molecular species: a branched one (four beads, T-shaped) and a simple dimer.
All the beads carry charges. In the first case 10 molecules of each type are present and are followed for a few time
steps. In the second case we suggest analyzing a single snapshot with just two molecules and all the beads sitting at
user-defined positions (via a CONFIG file).

Four type of beads are used with charges 𝑞𝐴 = 0.2, 𝑞𝐵 = −1, 𝑞𝐶 = 0.6, 𝑞𝐷 = 1; the Bjerrum length is fixed as
𝑙𝐵 = 1.

The bonding connections in the two molecules are pictorially given below:

B - A - C B - D
|
A

1 A small change to specifying charge smearing schemes and lengths in CONTROL files has been made since version 2.6: the old-v2.6
folder includes CONTROL files for the tests shown here that will work with this version of DL_MESO.

4.3. Software related to Extended Software Development Workshops 333

http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

First test

Run the DL_MESO_DPD simulation on a single node (serial run) using the following CONTROL file:

Two kinds of molecules: branched and dimer

volume 3.0 3.0 3.0
temperature 1.0
cutoff 1.0

timestep 0.01
steps 1000
equilibration steps 0
traj 0 100 0
stats every 100
stack size 100
print every 100
job time 1000.0
close time 10.0

ensemble nvt mdvv
conf origin zero

ewald sum 1.0 5 5 5
bjerrum 1.0
smear gauss
smear length 0.5 equal

finish

and the FIELD file:

Two kinds of molecules: branched and dimer

SPECIES 4
A 1.0 0.2 0 0
B 1.0 -1.0 0 0
C 1.0 0.6 0 0
D 1.0 1.0 0 0

MOLECULES 2
BRANCH
nummols 10
beads 4
B 0.0 0.0 0.0
A 0.0 0.2 0.0
C 0.0 0.4 0.0
A 0.2 0.2 0.0
bonds 3
harm 1 2 5.0 0.25
harm 2 3 5.0 0.25
harm 2 4 5.0 0.25
finish
BD
nummols 10
beads 2
B 0.0 0.0 0.3
D 0.0 0.0 0.1

(continues on next page)

334 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

bonds 1
harm 1 2 5.0 0.25
finish

INTERACTIONS 4
A A dpd 25.0 1.0 4.5
B B dpd 25.0 1.0 4.5
C C dpd 25.0 1.0 4.5
D D dpd 25.0 1.0 4.5

CLOSE

Analyzing the HISTORY file with gen_dipole.exe, this output is printed on the standard output

nchist: 0 10 0 10
Number of snapshots: 11
<P_x>, <P_y>, <P_z>:
3.635198E-01 -9.224687E-02 5.177166E-01 8.410412E-01 3.127008E-01 5.
→˓555975E-01
error:
6.342381E-01 3.990649E-01 7.284979E-01 3.364702E-01 4.627111E-01 5.
→˓658327E-01
<P^2>/V:
4.857672E-01 2.793887E-01
error:
1.374485E-01 8.232245E-02
<p^2>:
1.381681E+00 8.502445E-01
error:
1.453820E-01 9.631156E-02

The first line shows the histogram of cluster sizes: in this case, it correctly gives 10 molecules of two beads, and 10
molecules of 4 beads. Since internally the module checks that each molecule is a connected cluster2, this line should
always give a histogram with the molecule sizes (up to the detected maximum number of beads per molecule).

The resulting dipole_BD file is

1 5.411139E-01 -3.599928E-01 -4.640084E-01 4.000000E-02 2.361863E-
→˓02

2 -2.554169E+00 -5.878279E-01 -1.010825E+00 1.310513E+00 2.922626E-
→˓01

3 1.110258E-01 1.629865E+00 5.048394E+00 9.721937E-01 1.
→˓042780E+00

4 -1.527498E+00 5.440944E-01 1.932210E+00 8.096611E-01 2.356565E-
→˓01

5 1.962445E+00 7.272408E-01 1.737201E+00 7.240524E-01 2.739976E-
→˓01

6 -2.179062E-01 -4.113665E-01 -1.396401E+00 8.849979E-01 8.024596E-
→˓02

7 1.552674E-01 2.753005E+00 -1.427860E-01 1.113470E+00 2.823531E-
→˓01

8 -8.580591E-01 1.490655E+00 7.832797E-01 1.145730E+00 1.322905E-
→˓01

(continues on next page)

2 Disambiguation on the concept of molecule. In DL_MESO a defined molecule is a set of beads, which can be bonded or not. For the purpose
of this module it is required that each molecule is a connected cluster (via stretching bonds). In fact, this - together with the reasonable assumption
that each stretching bond cannot be stretched to more than half the system linear size - allows us to univocally define the charge dipole moment of
each molecule.

4.3. Software related to Extended Software Development Workshops 335

E-CAM Documentation, Release 0.2

(continued from previous page)

9 2.232485E+00 2.690999E+00 -1.087863E+00 6.544034E-01 4.966263E-
→˓01

10 -1.225526E-01 3.129381E-01 1.879348E+00 7.360628E-01 1.349962E-
→˓01

11 -7.368671E-01 4.618429E-01 -1.166975E+00 9.616044E-01 7.844829E-
→˓02

and the dipole_BRANCH one is

1 -3.258640E-01 -4.896253E-01 -3.064526E-01 1.040000E-01 1.629013E-
→˓02

2 4.901658E+00 4.033448E+00 -1.381903E+00 1.525634E+00 1.
→˓563133E+00

3 -1.233831E+00 9.305151E-01 3.127786E+00 2.095572E+00 4.507868E-
→˓01

4 -3.059065E+00 -4.542448E-01 -1.278650E+00 1.559279E+00 4.147838E-
→˓01

5 1.576574E+00 -4.318085E+00 2.111019E+00 1.067546E+00 9.476980E-
→˓01

6 4.662262E-01 -1.342421E+00 2.268855E+00 1.601749E+00 2.654505E-
→˓01

7 -6.572569E-01 -9.276115E-02 5.649749E-01 1.480806E+00 2.814029E-
→˓02

8 -1.704146E+00 -1.273019E+00 7.975968E-01 1.078223E+00 1.911427E-
→˓01

9 9.061683E-01 1.749560E+00 -2.253253E-01 1.526127E+00 1.456620E-
→˓01

10 2.677888E-01 3.099173E+00 -6.472147E-01 1.494043E+00 3.739063E-
→˓01

11 2.860466E+00 3.852343E+00 -1.590978E+00 1.665513E+00 9.464453E-
→˓01

If instead the simulation is run on multiple nodes, only the results for the first snapshot will be unchanged (i.e., the first
line of each dipole_* file). The other results will vary because different sequences of random numbers will be used by
DL_MESO_DPD for the time evolution of the system.

Second test

Run DL_MESO_DPD using the same CONTROL and FIELD files as above, with the following changes:

• change “steps 1000” to “steps 1” (in CONTROL)

• change “nummols 10” to “nummols 1” (NB: appears twice in FIELD)

Also, use this CONFIG file that will initially align the molecule branches with the Cartesian axes:

Two kind of molecules, branched and dimer
0 1
3.0 0.0 0.0
0.0 3.0 0.0
0.0 0.0 3.0
B 1
0.0 0.0 0.0
A 2
0.0 0.2 0.0
C 3
0.0 0.4 0.0
A 4

(continues on next page)

336 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

0.2 0.2 0.0
B 5
0.0 0.0 0.3
D 6
0.0 0.0 0.1

where the identity of each bead is fixed by the FIELD file and is shown below:

B(1) - A(2) - C(3) B(5) - D(6)
|

A(4)

One can easily check that the dipole of each molecule is as expected (within machine precision):

𝑝𝐵𝑅𝐴𝑁𝐶𝐻 = (0.04, 0.32, 0), 𝑝𝐵𝐷 = (0, 0,−0.2) .

The resulting dipole_BD file is

1 0.000000E+00 0.000000E+00 -2.000000E-01 4.000000E-02 1.481481E-
→˓03

and the dipole_BRANCH one is

1 4.000000E-02 3.200000E-01 2.220446E-16 1.040000E-01 3.851852E-
→˓03

The results of this test will not depend on the number of nodes used to run the simulation3.

Third test: water in oil

Here we suggest considering a fluid made up of harmonically bonded dimers (+𝑞,−𝑞). Appropriately fixing the
partial charges 𝑞 and the Bjerrum length 𝑙𝐵 , this system mimics water in an oil background as far as its dielectric
properties are concerned. For more details about this model, please see the page Test case: a dimer solvent.

Run DL_MESO_DPD using the following CONTROL file:

DL_MESO charged harmonic dimers with dpd repulsion

volume 64.0
temperature 1.0
cutoff 1.0

timestep 0.01
steps 70000
equilibration steps 20000
traj 20000 100
stats every 100
stack size 100
print every 100
job time 7200.0
close time 100.0

ensemble nvt mdvv

ewald sum 1.0 5 5 5

(continues on next page)

3 The tiny value for 𝑃𝑧 in dipole_BRANCH may vary, but for this test it should be no greater than the smallest available non-negligible floating-
point number.

4.3. Software related to Extended Software Development Workshops 337

E-CAM Documentation, Release 0.2

(continued from previous page)

bjerrum 42.0
smear gauss
smear length 0.5 equal

finish

and the FIELD file:

DL_MESO charged harmonic dimers with dpd repulsion

SPECIES 2
solp 1.0 0.46 0
solm 1.0 -0.46 0

MOLECULES 1
DIMER
nummols 96
beads 2
solp 0.0 0.0 0.0
solm 0.1 0.0 0.0
bonds 1
harm 1 2 5.0 0.0

finish

INTERACTIONS 3
solp solp dpd 25.0 1.0 4.5
solm solm dpd 25.0 1.0 4.5
solp solm dpd 25.0 1.0 4.5

CLOSE

Analyzing the HISTORY file with gen_dipole.exe, this output is printed to the standard output:

nchist: 0 96
Number of snapshots: 501
<P_x>, <P_y>, <P_z>:

-4.348820E-02 5.931873E-02 6.210429E-02
error:
1.035501E-01 9.685632E-02 9.780560E-02
<P^2>/V:
2.324029E-01
error:
8.812749E-03
<p^2>:
1.416901E-01
error:
4.351294E-04
kirkwood factor:
1.093480E+00
error:
4.482298E-02
Bjerrum length?

42.0
epsilon_r:
4.188645E+01
error:

(continues on next page)

338 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

1.550420E+00

In particular, we see that:

• 𝑃 = (0.0 ± 0.1, 0.1 ± 0.1, 0.1 ± 0.1)

• 𝜖𝑟 = 42 ± 2

• 𝑔𝑘 = 1.09 ± 0.04

Please note that the error estimates are calculated assuming all the samples are independent. From the results obtained
in the testing case of the module gen_dipoleaf.f90, one sees that the auto-correlation time of 𝑃 in this system is about
1-2 DPD time units, so the sampling choice used here (trajectories are written every 100 time steps, i.e., at each DPD
time unit) seems reasonable, even if a little bit optimistic. To confirm the reliability of the error estimate, one can carry
out another run with a different random number sequence (using the CONTROL file directive seed) and see if the two
results are compatible within error bars.

Source Code

1 PROGRAM gen_dipole
2 !***
3 ! module to analyze charge dipole moments in DL_MESO
4 !
5 ! authors: m. a. seaton and s. chiacchiera, February 2017 (amended January 2021)
6 !**

→˓

7 IMPLICIT none
8 INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND (15, 307)
9 INTEGER, PARAMETER :: li = SELECTED_INT_KIND (12)

10 INTEGER, PARAMETER :: ntraj=10
11 INTEGER, PARAMETER :: endversion = 1
12 REAL(KIND=dp), PARAMETER :: pi=3.141592653589793_dp
13

14 CHARACTER(80) :: text
15 CHARACTER(8), ALLOCATABLE :: namspe (:), nammol (:)
16

17 INTEGER, ALLOCATABLE :: ltp (:), ltm (:), mole (:), bndtbl (:,:)
18 INTEGER, ALLOCATABLE :: nbdmol (:), readint (:)
19 INTEGER, ALLOCATABLE :: visit (:), from (:)
20 INTEGER :: nrtout
21 INTEGER :: chain, imol, ioerror, i, numtraj, j, k, nmoldef, ibond, nbdmolmx
22 INTEGER :: nspe, nbeads, nusyst, nmbeads, nsyst, numbond, global, species,

→˓molecule
23 INTEGER :: nummol, lfrzn, rnmol, keytrj, srfx, srfy, srfz
24 INTEGER :: nav
25 INTEGER :: endver, Dlen, nstep, framesize, lend, leni
26 INTEGER(KIND=li) :: filesize, currentpos, lend_li, leni_li
27

28 REAL(KIND=dp), ALLOCATABLE :: xxx (:), yyy (:), zzz (:), readdata (:)
29 REAL(KIND=dp), ALLOCATABLE :: nmol (:), chg (:), molchg (:)
30 REAL(KIND=dp), ALLOCATABLE :: dipx_box (:), dipy_box (:), dipz_box (:)
31 REAL(KIND=dp), ALLOCATABLE :: dip2_box (:), dip2_ave (:)
32 REAL(KIND=dp), ALLOCATABLE :: dip2_err (:)
33 REAL(KIND=dp), ALLOCATABLE :: sum_dipx_box (:), sum_dipy_box (:), sum_dipz_box

→˓(:)
34 REAL(KIND=dp), ALLOCATABLE :: sum_dipx_box2 (:), sum_dipy_box2 (:), sum_dipz_

→˓box2 (:) (continues on next page)

4.3. Software related to Extended Software Development Workshops 339

E-CAM Documentation, Release 0.2

(continued from previous page)

35 REAL(KIND=dp), ALLOCATABLE :: sum_dip2_box (:), sum_dip_box4 (:)
36 REAL(KIND=dp), ALLOCATABLE :: dipx_box_ave (:), dipy_box_ave (:), dipz_box_ave

→˓(:)
37 REAL(KIND=dp), ALLOCATABLE :: dipx_box2_ave (:), dipy_box2_ave (:), dipz_box2_

→˓ave (:)
38 REAL(KIND=dp), ALLOCATABLE :: dipx_box_err (:), dipy_box_err (:), dipz_box_err

→˓(:)
39 REAL(KIND=dp), ALLOCATABLE :: dip_box2_ave (:), dip_box2_err (:), dip_box4_ave

→˓(:)
40 REAL(KIND=dp), ALLOCATABLE :: gk (:), gk_err (:)
41 REAL(KIND=dp), ALLOCATABLE :: sum_dip2_box2 (:)
42 REAL(KIND=dp), ALLOCATABLE :: epsilon_r (:), epsilon_r_err(:)
43 REAL(KIND=dp) :: bjerelec
44 REAL(KIND=dp) :: volm, dimx, dimy, dimz, shrdx, shrdy, shrdz
45 REAL(KIND=dp) :: amass, rcii
46 REAL(KIND=dp) :: time
47

48 LOGICAL :: eof, swapend, bigend
49

50 ! determine number of bytes for selected double precision and integer kinds
51 ! (the default SELECTED_REAL_KIND (15, 307) should return 8 bytes)
52

53 lend = STORAGE_SIZE (1.0_dp) / 8
54 leni = BIT_SIZE (1) / 8
55 lend_li = INT (lend, KIND=li)
56 leni_li = INT (leni, KIND=li)
57

58 ! check endianness of machine
59

60 bigend = (IACHAR(TRANSFER(1,"a"))==0)
61

62 ! determine if HISTORY file exists, which endianness to use,
63 ! if type of real is correct
64

65 INQUIRE (file = 'HISTORY', EXIST = eof)
66 IF (.NOT. eof) THEN
67 PRINT *, "ERROR: cannot find HISTORY file"
68 STOP
69 END IF
70

71 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted', status
→˓= 'unknown')

72

73 swapend = .false.
74 READ (ntraj) endver, Dlen
75

76 IF (endver/=endversion) THEN
77 swapend = .true.
78 CLOSE (ntraj)
79 IF (bigend) THEN
80 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'little_endian')
81 ELSE
82 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'big_endian')
83 END IF
84 READ (ntraj) endver, Dlen

(continues on next page)

340 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

85 IF (endver/=endversion) THEN
86 PRINT *, "ERROR: corrupted HISTORY file or created with incorrect version

→˓of DL_MESO"
87 STOP
88 END IF
89 END IF
90

91 IF (Dlen/=lend) THEN
92 PRINT *, "ERROR: incorrect type of real number used in HISTORY file"
93 PRINT *, " recompile gen_dipole.f90 with reals of ", Dlen, " bytes"
94 STOP
95 END IF
96

97 ! read file size, number of frames and timestep numbers
98

99 READ (ntraj) filesize, numtraj, nstep
100

101 ! Read where the number of beads, molecules and bonds are determined
102 ! Arrays are filled with names of particles and molecules
103

104 READ (ntraj) text
105

106 READ (ntraj) nspe, nmoldef, nusyst, nsyst, numbond, keytrj, srfx, srfy, srfz
107

108 IF (numbond==0) THEN
109 PRINT *, 'ERROR: no molecules in trajectory data!'
110 STOP
111 END IF
112

113 IF (srfx==1 .OR. srfy==1 .OR. srfz==1) THEN
114 WRITE (*,*) "ERROR: Systems under shear not yet implemented!"
115 STOP
116 END IF
117

118 framesize = (keytrj+1) * 3
119 ALLOCATE (readint (1:nsyst), readdata (1:framesize))
120

121 ! get number of beads to be tracked when reading trajectory file (molecular beads)
122 nmbeads = nsyst - nusyst
123

124 ALLOCATE (namspe (nspe), nammol (nmoldef))
125 ALLOCATE (xxx (1:nmbeads), yyy (1:nmbeads), zzz (1:nmbeads))
126 ALLOCATE (ltp (1:nmbeads), ltm (1:nmbeads), mole (1:nmbeads))
127 ALLOCATE (nmol (1:nmoldef), nbdmol (1:nmoldef))
128 ALLOCATE (chg (nspe))
129 ALLOCATE (bndtbl (numbond, 2))
130 ALLOCATE (visit (nmbeads), from (nmbeads))
131

132 DO i = 1, nspe
133 READ (ntraj) namspe (i), amass, rcii, chg (i), lfrzn
134 END DO
135

136 DO i = 1, nmoldef
137 READ (ntraj) nammol (i)
138 END DO
139

140 ! reading of bead species and molecule types
(continues on next page)

4.3. Software related to Extended Software Development Workshops 341

E-CAM Documentation, Release 0.2

(continued from previous page)

141

142 nummol = 0 !counter for number of molecules
143 ibond = 0 !counter for bonds
144

145 DO i = 1, nsyst
146 READ (ntraj) global, species, molecule, chain
147 IF (global>nusyst .AND. global<=nsyst) THEN
148 ltp (global-nusyst) = species
149 ltm (global-nusyst) = molecule
150 mole (global-nusyst) = chain
151 nummol = MAX (nummol, chain)
152 END IF
153 END DO
154

155 ! reading of bond tables
156

157 IF (numbond>0) THEN
158 DO i = 1, numbond
159 READ (ntraj) bndtbl (i, 1), bndtbl (i, 2)
160 END DO
161 END IF
162

163 bndtbl = bndtbl - nusyst
164

165 ! reached end of header: find current position in file
166

167 INQUIRE (unit=ntraj, POS=currentpos)
168

169 ! determine numbers of molecules and beads per molecule type
170 nmol = 0.0_dp
171 nbdmol = 0
172 chain = 0
173 imol = 0 ! necessary to avoid out of bounds
174

175 DO i = 1, nmbeads
176 IF (mole (i) /= chain) THEN
177 chain = mole (i)
178 imol = ltm (i)
179 nmol (imol) = nmol (imol) + 1.0_dp
180 END IF
181 IF (imol > 0) nbdmol (imol) = nbdmol (imol) + 1
182 END DO
183

184 DO i = 1, nmoldef
185 rnmol = NINT (nmol (i))
186 IF (rnmol>0) THEN
187 nbdmol (i) = nbdmol (i) / rnmol
188 END IF
189 END DO
190

191 nbdmolmx = MAXVAL (nbdmol (1:nmoldef))
192

193 ! obtain connectivity information (needed only once)
194 CALL connect (nmbeads, numbond, bndtbl, nbdmolmx, visit, from)
195

196 ! Checking for charge neutrality of all molecules
197 ALLOCATE (molchg (nummol))

(continues on next page)

342 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

198

199 molchg (:) = 0._dp
200

201 DO i = 1, nmbeads
202 imol = mole (i)
203 molchg (imol) = molchg (imol) + chg (ltp (i))
204 END DO
205

206 DO i = 1, nummol
207 IF (ABS (molchg (i)) > 1.d-16) THEN
208 WRITE (*,*) "molecule number",i," is not neutral! (The dipole moment is

→˓frame-dependent)"
209 WRITE (*,*) "its charge is=", molchg (i)
210 WRITE (*,*) "its type is=", nammol (i)
211 STOP
212 ENDIF
213 END DO
214

215 CALL check_molecules !checks that beads are labelled are as expected
216

217 !reading trajectories and computing charge dipole moments
218 ALLOCATE (dipx_box (nmoldef), dipy_box (nmoldef), dipz_box (nmoldef))
219 ALLOCATE (dip2_box (nmoldef))
220 ALLOCATE (sum_dipx_box (nmoldef), sum_dipy_box (nmoldef), sum_dipz_box

→˓(nmoldef))
221 ALLOCATE (sum_dipx_box2 (nmoldef), sum_dipy_box2 (nmoldef), sum_dipz_box2

→˓(nmoldef))
222 ALLOCATE (sum_dip2_box (nmoldef), sum_dip_box4 (nmoldef))
223 ALLOCATE (dipx_box_ave (nmoldef), dipy_box_ave (nmoldef), dipz_box_ave

→˓(nmoldef))
224 ALLOCATE (dip2_ave (nmoldef), dip2_err (nmoldef))
225 ALLOCATE (dipx_box2_ave (nmoldef), dipy_box2_ave (nmoldef), dipz_box2_ave

→˓(nmoldef))
226 ALLOCATE (dipx_box_err (nmoldef), dipy_box_err (nmoldef), dipz_box_err

→˓(nmoldef))
227 ALLOCATE (dip_box2_ave (nmoldef), dip_box2_err (nmoldef), dip_box4_ave

→˓(nmoldef))
228 ALLOCATE (sum_dip2_box2 (nmoldef))
229 ALLOCATE (gk (nmoldef), gk_err (nmoldef))
230 ALLOCATE (epsilon_r (nmoldef), epsilon_r_err(nmoldef))
231

232 ! Open and write output file(s)
233

234 nrtout = ntraj + 1
235 DO j = 1, nmoldef
236 OPEN (nrtout+j-1, file = 'dipole_'//nammol(j), status ='replace')
237 END DO
238

239 eof = .false.
240 nav = 0
241

242 sum_dipx_box = 0.0_dp
243 sum_dipy_box = 0.0_dp
244 sum_dipz_box = 0.0_dp
245

246 sum_dip2_box = 0.0_dp
247 sum_dip_box4 = 0.0_dp

(continues on next page)

4.3. Software related to Extended Software Development Workshops 343

E-CAM Documentation, Release 0.2

(continued from previous page)

248

249 sum_dip2_box2 = 0.0_dp
250

251 sum_dipx_box2 = 0.0_dp
252 sum_dipy_box2 = 0.0_dp
253 sum_dipz_box2 = 0.0_dp
254

255 DO k = 1, numtraj
256

257 READ (ntraj, IOSTAT=ioerror) time, nbeads, dimx, dimy, dimz, shrdx, shrdy,
→˓shrdz

258

259 IF (ioerror/=0) THEN
260 eof = .true.
261 IF (k==1) THEN
262 WRITE (*,*) 'ERROR: cannot find trajectory data in HISTORY files'
263 STOP
264 END IF
265 EXIT
266 END IF
267

268 nav = nav + 1
269 volm = dimx * dimy * dimz
270

271 READ (ntraj) readint (1:nsyst)
272 DO i = 1, nsyst
273 global = readint (i)
274 READ (ntraj) readdata (1:framesize)
275 IF (global>nusyst .AND. global<=nsyst) THEN
276 xxx (global-nusyst) = readdata (1)
277 yyy (global-nusyst) = readdata (2)
278 zzz (global-nusyst) = readdata (3)
279 END IF
280 END DO
281

282 CALL compute_charge_dipoles (dipx_box, dipy_box, dipz_box, dip2_box)
283

284 DO j = 1, nmoldef
285 WRITE (nrtout+j-1, '(1p,I8,5(2x,e14.6))') k, dipx_box(j), dipy_box(j),

→˓dipz_box(j), dip2_box(j) / nmol(j) , &
286 (dipx_box(j)**2 + dipy_box(j)**2 + dipz_box(j)**2) / volm
287 END DO
288

289 sum_dipx_box = sum_dipx_box + dipx_box
290 sum_dipy_box = sum_dipy_box + dipy_box
291 sum_dipz_box = sum_dipz_box + dipz_box
292

293 sum_dipx_box2 = sum_dipx_box2 + dipx_box * dipx_box
294 sum_dipy_box2 = sum_dipy_box2 + dipy_box * dipy_box
295 sum_dipz_box2 = sum_dipz_box2 + dipz_box * dipz_box
296

297 sum_dip_box4 = sum_dip_box4 + (dipx_box**2 + dipy_box**2 + dipz_box**2)**2
298

299 sum_dip2_box = sum_dip2_box + dip2_box
300

301 sum_dip2_box2 = sum_dip2_box2 + dip2_box * dip2_box
302

(continues on next page)

344 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

303 END DO ! end of loop over trajectories
304

305 dipx_box_ave = sum_dipx_box/REAL(nav, KIND=dp)
306 dipy_box_ave = sum_dipy_box/REAL(nav, KIND=dp)
307 dipz_box_ave = sum_dipz_box/REAL(nav, KIND=dp)
308

309 dipx_box2_ave = sum_dipx_box2/REAL(nav, KIND=dp)
310 dipy_box2_ave = sum_dipy_box2/REAL(nav, KIND=dp)
311 dipz_box2_ave = sum_dipz_box2/REAL(nav, KIND=dp)
312

313 dip2_ave = sum_dip2_box(:)/REAL(nav, KIND=dp)/REAL(nmol(:), KIND=dp)
314 dip_box2_ave = dipx_box2_ave + dipy_box2_ave + dipz_box2_ave
315 dip_box4_ave = sum_dip_box4/REAL(nav, KIND=dp)
316

317 dipx_box_err = SQRT((dipx_box2_ave - dipx_box_ave**2)/REAL(nav, KIND=dp))
318 dipy_box_err = SQRT((dipy_box2_ave - dipy_box_ave**2)/REAL(nav, KIND=dp))
319 dipz_box_err = SQRT((dipz_box2_ave - dipz_box_ave**2)/REAL(nav, KIND=dp))
320

321 dip_box2_err = sqrt((dip_box4_ave - dip_box2_ave**2)/REAL(nav, KIND=dp))
322

323 ! Error on dip2_ave is computed considering each snapshot as a sample
324

325 dip2_err = sum_dip2_box2 / dble(nav * nmol ** 2) - dip2_ave ** 2
326 dip2_err = sqrt (dip2_err / REAL(nav, KIND=dp))
327

328 WRITE (*,*) "Number of snapshots: ",nav
329 WRITE (*,*) "<P_x>, <P_y>, <P_z>:"
330 WRITE (*,98) dipx_box_ave, dipy_box_ave, dipz_box_ave
331 WRITE (*,*) "error:"
332 WRITE (*,98) dipx_box_err, dipy_box_err, dipz_box_err
333 WRITE (*,*) "<P^2>/V:"
334 WRITE (*,98) dip_box2_ave/volm
335 WRITE (*,*) "error:"
336 WRITE (*,98) dip_box2_err/volm
337 WRITE (*,*) "<p^2>:"
338 WRITE (*,98) dip2_ave
339 WRITE (*,*) "error:"
340 WRITE (*,98) dip2_err
341

342 IF (nmoldef == 1) THEN
343 gk = dip_box2_ave / dip2_ave / REAL(nmol, KIND=dp)
344 gk_err = (dip_box2_err / dip_box2_ave + dip2_err / dip2_ave) * gk
345 WRITE (*,*) "kirkwood factor:"
346 WRITE (*,98) gk
347 WRITE (*,*) "error:"
348 WRITE (*,98) gk_err
349 WRITE (*,*) "Bjerrum length?"
350 READ (*,*) bjerelec
351 epsilon_r = 1.0_dp + 4.0_dp * pi / 3.0_dp * bjerelec * dip_box2_ave / volm
352 epsilon_r_err = 4.0_dp * pi / 3.0_dp * bjerelec * dip_box2_err / volm
353 WRITE (*,*) "epsilon_r:"
354 WRITE (*,98) epsilon_r
355 WRITE (*,*) "error:"
356 WRITE (*,98) epsilon_r_err
357 ENDIF
358

359 ! Close the trajectory file
(continues on next page)

4.3. Software related to Extended Software Development Workshops 345

E-CAM Documentation, Release 0.2

(continued from previous page)

360 CLOSE (ntraj)
361

362 !close output files
363 DO j = 1, nmoldef
364 CLOSE (nrtout+j-1)
365 END DO
366

367 DEALLOCATE (readint, readdata)
368 DEALLOCATE (namspe, nammol)
369 DEALLOCATE (xxx, yyy, zzz)
370 DEALLOCATE (ltp, ltm, mole)
371 DEALLOCATE (nmol, nbdmol)
372 DEALLOCATE (chg, molchg)
373 DEALLOCATE (dipx_box, dipy_box, dipz_box)
374 DEALLOCATE (dip2_box)
375 DEALLOCATE (sum_dipx_box, sum_dipy_box, sum_dipz_box)
376 DEALLOCATE (sum_dipx_box2 , sum_dipy_box2 , sum_dipz_box2)
377 DEALLOCATE (sum_dip2_box, sum_dip_box4, sum_dip2_box2)
378 DEALLOCATE (dipx_box_ave , dipy_box_ave , dipz_box_ave)
379 DEALLOCATE (dip2_ave, dip2_err)
380 DEALLOCATE (dipx_box2_ave , dipy_box2_ave , dipz_box2_ave)
381 DEALLOCATE (dipx_box_err , dipy_box_err , dipz_box_err)
382 DEALLOCATE (dip_box2_ave, dip_box2_err, dip_box4_ave)
383 DEALLOCATE (gk, gk_err)
384 DEALLOCATE (epsilon_r, epsilon_r_err)
385 DEALLOCATE (bndtbl)
386 DEALLOCATE (visit, from)
387

388 98 FORMAT(1p,9(e13.6,3x))
389

390 CONTAINS
391

392 SUBROUTINE check_molecules
393 !***
394 ! subroutine to check molecular content and labelling
395 !
396 ! authors: s. chiacchiera, February 2017
397 !

→˓***
→˓

398 IMPLICIT NONE
399 INTEGER i, j, k, tm, tp, imol, im, ibd
400 INTEGER mxmolsize
401 INTEGER, ALLOCATABLE :: molbeads (:,:)
402

403 mxmolsize = 0
404 DO i = 1, nmoldef
405 mxmolsize = MAX (nbdmol(i), mxmolsize)
406 END DO
407 ALLOCATE (molbeads (nmoldef, mxmolsize))
408 molbeads (:,:) = 0
409

410 imol = 0
411 ibd = 0
412 DO i = 1, nmoldef
413 DO j = 1, NINT (nmol(i))
414 imol = imol +1

(continues on next page)

346 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

415 DO k = 1, nbdmol(i)
416 ibd = ibd +1
417 tm = ltm (ibd)
418 tp = ltp (ibd)
419 im = mole (ibd)
420 IF (j==1) THEN
421 molbeads (i, k) = tp
422 ELSE
423 IF (molbeads (i, k) /= tp) THEN
424 WRITE (*,*) "ERROR: Problem with molecular content!"
425 STOP
426 ENDIF
427 ENDIF
428 IF (tm/=i.OR.im/=imol)THEN
429 WRITE (*,*) "ERROR: Problem with molecules labels!"
430 STOP
431 ENDIF
432 END DO
433 END DO
434 END DO
435 IF (imol/=nummol) THEN
436 WRITE (*,*) "ERROR: imol and nummol differ!"
437 STOP
438 ENDIF
439 DEALLOCATE (molbeads)
440 RETURN
441 END SUBROUTINE check_molecules
442

443 SUBROUTINE compute_charge_dipoles (dipx_box, dipy_box, dipz_box, dip2_box)
444 !***
445 ! subroutine to compute charge dipole moments
446 !
447 ! authors: m. a. seaton and s. chiacchiera, February 2017
448 !
449 ! input: xxx, yyy, zzz (at a given time step) and chg
450 ! input: visit and from (obtained using connect)
451 ! output: the x,y,z components of the total dipole, sum p_i^2/N_mol for each molecule
452 ! type (at a given time step)
453 !***
454 IMPLICIT NONE
455 INTEGER i, j, k, tm, tp, imol, ibd, count, ipr
456 REAL(KIND=dp), DIMENSION(nmoldef) :: dipx_box, dipy_box, dipz_box
457 REAL(KIND=dp), DIMENSION(nmoldef) :: dip2_box
458 REAL(KIND=dp) :: x, y, z, dx, dy, dz, xpre, ypre, zpre
459 REAL(KIND=dp) :: dipx, dipy, dipz, dip2
460 REAL(KIND=dp), DIMENSION(nmbeads) :: xabs, yabs, zabs
461

462 dipx_box (:) = 0._dp
463 dipy_box (:) = 0._dp
464 dipz_box (:) = 0._dp
465

466 dip2_box (:) = 0._dp
467

468 imol = 0
469 count = 0
470 ! xabs = 0._dp ! just to keep it clean
471 ! yabs = 0._dp

(continues on next page)

4.3. Software related to Extended Software Development Workshops 347

E-CAM Documentation, Release 0.2

(continued from previous page)

472 ! zabs = 0._dp
473

474 DO i = 1, nmoldef
475 tm = i
476 DO j = 1, NINT (nmol(i))
477 imol = imol + 1
478

479 dipx = 0._dp ! dipole of a SINGLE molecule
480 dipy = 0._dp
481 dipz = 0._dp
482

483 DO k = 1, nbdmol(i)
484 count = count + 1
485 ibd = visit (count)
486 ipr = from (count)
487

488 IF (ipr /= 0) THEN
489 xpre = xabs (ipr)
490 ypre = yabs (ipr)
491 zpre = zabs (ipr)
492 ELSE
493 IF (k == 1) THEN
494 xpre = 0._dp
495 ypre = 0._dp
496 zpre = 0._dp
497 ELSE
498 WRITE (*,*) "Unconnected molecule!"
499 STOP
500 ENDIF
501 ENDIF
502

503 tp = ltp (ibd)
504

505 dx = xxx (ibd) - xpre
506 dy = yyy (ibd) - ypre
507 dz = zzz (ibd) - zpre
508

509 dx = dx - dimx * ANINT (dx/dimx)
510 dy = dy - dimy * ANINT (dy/dimy)
511 dz = dz - dimz * ANINT (dz/dimz)
512

513 x = xpre + dx
514 y = ypre + dy
515 z = zpre + dz
516

517

518 dipx = dipx + x * chg (tp)
519 dipy = dipy + y * chg (tp)
520 dipz = dipz + z * chg (tp)
521

522 xabs (ibd) = x
523 yabs (ibd) = y
524 zabs (ibd) = z
525

526 END DO
527

528 dipx_box (tm) = dipx_box (tm) + dipx
(continues on next page)

348 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

529 dipy_box (tm) = dipy_box (tm) + dipy
530 dipz_box (tm) = dipz_box (tm) + dipz
531

532 dip2 = dipx * dipx + dipy * dipy + dipz * dipz
533

534 dip2_box (tm) = dip2_box (tm) + dip2
535

536 END DO
537 END DO
538

539 IF (imol/=nummol) THEN
540 WRITE (*,*) "ERROR: imol and nummol differ!"
541 STOP
542 ENDIF
543

544 RETURN
545 END SUBROUTINE compute_charge_dipoles
546

547 End PROGRAM gen_dipole
548 SUBROUTINE connect (nbeads, nbonds, bndtbl, mxmolsize, visit, from)
549 !**
550 ! Analyzes all the bonds (bndtbl) to obtain a schedule (visit, from)
551 ! to visit the beads so that each cluster is visited along a connected
552 ! path. "visit" gives the order to include beads, "from" gives the bead
553 ! to attach them to.
554 ! (Note: vocabulary from infection propagation used to move along
555 ! clusters)
556 !
557 ! author: s. chiacchiera, February 2017
558 ! amended: m. a. seaton, January 2021
559 !**
560 IMPLICIT none
561 INTEGER, INTENT (INOUT) :: bndtbl (nbonds,2)
562 INTEGER, INTENT (IN) :: nbeads, nbonds
563 INTEGER, INTENT (IN) :: mxmolsize
564 INTEGER :: ic, i, k, nn, nclu, nper, lab, ref, count
565 INTEGER, ALLOCATABLE :: firstnn (:), lastnn (:), deg (:)
566 INTEGER, ALLOCATABLE :: labnn (:)
567 INTEGER, ALLOCATABLE :: state (:)
568 INTEGER, ALLOCATABLE :: perlab (:), perref (:)
569 INTEGER, ALLOCATABLE :: nchist (:)
570 INTEGER, INTENT (OUT) :: visit (nbeads), from (nbeads)
571

572 ALLOCATE (firstnn (nbeads), lastnn (nbeads), deg (nbeads), labnn (2*nbonds))
573 ALLOCATE (state (nbeads))
574 ALLOCATE (perlab (nbeads), perref (nbeads))
575 ALLOCATE (nchist (mxmolsize))
576 !---
577 CALL organize (nbeads, nbonds, labnn, firstnn, lastnn, deg)
578 !---
579 state (:) = 0
580 nchist (:) = 0
581 visit (:) = 0
582 from (:) = 0
583 count = 0
584 !---
585 ic = 0

(continues on next page)

4.3. Software related to Extended Software Development Workshops 349

E-CAM Documentation, Release 0.2

(continued from previous page)

586 !---
587 DO WHILE (ic < nbeads) ! ic = label of bead used to "grow" a cluster
588 ic = ic + 1
589 IF(state (ic) /= 0) THEN
590 WRITE (*,*) "ERROR: labels are not as expected!"
591 STOP
592 END IF
593 nclu = 1
594 count = count + 1
595 visit (ic) = ic
596 IF (deg (ic) == 0) THEN
597 state (ic) = -1
598 IF (nclu <= mxmolsize) nchist (nclu) = nchist (nclu) +1
599 CYCLE
600 END IF
601 state (ic) = 1 ! ic is "infected"
602

603 ! nearest neighbours of ic are marked as "goint to be infected" -> a.k.a.
→˓perimeter

604 nper = 0
605 perlab (:) = 0
606 perref (:) = 0
607 DO k = firstnn (ic), lastnn (ic)
608 nn = labnn (k)
609 IF(state (nn) /= 0) THEN
610 WRITE (*,*) "ERROR: labels are not as expected!"
611 STOP
612 END IF
613 nper = nper + 1
614 perlab (nper) = nn !new bead in perimeter
615 perref (nper) = ic !its reference bead (origin of the link)
616 state (nn) = 2
617 END DO
618 state (ic) = 3 ! ic is "dead"
619

620 DO WHILE (nper > 0)
621 i = 1 ! pick a bead of "perimeter" to be analyzed
622 lab = perlab (i)
623 ref = perref (i)
624 perlab (i) = perlab (nper)
625 perref (i) = perref (nper)
626 nper = nper - 1
627 IF (state (lab) == 3) THEN
628 CYCLE
629 END IF
630 state (lab) = 1 ! "lab" is added to the cluster
631 nclu = nclu + 1
632 count = count + 1
633 visit (count) = lab
634 from (count) = ref
635

636 DO k = firstnn (lab), lastnn (lab) ! check nn of newly added
637 nn = labnn (k)
638 IF((state (nn) == 2) .OR. (state (nn) == 3)) CYCLE
639 nper = nper + 1
640 perlab (nper) = nn !new bead in perimeter
641 perref (nper) = lab !its reference bead (origin of the link)

(continues on next page)

350 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

642 state (nn) = 2
643 END DO
644 state (lab) = 3
645

646 END DO
647 nchist (nclu) = nchist (nclu) +1
648 ic = ic + nclu - 1 ! prepare ic for the next cluster
649 END DO
650 WRITE (*,*) "nchist: ", nchist
651 !---
652 DEALLOCATE (firstnn, lastnn, deg, labnn)
653 DEALLOCATE (state)
654 DEALLOCATE (perlab, perref)
655 DEALLOCATE (nchist)
656 RETURN
657 !---
658 CONTAINS
659 !---
660 SUBROUTINE organize (N, NL, labnn, firstnn, lastnn, deg)
661 !**
662 ! Analyzes the bonds (bndtbl) to obtain the degree (=number of bonds)
663 ! of each bead, and the nearest neighbours list.
664 ! N in the number of beads (vertices) and NL of bonds (links).
665 !
666 ! author: s. chiacchiera, February 2017
667 !**
668 IMPLICIT none
669 INTEGER, INTENT(IN) :: N, NL
670 INTEGER :: i,l,count_lab, i1,i2
671 INTEGER, DIMENSION (N), INTENT(OUT) :: deg
672 INTEGER, DIMENSION (N), INTENT(OUT) :: firstnn, lastnn
673 INTEGER, DIMENSION (2*NL), intent(OUT) :: labnn
674

675 deg(:)=0
676 firstnn(:)=0
677 lastnn(:)=0
678 labnn(:)=0
679

680 count_lab=0
681

682 DO i=1,N
683 DO l=1,NL
684 IF(bndtbl(l,1).EQ.i)THEN
685 deg(i)=deg(i)+1
686 count_lab=count_lab+1
687 labnn(count_lab)=bndtbl(l,2)
688 ENDIF
689 IF(bndtbl(l,2).EQ.i)THEN
690 deg(i)=deg(i)+1
691 count_lab=count_lab+1
692 labnn(count_lab)=bndtbl(l,1)
693 ENDIF
694 END DO
695 END DO
696

697 i1=1
698 i2=0

(continues on next page)

4.3. Software related to Extended Software Development Workshops 351

E-CAM Documentation, Release 0.2

(continued from previous page)

699 DO i=1,N
700 IF (deg (i)==0) CYCLE
701 firstnn(i)=i1
702 i2=i1+deg(i)-1
703 lastnn(i)=i2
704 i1=i2+1
705 END DO
706 RETURN
707

708 END SUBROUTINE organize
709 !---
710 END SUBROUTINE connect

Formatting the HISTORY files of DL_MESO_DPD

Software Technical Information

Language Fortran 2003

Licence BSD

Documentation Tool RST and LaTex-generated .pdf

Application Documentation Click to download the manual with more details

Relevant Training Material See the Testing section

• Purpose of Module

• Background Information

• Testing

• Source Code

Purpose of Module

This module format_history.f90 is a post-processing utility for DL_MESO_DPD, the Dissipative Particle
Dynamics (DPD) code from the DL_MESO package.

It converts the trajectory (HISTORY) file from unformatted to a human readable form, (optionally) including explana-
tory comments about all the quantities. This module is mainly for learning/checking purposes. The first aim is to help
the user to check that the system was prepared as intended (e.g., showing all the bead properties and initial positions,
all the bonds etc.). The idea is to use it on small systems when familiarizing with the structure of input files needed
for the simulation. Secondly, it can be used as a starting point for user-defined analyses of trajectories.

Background Information

The base code for this module is DL_MESO_DPD, the Dissipative Particle Dynamics code from the mesoscopic
simulation package DL_MESO, developed by M. Seaton at Daresbury Laboratory. This open source code is available

352 Chapter 4. Meso- and Multi-scale Modules

http://www.ccp5.ac.uk/DL_MESO
http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

from STFC under both academic (free) and commercial (paid) licenses. The module is to be used with DL_MESO in
its currently released version, version 2.7 (dating December 2018).

A version of the module that works with HISTORY files generated by the previous version of DL_MESO, version 2.6
(dating November 2015), can be found in the old-v2.6 directory.

Testing

The present module is compiled with the available Fortran 2003 compiler, e.g.:

gfortran -o format.exe format_history.f90

and the executable must be in the same directory of the HISTORY file to be analyzed. To test the module, run the
simulation with the toy input files given in the following. (Note that these files contain commented lines as suggestions
for further tests.) For the CONTROL file

Simple test

volume 3.0 3.0 3.0
temperature 1.0
cutoff 1.0

timestep 0.01
steps 6
equilibration steps 2
traj 2 2 0
stats every 2
stack size 2
print every 2
job time 100.0
close time 10.0

#surface shear y
#surface frozen x
#surface hard x

ensemble nvt mdvv

finish

and for the FIELD file

Simple test

SPECIES 3
A 1.0 0.0 1 0
B 1.0 0.0 0 0
C 1.0 0.0 0 0

MOLECULES 2
AB
nummols 1
beads 2
A 0.0 0.0 0.0
B 0.1 0.0 0.0
bonds 1
harm 1 2 5.0 0.0

(continues on next page)

4.3. Software related to Extended Software Development Workshops 353

E-CAM Documentation, Release 0.2

(continued from previous page)

finish
AC
nummols 1
beads 2
A 0.0 0.0 0.0
C 0.1 0.0 0.0
bonds 1
harm 1 2 3.0 0.0
finish

INTERACTIONS 3
A A dpd 25.0 1.0 4.5
B B dpd 25.0 1.0 4.5
C C dpd 25.0 1.0 4.5

#EXTERNAL
#shear 3.0 0.0 0.0

CLOSE

After analyzing the trajectories, for a serial run (i.e., on a single processor core) and for lcomm , lmcheck and
sorted all set to .TRUE., this output should be printed on the screen

Check of beads: i, ltp(i), ltm(i), mole(i)
1 1 0 0
2 1 1 1
3 2 1 1
4 1 2 2
5 3 2 2

Check of molecules: nammol(i), nbdmol(i), nbomol(i), nmol(i)
AB 2 1 1
AC 2 1 1
Total number of molecules = 2
Check of bonds: bndbtl(i,1), bndbtl(i,2)

2 3
4 5

and the HISTORY-F file should be

Simulation name:
Simple test
nspe, nmoldef, nusyst, nsyst, numbond

3 2 1 5 2
keytrj, srfx, srfy, srfz

0 0 0 0
SPECIES:
namspe, amass, rcii, chge, lfrzn
A 1.000 1.000 0.000 0
B 1.000 1.000 0.000 0
C 1.000 1.000 0.000 0
MOLECULES:
nammol
AB
AC
BEADS:
global, species, molecule, chain

(continues on next page)

354 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

1 1 0 0
2 1 1 1
3 2 1 1
4 1 2 2
5 3 2 2

BONDS:
extremes of the bond

2 3
4 5

--- TRAJECTORIES --- (key = 0)
mglobal, x, y, z
time, nbeads, dimx, dimy, dimz, shrdx, shrdy, shrdz

0.000 5 3.000 3.000 3.000 0.000 0.
→˓000 0.000
snapshot number: 1

1 -5.594619E-03 -1.752832E-03 6.889737E-03
2 -1.691781E-01 6.786290E-01 1.166801E-02
3 -2.345695E-01 7.399172E-01 -1.447126E-01
4 5.198776E-01 -8.222446E-01 1.038467E-02
5 4.631501E-01 -8.058678E-01 1.464801E-01

time, nbeads, dimx, dimy, dimz, shrdx, shrdy, shrdz
0.020 5 3.000 3.000 3.000 0.000 0.

→˓000 0.000
snapshot number: 2

1 -1.061544E-02 -6.284880E-03 1.390368E-02
2 -1.395560E-01 6.796778E-01 4.361174E-02
3 -2.443224E-01 7.728033E-01 -1.800995E-01
4 5.280036E-01 -8.191712E-01 -3.253643E-02
5 4.401757E-01 -8.383441E-01 1.858304E-01

time, nbeads, dimx, dimy, dimz, shrdx, shrdy, shrdz
0.040 5 3.000 3.000 3.000 0.000 0.

→˓000 0.000
snapshot number: 3

1 -1.483900E-02 -1.635085E-02 2.109335E-02
2 -1.083779E-01 6.830112E-01 8.086194E-02
3 -2.571191E-01 8.101380E-01 -2.211317E-01
4 5.390852E-01 -8.157553E-01 -8.230434E-02
5 4.149363E-01 -8.723621E-01 2.321906E-01

If the simulation is run in parallel, the particles may not necessarily be written to the HISTORY file in order of particle
index, but the module can sort the particles in each trajectory snapshot before printing to the HISTORY-F file.

Source Code

1 PROGRAM format_history
2 !***
3 !
4 ! module to format dl_meso HISTORY files
5 !
6 ! authors - m. a. seaton & s. chiacchiera, february 2017 (amended january 2021)
7 !
8 !**
9 IMPLICIT none

10 INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND (15, 307)
11 INTEGER, PARAMETER :: li = SELECTED_INT_KIND (12)

(continues on next page)

4.3. Software related to Extended Software Development Workshops 355

E-CAM Documentation, Release 0.2

(continued from previous page)

12 INTEGER, PARAMETER :: ntraj=10,nuser=5
13 INTEGER, PARAMETER :: endversion = 1
14

15 CHARACTER(80) :: text
16 CHARACTER(8), ALLOCATABLE :: namspe (:), nammol (:)
17

18 INTEGER, ALLOCATABLE :: ltp (:), ltm (:), mole (:), bndtbl (:,:)
19 INTEGER, ALLOCATABLE :: nbdmol (:), nbomol (:), readint (:), globindex (:)
20 INTEGER :: chain, imol, ioerror, i, k, nmoldef, numframe
21 INTEGER :: nspe, nbeads, nusyst, nsyst, global, species, molecule, numbond
22 INTEGER :: nummol, lfrzn, rnmol, keytrj, srfx, srfy, srfz
23 INTEGER :: bead1, bead2
24 INTEGER :: nform
25 INTEGER :: endver, Dlen, nstep, framesize, lend, leni
26 INTEGER(KIND=li) :: filesize, mypos, headerpos, currentpos, lend_li, leni_li,

→˓framesizeli, numbeadsli
27

28 REAL(KIND=dp), ALLOCATABLE :: nmol (:), readdata (:)
29 REAL(KIND=dp) :: dimx, dimy, dimz, shrdx, shrdy, shrdz
30 REAL(KIND=dp) :: amass, rcii, chge
31 REAL(KIND=dp) :: time
32

33 LOGICAL :: eof, lcomm, lmcheck, swapend, bigend, sorted
34

35 ! Switches for commenting, checking molecules and sorting particles in output
36

37 lcomm = .TRUE.
38 lmcheck = .TRUE.
39 sorted = .TRUE.
40

41 ! determine number of bytes for selected double precision kind
42 ! (the default SELECTED_REAL_KIND (15, 307) should return 8 bytes)
43

44 lend = STORAGE_SIZE (1.0_dp) / 8
45 leni = BIT_SIZE (1) / 8
46 lend_li = INT (lend, KIND=li)
47 leni_li = INT (leni, KIND=li)
48

49 ! check endianness of machine
50

51 bigend = (IACHAR(TRANSFER(1,"a"))==0)
52

53 ! Determine if HISTORY file exists, which endianness to use,
54 ! if type of real is correct
55

56 INQUIRE (file = 'HISTORY', EXIST = eof)
57 IF (.NOT. eof) THEN
58 PRINT *, "ERROR: cannot find HISTORY file"
59 STOP
60 END IF
61

62 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted', status
→˓= 'unknown')

63

64 swapend = .false.
65 READ (ntraj) endver, Dlen
66

(continues on next page)

356 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

67 IF (endver/=endversion) THEN
68 swapend = .true.
69 CLOSE (ntraj)
70 IF (bigend) THEN
71 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'little_endian')
72 ELSE
73 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'big_endian')
74 END IF
75 READ (ntraj) endver, Dlen
76 IF (endver/=endversion) THEN
77 PRINT *, "ERROR: corrupted HISTORY file or created with incorrect version

→˓of DL_MESO"
78 STOP
79 END IF
80 END IF
81

82 IF (Dlen/=lend) THEN
83 PRINT *, "ERROR: incorrect type of real number used in HISTORY file"
84 PRINT *, " recompile format_history.f90 with reals of ", Dlen, " bytes"
85 STOP
86 END IF
87

88 ! Open the output file
89 nform = ntraj + 1
90 OPEN (nform, file = 'HISTORY'//"-F", status = 'replace')
91

92 ! read file size, number of frames and timestep numbers
93

94 READ (ntraj) filesize, numframe, nstep
95

96 ! read the number of beads, molecules and bonds
97 ! Arrays are filled with names of particles and molecules: if checking

→˓molecules,
98 ! arrays for species, molecule types etc. also filled
99

100 READ (ntraj) text
101 READ (ntraj) nspe, nmoldef, nusyst, nsyst, numbond, keytrj, srfx, srfy, srfz
102

103 IF (lcomm) WRITE (nform,*) "# Simulation name:"
104 WRITE (nform,*) text
105

106 IF (lcomm) WRITE (nform,*) "# nspe, nmoldef, nusyst, nsyst, numbond"
107 WRITE (nform,*) nspe, nmoldef, nusyst, nsyst, numbond
108 IF (lcomm) WRITE (nform,*) "# keytrj, srfx, srfy, srfz"
109 WRITE (nform,*) keytrj, srfx, srfy, srfz
110

111 framesize = (keytrj+1) * 3
112 ALLOCATE (namspe (nspe), nammol (nmoldef), globindex (nsyst), readint (nsyst),

→˓readdata (framesize))
113 IF (lmcheck) THEN
114 ALLOCATE (ltp (1:nsyst), ltm (1:nsyst), mole (1:nsyst))
115 ALLOCATE (nmol (1:nmoldef), nbdmol (1:nmoldef), nbomol (1:nmoldef))
116 ALLOCATE (bndtbl (numbond, 2))
117 END IF
118

(continues on next page)

4.3. Software related to Extended Software Development Workshops 357

E-CAM Documentation, Release 0.2

(continued from previous page)

119 IF (lcomm) WRITE (nform,*) "# SPECIES:"
120 IF (lcomm) WRITE (nform,*) "# namspe, amass, rcii, chge, lfrzn"
121 DO i = 1, nspe
122 READ (ntraj) namspe (i), amass, rcii, chge, lfrzn
123 WRITE (nform,96) namspe (i), amass, rcii, chge, lfrzn
124 END DO
125

126 IF (nmoldef>0) THEN
127 IF (lcomm) WRITE (nform,*) "# MOLECULES:"
128 IF (lcomm) WRITE (nform,*) "# nammol"
129 DO i = 1, nmoldef
130 READ (ntraj) nammol (i)
131 WRITE (nform,*) nammol (i)
132 END DO
133 END IF
134

135 ! (if required) read and fill arrays with properties of beads and molecules
136

137 nummol = 0 ! counter for number of molecules
138

139 IF (lcomm) WRITE (nform,*) "# BEADS:"
140 IF (lcomm) WRITE (nform,*) "# global, species, molecule, chain"
141 IF (lmcheck) THEN
142 ! Build ltp, ltm, mole
143 DO i = 1, nsyst
144 READ (ntraj) global, species, molecule, chain
145 ltp (global) = species
146 ltm (global) = molecule
147 mole (global) = chain
148 nummol = MAX (nummol, chain)
149 WRITE (nform,*) global, species, molecule, chain
150 END DO
151 ELSE
152 DO i = 1, nsyst
153 READ (ntraj) global, species, molecule, chain
154 WRITE (nform,*) global, species, molecule, chain
155 END DO
156 END IF
157

158 IF (numbond>0) THEN
159 IF (lcomm) WRITE (nform,*) "# BONDS:"
160 IF (lcomm) WRITE (nform,*) "# extremes of the bond"
161 IF (lmcheck) THEN
162 ! Build bndtbl
163 DO i = 1, numbond
164 READ (ntraj) bead1, bead2
165 bndtbl (i, 1) = bead1
166 bndtbl (i, 2) = bead2
167 WRITE (nform,*) bead1, bead2
168 END DO
169 ELSE
170 DO i = 1, numbond
171 READ (ntraj) bead1, bead2
172 WRITE (nform,*) bead1, bead2
173 END DO
174 END IF
175 END IF

(continues on next page)

358 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

176

177 ! reached end of header: find current position in file
178

179 INQUIRE (unit=ntraj, POS=headerpos)
180 framesizeli = INT (framesize, KIND=li)
181 numbeadsli = INT (nsyst, KIND=li)
182

183 IF (lmcheck) THEN
184 ! determine numbers of molecules, beads and bonds per molecule type
185 nmol = 0.0_dp
186 nbdmol = 0
187 nbomol = 0
188 chain = 0
189 imol = 0 ! necessary to avoid out of bounds
190

191 DO i = 1, nsyst
192 IF (mole (i) /= chain) THEN
193 chain = mole (i)
194 imol = ltm (i)
195 nmol (imol) = nmol (imol) + 1.0_dp
196 END IF
197 IF (imol > 0) nbdmol (imol) = nbdmol (imol) + 1
198 END DO
199

200 DO i = 1, numbond
201 imol = ltm (bndtbl (i,1))
202 nbomol (imol) = nbomol (imol) + 1
203 END DO
204

205 DO i = 1, nmoldef
206 rnmol = NINT (nmol (i))
207 IF (rnmol>0) THEN
208 nbdmol (i) = nbdmol (i) / rnmol
209 nbomol (i) = nbomol (i) / rnmol
210 END IF
211 END DO
212

213 ! Write to std output the arrays built
214 WRITE (*,*) "# Check of beads: i, ltp(i), ltm(i), mole(i)"
215 DO i = 1, nsyst
216 WRITE(*,*) i, ltp (i), ltm (i), mole (i)
217 END DO
218

219 !Check of molecule beads and numbers
220 IF (nmoldef>0) THEN
221 WRITE (*,*) "# Check of molecules: nammol(i), nbdmol(i), nbomol(i),

→˓nmol(i)"
222 DO i = 1, nmoldef
223 WRITE (*,*) nammol (i), nbdmol (i), nbomol (i), NINT(nmol(i))
224 END DO
225 WRITE (*,*) "# Total number of molecules = ",nummol
226 END IF
227

228 ! Write to std output bndtbl
229 IF (numbond > 0) THEN
230 WRITE (*,*) "# Check of bonds: bndbtl(i,1), bndbtl(i,2)"
231 DO i = 1, numbond

(continues on next page)

4.3. Software related to Extended Software Development Workshops 359

E-CAM Documentation, Release 0.2

(continued from previous page)

232 WRITE (*,*) bndtbl (i,1), bndtbl (i,2)
233 END DO
234 END IF
235 END IF
236

237 ! Now read in trajectories
238

239 eof = .false.
240

241 IF (lcomm) WRITE (nform,*) "# --- TRAJECTORIES --- (key =", keytrj,")"
242 SELECT CASE (keytrj)
243 CASE (0)
244 IF (lcomm) WRITE (nform,*) "# mglobal, x, y, z"
245 CASE(1)
246 IF (lcomm) WRITE (nform,*) "# mglobal, x, y, z, vx, vy, vz"
247 CASE(2)
248 IF (lcomm) WRITE (nform,*) "# mglobal, x, y, z, vx, vy, vz, fx, fy, fz"
249 END SELECT
250

251 DO k = 1, numframe
252

253 currentpos = headerpos + INT (k-1, KIND=li) * ((7_li + numbeadsli *
→˓framesizeli) * lend_li + (1_li + numbeadsli) * leni_li)

254 READ (ntraj, POS=currentpos, IOSTAT=ioerror) time, nbeads, dimx, dimy, dimz,
→˓shrdx, shrdy, shrdz

255

256 IF (ioerror/=0) THEN
257 eof = .true.
258 IF (k==1) THEN
259 PRINT *, 'ERROR: cannot find trajectory data in HISTORY file'
260 STOP
261 END IF
262 EXIT
263 END IF
264

265 IF (lcomm) WRITE (nform,*) "# time, nbeads, dimx, dimy, dimz, shrdx, shrdy,
→˓shrdz"

266 WRITE (nform,98) time, nbeads, dimx, dimy, dimz, shrdx, shrdy, shrdz
267

268 IF (lcomm) WRITE (nform,*) "# snapshot number:", k
269

270 IF (sorted) THEN
271

272 READ (ntraj) readint (1:nbeads)
273 CALL quicksort_integer_indexed (readint, 1, nbeads, globindex)
274 DO i = 1, nbeads
275 global = globindex (i)
276 mypos = currentpos + leni_li * (1_li + numbeadsli) + (7_li + INT (global-

→˓1, KIND=li) * framesizeli) * lend_li
277 READ (ntraj, POS=mypos) readdata (1:framesize)
278 WRITE (nform,99) global, readdata (1:framesize)
279 END DO
280

281 ELSE
282

283 READ (ntraj) globindex (1:nbeads)
284 DO i = 1, nbeads

(continues on next page)

360 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

285 READ (ntraj, POS=mypos) readdata (1:framesize)
286 WRITE (nform,99) global, readdata (1:framesize)
287 END DO
288

289 END IF
290

291 END DO
292

293 ! Close the trajectory file
294 CLOSE (ntraj)
295

296 ! close the output file
297 CLOSE (nform)
298

299 DEALLOCATE (readint, readdata, globindex)
300 DEALLOCATE (namspe, nammol)
301 IF (lmcheck) DEALLOCATE (ltp, ltm, mole, nmol, nbdmol, bndtbl, nbomol)
302

303 99 FORMAT(I10,2x,1p,9(e13.6,3x))
304 98 FORMAT(f10.3,3x,1x,I10,6(f10.3,3x))
305 96 FORMAT(A9,3x,3(f10.3,3x),I2)
306

307 CONTAINS
308

309 SUBROUTINE quicksort_integer_indexed (list, stride, n, indices)
310

311 !**
312 !
313 ! sort integers in array into numerical order, recording original
314 ! positions of values (routine to prepare indices array)
315 !
316 ! copyright ukri stfc daresbury laboratory
317 ! authors - m. a. seaton august 2013
318 !
319 !**
320

321 INTEGER, INTENT (INOUT) :: list (:)
322 INTEGER, INTENT (IN) :: stride, n
323 INTEGER, INTENT (OUT) :: indices (:)
324 INTEGER :: i
325

326 DO i = 1, n
327 indices (i) = i
328 END DO
329

330 CALL qsort_integer (list, indices, stride, 1, n)
331

332 END SUBROUTINE quicksort_integer_indexed
333

334 RECURSIVE SUBROUTINE qsort_integer (list, index, stride, low, high)
335

336 !**
337 !
338 ! sort integers in array into numerical order, recording original
339 ! positions of values
340 !
341 ! copyright ukri stfc daresbury laboratory

(continues on next page)

4.3. Software related to Extended Software Development Workshops 361

E-CAM Documentation, Release 0.2

(continued from previous page)

342 ! authors - m. a. seaton august 2013
343 !
344 !**
345

346 INTEGER, INTENT (INOUT) :: list (:), index (:)
347 INTEGER, INTENT (IN) :: low, high
348 INTEGER, INTENT (IN) :: stride
349 INTEGER :: i, j, k, reference, temp
350

351 IF (high < low + 6) THEN
352

353 ! resort to bubble sort for very small lists (5 items or fewer)
354

355 DO i = low, high - 1
356 DO j = i+1, high
357 IF (list (stride * (i - 1) + 1) > list (stride * (j - 1) + 1)) THEN
358 DO k = 1, stride
359 temp = list (stride * (i - 1) + k)
360 list (stride * (i - 1) + k) = list (stride * (j - 1) + k)
361 list (stride * (j - 1) + k) = temp
362 END DO
363 temp = index (i)
364 index (i) = index (j)
365 index (j) = temp
366 END IF
367 END DO
368 END DO
369

370 ELSE
371

372 ! apply partition-based sort
373

374 reference = list (stride * ((low+high)/2 - 1) + 1)
375 i = low - 1
376 j = high + 1
377 DO
378 DO
379 i = i + 1
380 IF (list (stride * (i-1) + 1) >= reference) EXIT
381 END DO
382 DO
383 j = j - 1
384 IF (list (stride * (j-1) + 1) <= reference) EXIT
385 END DO
386 IF (i < j) THEN
387 DO k = 1, stride
388 temp = list (stride * (i-1) + k)
389 list (stride * (i-1) + k) = list (stride * (j-1) + k)
390 list (stride * (j-1) + k) = temp
391 END DO
392 temp = index (i)
393 index (i) = index (j)
394 index (j) = temp
395 ELSE IF (i == j) THEN
396 i = i + 1
397 EXIT
398 ELSE

(continues on next page)

362 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

399 EXIT
400 END IF
401 END DO
402

403 IF (low<j) CALL qsort_integer (list, index, stride, low, j)
404 IF (i<high) CALL qsort_integer (list, index, stride, i, high)
405

406 END IF
407

408 END SUBROUTINE qsort_integer
409

410 END PROGRAM format_history

Autocorrelation functions of charge dipole moments in DL_MESO_DPD

Software Technical Information

Language Fortran 2003

Licence BSD

Documentation Tool RST and LaTex-generated .pdf file

Application Documentation Click to download the manual with more details

Relevant Training Material See the Testing section

• Purpose of Module

• Background Information

• Testing

• Source Code

Purpose of Module

This module, gen_dipoleaf.f90, is a generalization of the dipoleaf.f90 post-processing utility of
DL_MESO_DPD, the Dissipative Particle Dynamics (DPD) code from the DL_MESO package.

It processes the trajectory (HISTORY) files to obtain the charge dipole moments of all the (neutral) molecules in the
system, and subsequently computes the dipole autocorrelation functions (DAFs) for each molecule type. It produces a
file DIPAFDAT containing both the un-normalized and normalized DAFs, and, optionally, a file DIPAFFFT containing
the Fourier transform (FT) of the latter.

The module can be applied to systems including molecules with a generic charge structure, as long as each molecule
is neutral (otherwise the charge dipole moment would be frame-dependent)1.

1 Disambiguation on the concept of molecule. In DL_MESO a defined molecule is a set of beads that can be bonded together or not. For the
purpose of this module it is required that each molecule is a connected cluster (via stretching bonds). In fact, this - together with the reasonable
assumption that each stretching bond cannot be stretched to more than half the system linear size - allows us to univocally define the charge dipole
moment of each molecule.

4.3. Software related to Extended Software Development Workshops 363

http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

CAVEAT: this module only analyzes molecular trajectories. If a charged molecule is present, an error message will
be given, while unbonded charges will not be detected and erroneous results may be obtained. Therefore please keep
in mind to not apply this module to systems with unbonded charges.

The charge dipole moment of a neutral molecule is 𝑝𝑚𝑜𝑙 =
∑︀

𝑖∈𝑚𝑜𝑙 𝑞𝑖�⃗�𝑖 where �⃗�𝑖 are the bead positions and 𝑞𝑖 their
charges. The total charge dipole moment of the simulated volume 𝑉 is 𝑃 =

∑︀
𝑚𝑜𝑙∈𝑉 𝑝𝑚𝑜𝑙. If more than one molecular

species are present, one can split 𝑃 into the different species contributions: 𝑃 =
∑︀𝑛𝑚𝑜𝑙𝑑𝑒𝑓

𝑗=1 𝑃𝑗 .

Given a scalar quantity A, its non-normalized autocorrelation function (AF) is 𝐶𝐴𝐴(𝑡) = ⟨𝐴(0)𝐴(𝑡)⟩, where ⟨. . . ⟩
indicates an average over trajectories. The normalized one is 𝑐𝐴𝐴(𝑡) = ⟨𝐴(0)𝐴(𝑡)⟩

⟨𝐴(0)𝐴(0)⟩ = 𝐶𝐴𝐴(𝑡)
𝐶𝐴𝐴(0)

2.

Here for the 𝑗 -th molecular species we replace 𝐴 with 𝑃𝑗 , and the product with a scalar product. In this case the
average over trajectories translates into a sum over different time origins.

The output file DIPAFDAT contains the DAFs for each molecular species and, at the end of the file, the DAF for the
system total charge dipole moment 𝑃 . The output file DIPAFFFT contains the FT of these functions, in the same
order.

More in detail, the header of the file DIPAFDAT contains the simulation title and a line with the number of snapshots in
HISTORY and of those used for the AFs (naf). Then a block follows for each molecule type, started by the {molecule
name}, then three columns of data, 𝑡, 𝐶𝑃𝑃 , 𝑐𝑃𝑃 . It is intended that in any block only the contribution to 𝑃 from a
given species is used. The last block is called {all species} and refers to the full system charge dipole moment.

The header of the file DIPAFFFT is as for DIPAFDAT (notice that the number of points for the FT is also set equal
to naf). Then a block follows for each molecule type, started by the molecule name, then three columns of data,
𝜔,ℜ𝑒[𝑐𝑃𝑃 (𝜔)],ℑ𝑚[𝑐𝑃𝑃 (𝜔)], where 𝑐 is the discrete FT of 𝑐(𝑡).

Possible uses of the output file are: to analyze it to obtain the decay time of autocorrelations, which can be used
to define an efficient sampling of the simulation; to compare it with the analogous microscopic one obtained for
individual molecules (see Autocorrelation functions of individual charge dipole moments in DL_MESO_DPD).

Background Information

The base code for this module is DL_MESO_DPD, the Dissipative Particle Dynamics code from the mesoscopic
simulation package DL_MESO, developed by M. Seaton at Daresbury Laboratory. This open source code is available
from STFC under both academic (free) and commercial (paid) licenses. The module is to be used with DL_MESO in
its most recently released version, version 2.7 (dating December 2018).

A variant of this module for use with a previous version of DL_MESO, version 2.6 (dating November 2015), can be
found in the old-v2.6 directory3.

The present module also requires the library FFTW (version 3.x) to be installed.

Testing

The present module gen_dipoleaf.f90 is compiled with the available Fortran 2003 compiler, e.g.:

gfortran -o gen_dipoleaf.exe gen_dipoleaf.f90 -I/usr/local/include -L/usr/
local/lib -lfftw3 -lm

where -I indicates the location of the FFTW include file fftw3.f03 and -L points to the directory containing the FFTW
library files. The above command gives the most likely locations for these files, although these may need to be adjusted
if FFTW has been installed somewhere else on your machine.

2 M. P. Allen and D. J. Tildesley, “Computer simulation of liquids”, Oxford University Press, Oxford (1987).
3 A small change to specifying charge smearing schemes and lengths in CONTROL files has been made since version 2.6: the old-v2.6

folder includes the CONTROL file for the test shown here that will work with this version of DL_MESO.

364 Chapter 4. Meso- and Multi-scale Modules

http://www.ccp5.ac.uk/DL_MESO
http://www.fftw.org/

E-CAM Documentation, Release 0.2

The executable must be in the same directory as the HISTORY file to be analyzed. The user is asked to provide the
maximum number of snapshots to be used for the AFs (naf) and a switch for the Fourier transform: 1 for yes, 0 (or
any other integer) for no.

To input these parameters one can either enter them from the keyboard or write them into a text file (say, input.txt),
one per line in the right order, and run the program in this way:

gen_dipoleaf.exe < input.txt

Test: water in oil

Test case: a dimer solvent

Here we describe a physical system in which the software modules dealing with charge dipole moments in DPD sim-
ulations can be tested. It is a polarizable fluid made of harmonically bonded dimers (+𝑞,−𝑞), pictorially represented
on the left (not in scale). Fixing appropriately the partial charge 𝑞 and the Bjerrum length 𝑙𝐵 , this system mimics water
in an oil background, as long as the dielectric properties are concerned.

We recall that the electric permittivity is 𝜖0 for vacuum, and 𝜖 < 𝜖0 for a medium. The medium effect can be split
into a background and a relative term 𝜖/𝜖0 = 𝜖𝑏𝜖𝑟. The background is constant and uniform, whereas the explicit
term is due to dynamic microscopic objects (dimers in this case) which carry a charge dipole moment. The strength of
electrostatic interactions in a background is set by the bare Bjerrum length 𝑙𝐵 = 𝑒2/(4𝜋𝜖0𝜖𝑏𝑘𝐵𝑇). On the other hand,

from linear response theory, the bulk value of the relative permittivity is 𝜖𝑟 = 1 +
⟨𝑃 2⟩�⃗�=0⃗

3𝜖0𝜖𝑏 𝑘𝐵𝑇 𝑉 , where tin-foil boundary
conditions are assumed.

Two types of beads are present in the simulation, solp and solm, the solvent positive and negative partial charges,
respectively. We fix the bare Bjerrum length 𝑙𝐵 = 42 (appropriate for oil1), the repulsion parameter 𝐴 = 25, the
harmonic spring constant 𝑘 = 5, the bead density 𝜌 = 3, the partial charges |𝑞| = 0.46 and the Gaussian smearing
length 𝜎 = 0.5. All quantities are given in DPD units, where 𝑘𝐵𝑇 = 1, 𝑟𝑐 = 1 and 𝑚 = 1. This fluid has a relative
permittivity 𝜖𝑟 ≃ 40, as can be checked using the gen_dipole.f90 utility. This value is compatible with the ratio
of water and oil permittivities 𝜖𝑤𝑎𝑡𝑒𝑟/𝜖𝑜𝑖𝑙 ≃ 40.

The FIELD file defining the composition and interactions for a system of volume 𝑉 = 64 is

DL_MESO charged harmonic dimers with dpd repulsion

SPECIES 2
solp 1.0 0.46 0
solm 1.0 -0.46 0

MOLECULES 1
DIMER
nummols 96
beads 2
solp 0.0 0.0 0.0
solm 0.1 0.0 0.0
bonds 1
harm 1 2 5.0 0.0

(continues on next page)

1 Notice that the physical length scale is set choosing 𝑟𝑐: if we choose 𝑟𝑐 = 0.646𝑛𝑚 (appropriate to match water density at room temperature
if 𝑁𝑚 = 3, i.e., one bead represents three water molecules), the Bjerrum length of oil in DPD units is 𝑙𝐵 = 27𝑛𝑚 ≃ 42𝑟𝑐, hence the value given
above for the oil background.

4.3. Software related to Extended Software Development Workshops 365

E-CAM Documentation, Release 0.2

(continued from previous page)

finish

INTERACTIONS 3
solp solp dpd 25.0 1.0 4.5
solm solm dpd 25.0 1.0 4.5
solp solm dpd 25.0 1.0 4.5

CLOSE

As a test, we suggest considering a fluid made of harmonically bonded dimers (+𝑞,−𝑞). Appropriately fixing the
partial charge 𝑞 and the Bjerrum length 𝑙𝐵 , this system mimics water in an oil background as far as the dielectric
properties are concerned. For more details about this model, please see the page Test case: a dimer solvent.

Run DL_MESO_DPD using the following CONTROL file:

DL_MESO charged harmonic dimers with dpd repulsion

volume 64.0
temperature 1.0
cutoff 1.0

timestep 0.01
steps 70000
equilibration steps 20000
traj 20000 10
stats every 100
stack size 100
print every 100
job time 7200.0
close time 10.0

ensemble nvt mdvv

ewald sum 1.0 5 5 5
bjerrum 42.0
smear gauss
smear length 0.5 equal

finish

and the FIELD file:

DL_MESO charged harmonic dimers with dpd repulsion

SPECIES 2
solp 1.0 0.46 0
solm 1.0 -0.46 0

MOLECULES 1
DIMER
nummols 96
beads 2
solp 0.0 0.0 0.0
solm 0.1 0.0 0.0
bonds 1
harm 1 2 5.0 0.0

(continues on next page)

366 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

finish

INTERACTIONS 3
solp solp dpd 25.0 1.0 4.5
solm solm dpd 25.0 1.0 4.5
solp solm dpd 25.0 1.0 4.5

CLOSE

Analyzing the HISTORY file with gen_dipoleaf.exe choosing naf=100, i.e., using this input.txt:

100
1

this output is printed to the standard output:

nchist: 0 96
Number of time steps in autocorrelation profile?

100
switch for FFT computation? (1=yes, 0 or any other integer=no)

1

The first line shows the histogram of cluster sizes: in this case, it correctly gives 96 molecules of two beads. Since
internally the module checks that each molecule is a connected cluster1, this line should always give a histogram with
the molecule sizes (shown up to the maximum number of beads per molecule).

The DIPAFDAT file is (only the first fifteen lines are shown):

DL_MESO charged harmonic dimers with dpd repulsion
5001 100

DIMER
0.000000E+00 1.462829E+01 1.000000E+00
1.000000E-01 1.403865E+01 9.596923E-01
2.000000E-01 1.258271E+01 8.601627E-01
3.000000E-01 1.074853E+01 7.347772E-01
4.000000E-01 8.870221E+00 6.063746E-01
5.000000E-01 7.113151E+00 4.862601E-01
6.000000E-01 5.559272E+00 3.800358E-01
7.000000E-01 4.250179E+00 2.905452E-01
8.000000E-01 3.187677E+00 2.179119E-01
9.000000E-01 2.349055E+00 1.605831E-01

and the DIPAFFFT file is (only the first fifteen lines are shown):

DL_MESO charged harmonic dimers with dpd repulsion
5001 100

DIMER
0.000000E+00 5.757016E+00 0.000000E+00
6.283185E-01 5.682940E+00 -1.682430E+00
1.256637E+00 4.084017E+00 -2.585684E+00
1.884956E+00 3.921155E+00 -3.116275E+00
2.513274E+00 3.381181E+00 -3.800208E+00
3.141593E+00 2.320091E+00 -3.074025E+00

(continues on next page)

4.3. Software related to Extended Software Development Workshops 367

E-CAM Documentation, Release 0.2

(continued from previous page)

3.769911E+00 1.751324E+00 -3.126105E+00
4.398230E+00 1.443640E+00 -2.653086E+00
5.026548E+00 1.105522E+00 -2.423820E+00
5.654867E+00 9.472693E-01 -2.056408E+00

Below we show a plot of the normalized AF ⟨𝑃 (0)𝑃 (𝑡)⟩
⟨𝑃 (0)𝑃 (0)⟩

(obtained using the first and third columns of DIPAFDAT)

Source Code

1 PROGRAM gen_dipoleaf
2 !***
3 ! module to compute autocorrelation functions of charge dipole moments in DL_MESO_DPD
4 !
5 ! authors: m. a. seaton and s. chiacchiera, March 2017 (amended August 2017, January
6 ! 2021)
7 !

→˓***
→˓

8 USE, INTRINSIC :: iso_c_binding
9 IMPLICIT none

10 INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND (15, 307)
11 INTEGER, PARAMETER :: li = SELECTED_INT_KIND (12)
12 INTEGER, PARAMETER :: ntraj=10
13 INTEGER, PARAMETER :: endversion = 1
14 REAL(KIND=dp), PARAMETER :: pi=3.141592653589793_dp
15

16 CHARACTER(80) :: text
17 CHARACTER(8), ALLOCATABLE :: namspe (:), nammol (:)
18

19 INTEGER, ALLOCATABLE :: ltp (:), ltm (:), mole (:), bndtbl (:,:)
20 INTEGER, ALLOCATABLE :: nbdmol (:), readint (:)
21 INTEGER, ALLOCATABLE :: visit (:), from (:)
22 INTEGER :: nrtout
23 INTEGER :: chain, imol, ioerror, i, numtraj, j, k, l, nmoldef, ibond, nbdmolmx
24 INTEGER :: nspe, nbeads, nusyst, nmbeads, nsyst, numbond, global, species,

→˓molecule
25 INTEGER :: nummol, lfrzn, rnmol, keytrj, srfx, srfy, srfz
26 INTEGER :: naf, nsamp, n1
27 INTEGER :: endver, Dlen, nstep, framesize, lend, leni
28 INTEGER(KIND=li) :: filesize, mypos, currentpos, lend_li, leni_li, framesizeli,

→˓numbeadsli
29

30 REAL(KIND=dp), ALLOCATABLE :: xxx (:), yyy (:), zzz (:), readdata (:)
31 REAL(KIND=dp), ALLOCATABLE :: nmol (:), chg (:), molchg (:)

(continues on next page)

368 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

32 REAL(KIND=dp), ALLOCATABLE :: dipx_box (:), dipy_box (:), dipz_box (:)
33 REAL(KIND=dp), ALLOCATABLE :: dipdata (:,:,:), dipdata_box (:,:), corrdata (:)
34 REAL(KIND=dp) :: dimx, dimy, dimz, shrdx, shrdy, shrdz
35 REAL(KIND=dp) :: amass, rcii
36 REAL(KIND=dp) :: time
37 REAL(KIND=dp) :: domega, dt, time0
38 REAL(KIND=dp) :: dx0, dy0, dz0
39

40 INTEGER :: nftpts
41 COMPLEX(C_DOUBLE_COMPLEX), ALLOCATABLE :: fftdata (:)
42

43 LOGICAL :: eof, lfft, swapend, bigend
44

45 ! determine number of bytes for selected double precision and integer kinds
46 ! (the default SELECTED_REAL_KIND (15, 307) should return 8 bytes)
47

48 lend = STORAGE_SIZE (1.0_dp) / 8
49 leni = BIT_SIZE (1) / 8
50 lend_li = INT (lend, KIND=li)
51 leni_li = INT (leni, KIND=li)
52

53 ! check endianness of machine
54

55 bigend = (IACHAR(TRANSFER(1,"a"))==0)
56

57 ! determine if HISTORY file exists, which endianness to use,
58 ! if type of real is correct
59

60 INQUIRE (file = 'HISTORY', EXIST = eof)
61 IF (.NOT. eof) THEN
62 PRINT *, "ERROR: cannot find HISTORY file"
63 STOP
64 END IF
65

66 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted', status
→˓= 'unknown')

67

68 swapend = .false.
69 READ (ntraj) endver, Dlen
70

71 IF (endver/=endversion) THEN
72 swapend = .true.
73 CLOSE (ntraj)
74 IF (bigend) THEN
75 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'little_endian')
76 ELSE
77 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'big_endian')
78 END IF
79 READ (ntraj) endver, Dlen
80 IF (endver/=endversion) THEN
81 PRINT *, "ERROR: corrupted HISTORY file or created with incorrect version

→˓of DL_MESO"
82 STOP
83 END IF
84 END IF

(continues on next page)

4.3. Software related to Extended Software Development Workshops 369

E-CAM Documentation, Release 0.2

(continued from previous page)

85

86 IF (Dlen/=lend) THEN
87 PRINT *, "ERROR: incorrect type of real number used in HISTORY file"
88 PRINT *, " recompile gen_dipoleaf.f90 with reals of ", Dlen, " bytes"
89 STOP
90 END IF
91

92 ! read file size, number of frames and timestep numbers
93

94 READ (ntraj) filesize, numtraj, nstep
95

96 ! Read where the number of beads, molecules and bonds are determined
97 ! Arrays are filled with names of particles and molecules
98

99 READ (ntraj) text
100

101 READ (ntraj) nspe, nmoldef, nusyst, nsyst, numbond, keytrj, srfx, srfy, srfz
102

103 IF (numbond==0) THEN
104 PRINT *, 'ERROR: no molecules in trajectory data!'
105 STOP
106 END IF
107

108 IF (srfx>1 .OR. srfy>1 .OR. srfz>1) THEN
109 WRITE (*,*) "ERROR: Hard walls, electrostatics not implemented in DL_MESO_

→˓DPD yet!"
110 STOP
111 END IF
112

113 IF (srfx==1 .OR. srfy==1 .OR. srfz==1) THEN
114 WRITE (*,*) "ERROR: Systems under shear not yet implemented!"
115 STOP
116 END IF
117

118 framesize = (keytrj+1) * 3
119 ALLOCATE (readint (1:nsyst), readdata (1:framesize))
120

121 ! get number of beads to be tracked when reading trajectory file (molecular beads)
122 nmbeads = nsyst - nusyst
123

124 ALLOCATE (namspe (nspe), nammol (nmoldef))
125 ALLOCATE (xxx (1:nmbeads), yyy (1:nmbeads), zzz (1:nmbeads))
126 ALLOCATE (ltp (1:nmbeads), ltm (1:nmbeads), mole (1:nmbeads))
127 ALLOCATE (nmol (1:nmoldef), nbdmol (1:nmoldef))
128 ALLOCATE (chg (nspe))
129 ALLOCATE (bndtbl (numbond, 2))
130 ALLOCATE (visit (nmbeads), from (nmbeads))
131

132 DO i = 1, nspe
133 READ (ntraj) namspe (i), amass, rcii, chg (i), lfrzn
134 END DO
135

136 DO i = 1, nmoldef
137 READ (ntraj) nammol (i)
138 END DO
139

140 ! reading of bead species and molecule types
(continues on next page)

370 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

141

142 nummol = 0 !counter for number of molecules
143 ibond = 0 !counter for bonds
144

145 DO i = 1, nsyst
146 READ (ntraj) global, species, molecule, chain
147 IF (global>nusyst .AND. global<=nsyst) THEN
148 ltp (global-nusyst) = species
149 ltm (global-nusyst) = molecule
150 mole (global-nusyst) = chain
151 nummol = MAX (nummol, chain)
152 END IF
153 END DO
154

155 ! reading of bond tables
156

157 IF (numbond>0) THEN
158 DO i = 1, numbond
159 READ (ntraj) bndtbl (i, 1), bndtbl (i, 2)
160 END DO
161 END IF
162

163 bndtbl = bndtbl - nusyst
164

165 ! reached end of header: find current position in file
166

167 INQUIRE (unit=ntraj, POS=currentpos)
168

169 ! find timestep size from times in first two frames
170

171 framesizeli = INT (framesize, KIND=li)
172 numbeadsli = INT (nsyst, KIND=li)
173

174 READ (ntraj, IOSTAT=ioerror, POS=currentpos) time0
175 mypos = currentpos + (numbeadsli + 1_li) * leni_li + (framesizeli * numbeadsli

→˓+ 7_li) * lend_li
176 READ (ntraj, IOSTAT=ioerror, POS=mypos) time
177

178 dt = time - time0
179

180 ! determine numbers of molecules and beads per molecule type
181 nmol = 0.0_dp
182 nbdmol = 0
183 chain = 0
184 imol = 0 !necessary to avoid out of bounds
185

186 DO i = 1, nmbeads
187 IF (mole (i) /= chain) THEN
188 chain = mole (i)
189 imol = ltm (i)
190 nmol (imol) = nmol (imol) + 1.0_dp
191 END IF
192 IF (imol > 0) nbdmol (imol) = nbdmol (imol) + 1
193 END DO
194

195 DO i = 1, nmoldef
196 rnmol = NINT (nmol (i))

(continues on next page)

4.3. Software related to Extended Software Development Workshops 371

E-CAM Documentation, Release 0.2

(continued from previous page)

197 IF (rnmol>0) THEN
198 nbdmol (i) = nbdmol (i) / rnmol
199 END IF
200 END DO
201

202 nbdmolmx = MAXVAL (nbdmol (1:nmoldef))
203

204 ! obtain connectivity information (needed only once)
205 CALL connect (nmbeads, numbond, bndtbl, nbdmolmx, visit, from)
206

207 !Checking for charge neutrality of all molecules
208 ALLOCATE (molchg (nummol))
209

210 molchg (:) = 0._dp
211

212 DO i = 1, nmbeads
213 imol = mole (i)
214 molchg (imol) = molchg (imol) + chg (ltp (i))
215 END DO
216

217 DO i = 1, nummol
218 IF (ABS (molchg (i)) > 1.0e-16_dp) THEN
219 WRITE (*,*) "molecule number",i," is not neutral! (The dipole moment is

→˓frame-dependent)"
220 WRITE (*,*) "its charge is=", molchg (i)
221 WRITE (*,*) "its type is=", nammol (i)
222 STOP
223 ENDIF
224 END DO
225

226 CALL check_molecules !checks that beads are labelled as expected
227

228 ! Get the maximum number of time steps for autocorrelation
229 WRITE (*,*) "Number of time steps in autocorrelation profile? "
230 READ (*,*) naf
231 IF (naf<1 .OR. naf>numtraj) naf = numtraj
232

233 ! Get the switch for FFT computation
234 WRITE (*,*) "switch for FFT computation? (1=yes, 0 or any other integer=no)"
235 READ (*,*) n1
236 lfft = (n1 == 1)
237

238 !reading trajectories and computing charge dipole moments
239 ALLOCATE (dipdata (4, nmoldef, numtraj))
240 ALLOCATE (dipx_box (nmoldef), dipy_box (nmoldef), dipz_box (nmoldef))
241

242 eof = .false.
243

244 DO k = 1, numtraj
245

246 mypos = currentpos + INT (k-1, KIND=li) * ((numbeadsli + 1_li) * leni_li +
→˓(framesizeli * numbeadsli + 7_li) * lend_li)

247 READ (ntraj, POS = mypos, IOSTAT=ioerror) time, nbeads, dimx, dimy, dimz,
→˓shrdx, shrdy, shrdz

248

249 IF (ioerror/=0) THEN
250 eof = .true.

(continues on next page)

372 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

251 IF (k==1) THEN
252 PRINT *, 'ERROR: cannot find trajectory data in HISTORY files'
253 STOP
254 END IF
255 EXIT
256 END IF
257

258 READ (ntraj) readint (1:nsyst)
259 DO i = 1, nsyst
260 global = readint (i)
261 READ (ntraj) readdata (1:framesize)
262 IF (global>nusyst .AND. global<=nsyst) THEN
263 xxx (global-nusyst) = readdata (1)
264 yyy (global-nusyst) = readdata (2)
265 zzz (global-nusyst) = readdata (3)
266 END IF
267 END DO
268

269 CALL compute_charge_dipoles (dipx_box, dipy_box, dipz_box)
270

271 ! the dipole components are stored for all the snapshots
272 DO j = 1, nmoldef
273 dipdata (1, j, k) = dipx_box (j)
274 dipdata (2, j, k) = dipy_box (j)
275 dipdata (3, j, k) = dipz_box (j)
276 dipdata (4, j, k) = time
277 END DO
278

279 END DO ! end of loop over trajectories
280

281 IF (k <= numtraj) THEN
282 WRITE (*,*) "ERROR: problem with the number of snapshots!"
283 STOP
284 END IF
285

286 ! Close the trajectory file
287 CLOSE (ntraj)
288

289 nsamp = numtraj - naf + 1
290

291 ALLOCATE (corrdata (naf))
292

293 ! define FFT size if needed
294 IF (lfft) THEN
295 nftpts = naf ! modify here to change the size of the DFT
296 domega = 2.0_dp * pi / (dt * REAL(nftpts, KIND=dp))
297 ALLOCATE (fftdata (nftpts))
298 END IF
299

300 ! Open output file, compute the autocorrelation and write it there
301 nrtout = ntraj + 1
302

303 IF (numtraj>0) THEN
304

305 OPEN (nrtout, file='DIPAFDAT', status='replace')
306 WRITE (nrtout, '(a80)') text
307 WRITE (nrtout, '(2i10)') numtraj,naf

(continues on next page)

4.3. Software related to Extended Software Development Workshops 373

E-CAM Documentation, Release 0.2

(continued from previous page)

308 WRITE (nrtout, '(/)')
309

310 ! Open the FT otuput file if needed
311 IF (lfft) THEN
312 OPEN (nrtout+1, file='DIPAFFFT', status='replace')
313 WRITE (nrtout+1, '(a80)') text
314 WRITE (nrtout+1, '(2i10)') numtraj,nftpts
315 WRITE (nrtout+1, '(/)')
316 END IF
317

318 DO j = 1, nmoldef
319 corrdata = 0.0_dp
320 WRITE (nrtout,'(a8)') nammol (j)
321 IF (lfft) WRITE (nrtout+1,'(a8)') nammol (j)
322 DO i = 1, nsamp
323 dx0 = dipdata (1, j, i)
324 dy0 = dipdata (2, j, i)
325 dz0 = dipdata (3, j, i)
326 DO l = 1, naf
327 corrdata (l) = corrdata (l) + dipdata (1, j, i+l-1) * dx0 + dipdata

→˓(2, j, i+l-1) * dy0 &
328 + dipdata (3, j, i+l-1) * dz0
329 END DO
330 END DO
331 corrdata = corrdata / REAL (nsamp, KIND=dp)
332 DO i = 1, naf
333 WRITE (nrtout, '(1p,3e14.6)') REAL (i-1, KIND=dp)*dt, corrdata (i),

→˓corrdata (i)/corrdata(1)
334 END DO
335 WRITE (nrtout, '(/)')
336 IF (lfft) THEN
337 fftdata (:) = corrdata (:)/ corrdata (1) ! adapt here if nftpts

→˓differs from naf
338 CALL fft (fftdata)
339 DO i = 1, nftpts
340 WRITE (nrtout+1, '(1p,3e14.6)') REAL (i-1, KIND=dp)*domega, fftdata

→˓(i)
341 END DO
342 WRITE (nrtout+1, '(/)')
343 END IF
344 END DO
345 ! Calculation for the total system dipole
346 ALLOCATE (dipdata_box (4, numtraj))
347 dipdata_box = SUM (dipdata, 2) !sum of dipoles over all molecular species
348 corrdata = 0.0_dp
349 WRITE (nrtout, '("all species")')
350 IF (lfft) WRITE (nrtout+1, '("all species")')
351 DO i = 1, nsamp
352 dx0 = dipdata_box (1, i)
353 dy0 = dipdata_box (2, i)
354 dz0 = dipdata_box (3, i)
355 DO l = 1, naf
356 corrdata (l) = corrdata (l) + dipdata_box (1, i+l-1) * dx0 + dipdata_

→˓box (2, i+l-1) * dy0 &
357 + dipdata_box (3, i+l-1) * dz0
358 END DO
359 END DO

(continues on next page)

374 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

360 corrdata = corrdata / REAL (nsamp, KIND=dp)
361 DO i = 1, naf
362 WRITE (nrtout, '(1p,3e14.6)') REAL (i-1, KIND=dp)*dt, corrdata (i),

→˓corrdata (i)/corrdata(1)
363 END DO
364 WRITE (nrtout, '(/)')
365 IF (lfft) THEN
366 fftdata (:) = corrdata (:)/ corrdata (1) ! adapt here if nftpts

→˓differs from naf
367 call fft (fftdata)
368 DO i = 1, nftpts
369 WRITE (nrtout+1, '(1p,3e14.6)') REAL (i-1, KIND=dp)*domega,

→˓fftdata (i)
370 END DO
371 WRITE (nrtout+1, '(/)')
372 END IF
373 DEALLOCATE (dipdata_box)
374 END IF
375

376 ! Close the output files
377 CLOSE (nrtout)
378 IF (lfft) CLOSE (nrtout+1)
379

380 DEALLOCATE (readint, readdata)
381 DEALLOCATE (namspe, nammol)
382 DEALLOCATE (xxx, yyy, zzz)
383 DEALLOCATE (ltp, ltm, mole)
384 DEALLOCATE (nmol, nbdmol)
385 DEALLOCATE (chg, molchg)
386 DEALLOCATE (dipx_box, dipy_box, dipz_box)
387 DEALLOCATE (bndtbl)
388 DEALLOCATE (visit, from)
389 DEALLOCATE (dipdata, corrdata)
390 IF (lfft) DEALLOCATE (fftdata)
391

392 CONTAINS
393

394 SUBROUTINE check_molecules
395 !***
396 ! subroutine to check molecular content and labelling
397 !
398 ! authors: s. chiacchiera, February 2017
399 !

→˓***
→˓

400 IMPLICIT NONE
401 INTEGER i, j, k, tm, tp, imol, im, ibd
402 INTEGER mxmolsize
403 INTEGER, ALLOCATABLE :: molbeads (:,:)
404

405 mxmolsize = 0
406 DO i = 1, nmoldef
407 mxmolsize = MAX (nbdmol(i), mxmolsize)
408 END DO
409 ALLOCATE (molbeads (nmoldef, mxmolsize))
410 molbeads (:,:) = 0
411

(continues on next page)

4.3. Software related to Extended Software Development Workshops 375

E-CAM Documentation, Release 0.2

(continued from previous page)

412 imol = 0
413 ibd = 0
414 DO i = 1, nmoldef
415 DO j = 1, NINT (nmol(i))
416 imol = imol +1
417 DO k = 1, nbdmol(i)
418 ibd = ibd +1
419 tm = ltm (ibd)
420 tp = ltp (ibd)
421 im = mole (ibd)
422 IF (j==1) THEN
423 molbeads (i, k) = tp
424 ELSE
425 IF (molbeads (i, k) /= tp) THEN
426 WRITE (*,*) "ERROR: Problem with molecular content!"
427 STOP
428 ENDIF
429 ENDIF
430 IF (tm/=i.OR.im/=imol)THEN
431 WRITE (*,*) "ERROR: Problem with molecules labels!"
432 STOP
433 ENDIF
434 END DO
435 END DO
436 END DO
437 IF (imol/=nummol) THEN
438 WRITE (*,*) "ERROR: imol and nummol differ!"
439 STOP
440 ENDIF
441 DEALLOCATE (molbeads)
442 RETURN
443 END SUBROUTINE check_molecules
444

445 SUBROUTINE compute_charge_dipoles (dipx_box, dipy_box, dipz_box)
446 !***
447 ! subroutine to compute charge dipole moments
448 !
449 ! authors: m. a. seaton and s. chiacchiera, February 2017
450 !
451 ! input: xxx, yyy, zzz (at a given time step) and chg
452 ! input: visit and from (obtained using connect)
453 ! output: the x,y,z components of the total dipole, for each molecule type (at a given
454 ! time step)
455 !
456 ! (NB: this is a slightly modified version, with fewer outputs)
457 !

→˓***
→˓

458 IMPLICIT NONE
459 INTEGER i, j, k, tm, tp, imol, ibd, count, ipr
460 REAL(KIND=dp), DIMENSION(nmoldef) :: dipx_box, dipy_box, dipz_box
461 REAL(KIND=dp) :: x, y, z, dx, dy, dz, xpre, ypre, zpre
462 REAL(KIND=dp) :: dipx, dipy, dipz
463 REAL(KIND=dp), DIMENSION(nmbeads) :: xabs, yabs, zabs
464

465 dipx_box (:) = 0._dp
466 dipy_box (:) = 0._dp

(continues on next page)

376 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

467 dipz_box (:) = 0._dp
468

469 imol = 0
470 count = 0
471 ! xabs = 0._dp ! just to keep it clean
472 ! yabs = 0._dp
473 ! zabs = 0._dp
474

475 DO i = 1, nmoldef
476 tm = i
477 DO j = 1, NINT (nmol(i))
478 imol = imol + 1
479

480 dipx = 0._dp ! dipole of a SINGLE molecule
481 dipy = 0._dp
482 dipz = 0._dp
483

484 DO k = 1, nbdmol(i)
485 count = count + 1
486 ibd = visit (count)
487 ipr = from (count)
488

489 IF (ipr /= 0) THEN
490 xpre = xabs (ipr)
491 ypre = yabs (ipr)
492 zpre = zabs (ipr)
493 ELSE
494 IF (k == 1) THEN
495 xpre = 0._dp
496 ypre = 0._dp
497 zpre = 0._dp
498 ELSE
499 WRITE (*,*) "Unconnected molecule!"
500 STOP
501 ENDIF
502 ENDIF
503

504 tp = ltp (ibd)
505

506 dx = xxx (ibd) - xpre
507 dy = yyy (ibd) - ypre
508 dz = zzz (ibd) - zpre
509

510 dx = dx - dimx * ANINT (dx/dimx)
511 dy = dy - dimy * ANINT (dy/dimy)
512 dz = dz - dimz * ANINT (dz/dimz)
513

514 x = xpre + dx
515 y = ypre + dy
516 z = zpre + dz
517

518

519 dipx = dipx + x * chg (tp)
520 dipy = dipy + y * chg (tp)
521 dipz = dipz + z * chg (tp)
522

523 xabs (ibd) = x
(continues on next page)

4.3. Software related to Extended Software Development Workshops 377

E-CAM Documentation, Release 0.2

(continued from previous page)

524 yabs (ibd) = y
525 zabs (ibd) = z
526

527 END DO
528

529 dipx_box (tm) = dipx_box (tm) + dipx
530 dipy_box (tm) = dipy_box (tm) + dipy
531 dipz_box (tm) = dipz_box (tm) + dipz
532

533 END DO
534 END DO
535

536 IF (imol/=nummol) THEN
537 WRITE (*,*) "ERROR: imol and nummol differ!"
538 STOP
539 ENDIF
540

541 RETURN
542 END SUBROUTINE compute_charge_dipoles
543

544 SUBROUTINE fft (x)
545 !

→˓***
→˓

546 ! Subroutine to call FFTW (v3) one-dimensional complex DFT.
547 ! Notice that the input array is overwritten with the its Discrete Fourier Transform.
548 !
549 ! author: s. chiacchiera, August 2017
550 ! amended: m. a. seaton, January 2021
551 !

→˓***
→˓

552 USE, INTRINSIC :: iso_c_binding
553 IMPLICIT none
554 INCLUDE 'fftw3.f03'
555 COMPLEX(C_DOUBLE_COMPLEX), INTENT(INOUT) :: x (:)
556 INTEGER :: n
557 TYPE(C_PTR) :: plan
558

559 n = SIZE (x)
560

561 plan = fftw_plan_dft_1d (n, x, x, FFTW_FORWARD, FFTW_ESTIMATE)
562 CALL fftw_execute_dft (plan, x, x)
563 CALL fftw_destroy_plan (plan)
564

565 RETURN
566

567 END SUBROUTINE fft
568

569 End PROGRAM gen_dipoleaf
570

571 SUBROUTINE connect (nbeads, nbonds, bndtbl, mxmolsize, visit, from)
572 !**
573 ! Analyzes all the bonds (bndtbl) to obtain a schedule (visit, from)
574 ! to visit the beads so that each cluster is visited along a connected
575 ! path. "visit" gives the order to include beads, "from" gives the bead
576 ! to attach them to.

(continues on next page)

378 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

577 ! (Note: vocabulary from infection propagation used to move along
578 ! clusters)
579 !
580 ! author: s. chiacchiera, February 2017
581 ! amended: m. a. seaton, January 2021
582 !**
583 IMPLICIT none
584 INTEGER, INTENT (IN) :: bndtbl (nbonds,2)
585 INTEGER, INTENT (IN) :: nbeads, nbonds
586 INTEGER, INTENT (IN) :: mxmolsize
587 INTEGER :: ic, i, k, nn, nclu, nper, lab, ref, count
588 INTEGER, ALLOCATABLE :: firstnn (:), lastnn (:), deg (:)
589 INTEGER, ALLOCATABLE :: labnn (:)
590 INTEGER, ALLOCATABLE :: state (:)
591 INTEGER, ALLOCATABLE :: perlab (:), perref (:)
592 INTEGER, ALLOCATABLE :: nchist (:)
593 INTEGER, INTENT (OUT) :: visit (nbeads), from (nbeads)
594

595 ALLOCATE (firstnn (nbeads), lastnn (nbeads), deg (nbeads), labnn (2*nbonds))
596 ALLOCATE (state (nbeads))
597 ALLOCATE (perlab (nbeads), perref (nbeads))
598 ALLOCATE (nchist (mxmolsize))
599 !---
600 CALL organize (nbeads, nbonds, labnn, firstnn, lastnn, deg)
601 !---
602 state (:) = 0
603 nchist (:) = 0
604 visit (:) = 0
605 from (:) = 0
606 count = 0
607 !---
608 ic = 0
609 !---
610 DO WHILE (ic < nbeads) ! ic = label of bead used to "grow" a cluster
611 ic = ic + 1
612 IF(state (ic) /= 0) THEN
613 WRITE (*,*) "ERROR: labels are not as expected!"
614 STOP
615 END IF
616 nclu = 1
617 count = count + 1
618 visit (ic) = ic
619 IF (deg (ic) == 0) THEN
620 state (ic) = -1
621 IF (nclu <= mxmolsize) nchist (nclu) = nchist (nclu) +1
622 CYCLE
623 END IF
624 state (ic) = 1 ! ic is "infected"
625

626 ! nearest neighbours of ic are marked as "goint to be infected" -> a.k.a.
→˓perimeter

627 nper = 0
628 perlab (:) = 0
629 perref (:) = 0
630 DO k = firstnn (ic), lastnn (ic)
631 nn = labnn (k)
632 IF(state (nn) /= 0) THEN

(continues on next page)

4.3. Software related to Extended Software Development Workshops 379

E-CAM Documentation, Release 0.2

(continued from previous page)

633 WRITE (*,*) "ERROR: labels are not as expected!"
634 STOP
635 END IF
636 nper = nper + 1
637 perlab (nper) = nn !new bead in perimeter
638 perref (nper) = ic !its reference bead (origin of the link)
639 state (nn) = 2
640 END DO
641 state (ic) = 3 ! ic is "dead"
642

643 DO WHILE (nper > 0)
644 i = 1 ! pick a bead of "perimeter" to be analyzed
645 lab = perlab (i)
646 ref = perref (i)
647 perlab (i) = perlab (nper)
648 perref (i) = perref (nper)
649 nper = nper - 1
650 IF (state (lab) == 3) THEN
651 CYCLE
652 END IF
653 state (lab) = 1 ! "lab" is added to the cluster
654 nclu = nclu + 1
655 count = count + 1
656 visit (count) = lab
657 from (count) = ref
658

659 DO k = firstnn (lab), lastnn (lab) ! check nn of newly added
660 nn = labnn (k)
661 IF((state (nn) == 2) .OR. (state (nn) == 3)) CYCLE
662 nper = nper + 1
663 perlab (nper) = nn !new bead in perimeter
664 perref (nper) = lab !its reference bead (origin of the link)
665 state (nn) = 2
666 END DO
667 state (lab) = 3
668

669 END DO
670 nchist (nclu) = nchist (nclu) +1
671 ic = ic + nclu - 1 ! prepare ic for the next cluster
672 END DO
673 WRITE (*,*) "nchist: ", nchist
674 !---
675 DEALLOCATE (firstnn, lastnn, deg, labnn)
676 DEALLOCATE (state)
677 DEALLOCATE (perlab, perref)
678 DEALLOCATE (nchist)
679 RETURN
680 !---
681 CONTAINS
682 !---
683 SUBROUTINE organize (N, NL, labnn, firstnn, lastnn, deg)
684 !**
685 ! Analyzes the bonds (bndtbl) to obtain the degree (=number of bonds)
686 ! of each bead, and the nearest neighbours list.
687 ! N in the number of beads (vertices) and NL of bonds (links).
688 !
689 ! author: s. chiacchiera, February 2017

(continues on next page)

380 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

690 !**
691 IMPLICIT none
692 INTEGER, INTENT(IN) :: N, NL
693 INTEGER :: i,l,count_lab, i1,i2
694 INTEGER, DIMENSION (N), INTENT(OUT) :: deg
695 INTEGER, DIMENSION (N), INTENT(OUT) :: firstnn, lastnn
696 INTEGER, DIMENSION (2*NL), intent(OUT) :: labnn
697

698 deg(:)=0
699 firstnn(:)=0
700 lastnn(:)=0
701 labnn(:)=0
702

703 count_lab=0
704

705 DO i=1,N
706 DO l=1,NL
707 IF(bndtbl(l,1).EQ.i)THEN
708 deg(i)=deg(i)+1
709 count_lab=count_lab+1
710 labnn(count_lab)=bndtbl(l,2)
711 ENDIF
712 IF(bndtbl(l,2).EQ.i)THEN
713 deg(i)=deg(i)+1
714 count_lab=count_lab+1
715 labnn(count_lab)=bndtbl(l,1)
716 ENDIF
717 END DO
718 END DO
719

720 i1=1
721 i2=0
722 DO i=1,N
723 IF (deg (i)==0) CYCLE
724 firstnn(i)=i1
725 i2=i1+deg(i)-1
726 lastnn(i)=i2
727 i1=i2+1
728 END DO
729

730 RETURN
731

732 END SUBROUTINE organize
733 !---
734 END SUBROUTINE connect
735

Autocorrelation functions of individual charge dipole moments in DL_MESO_DPD

Software Technical Information

Language Fortran 2003

Licence BSD

4.3. Software related to Extended Software Development Workshops 381

E-CAM Documentation, Release 0.2

Documentation Tool RST and LaTex-generated .pdf file

Application Documentation Click to download the manual with more details

Relevant Training Material See the Testing section

• Purpose of Module

• Background Information

• Testing

• Source Code

Purpose of Module

This module, gen_moldipaf.f90, is a post-processing utility for DL_MESO_DPD, the Dissipative Particle Dy-
namics (DPD) code from the DL_MESO package.

It processes the trajectory (HISTORY) files to obtain the charge dipole moments of all the (neutral) molecules in
the system, and subsequently computes the dipole autocorrelation functions (DAFs) of individual molecules for each
molecule type. It produces a file MDIPAFDAT containing both the un-normalized and normalized DAFs, and, option-
ally, a file MDIPAFFFT containing the Fourier transform (FT) of the latter. It is analogous to gen_dipoleaf.f90,
but deals with individual (for a single molecule) rather then macroscopic (for the simulated volume) charge dipole
moments.

The module can be applied to systems including molecules with a generic charge structure, as long as each molecule
is neutral (otherwise the charge dipole moment would be frame-dependent)1.

CAVEAT: this module only analyzes molecular trajectories. If a charged molecule is present, an error message will
be given, while unbonded charges will not be detected and erroneous results may be obtained. Therefore please keep
in mind to not apply this module to systems with unbonded charges.

The charge dipole moment of a neutral molecule is 𝑝𝑚𝑜𝑙 =
∑︀

𝑖∈𝑚𝑜𝑙 𝑞𝑖�⃗�𝑖 where �⃗�𝑖 are the bead positions and 𝑞𝑖

their charges. The total charge dipole moment of the simulated volume 𝑉 is 𝑃 =
∑︀

𝑚𝑜𝑙∈𝑉 𝑝𝑚𝑜𝑙. If more than
one molecular species are present, one can split 𝑃 into the different species contributions: 𝑃 =

∑︀𝑁𝑚𝑜𝑙𝑑𝑒𝑓

𝑗=1 𝑃 (𝑗) =∑︀𝑁𝑚𝑜𝑙𝑑𝑒𝑓

𝑗=1

∑︀𝑁
(𝑗)
𝑚𝑜𝑙

𝑘=1 𝑝
(𝑗)
𝑘 , where 𝑁𝑚𝑜𝑙𝑑𝑒𝑓 is the number of molecule types (definitions) and 𝑁

(𝑗)
𝑚𝑜𝑙 the number of

molecules of type 𝑗.

Given a scalar quantity A, its non-normalized autocorrelation function (AF) is 𝐶𝐴𝐴(𝑡) = ⟨𝐴(0)𝐴(𝑡)⟩, where ⟨. . . ⟩
indicates an average over trajectories. The normalized one is 𝑐𝐴𝐴(𝑡) = ⟨𝐴(0)𝐴(𝑡)⟩

⟨𝐴(0)𝐴(0)⟩ = 𝐶𝐴𝐴(𝑡)
𝐶𝐴𝐴(0)

2.

Here for the 𝑗 -th molecular species we replace 𝐴 with 𝑝(𝑗), and the product with a scalar product. In this case the
average over trajectories translates into two sums, one over different time origins and one over molecules of species 𝑗.

The output file MDIPAFDAT contains the DAFs for each molecular species and, at the end of the file, the DAF obtained
by averaging over all the particles. The output file MDIPAFFFT contains the FT of these functions in the same order.

More in detail, the header of the file MDIPAFDAT contains the simulation title and a line with the number of snapshots
in HISTORY and of those used for the AFs (naf). Then a block follows for each molecule type, started by the

1 Disambiguation on the concept of molecule. In DL_MESO a defined molecule is a set of beads, which can be bonded or not. For the purpose
of this module it is required that each molecule is a connected cluster (via stretching bonds). In fact, this - together with the reasonable assumption
that each stretching bond cannot be stretched to more than half the system linear size - allows us to univocally define the charge dipole moment of
each molecule.

2 M. P. Allen and D. J. Tildesley, “Computer simulation of liquids”, Oxford University Press, Oxford (1987).

382 Chapter 4. Meso- and Multi-scale Modules

http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

{molecule name}, then three columns of data, 𝑡, 𝐶𝑝𝑝, 𝑐𝑝𝑝. It is intended that in any block only the molecules for a
given species are summed over. The last block is called {all species} and refers to an average over all the molecules.

The header of the file MDIPAFFFT is as for MDIPAFDAT (notice that the number of points for the FT is also set
equal to naf). Then a block follows for each molecule type, started by the molecule name, then three columns of data,
𝜔,ℜ𝑒[𝑐𝑝𝑝(𝜔)],ℑ𝑚[𝑐𝑝𝑝(𝜔)], where 𝑐 is the discrete FT of 𝑐(𝑡).

Possible uses of the output file are: to analyze it to obtain the decay time of autocorrelations, which can be used to
define an efficient sampling time for the simulation; to compare it with the analogous macroscopic value obtained
for all the molecules (of a given type) in the system (see Autocorrelation functions of charge dipole moments in
DL_MESO_DPD).

Background Information

The base code for this module is DL_MESO_DPD, the Dissipative Particle Dynamics code from the mesoscopic
simulation package DL_MESO, developed by M. Seaton at Daresbury Laboratory. This open source code is available
from STFC under both academic (free) and commercial (paid) licenses. The module is to be used with DL_MESO in
its most recently released version, version 2.7 (dating December 2018).

A variant of this module for use with a previous version of DL_MESO, version 2.6 (dating November 2015), can be
found in the old-v2.6 directory3.

The present module also requires the library FFTW (version 3.x) to be installed.

Testing

The present module gen_moldipaf.f90 is compiled with the available Fortran 2003 compiler, e.g.:

gfortran -o gen_moldipaf.exe gen_moldipaf.f90 -I/usr/local/include -L/usr/
local/lib -lfftw3 -lm

where -I indicates the location of the FFTW include file fftw3.f03 and -L points to the directory containing the FFTW
library files. The above command gives the most likely locations for these files, although these may need to be adjusted
if FFTW has been installed somewhere else on your machine.

The executable must be in the same directory of the HISTORY file to be analyzed. The user is asked to provide the
maximum number of snapshots to be used for the AFs (naf) and a switch for the Fourier transform: 1 for yes, 0 (or
any other integer) for no.

To input these parameters one can either enter them from the keyboard or write them into a text file (say, input.txt),
one per line in the right order, and run the program in this way:

gen_dipoleaf.exe < input.txt

Test: water in oil

As a test, we suggest considering a fluid made of harmonically bonded dimers (+𝑞,−𝑞). Appropriately fixing the
partial charges 𝑞 and the Bjerrum length 𝑙𝐵 , this system mimics water in an oil background as far as the dielectric
properties are concerned. For more details about this model, please see the page Test case: a dimer solvent.

Run DL_MESO_DPD using the following CONTROL file:

DL_MESO charged harmonic dimers with dpd repulsion

volume 64.0

(continues on next page)

3 A small change to specifying charge smearing schemes and lengths in CONTROL files has been made since version 2.6: the old-v2.6
folder includes the CONTROL file for the test shown here that will work with this version of DL_MESO.

4.3. Software related to Extended Software Development Workshops 383

http://www.ccp5.ac.uk/DL_MESO
http://www.fftw.org/

E-CAM Documentation, Release 0.2

(continued from previous page)

temperature 1.0
cutoff 1.0

timestep 0.01
steps 70000
equilibration steps 20000
traj 20000 10
stats every 100
stack size 100
print every 100
job time 7200.0
close time 10.0

ensemble nvt mdvv

ewald sum 1.0 5 5 5
bjerrum 42.0
smear gauss
smear length 0.5 equal

finish

and the FIELD file:

DL_MESO charged harmonic dimers with dpd repulsion

SPECIES 2
solp 1.0 0.46 0
solm 1.0 -0.46 0

MOLECULES 1
DIMER
nummols 96
beads 2
solp 0.0 0.0 0.0
solm 0.1 0.0 0.0
bonds 1
harm 1 2 5.0 0.0

finish

INTERACTIONS 3
solp solp dpd 25.0 1.0 4.5
solm solm dpd 25.0 1.0 4.5
solp solm dpd 25.0 1.0 4.5

CLOSE

Analyzing the HISTORY file with gen_moldipaf.exe choosing naf=100, i.e., using this input.txt:

100
1

this output is printed to the standard output:

nchist: 0 96
Number of time steps in autocorrelation profile?

(continues on next page)

384 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

100
switch for FFT computation? (1=yes, 0 or any other integer=no)

1

The first line shows a histogram of cluster sizes: in this case, it correctly gives 96 molecules of two beads. Since
internally the module checks that each molecule is a connected cluster1, this line should always give a histogram with
the molecule sizes (shown up to the maximum number of beads per molecule).

The first fifteen lines of the MDIPAFDAT file are as follows:

DL_MESO charged harmonic dimers with dpd repulsion
5001 100

DIMER
0.000000E+00 1.415414E-01 1.000000E+00
1.000000E-01 1.355954E-01 9.579910E-01
2.000000E-01 1.212470E-01 8.566184E-01
3.000000E-01 1.038903E-01 7.339924E-01
4.000000E-01 8.670281E-02 6.125615E-01
5.000000E-01 7.071286E-02 4.995913E-01
6.000000E-01 5.627970E-02 3.976200E-01
7.000000E-01 4.371192E-02 3.088278E-01
8.000000E-01 3.315358E-02 2.342323E-01
9.000000E-01 2.453714E-02 1.733566E-01

and the MDIPAFFFT file starts as follows:

DL_MESO charged harmonic dimers with dpd repulsion
5001 100

DIMER
0.000000E+00 6.144240E+00 0.000000E+00
6.283185E-01 5.756980E+00 -1.369256E+00
1.256637E+00 5.201895E+00 -2.381423E+00
1.884956E+00 4.104006E+00 -3.103102E+00
2.513274E+00 3.144505E+00 -3.321907E+00
3.141593E+00 2.259571E+00 -3.137872E+00
3.769911E+00 1.681025E+00 -2.860935E+00
4.398230E+00 1.291102E+00 -2.543543E+00
5.026548E+00 1.038623E+00 -2.209089E+00
5.654867E+00 8.770894E-01 -1.946351E+00

Below we show a plot of the normalized AF ⟨𝑝(0)𝑝(𝑡)⟩
⟨𝑝(0)𝑝(0)⟩ (obtained using the first and third columns of MDIPAFDAT).

4.3. Software related to Extended Software Development Workshops 385

E-CAM Documentation, Release 0.2

Source Code

1 PROGRAM gen_moldipaf
2 !***
3 ! module to compute autocorrelation functions of individual charge dipole moments in
4 ! DL_MESO_DPD
5 !
6 ! authors: m. a. seaton and s. chiacchiera, March 2017 (amended August 2017, January
7 ! 2021)
8 !

→˓***
→˓

9 USE, INTRINSIC :: iso_c_binding
10 IMPLICIT none
11 INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND (15, 307)
12 INTEGER, PARAMETER :: li = SELECTED_INT_KIND (12)
13 INTEGER, PARAMETER :: ntraj=10
14 INTEGER, PARAMETER :: endversion = 1
15 REAL(KIND=dp), PARAMETER :: pi=3.141592653589793_dp
16

17 CHARACTER(80) :: text
18 CHARACTER(8), ALLOCATABLE :: namspe (:), nammol (:)
19

20 INTEGER, ALLOCATABLE :: ltp (:), ltm (:), mole (:), bndtbl (:,:)
21 INTEGER, ALLOCATABLE :: nbdmol (:), readint (:)
22 INTEGER, ALLOCATABLE :: visit (:), from (:)
23 INTEGER :: nrtout
24 INTEGER :: chain, imol, ioerror, i, numtraj, j, k, l, nmoldef, nbdmolmx
25 INTEGER :: nspe, nbeads, nusyst, nmbeads, nsyst, numbond, global, species,

→˓molecule
26 INTEGER :: nummol, lfrzn, rnmol, keytrj, srfx, srfy, srfz
27 INTEGER :: n1
28 INTEGER :: naf, nsamp
29 INTEGER :: endver, Dlen, nstep, framesize, lend, leni
30 INTEGER(KIND=li) :: filesize, mypos, currentpos, lend_li, leni_li, framesizeli,

→˓numbeadsli
31

32 REAL(KIND=dp), ALLOCATABLE :: xxx (:), yyy (:), zzz (:), readdata (:)
33 REAL(KIND=dp), ALLOCATABLE :: nmol (:), chg (:), molchg (:)
34 REAL(KIND=dp), ALLOCATABLE :: dipx_box (:), dipy_box (:), dipz_box (:)
35 REAL(KIND=dp), ALLOCATABLE :: dipx (:), dipy (:), dipz (:)
36 REAL(KIND=dp), ALLOCATABLE :: mdipdata (:,:,:), corrdata (:)
37 REAL(KIND=dp) :: dimx, dimy, dimz, shrdx, shrdy, shrdz
38 REAL(KIND=dp) :: amass, rcii
39 REAL(KIND=dp) :: time
40 REAL(KIND=dp) :: dt, time0, domega
41 REAL(KIND=dp) :: dx0, dy0, dz0
42

43 INTEGER :: nftpts
44 COMPLEX(C_DOUBLE_COMPLEX), ALLOCATABLE :: fftdata (:)
45

46 LOGICAL :: eof, lfft, swapend, bigend
47

48 ! determine number of bytes for selected double precision and integer kinds
49 ! (the default SELECTED_REAL_KIND (15, 307) should return 8 bytes)
50

51 lend = STORAGE_SIZE (1.0_dp) / 8

(continues on next page)

386 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

52 leni = BIT_SIZE (1) / 8
53 lend_li = INT (lend, KIND=li)
54 leni_li = INT (leni, KIND=li)
55

56 ! check endianness of machine
57

58 bigend = (IACHAR(TRANSFER(1,"a"))==0)
59

60 ! determine if HISTORY file exists, which endianness to use,
61 ! if type of real is correct
62

63 INQUIRE (file = 'HISTORY', EXIST = eof)
64 IF (.NOT. eof) THEN
65 PRINT *, "ERROR: cannot find HISTORY file"
66 STOP
67 END IF
68

69 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted', status
→˓= 'unknown')

70

71 swapend = .false.
72 READ (ntraj) endver, Dlen
73

74 IF (endver/=endversion) THEN
75 swapend = .true.
76 CLOSE (ntraj)
77 IF (bigend) THEN
78 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'little_endian')
79 ELSE
80 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted',

→˓status = 'unknown', convert = 'big_endian')
81 END IF
82 READ (ntraj) endver, Dlen
83 IF (endver/=endversion) THEN
84 PRINT *, "ERROR: corrupted HISTORY file or created with incorrect version

→˓of DL_MESO"
85 STOP
86 END IF
87 END IF
88

89 IF (Dlen/=lend) THEN
90 PRINT *, "ERROR: incorrect type of real number used in HISTORY file"
91 PRINT *, " recompile gen_dipole.f90 with reals of ", Dlen, " bytes"
92 STOP
93 END IF
94

95 ! read file size, number of frames and timestep numbers
96

97 READ (ntraj) filesize, numtraj, nstep
98

99 ! Read where the number of beads, molecules and bonds are determined
100 ! Arrays are filled with names of particles and molecules
101

102 READ (ntraj) text
103

104 READ (ntraj) nspe, nmoldef, nusyst, nsyst, numbond, keytrj, srfx, srfy, srfz
(continues on next page)

4.3. Software related to Extended Software Development Workshops 387

E-CAM Documentation, Release 0.2

(continued from previous page)

105

106 IF (numbond==0) THEN
107 PRINT *, 'ERROR: no molecules in trajectory data!'
108 STOP
109 END IF
110

111 IF (srfx > 1 .OR. srfy > 1 .OR. srfz > 1) THEN
112 WRITE (*,*) "ERROR: Hard walls, electrostatics not implemented in DL_MESO_

→˓DPD yet!"
113 STOP
114 END IF
115

116 IF (srfx == 1 .OR. srfy == 1 .OR. srfz == 1) THEN
117 WRITE (*,*) "ERROR: System under shear, not implemented yet!"
118 STOP
119 END IF
120

121 framesize = (keytrj+1) * 3
122 ALLOCATE (readint (1:nsyst), readdata (1:framesize))
123

124 ! get number of beads to be tracked when reading trajectory file (molecular beads)
125 nmbeads = nsyst - nusyst
126

127 ALLOCATE (namspe (nspe), nammol (nmoldef))
128 ALLOCATE (xxx (1:nmbeads), yyy (1:nmbeads), zzz (1:nmbeads))
129 ALLOCATE (ltp (1:nmbeads), ltm (1:nmbeads), mole (1:nmbeads))
130 ALLOCATE (nmol (1:nmoldef), nbdmol (1:nmoldef))
131 ALLOCATE (chg (nspe))
132 ALLOCATE (bndtbl (numbond, 2))
133 ALLOCATE (visit (nmbeads), from (nmbeads))
134

135 DO i = 1, nspe
136 READ (ntraj) namspe (i), amass, rcii, chg (i), lfrzn
137 END DO
138

139 DO i = 1, nmoldef
140 READ (ntraj) nammol (i)
141 END DO
142

143 ! reading of bead species and molecule types
144

145 nummol = 0 ! counter for number of molecules
146 ! ibond = 0 !counter for bonds
147

148 DO i = 1, nsyst
149 READ (ntraj) global, species, molecule, chain
150 IF (global>nusyst .AND. global<=nsyst) THEN
151 ltp (global-nusyst) = species
152 ltm (global-nusyst) = molecule
153 mole (global-nusyst) = chain
154 nummol = MAX (nummol, chain)
155 END IF
156 END DO
157

158 ! reading of bond tables
159

160 IF (numbond>0) THEN
(continues on next page)

388 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

161 DO i = 1, numbond
162 READ (ntraj) bndtbl (i, 1), bndtbl (i, 2)
163 END DO
164 END IF
165

166 bndtbl = bndtbl - nusyst
167

168 ! reached end of header: find current position in file
169

170 INQUIRE (unit=ntraj, POS=currentpos)
171

172 ! find timestep size from times in first two frames
173

174 framesizeli = INT (framesize, KIND=li)
175 numbeadsli = INT (nsyst, KIND=li)
176

177 READ (ntraj, IOSTAT=ioerror, POS=currentpos) time0
178 mypos = currentpos + (numbeadsli + 1_li) * leni_li + (framesizeli * numbeadsli

→˓+ 7_li) * lend_li
179 READ (ntraj, IOSTAT=ioerror, POS=mypos) time
180

181 dt = time - time0
182

183 ! determine numbers of molecules and beads per molecule type
184

185 nmol = 0.0_dp
186 nbdmol = 0
187 chain = 0
188 imol = 0 ! necessary to avoid out of bounds
189

190 DO i = 1, nmbeads
191 IF (mole (i) /= chain) THEN
192 chain = mole (i)
193 imol = ltm (i)
194 nmol (imol) = nmol (imol) + 1.0_dp
195 END IF
196 IF (imol > 0) nbdmol (imol) = nbdmol (imol) + 1
197 END DO
198

199 DO i = 1, nmoldef
200 rnmol = NINT (nmol (i))
201 IF (rnmol>0) THEN
202 nbdmol (i) = nbdmol (i) / rnmol
203 END IF
204 END DO
205

206 nbdmolmx = MAXVAL (nbdmol (1:nmoldef))
207

208 ! obtain connectivity information (needed only once)
209 CALL connect (nmbeads, numbond, bndtbl, nbdmolmx, visit, from)
210

211 ! Checking for charge neutrality of all molecules
212 ALLOCATE (molchg (nummol))
213

214 molchg (:) = 0.0_dp
215

216 DO i = 1, nmbeads
(continues on next page)

4.3. Software related to Extended Software Development Workshops 389

E-CAM Documentation, Release 0.2

(continued from previous page)

217 imol = mole (i)
218 molchg (imol) = molchg (imol) + chg (ltp (i))
219 END DO
220

221 DO i = 1, nummol
222 IF (ABS (molchg (i))>1.0e-16_dp) THEN
223 WRITE (*,*) "molecule number ",i," is not neutral! (The dipole moment is

→˓frame-dependent)"
224 WRITE (*,*) "its charge is=", molchg (i)
225 WRITE (*,*) "its type is=", nammol (i)
226 STOP
227 ENDIF
228 END DO
229

230 CALL check_molecules ! checks that beads are labelled as expected
231

232 ! Get the maximum number of time steps for autocorrelation
→˓

233 ! and adjust it if necessary
234

235 WRITE (*,*) "Number of time steps in autocorrelation profile? "
236 READ (*,*) naf
237 IF (naf<1 .OR. naf>numtraj) naf = numtraj
238

239 ! Get the switch for FFT computation
240

241 WRITE (*,*) "switch for FFT computation? (1=yes, 0 or any other integer=no)"
242 READ (*,*) n1
243 lfft = (n1 == 1)
244

245 ALLOCATE (mdipdata (4, nummol, numtraj))
246 ALLOCATE (dipx (nummol), dipy (nummol), dipz (nummol))
247

248 !reading trajectories and computing charge dipole moments
249 ALLOCATE (dipx_box (nmoldef), dipy_box (nmoldef), dipz_box (nmoldef))
250

251 eof = .false.
252

253 DO k = 1, numtraj
254

255 mypos = currentpos + INT (k-1, KIND=li) * ((numbeadsli + 1_li) * leni_li +
→˓(framesizeli * numbeadsli + 7_li) * lend_li)

256 READ (ntraj, POS = mypos, IOSTAT=ioerror) time, nbeads, dimx, dimy, dimz,
→˓shrdx, shrdy, shrdz

257

258 IF (ioerror/=0) THEN
259 eof = .true.
260 IF (k==1) THEN
261 PRINT *, 'ERROR: cannot find trajectory data in HISTORY files'
262 STOP
263 END IF
264 EXIT
265 END IF
266

267 READ (ntraj) readint (1:nsyst)
268 DO i = 1, nsyst
269 global = readint (i)

(continues on next page)

390 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

270 READ (ntraj) readdata (1:framesize)
271 IF (global>nusyst .AND. global<=nsyst) THEN
272 xxx (global-nusyst) = readdata (1)
273 yyy (global-nusyst) = readdata (2)
274 zzz (global-nusyst) = readdata (3)
275 END IF
276 END DO
277

278 CALL compute_charge_dipoles (dipx_box, dipy_box, dipz_box, dipx, dipy, dipz)
279

280 ! the dipole components for each individual molecule are stored for all the
→˓snapshots

281 DO j = 1, nummol
282 mdipdata (1, j, k) = dipx (j)
283 mdipdata (2, j, k) = dipy (j)
284 mdipdata (3, j, k) = dipz (j)
285 mdipdata (4, j, k) = time
286 END DO
287

288 END DO ! end of loop over trajectories
289

290 IF (k <= numtraj) THEN
291 WRITE (*,*) "ERROR: problem with the number of snapshots!"
292 STOP
293 END IF
294

295 nsamp = numtraj - naf + 1
296

297 ALLOCATE (corrdata (naf))
298

299 ! define FFT size if needed
300

301 IF (lfft) THEN
302 nftpts = naf ! modify here to change the size of the DFT
303 domega = 2 * pi / (dt * nftpts)
304 ALLOCATE (fftdata (nftpts))
305 END IF
306

307 ! Open output file, compute the autocorrelation and write it there
308

309 nrtout = ntraj + 1
310

311 IF (numtraj>0) THEN
312

313 OPEN (nrtout, file='MDIPAFDAT', status='replace')
314 WRITE (nrtout, '(a80)') text
315 WRITE (nrtout, '(2i10)') numtraj,naf
316 WRITE (nrtout, '(/)')
317

318 ! Open the FT output file if needed
319 IF (lfft) THEN
320 OPEN (nrtout+1, file='MDIPAFFFT', status='replace')
321 WRITE (nrtout+1, '(a80)') text
322 WRITE (nrtout+1, '(2i10)') numtraj,nftpts
323 WRITE (nrtout+1, '(/)')
324 END IF
325

(continues on next page)

4.3. Software related to Extended Software Development Workshops 391

E-CAM Documentation, Release 0.2

(continued from previous page)

326 imol = 0 ! counter for molecules
327 DO j = 1, nmoldef
328 rnmol = NINT (nmol (j))
329 corrdata = 0.0_dp
330 WRITE (nrtout,'(a8)') nammol (j)
331 IF (lfft) WRITE (nrtout+1,'(a8)') nammol (j)
332 DO i = 1, nsamp
333 DO k = imol + 1, imol + rnmol
334 dx0 = mdipdata (1, k, i)
335 dy0 = mdipdata (2, k, i)
336 dz0 = mdipdata (3, k, i)
337 DO l = 1, naf
338 corrdata (l) = corrdata (l) + mdipdata (1, k, i+l-1) * dx0 + mdipdata

→˓(2, k, i+l-1) * dy0 &
339 + mdipdata (3, k, i+l-1) * dz0
340 END DO
341 END DO
342 END DO
343 corrdata = corrdata / (REAL (nsamp, KIND=dp) * nmol (j))
344 imol = imol + rnmol
345

346 DO i = 1, naf
347 WRITE (nrtout, '(1p,3e14.6)') REAL (i-1, KIND=dp)*dt, corrdata (i),

→˓corrdata (i)/corrdata(1)
348 END DO
349 WRITE (nrtout, '(/)')
350 IF (lfft) THEN
351 fftdata (:) = corrdata (:) / corrdata (1) ! adapt here if nftpts differs

→˓from naf
352 CALL fft (fftdata)
353 DO i = 1, nftpts
354 WRITE (nrtout+1, '(1p,3e14.6)') REAL (i-1, KIND=dp)*domega, fftdata (i)
355 END DO
356 WRITE (nrtout+1, '(/)')
357 END IF
358 END DO
359 corrdata = 0.0_dp
360 WRITE (nrtout, '("all species")')
361 IF (lfft) WRITE (nrtout+1, '("all species")')
362 DO i = 1, nsamp
363 DO k = 1, nummol
364 dx0 = mdipdata (1, k, i)
365 dy0 = mdipdata (2, k, i)
366 dz0 = mdipdata (3, k, i)
367 DO l = 1, naf
368 corrdata (l) = corrdata (l) + mdipdata (1, k, i+l-1) * dx0 + mdipdata

→˓(2, k, i+l-1) * dy0 &
369 + mdipdata (3, k, i+l-1) * dz0
370 END DO
371 END DO
372 END DO
373 corrdata = corrdata / (REAL (nsamp, KIND=dp) * nummol)
374

375 DO i = 1, naf
376 WRITE (nrtout, '(1p,3e14.6)') REAL (i-1, KIND=dp)*dt, corrdata (i),

→˓corrdata (i)/corrdata(1)
377 END DO

(continues on next page)

392 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

378 WRITE (nrtout, '(/)')
379 IF (lfft) THEN
380 fftdata (:) = corrdata (:)/ corrdata (1) ! adapt here if nftpts differs

→˓from naf
381 CALL fft (fftdata)
382 DO i = 1, nftpts
383 WRITE (nrtout+1, '(1p,3e14.6)') REAL (i-1, KIND=dp)*domega, fftdata (i)
384 END DO
385 WRITE (nrtout+1, '(/)')
386 END IF
387 END IF
388

389 ! Close the trajectory file
390 CLOSE (ntraj)
391

392 ! Close the output files
393 CLOSE (nrtout)
394 IF (lfft) CLOSE (nrtout+1)
395

396 DEALLOCATE (readint, readdata)
397 DEALLOCATE (namspe, nammol)
398 DEALLOCATE (xxx, yyy, zzz)
399 DEALLOCATE (ltp, ltm, mole)
400 DEALLOCATE (nmol, nbdmol)
401 DEALLOCATE (chg, molchg)
402 DEALLOCATE (dipx_box, dipy_box, dipz_box)
403 DEALLOCATE (bndtbl)
404 DEALLOCATE (visit, from)
405 DEALLOCATE (mdipdata, corrdata)
406 DEALLOCATE (dipx, dipy, dipz)
407 IF (lfft) DEALLOCATE (fftdata)
408

409 CONTAINS
410

411 SUBROUTINE check_molecules
412 !***
413 ! subroutine to check molecular content and labelling
414 !
415 ! authors: s. chiacchiera, February 2017
416 !

→˓***
→˓

417 IMPLICIT NONE
418 INTEGER i, j, k, tm, tp, imol, im, ibd
419 INTEGER mxmolsize
420 INTEGER, ALLOCATABLE :: molbeads (:,:)
421

422 mxmolsize = 0
423 DO i = 1, nmoldef
424 mxmolsize = MAX (nbdmol(i), mxmolsize)
425 END DO
426 ALLOCATE (molbeads (nmoldef, mxmolsize))
427 molbeads (:,:) = 0
428

429 imol = 0
430 ibd = 0
431 DO i = 1, nmoldef

(continues on next page)

4.3. Software related to Extended Software Development Workshops 393

E-CAM Documentation, Release 0.2

(continued from previous page)

432 DO j = 1, NINT (nmol(i))
433 imol = imol +1
434 DO k = 1, nbdmol(i)
435 ibd = ibd +1
436 tm = ltm (ibd)
437 tp = ltp (ibd)
438 im = mole (ibd)
439 IF (j==1) THEN
440 molbeads (i, k) = tp
441 ELSE
442 IF (molbeads (i, k) /= tp) THEN
443 WRITE (*,*) "ERROR: Problem with molecular content!"
444 STOP
445 ENDIF
446 ENDIF
447 IF (tm/=i.OR.im/=imol)THEN
448 WRITE (*,*) "ERROR: Problem with molecules labels!"
449 STOP
450 ENDIF
451 END DO
452 END DO
453 END DO
454 IF (imol/=nummol) THEN
455 WRITE (*,*) "ERROR: imol and nummol differ!"
456 STOP
457 ENDIF
458 DEALLOCATE (molbeads)
459 RETURN
460 END SUBROUTINE check_molecules
461

462 SUBROUTINE compute_charge_dipoles (dipx_box, dipy_box, dipz_box, px, py, pz)
463 !***
464 ! subroutine to compute charge dipole moments
465 !
466 ! authors: m. a. seaton and s. chiacchiera, February 2017
467 !
468 ! input: xxx, yyy, zzz (at a given time step) and chg
469 ! input: visit and from (obtained using connect)
470 ! output: the x,y,z components of the total dipole, for each molecule type and all
471 ! individual dipoles (at a given time step)
472 !
473 ! (NB: this is a slightly modified version, with different output)
474 !

→˓***
→˓

475 IMPLICIT NONE
476 INTEGER i, j, k, tm, tp, imol, ibd, count, ipr
477 REAL(KIND=dp), DIMENSION(nmoldef) :: dipx_box, dipy_box, dipz_box
478 REAL(KIND=dp) :: x, y, z, dx, dy, dz, xpre, ypre, zpre
479 REAL(KIND=dp) :: dipx, dipy, dipz
480 REAL(KIND=dp), DIMENSION(nmbeads) :: xabs, yabs, zabs
481 REAL(KIND=dp), DIMENSION(nummol) :: px, py, pz
482

483 dipx_box (:) = 0._dp
484 dipy_box (:) = 0._dp
485 dipz_box (:) = 0._dp
486

(continues on next page)

394 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

487 imol = 0
488 count = 0
489 ! xabs = 0._dp ! just to keep it clean
490 ! yabs = 0._dp
491 ! zabs = 0._dp
492

493 DO i = 1, nmoldef
494 tm = i
495 DO j = 1, NINT (nmol(i))
496 imol = imol + 1
497

498 dipx = 0._dp ! dipole of a SINGLE molecule
499 dipy = 0._dp
500 dipz = 0._dp
501

502 DO k = 1, nbdmol(i)
503 count = count + 1
504 ibd = visit (count)
505 ipr = from (count)
506

507 IF (ipr /= 0) THEN
508 xpre = xabs (ipr)
509 ypre = yabs (ipr)
510 zpre = zabs (ipr)
511 ELSE
512 IF (k == 1) THEN
513 xpre = 0._dp
514 ypre = 0._dp
515 zpre = 0._dp
516 ELSE
517 WRITE (*,*) "Unconnected molecule!"
518 STOP
519 ENDIF
520 ENDIF
521

522 tp = ltp (ibd)
523

524 dx = xxx (ibd) - xpre
525 dy = yyy (ibd) - ypre
526 dz = zzz (ibd) - zpre
527

528 dx = dx - dimx * ANINT (dx/dimx)
529 dy = dy - dimy * ANINT (dy/dimy)
530 dz = dz - dimz * ANINT (dz/dimz)
531

532 x = xpre + dx
533 y = ypre + dy
534 z = zpre + dz
535

536

537 dipx = dipx + x * chg (tp)
538 dipy = dipy + y * chg (tp)
539 dipz = dipz + z * chg (tp)
540

541 xabs (ibd) = x
542 yabs (ibd) = y
543 zabs (ibd) = z

(continues on next page)

4.3. Software related to Extended Software Development Workshops 395

E-CAM Documentation, Release 0.2

(continued from previous page)

544

545 END DO
546

547 ! storing dipole moments of individual molecules
548 px (imol) = dipx
549 py (imol) = dipy
550 pz (imol) = dipz
551

552 dipx_box (tm) = dipx_box (tm) + dipx
553 dipy_box (tm) = dipy_box (tm) + dipy
554 dipz_box (tm) = dipz_box (tm) + dipz
555

556 END DO
557 END DO
558

559 IF (imol/=nummol) THEN
560 WRITE (*,*) "ERROR: imol and nummol differ!"
561 STOP
562 ENDIF
563

564 RETURN
565 END SUBROUTINE compute_charge_dipoles
566

567 SUBROUTINE fft (x)
568 !

→˓***
→˓

569 ! Subroutine to call FFTW (v3) one-dimensional complex DFT.
570 ! Notice that the input array is overwritten with the its Discrete Fourier Transform.
571 !
572 ! author: s. chiacchiera, August 2017
573 ! amended: m. a. seaton, January 2021
574 !

→˓***
→˓

575 USE, INTRINSIC :: iso_c_binding
576 IMPLICIT none
577 INCLUDE 'fftw3.f03'
578 COMPLEX(C_DOUBLE_COMPLEX), INTENT(INOUT) :: x (:)
579 INTEGER :: n
580 TYPE(C_PTR) :: plan
581

582 n = SIZE (x)
583

584 plan = fftw_plan_dft_1d (n, x, x, FFTW_FORWARD, FFTW_ESTIMATE)
585 CALL fftw_execute_dft (plan, x, x)
586 CALL fftw_destroy_plan (plan)
587

588 RETURN
589

590 END SUBROUTINE fft
591

592 END PROGRAM gen_moldipaf
593

594 SUBROUTINE connect (nbeads, nbonds, bndtbl, mxmolsize, visit, from)
595 !**
596 ! Analyzes all the bonds (bndtbl) to obtain a schedule (visit, from)

(continues on next page)

396 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

597 ! to visit the beads so that each cluster is visited along a connected
598 ! path. "visit" gives the order to include beads, "from" gives the bead
599 ! to attach them to.
600 ! (Note: vocabulary from infection propagation used to move along
601 ! clusters)
602 !
603 ! author: s. chiacchiera, February 2017
604 ! amended: m. a. seaton, January 2021
605 !**
606 IMPLICIT none
607 INTEGER, INTENT (IN) :: nbeads, nbonds
608 INTEGER, INTENT (IN) :: bndtbl (nbonds,2)
609 INTEGER, INTENT (IN) :: mxmolsize
610 INTEGER :: ic, i, k, nn, nclu, nper, lab, ref, count !j
611 INTEGER, ALLOCATABLE :: firstnn (:), lastnn (:), deg (:)
612 INTEGER, ALLOCATABLE :: labnn (:)
613 INTEGER, ALLOCATABLE :: state (:)
614 INTEGER, ALLOCATABLE :: perlab (:), perref (:)
615 INTEGER, ALLOCATABLE :: nchist (:)
616 INTEGER, INTENT (OUT) :: visit (nbeads), from (nbeads)
617

618 ALLOCATE (firstnn (nbeads), lastnn (nbeads), deg (nbeads), labnn (2*nbonds))
619 ALLOCATE (state (nbeads))
620 ALLOCATE (perlab (nbeads), perref (nbeads))
621 ALLOCATE (nchist (mxmolsize))
622 !---
623 CALL organize (nbeads, nbonds, labnn, firstnn, lastnn, deg)
624 !---
625 state (:) = 0
626 nchist (:) = 0
627 visit (:) = 0
628 from (:) = 0
629 count = 0
630 !---
631 ic = 0
632 !---
633 DO WHILE (ic < nbeads) ! ic = label of bead used to "grow" a cluster
634 ic = ic + 1
635 IF(state (ic) /= 0) THEN
636 WRITE (*,*) "ERROR: labels are not as expected!"
637 STOP
638 END IF
639 nclu = 1
640 count = count + 1
641 visit (ic) = ic
642 IF (deg (ic) == 0) THEN
643 state (ic) = -1
644 IF (nclu <= mxmolsize) nchist (nclu) = nchist (nclu) +1
645 CYCLE
646 END IF
647 state (ic) = 1 ! ic is "infected"
648

649 ! nearest neighbours of ic are marked as "goint to be infected" -> a.k.a.
→˓perimeter

650 nper = 0
651 perlab (:) = 0
652 perref (:) = 0

(continues on next page)

4.3. Software related to Extended Software Development Workshops 397

E-CAM Documentation, Release 0.2

(continued from previous page)

653 DO k = firstnn (ic), lastnn (ic)
654 nn = labnn (k)
655 IF(state (nn) /= 0) THEN
656 WRITE (*,*) "ERROR: labels are not as expected!"
657 STOP
658 END IF
659 nper = nper + 1
660 perlab (nper) = nn !new bead in perimeter
661 perref (nper) = ic !its reference bead (origin of the link)
662 state (nn) = 2
663 END DO
664 state (ic) = 3 ! ic is "dead"
665

666 DO WHILE (nper > 0)
667 i = 1 ! pick a bead of "perimeter" to be analyzed
668 lab = perlab (i)
669 ref = perref (i)
670 perlab (i) = perlab (nper)
671 perref (i) = perref (nper)
672 nper = nper - 1
673 IF (state (lab) == 3) THEN
674 CYCLE
675 END IF
676 state (lab) = 1 ! "lab" is added to the cluster
677 nclu = nclu + 1
678 count = count + 1
679 visit (count) = lab
680 from (count) = ref
681

682 DO k = firstnn (lab), lastnn (lab) ! check nn of newly added
683 nn = labnn (k)
684 IF((state (nn) == 2) .OR. (state (nn) == 3)) CYCLE
685 nper = nper + 1
686 perlab (nper) = nn !new bead in perimeter
687 perref (nper) = lab !its reference bead (origin of the link)
688 state (nn) = 2
689 END DO
690 state (lab) = 3
691

692 END DO
693 nchist (nclu) = nchist (nclu) +1
694 ic = ic + nclu - 1 ! prepare ic for the next cluster
695 END DO
696 WRITE (*,*) "nchist: ", nchist
697 !---
698 DEALLOCATE (firstnn, lastnn, deg, labnn)
699 DEALLOCATE (state)
700 DEALLOCATE (perlab, perref)
701 DEALLOCATE (nchist)
702 RETURN
703 !---
704 CONTAINS
705 !---
706 SUBROUTINE organize (N, NL, labnn, firstnn, lastnn, deg)
707 !**
708 ! Analyzes the bonds (bndtbl) to obtain the degree (=number of bonds)
709 ! of each bead, and the nearest neighbours list.

(continues on next page)

398 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

710 ! N in the number of beads (vertices) and NL of bonds (links).
711 !
712 ! author: s. chiacchiera, February 2017
713 !**
714 IMPLICIT none
715 INTEGER, INTENT(IN) :: N, NL
716 INTEGER :: i,l,count_lab, i1,i2
717 INTEGER, DIMENSION (N), INTENT(OUT) :: deg
718 INTEGER, DIMENSION (N), INTENT(OUT) :: firstnn, lastnn
719 INTEGER, DIMENSION (2*NL), intent(OUT) :: labnn
720

721 deg(:)=0
722 firstnn(:)=0
723 lastnn(:)=0
724 labnn(:)=0
725

726 count_lab=0
727

728 DO i=1,N
729 DO l=1,NL
730 IF(bndtbl(l,1).EQ.i)THEN
731 deg(i)=deg(i)+1
732 count_lab=count_lab+1
733 labnn(count_lab)=bndtbl(l,2)
734 ENDIF
735 IF(bndtbl(l,2).EQ.i)THEN
736 deg(i)=deg(i)+1
737 count_lab=count_lab+1
738 labnn(count_lab)=bndtbl(l,1)
739 ENDIF
740 END DO
741 END DO
742

743 i1=1
744 i2=0
745 DO i=1,N
746 IF (deg (i)==0) CYCLE
747 firstnn(i)=i1
748 i2=i1+deg(i)-1
749 lastnn(i)=i2
750 i1=i2+1
751 END DO
752

753 RETURN
754

755 END SUBROUTINE organize
756 !---
757 END SUBROUTINE connect
758

Consistency check of input files in DL_MESO_DPD

4.3. Software related to Extended Software Development Workshops 399

E-CAM Documentation, Release 0.2

Software Technical Information

Language FORTRAN 90

Licence BSD

Documentation Tool RST and LaTex-generated .pdf file

Application Documentation Click to download the manual with more details

Relevant Training Material See the Testing section

• Purpose of Module

• Background Information

• Testing

• Source Code

Purpose of Module

This module, check_config.f90, is a pre-processing utility for DL_MESO_DPD, the Dissipative Particle Dy-
namics (DPD) code from the DL_MESO package. It checks that the content of the optional configuration (CONFIG)
file is consistent with that of the necessary input files (CONTROL and FIELD). In particular, it checks: the system
dimensions, its composition and the bead content of all the molecules. In addition, in case hard walls are present, it
checks that none of the stretching bonds between beads crosses a hard wall.

Background Information

The base code for this module is DL_MESO_DPD, the Dissipative Particle Dynamics code from the mesoscopic
simulation package DL_MESO, developed by M. Seaton at Daresbury Laboratory. This open source code is available
from STFC under both academic (free) and commercial (paid) licenses. The module can be used with DL_MESO from
version 2.6 (dated November 2015) onwards, including its currently released version, version 2.7 (dating December
2018).

Testing

The present module, check_config.f90, is compiled with the available Fortran90 compiler1, e.g.:

gfortran -o check_config.exe check_config.f90

and the executable must be in the same directory of the three files to be analyzed (i.e., CONTROL, FIELD and
CONFIG).

When running check_config.f90, the outcome of the different checks is sent to the standard output. The most
important messages are: warnings, error messages and hints to fix them. For completeness, some information about
the system size and composition is printed too.

We suggest as a test a very small system with three species of beads (A, B, C) and a total population of 24 beads. Of
these, 6 are unbonded, while the others are grouped into 7 molecules of two types. In the first test, consistent input is

1 Compilation has been tested with the GNU compiler GCC, version 10.2.0.

400 Chapter 4. Meso- and Multi-scale Modules

http://www.ccp5.ac.uk/DL_MESO
http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

given. In the following ones, small changes rising warnings and errors are analyzed, to demonstrate the behaviour of
the module.

Test 1

Use for the CONTROL file

Simple test

temperature 1.0
cutoff 1.0

timestep 0.01
steps 1100
equilibration steps 100
trajectory 100 100 0
stats every 100
stack size 100
print every 100
job time 100.0
close time 10.0

ensemble nvt mdvv

nfold 1 1 1
#vol 1.0
conf zero
#surface hard z

finish

for the FIELD file

Simple test

SPECIES 3
A 1.0 0.0 0
B 1.0 0.0 6
C 1.0 0.0 0

MOLECULES 2
ACB
nummols 4
beads 3
A 0.0 0.5 0.0
C 0.0 0.0 0.0
B 0.5 0.0 0.0
bonds 2
harm 1 2 10.0 0.0
harm 2 3 10.0 0.0
finish
BC
nummols 3
beads 2
B 0.0 0.0 0.0
C 0.5 0.0 0.0
bonds 1
harm 1 2 10.0 0.0
finish

(continues on next page)

4.3. Software related to Extended Software Development Workshops 401

E-CAM Documentation, Release 0.2

(continued from previous page)

INTERACTIONS 3
A A dpd 25.0 1.0 4.0
B B dpd 25.0 1.0 4.0
C C dpd 25.0 1.0 4.0

CLOSE

and for the CONFIG file this (correct labelling) one, where the beads are randomly located in the cubic box

Simple test
0 1

1.0000000000 0.0000000000 0.0000000000
0.0000000000 1.0000000000 0.0000000000
0.0000000000 0.0000000000 1.0000000000

B 1
0.4577200045 0.9001190080 0.3001750172

B 2
0.0415166244 0.7699064654 0.8179705041

B 3
0.6302680192 0.9146029274 0.7314079348

B 4
0.7731659040 0.5993543351 0.3483148324

B 5
0.1273913826 0.0669681234 0.5332509871

B 6
0.3493437595 0.4205682036 0.4898004159

A 7
0.0755944215 0.5154423406 0.0394230825

C 8
0.5837477096 0.0477604149 0.7092934456

B 9
0.0949452841 0.7453901460 0.7721903180

A 10
0.2026802865 0.4475765512 0.4191000671

C 11
0.8148312410 0.8686744347 0.8112311619

B 12
0.3621449634 0.5704018599 0.7440643976

A 13
0.4903370300 0.0944675650 0.7163648810

C 14
0.9445609725 0.2362723351 0.0291370763

B 15
0.7068423470 0.8993323711 0.0791676911

A 16
0.5713842548 0.2551756180 0.7366135404

C 17
0.2637800160 0.3507307479 0.7316829655

B 18
0.3956074216 0.9739386044 0.9861309514

B 19
0.9029085375 0.1837974484 0.0837168293

C 20
0.0287508243 0.2151038377 0.2502012593

B 21
0.1325665768 0.0464577116 0.8147593457

(continues on next page)

402 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

C 22
0.6603299794 0.1659685862 0.4340299834

B 23
0.7419336708 0.6792113832 0.5057230908

C 24
0.6879917453 0.0772687141 0.6552782347

Running the utility check_config.f90, this output is printed on the standard output

unit cell sizes = 1.0000000000 1.0000000000 1.0000000000
nfoldx, nfoldy, nfoldz = 1 1 1
system sizes = 1.0000000000 1.0000000000 1.0000000000
imcon = 1
levcfg = 0
lconfzero = T
srftype = 0
nspe = 3
nmoldef = 2
mxmolsize = 3
mxbonds = 2
nspec = 0 6 0
nspecmol = 4 7 7
numbond = 11
for molecule ACB :
mlstrtspe = 1 3 2
for molecule BC :
mlstrtspe = 2 3 0

OK: CONFIG file is consistent with FIELD file
(composition and bead content of molecules)

Test 2

Instead, altering just two particle species in the CONFIG file given above:

• “B 3” changes into “A 3”

• “C 20” changes into “B 20”

an error message is given

error: problem with unbonded beads of species A : 1 instead of
→˓ 0
error: problem with unbonded beads of species B : 5 instead of
→˓ 6
error: problem with molecular beads of species B : 8 instead of
→˓ 7
error: problem with molecular beads of species C : 6 instead of
→˓ 7
error: problem with the molecular content of BC : 2 -th bead is B
→˓ instead of C (bead label = 20)

error: CONFIG file is not consistent with FIELD file

Test 3

If instead these two lines of the CONFIG file are altered

• “A 10” into “C 10”

4.3. Software related to Extended Software Development Workshops 403

E-CAM Documentation, Release 0.2

• “C 11” into “A 11”

the error message is

error: problem with the molecular content of ACB : 1 -th bead is C
→˓ instead of A (bead label = 10)
error: problem with the molecular content of ACB : 2 -th bead is A
→˓ instead of C (bead label = 11)

error: CONFIG file is not consistent with FIELD file

Test 4

Here instead we propose to add a hard wall orthogonal to the z axis: this is done by uncommenting the surface
hard z line in the CONTROL file. Running the utility, one obtains

srftype = 1
srfx, srfy, srfz = 0 0 1
(composition and bead content of molecules)

error: bond between beads 7 and 8 crosses hard wall perp. to z
error: bond between beads 13 and 14 crosses hard wall perp. to z

Source Code

To download the source code for check_config.f90, click here.

Analysis of local tetrahedral ordering for DL_MESO_DPD

Software Technical Information

Language Fortran 2003

Licence BSD

Documentation Tool RST

Application Documentation See the Source Code section

Relevant Training Material See the Testing section

• Purpose of Module

• Background Information

• Testing

• Source Code

Purpose of Module

This module, tetrahedral.f90, is a postprocessing utility for DL_MESO_DPD, the Dissipative Particle Dy-
namics (DPD) code from the DL_MESO package. It processes trajectory (HISTORY) files and analyzes the local

404 Chapter 4. Meso- and Multi-scale Modules

http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

tetrahedral ordering, a feature that is relevant, for example, in water-like systems.

The local ordering in liquid water can be assessed considering the coordinates of oxygen atoms [Duboue2015]. In par-
ticular, for each oxygen, its four nearest neighbouring oxygens are considered, whereas the hydrogens are disregarded.
At the mesoscale level, the user will select one (appropriate) bead species and analyze its local ordering.

Given a particle 𝑗, we first find its four nearest neighbours (n.n.). Then, an orientational tetrahedral order parameter
is built using 𝑞 = 1 − 3

8

∑︀3
𝑖=1

∑︀4
𝑘=𝑖+1

(︀
cos𝜓𝑖𝑘 + 1

3

)︀2
, where 𝑖, 𝑘 are n.n. of 𝑗 and 𝜓𝑖𝑘 = 𝜃𝑖𝑗𝑘 is the angle1 between

the particles 𝑖, 𝑗 and 𝑘. Of course, the quantity is then averaged over the central particle 𝑗 and over time.

A translational tetrahedral order parameter, 𝑆𝑘, is defined as 𝑆𝑘 = 1 − 1
3

∑︀4
𝑖=1

(𝑟𝑖−𝑟)2

4𝑟2 , where 𝑖 is a n.n. of 𝑗 and
𝑟 = 1

4

∑︀4
𝑖=1 𝑟𝑖.

Concerning the limiting values of these parameters: in a regular tetrahedron (if the four vertices are referred to the
center of the solid) one has 𝑞 = 𝑆𝑘 = 1. In an ideal gas, where the angle 𝜓𝑖𝑘 is randomly distributed, 𝑞 ≃ 0. On the
other hand, 𝑆𝑘 ≃ 0 if the density fluctuations are large enough.

As a result of the analysis, a file TETRADAT is produced, whose columns are snapshot index, 𝑞, 𝑆𝑘, the instantaneous
values of the order parameters defined above. At the end of the file, the averages and standard errors (computed
assuming the snapshots are uncorrelated) of both order parameters are given.

Background Information

The base code for this module is DL_MESO_DPD, the Dissipative Particle Dynamics code from the mesoscopic
simulation package DL_MESO, developed by M. Seaton at Daresbury Laboratory. This open source code is available
from STFC under both academic (free) and commercial (paid) licenses. The module is to be used with DL_MESO in
its latest released version, version 2.7 (released December 2018). A variant of this module to be used with a previous
version of DL_MESO, version 2.6 (dating November 2015), can be found in the old-v2.6 directory.

Testing

The utility tetrahedral.f90 is compiled with the available Fortran 2003 compiler2, e.g.:

gfortran -o tetrahedral.exe tetrahedral.f90

and the executable must be in the same directory of the HISTORY file. The user is asked to provide the number of
the species for which ordering has to be analyzed. To input the user-defined parameter, one can enter it interactively
at runtime or write it into a text file (say, input.txt) and run the program in this way:

tetrahedral.exe < input.txt

Below we propose a test where a fluid is prepared in a ordered configuration (diamond cubic lattice) and rapidly goes
into an orientationally disordered one.

Test

The sources used for this test are available to download.

Run the DL_MESO_DPD simulation on a single node (serial run) using the CONTROL file,

One species - starting as diamond cubic lattice

#volume 64.0
temperature 1.0

(continues on next page)

1 The angle 𝜃𝑖𝑗𝑘 = cos−1
{︁

�⃗�𝑖𝑗 ·�⃗�𝑘𝑗

𝑟𝑖𝑗𝑟𝑘𝑗

}︁
where 𝑟𝑖𝑗 = 𝑟𝑖 − 𝑟𝑗 and 𝑟 = |�⃗�|.

2 Compilation has been tested with the GNU compiler GCC, version 10.2.0.

4.3. Software related to Extended Software Development Workshops 405

http://www.ccp5.ac.uk/DL_MESO
http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

(continued from previous page)

cutoff 1.0

timestep 0.01
steps 1000
traj 0 10 0
#traj 500 100 0
stats every 100
stack size 100
print every 100
job time 7200.0
close time 100.0

ensemble nvt mdvv

conf zero

nfold 2,2,2

finish

the FIELD file

One species - starting as diamond cubic lattice

SPECIES 1
A 1.0 0.0 8 0

INTERACTIONS 1
A A dpd 25.0 1.0 4.0

CLOSE

and the CONFIG file

One species - starting as diamond cubic lattice
0 1

4.0000000000 0.0000000000 0.0000000000
0.0000000000 4.0000000000 0.0000000000
0.0000000000 0.0000000000 4.0000000000

A 1
0.0 0.0 0.0

A 2
0.0 2.0 2.0

A 3
2.0 0.0 2.0

A 4
2.0 2.0 0.0

A 5
3.0 3.0 3.0

A 6
3.0 1.0 1.0

A 7
1.0 3.0 1.0

A 8
1.0 1.0 3.0

406 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

This configuration corresponds to a diamond cubic lattice3, while the nfold directive in the CONTROL file replicates
the configuration twice in all three dimensions.

Analyzing the resulting trajectory (HISTORY) file with tetrahedral.exe (compiled as indicated above) and
inputing 1 for the runtime argument, the following output is printed to the standard output:

Species 1 : A
Which species number has to be analyzed?

1
total number of beads: 64
number of beads by species: 64
number of analyzed beads: 64
<q> = 0.132069E+00
error = 0.159218E-01
<s_k> = 0.986906E+00
error = 0.243544E-03

The output file TETRADAT

Local ordering for beads of species: A
dimx, dimy, dimz= 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000
snapshot number, q, sk

1 1.000000E+00 1.000000E+00
2 9.690709E-01 9.982591E-01
3 8.476516E-01 9.935607E-01
4 5.326193E-01 9.892793E-01
5 3.297230E-01 9.868977E-01
6 2.057773E-01 9.847919E-01
7 9.033514E-02 9.829358E-01
8 2.481253E-02 9.827499E-01
9 4.596717E-02 9.831773E-01

10 4.275300E-02 9.840823E-01

contains the values of 𝑞 and 𝑆𝑘 for each snapshot and their averages are also produced.

One can see that in the initial snapshot, both order parameters detect an ordered state (i.e., 𝑆𝑘 = 𝑞 = 1). With
the evolution in time, since the system is a dilute fluid without bonds between particles, the orientational ordering is
rapidly lost (i.e., 𝑞 ≃ 0). On the other hand, the translational order parameter stays close to one since the density of
the system is roughly uniform.

Source Code

You can directly download the source file tetrahedral.f90 and we also include its contents below (as well as in
the test tarball).

1 PROGRAM tetrahedral
2 !***
3 !
4 ! module to analyze tetrahedral ordering in dl_meso HISTORY files
5 !
6 ! authors - m. a. seaton & s. chiacchiera, january 2018 (tidied up and amended

(continues on next page)

3 The diamond cubic crystal lattice (https://en.wikipedia.org/wiki/Diamond_cubic) is a repeating pattern of 8 atoms. Their coordinates may be
given as: 𝐴 = (0, 0, 0), 𝐵 = (0, 2, 2), 𝐶 = (2, 0, 2), 𝐷 = (2, 2, 0), 𝐸 = (3, 3, 3), 𝐹 = (3, 1, 1), 𝐺 = (1, 3, 1), and 𝐻 = (1, 1, 3) in a unit
cubic cell of side 𝐿 = 4. One can check that, with the minimum image convention, each particle has its 4 closest neighbours at a distance

√
3, and

all the angles are acos(−1/3). For this configuration (also if repeated periodically along the three Cartesian axis), 𝑞 = 1 and 𝑆𝑘 = 1.

4.3. Software related to Extended Software Development Workshops 407

https://en.wikipedia.org/wiki/Diamond_cubic

E-CAM Documentation, Release 0.2

(continued from previous page)

7 ! january 2021)
8 !
9 !**

10 IMPLICIT none
11 INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND (15, 307)
12 INTEGER, PARAMETER :: si = SELECTED_INT_KIND (8)
13 INTEGER, PARAMETER :: li = SELECTED_INT_KIND (12)
14 INTEGER, PARAMETER :: endversion = 1
15

16 REAL(KIND=dp), PARAMETER :: pi=3.141592653589793_dp
17

18 INTEGER, PARAMETER :: ntraj=10
19

20 CHARACTER(80) :: text
21 CHARACTER(8), ALLOCATABLE :: namspe (:), nammol (:)
22

23 INTEGER, ALLOCATABLE :: ltp (:), nspec (:), readint (:)
24 INTEGER :: nrtout
25 INTEGER :: chain, ioerror, i, numtraj, j, k, nmoldef, ibond
26 INTEGER :: nspe, nbeads, nusyst, nsyst, numbond, global, species, molecule
27 INTEGER :: lfrzn, keytrj, srfx, srfy, srfz
28 INTEGER :: nav
29 INTEGER :: bead1, bead2
30 INTEGER :: endver, Dlen, nstep, framesize, lend
31 INTEGER(KIND=li) :: filesize
32

33 REAL(KIND=dp), ALLOCATABLE :: xxx (:), yyy (:), zzz (:), readdata (:)
34 REAL(KIND=dp) :: dimx, dimy, dimz, shrdx, shrdy, shrdz
35 REAL(KIND=dp) :: amass, rcii, chg
36 REAL(KIND=dp) :: time
37

38 LOGICAL :: eof, swapend, bigend
39

40 ! Variables for tetrahedral ordering
41 INTEGER :: nnlab(4), npart, sp, count
42 REAL(KIND=dp) :: qtetra, stetra
43 REAL(KIND=dp) :: q, sk, q_sum, sk_sum, q_ave, sk_ave
44 REAL(KIND=dp) :: q2_sum, sk2_sum, q2_ave, sk2_ave
45

46 !---
→˓------

47

48 ! determine number of bytes for selected double precision kind
49 ! (the default SELECTED_REAL_KIND (15, 307) should return 8 bytes)
50

51 lend = STORAGE_SIZE (1.0_dp) / 8
52

53 ! check endianness of machine
54

55 bigend = (IACHAR(TRANSFER(1,"a"))==0)
56

57 ! Determine if HISTORY file exists, which endianness to use,
58 ! if type of real is correct
59

60 INQUIRE (file = 'HISTORY', EXIST = eof)
61 IF (.NOT. eof) THEN
62 PRINT *, "ERROR: cannot find HISTORY file"

(continues on next page)

408 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

63 STOP
64 END IF
65

66 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted', status =
→˓'unknown')

67

68 swapend = .false.
69 READ (ntraj) endver, Dlen
70

71 IF (endver/=endversion) THEN
72 swapend = .true.
73 CLOSE (ntraj)
74 IF (bigend) THEN
75 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted', status

→˓= 'unknown', convert = 'little_endian')
76 ELSE
77 OPEN (ntraj, file = 'HISTORY', access = 'stream', form = 'unformatted', status

→˓= 'unknown', convert = 'big_endian')
78 END IF
79 READ (ntraj) endver, Dlen
80 IF (endver/=endversion) THEN
81 PRINT *, "ERROR: corrupted HISTORY file or created with incorrect version of DL_

→˓MESO"
82 STOP
83 END IF
84 END IF
85

86 IF (Dlen/=lend) THEN
87 PRINT *, "ERROR: incorrect type of real number used in HISTORY file"
88 PRINT *, " recompile tetrahedral.f90 with reals of ", Dlen, " bytes"
89 STOP
90 END IF
91

92 ! read file size, number of trajectory frames and timestep numbers
93

94 READ (ntraj) filesize, numtraj, nstep
95

96 ! Read the number of beads, molecules and bonds
97 ! Arrays are filled with names of particles and molecules: if checking molecules,
98 ! arrays for species, molecule types etc. also filled
99

100 READ (ntraj) text
101 READ (ntraj) nspe, nmoldef, nusyst, nsyst, numbond, keytrj, srfx, srfy, srfz
102

103 ALLOCATE (namspe (nspe), nammol (nmoldef), nspec (nspe)) ! NB: nspec here counts
→˓ALL beads of a type, not only unbonded ones

104 ALLOCATE (xxx (1:nsyst), yyy (1:nsyst), zzz (1:nsyst))
105 ALLOCATE (ltp (1:nsyst))
106

107 framesize = (keytrj+1) * 3
108 ALLOCATE (readint (1:nsyst), readdata (1:framesize))
109

110 DO i = 1, nspe
111 READ (ntraj) namspe (i), amass, rcii, chg, lfrzn
112 END DO
113

114 DO i = 1, nmoldef
(continues on next page)

4.3. Software related to Extended Software Development Workshops 409

E-CAM Documentation, Release 0.2

(continued from previous page)

115 READ (ntraj) nammol (i)
116 END DO
117

118 ! Read properties of beads and molecules
119

120 nspec (:) = 0 ! populations
121 ibond = 0 !counter for bonds
122

123 DO i = 1, nsyst
124 READ (ntraj) global, species, molecule, chain
125 ltp (global) = species
126 nspec (species) = nspec (species) + 1
127 END DO
128

129 IF (numbond>0) THEN
130 DO i = 1, numbond
131 READ (ntraj) bead1, bead2
132 END DO
133 END IF
134

135 ! Find number of beads for which trajectories are needed
136

137 DO i = 1, nspe
138 WRITE(*,*) "Species ",i,": ",namspe (i)
139 END DO
140 WRITE(*,*) "Which species number has to be analyzed?"
141 READ(*,*) sp
142 IF (sp<0 .OR. sp>nspe) THEN
143 WRITE(*,*) "error: undefined species!"
144 STOP
145 END IF
146

147 npart = nspec (sp)
148

149 WRITE(*,*) "total number of beads: ", nsyst
150 WRITE(*,*) "number of beads by species: ", nspec
151 WRITE(*,*) "number of analyzed beads: ", npart
152

153 ! Open and write output file
154

155 nrtout = ntraj + 1
156 OPEN (nrtout, file = 'TETRADAT', status ='replace')
157 WRITE (nrtout,*) "# Local ordering for beads of species: ", namspe (sp)
158 WRITE (nrtout,*) "# dimx, dimy, dimz=", dimx, dimy, dimz
159 WRITE (nrtout,*) "# snapshot number, q, sk"
160

161 eof = .false.
162 k = 0
163 nav = 0
164

165 q_sum = 0
166 sk_sum = 0
167 q2_sum = 0
168 sk2_sum = 0
169

170 ! Read snapshots of trajectories
171

(continues on next page)

410 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

172 DO k = 1, numtraj
173 READ (ntraj, IOSTAT=ioerror) time, nbeads, dimx, dimy, dimz, shrdx, shrdy, shrdz
174 IF (ioerror/=0) THEN
175 eof = .true.
176 IF (k==1) THEN
177 WRITE (*,*) 'ERROR: cannot find trajectory data in HISTORY files'
178 STOP
179 END IF
180 EXIT
181 END IF
182

183 nav = nav + 1
184

185 ! The full coordinate arrays are used to avoid re-labelling, but they are filled
→˓*only* for particles of species "sp"

186 xxx (:) = 0.0_dp
187 yyy (:) = 0.0_dp
188 zzz (:) = 0.0_dp
189

190 count = 0
191

192 READ (ntraj) readint (1:nbeads)
193 DO i = 1, nbeads
194 global = readint (i)
195 READ (ntraj) readdata (1:framesize)
196 IF (ltp (global) == sp) THEN
197 xxx (global) = readdata (1)
198 yyy (global) = readdata (2)
199 zzz (global) = readdata (3)
200 count = count + 1
201 END IF
202 END DO
203

204 IF (count /= npart) THEN
205 WRITE (*,*) " Number of particles of species ",sp," differs from expected!"
206 STOP
207 END IF
208

209 ! ... Analyze the trajectories (snapshot by snapshot) ...
210 q = 0.0_dp
211 sk = 0.0_dp
212

213 DO i = 1, nsyst
214 IF (ltp (i) /= sp) CYCLE
215 CALL closest4 (i, nnlab, npart)
216 ! WRITE (*,*) i, nnlab ! uncomment to see nn labels
217 CALL compute_tetra_label (i, nnlab, qtetra, stetra)
218 ! print*,"q=",qtetra ! uncomment to print q for each single set of 5 particles
219 ! print*,"s=",stetra ! uncomment to print sk for each single set of 5 particles
220 q = q + qtetra
221 sk = sk + stetra
222 END DO
223 q = q / REAL(npart, KIND=dp)
224 sk = sk / REAL(npart, KIND=dp)
225

226 WRITE (nrtout,'(1p,I8,2(2x,e14.6))') nav, q, sk
227

(continues on next page)

4.3. Software related to Extended Software Development Workshops 411

E-CAM Documentation, Release 0.2

(continued from previous page)

228 q_sum = q_sum + q
229 sk_sum = sk_sum + sk
230 q2_sum = q2_sum + q * q
231 sk2_sum = sk2_sum + sk * sk
232

233 ! ...
234 END DO ! end of loop over trajectories
235

236 q_ave = q_sum / REAL(nav, KIND=dp) ! average over snapshots
237 sk_ave = sk_sum / REAL(nav, KIND=dp)
238

239 q2_ave = q2_sum / REAL(nav, KIND=dp) ! average over snapshots
240 sk2_ave = sk2_sum / REAL(nav, KIND=dp)
241

242 WRITE (nrtout,*)
243 WRITE (nrtout,*)
244

245 WRITE (*,'(A9,2x,e14.6)') " <q> = ", q_ave
246 WRITE (*,'(A9,2x,e14.6)') " error = ", SQRT ((q2_ave - q_ave * q_ave)/REAL(nav,

→˓KIND=dp))
247 WRITE (*,'(A9,2x,e14.6)') " <s_k> = ", sk_ave
248 WRITE (*,'(A9,2x,e14.6)') " error = ", SQRT ((sk2_ave - sk_ave * sk_ave)/REAL(nav,

→˓KIND=dp))
249

250 WRITE (nrtout,'(A11,2x,e14.6)') " # <q> = ", q_ave
251 WRITE (nrtout,'(A11,2x,e14.6)') " # error = ", SQRT ((q2_ave - q_ave * q_ave)/

→˓REAL(nav, KIND=dp))
252 WRITE (nrtout,'(A11,2x,e14.6)') " # <s_k> = ", sk_ave
253 WRITE (nrtout,'(A11,2x,e14.6)') " # error = ", SQRT ((sk2_ave - sk_ave * sk_ave)/

→˓REAL(nav, KIND=dp))
254

255 ! Close the trajectory file
256 CLOSE (ntraj)
257

258 !close output file
259 CLOSE (nrtout)
260

261 DEALLOCATE (namspe, nammol, nspec)
262 DEALLOCATE (xxx, yyy, zzz)
263 DEALLOCATE (ltp)
264

265 !--
→˓-----

266 CONTAINS
267

268 SUBROUTINE compute_tetra_label (gb0, nnlab, qtetra, stetra)
269 !***
270 ! subroutine to compute q and sk for five particles given their global labels
271 ! (a central one and its four nearest neighbours)
272

273 ! authors: s. chiacchiera, january 2018
274 !

→˓***
→˓

275

276 IMPLICIT none
277 ! NB: I should finally recover the use of subroutine "images"

(continues on next page)

412 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

278 INTEGER, INTENT(IN):: gb0, nnlab (4)
279

280 REAL(KIND=dp), INTENT(OUT) :: qtetra, stetra
281 REAL(KIND=dp) :: theta, ctheta!, angle_ave, cangle_ave ! can be uncommented for

→˓checks
282

283 REAL(KIND=dp) :: xab, yab, zab, rab, rrab, xcb, ycb, zcb, rcb, rrcb
284 REAL(KIND=dp) :: r_ave, r2_ave
285

286 INTEGER :: nn1, nn2, i,j,k !change if needed
287

288 !---
→˓----

289 qtetra = 0.0_dp
290 ! angle_ave = 0._dp
291 ! cangle_ave = 0._dp
292

293 j = gb0 ! central particle for angle computations
294 DO nn1 = 1, 3
295 i = nnlab (nn1)
296 DO nn2 =nn1+1, 4
297 k = nnlab (nn2)
298 !---

→˓----
299 ! part to compute the ijk angle (from bond_module.f90)
300 xab = xxx (i) - xxx (j)
301 yab = yyy (i) - yyy (j)
302 zab = zzz (i) - zzz (j)
303 !!!
304 ! CALL images (xab, yab, zab, dimx, dimy, dimz, srfx, srfy, srfz, shrdx, shrdy,

→˓shrdz)
305 xab = xab - dimx * ANINT (xab/dimx)
306 yab = yab - dimy * ANINT (yab/dimy)
307 zab = zab - dimz * ANINT (zab/dimz)
308 !!!
309 rab = SQRT(xab * xab + yab * yab + zab * zab)
310 rrab = MAX (rab, 1e-10_dp)
311 rrab = 1.0_dp / rrab
312 xab = xab * rrab
313 yab = yab * rrab
314 zab = zab * rrab
315

316 xcb = xxx (k) - xxx (j)
317 ycb = yyy (k) - yyy (j)
318 zcb = zzz (k) - zzz (j)
319 !!!
320 ! CALL images (xcb, ycb, zcb, dimx, dimy, dimz, srfx, srfy, srfz, shrdx,

→˓shrdy, shrdz)
321 xcb = xcb - dimx * ANINT (xcb/dimx)
322 ycb = ycb - dimy * ANINT (ycb/dimy)
323 zcb = zcb - dimz * ANINT (zcb/dimz)
324 !!!
325 rcb = SQRT(xcb * xcb + ycb * ycb + zcb * zcb)
326 rrcb = MAX (rcb, 1e-10_dp)
327 rrcb = 1.0_dp / rrcb
328 xcb = xcb * rrcb
329 ycb = ycb * rrcb

(continues on next page)

4.3. Software related to Extended Software Development Workshops 413

E-CAM Documentation, Release 0.2

(continued from previous page)

330 zcb = zcb * rrcb
331

332 ctheta = xab * xcb + yab * ycb + zab * zcb
333 IF (ABS(ctheta)>1.0_dp) ctheta = SIGN(1.0_dp, ctheta) ! could add a check of

→˓how much >1 it is
334 theta = ACOS (ctheta)
335 !---

→˓----
336 qtetra = qtetra + (ctheta + 1.0_dp/3.0_dp) * (ctheta + 1.0_dp/3.0_dp)
337 ! angle_ave = angle_ave + theta
338 ! cangle_ave = cangle_ave + ctheta
339 !---

→˓----
340 ! WRITE(*,'(i2,1x,i2,1x,f13.6,1x,f13.6)') nn1, nn2, ctheta, ACOS(ctheta)/pi*180
341 END DO
342 END DO
343

344 qtetra = 1.0_dp - 0.375_dp * qtetra
345

346 ! angle_ave = angle_ave/ 6.
347 ! cangle_ave = cangle_ave/ 6.
348

349 ! print*,"average angle=", angle_ave
350 ! print*,"average cosine angle=", cangle_ave,"-> angle", ACOS(cangle_ave)," and in

→˓degrees ",ACOS(cangle_ave)/pi*180
351 !---

→˓----
352

353 r_ave = 0.0_dp
354 r2_ave = 0.0_dp
355

356 j = gb0 ! central particle for distance computations
357 DO nn1 = 1, 4
358 i = nnlab (nn1)
359

360 xab = xxx (i) - xxx (j)
361 yab = yyy (i) - yyy (j)
362 zab = zzz (i) - zzz (j)
363 !!!
364 ! CALL images (xab, yab, zab, dimx, dimy, dimz, srfx, srfy, srfz, shrdx, shrdy,

→˓shrdz)
365 xab = xab - dimx * ANINT (xab/dimx)
366 yab = yab - dimy * ANINT (yab/dimy)
367 zab = zab - dimz * ANINT (zab/dimz)
368 !!!
369 rab = SQRT(xab * xab + yab * yab + zab * zab)
370

371 r_ave = r_ave + rab
372 r2_ave = r2_ave + rab * rab
373

374 END DO
375

376 r_ave = 0.25_dp * r_ave
377 r2_ave = 0.25_dp * r2_ave
378

379 stetra = 1.0_dp - 1.0_dp/(3.0_dp*r_ave*r_ave) * (r2_ave - r_ave * r_ave)
380

(continues on next page)

414 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

381 RETURN
382

383 END SUBROUTINE compute_tetra_label
384

385 SUBROUTINE closest4 (gb0, sorted, npart)
386 !***
387 ! subroutine to find the four closest particles of a given species to a given particle
388 !
389 ! authors: s. chiacchiera, january 2018
390 !

→˓***
→˓

391 !
392 ! input: - all the coordinates of beads of species "sp" (the others are set to "0")
393 ! - one selected particle of species "sp"
394 ! output: the (ordered by distance) labels of the four closest "sp" particles to it
395 IMPLICIT none
396

397 INTEGER, INTENT(IN) :: gb0, npart
398 INTEGER, INTENT(OUT) :: sorted (4)
399 INTEGER :: i, count, ncut, indx, size
400

401 REAL(KIND=dp) :: x, y, z, r, volm
402 REAL(KIND=dp) :: rcut, rmin, sorted_r (4)
403 REAL(KIND=dp), ALLOCATABLE :: list (:,:)
404

405 ncut = 15 !10 ! a bit more than 4, to be safe.
406

407 volm = dimx*dimy*dimz
408 size = MIN (npart - 1, 2 * ncut)
409 rcut = (0.75_dp/pi * ncut / npart * volm) ** (1.0_dp/3.0_dp)
410 count = 0
411

412 ALLOCATE (list (size, 2))
413

414 list = 0.0_dp
415

416 DO i = 1, nsyst
417 IF (i == gb0) CYCLE
418 IF (ltp (i) /= sp) CYCLE
419 x = xxx (i) - xxx (gb0)
420 y = yyy (i) - yyy (gb0)
421 z = zzz (i) - zzz (gb0)
422 !!!
423 ! CALL images (xab, yab, zab, dimx, dimy, dimz, srfx, srfy, srfz, shrdx, shrdy,

→˓shrdz)
424 x = x - dimx * ANINT (x/dimx)
425 y = y - dimy * ANINT (y/dimy)
426 z = z - dimz * ANINT (z/dimz)
427 !!!
428 r = SQRT(x * x + y * y + z * z)
429

430 IF (r > rcut) CYCLE
431 count = count + 1
432 IF (count>size) THEN
433 WRITE(*,*) "error: too many particles!"
434 STOP

(continues on next page)

4.3. Software related to Extended Software Development Workshops 415

E-CAM Documentation, Release 0.2

(continued from previous page)

435 END IF
436 list (count, 1) = REAL(i, KIND=dp) ! store the global index
437 list (count, 2) = r ! store the distance to gb0
438 END DO
439

440 ! WRITE (*,*) "rcut=", rcut ! uncomment to see radius of search region
441 ! WRITE (*,*) gb0, count ! uncomment to see the number of particles within it
442

443 IF (count < 4) THEN
444 WRITE (*,*) "error: fewer than 4 neighbours - ",count," - found! Increase the

→˓searched volume (-> ncut)"
445 WRITE (*,*) "time=",time
446 STOP
447 END IF
448

449 ! sorting by distance
450 sorted (:) = 0
451 sorted_r (:) = 0.0_dp
452 DO j = 1, 4
453 rmin = rcut
454 indx = 0
455 DO i = 1, count
456 IF ((NINT(list (i,1)) == sorted (1)) .OR. (NINT(list (i,1)) == sorted (2)) .

→˓OR. &
457 (NINT(list (i,1)) == sorted (3)) .OR. (NINT(list (i,1)) == sorted (4)))

→˓CYCLE
458 IF (list (i,2) < rmin) THEN
459 rmin = list(i,2)
460 indx = NINT(list(i,1))
461 END IF
462 END DO
463 sorted (j) = indx
464 sorted_r (j) = rmin
465 END DO
466 ! WRITE (*,'(4(1x,I6))') sorted ! uncomment to see the labels of nn of gb0 (sorted

→˓by distance)
467 ! WRITE (*,'(4(1x,f13.6))') sorted_r ! uncomment to see the corresponding distances
468

469 DEALLOCATE (list) ! for fixed size, could allocate/deallocate in the main
470 RETURN
471 END SUBROUTINE closest4
472

473 END PROGRAM tetrahedral

Multi-GPU version of DL_MESO_DPD

Software Technical Information

The information in this section describes the DL_MESO_DPD GPU versions as a whole.

Language Fortran/CUDA-C (cuda toolkit 7.5)

Documentation Tool ReST files

Application Documentation See the DL_MESO Manual

416 Chapter 4. Meso- and Multi-scale Modules

http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf

E-CAM Documentation, Release 0.2

Relevant Training Material See DL_MESO webpage

Licence BSD, v. 2.7 or later

• Purpose of Module

• Background Information

• Testing

• Performance

• Examples

• Source Code

Authors: Jony Castagna

This module implements the first version of the D_MESO_DPD code with multiple NVidia Graphical Processing
Units (GPUs). More details about it can be found in the following sections.

Purpose of Module

In this module the main framework of a multi-GPU version of the DL_MESO_DPD code has been developed. The
exchange of data between GPUs overlaps with the computation of the forces for the internal cells of each partition
(a domain decomposition approach based on the MPI parallel version of DL_MESO_DPD has been followed). The
current implementation is a proof of concept only and relies on slow transfers of data from the GPU to the host and
vice-versa. Faster implementations will be explored in future modules.

In particular, the transfer of data occurs in 3 steps: x-y planes first, x-z planes with halo data (i.e. the values which
will fill the ghost cells) from the previous swap and finally the y-z planes with all halos. This avoid the problems of
the corner cells, which usually requires a separate communication reducing the number of send/receive calls from 14
to 6.The multi-GPU version has been currently tested with 8 GPUs and successfully reproduce the same results as a
single GPU within machine accuracy resolution.

Future plans include benchmarking of the code with different data transfer implementations other than the current
(trivial) GPU-host-GPU transfer mechanism. These are: of Peer To Peer communication within a node, CUDA-aware
MPI, and CUDA-aware MPI with Direct Remote Memory Access (DRMA).

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Micheal
Seaton at Daresbury Laboratory (STFC) for further details.

Testing

The DL_MESO code is developed using git version control. Currently the GPU version is under a branch
named add_gpu_version. After downloading the code, checkout the GPU branch and look into the DPD/
gpu_version folder, i.e:

4.3. Software related to Extended Software Development Workshops 417

http://www.scd.stfc.ac.uk/SCD/support/40694.aspx
https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk

E-CAM Documentation, Release 0.2

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout gpu_version
cd ./DPD/gpu_version
make all

To compile and run the code you need to have installed the CUDA-toolkit (>=8.0) and have a CUDA enabled GPU
device (see http://docs.nvidia.com/cuda/#axzz4ZPtFifjw). For the MPI library the OpenMPI 3.1.0 has been used.

The current version has been tested ONLY for the Mixture_Large test case available in the DEMO/DPD folder.
To run the case, compile the code using the make all command from the bin directory, copy the FIELD and
CONTROL files in this directory and run ./dpd_gpu.exe.

Attention: the HISTORY file produced is currently NOT compatible with the serial version, because this is written in
the C binary data format (Fortran files are organised in records, while C are not. See https://scipy.github.io/old-wiki/
pages/Cookbook/FortranIO.html).

However, you can compare the OUTPUT and the export files to verify your results. For more details see the
README.rst file in the gpu_version folder.

Performance

A test case a two phase mixture separation with 1.8 billion particles has been used and run for 100 time steps without
IO operations.A weak scaling efficiency (𝜂) plot up to 512 GPUs (1.2 billion particles) is presented below. This plot
is obtained by taking the ratio between the wall time for the GPU count and a reference walltime of two GPUs (the
singleGPU version uses a non-scalable, faster, alternative implementation which would skew the results). As can be
seen, the result (𝜂 *𝐺𝑃𝑈𝑠) oscillates near perfect scalability.

Strong scaling results are obtained using 1.8 billion particles for 256 to 2048 GPUs. Results show very good scaling,
with efficiency always above 89% for 2048 GPUs (note that 2048 P100 GPUs on PizDaint is equivalent to almost 10
Petaflops of raw double precision compute performance).

418 Chapter 4. Meso- and Multi-scale Modules

http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
https://scipy.github.io/old-wiki/pages/Cookbook/FortranIO.html
https://scipy.github.io/old-wiki/pages/Cookbook/FortranIO.html

E-CAM Documentation, Release 0.2

Examples

See the Mixture_Large case in the DL_MESO manual.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as collaborator):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/7f3e7abe7bb1c8010dd6a5baa0de4907ffe2f003

Using SIONlib (parallel I/O library) to write/read HISTORY files in DL_MESO_DPD

Software Technical Information

Language FORTRAN 90

Licence BSD / DL_MESO Licence for the base code

Documentation Tool RST

Application Documentation See the Source Code section

Relevant Training Material See the Testing section

• Purpose of Module

• Background Information

• Testing

4.3. Software related to Extended Software Development Workshops 419

https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/7f3e7abe7bb1c8010dd6a5baa0de4907ffe2f003
http://www.ccp5.ac.uk/DL_MESO

E-CAM Documentation, Release 0.2

• Source Code

Purpose of Module

This module proposes to use the SIONlib library to write/read the trajectory (HISTORY) files in DL_MESO_DPD, the
Dissipative Particle Dynamics (DPD) code from the DL_MESO package. In the last release (2.6, dating November
2015), the MPI version of DL_MESO_DPD generates multiple trajectory files, one for each MPI task. The use of
SIONlib allows to minimally modify the writing so that just one physical file (history.sion) is produced. An analogous
modification has to be implemented in the post-processing utilities that read the HISTORY files. As an example,
here the modifications are implemented for one specific utility, format_history_sion.f90, a formatting tool
analogous to format_history.f90 (see Formatting the HISTORY files of DL_MESO_DPD). Beside showing how
to adapt the reading, this allows a robust check of the implementation, since the output is human readable, contains the
full trajectories, and can be readily compared with that obtained using format_history.f90 with the standard
version of DL_MESO_DPD.

Notice that the next released version of DL_MESO_DPD (in development) will tackle the writing of files differently,
producing a single trajectory file from the start. However, the interface proposed here provides this feature to the users
of version 2.6, and represents an alternative solution for the handling of the trajectories.

The implementation presented here is meant to show the feasibility of the interfacing, not to deal with all the possible
cases. We therefore restrict in this module to the relevant case in which: i) the simulation is run in parallel using MPI,
ii) a single SIONlib-type physical file is produced, and iii) the post-processing is done by a single process.

Finally, we would like to underline that, while SIONlib is optimized for a large number of MPI tasks, the reduction
from several output files to just one is in any case a benefit, for example when it comes to the maintenance of the
simulation output.

Background Information

The base code for this module is DL_MESO_DPD, the Dissipative Particle Dynamics code from the mesoscopic
simulation package DL_MESO, developed by M. Seaton at Daresbury Laboratory. This open source code is available
from STFC under both academic (free) and commercial (paid) licenses. The module is to be used with DL_MESO in
its last released version, version 2.6 (dating November 2015).

The present module requires the SIONlib library to be installed. Its last released version is number 1.7.1 (dating
November 2016).

Testing

The version of DL_MESO_DPD including SIONlib (see below) is compiled using the corresponding makefile
(Makefile-MPI). Two pre-processing flags can be used when compiling: -D DEBUG, to print information for
any SIONlib-related action, and -D STDTRAJ, to recover the standard printing of trajectories as HISTORY* files.

The utility format_history_sion.f90 is compiled with the available Fortran90+MPI compiler, and using ap-
propriate flags for the SIONlib library, e.g:

mpifort -c -cpp format_history_sion.f90 `/home/user/sionlib/bin/sionconfig --cflags --
→˓f77 --mpi --threadsafe --64`
mpifort -o format_history_sion.exe format_history_sion.o `/home/user/sionlib/bin/
→˓sionconfig --libs --f77 --mpi --threadsafe --64`

and the executable must be in the same directory of the history.sion file. It is assumed that SIONlib has been installed
in the /home/user/sionlib/ directory, where of course the user name has to be adapted. If the pre-processing flag -D

420 Chapter 4. Meso- and Multi-scale Modules

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.ccp5.ac.uk/DL_MESO
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.ccp5.ac.uk/DL_MESO
http://www.ccp5.ac.uk/DL_MESO
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html

E-CAM Documentation, Release 0.2

DEBUG is used when compiling, the result of each read statement is printed to the standard output and an eventual
mismatch in the number of read elements is signaled.

To test the writing/reading of the trajectories, the user can choose any simulation run using DL_MESO_DPD, then
analyze the trajectories with both format_history.f90 (which reads standard DL_MESO_DPD binary HIS-
TORY* files) and format_history_sion.f90 (which reads the SIONlib-type history.sion file): the formatted
files so obtained, HISTORY*-F and sion*-F, respectively, should coincide.

However, for completeness, we provide the input files for a possible test: the CONTROL file

Simple test

vol 1000.0
temperature 1.0
cutoff 1.0

timestep 0.01
steps 1000
equilibration steps 0
traj 0 100 0
stats every 100
stack size 100
print every 100
job time 1000.0
close time 10.0

ensemble nvt mdvv

nfold 1 1 1
global bonds

finish

and the FIELD file

Simple example

SPECIES 2
A 1.0 0.0 0
B 1.0 0.0 0

MOLECULES 1
AB
nummols 1500
beads 2
A 0.0 0.0 0.0
B 0.1 0.0 0.0
bonds 1
harm 1 2 10.0 0.0
finish

INTERACTIONS 2
A A dpd 25.0 1.0 4.0
B B dpd 25.0 1.0 4.0

CLOSE

4.3. Software related to Extended Software Development Workshops 421

E-CAM Documentation, Release 0.2

Source Code

A number of DL_MESO_DPD modules have to be slightly modified to use SIONlib when writing the trajectories,
namely: variables.f90, constants.f90, start_module.f90, dlmesodpd.f90, error_module.
f90 and the Makefile-MPI. As an example of the post-processing of a SIONlib-type trajectory, we provide
the formatting utility format_history_sion.f90, analogous to format_history.f90 (see Formatting the
HISTORY files of DL_MESO_DPD): it reads the SIONlib trajectory file (history.sion) and produces multiple formatted
trajectory files (sion*-F).

In the following we give the needed changes in the form of patches1: in the git diff, a is the branch with the standard
version (version 2.6, revision 152), b the SIONlib one.

The patch for Makefile-MPI is

1 diff --git a/Makefile-MPI b/Makefile-MPI
2 index 462de59..0078f94 100644
3 --- a/Makefile-MPI
4 +++ b/Makefile-MPI
5 @@ -1,10 +1,13 @@
6 MF= Makefile
7

8 +SCFLAGS = `/home/user/sionlib/bin/sionconfig --cflags --f77 --mpi --threadsafe --64`
9 +SLFLAGS = `/home/user/sionlib/bin/sionconfig --libs --f77 --mpi --threadsafe --64`

10 +
11 FC= mpifort
12 -FFLAGS= -O3
13 +FFLAGS= -O3 -cpp
14 LFLAGS= $(FFLAGS)
15

16 -EXE= dpd.exe
17 +EXE= dpd-MPI-sion.exe
18

19 VPATH= ../DPD/
20

21 @@ -38,12 +41,12 @@ SRC= \
22 OBJ= $(SRC:.f90=.o)
23

24 .f90.o:
25 - $(FC) $(FFLAGS) -c $<
26 + $(FC) $(FFLAGS) -c $< $(SCFLAGS)
27

28 all: $(EXE)
29

30 $(EXE): $(OBJ)
31 - $(FC) $(LFLAGS) -o $@ $(OBJ)
32 + $(FC) $(LFLAGS) -o $@ $(OBJ) $(SLFLAGS)
33

34 $(OBJ): $(MF)
35

The patch for variables.f90 is

1 diff --git a/variables.f90 b/variables.f90
2 index 3aef25a..3f6a109 100644

(continues on next page)

1 If patching is done with GNU patch command, the -l option (ignoring whitespaces) has to be active.
2 On CCPForge, a software development framework where, in particular, the different versions of DL_MESO_DPD are stored, version 2.6 in its

revision 15 corresponds to the commit number 48e9a42a51f4cb450eb9c39dcbf6eb4a38c7cd32.

422 Chapter 4. Meso- and Multi-scale Modules

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
https://ccpforge.cse.rl.ac.uk/gf/

E-CAM Documentation, Release 0.2

(continued from previous page)

3 --- a/variables.f90
4 +++ b/variables.f90
5 @@ -326,4 +326,18 @@ MODULE variables
6 ! Allocated in config_module.f90
7 REAL(KIND=dp), ALLOCATABLE, SAVE, TARGET :: commsinbuf(:,:), commsoutbuf(:,:)
8

9 +! variables needed by SIONlib
10 + INTEGER*8 sierr
11 + CHARACTER(len=255) :: filename
12 + CHARACTER(len=255) :: newfname
13 + INTEGER:: nfiles
14 + INTEGER:: gComm, lComm, sid
15 + INTEGER:: fsblksize
16 + INTEGER*8 :: chunksize
17 + INTEGER*8 :: size, nelem
18 + INTEGER :: seof
19 + INTEGER :: buffer_i(6)
20 + REAL(KIND=dp) :: buffer_r(10)
21 + CHARACTER(LEN=8) :: buffer_c
22 +
23 END MODULE

The patch for constants.f90 is

1 diff --git a/constants.f90 b/constants.f90
2 index 65bbee4..82c2641 100644
3 --- a/constants.f90
4 +++ b/constants.f90
5 @@ -13,5 +13,7 @@ MODULE constants
6 REAL(KIND=dp), PARAMETER :: fkt=2.0_dp/3.0_dp
7 REAL(KIND=dp), PARAMETER :: rt12=3.464101615377546_dp
8 REAL(KIND=dp), PARAMETER :: langepsilon=1.0e-6_dp
9 +! for SIONlib

10 + INTEGER, PARAMETER :: nsion = 13
11

12 END MODULE

The patch for dlmesodpd.f90 is

1 diff --git a/dlmesodpd.f90 b/dlmesodpd.f90
2 index 062c26c..90600f2 100644
3 --- a/dlmesodpd.f90
4 +++ b/dlmesodpd.f90
5 @@ -189,8 +189,15 @@ PROGRAM dlmesodpd
6 END IF
7

8 ! close files, deallocate arrays and close down MPI
9 -

10 +#ifdef STDTRAJ
11 IF (ltraj) CLOSE (nhist)
12 +#endif
13 +!!! SIONlib 3: close SIONlib file
14 + IF (ltraj) call fsion_parclose_mpi(sid,sierr)
15 +#ifdef DEBUG
16 + WRITE (nprint, *) "sierr=", sierr , "on idnode=", idnode
17 +#endif
18 +!!!

(continues on next page)

4.3. Software related to Extended Software Development Workshops 423

E-CAM Documentation, Release 0.2

(continued from previous page)

19 CALL free_memory
20 IF (.NOT. l_scr) CLOSE (nprint)
21 CALL exitcomms ()

The patch for error_module.f90 is

1 diff --git a/error_module.f90 b/error_module.f90
2 index cb19b28..f8c3c3b 100644
3 --- a/error_module.f90
4 +++ b/error_module.f90
5 @@ -589,6 +589,11 @@ CONTAINS
6 CASE (1198)
7 WRITE (nprint,"(/,1x,'error: deallocation failure in field_module ->

→˓plcfor_stoyanov')")
8

9 +! sionlib
10 + CASE (1500)
11 + WRITE (nprint,"(/,1x,'error: this version (using sionlib) does not support

→˓restart')")
12 + CASE (1501)
13 + WRITE (nprint,"(/,1x,'error: problem in writing SIONfile, mismatched

→˓number of items',i10)") value
14

15 CASE DEFAULT
16 WRITE (nprint,"(/,1x,'error: undefined error code found')")
17 @@ -605,7 +610,12 @@ CONTAINS
18 ! close all i/o channels
19

20 IF (idnode==0) CLOSE (nprint)
21 +#ifdef STDTRAJ
22 CLOSE (nhist)
23 +#endif
24 +!!! SIONlib: close file
25 + IF (ltraj) call fsion_parclose_mpi(sid,sierr)
26 +!!!
27 IF (idnode==0) CLOSE (nsave)
28

29 ! shut down MPI and stop program

The patch for start_module.f90 is

1 diff --git a/start_module.f90 b/start_module.f90
2 index a7f0233..81c3b24 100644
3 --- a/start_module.f90
4 +++ b/start_module.f90
5 @@ -95,6 +95,9 @@ CONTAINS
6 INTEGER :: fail (4)
7 INTEGER, ALLOCATABLE :: localmolmap(:)
8

9 +! SIONlib 0: set sionlib filename
10 + filename = 'history.sion'
11 +
12 ! set restart filename
13

14 WRITE (chan, '(i6.6)') idnode
15 @@ -296,6 +299,10 @@ CONTAINS
16

(continues on next page)

424 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

17 IF (nstep>0) THEN
18

19 +!!! SIONlib 1a: give error for resart
20 + CALL error (idnode, 1500, 1)
21 +!!!
22 +#ifdef STDTRAJ
23 IF (nodes>1) THEN
24 OPEN (nhist, file='HISTORY'//chan, access = 'sequential', form =

→˓'unformatted', status = 'unknown',&
25 & position = 'append')
26 @@ -303,45 +310,184 @@ CONTAINS
27 OPEN (nhist, file='HISTORY', access = 'sequential', form = 'unformatted

→˓', status = 'unknown',&
28 & position = 'append')
29 END IF
30 -
31 +#endif
32 ELSE
33

34 +!!! SIONlib 1b: define and open
35 + gcomm = MPI_COMM_WORLD
36 + lcomm = MPI_COMM_WORLD
37 + fsblksize = -1
38 + chunksize = 100
39 + nfiles = 1
40 + call fsion_paropen_mpi(trim(filename),'bw',nfiles, gComm,lComm, &
41 + chunksize,fsblksize,idnode,newfname,sid)
42 +#ifdef DEBUG
43 + WRITE (6,*) "opened sionfile on node=",idnode ,"; sid=",sid
44 + WRITE (6,*) "input chunksize (if needed, will be internally corrected)=",

→˓chunksize, "; fsblksize=", fsblksize
45 +#endif
46 +!!!
47 +#ifdef STDTRAJ
48 IF (nodes>1) THEN
49 OPEN (nhist, file='HISTORY'//chan, access = 'sequential', form =

→˓'unformatted', status = 'unknown')
50 ELSE
51 OPEN (nhist, file='HISTORY', access = 'sequential', form = 'unformatted',

→˓ status = 'unknown')
52 END IF
53 -
54 -
55 +#endif
56 IF (lgbnd .AND. idnode>0) THEN
57 +#ifdef STDTRAJ
58 WRITE (nhist) nspe, nmoldef, nusyst, nsyst, nbeads, 0
59 +#endif
60 +!!! SIONlib 2a: write into SION file
61 + nelem=6
62 + size=4
63 + buffer_i (1:6) = (/ nspe, nmoldef, nusyst, nsyst, nbeads, 0 /)
64 + call fsion_write(buffer_i,size,nelem,sid,sierr)
65 +#ifdef DEBUG
66 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
67 + WRITE (6,*) "a written in sionfile on node=",idnode ,"; # elements",sierr
68 +#endif

(continues on next page)

4.3. Software related to Extended Software Development Workshops 425

E-CAM Documentation, Release 0.2

(continued from previous page)

69 +!!!
70 ELSE
71 +#ifdef STDTRAJ
72 WRITE (nhist) nspe, nmoldef, nusyst, nsyst, nbeads, nbonds
73 - END IF
74 -
75 +#endif
76 +!!! SIONlib 2b: write into SION file
77 + nelem=6
78 + size=4
79 + buffer_i (1:6) = (/ nspe, nmoldef, nusyst, nsyst, nbeads, nbonds /)
80 + call fsion_write(buffer_i,size,nelem,sid,sierr)
81 +#ifdef DEBUG
82 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
83 + WRITE (6,*) "b written in sionfile on node=",idnode ,"; # elements",sierr
84 +#endif
85 +!!!
86 + END IF
87 +#ifdef STDTRAJ
88 WRITE (nhist) dimx, dimy, dimz, volm
89 +#endif
90 +!!! SIONlib 2c: write into SION file
91 + nelem=4
92 + size=8
93 + buffer_r (1:4) = (/ dimx, dimy, dimz, volm /)
94 + call fsion_write(buffer_r,size,nelem,sid,sierr)
95 +#ifdef DEBUG
96 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
97 + WRITE (6,*) "c written in sionfile on node=",idnode ,"; # elements",sierr
98 +#endif
99 +!!!

100 +#ifdef STDTRAJ
101 WRITE (nhist) keytrj, srftype*srfx, srftype*srfy, srftype*srfz
102 +#endif
103 +!!! SIONlib 2d: write into SION file
104 + nelem=4
105 + size=4
106 + buffer_i (1:4) = (/ keytrj, srftype*srfx, srftype*srfy, srftype*srfz /)
107 + call fsion_write(buffer_i,size,nelem,sid,sierr)
108 +#ifdef DEBUG
109 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
110 + WRITE (6,*) "d written in sionfile on node=",idnode ,"; # elements",sierr
111 +#endif
112 +!!!
113

114 ! write species information
115 DO i = 1, nspe
116 k = (i * (i + 1)) / 2
117 SELECT CASE (ktype (k))
118 CASE (0:2)
119 +#ifdef STDTRAJ
120 WRITE (nhist) namspe (i), amass (i), vvv (2, k), lfrzn (i)
121 +#endif
122 +!!! SIONlib 2e: write into SION file
123 + nelem=1
124 + size=8
125 + buffer_c = namspe (i)

(continues on next page)

426 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

126 + call fsion_write(buffer_c,size,nelem,sid,sierr)
127 +#ifdef DEBUG
128 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
129 + WRITE (6,*) "e1 written in sionfile on node=",idnode ,"; # elements",

→˓sierr
130 +#endif
131 + nelem=2
132 + size=8
133 + buffer_r (1:2) = (/ amass (i), vvv (2, k) /)
134 + call fsion_write(buffer_r,size,nelem,sid,sierr)
135 +#ifdef DEBUG
136 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
137 + WRITE (6,*) "e2 written in sionfile on node=",idnode ,"; # elements",

→˓sierr
138 +#endif
139 + nelem=1
140 + size=4
141 + buffer_i (1) = lfrzn (i)
142 + call fsion_write(buffer_i,size,nelem,sid,sierr)
143 +#ifdef DEBUG
144 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
145 + WRITE (6,*) "e3 written in sionfile on node=",idnode ,"; # elements",

→˓sierr
146 +#endif
147 +!!!
148 CASE (3)
149 +#ifdef STDTRAJ
150 WRITE (nhist) namspe (i), amass (i), vvv (6, k), lfrzn (i)
151 +#endif
152 +!!! SIONlib 2f: write into SION file
153 + nelem=1
154 + size=8
155 + buffer_c = namspe (i)
156 + call fsion_write(buffer_c,size,nelem,sid,sierr)
157 +#ifdef DEBUG
158 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
159 + WRITE (6,*) "f1 written in sionfile on node=",idnode ,"; # elements",

→˓sierr
160 +#endif
161 + nelem=2
162 + size=8
163 + buffer_r (1:2) = (/ amass (i), vvv (6, k) /)
164 + call fsion_write(buffer_r,size,nelem,sid,sierr)
165 +#ifdef DEBUG
166 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
167 + WRITE (6,*) "f2 written in sionfile on node=",idnode ,"; # elements",

→˓sierr
168 +#endif
169 + nelem=1
170 + size=4
171 + buffer_i (1) = lfrzn (i)
172 + call fsion_write(buffer_i,size,nelem,sid,sierr)
173 +#ifdef DEBUG
174 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
175 + WRITE (6,*) "f3 written in sionfile on node=",idnode ,"; # elements",

→˓sierr
176 +#endif

(continues on next page)

4.3. Software related to Extended Software Development Workshops 427

E-CAM Documentation, Release 0.2

(continued from previous page)

177 +!!!
178 END SELECT
179 END DO
180

181 ! write molecule names
182 IF (nmoldef>0) THEN
183 DO i = 1, nmoldef
184 +#ifdef STDTRAJ
185 WRITE (nhist) nammol (i)
186 +#endif
187 +!!! SIONlib 2g: write into SION file
188 + nelem=1
189 + size=8
190 + buffer_c = nammol (i)
191 + call fsion_write(buffer_c,size,nelem,sid,sierr)
192 +#ifdef DEBUG
193 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
194 + WRITE (6,*) "g written in sionfile on node=",idnode ,"; # elements",

→˓sierr
195 +#endif
196 +!!!
197 END DO
198 END IF
199

200 ! write name of calculation
201 +#ifdef STDTRAJ
202 WRITE (nhist) text
203 +#endif
204 +!!! SIONlib 2h: write into SION file
205 + nelem=1
206 + size=80
207 + call fsion_write(text,size,nelem,sid,sierr)
208 +#ifdef DEBUG
209 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
210 + WRITE (6,*) "h written in sionfile on node=",idnode ,"; # elements",

→˓sierr
211 +#endif
212 +!!!
213

214 ! create map of local bead numbers to molecule numbers
215 ALLOCATE (localmolmap (nbeads), STAT=fail(1))
216 @@ -351,7 +497,19 @@ CONTAINS
217 ! write bead information (including molecule numbers)
218 DO i = 1, nbeads
219 imol = localmolmap(i)
220 +#ifdef STDTRAJ
221 WRITE (nhist) lab (i), ltp (i), ltm (i), imol
222 +#endif
223 +!!! SIONlib 2i: write into SION file
224 + nelem=4
225 + size=4
226 + buffer_i (1:4) = (/ lab (i), ltp (i), ltm (i), imol /)
227 + call fsion_write(buffer_i,size,nelem,sid,sierr)
228 +#ifdef DEBUG
229 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
230 + WRITE (6,*) "i written in sionfile on node=",idnode ,"; # elements",sierr
231 +#endif

(continues on next page)

428 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

232 +!!!
233 END DO
234

235 DEALLOCATE (localmolmap, STAT=fail(1))
236 @@ -360,7 +518,19 @@ CONTAINS
237 ! write bonds between beads
238 IF (nbonds>0 .AND. ((.NOT. lgbnd) .OR. idnode==0)) THEN
239 DO j = 1, nbonds
240 +#ifdef STDTRAJ
241 WRITE (nhist) bndtbl (j, 1), bndtbl (j, 2)
242 +#endif
243 +!!! SIONlib 2j: write into SION file
244 + nelem=2
245 + size=4
246 + buffer_i (1:2) = (/ bndtbl (j, 1), bndtbl (j, 2) /)
247 + call fsion_write(buffer_i,size,nelem,sid,sierr)
248 +#ifdef DEBUG
249 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
250 + WRITE (6,*) "j written in sionfile on node=",idnode ,"; # elements",sierr
251 +#endif
252 +!!!
253 END DO
254 END IF
255

These changes only affect one subroutine (start) within the start_module.f90. The user can either implement
the changes shown above, or replace the second part of the subroutine startwith the file provided (downloadable
version of the second part of subroutine start).

The patch for statistics_module.f90 is

1 diff --git a/statistics_module.f90 b/statistics_module.f90
2 index e2d5e79..e283d16 100644
3 --- a/statistics_module.f90
4 +++ b/statistics_module.f90
5 @@ -11,6 +11,7 @@ MODULE statistics_module
6

7 USE constants
8 USE variables
9 + USE error_module

10 IMPLICIT none
11

12 CONTAINS
13 @@ -621,41 +622,103 @@ CONTAINS
14 REAL(KIND=dp) :: time
15

16 ! write out data
17 -
18 +#ifdef STDTRAJ
19 WRITE (nhist) time, REAL (nbeads, KIND=dp), dimx, dimy, dimz, shrdx, shrdy,

→˓shrdz
20 +#endif
21 +!!! SIONlib 2k: write into SION file
22 + nelem=8
23 + size=8
24 + buffer_r (1:8) = (/ time, REAL (nbeads, KIND=dp), dimx, dimy, dimz, shrdx,

→˓shrdy, shrdz /)
(continues on next page)

4.3. Software related to Extended Software Development Workshops 429

E-CAM Documentation, Release 0.2

(continued from previous page)

25 + call fsion_write(buffer_r,size,nelem,sid,sierr)
26 +#ifdef DEBUG
27 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
28 + WRITE (6,*) "k written in sionfile on node=",idnode ,"; # elements",sierr
29 +#endif
30 +!!!
31

32 SELECT CASE (keytrj)
33 CASE (0)
34 ! positions
35 DO i = 1, nbeads
36 +#ifdef STDTRAJ
37 WRITE (nhist) REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) + dely, zzz

→˓(i) + delz
38 +#endif
39 +!!! SIONlib 2l: write into SION file
40 + nelem=4
41 + size=8
42 + buffer_r (1:4) = (/ REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) + dely,

→˓ zzz (i) + delz /)
43 + call fsion_write(buffer_r,size,nelem,sid,sierr)
44 +#ifdef DEBUG
45 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
46 + WRITE (6,*) "l written in sionfile on node=",idnode ,"; # elements",sierr
47 +#endif
48 +!!!
49 END DO
50 CASE (1)
51 ! positions and velocities
52 DO i = 1, nbeads
53 +#ifdef STDTRAJ
54 WRITE (nhist) REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) + dely, zzz

→˓(i) + delz, &
55 &vxx (i), vyy (i), vzz (i)
56 +#endif
57 +!!! SIONlib 2m: write into SION file
58 + nelem=7
59 + size=8
60 + buffer_r (1:7) = (/ REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) + dely,

→˓ zzz (i) + delz, &
61 + &vxx (i), vyy (i), vzz (i) /)
62 + call fsion_write(buffer_r,size,nelem,sid,sierr)
63 +#ifdef DEBUG
64 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
65 + WRITE (6,*) "m written in sionfile on node=",idnode ,"; # elements",sierr
66 +#endif
67 +!!!
68 END DO
69 CASE (2)
70 ! positions, velocities and forces
71 IF (itype==1) THEN
72 DO i = 1, nbeads
73 +#ifdef STDTRAJ
74 WRITE (nhist) REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) + dely,

→˓zzz (i) + delz, &
75 &vxx (i), vyy (i), vzz (i), (fxx(i)+fvx(i)), (fyy(i)+fvy(i)),

→˓(fzz(i)+fvz(i))
(continues on next page)

430 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

76 +#endif
77 +!!! SIONlib 2n: write into SION file
78 + nelem=10
79 + size=8
80 + buffer_r (1:10) = (/ REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) +

→˓dely, zzz (i) + delz, &
81 + &vxx (i), vyy (i), vzz (i), (fxx(i)+fvx(i)), (fyy(i)+fvy(i)),

→˓(fzz(i)+fvz(i)) /)
82 + call fsion_write(buffer_r,size,nelem,sid,sierr)
83 +#ifdef DEBUG
84 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
85 + WRITE (6,*) "n written in sionfile on node=",idnode ,"; # elements",sierr
86 +#endif
87 +!!!
88 END DO
89 ELSE
90 DO i = 1, nbeads
91 +#ifdef STDTRAJ
92 WRITE (nhist) REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) + dely,

→˓zzz (i) + delz, &
93 &vxx (i), vyy (i), vzz (i), fxx (i), fyy (i), fzz (i)
94 +#endif
95 +!!! SIONlib 2p: write into SION file
96 + nelem=10
97 + size=8
98 + buffer_r (1:10) = (/ REAL (lab(i), KIND=dp), xxx (i) + delx, yyy (i) +

→˓dely, zzz (i) + delz, &
99 + &vxx (i), vyy (i), vzz (i), fxx (i), fyy (i), fzz (i) /)

100 + call fsion_write(buffer_r,size,nelem,sid,sierr)
101 +#ifdef DEBUG
102 + IF (sierr.ne.nelem) CALL error (idnode, 1501, INT (sierr - nelem))
103 + WRITE (6,*) "p written in sionfile on node=",idnode ,"; # elements",sierr
104 +#endif
105 +!!!
106 END DO
107 END IF
108 END SELECT
109

110 ! clear buffers in case of job failure
111 -
112 +#ifdef STDTRAJ
113 ENDFILE (nhist)
114 BACKSPACE (nhist)
115 -
116 +#endif
117 RETURN
118 END SUBROUTINE histout
119

Also here the changes only affect one subroutine (histout) within the statistics_module.f90. The
user can either implement the changes shown above, or replace the subroutine histout with the file provided
(downloadable version of the subroutine histout).

Finally, the formatting utility format_history_sion.f90 is

1 PROGRAM format_history_sion
2 !***

(continues on next page)

4.3. Software related to Extended Software Development Workshops 431

E-CAM Documentation, Release 0.2

(continued from previous page)

3 !
4 ! module to format dl_meso HISTORY files written using SIONlib library
5 !
6 ! authors - m. a. seaton & s. chiacchiera, february 2017
7 ! adapted to use SIONlib: march 2018
8 !**
9

10 IMPLICIT none
11 INCLUDE "mpif.h"
12

13 INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND (15, 307)
14 INTEGER, PARAMETER :: ntraj=10,nuser=5
15

16 CHARACTER(80) :: text
17 CHARACTER(8), ALLOCATABLE :: namspe (:), nammol (:)
18 CHARACTER(6) :: chan
19

20 INTEGER, ALLOCATABLE :: ltp (:), ltm (:), mole (:), beads (:), bonds (:),
→˓bndtbl (:,:)

21 INTEGER, ALLOCATABLE :: nbdmol (:), nbomol (:)
22 INTEGER :: chain, imol, ioerror, i, k, j, nmoldef, ibond
23 INTEGER :: nspe, nbeads, nusyst, nsyst, nbonds, global, species, molecule,

→˓numnodes, numbond
24 INTEGER :: nummol, lfrzn, rnmol, keytrj, srfx, srfy, srfz
25 INTEGER :: bead1, bead2
26 INTEGER :: nform
27

28 REAL(KIND=dp), ALLOCATABLE :: nmol (:)
29 REAL(KIND=dp) :: volm, dimx, dimy, dimz, shrdx, shrdy, shrdz
30 REAL(KIND=dp) :: amass, rcii
31 REAL(KIND=dp) :: time, mbeads, mglobal, x, y, z, vx, vy, vz, fx, fy, fz
32

33 LOGICAL :: eof, lcomm, lmcheck
34 ! for SIONlib
35 CHARACTER*(*) :: fname, file_mode
36 INTEGER :: numfiles, ntasks, fsblksize, sid
37 INTEGER, ALLOCATABLE :: globalranks (:)
38 INTEGER*8, ALLOCATABLE :: chunksizes (:)
39 INTEGER*8 :: chunksize_input
40 INTEGER*8 :: sierr
41 INTEGER :: nformsion
42 INTEGER*8 :: size, nelem
43 INTEGER :: buffer_i(6)
44 REAL(KIND=dp) :: buffer_r(10)
45 CHARACTER(LEN=8) :: buffer_c
46 INTEGER :: rank, chunknum
47 INTEGER*8 :: posinchunk
48 INTEGER*8, ALLOCATABLE :: pos_d (:)
49 INTEGER, ALLOCATABLE :: chun_d (:)
50 INTEGER :: seof
51 PARAMETER (fname = 'history.sion')
52 PARAMETER (file_mode= 'br')
53

54 ! Switches for commenting and checking molecules
55

56 lcomm = .TRUE.
57 lmcheck = .TRUE.

(continues on next page)

432 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

58

59 ! Get number of nodes
60

61 WRITE (*,*) "Number of nodes used in calculations ?"
62 READ (*,*) numnodes
63

64 ! Get chunksize used to write
65 WRITE (*,*) "Chunksize used to write history.sion?"
66 READ (*,*) chunksize_input
67

68 ALLOCATE (beads (numnodes), bonds (numnodes))
69

70 ! SIONlib: Determine if history.sion file exists
71 INQUIRE (file = fname, EXIST = eof)
72 IF (.NOT. eof) THEN
73 WRITE (*,*) "ERROR: cannot find history.sion file"
74 STOP
75 END IF
76

77 ! SIONlib: serial open
78 numfiles = 1
79 fsblksize = -1
80 ALLOCATE (chunksizes (numnodes), globalranks (numnodes))
81 chunksizes (:) = -1
82 globalranks (:) = -1
83 call FSION_OPEN (fname, file_mode, ntasks, numfiles, &
84 chunksizes, fsblksize, globalranks, sid)
85 IF(ntasks.ne.numnodes) THEN
86 WRITE (6,*) "Number of tasks used to write is different from given! -",

→˓ntasks
87 STOP
88 END IF
89 ! WRITE(6,*) "chunksizes=", chunksizes !not read as it should. Why?
90 WRITE(6,*) "fsblksize=", fsblksize
91 ! WRITE(6,*) "globalranks=",globalranks !not read as it should. Why?
92 WRITE(6,*) "sid=", sid
93 ! Set *by hand* the values of chunksizes and globalranks
94 DO j = 1, ntasks
95 globalranks (j) = j-1
96 chunksizes (j) = 0
97 DO WHILE (chunksizes (j) < chunksize_input)
98 chunksizes (j) = chunksizes (j) + fsblksize
99 END DO

100 END DO
101 WRITE(6,*) "(set by hand) chunksizes=", chunksizes
102 WRITE(6,*) "(set by hand) globalranks=", globalranks
103

104 ! variables to track positions within the .sion file
105 ALLOCATE (pos_d (numnodes), chun_d (numnodes))
106

107 ! Open the output files
108 nform = ntraj + numnodes
109 nformsion = nform + numnodes
110 DO j = 1, numnodes
111 IF (numnodes>1)THEN
112 WRITE (chan, '(i6.6)') j-1
113 OPEN (nformsion+j-1, file = 'sion'//chan//'-F', status = 'replace')

(continues on next page)

4.3. Software related to Extended Software Development Workshops 433

E-CAM Documentation, Release 0.2

(continued from previous page)

114 ELSE
115 OPEN (nformsion+j-1, file = 'sion-F', status = 'replace')
116 END IF
117 END DO
118

119 ! SIONlib: reading the header of history.sion
120 ! Here the number of beads, molecules and bonds are determined
121 ! Arrays are filled with names of particles and molecules
122

123 numbond = 0
124

125 DO j = 1, numnodes
126 seof = 0
127 call fsion_feof (sid, seof)
128 IF (seof /= 0) THEN
129 #ifdef DEBUG
130 WRITE (6,*) "rank ", j-1, ": End of file !"
131 #endif
132 CYCLE
133 END IF
134

135 rank = j - 1
136 chunknum = 0
137 posinchunk = 0
138 CALL FSION_SEEK (sid, rank, chunknum, posinchunk, sierr)
139

140 ! lines a and b
141 nelem=6
142 size=4
143 buffer_i (1:6) = 0
144 CALL FSION_READ(buffer_i,size,nelem,sid,sierr)
145 #ifdef DEBUG
146 WRITE (6,*) "(a/b) in sion file, rank ", rank, ": buffer_i=",buffer_i
147 CALL READ_CHECK (sierr, nelem)
148 #endif
149 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
150 IF (j==1) THEN
151 nspe = buffer_i (1)
152 nmoldef = buffer_i (2)
153 nusyst = buffer_i (3)
154 nsyst = buffer_i (4)
155 END IF
156 nbeads = buffer_i (5)
157 nbonds = buffer_i (6)
158 ! line c
159 nelem=4
160 size=8
161 buffer_r (1:4) = 0
162 CALL FSION_READ(buffer_r,size,nelem,sid,sierr)
163 #ifdef DEBUG
164 WRITE (6,*) "(c) in sion file, rank ", rank, ": buffer_r(1:4)=",buffer_r(1:4)
165 CALL READ_CHECK (sierr, nelem)
166 #endif
167 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
168 IF (j==1) THEN
169 dimx = buffer_r (1)
170 dimy = buffer_r (2)

(continues on next page)

434 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

171 dimz = buffer_r (3)
172 volm = buffer_r (4)
173 END IF
174 ! line d
175 nelem=4
176 size=4
177 buffer_i (1:4) = 0
178 CALL FSION_READ(buffer_i,size,nelem,sid,sierr)
179 #ifdef DEBUG
180 WRITE (6,*) "(d) in sion file, rank ", rank, ": buffer_i(1:4)=",buffer_i(1:4)
181 CALL READ_CHECK (sierr, nelem)
182 #endif
183 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
184 IF (j==1) THEN
185 keytrj = buffer_i (1)
186 srfx = buffer_i (2)
187 srfy = buffer_i (3)
188 srfz = buffer_i (4)
189 END IF
190 beads (j) = nbeads
191 bonds (j) = nbonds
192 numbond = numbond + nbonds
193

194 IF (lcomm) WRITE (nformsion+j-1,*) "# nspe, nmoldef, nusyst, nsyst, nbeads,
→˓nbonds"

195 WRITE (nformsion+j-1,*) nspe, nmoldef, nusyst, nsyst, nbeads, nbonds
196 IF (lcomm) WRITE (nformsion+j-1,*) "# dimx, dimy, dimz, volm"
197 WRITE (nformsion+j-1,97) dimx, dimy, dimz, volm
198 IF (lcomm) WRITE (nformsion+j-1,*) "# keytrj, srfx, srfy, srfz"
199 WRITE (nformsion+j-1,*) keytrj, srfx, srfy, srfz
200

201 chun_d (j) = chunknum
202 pos_d (j) = posinchunk
203 END DO ! end of loop over nodes
204 !!!
205 ALLOCATE (namspe (nspe), nammol (nmoldef))
206 IF (lmcheck) THEN
207 ALLOCATE (ltp (1:nsyst), ltm (1:nsyst), mole (1:nsyst))
208 ALLOCATE (nmol (1:nmoldef), nbdmol (1:nmoldef), nbomol (1:nmoldef))
209 ALLOCATE (bndtbl (numbond, 2))
210 ENDIF
211

212 DO j = 1, numnodes
213 rank = j - 1
214 chunknum = chun_d (j)
215 posinchunk = pos_d (j)
216 CALL FSION_SEEK (sid, rank, chunknum, posinchunk, sierr)
217 !!!
218 IF (lcomm) WRITE (nformsion+j-1,*) "# SPECIES:"
219 IF (lcomm) WRITE (nformsion+j-1,*) "# namspe, amass, rcii, lfrzn"
220

221 DO i = 1, nspe
222 ! line e
223 nelem = 1
224 size = 8
225 buffer_c = ' '
226 CALL FSION_READ(buffer_c,size,nelem,sid,sierr)

(continues on next page)

4.3. Software related to Extended Software Development Workshops 435

E-CAM Documentation, Release 0.2

(continued from previous page)

227 #ifdef DEBUG
228 WRITE (6,*) "(e1) in sion file, rank ", rank, ": buffer_c=",buffer_c
229 CALL READ_CHECK (sierr, nelem)
230 #endif
231 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
232 IF (j==1) THEN
233 namspe (i) = buffer_c
234 END IF
235

236 nelem=2
237 size=8
238 buffer_r (1:2) = 0
239 CALL FSION_READ(buffer_r,size,nelem,sid,sierr)
240 #ifdef DEBUG
241 WRITE (6,*) "(e2) in sion file, rank ", rank, ": buffer_r (1:2)=",buffer_

→˓r (1:2)
242 CALL READ_CHECK (sierr, nelem)
243 #endif
244 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
245 amass = buffer_r (1)
246 rcii = buffer_r (2)
247

248 nelem=1
249 size=4
250 buffer_i (1) = 0
251 CALL FSION_READ(buffer_i,size,nelem,sid,sierr)
252 #ifdef DEBUG
253 WRITE (6,*) "(e3) in sion file, rank ", rank, ": buffer_i (1)=",buffer_i

→˓(1)
254 CALL READ_CHECK (sierr, nelem)
255 #endif
256 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
257 lfrzn = buffer_i (1)
258 WRITE (nformsion+j-1,96) namspe (i), amass, rcii, lfrzn
259 END DO
260

261 IF (nmoldef>0) THEN
262 IF (lcomm) WRITE (nformsion+j-1,*) "# MOLECULES:"
263 IF (lcomm) WRITE (nformsion+j-1,*) "# nammol"
264

265 DO i = 1, nmoldef
266 ! line g
267 nelem=1
268 size=8
269 buffer_c = ' '
270 CALL FSION_READ(buffer_c,size,nelem,sid,sierr)
271 IF (j==1) THEN
272 nammol (i) = buffer_c
273 END IF
274 #ifdef DEBUG
275 WRITE (6,*) "(g) in sion file, rank ", rank, ": buffer_c=",buffer_c
276 CALL READ_CHECK (sierr, nelem)
277 #endif
278 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
279 WRITE (nformsion+j-1,*) nammol (i)
280 END DO
281 END IF

(continues on next page)

436 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

282

283 ! line h
284 nelem=1
285 size=80
286 text = '

→˓ '
287 CALL FSION_READ(text,size,nelem,sid,sierr)
288 #ifdef DEBUG
289 WRITE (6,*) "(h) in sion file, rank ", rank, ": text=", text
290 CALL READ_CHECK (sierr, nelem)
291 #endif
292 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
293

294 IF (lcomm) WRITE (nformsion+j-1,*) "# Simulation name:"
295 WRITE (nformsion+j-1,*) text
296

297 IF (j==1) THEN
298 nummol = 0 !counter for number of molecules
299 ibond = 0 !counter for bonds
300 END IF
301

302 ! Here one could close and open again the loop over nodes, as in the std
303 ! version of the utility: in case, pos_d and chunk_d must be updated too
304

305 ! fill in arrays for beads and bonds
306 rank = j - 1
307

308 IF (lcomm) WRITE (nformsion+j-1,*) "# BEADS:"
309 IF (lcomm) WRITE (nformsion+j-1,*) "# global, species, molecule, chain"
310

311 IF (lmcheck) THEN
312 !Build ltp, ltm, mole
313 DO i = 1, beads (j)
314 ! line i
315 nelem = 4
316 size=4
317 buffer_i (1:4) = 0
318 CALL FSION_READ(buffer_i,size,nelem,sid,sierr)
319 #ifdef DEBUG
320 WRITE (6,*) "(i) in sion file, rank ", rank, ": buffer_i(1:4)=",buffer_

→˓i(1:4)
321 CALL READ_CHECK (sierr, nelem)
322 #endif
323 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
324

325 global = buffer_i (1)
326 species = buffer_i (2)
327 molecule = buffer_i (3)
328 chain = buffer_i (4)
329

330 ltp (global) = species
331 ltm (global) = molecule
332 mole (global) = chain
333 nummol = MAX (nummol, chain)
334 WRITE (nformsion+j-1,*) global, species, molecule, chain
335 END DO
336 ELSE

(continues on next page)

4.3. Software related to Extended Software Development Workshops 437

E-CAM Documentation, Release 0.2

(continued from previous page)

337 DO i = 1, beads (j)
338 ! line i
339 nelem = 4
340 size=4
341 buffer_i (1:4) = 0
342 CALL FSION_READ(buffer_i,size,nelem,sid,sierr)
343 #ifdef DEBUG
344 WRITE (6,*) "(i) in sion file, rank ", rank, ": buffer_i(1:4)=",buffer_

→˓i(1:4)
345 CALL READ_CHECK (sierr, nelem)
346 #endif
347 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
348 global = buffer_i (1)
349 species = buffer_i (2)
350 molecule = buffer_i (3)
351 chain = buffer_i (4)
352 WRITE (nformsion+j-1,*) global, species, molecule, chain
353 END DO
354 ENDIF
355

356 IF (bonds (j)>0) THEN
357 IF (lcomm) WRITE (nformsion+j-1,*) "# BONDS:"
358 IF (lcomm) WRITE (nformsion+j-1,*) "# extremes of the bond"
359

360 IF (lmcheck) THEN
361 ! Build bndtbl
362 DO i = 1, bonds (j)
363 ibond = ibond + 1
364 ! line j
365 nelem=2
366 size=4
367 buffer_i (1:2) = 0
368 CALL FSION_READ(buffer_i,size,nelem,sid,sierr)
369 #ifdef DEBUG
370 WRITE (6,*) "(j) in sion file, rank ", rank, ": buffer_i(1:2)=",

→˓buffer_i(1:2)
371 CALL READ_CHECK (sierr, nelem)
372 #endif
373 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
374 bead1 = buffer_i (1)
375 bead2 = buffer_i (2)
376 bndtbl (ibond, 1) = bead1
377 bndtbl (ibond, 2) = bead2
378 WRITE (nformsion+j-1,*) bead1, bead2
379 END DO
380 ELSE
381 DO i = 1, bonds (j)
382 ! line j
383 nelem=2
384 size=4
385 buffer_i (1:2) = 0
386 CALL FSION_READ(buffer_i,size,nelem,sid,sierr)
387 #ifdef DEBUG
388 WRITE (6,*) "(j) in sion file, rank ", rank, ": buffer_i(1:2)=",

→˓buffer_i(1:2)
389 CALL READ_CHECK (sierr, nelem)
390 #endif

(continues on next page)

438 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

391 CALL DETERMINE_POS (rank, nelem*size, chunknum, posinchunk)
392 bead1 = buffer_i (1)
393 bead2 = buffer_i (2)
394 WRITE (nformsion+j-1,*) bead1, bead2
395 END DO
396 END IF
397 END IF
398 chun_d (j) = chunknum
399 pos_d (j) = posinchunk
400

401 END DO ! over nodes
402

403 IF (lmcheck) THEN
404 ! determine numbers of molecules, beads and bonds per molecule type
405 nmol = 0.0_dp
406 nbdmol = 0
407 nbomol = 0
408 chain = 0
409 imol = 0 !necessary to avoid out of bounds
410

411 DO i = 1, nsyst
412 IF (mole (i) /= chain) THEN
413 chain = mole (i)
414 imol = ltm (i)
415 nmol (imol) = nmol (imol) + 1.0_dp
416 END IF
417 IF (imol > 0) nbdmol (imol) = nbdmol (imol) + 1
418 END DO
419

420 DO i = 1, numbond
421 imol = ltm (bndtbl (i,1))
422 nbomol (imol) = nbomol (imol) + 1
423 END DO
424

425 DO i = 1, nmoldef
426 rnmol = NINT (nmol (i))
427 IF (rnmol>0) THEN
428 nbdmol (i) = nbdmol (i) / rnmol
429 nbomol (i) = nbomol (i) / rnmol
430 END IF
431 END DO
432

433 ! Write to std output the arrays built
434 WRITE (*,*) "# Check of beads: i, ltp(i), ltm(i), mole(i)"
435 DO i = 1, nsyst
436 WRITE(*,*) i, ltp (i), ltm (i), mole (i)
437 END DO
438

439 !Check of molecule beads and numbers
440 IF (nmoldef>0) THEN
441 WRITE (*,*) "# Check of molecules: nammol(i), nbdmol(i), nbomol(i),

→˓nmol(i)"
442 DO i = 1, nmoldef
443 WRITE (*,*) nammol (i), nbdmol (i), nbomol (i), NINT(nmol(i))
444 END DO
445 WRITE (*,*) "# Total number of molecules = ",nummol
446 END IF

(continues on next page)

4.3. Software related to Extended Software Development Workshops 439

E-CAM Documentation, Release 0.2

(continued from previous page)

447

448 ! Write to std output bndtbl
449 IF (numbond > 0) THEN
450 WRITE (*,*) "# Check of bonds: bndbtl(i,1), bndbtl(i,2)"
451 DO i = 1, numbond
452 WRITE (*,*) bndtbl (i,1), bndtbl (i,2)
453 END DO
454 END IF
455 END IF
456

457 !reading trajectories
458 DO j = 1, numnodes
459

460 seof = 0
461 k = 0
462

463 IF (lcomm) WRITE (nformsion+j-1,*) "# --- TRAJECTORIES --- (key =", keytrj,")
→˓"

464 SELECT CASE (keytrj)
465 CASE (0)
466 IF (lcomm) WRITE (nformsion+j-1,*) "# mglobal, x, y, z"
467 CASE(1)
468 IF (lcomm) WRITE (nformsion+j-1,*) "# mglobal, x, y, z, vx, vy, vz"
469 CASE(2)
470 IF (lcomm) WRITE (nformsion+j-1,*) "# mglobal, x, y, z, vx, vy, vz, fx,

→˓fy, fz"
471 END SELECT
472

473 rank = j - 1
474 chunknum = chun_d (j)
475 posinchunk = pos_d (j)
476 CALL FSION_SEEK (sid, rank, chunknum, posinchunk, sierr)
477 !!!
478 DO WHILE (.true.)
479

480 call fsion_feof (sid, seof)
481 IF (seof /= 0) THEN
482 #ifdef DEBUG
483 WRITE (6,*) "rank ", rank, ": End of file !"
484 #endif
485 IF (k==0) THEN
486 PRINT *, 'ERROR: cannot find trajectory data in history.sion file'
487 STOP
488 END IF
489 EXIT
490 END IF
491

492 ! line k
493 nelem=8
494 size=8
495 buffer_r (1:8) = 0
496 CALL FSION_READ(buffer_r,size,nelem,sid,sierr)
497 #ifdef DEBUG
498 WRITE (6,*) "(k) in sion file, rank ", rank, ": buffer_r(1:8)=",buffer_

→˓r(1:8)
499 CALL READ_CHECK (sierr, nelem)
500 #endif

(continues on next page)

440 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

501 time = buffer_r (1)
502 mbeads = buffer_r (2)
503 dimx = buffer_r (3)
504 dimy = buffer_r (4)
505 dimz = buffer_r (5)
506 shrdx = buffer_r (6)
507 shrdy = buffer_r (7)
508 shrdz = buffer_r (8)
509 !
510 IF (lcomm) WRITE (nformsion+j-1,*) "# time, mbeads, dimx, dimy, dimz,

→˓shrdx, shrdy, shrdz"
511 WRITE (nformsion+j-1,98) time, mbeads, dimx, dimy, dimz, shrdx, shrdy,

→˓shrdz
512

513 k = k + 1
514

515 IF (lcomm) WRITE (nformsion+j-1,*) "# snapshot number:", k
516

517 nbeads = NINT (mbeads)
518

519 SELECT CASE (keytrj)
520 CASE (0)
521 DO i = 1, nbeads
522 ! line l
523 nelem=4
524 size=8
525 buffer_r (1:4) = 0
526 CALL FSION_READ(buffer_r,size,nelem,sid,sierr)
527 #ifdef DEBUG
528 WRITE (6,*) "(l) in sion file, rank ", rank, ": buffer_r(1:4)=",

→˓buffer_r(1:4)
529 CALL READ_CHECK (sierr, nelem)
530 #endif
531 mglobal = buffer_r (1)
532 x = buffer_r (2)
533 y = buffer_r (3)
534 z = buffer_r (4)
535 !
536 WRITE (nformsion+j-1,99) mglobal, x, y, z
537 END DO
538 CASE (1)
539 DO i = 1, nbeads
540 ! line m
541 nelem=7
542 size=8
543 buffer_r (1:7) = 0
544 CALL FSION_READ(buffer_r,size,nelem,sid,sierr)
545 #ifdef DEBUG
546 WRITE (6,*) "(m) in sion file, rank ", rank, ": buffer_r(1:7)=",

→˓buffer_r(1:7)
547 CALL READ_CHECK (sierr, nelem)
548 #endif
549 mglobal = buffer_r (1)
550 x = buffer_r (2)
551 y = buffer_r (3)
552 z = buffer_r (4)
553 vx = buffer_r (5)

(continues on next page)

4.3. Software related to Extended Software Development Workshops 441

E-CAM Documentation, Release 0.2

(continued from previous page)

554 vy = buffer_r (6)
555 vz = buffer_r (7)
556 !
557 WRITE (nformsion+j-1,99) mglobal, x, y, z, vx, vy, vz
558 END DO
559 CASE (2)
560 DO i = 1, nbeads
561 ! line n and p
562 nelem=10
563 size=8
564 buffer_r (1:10) = 0
565 CALL FSION_READ(buffer_r,size,nelem,sid,sierr)
566 #ifdef DEBUG
567 WRITE (6,*) "(l) in sion file, rank ", rank, ": buffer_r(1:10)=",

→˓buffer_r(1:10)
568 CALL READ_CHECK (sierr, nelem)
569 #endif
570 mglobal = buffer_r (1)
571 x = buffer_r (2)
572 y = buffer_r (3)
573 z = buffer_r (4)
574 vx = buffer_r (5)
575 vy = buffer_r (6)
576 vz = buffer_r (7)
577 fx = buffer_r (8)
578 fy = buffer_r (9)
579 fz = buffer_r (10)
580 !
581 WRITE (nformsion+j-1,99) mglobal, x, y, z, vx, vy, vz, fx, fy, fz
582 END DO
583 END SELECT
584

585 END DO
586 END DO
587

588 ! close the output files
589 DO j = 1, numnodes
590 CLOSE (nformsion+j-1)
591 END DO
592

593 ! SIONlib serial close
594 call FSION_CLOSE (sid, sierr)
595 CLOSE (nformsion)
596

597 #ifdef DEBUG
598 WRITE (*,*) "The final chunknumbers and positions within chunks are:"
599 WRITE (*,*) "chun_d=", chun_d
600 WRITE (*,*) "pos_d=", pos_d
601 #endif
602

603 DEALLOCATE (beads, bonds)
604 DEALLOCATE (namspe, nammol)
605 IF (lmcheck) DEALLOCATE (ltp, ltm, mole, nmol, nbdmol, bndtbl, nbomol)
606 ! SIONlib related quantities
607 DEALLOCATE (chunksizes, globalranks, pos_d, chun_d)
608

609 99 FORMAT(f10.1,2x,1p,9(e13.6,3x))
(continues on next page)

442 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

610 98 FORMAT(8(f10.3,3x))
611 97 FORMAT(4(f10.3,3x))
612 96 FORMAT(A9,3x,2(f10.3,3x),I2)
613

614 CONTAINS
615

616 SUBROUTINE DETERMINE_POS (rank, nbytes, chunk, pos)
617 !***
618 ! routine to determine the position in the .sion file at each write statement
619 !
620 ! author - s. chiacchiera, march 2018
621 !***
622 ! It is assumed that each rank has its chunks numbered as 0, 1, etc
623 IMPLICIT none
624 INTEGER, INTENT (OUT) :: rank
625 INTEGER, INTENT (INOUT) :: chunk
626 INTEGER*8, INTENT (INOUT) :: pos
627 INTEGER*8, INTENT(IN) :: nbytes
628 INTEGER*8 :: pos_try
629 IF (nbytes > chunksizes (rank + 1)) THEN
630 WRITE (*,*) "error: too large record (hint: increase chunksize)"
631 STOP
632 END IF
633 pos_try = pos + nbytes
634 IF (pos_try <= chunksizes (rank + 1)) THEN
635 pos = pos_try
636 ELSE
637 chunk = chunk + 1
638 pos = nbytes
639 END IF
640 RETURN
641 END SUBROUTINE DETERMINE_POS
642

643 SUBROUTINE READ_CHECK (sierr, nelem)
644 !***
645 ! routine to signal eventual mismatch when reading the .sion file
646 !
647 ! author - s. chiacchiera, march 2018
648 !***
649

650 IMPLICIT none
651 INTEGER*8, INTENT (IN) :: sierr, nelem
652 IF (sierr.ne.nelem) THEN
653 WRITE (6,*) "error: number of elements read differs from expected!

→˓mismatch is ", sierr-nelem
654 STOP
655 END IF
656 END SUBROUTINE READ_CHECK
657

658 END PROGRAM format_history_sion

Additional information

Using the modifications proposed above, the trajectories will be written by DL_MESO_DPD in the SIONlib format
(history.sion file). For comparison purposes, the standard HISTORY* files can be also written at the same time, using
the -D STDTRAJ flag for compilation in Makefile-MPI.

To be able to use SIONlib, the writing statements for which the records are formed by inhomogeneous items (e.g., two

4.3. Software related to Extended Software Development Workshops 443

E-CAM Documentation, Release 0.2

8-byte strings and a 4-byte integer) have to be split into different records, hence the increased number of write/read
statements. To help the reader, comments have been added to label all the SIONlib-related commands, namely:
“SIONlib 0, 1a, 1b, 2a, 2b, . . . , 2p, 3”. The writing statements are labelled “2a, 2b, etc”, and each one corresponds
to the writing of single record in the standard version of DL_MESO_DPD. The SIONlib file definition, opening and
closing statements have been labelled 0, 1 and 3 in the comments.

Important SIONlib variables:

• fsblksize: file system block size in bytes. If set to -1, it is read by SIONlib. (Typically, this value is 4096.)

• chunksize: size in bytes of the data written by a task in a single write call. It is internally increased by
SIONlib to the next multiple of the filesystem block size. (For DL_MESO_DPD, the largest record has size 80
bytes, hence we choose chunksize = 100, which, typically, will be internally increased to 4096.)

• nfiles: number of physical files produced by SIONlib (set to 1 here).

Acknowledgements

We are very grateful to Dr. Wolfgang Frings for kind support concerning the usage of the Fortran version of SIONlib.

Software Technical Information

Name DL_MESO

Language Fortran/CUDA-C

Licence BSD, v. 2.7 or later

Documentation Tool Fortran/C comments

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Surface boundary conditions on DL_MESO_DPD multi-GPUs

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module implement the solid surfaces boundary conditions on the multi-GPU version of DL_MESO_DPD.

Purpose of Module

The single GPU version contains already the wall surface boundary conditions. The following module is an imple-
mentation on the multi GPU version.

Real cases often involve complex geometries and require the implementation of solid walls as boundary conditions. A
typical example if the flow in microchannels used for example in the production of Graphene. The interaction between
fluid and surface create a different an unique profile of velocities which has a strong impact on the fluid dynamic,

444 Chapter 4. Meso- and Multi-scale Modules

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

especially in case of non-Newtonian fluids (i.e. where the shear stress is a non linear function of the velocity gradient)
like shampoo and other body care products.

This module will allow to study such phenomena reducing the computational cost and time and scaling up to larger
systems.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Micheal
Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

To compile and run the code you need to have installed the CUDA-toolkit (>=8.0) and have a CUDA enabled GPU
device (see http://docs.nvidia.com/cuda/#axzz4ZPtFifjw). For the MPI library the OpenMPI 3.1.0 has been used.

The DL_MESO code is developed using git version control. Currently, the multi GPU version is under a branch
named multi_GPU_version. After downloading the code, checkout the GPU branch and move to the DPD/
gpu_version/bin folder. Modify the Makefile to use the correct GPU architecture (sm_XX) and check if the
CPP flags are supported (i.e.: -DAWARE_MPI for CUDA_aware_MPI support, -DOPENMPI for OpenMPI library,
-DMVAPICH for MVAPICH library and -DHWLOC for hwloc support). Make sure nvcc is installed (or CUDA
toolkit module loaded). Then, compile using make all. In short:

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout multi_GPU_version
cd ./DPD/gpu_version/bin
Modify the Makefile according to your device and libraries
make all

To run the test case, copy the FIELD and CONTROL files from the “../tests/Poiseuille” directory and run using mpirun
-np 8 ./dpd_gpu.exe on a job partition with 1 GPU available per MPI process. The test case consists in
simulating the Poiseuille flow, using 8 GPUs, obtained between two parallel plane surfaces. Being the flow laminar,
the solution has to match with the analytic parabolic profile of the velocity field. Compare the OUTPUT and the
export files to verify your results. Do not worry about the problem with total_nbeads warning message.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as collaborator):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/c10992eb39815029bbe485f18e05230cd098afab

Software Technical Information

Name DL_MESO

Language Fortran/CUDA-C

4.3. Software related to Extended Software Development Workshops 445

https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/c10992eb39815029bbe485f18e05230cd098afab

E-CAM Documentation, Release 0.2

Licence BSD, v. 2.7 or later

Documentation Tool Fortran/C comments

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Load balancing for multi-GPU DL_MESO

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module concerns the implementation of the ALL library for load balancing in the multi-GPU version of
DL_MESO_DPD.

Purpose of Module

The intention is to allow for better performance when modelling complex systems, like large proteins or lipid bylars,
redistributing the work load across the GPUs. The A Load Balancing (ALL) library, developed at Julich Supercom-
puter Center, provides several scheme to find the ideal split of the work load: from the simplest orthogonal non
staggered domain decomposition, to the more fancy Voronoi mesh scheme.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Micheal
Seaton at Daresbury Laboratory (STFC) for further details.

The ALL library has been introduced during the ECAM Extended Software Development Workshop for Meso and
Multi Scale Modelling hosted in Julich in June 2019.

Building and Testing

The DL_MESO code is developed using git version control. Currently, the multi GPU version is under a branch
named multi_GPU_version. After downloading the code, checkout the GPU branch and look into the DPD/
gpu_version folder, i.e:

446 Chapter 4. Meso- and Multi-scale Modules

http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx
https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk

E-CAM Documentation, Release 0.2

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout multi_GPU_version
cd ./DPD/gpu_version/bin
make all

To compile and run the code you need to have installed the CUDA-toolkit (>=8.0) and have a CUDA enabled GPU de-
vice (see http://docs.nvidia.com/cuda/#axzz4ZPtFifjw). For the MPI library, OpenMPI 3.1.0 has been used in testing.

To run the case, copy the FIELD and CONTROL files from the “../tests” directory and run using mpirun -np NP
./dpd_gpu.exe. Compare the OUTPUT and the export files to verify your results.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as collaborator):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/7f3e7abe7bb1c8010dd6a5baa0de4907ffe2f003

The ALL library is available (after registration) at:

• https://gitlab.version.fz-juelich.de/SLMS/loadbalancing

Software Technical Information

Name DL_MESO

Language Fortran/CUDA-C

Licence BSD, v. 2.7 or later

Documentation Tool Fortran/C comments

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Many body DPD on DL_MESO_DPD single-GPU

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module implement the many body DPD boundary conditions on the single-GPU version of DL_MESO_DPD.

4.3. Software related to Extended Software Development Workshops 447

http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/7f3e7abe7bb1c8010dd6a5baa0de4907ffe2f003
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

Purpose of Module

One of the main weak point of DPD simulation is in its equation of state. For example, compressible gas or vapor
liquid mixtures are difficult, if not impossible, to correctly be simulated. The many-body DPD approach allows us to
overcome this limit by extending the potential of neighbour beads to a large cut off radius.

This module consists in the implementation of many-body DPD on the single GPU version of DL_MESO_DPD. The
new feature will allow the simulation of complex systems such as liquid drop, phase interactions, etc.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Micheal
Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

To compile and run the code you need to have installed the CUDA-toolkit (>=8.0) and have a CUDA enabled GPU
device (see http://docs.nvidia.com/cuda/#axzz4ZPtFifjw). For the MPI library, OpenMPI 3.1.0 has been used during
testing.

The DL_MESO code is developed using git version control. Currently, the single GPU version is under a branch
named single_GPU_version. After downloading the code, checkout the GPU branch and move to the DPD/
gpu_version/bin folder. Modify the Makefile to use the correct GPU architecture (sm_XX) and check if the
CPP flags are supported (i.e.: -DAWARE_MPI for CUDA_aware_MPI support, -DOPENMPI for OpenMPI library,
-DMVAPICH for MVAPICH library and -DHWLOC for hwloc support). Make sure nvcc is installed (or CUDA
toolkit module loaded). Then, compile using make all. In short,

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout single_GPU_version
cd ./DPD/gpu_version/bin
Modify Makefile according to your device and libraries
make all

There are two test cases for this module: * a water drop between two surfaces * a vapour-liquid interface.

To run the water drop case, copy the FIELD and CONTROL files from the “../tests/SurfaceDrop” directory and run
using ./dpd_gpu.exe. The test case consists of simulating the evolution of fully-dispersed water droplets which
will eventual agglomerate and deposit on a surface.

To run the vapour-liquid interface, copy the FIELD and CONTROL files from the “../tests/VapourLiquid” directory and
run using ./dpd_gpu.exe. The test case consists of simulating the interface between vapour and liquid starting
from water particle dispersed into the vapour.

For both test cases, compare the OUTPUT and the export files to verify your results.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as collaborator):

448 Chapter 4. Meso- and Multi-scale Modules

https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw

E-CAM Documentation, Release 0.2

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/09c62778b1d5e6928b74570191f037a54c80fabc

Software Technical Information

Name DL_MESO

Language Fortran/CUDA-C

Licence BSD, v. 2.7 or later

Documentation Tool Fortran/C comments

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Long Integer on DL_MESO_DPD multi-GPU

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module extends the capability of the DL_MESO code to run simulations with more than 1.8 billion particles
using long integer arrays.

Purpose of Module

The current version of DL_MESO_DPD on multi GPU cannot run systems larger than 1.8 billion particles due to the
INTEGER type used in Fortran for the particle arrays.

This module addresses this problem replacing, only where needed, the INTEGER with LONG INTEGER type in the
Fortran arrays. This allows us to run simulations with more than 1.8 billion particles and, as a result, more complex
systems.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Micheal
Seaton at Daresbury Laboratory (STFC) for further details.

4.3. Software related to Extended Software Development Workshops 449

https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/09c62778b1d5e6928b74570191f037a54c80fabc
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx
https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk

E-CAM Documentation, Release 0.2

Building and Testing

The DL_MESO code is developed using git version control. Currently, the multi GPU version is under a branch
named multi_GPU_version. After downloading the code, checkout the GPU branch and look into the DPD/
gpu_version folder, i.e:

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout multi_GPU_version
cd ./DPD/gpu_version/bin
make all

To compile and run the code you need to have installed the CUDA-toolkit (>=8.0) and have a CUDA enabled GPU
device (see http://docs.nvidia.com/cuda/#axzz4ZPtFifjw). For testing, the MPI library the OpenMPI 3.1.0 has been
used.

To run the separation test case, copy the FIELD and CONTROL files from the “../tests/LargeSeparation” directory and
run using mpirun -np NP ./dpd_gpu.exe. The test case consists in simulating a binary mixture of 24 billion
particles on 4096 GPUs (tested on PizDaint CSCS supercomputer).

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as collaborator):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/7f3e7abe7bb1c8010dd6a5baa0de4907ffe2f003

Software Technical Information

Name DL_MESO

Language Fortran/CUDA-C

Licence BSD, v. 2.7 or later

Documentation Tool Fortran/C comments

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Many body DPD on DL_MESO_DPD multi-GPU

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module implements the many body DPD algorithm on the multi-GPU version of DL_MESO_DPD.

450 Chapter 4. Meso- and Multi-scale Modules

http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/7f3e7abe7bb1c8010dd6a5baa0de4907ffe2f003
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

Purpose of Module

One of the main weak points of the DPD simulation is in its equation of state. For example, compressible gas or vapor
liquid mixtures are difficult, if not impossible, to be simulated correctly. The many-body DPD approach allows us to
overcome this limitation by extending the potential of neighbour beads to a large cut off radius.

This module consists in the implementation of many-body DPD on the multi GPU version of DL_MESO_DPD. The
new feature will allow us to simulate complex systems liquid drops, phase interactions, etc.

From an implementation point of view, the algorithm requires us to first loop over the internal cells of a typical domain
to calculate the local densities, followed by a second loop to find the forces acting between particles. To achieve good
scaling across multiple GPUs, we must allow the overlap of the computation of local densities and forces with the
swapping of the particle’s positions and local densities. This is achieved with a partial sum of the forces based on
the internal particles first and then adding the forces from the border particles later. A flowchart of the algorithm is
presented in the figure below.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Micheal
Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

The DL_MESO code is developed using git version control. Currently, the multi GPU version is under a branch
named multi_GPU_version. After downloading the code, checkout the GPU branch and look into the DPD/
gpu_version folder, i.e:

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout multi_GPU_version
cd ./DPD/gpu_version/bin

To compile and run the code you need to have installed the CUDA-toolkit (>=8.0) and have a CUDA enabled GPU
device (see http://docs.nvidia.com/cuda/#axzz4ZPtFifjw). For the MPI library, OpenMPI 3.1.0 has been used. Install
hwloc if you want to set the GPU affinity between devices and CPU cores, otherwise remove the -DHWLOC flag in
the Makefile.

Finally, you need to install the ALL library and make sure the ALL path is set correctly. ALL handles the load
balancing among the GPUs, for details see Load balancing for multi-GPU DL_MESO.

Use make all to compile, resulting in the executable dpd_gpu.exe.

4.3. Software related to Extended Software Development Workshops 451

https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw

E-CAM Documentation, Release 0.2

A testloop is added in the tests folder. Type ./Tesloop_All followed by option 2 to and specify 8 as number
of GPUs. Verify the results with option 3. No difference should appear in the statistical values and final stress values
(the final printed positions are randomly particles chosen and can be different at every run).

For the current module, the test/SurfaceDrop test case is a good example of combining manybody DPD and
load balanced as presented in Load balancing for multi-GPU DL_MESO. Below is an snapshot from the simulation
based on the same input (but large system) using 8 GPUs and for 35k time steps.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as collaborator):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/5d5db87433f21e31afcb61343f500728af52cd0a

while for the GPU version we have:

First version of DL_MESO_DPD code for NVidia GPU

Software Technical Information

The information in this section describes the DL_MESO_DPD GPU versions as a whole.

Language Fortran/CUDA-C (cuda toolkit 7.5)

Documentation Tool ReST files

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Licence BSD, v. 2.7 or later

• Purpose of Module

• Background Information

• Testing

• Performance

• Examples

• Source Code

This module implements the first version of the DL_MESO_DPD code on NVidia Graphical Processing Unit (GPU).
More details about it can be found in the following sections.

Purpose of Module

In order to accelerate the DL_MESO_DPD code on the latest and future exascale hardware, a first version for NVidia
GPU has been developed. This is only a starting point, it does NOT cover all the possible cases and it does NOT
yet support multiple GPUs. However, it represent an HPC milestone for the application, complementing the already
present parallel versions developed for shared and distributed memory (MPI/OpenMP).

452 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/5d5db87433f21e31afcb61343f500728af52cd0a
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

In this version, the full computational workload is offloaded to the GPUs with the “H_MAINLOOP” call present in the
“dlmesodpd.f90” file. In this way, the initialisation IO operation are left unaltered and fully compatible with the serial
version. A major change compared to the serial version is in the algorithm used to find the particle-particle interaction
forces: in order to guarantee better coalescent access for the CUDA-threads, the algorithm has been re-adapted to the
GPU architecture reordering the cell-linked list arrays.

The FORTRAN files (mainly unaltered from the serial version) are saved in the “src” folder, while the CUDA files with
their corresponding headers files are in stored in the “src_cuda” folder and “headers”, respectively. The folder “bin”
contains the Makefile. This arrangement of the folders allow to use the hidden Eclipse IDE project files (.cproject,
.project, .settings).

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

• http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://ccpforge.cse.rl.ac.uk/gf/. Please contact Dr.
Micheal Seaton at Daresbury Laboratory (STFC) for further details.

Testing

The DL_MESO code is developed using git version control. Currently the GPU version is under a branch named
“add_gpu_version”. After downloading the code, checkout to the GPU branch and look into the “DPD/gpu_version”
folder, i.e:

• git clone DL_MESO_repository_path

• cd dl_meso

• git checkout gpu_version

• cd ./DPD/gpu_version

• make all

To compile and run the code you need to have installed the CUDA-toolkit and have a CUDA enabled GPU device (see
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw).

The current version has been tested ONLY for the Mixture_Large test case available in the DEMO/DPD folder. To
run the case, compile the code using the “make all” command from the “bin” directory, copy the “FIELD” and “CON-
TROL” files in this directory and run “./dpd_gpu.exe”.

Attention: the HISTORY file produced is currently NOT compatible with the serial version, because this is written
in the C binary data format (Fortran files are organised in records, while C not. See https://scipy.github.io/old-wiki/
pages/Cookbook/FortranIO.html).

However, you can compare the “OUTPUT” and the “export” files to verify your results. For more details see the
README.rst file in the “gpu_version” folder.

Performance

Below is a table about the performance of the Mixture_Large case on different GPU cards compared to the serial
version on a single core:

4.3. Software related to Extended Software Development Workshops 453

http://www.scd.stfc.ac.uk/SCD/support/40694.aspx
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
https://ccpforge.cse.rl.ac.uk/gf/
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
https://scipy.github.io/old-wiki/pages/Cookbook/FortranIO.html
https://scipy.github.io/old-wiki/pages/Cookbook/FortranIO.html

E-CAM Documentation, Release 0.2

CPU or GPU card compute capability time per cycle [s] speedup
Intel Ivy Bridge E5-2697v2 @2.7GHz none 0.4740 1.0
NVidia Tesla C1060 1.3 0.2280 2.1
NVidia Tesla C2075 2.0 0.1830 2.6
NVidia Tesla K40 3.5 0.1011 4.7
NVidia Tesla K80 3.7 0.0898 5.3
NVidia Tesla M60 5.2 0.0978 4.8
NVidia Tesla P100 6.0 0.0390 12.2

Examples

See the Mixture_Large case in the DL_MESO manual.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as developer):

• https://ccpforge.cse.rl.ac.uk/gf/project/dl_meso/scmgit/?action=ScmCommitDetail&scm_commit_id=110906

• https://ccpforge.cse.rl.ac.uk/gf/project/dl_meso/scmgit/?action=ScmCommitDetail&scm_commit_id=111357

Software Technical Information

Name DL_MESO (DPD).

Language Fortran, CUDA-C.

Licence BSD, v. 2.7 or later

Documentation Tool ReST files

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Ewald on DL_MESO_DPD (GPU version)

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The electrostatic force calculation represent usually the main computational costs in systems where even a small
amount of charged particles is present ($>1%$). The Smooth Particle Ewald Mesh cite{SPME} splits the electrostatic
forces in two parts: a short range, solved in the real space, and a long range, solved in the Fourier space. An error

454 Chapter 4. Meso- and Multi-scale Modules

https://ccpforge.cse.rl.ac.uk/gf/project/dl_meso/scmgit/?action=ScmCommitDetail&scm_commit_id=110906
https://ccpforge.cse.rl.ac.uk/gf/project/dl_meso/scmgit/?action=ScmCommitDetail&scm_commit_id=111357
https://opensource.org/licenses/BSD-2-Clause
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

weight function combines the two contributes. For the long range force the electrical charges are spread on a virtual
particle mesh using a B-spline interpolation function.

Porting to GPU the full short and long range interactions allowed to maintain the speedup factor of $x4$ when com-
pared to the a traditional Intel 12-core.

One of the main applications which included electrical charges are the simulations of plasma.

Purpose of Module

The Ewald summation method above described scales with $N^{1.5}$ at best, where N is the number of charged par-
ticles. The SPME allows a better scaling, $N*log(N)$, but requires a stencil domain decomposition (i.e. decomposing
the domain along one direction only) to allow the FFTW library scaling with more than 1 core. If this is not used, as
in the current master version of DL_MESO_DPD, the FFTW becomes rapidly a bottleneck for scaling across several
nodes. On the other side, the porting to a single GPU does not need domain decomposition and the same speedup
factor ($x4$ compared to 12-core Intel) is mainteined.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk/dl_meso/dl_meso. Please
contact Dr. Micheal Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

The DL_MESO code is developed using git version control. Currently the GPU version is under a branch named
“add_gpu_version”. After downloading the code, checkout to the GPU branch and look into the “DPD/gpu_version”
folder, i.e:

• git clone DL_MESO_repository_path

• cd dl_meso

• git checkout gpu_version

• cd /DPD/gpu_version

• make all

To compile and run the code you need to have installed the CUDA-toolkit and have a CUDA enabled GPU device (see
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw).

To run the case, compile the code using the “make all” command from the “bin” directory, copy the “FIELD” and
“CONTROL” files in this directory and run “./dpd_gpu.exe”. The DL_MESO code is developed using git version con-
trol. Currently the GPU version is under a branch named “add_gpu_version”. After downloading the code, checkout
to the GPU branch and look into the “DPD/gpu_version” folder, i.e:

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be register
as developer):

4.3. Software related to Extended Software Development Workshops 455

https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk/dl_meso/dl_meso
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw

E-CAM Documentation, Release 0.2

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/9962103c7821634a17ecb5da5460183a68951a0b

Software Technical Information

Name DL_MESO (DPD).

Language Fortran, CUDA-C.

Licence BSD, v. 2.7 or later

Documentation Tool ReST files

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

SPME on DL_MESO_DPD (GPU version)

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The electrostatic force calculation usually represents the main computational costs in systems where even a small
amount of charged particles are present (>1%). The Smooth Particle Mesh Ewald [SPME] splits the electrostatic
forces in two parts: a short range, solved in the real space, and a long range, solved in the Fourier space. An error
weight function combines the two contributions. For the long range force the electrical charges are spread on a virtual
particle mesh using a B-spline interpolation function.

Porting the full short and long range interactions to GPUs allowed us to achieve a speedup factor of 4x when compared
to a traditional 12-core Intel CPU.

One of the main applications which includes electrical charges are the simulations of plasma.

Purpose of Module

The Ewald summation method scales with 𝑁1.5 at best, where N is the number of charged particles. The SPME
method allows for improved scaling, 𝑁 * 𝑙𝑜𝑔(𝑁), but requires a stencil domain decomposition (i.e. decomposing the
domain along one direction only) to allow the FFTW library to scale with more than 1 core. If this is not used, as in
the current master version of DL_MESO_DPD, FFTW rapidly becomes a bottleneck for scaling across several nodes.
On the other hand, the porting to a single GPU does not need domain decomposition and the same speedup factor (4x
compared to 12-core Intel) is maintained.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

456 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/9962103c7821634a17ecb5da5460183a68951a0b
https://opensource.org/licenses/BSD-2-Clause
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx
https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

E-CAM Documentation, Release 0.2

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk/dl_meso/dl_meso. Please
contact Dr. Micheal Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

The DL_MESO code is developed using git version control. Currently the GPU version is under a branch named
“add_gpu_version”. After downloading the code, checkout the GPU branch and look into the “DPD/gpu_version”
folder, i.e:

• git clone DL_MESO_repository_path

• cd dl_meso

• git checkout gpu_version

• cd /DPD/gpu_version

• make all

To compile and run the code you need to have installed the CUDA-toolkit and have a CUDA enabled GPU device (see
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw).

To run the case, compile the code using the “make all” command from the “bin” directory, copy the “FIELD” and
“CONTROL” files in this directory and run “./dpd_gpu.exe”.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be register
as developer):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/34a652fe62cadbac5e8a037b57ee9be64dcf4187

Software Technical Information

Name DL_MESO (DPD).

Language Fortran, CUDA-C.

Licence BSD, v. 2.7 or later

Documentation Tool ReST files

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Improved overlap computation communiction in DL_MESO_DPD (multi-GPU version)

• Purpose of Module

• Background Information

4.3. Software related to Extended Software Development Workshops 457

https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk/dl_meso/dl_meso
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/34a652fe62cadbac5e8a037b57ee9be64dcf4187
https://opensource.org/licenses/BSD-2-Clause
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

• Building and Testing

• Source Code

The following module present an improved overlap between communication and computation for the
DL_MESO_DPD package on multi-GPUs.

A binary mixture phase separation test case up to 1.8 billion particles has been used for weak and strong benchmarks.
The results show good scaling in both cases up to 1024 GPUs. After that the scaling without improved overlap quickly
tails off while the other shows good efficiency (>85%) up to 4096 GPUs.

Purpose of Module

The previous multi-GPU version of DL_MESO_DPD was not correctly setting the order of the CUDA streams ded-
icated to computation and communication. This was preventing their overlap and drastically reduce the overall per-
formance and scalability. The current module fixes this problem and present weak and strong scaling on the Piz
Daint Supercomputer (see https://user.cscs.ch/) using up to 4096 GPUs. The previous performance is presented for
comparison.

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

• http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk/. Please contact Dr. Micheal
Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

The DL_MESO code is developed using git version control. Currently the GPU version is under a branch
named “multi_GPU_version”. After downloading the code, checkout to the GPU branch and look into the
“DPD/gpu_version” folder, i.e:

• git clone DL_MESO_repository_path

• cd dl_meso

• git checkout multi_GPU_version

• cd /DPD/gpu_version/bin

• make all

To compile and run the code you need to have installed the CUDA-toolkit, a CUDA enabled GPU device (see http:
//docs.nvidia.com/cuda/#axzz4ZPtFifjw), a fortran compiler (like GCC gfortran, Intel Fortran, Cray ftn) and MPI
library. Moreover, the code uses CUDA_aware_MPI which is part of GPU Direct Technologies. Please make sure
your cluster support CUDA_aware_MPI!

The current version has been tested ONLY for the Mixture_Large test case available in the DEMO/DPD folder. To
run the case, compile the code using the “make all” command from the “bin” directory, copy the “FIELD” and “CON-
TROL” files in this directory and run “mpirun -np N ./dpd_gpu.exe”. For a the strong scaling test we used 1.8 billion
particles keeping the density ratio particles/volume=5. Below is a plot of the strong scaling with and without improved
overlap.

458 Chapter 4. Meso- and Multi-scale Modules

https://user.cscs.ch/
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
https://gitlab.stfc.ac.uk/
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw

E-CAM Documentation, Release 0.2

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be
registered as developer):

• https://gitlab.stfc.ac.uk/srb73435/dl_meso/commit/90701a3ad97d53dc0555d0b79862e0db3134f83c

Software Technical Information

Name DL_MESO (DPD).

Language Fortran, CUDA-C.

Licence BSD, v. 2.7 or later

Documentation Tool ReST files

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

Bond forces on DL_MESO_DPD (single GPU)

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

This module add the bond forces to the single GPU version of DL_MESO (DPD). These take in account in the
interactions between different chemical species which allow to create complex molecules more representative of real
systems. An example of an application is the ternary solution where a primary component is bonds interacting with
the other two phases.

Purpose of Module

The algorithm used is the same of the DL_MESO serial version, but of course adapted for SIMT (Single Instruction
Multiple Threads) architecture. The module includes also the angle and dihedral forces, all divived according a
classical orthogonal domain decomposition.

Considering that in a real case the number of bounds is usually much lower than the total number of
particles, different CUDA streams for the three kernels (k_findBondForce, k_findAngleForce and

4.3. Software related to Extended Software Development Workshops 459

https://gitlab.stfc.ac.uk/srb73435/dl_meso/commit/90701a3ad97d53dc0555d0b79862e0db3134f83c
https://opensource.org/licenses/BSD-2-Clause
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

k_findDihedralForce) are used. This allow to launch them in parallel to improve the performance of the overall
simulation.

Note: If the module is an ingredient for a more general workflow (e.g. the module was the necessary foundation
for later code; the module is part of a group of modules that will be used to calculate certain property or have certain
application, etc.) mention this, and point to the place where you specify the applications of the more general workflow
(that could be in another module, in another section of this repository, an application’s website, etc.).

Note: If you are a post-doc who works in E-CAM, an obvious application for the module (or for the group of modules
that this one is part of) is your pilot project. In this case, you could point to the pilot project page on the main website
(and you must ensure that this module is linked there).

Background Information

This module is part of the DL_MESO_DPD code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk/dl_meso/dl_meso. Please
contact Dr. Micheal Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

The DL_MESO code is developed using git version control. Currently there are a single GPU version and a multi
GPU version is under a two different branches. After downloading the code, checkout the single_GPU_version
branch and look into the DPD/gpu_version folder, i.e:

git clone DL_MESO_repository_path
cd dl_meso
git checkout single_GPU_version
cd /DPD/gpu_version
make all

To compile and run the code you need to have installed the CUDA-toolkit and have a CUDA enabled GPU device (see
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw).

To run the case, compile the code using the make all command from the bin directory, copy the FIELD and
CONTROL files from the gpu_version/test/Solvent folder in this directory and run ./dpd_gpu.exe.

Source Code

This module has been merged into DL_MESO code. It is composed of the following commits (you need to be register
as developer):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/c787c4bc4f56634c2c6c6730b98b75093907ce57

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/8b3dd9c071a60cbfb6e5fc285e82049efcc603f7

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/9c6452d2340c53dc68d1eabbee37992d14e071b5

460 Chapter 4. Meso- and Multi-scale Modules

https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk/dl_meso/dl_meso
http://docs.nvidia.com/cuda/#axzz4ZPtFifjw
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/c787c4bc4f56634c2c6c6730b98b75093907ce57
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/8b3dd9c071a60cbfb6e5fc285e82049efcc603f7
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/commit/9c6452d2340c53dc68d1eabbee37992d14e071b5

E-CAM Documentation, Release 0.2

The DL_MESO code is developed using git version control. Currently the GPU version is under a branch named
“add_gpu_version”.

Software Technical Information

Name DL_MESO

Language Fortran/C++

Licence BSD, v. 2.7 or later

Documentation Tool Fortran/C comments

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

DL_MESO (DPD) on Kokkos: Verlet Velocity step 1

• Purpose of Module

• Background Information

• Building and Testing

• Performance

• Experience in porting to Kokkos

• Source Code

This module is the first version of a performance portable version of DL_MESO (DPD) using the Kokkos library. Its
focus is on the first loop of the Verlet Velocity (VV) scheme for the time marching scheme.

Purpose of Module

In this module we present a first version of DL_MESO (DPD) with Kokkos library which offloads one of the main
steps of the time marching scheme during the force integration. This allows us to run DL_MESO on NVidia GPUs as
well as on other GPUs or architectures (many-core hardware like KNL), allowing performance portability as well as a
separation of concerns between computational science and HPC.

The VV scheme is made of 3 steps:

1) a first velocity and particle positions integration by $Delta t/2$,

2) a force calculation, and

3) a second velocity integration by $Delta t/2$.

In this module we are porting to Kokkos the first step.

Note: Kokkos is a C++ library, while DL_MESO (DPD) is in Fortran90 Language. The current implementation
requires a transfer between Fortran to C++, due to the use of Fortran pointers not bound using the ISO_C_BINDING
standard. This constraint will be removed in future versions of DL_MESO.

4.3. Software related to Extended Software Development Workshops 461

http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

E-CAM Documentation, Release 0.2

Background Information

With the advent of heterogeneous hardware, achieving performance portability across different architectures is one of
the main challenges in HPC. In fact, while specific languages, like CUDA, can give best performance for the NVIDIA
hardware, they cannot be used with different GPU vendors limiting the usage across supercomputers world wide.

In this module we use Kokkos, developed at Sandia National Laboratories, which consist of several C++ templated
libraries able to offload the workload to several different architectures, taking care of the memory layout and transfer
between host and device.

To install Kokkos follow the instructions at: Kokkos Tutorial. This module has been built with a Kokkos installation
using the following flags:

cmake ../ -CMAKE_CXX_COMPILER=$HOME/Kokkos/kokkos/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=ON -DKokkos_ENABLE_OPENMP=ON -
DKokkos_ENABLE_CUDA_LAMBDA=ON -DCMAKE_INSTALL_PREFIX=$HOME/Kokkos/kokkos

which allows for the translation of the Kokkos kernel to CUDA for running on NVidia GPUs.

This module is part of the DL_MESO (DPD) code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Michael
Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

To compile and run the code you need to have installed a Fortran and C++ compiler (GCC>7.x), CMake (>3.11.4) and
Kokkos.

The DL_MESO code is developed using git version control. Currently, the Kokkos GPU version is under a branch
named Kokkos_version. After downloading the code, checkout the Kokkos branch and move to the DPD folder.
Use cmake to build and compile the executable:

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout kokkos_version
cd ./DPD
mkdir build
cd build
cmake ../
cmake --build .

Use the files FIELD and CONTROL files in DEMO/DPD folders to test your code on different architectures. Compare
the OUTPUT and the export files to verify your results.

Performance

We timed the execution for the VV kernel using Kokkos and compared to the same loop written in CUDA language
(see DL_MESO GPU version modules) using a Volta V100 NVidia card.

For 5.12 million particles of the Large Mixture test case, we get a 0.00114s per kernel execution with both versions,
which indicate no loss of performance in using Kokkos compared to native CUDA code. However, the data transfer
between host and device currently occurs at every time step in the Kokkos version, taking 0.5721s and therefore a
negative impact on the overall performance.

462 Chapter 4. Meso- and Multi-scale Modules

https://github.com/kokkos/kokkos/blob/master/BUILD.md
https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/index.html

E-CAM Documentation, Release 0.2

For a fair comparison, this data should be transferred upstream to the time marching loop as done in the CUDA version.

Experience in porting to Kokkos

Compared to other paradigms used for GPU programming, like OpenACC or OpenMP, Kokkos has quite a steep
learning curve. This is due to several concepts which needs to be considered by the programmer before starting the
porting. Some of these concepts are familiar to C++ programmers, like the use of lambda functions and function
objects (commonly known as functors). Another important concept is the Memory Space which is different according
to the hardware used. The transfer between host and device is based around the concept of the View layout in the
Memory Space, an array of one or more dimensions which can be set at compile time or runtime. Programmers
familiar with CUDA will easily recognize some similarity when porting to GPU, like the concepts of host and device
asynchronism and the Unified Memory memory space. After following the first on line tutorial , the porting of a
simple loop should be straight forward. However, more advanced concepts are required for more complex scientific
kernels to achieve performance portability. Finally, the error messages are not always very easy to interpret and the
online threads to similar issues are still relatively few. With time, wider usage of the library will definitely improve
the usability and make it more user friendly (and less verbose).

Source Code

This module has been pushed into DL_MESO git repository. It is composed of the following commits (you need to be
registered as collaborator):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/6b58be6b23d823ef4224b06ac5b1ca089fea56ef

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/9f9ea4563986cf43562af67b8a60a5cdf9615016

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/a285d3c93492ac540d342025d5c3f0ca61f8b295

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/a315ef48d44f7924e51c27748e0e9761adeebea5

Software Technical Information

Name DL_MESO

Language Fortran/C++

Licence BSD, v. 2.7 or later

Documentation Tool Fortran/C comments

Application Documentation See the DL_MESO Manual

Relevant Training Material See DL_MESO webpage

Software Module Developed by Jony Castagna

DL_MESO (DPD) on Kokkos: Verlet Velocity step 2

• Purpose of Module

• Background Information

• Building and Testing

4.3. Software related to Extended Software Development Workshops 463

https://www.youtube.com/watch?v=rUIcWtFU5qM&t=3000s
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/6b58be6b23d823ef4224b06ac5b1ca089fea56ef
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/9f9ea4563986cf43562af67b8a60a5cdf9615016
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/a285d3c93492ac540d342025d5c3f0ca61f8b295
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/a315ef48d44f7924e51c27748e0e9761adeebea5
http://www.scd.stfc.ac.uk/SCD/resources/PDF/USRMAN.pdf
http://www.scd.stfc.ac.uk/SCD/support/40694.aspx

E-CAM Documentation, Release 0.2

• Performance

• Source Code

This module is related to the implementation in DL_MESO (DPD) Kokkos library to achieve performance portability.
It’s focus is on the second loop of the Verlet Velocity (VV) scheme for the time marching scheme.

Purpose of Module

In this module we are porting to DL_MESO (DPD) the second loop of the Verlet Velocity scheme to Kokkos. This
allows to run DL_MESO on NVidia GPUs as well as on other GPUs or architectures (many-core hardware like KNL),
allowing performance portability as well as separation of concern between computational science and HPC.

The VV scheme is made of 3 steps: 1) a first velocity and particle positions integration by $Delta t/2$, 2) a force
calculation and 3) a second velocity integration by $Delta t/2$. We have already offloaded the first loop in another
module (DL_MESO (DPD) on Kokkos: Verlet Velocity step 1). The main difference here is that we are using a
parallel_reduce loop rather than parallel_for as we need to calculate also the stress tensor via reduction
operations.

Note: Kokkos is a C++ library, while DL_MESO (DPD) is in Fortran90 Language. The current implementation
requires a transfer between Fortran and C++, due to the use of Fortran pointers not binded via the ISO_C_BINDING
standard. This constraint will be removed in future versions.

Background Information

With the advent of heterogeneous hardware, achieving performance portability across different architectures is one of
the main challenges in HPC. In fact, while specific languages, like CUDA, can give best performance for the NVidia
hardware, they cannot be used with different GPU vendors limiting the usage across supercomputers worldwide.

In this module we use Kokkos, developed at Sandia National Laboratories, which consist of several C++ templated
libraries which provide the capability to offload a workload to several different architectures, taking care of the memory
layout and transfer between host and device.

To install Kokkos follow the instructions at: Kokkos Tutorial. This module has been built on a Kokkos installation
using the following flags:

cmake ../ -CMAKE_CXX_COMPILER=$HOME/Kokkos/kokkos/bin/nvcc_wrapper -DKokkos_ENABLE_
→˓CUDA=ON \
-DKokkos_ENABLE_OPENMP=ON -DKokkos_ENABLE_CUDA_LAMBDA=ON -DCMAKE_INSTALL_PREFIX=

→˓$HOME/Kokkos/kokkos

which allows us to translate the Kokkos kernel to CUDA language and run on NVidia GPUs.

This module is part of the DL_MESO (DPD) code. Full support and documentation is available at:

• https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx

• https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf

To download the DL_MESO_DPD code you need to register at https://gitlab.stfc.ac.uk. Please contact Dr. Michael
Seaton at Daresbury Laboratory (STFC) for further details.

Building and Testing

To compile and run the code you need to have installed a Fortran and C++ compiler (GCC>7.x), CMake (>3.11.4) and
Kokkos.

464 Chapter 4. Meso- and Multi-scale Modules

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos/blob/master/BUILD.md
https://www.scd.stfc.ac.uk/Pages/DL_MESO.aspx
https://www.scd.stfc.ac.uk/Pages/USRMAN.pdf
https://gitlab.stfc.ac.uk

E-CAM Documentation, Release 0.2

The DL_MESO code is developed using git version control. Currently, the Kokkos GPU version is under a branch
named Kokkos_version. After downloading the code, checkout the Kokkos branch and move to the DPD folder.
Use cmake to build and compile the executable:

git clone https://gitlab.stfc.ac.uk/dl_meso.git
cd dl_meso
git checkout kokkos_version
cd ./DPD
mkdir build
cd build
cmake ../
cmake --build .

Use the files FIELD and CONTROL files in DEMO/DPD folders to test your code on different architectures. Compare
the OUTPUT and the export files to verify your results.

Performance

We timed the execution for the VV second step kernel using Kokkos and compared to the same loop written in CUDA
language (see DL_MESO GPU version modules) using a Volta V100 NVidia card. For a 5.12 million particles of the
Large Mixture test case, we get a 0.00117s (very close to the fist loop, despite the reduction operations) per kernel
execution with both versions, which indicate no loss of performance in using Kokkos compared to native CUDA
code. However, the data transfer between host and device currently occurs at every time step in the Kokkos version,
taking 0.4689s and then with a negative impact on the overall performance. For a fair comparison, this data should be
transferred upstream to the time marching loop as done in the CUDA version.

Source Code

This module has been pushed into DL_MESO git repository. It is composed of the following commits (you need to be
registered as collaborator):

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/4d32671264648b4252f71c2f98d0164ab0843f46

• https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/457509dc8727d30b49f4bb70a4bec98126866447

4.3.2 ESPResSo++

The following modules connected to the ESPResSo++ code have been produced so far in the context of an associated
Pilot Project:

Hierarchical Strategy for Simple One-Component Polymer Melts: fixed-local-tuple

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Languages: Python (2.7) and C++

Documentation Tools: Sphinx and Doxygen

Application Documentation: http://espressopp.github.io/

4.3. Software related to Extended Software Development Workshops 465

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/index.html
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/4d32671264648b4252f71c2f98d0164ab0843f46
https://gitlab.stfc.ac.uk/dl_meso/dl_meso/-/commit/457509dc8727d30b49f4bb70a4bec98126866447
https://www.e-cam2020.eu/pilot-project-composite-materials/
https://www.e-cam2020.eu/pilot-project-composite-materials/
http://espressopp.github.io/

E-CAM Documentation, Release 0.2

Relevant Training Material: https://github.com/espressopp/espressopp/tree/master/examples

Licence GNU General Public License

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

Reference1 describes the principles of a hierarchical strategy to equilibrate simple one-component polymer melts de-
scribed in terms of atomistic or coarse-grained (bead-spring) models. The present module is part of our implementation
of this method in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module is
part of a suite of programs which realize this method within the framework of the simulation package ESPResSO++.

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with
𝑁𝑏 monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus
is equilibrated quickly. One thus obtains a configuration that is equilibrated on large scales but does not provide
information about the structure on smaller (i.e. more fine-grained (FG)) scales.

To obtain the latter, the resolution is step-by-step increased by recursively applying a fine-graining procedure to the
previous (more coarse-grained) level. In such a fine-graining step, each CG polymer chain is replaced with a more
fine-grained chain, by dividing a CG blob into several FG blobs. In the last step, microscopic monomers are reinserted
into their CG blobs.

The resulting set of FG blobs is set up in such a way that its conformation is consistent with the conformation at
the more coarse-grained level. After this setup, the local FG conformation is relaxed into a local equilibrium, again
consistent with the (fixed) CG blobs.

This procedure needs a data structure where tuples of particles are stored in lists. In contrast to simple Molecular
Dynamics, which is based only on pairs of particles, we here need to allow tuples of arbitrary size. The present
module provides this more general data structure. The list can contain both real and ghost particles.

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

1 http://pubs.acs.org/doi/abs/10.1021/mz5000015, preprint available via https://arxiv.org/abs/1610.07511

466 Chapter 4. Meso- and Multi-scale Modules

https://github.com/espressopp/espressopp/tree/master/examples
http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
http://pubs.acs.org/doi/abs/10.1021/mz5000015
https://arxiv.org/abs/1610.07511

E-CAM Documentation, Release 0.2

Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested by a Python script found under the following link:

• https://github.com/espressopp/espressopp/tree/master/testsuite/FixedLocalTuple

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/171

References

Hierarchical Strategy for Simple One-Component Polymer Melts: md-softblob

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Languages: Python (2.7) and C++

Documentation Tools: Sphinx and Doxygen

Application Documentation: http://espressopp.github.io/

Relevant Training Material: https://github.com/espressopp/espressopp/tree/master/examples

Licence GNU General Public License

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

Reference1 describes the principles of a hierarchical strategy to equilibrate simple one-component polymer melts
described in terms of atomistic or coarse-grained (bead-spring) models. The present module is the central part of our
implementation of this method in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation

1 : http://pubs.acs.org/doi/abs/10.1021/mz5000015, preprint available via https://arxiv.org/abs/1610.07511

4.3. Software related to Extended Software Development Workshops 467

https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/testsuite/FixedLocalTuple
https://github.com/espressopp/espressopp/pull/171
http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015
https://arxiv.org/abs/1610.07511

E-CAM Documentation, Release 0.2

theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module
is the central part that controls a suite of programs which realize this method within the framework of the simulation
package ESPResSO++.

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with
𝑁𝑏 monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus
is equilibrated quickly. One thus obtains a configuration that is equilibrated on large scales but does not provide
information about the structure on smaller (i.e. more fine-grained (FG)) scales.

To obtain the latter, the resolution is step-by-step increased by recursively applying a fine-graining procedure to the
previous (more coarse-grained) level. In such a fine-graining step, each CG polymer chain is replaced with a more
fine-grained chain, by dividing a CG blob into several FG blobs. In the last step, microscopic monomers are reinserted
into their CG blobs.

The resulting set of FG blobs is set up in such a way that its conformation is consistent with the conformation at
the more coarse-grained level. After this setup, the local FG conformation is relaxed into a local equilibrium, again
consistent with the (fixed) CG blobs.

The present module implements the actual coarse-graining step, which is therefore described in more detail:

A polymer chain, originally consisting of𝑁 monomers, is replaced by a coarse-grained (CG) chain consisting of𝑁/𝑁𝑏

soft blobs linked by a harmonic bond potential, 𝑉𝑏𝑜𝑛𝑑 = 3𝑘𝐵𝑇𝑑
2/2𝑏2𝐶𝐺, and an angular bond-bending potential

𝑉𝑏𝑒𝑛𝑑 = 𝑘𝐵𝑇𝑘𝑏𝑒𝑛𝑑(1 + cos(𝜃))/2. Here 𝑑 is the distance and 𝜃 is the angle between consecutive bonds. The
interactions between non-bonded soft blobs are taken into account by a repulsive pair potential 𝑉𝑛𝑏 = 𝑘𝐵𝑇𝜖𝑈𝐺(𝑟𝑖𝑗).
Here 𝑟𝑖𝑗 is the center-to-center distance between the two blobs, 𝑈𝐺(𝑟𝑖𝑗) is a Gaussian function with variance 𝜎2 =
𝜎2
𝑖 + 𝜎2

𝑗 and 𝜎𝑖 is the gyration radius of blob number 𝑖. The gyration radius 𝜎 is in turn fluctuating. This fluctuation
is controlled by the potential 𝑉𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑘𝐵𝑇 (𝑎1𝑁

3
𝑏 𝜎

−6 + 𝑎2𝑁
−1
𝑏 𝜎2 + 𝑎3𝜎

−3). Equilibrated configurations of soft
blobs are generated by Molecular Dynamics (MD) simulations based on the above model.

Within the module, the following classes have been implemented or modified:

• A VSpherePair class for calculating 𝑉𝑛𝑏 = 𝑘𝐵𝑇𝜖𝑈𝐺(𝑟𝑖𝑗)

• A VSphereSelf class for calculating 𝑉𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑘𝐵𝑇 (𝑎1𝑁
3
𝑏 𝜎

−6 + 𝑎2𝑁
−1
𝑏 𝜎2 + 𝑎3𝜎

−3)

• A Particle class for comunicating the property “radius” between different cores

• A LangevinThermostatOnRadius class for simulating the fluctuations of the radii of the blobs

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested by a Python script found under the following link:

• https://github.com/espressopp/espressopp/tree/master/testsuite/langevin_thermostat_on_radius

468 Chapter 4. Meso- and Multi-scale Modules

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/testsuite/langevin_thermostat_on_radius

E-CAM Documentation, Release 0.2

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/168

• https://github.com/espressopp/espressopp/pull/169

• https://github.com/espressopp/espressopp/pull/170

• https://github.com/espressopp/espressopp/pull/176

References

Minimize Energy : A Component of the Hierarchical Equilibration Strategy for Polymer Melts

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Languages: Python (2.7) and C++

Documentation Tools: Sphinx and Doxygen

Application Documentation: http://espressopp.github.io/

Relevant Training Material: https://github.com/espressopp/espressopp/tree/master/examples

Licence GNU General Public License

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

The module is an implementation of a part of a hierarchical strategy1 for the equilibration of simple one-component
polymer melts in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module
provides a part of that method.

1 : http://pubs.acs.org/doi/abs/10.1021/mz5000015

4.3. Software related to Extended Software Development Workshops 469

https://github.com/espressopp/espressopp/pull/168
https://github.com/espressopp/espressopp/pull/169
https://github.com/espressopp/espressopp/pull/170
https://github.com/espressopp/espressopp/pull/176
http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015

E-CAM Documentation, Release 0.2

When the microscopic monomers are re-inserted into the soft blobs, the polymer configurations should satisfy a local
energy minimum to avoid overlap between particles. This module provides a steepest-descent method <https://en.
wikipedia.org/wiki/Gradient_descent>‘_ which is a typical energy minimization method.

This module is a modification of the already existing class espressopp.integrator.MinimizeEnergy. The modifications
are as follows:

1. Corrected the procedure of particle redistribution to cells.

2. A variable relaxation of the energy per step 𝛾 is implemented. In this case, the position of particles is updated
following the equation: .. math:: p_{i+1} = p_i + (d_{max}/f_{max}) F_i where 𝑑𝑚𝑎𝑥 is the maximum update
of particle coordinates in a single steepest-descent step and 𝛾 is adjusted via 𝛾 = 𝑑𝑚𝑎𝑥/𝑓𝑚𝑎𝑥 where 𝑓𝑚𝑎𝑥 is the
maximum force in a single step.

These modifications significantly stabilize the procedure of redistributing particles to cells, and any value 𝑑𝑚𝑎𝑥 less
than half the skin parameter of the Verlet list can be used.

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested by a Python script found under the following link:

• https://github.com/espressopp/espressopp/tree/master/testsuite/minimize_energy

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/89

• https://github.com/espressopp/espressopp/pull/90

References

Hierarchical Strategy for Simple One-Component Polymer Melts: constrain-com

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Languages: Python (2.7) and C++

470 Chapter 4. Meso- and Multi-scale Modules

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/testsuite/minimize_energy
https://github.com/espressopp/espressopp/pull/89
https://github.com/espressopp/espressopp/pull/90

E-CAM Documentation, Release 0.2

Documentation Tools: Sphinx and Doxygen

Application Documentation: http://espressopp.github.io/

Relevant Training Material: https://github.com/espressopp/espressopp/tree/master/examples

Licence GNU General Public License

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

Reference1 describes the principles of a hierarchical strategy to equilibrate simple one-component polymer melts de-
scribed in terms of atomistic or coarse-grained (bead-spring) models. The present module is part of our implementation
of this method in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module is
part of a suite of programs which realize this method within the framework of the simulation package ESPResSO++.

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with
𝑁𝑏 monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus
is equilibrated quickly. One thus obtains a configuration that is equilibrated on large scales but does not provide
information about the structure on smaller (i.e. more fine-grained (FG)) scales.

To obtain the latter, the resolution is step-by-step increased by recursively applying a fine-graining procedure to the
previous (more coarse-grained) level. In such a fine-graining step, each CG polymer chain is replaced with a more
fine-grained chain, by dividing a CG blob into several FG blobs. In the last step, microscopic monomers are reinserted
into CG blobs.

The resulting set of FG blobs is set up in such a way that its conformation is consistent with the conformation at
the more coarse-grained level. After this setup, the local FG conformation is relaxed into a local equilibrium, again
consistent with the (fixed) CG blobs. Consistency here means that the center of mass (COM) of the set of FG blobs
coincides with the center of the corresponding CG blob, during an initial period which is long enough that nearly
perfect local equlibrium is reached. After that, the constraint is lifted.

The present module provides the C++ class for applying a suitable constraint that conserves the position of the COM
of N FG blobs.

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ via the following
links:

1 http://pubs.acs.org/doi/abs/10.1021/mz5000015, preprint available via https://arxiv.org/abs/1610.07511

4.3. Software related to Extended Software Development Workshops 471

http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015
https://arxiv.org/abs/1610.07511

E-CAM Documentation, Release 0.2

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested by a Python script found under the following link:

• https://github.com/espressopp/espressopp/tree/master/testsuite/constrain_com

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/178

References

Hierarchical Strategy for Simple One-Component Polymer Melts: constrain-rg

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Languages: Python (2.7) and C++

Documentation Tools: Sphinx and Doxygen

Application Documentation: http://espressopp.github.io/

Relevant Training Material: https://github.com/espressopp/espressopp/tree/master/examples

Licence GNU General Public License

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

Reference1 describes the principles of a hierarchical strategy to equilibrate simple one-component polymer melts de-
scribed in terms of atomistic or coarse-grained (bead-spring) models. The present module is part of our implementation
of this method in ESPResSO++.

1 http://pubs.acs.org/doi/abs/10.1021/mz5000015, preprint available via https://arxiv.org/abs/1610.07511

472 Chapter 4. Meso- and Multi-scale Modules

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/testsuite/constrain_com
https://github.com/espressopp/espressopp/pull/178
http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015
https://arxiv.org/abs/1610.07511

E-CAM Documentation, Release 0.2

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module is
part of a suite of programs which realize this method within the framework of the simulation package ESPResSO++.

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with
𝑁𝑏 monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus
is equilibrated quickly. One thus obtains a configuration that is equilibrated on large scales but does not provide
information about the structure on smaller (i.e. more fine-grained (FG)) scales.

To obtain the latter, the resolution is step-by-step increased by recursively applying a fine-graining procedure to the
previous (more coarse-grained) level. In such a fine-graining step, each CG polymer chain is replaced with a more
fine-grained chain, by dividing a CG blob into several FG blobs. In the last step, microscopic monomers are reinserted
into their CG blobs.

The resulting set of FG blobs is set up in such a way that its conformation is consistent with the conformation at
the more coarse-grained level. After this setup, the local FG conformation is relaxed into a local equilibrium, again
consistent with the (fixed) CG blobs.

In the last step (the reinsertion of microscopic monomers) it is useful to avoid an initial overstretching of microscopic
bonds as much as possible. To this end, the algorithm makes sure that the gyration radii of the subchains coincide with
the gyration radii of the corresponding blobs, during an initial equilibration period.

The present module provides the C++ class for applying a suitable constraint that conserves the gyration radius of N
microscopic monomers.

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested by a Python script found under the following link:

• https://github.com/espressopp/espressopp/tree/master/testsuite/constrain_rg

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/182

4.3. Software related to Extended Software Development Workshops 473

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/testsuite/constrain_rg
https://github.com/espressopp/espressopp/pull/182

E-CAM Documentation, Release 0.2

References

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Name Feedback control mechanism for one component melts

Language Python (2.7) and C++

Licence GPL <https://opensource.org/licenses/gpl-license>

Documentation Tool Sphinx and Doxygen

Application Documentation http://espressopp.github.io/

Relevant Training Material https://github.com/espressopp/espressopp/tree/master/examples

Feedback control mechanism: A Component of the Hierarchical Equilibration Strategy for Polymer
Melts

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

• References

The module is an implementation of the existing hierarchical strategy1 for the equilibration of simple one-component
polymer melts in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module
provides a part of that method described below.

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with
𝑁𝑏 monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus
is equilibrated quickly. One thus obtains a configuration that is equilibrated on large scales but does not provide
information about the structure on smaller (i.e. more fine-grained (FG)) scales.

To obtain the latter, the resolution is step-by-step increased by recursively applying a fine-graining procedure to the
previous (more coarse-grained) level. In such a fine-graining step, each CG polymer chain is replaced with a more
fine-grained chain, by dividing a CG blob into several FG blobs.

1 http://pubs.acs.org/doi/abs/10.1021/mz5000015

474 Chapter 4. Meso- and Multi-scale Modules

http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015

E-CAM Documentation, Release 0.2

In the last step, microscopic monomers are reinserted into CG blobs. This reinsertion procedure is divided into 2
parts. Firstly, monomers are treated as mass points without non-bonded interaction. Starting from this state, repulsive
non-bonded interactions are gradually introduced according to the feedback control mechanism explained in Ref.2.
This procedure makes sure that the final fine-grained conformation is consistent with the conformation at the more
coarse-grained level.

The present module provides the python script which performs the feedback control mechanism. The implementation
detail is in following below.

1. The microscopic configuration of 𝑁 polymers consisted of 𝑀 monomers is prepared. The system size 𝐿 is
determined by the number of density 𝜌 = (𝑁 ×𝑀)/𝐿3 ≈ 0.85. 𝑚 and 𝜎 stands for the mass and the diameter
of monomers.

We presupposed that a configuration is already equilibrated at a coarse-grained level and is not equilibrated at a
microscopic level.

2. NVT MD simulation is carried out with bonding potential 𝑉FENE and force-capped-LJ potential 𝑉fc−LJ defined
as

𝑉fc−LJ = (𝑟 − 𝑟𝑓𝑐)𝑉𝐿𝐽(𝑟𝑓𝑐) + 𝑉𝐿𝐽(𝑟𝑓𝑐) for 𝑟 < 𝑟𝑓𝑐,

𝑉fc−LJ = 𝑉𝐿𝐽(𝑟) for 𝑟 > 𝑟𝑓𝑐,

for preventing too strong repulsive forces. At first we set 𝑟𝑓𝑐 = 21/6𝜎.

3. The excluded volume interaction can be gradually introduced with gradually decreasing 𝑟𝑓𝑐. In order to obtain
the equilibrated structure of polymer melts, 𝑟𝑓𝑐 is controlled by the difference between the mean-square internal
distances of the current configuration and that of the ideal curve in the intermediate region. This difference is
defined as

𝐼 =
∫︀ 50

20
[(< 𝑅2(𝑛) > /𝑛)𝑖𝑑𝑒𝑎𝑙 − (< 𝑅2(𝑛) > /𝑛)𝑐𝑢𝑟𝑟𝑒𝑛𝑡]𝑑𝑛,

where 𝑅(𝑛) is an internal distance of chain segment of length 𝑛. For 𝐼 < 0, 𝑟𝑓𝑐 is increased. In contrast, for
𝐼 > 0, 𝑟𝑓𝑐 is decreased.

4. After performing during 650𝜏 , MD simulation is finished. Where 𝜏 =
√︀
𝑚𝜎2/𝑘B𝑇 .

More detail of this feedback control mechanism is explained in Ref2.

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Building and Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested according to the README file found under the following link:

• https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/

2 http://onlinelibrary.wiley.com/doi/10.1002/mats.201500013/full

4.3. Software related to Extended Software Development Workshops 475

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/
http://onlinelibrary.wiley.com/doi/10.1002/mats.201500013/full

E-CAM Documentation, Release 0.2

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/213

References

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Name Reinsertion procedure for one component melts

Language Python (2.7) and C++

Licence GPL <https://opensource.org/licenses/gpl-license>

Documentation Tool Sphinx and Doxygen

Application Documentation http://espressopp.github.io/

Relevant Training Material https://github.com/espressopp/espressopp/tree/master/examples

Reinsertion: A Component of the Hierarchical Equilibration Strategy for Polymer Melts

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

• References

The module is an implementation of the existing hierarchical strategy1 for the equilibration of simple one-component
polymer melts in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module
provides a part of that method described below.

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with
𝑁𝑏 monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus
is equilibrated quickly. One thus obtains a configuration that is equilibrated on large scales but does not provide
information about the structure on smaller (i.e. more fine-grained (FG)) scales.

1 http://pubs.acs.org/doi/abs/10.1021/mz5000015

476 Chapter 4. Meso- and Multi-scale Modules

https://github.com/espressopp/espressopp/pull/213
http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015

E-CAM Documentation, Release 0.2

To obtain the latter, the resolution is step-by-step increased by recursively applying a fine-graining procedure to the
previous (more coarse-grained) level. In such a fine-graining step, each CG polymer chain is replaced with a more
fine-grained chain, by dividing a CG blob into several FG blobs.

In the last step, microscopic monomers are reinserted into CG blobs. This reinsertion procedure is divided into 2
parts. Firstly, monomers are treated as mass points without non-bonded interaction. Starting from this state, repulsive
non-bonded interactions are gradually introduced according to the feedback control mechanism explained in Ref.2.
This procedure makes sure that the final fine-grained conformation is consistent with the conformation at the more
coarse-grained level.

The present module provides the python script which performs the reinsertion procedure. The implementation detail
is in following below.

1. The microscopic configuration of 𝑁 polymers consisted of 𝑀 monomers is prepared. The system size 𝐿 is
determined by the number of density 𝜌 = (𝑁 ×𝑀)/𝐿3 ≈ 0.85. 𝑚 and 𝜎 stands for the mass and the diameter
of monomers.

We presuppose that equilibrated CG chain at 𝑁𝑏 = 25 is already obtained.

2. 25 monomers of microscopic model are reinserted into all softblobs at 𝑁𝑏 = 25 randomly.

3. NVT MD simulation is carried out with bonding potential 𝑉FENE, non bonding potential 𝑉LJ only for connected
monomers,

the constrain potential for the position described as

𝑉com(r𝑖com) = 𝑘com(r𝑖com −R𝑁𝑏
𝑖)2, where r𝑖com ≡ 1

25

∑︀25
𝑗=1 r(𝑗+25𝑖),

and the constrain potential for the radius of gyration defined as

𝑉𝑅𝑔
(𝜌𝑖) = 𝑘𝑅𝑔

(𝜌2𝑖 −𝑅𝑖
𝑔
2
)2, where, 𝜌2𝑖 ≡ 1

25

∑︀25
𝑗=1(r(𝑗+25𝑖) −R𝑁𝑏=25

𝑖)2.

In this time, MD simulation is performed without the excluded volume effect during dozens 𝜏𝑚𝑜𝑛, that stands
for
√︀
𝑚𝜎2/𝑘B𝑇 .

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Building and Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested according to the README file found under the following link:

• https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/

2 http://onlinelibrary.wiley.com/doi/10.1002/mats.201500013/full

4.3. Software related to Extended Software Development Workshops 477

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/
http://onlinelibrary.wiley.com/doi/10.1002/mats.201500013/full

E-CAM Documentation, Release 0.2

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/213

References

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Name Fine-graining procedure for one component melts

Language Python (2.7) and C++

Licence GPL <https://opensource.org/licenses/gpl-license>

Documentation Tool Sphinx and Doxygen

Application Documentation http://espressopp.github.io/

Relevant Training Material https://github.com/espressopp/espressopp/tree/master/examples

Fine-graining: A Component of the Hierarchical Equilibration Strategy for Polymer Melts

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

• References

The module is an implementation of the existing hierarchical strategy1 for the equilibration of simple one-component
polymer melts in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module
provides a part of that method described below.

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with
𝑁𝑏 monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus
is equilibrated quickly. One thus obtains a configuration that is equilibrated on large scales but does not provide
information about the structure on smaller (i.e. more fine-grained (FG)) scales.

1 http://pubs.acs.org/doi/abs/10.1021/mz5000015

478 Chapter 4. Meso- and Multi-scale Modules

https://github.com/espressopp/espressopp/pull/213
http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015

E-CAM Documentation, Release 0.2

To obtain the latter, the resolution is step-by-step increased by recursively applying a fine-graining procedure to the
previous (more coarse-grained) level. In such a fine-graining step, each CG polymer chain is replaced with a more
fine-grained chain, by dividing a CG blob into several FG blobs.

The present module provides the python script which performs this fine-graining procedure. The implementation detail
is in following below.

1. The microscopic configuration of 𝑁 polymers consisted of 𝑀 monomers is prepared. The system size 𝐿 is
determined by the number of density 𝜌 = (𝑁 ×𝑀)/𝐿3 ≈ 0.85. 𝑚 and 𝜎 stands for the mass and the diameter
of monomers.

We presuppose that equilibrated CG chain at 𝑁𝑏 is already obtained.

2. The softblobs at 𝑁𝑏 is divided into 2 softblobs at 𝑁𝑏/2 under the constraint conditions defined as

R𝑁𝑏
𝑖 =

R
𝑁𝑏/2

2𝑖−1 +R
𝑁𝑏/2

2𝑖

2 ≡ r𝑖com,

𝑅
(2𝑖−1)
𝑔,𝑁𝑏/2

= 𝑅2𝑖
𝑔,𝑁𝑏/2

=
𝑅𝑖

𝑔,𝑁𝑏√
2

,

where R𝑁𝑏
𝑖 stands for R𝑖 at 𝑁𝑏 and 𝑅𝑖

𝑔,𝑁𝑏
stand for 𝑅𝑖

𝑔 at 𝑁𝑏. Namely, the center of mass of 2 softblobs at
𝑁𝑏/2 is identical with the position of a softblob at 𝑁𝑏.

3. For equilibrating a local configuration at 𝑁𝑏/2, NVT MD simulation is performed.

In the beginning, a MD simulation takes into account bonding potential 𝑉bond,

the potential for fluctuating radius of gyration 𝑉𝑠𝑝ℎ𝑒𝑟𝑒 and the constrain potentials for center of mass described
as

𝑉com(r𝑖com) = 𝑘com(r𝑖com −R𝑁𝑏
𝑖)2.

Each 16𝜏blob, MD simulation is including the bending interactions 𝑉angle

and non bonding interactions 𝑉nb in this order.

Where 𝜏blob =
√︀
𝑚𝑁𝑏𝜎2/𝑘B𝑇 .

4. After including all interactions, MD simulation is performed during 16𝜏blob.

5. In order to obtain the snapshot which has the ideal mean square internal distance (MSID) < 𝑅(𝑛)2 >, MD
simulation is continued to carry out. Where MSID < 𝑅(𝑛)2 > is defined as

< 𝑅(𝑛)2 >≡ 1
𝑀/𝑁𝑏−𝑛

∑︀𝑁−1
𝑗=0

∑︀𝑀/𝑁𝑏−𝑛
𝑖=1 (R𝑖+(𝑀/𝑁𝑏)𝑗 −R𝑖+(𝑀/𝑁𝑏)𝑗+𝑛)2.

This is calculated in each 𝜏blob.

After obtaining good snapshot at 𝑁𝑏/2, fine-graining procedure is finished.

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Building and Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

4.3. Software related to Extended Software Development Workshops 479

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp

E-CAM Documentation, Release 0.2

After installing this module, it can be tested according to the README file found under the following link:

• https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/213

References

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Name Coarse-graining procedure for one component melts

Language Python (2.7) and C++

Licence GPL <https://opensource.org/licenses/gpl-license>

Documentation Tool Sphinx and Doxygen

Application Documentation http://espressopp.github.io/

Relevant Training Material https://github.com/espressopp/espressopp/tree/master/examples

Coarse-Graining: A Component of the Hierarchical Equilibration Strategy for Polymer Melts

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

• References

The module is an implementation of the existing hierarchical strategy1 for the equilibration of simple one-component
polymer melts in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module
provides a part of that method described below.

1 http://pubs.acs.org/doi/abs/10.1021/mz5000015

480 Chapter 4. Meso- and Multi-scale Modules

https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/
https://github.com/espressopp/espressopp/pull/213
http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015

E-CAM Documentation, Release 0.2

To decrease the relaxation time, microscopic monomers are coarse-grained (CG) by mapping each subchain with 𝑁𝑏

monomers onto a soft blob. The CG system is then characterized by a much lower molecular weight and thus is
equilibrated quickly. The present module provides a python script which performs this coarse-graining procedure.
The implementation detail is in following below.

1. The microscopic configuration of 𝑁 polymers consisted of 𝑀 monomers is prepared. The system size 𝐿 is
determined by the number of density 𝜌 = (𝑁 ×𝑀)/𝐿3 ≈ 0.85. 𝑚 and 𝜎 stands for the mass and the diameter
of monomers.

2. The configuration of 𝑁 CG chain at 𝑁𝑏 = 100 is generated from the microscopic configuration.

The position of 𝑖-th softblobs R𝑖 is determined by R𝑖 = 1
𝑁𝑏

∑︀𝑁𝑏

𝑗=1 r(𝑗+(𝑖−1)𝑁𝑏), where r𝑖 stands for the position
of 𝑖-th monomers.

The radius of gyration 𝑖 th softblobs 𝑅𝑖
𝑔 is also determined by 𝑅𝑖

𝑔
2

= 1
𝑁𝑏

∑︀𝑁𝑏

𝑗=1(r(𝑗+(𝑖−1)𝑁𝑏) −R𝑖)
2.

3. The CG configuration is equilibrated by NVT MD simulation with mass of softblobs 𝑀 = 𝑁𝑏𝑚 during the

equilibration time 𝜏r defined as 𝜏r ∼
(︁

𝑀
𝑁𝑏

)︁2
𝜏blob, where 𝜏blob =

√︀
𝑚𝑁𝑏𝜎2/𝑘B𝑇 .

Hence, CPU time 𝜏100 for softblobs with 𝑁𝑏 = 100 is estimated as 𝜏100 ∼ 𝑁 ×
(︁

𝑀
𝑁𝑏

)︁3
𝜏blob.

4. After equilibrating a configuration, we continue to carry out MD simulation for adopting the
snapshot which show ideal mean square internal distance (MSID) < 𝑅(𝑛)2 > represented as

1
𝑀/𝑁𝑏−𝑛

∑︀𝑁−1
𝑗=0

∑︀𝑀/𝑁𝑏−𝑛
𝑖=1 (R𝑖+(𝑀/𝑁𝑏)𝑗 −R𝑖+(𝑀/𝑁𝑏)𝑗+𝑛)2.

Ideal MSID means the MSID of CG chains generated from fully equilibrated microscopic configurations.

A snapshot is captured in each 𝜏blob.

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Building and Testing

Explanation of installation:

• https://github.com/espressopp/espressopp

After installing this module, it can be tested according to the README file found under the following link:

• https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/

Source Code

This module has been merged into ESPResSo++:

• https://github.com/espressopp/espressopp/pull/213

4.3. Software related to Extended Software Development Workshops 481

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp/tree/master/examples/hierarchical_strategy_for_one-component/
https://github.com/espressopp/espressopp/pull/213

E-CAM Documentation, Release 0.2

References

These modules have resulted in the final overarching module that captures the goal of the pilot project:

Hierarchical Strategy for Simple One-Component Polymer Melts

Software Technical Information

The information in this section describes ESPResSo++ as a whole. Information specific to the additions in this
module are in subsequent sections.

Languages: Python (2.7) and C++

Documentation Tools: Sphinx and Doxygen

Application Documentation: http://espressopp.github.io/

Relevant Training Material: https://github.com/espressopp/espressopp/tree/master/examples

Licence GNU General Public License

Author Hideki Kobayashi

• Purpose of Module

• Background Information

• Testing

• Source Code

• References

The module is an implementation of the existing hierarchical strategy1 for the equilibration of simple one-component
polymer melts in ESPResSO++.

Purpose of Module

To study the properties of polymer melts by numerical simulations, equilibrated configurations must be prepared.
However, the relaxation time for high molecular weight polymer melts is huge and increases, according to reptation
theory, with the third power of the molecular weight. Hence, an effective method for decreasing the equilibration time
is required. The hierarchical strategy pioneered in Ref.1 is a particularly suitable way to do this. The present module
provides an integration of that method into the package ESPResSO++.

To decrease the relaxation time, microscopic monomers are coarse-grained by mapping each subchain with 𝑁𝑏

monomers onto a soft blob. A polymer chain, originally consisting of 𝑁 monomers, is replaced by a coarse-grained
(CG) chain consisting of 𝑁/𝑁𝑏 soft blobs linked by a harmonic bond potential, 𝑉𝑏𝑜𝑛𝑑 = 3𝑘𝐵𝑇𝑑

2/2𝑏2𝐶𝐺, and an
angular bond-bending potential 𝑉𝑏𝑒𝑛𝑑 = 𝑘𝐵𝑇𝑘𝑏𝑒𝑛𝑑(1 + cos(𝜃))/2. Here 𝑑 is the distance and 𝜃 is the angle between
consecutive bonds. The interactions between non-bonded soft blobs are taken into account by a repulsive pair potential
𝑉𝑛𝑏 = 𝑘𝐵𝑇𝜖𝑈𝐺(𝑟𝑖𝑗). Here 𝑟𝑖𝑗 is the center-to-center distance between the two blobs, 𝑈𝐺(𝑟𝑖𝑗) is a Gaussian function
with variance 𝜎2 = 𝜎2

𝑖 +𝜎2
𝑗 and 𝜎𝑖 is the gyration radius of blob number 𝑖. The gyration radius 𝜎 is in turn fluctuating.

This fluctuation is controlled by the potential 𝑉𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑘𝐵𝑇 (𝑎1𝑁
3
𝑏 𝜎

−6 + 𝑎2𝑁
−1
𝑏 𝜎2 + 𝑎3𝜎

−3).

1 : http://pubs.acs.org/doi/abs/10.1021/mz5000015

482 Chapter 4. Meso- and Multi-scale Modules

http://espressopp.github.io/
https://github.com/espressopp/espressopp/tree/master/examples
http://pubs.acs.org/doi/abs/10.1021/mz5000015

E-CAM Documentation, Release 0.2

After equilibrating a configuration at very coarse resolution, each CG polymer chain is replaced with a more fine-
grained (FG) chain. In this procedure, a CG blob is divided into several FG blobs. The center of mass (COM) of the
FG blobs coincides with the position of the CG blob’s center, and is being kept fixed during the relaxation of the local
conformation of the FG monomers within the CG blob.

To develop this module, the following classes have been implemented or modified (and may have been described in
more detail elsewhere):

• A VSpherePair class for calculating 𝑉𝑛𝑏 = 𝑘𝐵𝑇𝜖𝑈𝐺(𝑟𝑖𝑗)

• A LangevinThermostatOnRadius class for simulating the fluctuations of the radii of the blobs

• A VSphereSelf class for calculating 𝑉𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑘𝐵𝑇 (𝑎1𝑁
3
𝑏 𝜎

−6 + 𝑎2𝑁
−1
𝑏 𝜎2 + 𝑎3𝜎

−3)

• A FixedLocalTupleList class for storing the N-tuple of particles consisting of both real and virtual parti-
cles

• A ConstrainCOM class for conserving the COM of N FG blobs with the CG blob

Background Information

The implementation of this module is based on ESPResSO++. You can learn about ESPResSO++ from the following
links:

• ESPResSO++ documentation: http://espressopp.github.io/ESPResSo++.pdf

• ESPResSO++ source code: https://github.com/espressopp/espressopp

Testing

Explanation of installation of ESPResSO++ can be found at:

• https://github.com/espressopp/espressopp

After installing this module, an example can be run from hierarchical_strategy_for_one-component subdirectory of
the examples folder using the run_example script to be found there.

• https://github.com/hidekb/espressopp/tree/hierarchical-strategy/examples/hierarchical-strategy/simple_
one-component

Source Code

This module was merged into ESPResSo++ in the Pull Request:

• https://github.com/espressopp/espressopp/pull/213

References

4.3.3 ParaDiS

The following modules connected to the ParaDiS code have been produced so far:

Software Technical Information

4.3. Software related to Extended Software Development Workshops 483

http://espressopp.github.io/ESPResSo++.pdf
https://github.com/espressopp/espressopp
https://github.com/espressopp/espressopp
https://github.com/hidekb/espressopp/tree/hierarchical-strategy/examples/hierarchical-strategy/simple_one-component
https://github.com/hidekb/espressopp/tree/hierarchical-strategy/examples/hierarchical-strategy/simple_one-component
https://github.com/espressopp/espressopp/pull/213

E-CAM Documentation, Release 0.2

Name ParaDiS_Precipitate_GC

Language C++

Licence This is patch based on the ParaDIS version 2.5.1. The additions are GPL.

Documentation Tool Sphinx

Application Documentation http://paradis.stanford.edu/

Relevant Training Material https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run

ParaDiS with precipitates

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

Discrete dislocation dynamics (DDD) simulations usually treat with “pure” crystals and dislocations in them. In reality,
there is a need to look at more complicated scenarios of impurities interacting with the dislocations and their motion.
Effects on a single atom / vacancy level may be incorporated by renormalizing the dislocation mobility but in many
cases the dislocation dynamics is changed by the presence of clusters or precipitates, that act as local pinning centers.
The consequences of the impurities are multiple: the yield stress is changed, and in general the plastic deformation
process is greatly affected. Simulating these by DDD allows to look at a large number of issues from materials
design to controlling the yield stress and may be done in a multiscale manner by computing the dislocation-precipitate
interactions from microscopic simulations or by coarse-graining the DDD results for the stress-strain curves on the
mesoscopic scale to more macroscopic Finite Element Method (the material model therein). This module provides
an extension of the ParaDIS DDD code (LLNL, http://paradis.stanford.edu/) where dislocation/precipitate interactions
are included.

Purpose of Module

The method is based on extending a recent version of ParaDIS to handle the presence of pinning centers. These work
as localized Gaussian potentials that interact with the near-by dislocations (see A. Lehtinen et al. Phys. Rev. E 93,
013309 (2016)). The “disorder field” is given as an input where the locations of the precipates are given in 3D, and
the interactions are parametrized by the impurity strength (which may vary from precipitate to another) and the range
of the Gaussian potential (which also may vary). The dislocation dynamics is handled as in ParaDIS in general with
an additional force terms that accounts for each dislocation segment for the nearby impurities (a cut-off is applied in
the force).

The Module thus allows to study various precipitate fields (density, geometry, strength, interaction range) as desired.
In a typical ParaDIS simulation one does a simulation of the response of a dislocation system to a strain/stress protocol.
The starting point is a dislocation system, which has been obtained from relaxing a random or patterned configuration
under zero external stress until the evolution becomes negligible. In the presence of impurities the customary approach
is to do two relaxation steps: first follow the relaxation of dislocation configuration, then add the disorder field to that
and re-relax.

484 Chapter 4. Meso- and Multi-scale Modules

http://paradis.stanford.edu/
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run
http://paradis.stanford.edu/

E-CAM Documentation, Release 0.2

Background Information

The module version is built on the ParaDIS version 2.5.1 which can be obtained from http://paradis.stanford.edu/ and
following the steps outlined there for obtaining the code.

Building and Testing

The version offered is built exactly like the normal ParaDIS; the makefiles etc. are for the local CSC system and should
be modified for the local environment. To test the ParaDiS build, an example case of a constant strain rate simulation
of BCC iron with precipitates is included. The input of the test simulation is in file ParaDiS_test.ctrl, where the output
directories and the used number of computational domains need to be defined. The initial dislocation structure is
contained in the ParaDiS_test.data as usual and the structure of the file is identical to the files used by default ParaDiS.
In addition, the simulation has ~8500 precipitates which are included in the ParaDiS_test.pdata file. This .pdata file has
first some domain variables defined similar to .data file, and then the precipitates. These are presented one precipitate
per line, and the data columns are as follows: [precipitate tag, position x, y and z, impurity strength, interaction radius,
boolean], where the boolean states if the precipitate is active.

The used printing options defined in .ctrl file can be modified. Here, examples of the output property data and restart
files are included in run_output folder and the file called ParaDiS_test.out contains the standard output of the test when
the simulation system is run for ~1.5e-9 seconds. The restart files are written similarly as in unmodified ParaDiS,
except that now the precipitates are also included in corresponding rsXXXX.pdata files. In addition to the property
files produced by original ParaDiS, the modified ParaDiS writes also files allepsdot and avalanche. Allepsdot contains
columns [simulations time, strain rate tensor element 11, stress tensor element 11,. . .], and avalanche columns [time,
average velocity, plastic strain, applied stress, total dislocation length, integrated strain rate] where the average velocity
is calculated as a segment weighted average velocity of dislocations.

The test case is illustrated with three files: ParaDiS_test.out, and two plots, which are: aver_velocity_time.pdf (the
resulting average dislocation velocity during the run) and stress_plastic_strain.pdf (yield strain versus applied stres
during the run).

Source Code

Due to licensing reasons, only the difference between ParaDiS version 2.5.1 files and modified files are submitted, and
these files can be found in https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git.

Software Technical Information

Name ParaDiS_Precipitate_HPC

Language C++

Licence This is patch based on the ParaDIS version 2.5.1. The additions are GPL.

Documentation Tool Sphinx

Application Documentation http://paradis.stanford.edu/

Relevant Training Material https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run

ParaDiS with precipitates optimized to HPC environment

4.3. Software related to Extended Software Development Workshops 485

http://paradis.stanford.edu/
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git
http://paradis.stanford.edu/
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

Discrete dislocation dynamics (DDD) simulations usually treat with “pure” crystals and dislocations in them. In reality,
there is a need to look at more complicated scenarios of impurities interacting with the dislocations and their motion.
Effects on a single atom / vacancy level may be incorporated by renormalizing the dislocation mobility but in many
cases the dislocation dynamics is changed by the presence of clusters or precipitates, that act as local pinning centers.
The consequences of the impurities are multiple: the yield stress is changed, and in general the plastic deformation
process is greatly affected. Simulating these by DDD allows to look at a large number of issues from materials
design to controlling the yield stress and may be done in a multiscale manner by computing the dislocation-precipitate
interactions from microscopic simulations or by coarse-graining the DDD results for the stress-strain curves on the
mesoscopic scale to more macroscopic Finite Element Method (the material model therein).

This module provides an extension of the ParaDIS DDD code (LLNL, http://paradis.stanford.edu/) where disloca-
tion/precipitate interactions are included. The extension is for an HPC environment, in which the original code has
been optimized for the Cray XC40 cluster at CSC in Finland in mind. Vectorizing better some subroutines and using
threads better by a combination of MPI and Open MP allows for large-scale jobs speed-ups of a factor of 1.5 and
allows to use more computational nodes than what is reasonable with the original version, so that the production time
is speeded up by a factor of two. This is visualized in the figure below, where the normalized time is plotted versus the
number of nodes for both the original and the HPC optimized codes.

Purpose of Module

The method is based on extending a recent version of ParaDIS to handle the presence of pinning centers. These work
as localized Gaussian potentials that interact with the near-by dislocations (see A. Lehtinen et al. Phys. Rev. E 93,
013309 (2016)). The “disorder field” is given as an input where the locations of the precipates are given in 3D, and

486 Chapter 4. Meso- and Multi-scale Modules

http://paradis.stanford.edu/

E-CAM Documentation, Release 0.2

the interactions are parametrized by the impurity strength (which may vary from precipitate to another) and the range
of the Gaussian potential (which also may vary). The dislocation dynamics is handled as in ParaDIS in general with
an additional force terms that accounts for each dislocation segment for the nearby impurities (a cut-off is applied in
the force).

The Module thus allows to study various precipitate fields (density, geometry, strength, interaction range) as desired.
In a typical ParaDIS simulation one does a simulation of the response of a dislocation system to a strain/stress protocol.
The starting point is a dislocation system, which has been obtained from relaxing a random or patterned configuration
under zero external stress until the evolution becomes negligible. In the presence of impurities the customary approach
is to do two relaxation steps: first follow the relaxation of dislocation configuration, then add the disorder field to that
and re-relax. In the current version apart from HPC-related parallelization-relevant steps the subroutines SegSegForce
(segment-to-segment force calculation) and FMSigma2Core2 (force multipole expansion) are well vectorized, and the
code now also uses better multiple threads in their context.

Background Information

The module version is built on the ParaDIS version 2.5.1 which can be obtained from http://paradis.stanford.edu/ and
following the steps outlined there for obtaining the code.

Building and Testing

The version offered is built exactly like the normal ParaDIS; the makefiles etc. are for the local CSC system and should
be modified for the local environment. To test the ParaDiS build, an example case of a constant strain rate simulation
of BCC iron with precipitates is included. The input of the test simulation is in file ParaDiS_test.ctrl, where the output
directories and the used number of computational domains need to be defined. The initial dislocation structure is
contained in the ParaDiS_test.data as usual and the structure of the file is identical to the files used by default ParaDiS.
In addition, the simulation has ~8500 precipitates which are included in the ParaDiS_test.pdata file. This .pdata file has
first some domain variables defined similar to .data file, and then the precipitates. These are presented one precipitate
per line, and the data columns are as follows: [precipitate tag, position x, y and z, impurity strength, interaction radius,
boolean], where the boolean states if the precipitate is active.

The used printing options defined in .ctrl file can be modified. Here, examples of the output property data and restart
files are included in run_output folder and the file called ParaDiS_test.out contains the standard output of the test when
the simulation system is run for ~1.5e-9 seconds. The restart files are written similarly as in unmodified ParaDiS,
except that now the precipitates are also included in corresponding rsXXXX.pdata files. In addition to the property
files produced by original ParaDiS, the modified ParaDiS writes also files allepsdot and avalanche. Allepsdot contains
columns [simulations time, strain rate tensor element 11, stress tensor element 11,. . .], and avalanche columns [time,
average velocity, plastic strain, applied stress, total dislocation length, integrated strain rate] where the average velocity
is calculated as a segment weighted average velocity of dislocations.

The test case is illustrated with three files: ParaDiS_test.out, and two plots, which are: aver_velocity_time.pdf (the
resulting average dislocation velocity during the run) and stress_plastic_strain.pdf (yield strain versus applied stres
during the run).

Source Code

Due to licensing reasons, only the difference between ParaDiS version 2.5.1 files and modified files are submitted, and
these files can be found in https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git.

Software Technical Information

4.3. Software related to Extended Software Development Workshops 487

http://paradis.stanford.edu/
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git

E-CAM Documentation, Release 0.2

Name ParaDiS_Precipitate_GC optimized for AMD Zen2

Language C++

Licence Extension is based on ParaDIS version 2.5.1. The additions in the extension are GPL.

Documentation Tool Sphinx

Application Documentation http://paradis.stanford.edu/

Relevant Training Material https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run

Software Module Developed by Phuong Nguyen (phuong.nguyen@csc.fi)

ParaDiS with precipitates optimized for AMD Zen2

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

Discrete dislocation dynamics (DDD) simulations usually treat with “pure” crystals and dislocations in them. An
extension of the ParaDIS DDD code (LLNL, http://paradis.stanford.edu/) that includes dislocation/precipitate interac-
tions has been developed (E-CAM module: ParaDiS with precipitates).

This module provides a guide for optimal porting of the ParaDiS with precipitates to the AMD Rome CPUs, in
preparation for the Mahti supercomputer service at CSC, Finland. Mahti is an Atos BullSequana XH2000 system
consisting of 1404 nodes each with two 64-core AMD Zen2 CPUs (AMD EPYC 7H42, 2.6GHz). Since Mahti is not
ready for general access at this moment, the module was prepared based on a single testing node which has 2 AMD
EPYC 7742 @2.25GHz (128 cores in total).

By choosing a suitable compiler and compiler optimization flags, the application works more efficiently on the target
platform. On the testing node, Intel compilers with either AVX or AVX2 vector sets gives the best performance for
ParaDiS with precipitates. Alternatively, GCC compilers with AVX2 vector support is competitive with the Intel
compilers.

Purpose of Module

This module helps to run simulations of the ParaDiS with precipitates more efficiently. By using a suitable set of
optimization flags for compilers, especially the one determining vectorization type, the best library routines can be
chosen.

Background Information

The module is based on the ParaDiS (http://paradis.stanford.edu/) extension ParaDiS with precipitates.

Building and Testing

Build instructions for ParaDiS with precipitates are provided with the extension.

488 Chapter 4. Meso- and Multi-scale Modules

http://paradis.stanford.edu/
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run
mailto:phuong.nguyen@csc.fi
http://paradis.stanford.edu/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html
https://research.csc.fi/techspecs~Mahti
http://paradis.stanford.edu/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html

E-CAM Documentation, Release 0.2

Different compilers and compiler options were tested to find the most optimal ones for the Zen2 architecture. Figure
1 (below) shows a comparison of normalized running times between different vectorization extensions and compilers.
On the testing platform, Intel compilers with either AVX or AVX2 helps the application to achieve good performance.
Alternatively, GCC compilers with AVX2 can be used to obtain the same performance as the Intel ones.

Table 1 presents a comparison of different optimization flags for the Intel and GCC compilers. For the Intel compil-
ers, the optimal performance is reached with the compiler options: -O3 -mavx2 or -O3 -mavx. For the GCC
compilers, -O2 -march=znver2 -pipe -fomit-frame-pointer -ftree-vectorize compiler op-
tions help the application to achieve good performance.

Fig. 4.1: Figure 1: Comparison of normalized times between different compilers and vectorization extensions (smaller
is better)

Table 1: Comparison between different optimization flag options

Compilers Flags Time (s)
Intel -O2 -axCORE-AVX2 328

-O2 -axHASWELL 360
-O2 -mavx2 309
-O3 -mavx2 295
-O3 -mavx 298
-Ofast -mavx2 301
-O3 -mavx2 -funroll-all-loops 317

GCC -O2 -march=znver1 -pipe -fomit-frame-pointer -ftree-vectorize 352
-O2 -march=znver2 -pipe -fomit-frame-pointer -ftree-vectorize 296
-O3 -march=znver2 382
-O2 -march=haswell -pipe -fomit-frame-pointer -ftree-vectorize 352

* The input case in these tests are different to the ones at ParaDiS with precipitates optimized for Puhti .

4.3. Software related to Extended Software Development Workshops 489

https://gitlab.csc.fi/hpc-support/e-cam-library/tree/paradis-rome/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_optimized_puhti

E-CAM Documentation, Release 0.2

In the ParaDiS with precipitates optimized to HPC environment, it’s written that using multiple threads through a
hybrid OpenMP and MPI model speeds up the calculation up to a factor of 1.5, especially for large-scale simulations.
However, this combination did not give an advantage of performance on the Zen2 testing machine. Thus, using a
single thread for each MPI process is recommended.

Source Code

Source code modifications for the extension ParaDiS with precipitates are available here: https://version.aalto.fi/gitlab/
csm_open/paradis_version_diffs.git.

Software Technical Information

Name ParaDiS_Precipitate_GC optimized for Puhti

Language C++

Licence Extension is based on ParaDIS version 2.5.1. The additions in the extension are GPL.

Documentation Tool Sphinx

Application Documentation http://paradis.stanford.edu/

Relevant Training Material https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run

Software Module Developed by Phuong Nguyen (phuong.nguyen@csc.fi)

ParaDiS with precipitates optimized for Puhti

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

Discrete dislocation dynamics (DDD) simulations usually treat with “pure” crystals and dislocations in them. An
extension of the ParaDIS DDD code (LLNL, http://paradis.stanford.edu/) that includes dislocation/precipitate interac-
tions has been developed (E-CAM module: ParaDiS with precipitates).

This module provides a guide for optimal porting of the ParaDiS with precipitates to the Puhti supercomputer at CSC,
Finland. Puhti is an Atos BullSequana X400 system consisting of 682 nodes each with two 20-core Intel Cascade
Lake CPUs (Intel Xeon Gold 6230, 2.1GHz). By choosing a suitable compiler and compiler optimization flags, the
application works more efficiently on the target platform. On Puhti, Intel compilers with AVX-512 vector sets gives
the best performance for ParaDiS with precipitates.

Purpose of Module

This module helps to run simulations of the ParaDiS with precipitates more efficiently. By using a suitable set of
optimization flags for compilers, especially the one determining vectorization type, the best library routines can be
chosen.

490 Chapter 4. Meso- and Multi-scale Modules

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_HPC/readme.html
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git
http://paradis.stanford.edu/
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs/tree/master/test_run
mailto:phuong.nguyen@csc.fi
http://paradis.stanford.edu/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html
https://docs.csc.fi/computing/system/

E-CAM Documentation, Release 0.2

Background Information

The module is based on the ParaDiS (http://paradis.stanford.edu/) extension ParaDiS with precipitates.

Building and Testing

Build instructions for ParaDiS with precipitates are provided with the extension.

Different compilers and compiler options were tested to find the most optimal ones for the Puhti supercomputer. Figure
1 (below) shows a comparison of normalized running times between different vectorization extensions and compilers.
On the Puhti platform, Intel compilers with AVX-512 helps the application to achieve the best performance.

Table 1 presents a comparison of different optimization flags for the Intel compiler. The optimal performance is
reached with the compiler options: -O2 -axCASCADELAKE.

Fig. 4.2: Figure 1: Comparison of normalized times between different compilers and vectorization extensions (smaller
is better)

Table 1: Comparison between different optimization flag options

4.3. Software related to Extended Software Development Workshops 491

http://paradis.stanford.edu/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_GC/readme.html

E-CAM Documentation, Release 0.2

Flags Time (s)
-O2 -axCORE-AVX2 273
-O2 -axCORE_AVX2 -mtune=cascadelake 338
-O2 -axCORE-AVX2 -mtune=broadwell 298
-O2 -xCORE-AVX2 -axCASCADELAKE 254
-O2 -axCOMMON-AVX512 321
-O2 -axCORE-AVX512 249
-O2 -axCASCADELAKE 240
-O2 -axCASCADELAKE -mtune=cascadelake 280
-O3 -axCASCADELAKE 270

In the ParaDiS with precipitates optimized to HPC environment, it’s written that using multi threads through the
hybrid OpenMP and MPI model speeds up the calculation up a factor of 1.5, especially for the large-scale simulations.
However, this combination did not give an advantage of performance on the Puhti. Thus, using single thread for each
MPI process is recommended.

Source Code

Source code modifications for the extension ParaDiS with precipitates are available here: https://version.aalto.fi/gitlab/
csm_open/paradis_version_diffs.git.

4.3.4 Cubble

The following modules connected to the Cubble code, a mesoscale CUDA/C++ simulator of foams, have been pro-
duced so far:

Software Technical Information

Name Cubble_coarsening_static

Language C++/CUDA

Licence This software will be released under the GPL licence.

Documentation Tool Sphinx

Application Documentation https://version.aalto.fi/gitlab/lankinj5/cuda_bubble

Relevant Training Material https://version.aalto.fi/gitlab/lankinj5/cuda_bubble/wikis/home

Cubble: Static foam coarsening simulator using c++/CUDA

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

492 Chapter 4. Meso- and Multi-scale Modules

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/paradis_precipitate/paradis_precipitate_HPC/readme.html
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git
https://version.aalto.fi/gitlab/csm_open/paradis_version_diffs.git
https://version.aalto.fi/gitlab/lankinj5/cuda_bubble
https://version.aalto.fi/gitlab/lankinj5/cuda_bubble/wikis/home

E-CAM Documentation, Release 0.2

The mechanics of foams exhibit dynamical behavior familiar from other jammed materials, such as granular matter.
These are so called yield stress fluids i.e. their flow requires external stress that exceeds a particular value, called the
yield stress. On the other hand, foams differ from other materials by their internal structure development, coarsening,
where while the gas concentration of the foam remains constant, the gas diffuses between the bubbles. The larger
bubbles grow at the expense of the smaller ones.

This module provides a c++/CUDA implementation of a foam coarsening simulator (https://journals.aps.org/pre/
abstract/10.1103/PhysRevE.98.012607) designed from the bottom to be run in a GPU environment.

Purpose of Module

The goal was set to be able to run simulations involving up to one million bubbles reaching a scaling state in systems
with non-periodic boundary conditions in three dimensions, an undoable task for even the most efficient single core
CPU implementation. The Cubble code demonstrates the power of efficiently used GPU code, and provides a model
implementation strategy for mesoscale DEM simulators.

Background Information

The code runs as a standalone simulation on a cluster (triton.aalto.fi) environment. It is developed mostly on
NVidia’s Tesla P100 and V100 GPUs.

Building and Testing

The binary is built using a build automation tool Make. The dimensionality of the simulation is controlled from within
the makefile. Each make target is built into a separate directory: final, default or debug. Each of these
directories has its own makefile and all the targets are built/cleaned in the same way:

make
make clean

• final target is the one that should be run when doing simulations. It’s the fastest and most optimized.

• default target is built with -O2 flag so it’s quite fast, but some internal debug capabilities are still on and it’s
significantly slower than the final target. Mostly for testing some new capabilities.

• debug is built with -O0 and debug capabilities, only meant for debugging and therefore it is very slow.

In addition to the options above, there are some extra parameters in the makefile which can be used to e.g. turn
profiling on/off.

The program can be run by typing

make run

or by manually writing the path to the executable and the io files, e.g.

final/bin/cubble input_parameters.json output_parameters.json

We include a set of reference parameters in input_parameters.json

The program runs until a certain amount of bubbles is left. After this, the program writes one final data file and
returns. The parameter that controls the amount of bubbles (called MinNumBubbles) should always be larger than
the number of bubbles in one cell multiplied by 3^NumDim. In other words, if the number of bubbles in a cell is 32
and the dimensionality of the program is 2 (2D simulation), then the minimum number of bubbles should be larger

4.3. Software related to Extended Software Development Workshops 493

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012607
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012607

E-CAM Documentation, Release 0.2

than 32 * 3^2 = 32 * 3 * 3 = 288. For 3D this would be 864. 300 and 900 are nice round numbers for
MinNumBubbles.

The reason for this is that the neighbor search is done in a manner that assumes at least 3 cells in each dimension. If
there are less than 3 cells per dimension, some cells are searched through more than once, leading to bubbles having
the same bubble as a neighbor multiple times. The implementation should and could be improved to circumvent this,
but “in the mean time” just follow the above rule.

Source Code

The source code is freely available for download at Cubble sources<https://github.com/KJLankinen/cubble>. This is
the multiGPU version of the code running simultaneously on several GPUs to allow for simulations beyond 10 million
bubbles. The module specifically refers to the commit 3216d46c7e523e7885d12607197390496b379597.

Software Technical Information

Name Cubble_coarsening_flow

Language C++/CUDA

Licence This software will be released under the GPL licence.

Documentation Tool Sphinx

Application Documentation https://version.aalto.fi/gitlab/lankinj5/cuda_bubble

Relevant Training Material https://version.aalto.fi/gitlab/lankinj5/cuda_bubble/wikis/home

Cubble: Flowing foam coarsening simulator using c++/CUDA

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The mechanics of foams exhibit dynamical behavior familiar from other jammed materials, such as granular matter.
These are so called yield stress fluids i.e. their flow requires external stress that exceeds a paricular value, called the
yield stress. On the other hand, foams differ from other materials by their internal structure development, coarsening,
where while the gas concentration of the foam remains constant, the gas diffuses between the bubbles. The larger
bubbles grow at the expense of the smaller ones.

This module provides the capability to run dynamical coarsening on flowing systems to the Cubble: Static foam
coarsening simulator using c++/CUDA module.

Purpose of Module

This module implements background flow to the Cubble simulator. Implementation includes flow by enforcing bubble
velocity to all bubbles inside a defined regime. Implementation includes viscous dissipation at the boundaries.

494 Chapter 4. Meso- and Multi-scale Modules

https://version.aalto.fi/gitlab/lankinj5/cuda_bubble
https://version.aalto.fi/gitlab/lankinj5/cuda_bubble/wikis/home

E-CAM Documentation, Release 0.2

Background Information

The code runs as a standalone simulation on a cluster (triton.aalto.fi) environment. It is developed mostly on
NVidia’s Tesla P100 and V100 GPUs.

Building and Testing

The binary is built using a build automation tool Make. The dimensionality of the simulation is controlled from within
the makefile. Each make target is built into a separate directory: final, default or debug. Each of these
directories has its own makefile and all the targets are built/cleaned in the same way:

make
make clean

• final target is the one that should be run when doing simulations. It’s the fastest and most optimized.

• default target is built with -O2 flag so it’s quite fast, but some internal debug capabilities are still on and it’s
significantly slower than the final target. Mostly for testing some new capabilities.

• debug is built with -O0 and debug capabilities, only meant for debugging and therefore it is very slow.

In addition to the options above, there are some extra parameters in the makefile which can be used to e.g. turn
profiling on/off.

The program can be run by typing

make run

or by manually writing the path to the executable and the io files, e.g.

final/bin/cubble input_parameters.json output_parameters.json

We include a set of reference parameters in input_parameters.json

The program runs until a certain amount of bubbles is left. After this, the program writes one final data file and
returns. The parameter that controls the amount of bubbles (called MinNumBubbles) should always be larger than
the number of bubbles in one cell multiplied by 3^NumDim. In other words, if the number of bubbles in a cell is 32
and the dimensionality of the program is 2 (2D simulation), then the minimum number of bubbles should be larger
than 32 * 3^2 = 32 * 3 * 3 = 288. For 3D this would be 864. 300 and 900 are nice round numbers for
MinNumBubbles.

The reason for this is that the neighbor search is done in a manner that assumes at least 3 cells in each dimension. If
there are less than 3 cells per dimension, some cells are searched through more than once, leading to bubbles having
the same bubble as a neighbor multiple times. The implementation should and could be improved to circumvent this,
but “in the mean time” just follow the above rule.

Source Code

The source code is freely available for download at Cubble sources <https://github.com/KJLankinen/cubble> and the
module refers to the repository version with commit 0830686ac628d884d23666560ddded5361b7f606.

Software Technical Information

Name Cubble_HIP

4.3. Software related to Extended Software Development Workshops 495

E-CAM Documentation, Release 0.2

Language C++/CUDA and HIP

Licence This software will be released under the GPL licence.

Documentation Tool Sphinx

Application Documentation https://version.aalto.fi/gitlab/lankinj5/cuda_bubble

Relevant Training Material https://version.aalto.fi/gitlab/lankinj5/cuda_bubble/wikis/home

Cubble: Hip implementation

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The mechanics of foams exhibit dynamical behavior familiar from other jammed materials, such as granular matter.
These are so called yield stress fluids i.e. their flow requires external stress that exceeds a paricular value, called the
yield stress. On the other hand, foams differ from other materials by their internal structure development, coarsening,
where while the gas concentration of the foam remains constant, the gas diffuses between the bubbles. The larger
bubbles grow at the expense of the smaller ones.

This module provides a recepie and makefile for converting the c++/CUDA implementation of a foam coarsening
simulator (https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012607) to instead use HIP to allow it to be run
on both AMD and Nvidia GPUs.

Purpose of Module

The goal was set to be able to run simulations involving up to one million bubbles reaching a scaling state in systems
with non-periodic boundary conditions in three dimensions, an undoable task for even the most efficient single core
CPU implementation. The Cubble code demonstrates the power of efficiently used GPU code, and provides a model
implementation strategy for mesoscale DEM simulators.

Background Information

The converted code runs on single MI50 and Radeon VII GPUs.

Building and Testing

Converting the Cubble code to use HIP instead of Cuda enables it to run on AMD GPUs, in addition to Nvidia GPUs.
The conversion process is easy.

First the source code needs to be converted from Cuda to HIP, this is done by converting everything in the src directory
using the hipify-perl script. All .cu files are changed to cpp files and .cuh changed to .h, we then need to
update any include statements to reflect this.

When converting Util.h the converter will emit the following warnings

496 Chapter 4. Meso- and Multi-scale Modules

https://version.aalto.fi/gitlab/lankinj5/cuda_bubble
https://version.aalto.fi/gitlab/lankinj5/cuda_bubble/wikis/home
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012607

E-CAM Documentation, Release 0.2

warning: old/Util.h:#25 : cubble::cudaCallAndLog((call), #call, __FILE__, __LINE__)
warning: old/Util.h:#27 : cubble::cudaCallAndThrow((call), #call, __FILE__, __LINE__
→˓)
warning: old/Util.h:#125 : inline bool cudaCallAndLog(hipError_t result, const char
→˓*callStr,
warning: old/Util.h:#137 : inline void cudaCallAndThrow(hipError_t result, const char
→˓*callStr,

This is due to the cubble program using the same naming scheme as cuda for some functions, i.e the name is cuda-
Something and the converter is warning that it was uable to convert them, however in this case these are not actual
cuda calls and it should not covert these, so it is safe to ignore the warnings.

The cubble code also uses the NVTX library for better profiling, this library does not work on AMD hardware and
while comparable functionality exists this will not be automatically converted. The Cubble program will work without
NVTX so in this case we just remove the inclusion of nvToolsExt.h and not enable profiling when compiling the
Cubble program.

On some systems we may need to add -DENABLE_HIP_PROFILE=0 to the compilation flags to suppress errors
about some profiling headers not being found.

After this we should have a version of the code that can be compiled with the included makefile. Unfortunately
this version will not run with the current version of HIP, tested with version 3.1. The program will fail with not finding
symbols in hipGetSymbolAddress calls or complaining it does not have device functions for certain calls. The
cubble code places the majority of its code in the cubble namespace, unfortunately currently the HIP compiler struggles
with device symbols and functions being in a namespace. The easiest solution in this case is to move all the code out
of the cubble namespace, this will give you a code that will run on AMD hardware. It is likely this will improve in the
future and this step will no longer be needed.

Source Code

The source code used as a base for the conversion is freely available for download in Cubble sources
<https://github.com/KJLankinen/cubble>. In addition the modified makefile is included in this repository:
makefile

4.3.5 GC-AdResS

This modules are connected to the Adaptive Resolution Simulation implementation in GROMACS.

Software Technical Information

Name GC-AdResS: Abrupt scheme

Language Implemented in GROMACS version 5.1.5

Licence MD Simulation:

See GROMACS web page: http://www.gromacs.org

Analysis tools and thermodynamic force calculation:

see VOTCA web page: http://www.votca.org/home

Documentation Tool

Application Documentation

4.3. Software related to Extended Software Development Workshops 497

http://www.gromacs.org
http://www.votca.org/home

E-CAM Documentation, Release 0.2

See GROMACS web page: http://www.gromacs.org

See VOCTA web page: http://www.votca.org/Documentation

Relevant Training Material

See GROMACS web page: http://www.gromacs.org

See VOCTA web page: http://www.votca.org/tutorials

Abrupt GC-AdResS: A new and more general implementation

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The original idea of our proposal: to work on a general implementation of AdResS in class. MD packages. The
current implementation of GC- AdResS in GROMACS has several performance problems. This module presents
a very straight forward way to implement a new partitioning scheme, which solves two problems which affect the
performance, the neighborlist search and the generic force kernel. Furthermore, we update the implementation to
address this in a way that decouples the method directly from the core of any MD code, which does not hinder the
performance and makes the scheme hardware independent. Theory, application and tests see https://aip.scitation.org/
doi/10.1063/1.5031206 or https://arxiv.org/abs/1806.09870.

Purpose of Module

The main performance loss of AdResS simulations in GROMACS is in the neighboring list search and the generic se-
rial force kernel, linking the atomistic (AT) and coarse grained (CG) forces together via a smooth weighting function.
Thus, to get rid of the bottleneck with respect to performance and a hindrance regarding the easy/general implementa-
tion into other codes and thus get rid of the not optimized force kernel used in GROMACS we had to change the neigh-
borlist search. This lead to a considerable speed up of the code. Furthermore it decouples the method directly from the
core of any MD code, which does not hinder the performance and makes the scheme hardware independent. For the
theory, application and tests see https://aip.scitation.org/doi/10.1063/1.5031206 or https://arxiv.org/abs/1806.09870.

Background Information

This module presents a very straight forward way to implement a new partitioning scheme. And this solves two
problems which affect the performance, the neighborlist search and the generic force kernel.

In GROMACS the neighbor list is put together and organized in the file ‘ns.c’. In GROMACS 5.1 there are two
functions which basically sort the incoming particles into the different neighbor list. In its current official GROMACS
release everything other than CG (with 𝑤𝑖 = 𝑤𝑗 = 1) or AT (with 𝑤𝑖 = 𝑤𝑗 = 0) is sorted into the neighbor lists.
Any other particles are sorted into a special neighbor list only for AdResS.

We now changed this neighborlist sorting into: Everything is taken into account other than: (AT and (𝑤𝑖 = 0 or
𝑤𝑗 = 0)) or (CG and (𝑤𝑖 >= 0 and 𝑤𝑗 >= 0)). This leads to 5 distinct interactions: (1) AT-AT in the atomistic
region, (2) CG-CG in the CG region, (3) AT-AT between particles in the hybrid region, (4) AT-AT between particles of
the atomistic region with the hybrid region and (5) CG-CG between particles of the CG region with the hybrid region.
This if statement excludes the CG-CG interaction in the hybrid region.

498 Chapter 4. Meso- and Multi-scale Modules

http://www.gromacs.org
http://www.votca.org/Documentation
http://www.gromacs.org
http://www.votca.org/tutorials
https://aip.scitation.org/doi/10.1063/1.5031206
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870

E-CAM Documentation, Release 0.2

This is a very straight forward way to implement a new partitioning scheme and utilize a constant weighting function.
This solves both parts of the performance problem, the neighborlist search and the generic force kernel which can be
simply switch off by switching to the standard interaction scheme implemented in GROMACS.

Building and Testing

We tested this new implementation on SPC water with varying system sizes. GROMACS is optimized especially for
handling of bio-systems, i.e. GROMACS has the best performance in case of water simulations. We set up a couple
of Abrupt GC-AdResS simulations ranging from small 6912 water molecules to 48k water molecules. We used a
standard desktop machine (Intel Core i5-4590 CPU @ 3.30GHz x4) and run small 20 ps runs. We can see that our
performance is much improved up to a factor of 2.5.

Here is a short manual on how to run the test and set up AdResS simulations in GROMACS:

1) mandatory requirement: a working full atomistic simulation (molecular configuration, force fields and optimal
MD input parameter)

2) You need a very well converged NVT run, which can be used as starting point for the coarse grained (CG) and
then later the AdResS simulations.

3) You have to generate a coarse grained (CG) potential. We use, for convenience, the inverse Boltzmann iteration
provided in the VOTCA package (http://www.votca.org/home). The resulting tabulated CG potentials are used
in the AdResS simulation. Alternatively you can use WCA potentials or standard Lennard-Jones potentials. The
main requirement for the AdResS simulation is that the density in the CG region is the same as in the atomistic
(AT) region.

NOTE: The method can be used with any potential, which preserves the correct density. If only a SPC/E CG
potential is available it can be used for SPC/e water models as well as for a more advanced water model. It
is possible to use a WCA potential, which is basically a Lennard-Jones potential. And it is possible to switch
the CG ptential completely off. That will transform the CG region to a true thermodynamic reservoir with a
non-interacting gas.

4) The next step is to create a double resolution configuration and adjust the dependencies (force field, topology,
index file, GROMACS input file). Creating the configuration is straight forward (we use http://www.votca.org/
home).

Example from VOTCA:
csg_map --top topol.tpr --cg cg_mapping_scheme --hybrid --trj conf.gro --out conf_
→˓hybrid.gro

Of course, if you want to use this configuration in a MD simulation you have to adjust the force field (see example
file: spc.adress.itp). You have to define a virtual side:

[virtual_sites3]
; Site from funct a d
; atom dependencies func a b

4 1 2 3 1 0.05595E+00 0.05595E+00

The next step is to adjust the status of the CG particle in the topology file (in our example: topol.top) from A for atom
to V as virtual particle. And of course insert the new force field.

#include "spc.adress.itp"

Then you have to generate an index file with the different energy groups. In this example, we have 2 groups (EXW
and WCG, the name of the CG particle):

4.3. Software related to Extended Software Development Workshops 499

http://www.votca.org/home
http://www.votca.org/home
http://www.votca.org/home

E-CAM Documentation, Release 0.2

gmx make_ndx -f conf_hybrid.gro
> a WCG

Found 3456 atoms with name WCG

3 WCG : 3456 atoms

> !3

Copied index group 3 'WCG'
Complemented group: 10368 atoms

4 !WCG : 10368 atoms
> name 4 EXW
> q

The next step is to adjust the GROMACS input file. AdResS needs the Langevin dynamics, so you have to choose:

integrator = sd

Since the system is double resolution, meaning we have the atomistci detals and the virtual particles, we have to define
the energygroups:

; Selection of energy groups
energygrps = EXW WCG
energygrp_table = WCG WCG

GROMACS version 5.1.5 is using verlet as standard cutoff-scheme, so we have to change that to group:

; nblist update frequency
cutoff-scheme = group

Furthermore, in our simulations we use:

coulombtype = reaction-field
rcoulomb = 1.0
vdw-type = user
rvdw = 1.0

In case of local thermostat simulations (see https://aip.scitation.org/doi/10.1063/1.5031206 or https://arxiv.org/abs/
1806.09870) we use:

coulombtype = reaction-field-zero
rcoulomb = 1.0
vdw-type = user
rvdw = 1.0

If you use the stochastic dynamics, we add the following entries to make sure we have only NVT and a thermalization
via the Langevin dynamics.

; Temperature coupling
Tcoupl = no
Pcoupl = no

To switch the simulation to AdResS this is the key part. This starts the AdResS runs.

; AdResS parameters adress = yes ;no

500 Chapter 4. Meso- and Multi-scale Modules

https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
https://arxiv.org/abs/1806.09870

E-CAM Documentation, Release 0.2

Here you define the geometry of the atomistic region, either sphere (a spherical region anywhere in the simualtion box)
or xsplit (a cuboid slice of the whole simulation box for the atomistic region, with the transition and coarse grained
region on each side).

adress_type = sphere ;xsplit sphere or constant

This defines the width of the atomistic region, starting from the given reference coordinate (keyword
adress_reference_coords, by simply using: tail conf_hybrid.gro | awk ‘(NF==3){print $1/2., $2/2., $3/2.}’). In
the older versions of AdResS, with a smooth coupling between AT and CG the width of the hybrid region width
(adress_hy_width) was also defined. In the Abrupt_AdResS setup it is not necessary any more, even if you put a
number that region is counted (in the code) as AT.

adress_ex_width = 1.5
adress_hy_width = 1.5
adress_ex_forcecap = 2000
adress_interface_correction = thermoforce ;off
adress_site = com
adress_reference_coords = 3.7500 1.860355 1.860355
adress_tf_grp_names = WCG
adress_cg_grp_names = WCG
adress_do_hybridpairs = no

Another important aspect is the force capping. Abrupt AdResS works fine for small molecules like water, but for larger
or more complex molecules the force capping is very important. We cap every force component (i.e. f(x),f(y),f(z))
acting on a particle and not the norm of the force, which reduces the computational time spend. This is described in
another module.

adress_interface_correction defines if you use an external force to correct the density or not. In case of the old
AdResS (smooth coupling) that correction simply refined the simulation, as the density difference was not significant.
For the Abrupt AdResS, and the method development based on it, and more complex molecules (i.e. polymers) the
thermodynamic force is essential. If it is not taken into account the risk to form interfaces between AT and CG is
high. Also if particles coming too close (basically overlap) the run can crash. The role of the thermodynamic force,
the force cap and the basic theory behind it see https://aip.scitation.org/doi/10.1063/1.5031206 or https://arxiv.org/
abs/1806.09870. For this to work you must have a file e.g. in our example case: tabletf_WCG.xvg in the directory,
otherwise you have to set:

adress_interface_correction = off

There is a number of properties you have to check. The first check is always the density and you see if the patch
works from the density. If you have no thermodynamic force you have rather pronounced spikes in the density at the
interfaces. If you have a converged thermodynamic force the density has to be within +/- 3% off from a comparable
full atomistc simulation / experimental data. Then you need further properties to make sure you have an open system.
The problem with the simulation is that an “artificial” interface is introduced and checks for the diffusion, the RDF’s. . .
(full list see below) ensure that those regions mix and that you have proper particle transfer.

Source Code

The patch file for Abrupt GC-Adress is:

diff -ru /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/adress.c /home/mi/
→˓ck69giso/gmx-515-hck/src/gromacs/mdlib/adress.c
--- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/adress.c 2016-07-13
→˓14:56:04.000000000 +0200
+++ /home/mi/ck69giso/gmx-515-hck/src/gromacs/mdlib/adress.c 2018-08-15
→˓12:39:32.000000000 +0200

(continues on next page)

4.3. Software related to Extended Software Development Workshops 501

https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
https://arxiv.org/abs/1806.09870

E-CAM Documentation, Release 0.2

(continued from previous page)

@@ -101,17 +101,17 @@
return 0;

}
/* molecule is explicit */

- else if (sqr_dl < adressr*adressr)
+ else //if (sqr_dl < adressr*adressr)

{
return 1;

}
- /* hybrid region */
+ /* hybrid region

else
- {
- dl = sqrt(sqr_dl);
- tmp = cos((dl-adressr)*M_PI/2/adressw);
- return tmp*tmp;
- }
+ {
+// dl = sqrt(sqr_dl);
+// tmp = cos((dl-adressr)*M_PI/2/adressw);
+ return 0.5;
+ } */
}

void
diff -ru /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/ns.c /home/mi/ck69giso/
→˓gmx-515-hck/src/gromacs/mdlib/ns.c
--- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/ns.c 2016-07-13
→˓14:56:04.000000000 +0200
+++ /home/mi/ck69giso/gmx-515-hck/src/gromacs/mdlib/ns.c 2018-08-15 12:55:06.
→˓000000000 +0200
@@ -264,10 +264,12 @@

for (i = 0; i < fr->nnblists; i++)
{

nbl = &(fr->nblists[i]);
-
- if ((fr->adress_type != eAdressOff) && (i >= fr->nnblists/2))
+/* chk */
+// if ((fr->adress_type != eAdressOff) && (i >= fr->nnblists/2))
+ if ((fr->adress_type != eAdressOff))

{
- type = GMX_NBLIST_INTERACTION_ADRESS;
+ /* type = GMX_NBLIST_INTERACTION_ADRESS; */
+ type = GMX_NBLIST_INTERACTION_STANDARD;

}
init_nblist(log, &nbl->nlist_sr[eNL_VDWQQ], &nbl->nlist_lr[eNL_VDWQQ],

maxsr, maxlr, ivdw, ivdwmod, ielec, ielecmod, igeometry_def,
→˓type, bElecAndVdwSwitchDiffers);
@@ -601,11 +603,14 @@

int *cginfo;
int *type, *typeB;
real *charge, *chargeB;

+ real *wf;
real qi, qiB, qq, rlj;
gmx_bool bFreeEnergy, bFree, bFreeJ, bNotEx, *bPert;
gmx_bool bDoVdW_i, bDoCoul_i, bDoCoul_i_sol;

+ gmx_bool b_hybrid;
(continues on next page)

502 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

int iwater, jwater;
t_nblist *nlist;

+ gmx_bool bEnergyGroupCG;

/* Copy some pointers */
cginfo = fr->cginfo;

@@ -614,6 +619,7 @@
type = md->typeA;
typeB = md->typeB;
bPert = md->bPerturbed;

+ wf = md->wf;

/* Get atom range */
i0 = index[icg];

@@ -625,7 +631,7 @@
iwater = (solvent_opt != esolNO) ? GET_CGINFO_SOLOPT(cginfo[icg]) : esolNO;

bFreeEnergy = FALSE;
- if (md->nPerturbed)
+ if (md->nPerturbed)

{
/* Check if any of the particles involved are perturbed.

* If not we can do the cheaper normal put_in_list
@@ -683,6 +689,7 @@

}

if (!bFreeEnergy)
+/* if (!bFreeEnergy || (fr->adress_type != eAdressOff)) */

{
if (iwater != esolNO)
{

@@ -846,8 +853,13 @@
bDoVdW_i = (bDoVdW && bHaveVdW[type[i_atom]]);
bDoCoul_i = (bDoCoul && qi != 0);

+ /* chk */
+ bEnergyGroupCG = !egp_explicit(fr, igid);
+ /* chk */
+

if (bDoVdW_i || bDoCoul_i)
{

+
/* Loop over the j charge groups */
for (j = 0; (j < nj); j++)
{

@@ -867,7 +879,19 @@
/* Finally loop over the atoms in the j-charge group */
for (jj = jj0; jj < jj1; jj++)
{

+
bNotEx = NOTEXCL(bExcl, i, jj);

+ /* change 7.11.2017 chk*/
+ if (fr->adress_type != eAdressOff)
+ {
+ if ((!bEnergyGroupCG && (wf[i_atom] <= GMX_REAL_EPS
→˓|| wf[jj] <= GMX_REAL_EPS)) ||
+ ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS
→˓|| wf[jj] > GMX_REAL_EPS))) (continues on next page)

4.3. Software related to Extended Software Development Workshops 503

E-CAM Documentation, Release 0.2

(continued from previous page)

+// abrupt-GC ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS &&
→˓wf[jj] > GMX_REAL_EPS)))
+ {
+ continue;
+ }
+ }
+ /* change 7.11.2017 chk*/

if (bNotEx)
{

@@ -984,6 +1008,10 @@
jj1 = index[jcg+1];
/* Finally loop over the atoms in the j-charge group */
bFree = bPert[i_atom];

+
+ /* chk
+ bEnergyGroupCG = !egp_explicit(fr, igid); */
+

for (jj = jj0; (jj < jj1); jj++)
{

bFreeJ = bFree || bPert[jj];
@@ -994,6 +1022,16 @@

{
bNotEx = NOTEXCL(bExcl, i, jj);

+ /* chk
+
+ if ((!bEnergyGroupCG && (wf[i_atom] <= GMX_REAL_EPS ||
→˓wf[jj] <= GMX_REAL_EPS)) ||
+ ((bEnergyGroupCG) && (wf[i_atom] >= GMX_REAL_EPS &&
→˓wf[jj] >= GMX_REAL_EPS))
+)
+
+ {
+ continue;
+ } */
+

if (bNotEx)
{

if (bFreeJ)
@@ -1250,6 +1288,19 @@

* b_hybrid=true are placed into the _adress neighbour lists and

* processed by the generic AdResS kernel.

*/
+ /* change 7.11.2017 chk*/
+ /* if (fr->adress_type != eAdressOff)
+ { */
+ if ((!bEnergyGroupCG && (wf[i_atom] <= GMX_REAL_EPS ||
→˓wf[jj] <= GMX_REAL_EPS)) ||
+ ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS ||
→˓wf[jj] > GMX_REAL_EPS))
+// ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS &&
→˓ wf[jj] > GMX_REAL_EPS))
+)
+
+ {
+ continue;

(continues on next page)

504 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

+ }
+ /* } */
+/* old version from normal GC-AdResS before october 7

if ((bEnergyGroupCG &&
wf[i_atom] >= 1-GMX_REAL_EPS && wf[jj] >= 1-GMX_REAL_EPS)

→˓||
(!bEnergyGroupCG && wf[jj] <= GMX_REAL_EPS))

@@ -1259,6 +1310,7 @@

b_hybrid = !((wf[i_atom] >= 1-GMX_REAL_EPS && wf[jj] >= 1-GMX_
→˓REAL_EPS) ||

(wf[i_atom] <= GMX_REAL_EPS && wf[jj] <= GMX_REAL_
→˓EPS));
+*/

if (bNotEx)
{

@@ -1266,28 +1318,15 @@
{

if (charge[jj] != 0)
{

- if (!b_hybrid)
- {
- add_j_to_nblist(coul, jj, bLR);
- }
- else
- {
- add_j_to_nblist(coul_adress, jj, bLR);
- }
+ /* chk: removed the !b_hybrid if loops */
+ add_j_to_nblist(coul, jj, bLR);

}
}
else if (!bDoCoul_i)
{

if (bHaveVdW[type[jj]])
{

- if (!b_hybrid)
- {

add_j_to_nblist(vdw, jj, bLR);
- }
- else
- {
- add_j_to_nblist(vdw_adress, jj, bLR);
- }

}
}
else

@@ -1296,38 +1335,16 @@
{

if (charge[jj] != 0)
{

- if (!b_hybrid)
- {

add_j_to_nblist(vdwc, jj, bLR);
- }
- else

(continues on next page)

4.3. Software related to Extended Software Development Workshops 505

E-CAM Documentation, Release 0.2

(continued from previous page)

- {
- add_j_to_nblist(vdwc_adress, jj, bLR);
- }

}
else
{

- if (!b_hybrid)
- {

add_j_to_nblist(vdw, jj, bLR);
- }
- else
- {
- add_j_to_nblist(vdw_adress, jj, bLR);
- }
-

}
}
else if (charge[jj] != 0)
{

- if (!b_hybrid)
- {

add_j_to_nblist(coul, jj, bLR);
- }
- else
- {
- add_j_to_nblist(coul_adress, jj, bLR);
- }

}
}

@@ -2671,8 +2688,10 @@
rvec box_size, grid_x0, grid_x1;
int i, j, m, ngid;
real min_size, grid_dens;

+ real b_hybrid;
int nsearch;
gmx_bool bGrid;

+ gmx_bool bEnergyGroupCG;
char *ptr;
gmx_bool *i_egp_flags;
int cg_start, cg_end, start, end;

@@ -2774,8 +2793,9 @@
}
debug_gmx();

- if (fr->adress_type == eAdressOff)
- {
+/* chk */
+// if (fr->adress_type == eAdressOff)
+// {

if (!fr->ns.bCGlist)
{

put_in_list = put_in_list_at;
@@ -2784,11 +2804,12 @@

{
put_in_list = put_in_list_cg;

}
(continues on next page)

506 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

- }
- else
- {
- put_in_list = put_in_list_adress;
- }
+// }
+// else
+// {
+// put_in_list = put_in_list_adress;
+// }
+/* chk */

/* Do the core! */
if (bGrid)

diff -ru /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/update.cpp /home/mi/
→˓ck69giso/gmx-515-hck/src/gromacs/mdlib/update.cpp
--- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/update.cpp 2016-09-07
→˓14:50:21.000000000 +0200
+++ /home/mi/ck69giso/gmx-515-hck/src/gromacs/mdlib/update.cpp 2018-07-24
→˓16:07:27.000000000 +0200
@@ -67,6 +67,7 @@
#include "gromacs/utility/futil.h"
#include "gromacs/utility/gmxomp.h"
#include "gromacs/utility/smalloc.h"

+#include "adress.h"

/*For debugging, start at v(-dt/2) for velolcity verlet -- uncomment next line */
/*#define STARTFROMDT2*/

@@ -569,6 +570,8 @@
return upd;

}

+/* new */
+
static void do_update_sd1(gmx_stochd_t *sd,

int start, int nrend, double dt,
rvec accel[], ivec nFreeze[],

@@ -579,10 +582,11 @@
int ngtc, real ref_t[],
gmx_bool bDoConstr,
gmx_bool bFirstHalfConstr,

- gmx_int64_t step, int seed, int* gatindex)
+ gmx_int64_t step, int seed, int* gatindex, real fc)
{

gmx_sd_const_t *sdc;
gmx_sd_sigma_t *sig;

+
real kT;
int gf = 0, ga = 0, gt = 0;
real ism;

@@ -625,10 +629,21 @@
{

if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !
→˓nFreeze[gf][d])

{
- real sd_V, vn;
+// real sd_V, vn;

(continues on next page)

4.3. Software related to Extended Software Development Workshops 507

E-CAM Documentation, Release 0.2

(continued from previous page)

+ real sd_V, vn, fn;
+ fn = f[n][d];
+
+// fc = 10000.;
+
+ if (fabs(fn)>fc)
+ {
+ printf("SD (I) force-cap %e\n", fn);
+ fn = fc*fn/fabs(fn);
+ }

sd_V = ism*sig[gt].V*rnd[d];
- vn = v[n][d] + (invmass[n]*f[n][d] + accel[ga][d])*dt;
+ vn = v[n][d] + (invmass[n]*fn + accel[ga][d])*dt;
+// vn = v[n][d] + (invmass[n]*f[n][d] +
→˓accel[ga][d])*dt;

v[n][d] = vn*sdc[gt].em + sd_V;
/* Here we include half of the friction+noise

* update of v into the integration of x.
@@ -668,7 +683,20 @@

{
if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !

→˓nFreeze[gf][d])
{

- v[n][d] = v[n][d] + (im*f[n][d] + accel[ga][d])*dt;
+
+ real fn;
+
+// fc = 10000.;
+
+ fn = f[n][d];
+ if (fabs(fn)>fc)
+ {
+ printf("SD (II) force-cap %e\n", fn);
+ fn = fc*fn/fabs(fn);
+ }
+
+ v[n][d] = v[n][d] + (im*fn + accel[ga][d])*dt;
+// v[n][d] = v[n][d] + (im*f[n][d] + accel[ga][d])*dt;

xprime[n][d] = x[n][d] + v[n][d]*dt;
}
else

@@ -1644,6 +1672,8 @@
end_th = start + ((nrend-start)*(th+1))/nth;

/* The second part of the SD integration */
+ if (inputrec->bAdress)
+ {

do_update_sd1(upd->sd,
start_th, end_th, dt,
inputrec->opts.acc, inputrec->opts.nFreeze,

@@ -1653,7 +1683,23 @@
inputrec->opts.ngtc, inputrec->opts.ref_t,
bDoConstr, FALSE,
step, inputrec->ld_seed,

- DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
+ DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL,

(continues on next page)

508 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

+ inputrec->adress->ex_forcecap);
+ }
+ else
+ {
+ do_update_sd1(upd->sd,
+ start_th, end_th, dt,
+ inputrec->opts.acc, inputrec->opts.nFreeze,
+ md->invmass, md->ptype,
+ md->cFREEZE, md->cACC, md->cTC,
+ state->x, xprime, state->v, force,
+ inputrec->opts.ngtc, inputrec->opts.ref_t,
+ bDoConstr, FALSE,
+ step, inputrec->ld_seed,
+ DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL,
+ 5000.);
+ }

}
inc_nrnb(nrnb, eNR_UPDATE, homenr);
wallcycle_stop(wcycle, ewcUPDATE);

@@ -2031,6 +2077,21 @@
break;

case (eiSD1):
/* With constraints, the SD1 update is done in 2 parts */

+ if (inputrec->bAdress)
+ {
+ do_update_sd1(upd->sd,
+ start_th, end_th, dt,
+ inputrec->opts.acc, inputrec->opts.nFreeze,
+ md->invmass, md->ptype,
+ md->cFREEZE, md->cACC, md->cTC,
+ state->x, xprime, state->v, force,
+ inputrec->opts.ngtc, inputrec->opts.ref_t,
+ bDoConstr, TRUE,
+ step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->
→˓gatindex : NULL,
+ inputrec->adress->ex_forcecap);
+ }
+ else
+ {

do_update_sd1(upd->sd,
start_th, end_th, dt,
inputrec->opts.acc, inputrec->opts.nFreeze,

@@ -2039,7 +2100,9 @@
state->x, xprime, state->v, force,
inputrec->opts.ngtc, inputrec->opts.ref_t,
bDoConstr, TRUE,

- step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->
→˓gatindex : NULL);
+ step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->
→˓gatindex : NULL,
+ 5000.);
+ }

break;
case (eiSD2):

/* The SD2 update is always done in 2 parts,

To apply the patch:

4.3. Software related to Extended Software Development Workshops 509

E-CAM Documentation, Release 0.2

1) copy into the main directory (gromacs/)

2) patch < abrupt_adress.patch

In this module we also include a test scenario for GROMACS version 5.1.5 with a possible CG potential and all
necessary input files. To run it simply run gmx grompp -f grompp.mdp -c conf.gro -p topol.top -n index.ndx -maxwarn
5; gmx mdrun using the patched version of GROMACS version 5.1.5 (see above).

When gmx mdrun finished normally (with the above mentioned setup), we have several mandatory checks to see if the
simulation was successful or not.

0) Easiest check: load the conf.gro and the trajectory file in vmd and check if you see particle diffusion or depleted
areas.

1) we check the density along the X-direction (xsplit: e.g. gmx density -f traj_compt.xtc -d X) or along the radius
(sphere: e.g. via VOTCA: csg_density –axis r –rmax <value> –ref [x_ref,y_ref,z_ref] –trj traj_comp.xtc –top
topol.tpr –out test.dens.comp), the density has to be less then 3% different from experimental data or the density
from a full atomistic MD simulation. The density of the example is 1000 kg m^-3.

2) static properties: crucial RDF’s (e.g. for water the oxygen-oxygen RDF)

3) p(N): It describes the average number of particles in the AT region throughout the simulation.

4) the density diffusion for each region (via a very helpful expansion for http://www.ks.uiuc.edu/Research/vmd/,
the density profile tool see https://github.com/tonigi/vmd_density_profile).

5) If we only thermalize the transition region, the AT region is NVE-like, which means it is even possible to
determine the dynamics of the system.

The files for the water example can be found here: spc-example.tar.gz

Software Technical Information

Name RDF’s via Visualize Molecular Dynamics.

Language TCL scripting language.

Licence See http://www.ks.uiuc.edu/Research/vmd/allversions/disclaimer.html

Documentation Tool none

Application Documentation http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Relevant Training Material http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Radial Distribution Functions for GC-AdResS

• Purpose of Module

• Background Information

• Example Collection

Purpose of Module

One purpose of our project is to promote GC-AdResS as method which provides new insights and is not much more
complex and difficult to use. In GC-AdResS simulations we introduce artificial interfaces, from atomistic to hybrid

510 Chapter 4. Meso- and Multi-scale Modules

http://www.ks.uiuc.edu/Research/vmd/
https://github.com/tonigi/vmd_density_profile
http://www.ks.uiuc.edu/Research/vmd/allversions/disclaimer.html
http://www.ks.uiuc.edu/Research/vmd/current/docs.html
http://www.ks.uiuc.edu/Research/vmd/current/docs.html

E-CAM Documentation, Release 0.2

and hybrid to coarse grained. To make sure that we indeed have an open system we have to check several properties,
from structural to dynamic properties. Radial distribution functions (RDF’S) are the easiest way to check the structural
properties of the simulation. This module is dedicated to describe a straight forward and easy way to generate them
for the atomistic regions in the GC-AdResS simulations. In the current implementation in GROMACS we have two
geometric setups. One is radial and the other is a slab like structure. We use VMD as the tool sof choice to calculate
the RDF’s.

Background Information

The most widespread tool for analysing molecular dynamics simulations is VMD). The program is based on TCL and
Tk scripting language. Documentation and tutorials can be found here: VMD Docs

The reference coordinates (center of the AdResS region, as defined in the GROMACS mdp input file), configuration
(standard input GROMACS: conf.gro) and trajectory (standard output GROMACS: traj_comp.xtc) are necessary to
run AdResS. And they have to be used for two essential analysis parts for AdResS. The structural part, the radial
distribution functions of the simulated system. And the second part with the help of the Density Profile tool (repository
contains a tutorial on how to use) show the diffusion of the molecules during the simulation. The RDF plugin is
described here: https://www.ks.uiuc.edu/Research/vmd/plugins/gofrgui/. All results can be stored as plain ASCII
files, thus can be analysed via any plotting program.

CASE 1: RDF

• Since we apply the routine in a subspace, the normalization factor is wrong. The correcting factor can be
obtained by calculating the RDF in the full atomistic case. Then the RDF in the same subspace (as in the
AdResS) in the full atomistic case. The quotient can be used to re-normalize the AdResS RDF.

• Important: for the AdResS RDF the update selection option tick has to be used, and the PBC switched off.

• good case: the RDF’s are exactly the same

• bad case: the RDF’s are different somehow

CASE 2: Density Diffusion

• It is possible to define the different regions in the simulation box. Thus it is possible to look at the region specific
density diffusion.

• To do that: one has to specify several time frames and calculate the average profiles, each one gives a ASCII file
which (in the end) can be plotted together.

• The frame of reference is set by the slider in the main menu. (The update selection option has to be switched
off.) The particles in that frame are tagged and then via the different time frames one follows their path.

• Good case: smooth regular and symmetric diffusion

• bad case: spikes at the interface and asymmetric diffusion might hint at an artificial interface between the
different regions.

Example Collection

We basically work with the atom selection and use the pre-existing Radial Pair Distribution Function tool in VMD.
One has to load the configuration file (standard is conf.gro) and the trajectory file (standard: traj_comp.xtc) via either
vmd conf.gro traj_compt.xtc or the vmd GUI.

Example case (for the radial systems), this selection was used with the reference point being defined in the GROMACS
input file.

4.3. Software related to Extended Software Development Workshops 511

http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd/current/docs.html
https://github.com/tonigi/vmd_density_profile
https://www.ks.uiuc.edu/Research/vmd/plugins/gofrgui/

E-CAM Documentation, Release 0.2

x_ref = x-value of the center of the chosen AdResS region
y_ref = y-value of the center of the chosen AdResS region
z_ref = z-value of the center of the chosen AdResS region

radius: radius of the atomistic region
name "insert your choice of atom here" and (((x-x_ref)^2 + (y-y_ref)^2 + (z-z_ref)^2)
→˓< radius*radius)

For the slab structures:

at_start: start of the atomistic regions along the x axis
at_end: end of the atomistic regions along the x axis
hy_start: start of the hybrid regions along the x axis
hy_end: end of the hybrid regions along the x axis

name "insert your choice of atom here" and (x>at_start and x<at_end)
name "insert your choice of atom here" and ((x>hy_start and x<at_start) or (x>at_end
→˓and x<hy_end)

Software Technical Information

Name GC-AdResS -Abrupt scheme- Force Capping

Language Implemented in GROMACS version 5.1.5

Licence See GROMACS web page: http://www.gromacs.org/

Documentation Tool

Application Documentation See GROMACS web page: http://www.gromacs.org/

Relevant Training Material See GROMACS web page: http://www.gromacs.org/

Abrupt-AdResS: Forcecap

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The original idea of our proposal was to work on a general implementation of grand canonical adaptive resolution
simulations (GC-AdResS) in classical MD packages. The current implementation of GC- AdResS in GROMACS (up
to version 5.1.5) has performance problems. The Abrupt GC-AdResS implementation is avoiding those and make
AdResS more interesting for other MD developers (especially since we could remove the force interpolation and
weighting functions from the force kernel).

This module works in combination with abrupt_AdResS and is at the same time important for a successful simulation.
It shows how to avoid particle overlap at the interface of the atomistic and coarse grained regions.

512 Chapter 4. Meso- and Multi-scale Modules

http://www.gromacs.org/
http://www.gromacs.org/
http://www.gromacs.org/

E-CAM Documentation, Release 0.2

Purpose of Module

The implementation of Abrupt GC-AdResS is in itself only working for the smallest and simplest of molecules without
problems. For larger and more complex molecules the simulation crashes. This module shows a way to avoid this.

Background Information

As studies of ionic liquids and polymer melts have shown for large and complicated molecules even the standard
GC-AdResS is not working without additional force capping. The reason for that is when a molecule from the coarse
grained region enters the hybrid region the atomistic representations, which are present due to the technically necessary
double resolution, interact. It is possible for atoms to be too close together, which results in a too high force and
thus in too high velocities of those particles. Since in Abrupt AdResS we can avoid the generic force kernel from
GROMACS, the force capping (which was previously implemented at the end of the force calculation) had to be
shifted and replaced. We finally looked at the integrator (in our case the stochastic dynamics integrator), which is the
place where each force has to be read and handled.

This implementation of force capping is a rudimentary approach. The basic principle is when two particles are too
close together, and thus the force are far higher than the average forces in the simulation, the force on the particles are
re-scaled to a given value. That tactic makes sure that the insertion of particles in the atomistic region is introduced at
reasonable velocities and temperature. As a side effect, the area of disturbance due to the introduction of a particle is
limited.

Building and Testing

We have used this new addition to the code on two systems: water and ionic liquids. The results have been published
in Ref. https://aip.scitation.org/doi/10.1063/1.5031206 or https://arxiv.org/abs/1806.09870. All the information about
studied systems and the performance can be found there.

The patch provided can be applied alone without the Abrupt AdResS patch, in the main directory of GROMACS. The
important part of the patch is that it adds an upper force limit in the stochastic dynamics integrator. If that upper limit
is triggered the force is re-scaled to the given force cap. The rest is basically to make sure that the integrator is called
correctly. There is a print command which is triggered once the force on a particle is higher than a given force cap
value. The force capping simulation can in some cases cause lincs warnings. Since we take care of faulty configuration
that way, we can disabling those warnings (export GMX_MAXBACKUP=-1 ; export GMX_MAXCONSTRWARN=-1).
Otherwise it generates too many files and can crash as well.

Source Code

A note of caution: the chosen force cap trigger has to be a high enough value, otherwise normal interactions (inter-
actions with forces around the average forces in a simulation) will trigger the force capping. That would change the
dynamics and the structure of a system. Also it would decrease the performance of the code. If chosen too high it
might run into impossible and unstable configuration, which will result in a program crash.

Recipe for hard coded force capping:

diff -ru /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/update.cpp /home/mi/
→˓ck69giso/gmx-515-hck/src/gromacs/mdlib/update.cpp
--- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/update.cpp 2016-09-07
→˓14:50:21.000000000 +0200
+++ /home/mi/ck69giso/gmx-515-hck/src/gromacs/mdlib/update.cpp 2018-07-24
→˓16:07:27.000000000 +0200
@@ -67,6 +67,7 @@

(continues on next page)

4.3. Software related to Extended Software Development Workshops 513

https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870

E-CAM Documentation, Release 0.2

(continued from previous page)

#include "gromacs/utility/futil.h"
#include "gromacs/utility/gmxomp.h"
#include "gromacs/utility/smalloc.h"

+#include "adress.h"

/*For debugging, start at v(-dt/2) for velolcity verlet -- uncomment next line */
/*#define STARTFROMDT2*/

@@ -569,6 +570,8 @@
return upd;

}

+/* new */
+
static void do_update_sd1(gmx_stochd_t *sd,

int start, int nrend, double dt,
rvec accel[], ivec nFreeze[],

@@ -579,10 +582,11 @@
int ngtc, real ref_t[],
gmx_bool bDoConstr,
gmx_bool bFirstHalfConstr,

- gmx_int64_t step, int seed, int* gatindex)
+ gmx_int64_t step, int seed, int* gatindex, real fc)
{

gmx_sd_const_t *sdc;
gmx_sd_sigma_t *sig;

+
real kT;
int gf = 0, ga = 0, gt = 0;
real ism;

@@ -625,10 +629,21 @@
{

if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !
→˓nFreeze[gf][d])

{
- real sd_V, vn;
+// real sd_V, vn;
+ real sd_V, vn, fn;
+ fn = f[n][d];
+
+// fc = 10000.;
+
+ if (fabs(fn)>fc)
+ {
+ printf("SD (I) force-cap %e\n", fn);
+ fn = fc*fn/fabs(fn);
+ }

sd_V = ism*sig[gt].V*rnd[d];
- vn = v[n][d] + (invmass[n]*f[n][d] + accel[ga][d])*dt;
+ vn = v[n][d] + (invmass[n]*fn + accel[ga][d])*dt;
+// vn = v[n][d] + (invmass[n]*f[n][d] +
→˓accel[ga][d])*dt;

v[n][d] = vn*sdc[gt].em + sd_V;
/* Here we include half of the friction+noise

* update of v into the integration of x.
@@ -668,7 +683,20 @@

{
(continues on next page)

514 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !
→˓nFreeze[gf][d])

{
- v[n][d] = v[n][d] + (im*f[n][d] + accel[ga][d])*dt;
+
+ real fn;
+
+// fc = 10000.;
+
+ fn = f[n][d];
+ if (fabs(fn)>fc)
+ {
+ printf("SD (II) force-cap %e\n", fn);
+ fn = fc*fn/fabs(fn);
+ }
+
+ v[n][d] = v[n][d] + (im*fn + accel[ga][d])*dt;
+// v[n][d] = v[n][d] + (im*f[n][d] + accel[ga][d])*dt;

xprime[n][d] = x[n][d] + v[n][d]*dt;
}
else

@@ -1644,6 +1672,8 @@
end_th = start + ((nrend-start)*(th+1))/nth;

/* The second part of the SD integration */
+ if (inputrec->bAdress)
+ {

do_update_sd1(upd->sd,
start_th, end_th, dt,
inputrec->opts.acc, inputrec->opts.nFreeze,

@@ -1653,7 +1683,23 @@
inputrec->opts.ngtc, inputrec->opts.ref_t,
bDoConstr, FALSE,
step, inputrec->ld_seed,

- DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
+ DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL,
+ inputrec->adress->ex_forcecap);
+ }
+ else
+ {
+ do_update_sd1(upd->sd,
+ start_th, end_th, dt,
+ inputrec->opts.acc, inputrec->opts.nFreeze,
+ md->invmass, md->ptype,
+ md->cFREEZE, md->cACC, md->cTC,
+ state->x, xprime, state->v, force,
+ inputrec->opts.ngtc, inputrec->opts.ref_t,
+ bDoConstr, FALSE,
+ step, inputrec->ld_seed,
+ DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL,
+ 5000.);
+ }

}
inc_nrnb(nrnb, eNR_UPDATE, homenr);
wallcycle_stop(wcycle, ewcUPDATE);

@@ -2031,6 +2077,21 @@
break;

(continues on next page)

4.3. Software related to Extended Software Development Workshops 515

E-CAM Documentation, Release 0.2

(continued from previous page)

case (eiSD1):
/* With constraints, the SD1 update is done in 2 parts */

+ if (inputrec->bAdress)
+ {
+ do_update_sd1(upd->sd,
+ start_th, end_th, dt,
+ inputrec->opts.acc, inputrec->opts.nFreeze,
+ md->invmass, md->ptype,
+ md->cFREEZE, md->cACC, md->cTC,
+ state->x, xprime, state->v, force,
+ inputrec->opts.ngtc, inputrec->opts.ref_t,
+ bDoConstr, TRUE,
+ step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->
→˓gatindex : NULL,
+ inputrec->adress->ex_forcecap);
+ }
+ else
+ {

do_update_sd1(upd->sd,
start_th, end_th, dt,
inputrec->opts.acc, inputrec->opts.nFreeze,

@@ -2039,7 +2100,9 @@
state->x, xprime, state->v, force,
inputrec->opts.ngtc, inputrec->opts.ref_t,
bDoConstr, TRUE,

- step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->
→˓gatindex : NULL);
+ step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->
→˓gatindex : NULL,
+ 5000.);
+ }

break;
case (eiSD2):

/* The SD2 update is always done in 2 parts,

with:

fc = Chosen upper force limit for the ionic liquids simulations

fn = force acting on a particle

The patch provided can be applied in the main directory of GROMACS via:

patch < forcecap.patch

Software Technical Information

Name Thermodynamic Force Calculator for Abrupt AdResS

Language bash Python 2.7

Licence MD Simulation: See GROMACS web page: http://www.gromacs.org/

Analysis tools: see VOTCA web page: http://www.votca.org/home

Documentation Tool

516 Chapter 4. Meso- and Multi-scale Modules

http://www.gromacs.org/
http://www.votca.org/home

E-CAM Documentation, Release 0.2

Application Documentation See GROMACS web page: http://www.gromacs.org/ See VOCTA web page: http:
//www.votca.org/Documentation

Relevant Training Material See GROMACS web page: http://www.gromacs.org/ See VOCTA web page: http:
//www.votca.org/tutorials

Thermodynamic Force Calculator for Abrupt AdResS

• Purpose of Module

• Background Information

• Building and Running

• Source Code

We introduced with the Abrupt AdResS method a new way of coupling the different simulation regions together.
That is the basis for easier implementation into other codes. The implementation of smooth coupling GC- AdResS in
GROMACS has several performance problems. However, the new Abrupt AdResS presents a very straight forward
way to implement a new partitioning scheme, which solves two problems which affect the performance, the neighbor
list search and the generic force kernel. Furthermore, we update the implementation to address this in a way that
decouples the method directly from the core of any MD code, which does not hinder the performance and makes the
scheme hardware independent. Theory, application and tests see https://aip.scitation.org/doi/10.1063/1.5031206 or
https://arxiv.org/abs/1806.09870.

The drawback of this method is that a new (as in more direct) way to calculate the thermodynamic force is needed.
While the theory is still the same, the interpolation has to be adapted.

Purpose of Module

The new Abrupt coupling scheme introduces a density discrepancy which is very much restricted to the interface of
the atomistic region and the coarse grained region. The thermodynamic force calculator in VOTCA (implemented up
to version 1.3) is designed for the more smooth coupling over a larger region in space. Thus this code cannot be used
for the small area of disturbance in this new scheme.

Here we present a thermodynamic force calculator for the abrupt coupling scheme. It is a mix between bash and
Python and can be applied even to the older smooth coupling scheme.

Background Information

Abrupt AdResS presents a very straight forward way to implement a new partitioning scheme. The drawback is that
the particles mix in a very narrow region in space. The distance of the molecules at that interface can be too close,
which has to be compensated via a force capping. However the flux of particles at that interface is fast, which leads to
a rather localized discrepancy in the density.

The thermodynamic force calculator in VOTCA (up to version 1.3) is designed for a smooth and not very much
disturbed region in space. Thus a new code to calculate the thermodynamic force was needed. The thermodynamic
force is calculated by calculating the gradient of the density in a specific region in space. Thus any code taking
this into account can be used. For the detailed discussion of the role and the basic principles behind this force see
https://aip.scitation.org/doi/10.1063/1.5031206 or https://arxiv.org/abs/1806.09870.

4.3. Software related to Extended Software Development Workshops 517

http://www.gromacs.org/
http://www.votca.org/Documentation
http://www.votca.org/Documentation
http://www.gromacs.org/
http://www.votca.org/tutorials
http://www.votca.org/tutorials
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870

E-CAM Documentation, Release 0.2

The code provided here is designed for easy adjustable and can be used on different computer architectures (knowledge
of bash is of an advantage).

Building and Running

These three scripts present one way to calculate the thermodynamics force.

• TF calculation script:

• Density interpolation script:

• Script to call TF calculation:

The central script is smooth_dens.sh. This is a Python 2.7 script which interpolates the density and generates the
gradient of the density and provides the force as an ascii table.

TF_calc_water_xplit_sphere.sh is controlling the MD run, and which region to interpolate, and builds the tables
needed. The commands and the options used are described in http://www.gromacs.org/ or if the spherical geome-
try for AdResS is used also here: http://www.votca.org/Documentation.

run_tf_water_xplsit_sphere.sh provides some possible input scenarios for TF_calc_water_xplit_sphere.sh.

To run run_tf_water_xplsit_sphere.sh one has to first enter the correct region, which should be interpolated in
TF_calc_water_xplit_sphere.sh.

rmin = starting point along a distance with rref as origin

rmax = end point of the interpolation region

rbox = maximal box size (xsplit: x direction; sphere the maximal radius)

rref = is the point defined in the GROMACS input file

lc = defines the binning along the x direction or the radius

prefac = is basically a weighting on the thermodynamic force (small: more iteration,
→˓but more careful approach of the target density)

Note of caution: in run_tf_water_xplsit_sphere.sh and TF_calc_water_xplit_sphere.sh the GROMACS and VOTCA
version used have to be specifically sourced. Then select which option in run_tf_water_xplsit_sphere.sh you want to
use and comment the other out and execute:

for a new run without a thermodynamic force to start with:

bash run_tf_water_xplsit_sphere.sh 1 20 1

for a start from an existing thermodynamic force:

bash run_tf_water_xplsit_sphere.sh 21 20 2

Source Code

TF calculation script: Density interpolation script: Script to call TF
calculation:

518 Chapter 4. Meso- and Multi-scale Modules

http://www.gromacs.org/
http://www.votca.org/Documentation

E-CAM Documentation, Release 0.2

Software Technical Information

Name GC-AdResS: Local thermostat adaption of the Abrupt AdResS scheme

Language Implemented in GROMACS version 5.1.5

Licence MD Simulation: See GROMACS web page: http://www.gromacs.org/

Analysis tools and thermodynamic force calculation: see VOTCA web page: http://www.votca.org/home

Documentation Tool

Application Documentation See GROMACS web page: http://www.gromacs.org/ See VOCTA web page: http:
//www.votca.org/Documentation

Relevant Training Material See GROMACS web page: http://www.gromacs.org/ See VOCTA web page: http:
//www.votca.org/tutorials

Local thermostat adaption of the Abrupt GC-AdResS scheme

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The original idea of our proposal was to work on a general implementations of AdResS in classical MD packages.
With Abrupt AdresS, we implemented a new partitioning scheme to bypass the performance problems in the smooth
coupling GC-AdResS implementation. We switched to the general interaction kernel and simplified the neighbor list
search.

This module takes this new ansatz and combines it with a local thermostat approach (see Ref. http://iopscience.iop.
org/article/10.1088/1367-2630/17/8/083042). The advantages of this are: we can thermalize the transition and the
coarse grained region, the atomistic region is thermalized indirectly. Furthermore, we still have a method which is
decoupled from the core of any MD code. For theory, application and tests see Link(J.Chem.Phys.): or Link(arXiv):.

Purpose of Module

If one looks at the AdResS simulations it is possible to describe it in a nutshell as partitioning the simulation box
into different regions. The Abrupt coupling scheme has one atomistic and one coarse grained region, coupled via a
transition region, where an additional force is acting on the molecules. In previous work (see this reference) the idea
of a local thermostat was introduced.

This module describes how to couple that ansatz with our new Abrupt AdResS. The first test, as well as an overview
over the theory, can be found at https://aip.scitation.org/doi/10.1063/1.5031206 or https://arxiv.org/abs/1806.09870.

Background Information

This module combines two different codes. The first part is the Abrupt coupling scheme already presented in a module.
In any AdResS simulations the simulation box is partitioned into different regions. Previous AdResS implementations
have three regions (atomistic, hybrid and coarse grained). They are coupled in the hybrid region by slowly switching
between atomistic forces and coarse grained forces. That is done by introducing the weighting function required for

4.3. Software related to Extended Software Development Workshops 519

http://www.gromacs.org/
http://www.votca.org/home
http://www.gromacs.org/
http://www.votca.org/Documentation
http://www.votca.org/Documentation
http://www.gromacs.org/
http://www.votca.org/tutorials
http://www.votca.org/tutorials
http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042
http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870

E-CAM Documentation, Release 0.2

the smooth coupling into the force kernel, which slows down the performance of the code. The Abrupt coupling
scheme has one atomistic and one coarse grained region, coupled via a transition region, which is only due to the fact
that an additional force is acting on the molecules. Since the weighting function is not needed any more, the forces are
calculated via the standard GROMACS kernels, which increases the performance.

In previous work by Agarwal et al. (Ref. http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042) the idea
of a local thermostat was introduced. Since in AdResS the simulation box is partitioned into different regions the next
logical step is to adapt the thermalization of the box and apply the thermostat only in the hybrid and coarse grained
region, since the hybrid region is an artificial region and the coarse grained region represents a reservoir.

This module describes how to couple these two approaches. The first test, as well as an overview of the theory, can be
found here Link(J.Chem.Phys.): or Link(arXiv):.

Building and Testing

We tested this new implementation on SPC water and 1,3-dimethyl imidazolium chloride. The results are published
in https://aip.scitation.org/doi/10.1063/1.5031206 or https://arxiv.org/abs/1806.09870.

Here is a short manual on how to run the test and set up the local thermostat simulation within this Abrupt AdResS
simulations in GROMACS:

1) mandatory requirement: a working full atomistic simulation (molecular configuration, force fields and optimal
MD input parameter)

2) You need a very well converged NVT run, which can be used as starting point for the coarse grained (CG) and
then later the AdResS simulations.

3) You have to generate a coarse grained (CG) potential. We use, for convenience, the inverse Boltzmann iteration
provided in the VOTCA package (http://www.votca.org/home). The resulting tabulated CG potentials are used
in the AdResS simulation. Alternatively you can use WCA potentials or standard Lennard-Jones potentials. The
main requirement for the AdResS simulation is that the density in the CG region is the same as in the atomistic
(AT) region.

NOTE: The method can be used with any potential, which preserves the correct density. If only a SPC/E
CG potential is available it can be used for SPC/e water models as well as for a more advanced water
model. It is possible to use a WCA potential, which is basically a Lennard-Jones potential. And it is
possible to switch the CG potential completely off. That will transform the CG region to a true thermo-
dynamic reservoir with a non-interacting gas.

4) The next step is to create a double resolution configuration and adjust the dependencies (force field, topology,
index file, GROMACS input file). Creating the configuration is straightforward (we use VOTCA VOTCA):

Example from VOTCA:
csg_map --top topol.tpr --cg cg_mapping_scheme --hybrid --trj conf.gro --out conf_
→˓hybrid.gro

Of course, if you want to use this configuration in a MD simulation you have to adjust the force field (see example
file: spc.adress.itp in the abrupt_adress example repository). You have to define a virtual site:

[virtual_sites3]
; Site from funct a d
; atom dependencies func a b

4 1 2 3 1 0.05595E+00 0.05595E+00

The next step is to adjust the status of the CG particle in the topology file (in our example: topol.top) from A for atom
to V as virtual particle. And of course insert the new force field.

520 Chapter 4. Meso- and Multi-scale Modules

http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
http://www.votca.org/home
http://www.votca.org/home
https://gitlab.e-cam2020.eu/krekeler/abrupt_adress

E-CAM Documentation, Release 0.2

#include "spc.adress.itp"

Then you have to generate an index file with the different energy groups. In this example, we have 2 groups (EXW
and WCG, the name of the CG particle):

gmx make_ndx -f conf_hybrid.gro
> a WCG
> !3
> name 4 EXW
> q

The next step is to adjust the GROMACS input file. AdResS needs the Langevin dynamics, so you have to choose:

integrator = sd

Since the system is double resolution, meaning we have the atomistic details and the virtual particles, we have to define
the energy groups:

; Selection of energy groups
energygrps = EXW WCG
energygrp_table = WCG WCG

Note: the table for the WCG and WCG particles can be a pre-defined coarse grained potential but can be also set to
zero.

Alternatively, the non-bonded interactions for WCG in the force field can be set to zero.a Then the input would be
like:

; Selection of energy groups
energygrps = EXW WCG

GROMACS version 5.1.5 is using verlet as standard cutoff-scheme, so we have to change that to group:

; nblist update frequency
cutoff-scheme = group

In case of local thermostat simulations (see Link (for J.Chem.Phys.): or Link (for arXiv):) we use:

coulombtype = reaction-field-zero
rcoulomb = 1.0
vdw-type = user
rvdw = 1.0

If you use the stochastic dynamics, we add the following entries to make sure we have only NVT and a thermalization
via the Langevin dynamics.

; Temperature coupling
Tcoupl = no
Pcoupl = no

To switch the simulation to AdResS this is the key part. This starts the AdResS runs.

; AdResS parameters
adress = yes ;no

Here you define the geometry of the atomistic region, either sphere (a spherical region anywhere in the simulation box)
or xsplit (a cuboid slice of the whole simulation box for the atomistic region, with the transition and coarse grained
region on each side).

4.3. Software related to Extended Software Development Workshops 521

https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870

E-CAM Documentation, Release 0.2

adress_type = sphere ;xsplit sphere or constant

This defines the width of the atomistic region, starting from the given reference coordinate (keyword
adress_reference_coords, by simply using: tail conf_hybrid.gro | awk ‘(NF==3){print $1/2., $2/2., $3/2.}’). In
the older versions of AdResS, with a smooth coupling between AT and CG the width of the hybrid region width
(adress_hy_width) was also defined. In the Abrupt_AdResS setup it is not necessary any more, even if you put a
number that region is counted (in the code) as AT.

adress_ex_width = 1.5
adress_hy_width = 1.5
adress_ex_forcecap = 2000
adress_interface_correction = thermoforce ;off
adress_site = com
adress_reference_coords = 3.7500 1.860355 1.860355
adress_tf_grp_names = WCG
adress_cg_grp_names = WCG
adress_do_hybridpairs = no

Another important aspect is the force capping. Abrupt AdResS works fine for small molecules like water, but for larger
or more complex molecules the force capping is very important. We cap every force component (i.e. f(x),f(y),f(z))
acting on a particle and not the norm of the force, which reduces the computational time spend. This is described in
another module.

adress_interface_correction defines if you use an external force to correct the density or not. In case of the old
AdResS (smooth coupling) that correction simply refined the simulation, as the density difference was not significant.
For the Abrupt AdResS, and the method development based on it, and more complex molecules (i.e. polymers) the
thermodynamic force is essential. If it is not taken into account the risk to form interfaces between AT and CG is high.
Also if particles coming too close (basically overlap) the run can crash. The role of the thermodynamic force, the force
cap and the basic theory behind it see Link (for J.Chem.Phys.): or Link (for arXiv):. For this to work you must have a
file e.g. in our example case: tabletf_WCG.xvg in the directory, otherwise you have to set:

adress_interface_correction = off

The local thermostat simulations are significantly different from the Abrupt coupling AdResS simulations. The atom-
istic region is indirectly thermalized by the hybrid/coarse grained, which leads to an NVE-like environment. To make
sure the simulations run smoothly, a tabulated potential for shifted Lennard-Jones potentials is needed. Furthermore,
GROMACS has to be compiled with double resolutions. It is easy to see when the simulation didn’t work, as the
atomistic region is evacuated by all molecules and the resulting density has an error of around 50% and higher.

When the simulation worked, the same checks as for Abrupt AdResS are required. The first check is about the density:
if you have no thermodynamic force you will have rather pronounced spikes in the density at the interfaces. If you
have a converged thermodynamic force the density has to be within +/- 3% (optimal) and +/- 5% (still valid) off from
a comparable full atomistic simulation / experimental data. However, an “artificial” interface is introduced and checks
for the diffusion, the RDFs, etc. (full list see below), ensure that the regions mix together and that you have proper
particle transfer.

This is an example of test scenario for GROMACS version 5.1.5 with a possible CG potential and all necessary
input files, see https://gitlab.e-cam2020.eu:10443/abrupt_adress/abrupt_adress . To run it simply run gmx grompp -f
grompp.mdp -c conf.gro -p topol.top -n index.ndx -maxwarn 5; gmx mdrun using the patched version of GROMACS
version 5.1.5 (see above).

When gmx mdrun finishes normally (with the above mentioned setup), we have several mandatory checks to see if the
simulation was successful or not.

0) Easiest check: load the conf.gro and the trajectory file in vmd and check if you see particle diffusion or depleted
areas.

522 Chapter 4. Meso- and Multi-scale Modules

https://aip.scitation.org/doi/10.1063/1.5031206
https://arxiv.org/abs/1806.09870
https://gitlab.e-cam2020.eu:10443/abrupt_adress/abrupt_adress

E-CAM Documentation, Release 0.2

1) we check the density along the X-direction (xsplit: e.g. gmx density -f traj_compt.xtc -d X) or along the radius
(sphere: e.g. via VOTCA: csg_density –axis r –rmax <value> –ref [x_ref,y_ref,z_ref] –trj traj_comp.xtc –top
topol.tpr –out test.dens.comp), the density has to be less then 3% different from experimental data or the density
from a full atomistic MD simulation. The density of the example is 1000 kg m^-3.

2) static properties: crucial RDFs (e.g. for water the oxygen-oxygen RDF)

3) p(N): It describes the average number of particles in the AT region throughout the simulation.

4) the density diffusion for each region (via a very helpful expansion for VMD, the density profile tool see Link:).

5) If we only thermalize the transition region, the AT region is NVE-like, which means it is even possible to
determine the dynamics of the system.

Source Code

To apply the patch: 1) copy into the main directory (gromacs/) 2) patch < localT_abrupt_adress.patch

The patch for Abrupt_AdResS can be found here:(Patch file for module: Abrupt AdResS)

Patch file for module: Abrupt AdResS

The patch for the abrupt AdResS code is:

1 diff -Naur /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/legacyheaders/update.h /
→˓home/mi/ck69giso/gmx-515-lt/src/gromacs/legacyheaders/update.h

2 --- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/legacyheaders/update.h 2016-
→˓07-13 14:56:04.000000000 +0200

3 +++ /home/mi/ck69giso/gmx-515-lt/src/gromacs/legacyheaders/update.h 2018-12-03
→˓12:07:23.228392303 +0100

4 @@ -102,7 +102,9 @@
5 t_commrec *cr, /* these shouldn't be here -- need to think

→˓about it */
6 t_nrnb *nrnb,
7 gmx_constr_t constr,
8 - t_idef *idef);
9 + t_idef *idef,

10 + t_forcerec *fr);
11 +
12

13 /* Return TRUE if OK, FALSE in case of Shake Error */
14

15 @@ -125,7 +127,8 @@
16 gmx_update_t upd,
17 gmx_constr_t constr,
18 gmx_bool bFirstHalf,
19 - gmx_bool bCalcVir);
20 + gmx_bool bCalcVir,
21 + t_forcerec *fr);
22

23 /* Return TRUE if OK, FALSE in case of Shake Error */
24

25 diff -Naur /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/adress.c /home/mi/
→˓ck69giso/gmx-515-lt/src/gromacs/mdlib/adress.c

26 --- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/adress.c 2016-07-13
→˓14:56:04.000000000 +0200

27 +++ /home/mi/ck69giso/gmx-515-lt/src/gromacs/mdlib/adress.c 2018-08-15
→˓12:39:32.000000000 +0200 (continues on next page)

4.3. Software related to Extended Software Development Workshops 523

http://www.ks.uiuc.edu/Research/vmd/
https://github.com/tonigi/vmd_density_profile

E-CAM Documentation, Release 0.2

(continued from previous page)

28 @@ -101,17 +101,17 @@
29 return 0;
30 }
31 /* molecule is explicit */
32 - else if (sqr_dl < adressr*adressr)
33 + else //if (sqr_dl < adressr*adressr)
34 {
35 return 1;
36 }
37 - /* hybrid region */
38 + /* hybrid region
39 else
40 - {
41 - dl = sqrt(sqr_dl);
42 - tmp = cos((dl-adressr)*M_PI/2/adressw);
43 - return tmp*tmp;
44 - }
45 + {
46 +// dl = sqrt(sqr_dl);
47 +// tmp = cos((dl-adressr)*M_PI/2/adressw);
48 + return 0.5;
49 + } */
50 }
51

52 void
53 diff -Naur /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/ns.c /home/mi/

→˓ck69giso/gmx-515-lt/src/gromacs/mdlib/ns.c
54 --- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/ns.c 2016-07-13

→˓14:56:04.000000000 +0200
55 +++ /home/mi/ck69giso/gmx-515-lt/src/gromacs/mdlib/ns.c 2018-08-15 12:55:06.

→˓000000000 +0200
56 @@ -264,10 +264,12 @@
57 for (i = 0; i < fr->nnblists; i++)
58 {
59 nbl = &(fr->nblists[i]);
60 -
61 - if ((fr->adress_type != eAdressOff) && (i >= fr->nnblists/2))
62 +/* chk */
63 +// if ((fr->adress_type != eAdressOff) && (i >= fr->nnblists/2))
64 + if ((fr->adress_type != eAdressOff))
65 {
66 - type = GMX_NBLIST_INTERACTION_ADRESS;
67 + /* type = GMX_NBLIST_INTERACTION_ADRESS; */
68 + type = GMX_NBLIST_INTERACTION_STANDARD;
69 }
70 init_nblist(log, &nbl->nlist_sr[eNL_VDWQQ], &nbl->nlist_lr[eNL_VDWQQ],
71 maxsr, maxlr, ivdw, ivdwmod, ielec, ielecmod, igeometry_def,

→˓type, bElecAndVdwSwitchDiffers);
72 @@ -601,11 +603,14 @@
73 int *cginfo;
74 int *type, *typeB;
75 real *charge, *chargeB;
76 + real *wf;
77 real qi, qiB, qq, rlj;
78 gmx_bool bFreeEnergy, bFree, bFreeJ, bNotEx, *bPert;
79 gmx_bool bDoVdW_i, bDoCoul_i, bDoCoul_i_sol;
80 + gmx_bool b_hybrid;

(continues on next page)

524 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

81 int iwater, jwater;
82 t_nblist *nlist;
83 + gmx_bool bEnergyGroupCG;
84

85 /* Copy some pointers */
86 cginfo = fr->cginfo;
87 @@ -614,6 +619,7 @@
88 type = md->typeA;
89 typeB = md->typeB;
90 bPert = md->bPerturbed;
91 + wf = md->wf;
92

93 /* Get atom range */
94 i0 = index[icg];
95 @@ -625,7 +631,7 @@
96 iwater = (solvent_opt != esolNO) ? GET_CGINFO_SOLOPT(cginfo[icg]) : esolNO;
97

98 bFreeEnergy = FALSE;
99 - if (md->nPerturbed)

100 + if (md->nPerturbed)
101 {
102 /* Check if any of the particles involved are perturbed.
103 * If not we can do the cheaper normal put_in_list
104 @@ -683,6 +689,7 @@
105 }
106

107 if (!bFreeEnergy)
108 +/* if (!bFreeEnergy || (fr->adress_type != eAdressOff)) */
109 {
110 if (iwater != esolNO)
111 {
112 @@ -846,8 +853,13 @@
113 bDoVdW_i = (bDoVdW && bHaveVdW[type[i_atom]]);
114 bDoCoul_i = (bDoCoul && qi != 0);
115

116 + /* chk */
117 + bEnergyGroupCG = !egp_explicit(fr, igid);
118 + /* chk */
119 +
120 if (bDoVdW_i || bDoCoul_i)
121 {
122 +
123 /* Loop over the j charge groups */
124 for (j = 0; (j < nj); j++)
125 {
126 @@ -867,7 +879,19 @@
127 /* Finally loop over the atoms in the j-charge group */
128 for (jj = jj0; jj < jj1; jj++)
129 {
130 +
131 bNotEx = NOTEXCL(bExcl, i, jj);
132 + /* change 7.11.2017 chk*/
133 + if (fr->adress_type != eAdressOff)
134 + {
135 + if ((!bEnergyGroupCG && (wf[i_atom] <= GMX_REAL_EPS

→˓|| wf[jj] <= GMX_REAL_EPS)) ||
136 + ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS

→˓|| wf[jj] > GMX_REAL_EPS))) (continues on next page)

4.3. Software related to Extended Software Development Workshops 525

E-CAM Documentation, Release 0.2

(continued from previous page)

137 +// abrupt-GC ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS &&
→˓wf[jj] > GMX_REAL_EPS)))

138 + {
139 + continue;
140 + }
141 + }
142 + /* change 7.11.2017 chk*/
143

144 if (bNotEx)
145 {
146 @@ -984,6 +1008,10 @@
147 jj1 = index[jcg+1];
148 /* Finally loop over the atoms in the j-charge group */
149 bFree = bPert[i_atom];
150 +
151 + /* chk
152 + bEnergyGroupCG = !egp_explicit(fr, igid); */
153 +
154 for (jj = jj0; (jj < jj1); jj++)
155 {
156 bFreeJ = bFree || bPert[jj];
157 @@ -994,6 +1022,16 @@
158 {
159 bNotEx = NOTEXCL(bExcl, i, jj);
160

161 + /* chk
162 +
163 + if ((!bEnergyGroupCG && (wf[i_atom] <= GMX_REAL_EPS ||

→˓wf[jj] <= GMX_REAL_EPS)) ||
164 + ((bEnergyGroupCG) && (wf[i_atom] >= GMX_REAL_EPS &&

→˓wf[jj] >= GMX_REAL_EPS))
165 +)
166 +
167 + {
168 + continue;
169 + } */
170 +
171 if (bNotEx)
172 {
173 if (bFreeJ)
174 @@ -1250,6 +1288,19 @@
175 * b_hybrid=true are placed into the _adress neighbour lists and
176 * processed by the generic AdResS kernel.
177 */
178 + /* change 7.11.2017 chk*/
179 + /* if (fr->adress_type != eAdressOff)
180 + { */
181 + if ((!bEnergyGroupCG && (wf[i_atom] <= GMX_REAL_EPS ||

→˓wf[jj] <= GMX_REAL_EPS)) ||
182 + ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS ||

→˓wf[jj] > GMX_REAL_EPS))
183 +// ((bEnergyGroupCG) && (wf[i_atom] > GMX_REAL_EPS &&

→˓ wf[jj] > GMX_REAL_EPS))
184 +)
185 +
186 + {
187 + continue;

(continues on next page)

526 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

188 + }
189 + /* } */
190 +/* old version from normal GC-AdResS before october 7
191 if ((bEnergyGroupCG &&
192 wf[i_atom] >= 1-GMX_REAL_EPS && wf[jj] >= 1-GMX_REAL_EPS)

→˓||
193 (!bEnergyGroupCG && wf[jj] <= GMX_REAL_EPS))
194 @@ -1259,6 +1310,7 @@
195

196 b_hybrid = !((wf[i_atom] >= 1-GMX_REAL_EPS && wf[jj] >= 1-GMX_
→˓REAL_EPS) ||

197 (wf[i_atom] <= GMX_REAL_EPS && wf[jj] <= GMX_REAL_
→˓EPS));

198 +*/
199

200 if (bNotEx)
201 {
202 @@ -1266,28 +1318,15 @@
203 {
204 if (charge[jj] != 0)
205 {
206 - if (!b_hybrid)
207 - {
208 - add_j_to_nblist(coul, jj, bLR);
209 - }
210 - else
211 - {
212 - add_j_to_nblist(coul_adress, jj, bLR);
213 - }
214 + /* chk: removed the !b_hybrid if loops */
215 + add_j_to_nblist(coul, jj, bLR);
216 }
217 }
218 else if (!bDoCoul_i)
219 {
220 if (bHaveVdW[type[jj]])
221 {
222 - if (!b_hybrid)
223 - {
224 add_j_to_nblist(vdw, jj, bLR);
225 - }
226 - else
227 - {
228 - add_j_to_nblist(vdw_adress, jj, bLR);
229 - }
230 }
231 }
232 else
233 @@ -1296,38 +1335,16 @@
234 {
235 if (charge[jj] != 0)
236 {
237 - if (!b_hybrid)
238 - {
239 add_j_to_nblist(vdwc, jj, bLR);
240 - }
241 - else

(continues on next page)

4.3. Software related to Extended Software Development Workshops 527

E-CAM Documentation, Release 0.2

(continued from previous page)

242 - {
243 - add_j_to_nblist(vdwc_adress, jj, bLR);
244 - }
245 }
246 else
247 {
248 - if (!b_hybrid)
249 - {
250 add_j_to_nblist(vdw, jj, bLR);
251 - }
252 - else
253 - {
254 - add_j_to_nblist(vdw_adress, jj, bLR);
255 - }
256 -
257 }
258 }
259 else if (charge[jj] != 0)
260 {
261 - if (!b_hybrid)
262 - {
263 add_j_to_nblist(coul, jj, bLR);
264 - }
265 - else
266 - {
267 - add_j_to_nblist(coul_adress, jj, bLR);
268 - }
269

270 }
271 }
272 @@ -2671,8 +2688,10 @@
273 rvec box_size, grid_x0, grid_x1;
274 int i, j, m, ngid;
275 real min_size, grid_dens;
276 + real b_hybrid;
277 int nsearch;
278 gmx_bool bGrid;
279 + gmx_bool bEnergyGroupCG;
280 char *ptr;
281 gmx_bool *i_egp_flags;
282 int cg_start, cg_end, start, end;
283 @@ -2774,8 +2793,9 @@
284 }
285 debug_gmx();
286

287 - if (fr->adress_type == eAdressOff)
288 - {
289 +/* chk */
290 +// if (fr->adress_type == eAdressOff)
291 +// {
292 if (!fr->ns.bCGlist)
293 {
294 put_in_list = put_in_list_at;
295 @@ -2784,11 +2804,12 @@
296 {
297 put_in_list = put_in_list_cg;
298 }

(continues on next page)

528 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

299 - }
300 - else
301 - {
302 - put_in_list = put_in_list_adress;
303 - }
304 +// }
305 +// else
306 +// {
307 +// put_in_list = put_in_list_adress;
308 +// }
309 +/* chk */
310

311 /* Do the core! */
312 if (bGrid)
313 diff -Naur /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/update.cpp /home/mi/

→˓ck69giso/gmx-515-lt/src/gromacs/mdlib/update.cpp
314 --- /storage/mi/ck69giso/gromacs-5.1.5/src/gromacs/mdlib/update.cpp 2016-09-07

→˓14:50:21.000000000 +0200
315 +++ /home/mi/ck69giso/gmx-515-lt/src/gromacs/mdlib/update.cpp 2018-12-03

→˓12:19:21.924644082 +0100
316 @@ -67,6 +67,7 @@
317 #include "gromacs/utility/futil.h"
318 #include "gromacs/utility/gmxomp.h"
319 #include "gromacs/utility/smalloc.h"
320 +#include "adress.h"
321

322 /*For debugging, start at v(-dt/2) for velolcity verlet -- uncomment next line */
323 /*#define STARTFROMDT2*/
324 @@ -569,6 +570,8 @@
325 return upd;
326 }
327

328 +/* new */
329 +
330 static void do_update_sd1(gmx_stochd_t *sd,
331 int start, int nrend, double dt,
332 rvec accel[], ivec nFreeze[],
333 @@ -579,14 +582,28 @@
334 int ngtc, real ref_t[],
335 gmx_bool bDoConstr,
336 gmx_bool bFirstHalfConstr,
337 - gmx_int64_t step, int seed, int* gatindex)
338 + gmx_int64_t step, int seed, int* gatindex, real fc, t_

→˓forcerec *fr)
339 {
340 gmx_sd_const_t *sdc;
341 gmx_sd_sigma_t *sig;
342 +
343 real kT;
344 int gf = 0, ga = 0, gt = 0;
345 real ism;
346 - int n, d;
347 + int i, n, d;
348 +
349 + int adresstype;
350 + real adressr, sqr_dl, dl;
351 +// real adressw;

(continues on next page)

4.3. Software related to Extended Software Development Workshops 529

E-CAM Documentation, Release 0.2

(continued from previous page)

352 + rvec *ref, dx, xnew;
353 +
354 + adresstype = fr->adress_type;
355 + adressr = fr->adress_ex_width;
356 +// adressw = fr->adress_hy_width;
357 + ref = &(fr->adress_refs);
358 +
359 + //real l2 = adressr + adressw;
360 + real fc1 = fc;
361

362 sdc = sd->sdc;
363 sig = sd->sdsig;
364 @@ -621,14 +638,65 @@
365

366 gmx_rng_cycle_3gaussian_table(step, ng, seed, RND_SEED_UPDATE, rnd);
367

368 + xnew[0] = x[n][0], xnew[1] = x[n][1], xnew[2] = x[n][2];
369 + rvec_sub((*ref), xnew, dx);
370 + sqr_dl = 0.0;
371 + switch (adresstype)
372 + {
373 + case eAdressXSplit:
374 + /* plane through center of ref, varies in x direction */
375 + sqr_dl = dx[0]*dx[0];
376 + break;
377 + case eAdressSphere:
378 + /* point at center of ref, assuming cubic geometry */
379 + // sqr_dl = 0.0;
380 + for (i = 0; i < 3; i++)
381 + {
382 + sqr_dl += dx[i]*dx[i];
383 + }
384 + break;
385 + }
386 + /* Don't thermostat the explicit region */
387 + dl = sqrt(sqr_dl);
388 +
389 + if (dl < adressr)
390 + {
391 + for (d = 0; d < DIM; d++)
392 + {
393 + if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !

→˓nFreeze[gf][d])
394 + {
395 +// real sd_V;
396 + real vn, fn;
397 + fn = f[n][d];
398 + vn = v[n][d] + (invmass[n]*fn + accel[ga][d])*dt;
399 + /* Here we include half of the friction+noise
400 + * update of v into the integration of x.
401 + */
402 + xprime[n][d] = x[n][d] + 0.5*(vn + v[n][d])*dt;
403 + }
404 + else
405 + {
406 + v[n][d] = 0.0;
407 + xprime[n][d] = x[n][d];

(continues on next page)

530 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

408 + }
409 + }
410 + continue;
411 + }
412 +
413 for (d = 0; d < DIM; d++)
414 {
415 if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !

→˓nFreeze[gf][d])
416 {
417 - real sd_V, vn;
418 + real sd_V, vn, fn;
419 + fn = f[n][d];
420 + if (fabs(fn)>fc)
421 + {
422 +// printf("SD (I) force-cap %e\n", fn);
423 + fn = fc1*fn/fabs(fn);
424 + }
425

426 sd_V = ism*sig[gt].V*rnd[d];
427 - vn = v[n][d] + (invmass[n]*f[n][d] + accel[ga][d])*dt;
428 + vn = v[n][d] + (invmass[n]*fn + accel[ga][d])*dt;
429 v[n][d] = vn*sdc[gt].em + sd_V;
430 /* Here we include half of the friction+noise
431 * update of v into the integration of x.
432 @@ -663,12 +731,39 @@
433 {
434 ga = cACC[n];
435 }
436 +
437 + xnew[0] = x[n][0], xnew[1] = x[n][1], xnew[2] = x[n][2];
438 + rvec_sub((*ref), xnew, dx);
439 + sqr_dl = 0.0;
440 + switch (adresstype)
441 + {
442 + case eAdressXSplit:
443 + /* plane through center of ref, varies in x direction */
444 + sqr_dl = dx[0]*dx[0];
445 + break;
446 + case eAdressSphere:
447 + /* point at center of ref, assuming cubic geometry */
448 + // sqr_dl = 0.0;
449 + for (i = 0; i < 3; i++)
450 + {
451 + sqr_dl += dx[i]*dx[i];
452 + }
453 + break;
454 + }
455 + /* Don't thermostat the explicit region */
456 + dl = sqrt(sqr_dl);
457

458 + if (dl < adressr)
459 + {
460 for (d = 0; d < DIM; d++)
461 {
462 if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !

→˓nFreeze[gf][d])
(continues on next page)

4.3. Software related to Extended Software Development Workshops 531

E-CAM Documentation, Release 0.2

(continued from previous page)

463 {
464 - v[n][d] = v[n][d] + (im*f[n][d] + accel[ga][d])*dt;
465 +
466 + real fn;
467 + fn = f[n][d];
468 +
469 + v[n][d] = v[n][d] + (im*fn + accel[ga][d])*dt;
470 xprime[n][d] = x[n][d] + v[n][d]*dt;
471 }
472 else
473 @@ -677,6 +772,31 @@
474 xprime[n][d] = x[n][d];
475 }
476 }
477 + continue;
478 + }
479 + for (d = 0; d < DIM; d++)
480 + {
481 + if ((ptype[n] != eptVSite) && (ptype[n] !=

→˓eptShell) && !nFreeze[gf][d])
482 + {
483 +
484 + real fn;
485 + fn = f[n][d];
486 + if (fabs(fn)>fc)
487 + {
488 + // printf("SD (II) force-cap %e\n", fn);
489 + fn = fc*fn/fabs(fn);
490 + }
491 +
492 + v[n][d] = v[n][d] + (im*fn +

→˓accel[ga][d])*dt;
493 + // v[n][d] = v[n][d] + (im*f[n][d] +

→˓accel[ga][d])*dt;
494 + xprime[n][d] = x[n][d] + v[n][d]*dt;
495 + }
496 + else
497 + {
498 + v[n][d] = 0.0;
499 + xprime[n][d] = x[n][d];
500 + }
501 + }
502 }
503 }
504 else
505 @@ -697,8 +817,45 @@
506 gt = cTC[n];
507 }
508

509 + xnew[0] = x[n][0], xnew[1] = x[n][1], xnew[2] = x[n][2];
510 + rvec_sub((*ref), xnew, dx);
511 + sqr_dl = 0.0;
512 + switch (adresstype)
513 + {
514 + case eAdressXSplit:
515 + /* plane through center of ref, varies in x direction */
516 + sqr_dl = dx[0]*dx[0];

(continues on next page)

532 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

517 + break;
518 + case eAdressSphere:
519 + /* point at center of ref, assuming cubic geometry */
520 + // sqr_dl = 0.0;
521 + for (i = 0; i < 3; i++)
522 + {
523 + sqr_dl += dx[i]*dx[i];
524 + }
525 + break;
526 + }
527 gmx_rng_cycle_3gaussian_table(step, ng, seed, RND_SEED_UPDATE, rnd);
528

529 + /* Don't thermostat the explicit region */
530 +
531 + dl = sqrt(sqr_dl);
532 + // real l2 = adressr+adressw;
533 +
534 + if (dl < adressr)
535 + {
536 + for (d = 0; d < DIM; d++)
537 + {
538 + if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !

→˓nFreeze[gf][d])
539 + {
540 + real vn;
541 +
542 + vn = v[n][d];
543 + xprime[n][d] = xprime[n][d] + 0.5*(v[n][d] - vn)*dt;
544 + }
545 + }
546 + continue;
547 + }
548 for (d = 0; d < DIM; d++)
549 {
550 if ((ptype[n] != eptVSite) && (ptype[n] != eptShell) && !

→˓nFreeze[gf][d])
551 @@ -1523,7 +1680,8 @@
552 gmx_update_t upd,
553 gmx_constr_t constr,
554 gmx_bool bFirstHalf,
555 - gmx_bool bCalcVir)
556 + gmx_bool bCalcVir,
557 + t_forcerec *fr)
558 {
559 gmx_bool bLastStep, bLog = FALSE, bEner = FALSE, bDoConstr = FALSE;
560 double dt;
561 @@ -1644,6 +1802,8 @@
562 end_th = start + ((nrend-start)*(th+1))/nth;
563

564 /* The second part of the SD integration */
565 + if (inputrec->bAdress)
566 + {
567 do_update_sd1(upd->sd,
568 start_th, end_th, dt,
569 inputrec->opts.acc, inputrec->opts.nFreeze,
570 @@ -1653,7 +1813,23 @@
571 inputrec->opts.ngtc, inputrec->opts.ref_t,

(continues on next page)

4.3. Software related to Extended Software Development Workshops 533

E-CAM Documentation, Release 0.2

(continued from previous page)

572 bDoConstr, FALSE,
573 step, inputrec->ld_seed,
574 - DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
575 + DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL,
576 + inputrec->adress->ex_forcecap, fr);
577 + }
578 + else
579 + {
580 + do_update_sd1(upd->sd,
581 + start_th, end_th, dt,
582 + inputrec->opts.acc, inputrec->opts.nFreeze,
583 + md->invmass, md->ptype,
584 + md->cFREEZE, md->cACC, md->cTC,
585 + state->x, xprime, state->v, force,
586 + inputrec->opts.ngtc, inputrec->opts.ref_t,
587 + bDoConstr, FALSE,
588 + step, inputrec->ld_seed,
589 + DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL,
590 + 5000., fr);
591 + }
592 }
593 inc_nrnb(nrnb, eNR_UPDATE, homenr);
594 wallcycle_stop(wcycle, ewcUPDATE);
595 @@ -1912,7 +2088,8 @@
596 t_commrec *cr, /* these shouldn't be here -- need to think

→˓about it */
597 t_nrnb *nrnb,
598 gmx_constr_t constr,
599 - t_idef *idef)
600 + t_idef *idef,
601 + t_forcerec *fr)
602 {
603 gmx_bool bNH, bPR, bDoConstr = FALSE;
604 double dt, alpha;
605 @@ -2031,6 +2208,21 @@
606 break;
607 case (eiSD1):
608 /* With constraints, the SD1 update is done in 2 parts */
609 + if (inputrec->bAdress)
610 + {
611 + do_update_sd1(upd->sd,
612 + start_th, end_th, dt,
613 + inputrec->opts.acc, inputrec->opts.nFreeze,
614 + md->invmass, md->ptype,
615 + md->cFREEZE, md->cACC, md->cTC,
616 + state->x, xprime, state->v, force,
617 + inputrec->opts.ngtc, inputrec->opts.ref_t,
618 + bDoConstr, TRUE,
619 + step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->

→˓gatindex : NULL,
620 + inputrec->adress->ex_forcecap, fr);
621 + }
622 + else
623 + {
624 do_update_sd1(upd->sd,
625 start_th, end_th, dt,
626 inputrec->opts.acc, inputrec->opts.nFreeze,

(continues on next page)

534 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

627 @@ -2039,7 +2231,9 @@
628 state->x, xprime, state->v, force,
629 inputrec->opts.ngtc, inputrec->opts.ref_t,
630 bDoConstr, TRUE,
631 - step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->

→˓gatindex : NULL);
632 + step, inputrec->ld_seed, DOMAINDECOMP(cr) ? cr->dd->

→˓gatindex : NULL,
633 + 5000., fr);
634 + }
635 break;
636 case (eiSD2):
637 /* The SD2 update is always done in 2 parts,
638 diff -Naur /storage/mi/ck69giso/gromacs-5.1.5/src/programs/mdrun/md.cpp /home/mi/

→˓ck69giso/gmx-515-lt/src/programs/mdrun/md.cpp
639 --- /storage/mi/ck69giso/gromacs-5.1.5/src/programs/mdrun/md.cpp 2017-12-21

→˓10:16:18.000000000 +0100
640 +++ /home/mi/ck69giso/gmx-515-lt/src/programs/mdrun/md.cpp 2018-12-03 12:14:02.

→˓874757865 +0100
641 @@ -1124,7 +1124,7 @@
642 update_coords(fplog, step, ir, mdatoms, state, fr->bMolPBC,
643 f, bUpdateDoLR, fr->f_twin, bCalcVir ? &fr->vir_twin_

→˓constr : NULL, fcd,
644 ekind, M, upd, bInitStep, etrtVELOCITY1,
645 - cr, nrnb, constr, &top->idef);
646 + cr, nrnb, constr, &top->idef, fr);
647

648 if (!bRerunMD || rerun_fr.bV || bForceUpdate) /* Why is rerun_fr.
→˓bV here? Unclear. */

649 {
650 @@ -1133,7 +1133,7 @@
651 state, fr->bMolPBC, graph, f,
652 &top->idef, shake_vir,
653 cr, nrnb, wcycle, upd, constr,
654 - TRUE, bCalcVir);
655 + TRUE, bCalcVir, fr);
656 wallcycle_start(wcycle, ewcUPDATE);
657 if (bCalcVir && bUpdateDoLR && ir->nstcalclr > 1)
658 {
659 @@ -1376,7 +1376,7 @@
660 state, fr->bMolPBC, graph, f,
661 &top->idef, tmp_vir,
662 cr, nrnb, wcycle, upd, constr,
663 - TRUE, bCalcVir);
664 + TRUE, bCalcVir, fr);
665 }
666 }
667 /* ######### START SECOND UPDATE STEP ################# */
668 @@ -1416,7 +1416,7 @@
669 update_coords(fplog, step, ir, mdatoms, state, fr->bMolPBC, f,
670 bUpdateDoLR, fr->f_twin, bCalcVir ? &fr->vir_twin_

→˓constr : NULL, fcd,
671 ekind, M, upd, FALSE, etrtVELOCITY2,
672 - cr, nrnb, constr, &top->idef);
673 + cr, nrnb, constr, &top->idef, fr);
674 }
675

(continues on next page)

4.3. Software related to Extended Software Development Workshops 535

E-CAM Documentation, Release 0.2

(continued from previous page)

676 /* Above, initialize just copies ekinh into ekin,
677 @@ -1438,14 +1438,14 @@
678

679 update_coords(fplog, step, ir, mdatoms, state, fr->bMolPBC, f,
680 bUpdateDoLR, fr->f_twin, bCalcVir ? &fr->vir_twin_constr :

→˓NULL, fcd,
681 - ekind, M, upd, bInitStep, etrtPOSITION, cr, nrnb, constr, &

→˓top->idef);
682 + ekind, M, upd, bInitStep, etrtPOSITION, cr, nrnb, constr, &

→˓top->idef, fr);
683 wallcycle_stop(wcycle, ewcUPDATE);
684

685 update_constraints(fplog, step, &dvdl_constr, ir, mdatoms, state,
686 fr->bMolPBC, graph, f,
687 &top->idef, shake_vir,
688 cr, nrnb, wcycle, upd, constr,
689 - FALSE, bCalcVir);
690 + FALSE, bCalcVir, fr);
691

692 if (bCalcVir && bUpdateDoLR && ir->nstcalclr > 1)
693 {
694 @@ -1472,7 +1472,7 @@
695

696 update_coords(fplog, step, ir, mdatoms, state, fr->bMolPBC, f,
697 bUpdateDoLR, fr->f_twin, bCalcVir ? &fr->vir_twin_

→˓constr : NULL, fcd,
698 - ekind, M, upd, bInitStep, etrtPOSITION, cr, nrnb,

→˓constr, &top->idef);
699 + ekind, M, upd, bInitStep, etrtPOSITION, cr, nrnb,

→˓constr, &top->idef, fr);
700 wallcycle_stop(wcycle, ewcUPDATE);
701

702 /* do we need an extra constraint here? just need to copy out of
→˓state->v to upd->xp? */

703 @@ -1484,7 +1484,7 @@
704 state, fr->bMolPBC, graph, f,
705 &top->idef, tmp_vir,
706 cr, nrnb, wcycle, upd, NULL,
707 - FALSE, bCalcVir);
708 + FALSE, bCalcVir, fr);
709 }
710 if (bVV)
711 {

Downloadable version of patch file

There is also the abrupt_adress example repository which contains example files to be used as described above.

Software Technical Information

Name Tools for AdResS.

Language C/C++, Python, Fortran, BASH, AWK

Licence Opensource

Application Documentation See GROMACS web page: http://www.gromacs.org. For analysis tools and thermo-

536 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.e-cam2020.eu/krekeler/abrupt_adress
http://www.gromacs.org

E-CAM Documentation, Release 0.2

dynamic force calculation see VOTCA web page: http://www.votca.org/home. Visualize molecular dynamics
with VMD.

Documentation Tool none

Relevant Training Material none

Tools for AdResS

• Purpose of Module

• Background Information

• Source Code

Purpose of Module

One purpose of our project is to promote GC-AdResS as a method. It is an advanced method, for people with ex-
perience, and once the simulation is done there are several properties and checks to consider to make sure that the
simulation was successful.

This module provides little tools to make working with AdResS easier. Content:

1) how to mask the configuration (output from a full atomistic simulation run) to generate the double resolution
configuration.

2) Quick and dirty: get the reference coordinate from the GROMACS input file

3) Checks for the density (for both geometries currently implemented in GROMACS version 5.1.5)

4) Check the temperature on the fly

5) A short fortran code to calculate the distribution of the angles in slab-like AdResS simulation.

Background Information

Source Code

Quick and fast data grab from the configuration file:

tail conf.gro | awk '(NF==3){print $1/2.0,$2/2.0,$3/2.0}'

How to mask the configuration for setting it up for the AdResS simulation. A straigh forward way is using VOTCA :

csg_map --cg mapping_scheme.xml --hybrid --trj input_file.gro --out output_file.gro --
→˓top atomistic_run/topol.tpr

Check temperature on the fly from the output md.log:

#!/bin/bash
grep -A 1 --no-group-separator Lambda md.log | grep -v Step | awk '{print $1}' >
→˓mdlogging1
grep -A 1 --no-group-separator Temp md.log | grep -v Temp | awk '{print $2}' >
→˓mdlogging2 (continues on next page)

4.3. Software related to Extended Software Development Workshops 537

http://www.votca.org/home
http://www.ks.uiuc.edu/Research/vmd/
http://www.votca.org/tutorials

E-CAM Documentation, Release 0.2

(continued from previous page)

paste mdlogging1 mdlogging2
paste mdlogging1 mdlogging2 >temperature
rm mdlogging1 mdlogging2

Quick grab of the density in the xsplit (slab like) configuration. One way is using the tool from GROMACS:

gmx density -d X -f trajectory_file.xtc -sl 50

Quick grab of the density in the sphere configuration. We use VOTCA for it:

csg_density -- axis r -- rmax 10. --ref [x_ref,y_ref,z_ref] --trj trajectory_input.
→˓xtc --top topol.tpr --out SOL.dens.out

Collect the p(N) data and combine them in one file. For that we use VMD, it includes a script called topotools, which
is used to handle the trajectory. This script can be run from the command line directly:

vmd -dispdev text -e extract_coord.tcl
grep -B1 "Frame" WCG.xyz > a
sed '/Frame/ {$!N;d;}' a > column2
grep -B0 "Frame" WCG.xyz > a
sed -i s/Frame// a
sed -i s/--// a
sed -i s/:// a
sed '/^$/d' a > column1
paste column1 column2|awk '{print $1, $2}' > dat.3nm.pn.WCG.dat

And the corresponding extract_coord.tcl:

package require topotools 1.2
mol new conf.gro
mol addfile traj_comp.xtc type xtc waitfor all first 0 last -1 step 1
topo writevarxyz WCG.xyz selmod "name WCG and (x>285 and x<315)"
exit

All the small scripts are available as files:

analysis tools source code

Software Technical Information

Name Velocity-Velocity autocorrelation function for AdResS.

Language C/C++

Licence Opensource

Documentation Tool none

Application Documentation http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Relevant Training Material http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Velocity-Velocity autocorrelation function for AdResS

538 Chapter 4. Meso- and Multi-scale Modules

http://www.gromacs.org
http://www.votca.org/tutorials
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/current/docs.html
http://www.ks.uiuc.edu/Research/vmd/current/docs.html

E-CAM Documentation, Release 0.2

• Purpose of Module

• Source Code

Purpose of Module

One purpose of our project is to promote GC-AdResS as a method. It is an advanced method, for people with ex-
perience, and once the simulation is done there are several properties and checks to consider to make sure that the
simulation was successful.

This module provides the code to run a velocity velocity autocorrelation function on the current geometries available
in the Abrupt AdResS implementation. The paper Ref. describes the correlation functions and why they can be used
in AdResS. This code is based on that theory and has been developed to check the dynamics of the local thermostat
GC-AdResS simulations presented in the paper cited above.

Source Code

Files are stored here: https://gitlab.e-cam2020.eu/krekeler/analyze.energy. The source code for the velocity autocorre-
lation function can be found here: https://gitlab.e-cam2020.eu/krekeler/analyze.energy/tree/master/app/cal_vel_acc_
adr.cpp

The installation instruction can be found https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#
installation-instructions.

Usage:

cal_vel_acc_adr:
options:
-h , "print this message")
-b start time
-e end time (=number of MD steps)
--x0 lower bound of the interval
--x1 upper bound of the interval (--x1 0, use the whole box = atomistic)
--frame length of correlation
--acc breaks
--total number of frames
--tf Output Frequency (=Delta_t)
-m type of simulation to analyze (adress or atom)
-f input .xtc file
-o output file

It is important to have the XDR files and setup in the same directory as they have to be specified in the Makefile. The
XDR files can be found via the GROMACS web page, see http://www.gromacs.org/Developer_Zone/Programming_
Guide/XTC_Library or ftp://ftp.gromacs.org/pub/contrib/xdrfile-1.1.4.tar.gz.

Software Technical Information

Name Dipole-Dipole autocorrelation function for AdResS.

Language C/C++

Licence Open source (no specific licence provided)

Documentation Tool none

4.3. Software related to Extended Software Development Workshops 539

http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042
https://gitlab.e-cam2020.eu/krekeler/analyze.energy
https://gitlab.e-cam2020.eu/krekeler/analyze.energy/tree/master/app/cal_vel_acc_adr.cpp
https://gitlab.e-cam2020.eu/krekeler/analyze.energy/tree/master/app/cal_vel_acc_adr.cpp
https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#installation-instructions
https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#installation-instructions
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
ftp://ftp.gromacs.org/pub/contrib/xdrfile-1.1.4.tar.gz

E-CAM Documentation, Release 0.2

Application Documentation http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Relevant Training Material http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Dipole-Dipole autocorrelation function for AdResS

• Purpose of Module

• Background Information

• Source Code

Purpose of Module

One purpose of our project is to promote GC-AdResS as a method. It is an advanced method, for people with ex-
perience, and once the simulation is done there are several properties and checks to consider to make sure that the
simulation was successful.

This module provides the code to run a dipole dipole autocorrelation function on the current geometries available in
the Abrupt AdResS implementation. The paper Ref. describes the correlation functions and why they can be used
in AdResS. This code is based on that theory and has been developed to check the dynamics of the local thermostat
GC-AdResS simulations presented in the paper cited above.

Background Information

See Abrupt GC-AdResS: A new and more general implementation

Source Code

Files are stored under https://gitlab.e-cam2020.eu/krekeler/analyze.energy. The source code for the dipole autocorre-
lation function can be found at https://gitlab.e-cam2020.eu/krekeler/analyze.energy/blob/master/app/cal_dacf.cpp.

The installation instructions are given at https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#
installation-instructions.

Usage:

cal_dacf

options:
-h print this message
-b start time
-e end time (=number of MD steps)
--x0 lower bound of the interval
--x1 upper bound of the interval (--x1 0, use the whole box = atomistic)
--frame length of correlation
--q0 charge on oxygen
--q1 charge on hydrogen
--acc breaks
--total number of frames

(continues on next page)

540 Chapter 4. Meso- and Multi-scale Modules

http://www.ks.uiuc.edu/Research/vmd/current/docs.html
http://www.ks.uiuc.edu/Research/vmd/current/docs.html
http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042
https://gitlab.e-cam2020.eu/krekeler/analyze.energy
https://gitlab.e-cam2020.eu/krekeler/analyze.energy/blob/master/app/cal_dacf.cpp
https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#installation-instructions
https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#installation-instructions

E-CAM Documentation, Release 0.2

(continued from previous page)

--tf Output Frequency (=Delta_t)
-m type of simulation to analyze (adress or atom)
-f input .xtc file
-o output file

It is important to have the XDR files and setup in the same directory as they have to be specified in the Makefile. The
XDR files can be found via the GROMACS web page, see http://www.gromacs.org/Developer_Zone/Programming_
Guide/XTC_Library or ftp://ftp.gromacs.org/pub/contrib/xdrfile-1.1.4.tar.gz.

Software Technical Information

Name Energy (AT)/Energy(interface) ratio: Necessary condition for AdResS simulations.

Language C/C++

Licence none

Documentation Tool none

Application Documentation http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Relevant Training Material http://www.ks.uiuc.edu/Research/vmd/current/docs.html

Energy (AT)/Energy(interface) ratio: Necessary condition for AdResS simulations

• Purpose of Module

• Running the code:

• Source Code

Purpose of Module

One purpose of our project is to promote GC-AdResS as a method. It is an advanced method, thus for people with
experience, and once the simulation is done there are several properties and checks to consider to make sure that the
simulation was successful.

This module provides the code to check one very important quantity, the interaction energy in the atomistic region
compared with the interaction energy in the comparable subregion in a full atomistic simulation. The difference
between those energies is the interaction energy at the interface, which has to be much smaller than the interaction
energy in the atomistic region.

The theory is described in Ref.. This legacy code is based on that theory and has been developed to check the energy
of the local thermostat GC-AdResS simulations presented in the paper cited above.

Running the code:

The executable is called energy. The options on how to run the analysis:

4.3. Software related to Extended Software Development Workshops 541

http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
ftp://ftp.gromacs.org/pub/contrib/xdrfile-1.1.4.tar.gz
http://www.ks.uiuc.edu/Research/vmd/current/docs.html
http://www.ks.uiuc.edu/Research/vmd/current/docs.html
http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042

E-CAM Documentation, Release 0.2

-h : help message
-b : start frame
-e : end frame
-n : number of regions
-x0 : start transition region
-x1 : end transition region (if x1 == 0, use the whole box)
-q1 : charge on oxygen
-q2 : charge on hydrogen
-sig : sigma
-eps : eps
-beads : no. of beads in one ring polymer
-c : cut off radius for neighbor list search
-f : the input .xtc file (default: traj.xtc)
-o :the output file

Source Code

Files are stored under https://gitlab.e-cam2020.eu/krekeler/analyze.energy. The source code for the energy calcula-
tion can be found at https://gitlab.e-cam2020.eu/krekeler/analyze.energy/blob/master/app/energy.cpp. The installation
instruction are available at https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#installation-instructions.

It is important to have the XDR files and setup in the same directory as they have to be specified in the Makefile. The
XDR files can be found via the GROMACS web page, see http://www.gromacs.org/Developer_Zone/Programming_
Guide/XTC_Library or ftp://ftp.gromacs.org/pub/contrib/xdrfile-1.1.4.tar.gz.

4.3.6 ALL (A Load-balancing Library)

Most modern parallelized (classical) particle simulation programs are based on a spatial decomposition method as an
underlying parallel algorithm: different processors administrate different spatial regions of the simulation domain and
keep track of those particles that are located in their respective region. Processors exchange information

• in order to compute interactions between particles located on different processors

• to exchange particles that have moved to a region administrated by a different processor.

This implies that the workload of a given processor is very much determined by its number of particles, or, more
precisely, by the number of interactions that are to be evaluated within its spatial region.

Certain systems of high physical and practical interest (e.g. condensing fluids) dynamically develop into a state where
the distribution of particles becomes spatially inhomogeneous. Unless special care is being taken, this results in a
substantially inhomogeneous distribution of the processors’ workload. Since the work usually has to be synchronized
between the processors, the runtime is determined by the slowest processor (i.e. the one with highest workload). In
the extreme case, this means that a large fraction of the processors is idle during these waiting times. This problem
becomes particularly severe if one aims at strong scaling, where the number of processors is increased at constant
problem size: Every processor administrates smaller and smaller regions and therefore inhomogeneities will become
more and more pronounced. This will eventually saturate the scalability of a given problem, already at a processor
number that is still so small that communication overhead remains negligible.

The solution to this problem is the inclusion of dynamic load balancing techniques. These methods redistribute the
workload among the processors, by lowering the load of the most busy cores and enhancing the load of the most idle
ones. Fortunately, several successful techniques are known already to put this strategy into practice. Nevertheless,
dynamic load balancing that is both efficient and widely applicable implies highly non-trivial coding work. Therefore
it has has not yet been implemented in a number of important codes of the E-CAM community, e.g. DL_Meso,
DL_Poly, Espresso, Espresso++, to name a few. Other codes (e.g. LAMMPS) have implemented somewhat simpler
schemes, which however might turn out to lack sufficient flexibility to accommodate all important cases. Therefore,

542 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.e-cam2020.eu/krekeler/analyze.energy
https://gitlab.e-cam2020.eu/krekeler/analyze.energy/blob/master/app/energy.cpp
https://gitlab.e-cam2020.eu:10443/krekeler/analyze.energy#installation-instructions
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
ftp://ftp.gromacs.org/pub/contrib/xdrfile-1.1.4.tar.gz

E-CAM Documentation, Release 0.2

the ALL library was created in the context of an Extended Software Development Workshop (ESDW) within E-CAM
(see ALL ESDW event details), where code developers of CECAM community codes were invited together with
E-CAM postdocs, to work on the implementation of load balancing strategies. The goal of this activity was to increase
the scalability of these applications to a larger number of cores on HPC systems, for spatially inhomogeneous systems,
and thus to reduce the time-to-solution of the applications.

Software Technical Information

Name A Load Balancing Library (ALL)

Language C++, Fortran interfaces available

Licence BSD 3-Clause

Documentation Tool No tool used in source code, repo documentation written in Markdown

Application Documentation See ALL repository

Relevant Training Material None available

Software Module Developed by Rene Halver

Polymer melt test is provided by Dr. Horacio V. Guzman

Module Committed by Dr. Horacio V. Guzman

ALL Tensor-Product method

• Purpose of Module

• Background Information

• ALL: Building and Testing

• Source Code

A Load-Balancing Library (ALL) library aims to provide an easy and portable way to include dynamic domain-based
load balancing into particle based simulation codes. The library is developed in the Simulation Laboratory Molecular
Systems of the Juelich Supercomputing Centre at Forschungszentrum Juelich.

Purpose of Module

This module provides an additional method to the ALL library , up-to-date descriptions of the methods in the library
can be found in the ALL README file.

For the Tensor-Product method, the work on all processes (subdomains) is reduced over the cartesian planes in the
systems. This work is then equalized by adjusting the borders of the cartesian planes.

Background Information

See ALL (A Load-balancing Library) for details.

4.3. Software related to Extended Software Development Workshops 543

https://www.e-cam2020.eu/legacy_event/extended-software-development-workshop-for-atomistic-meso-and-multiscale-methods-on-hpc-systems/
https://choosealicense.com/licenses/bsd-3-clause/
https://en.wikipedia.org/wiki/Markdown
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/README.md

E-CAM Documentation, Release 0.2

ALL: Building and Testing

ALL is a C++ header only library using template programming, strictly speaking there is no need to install the library,
you simply include the header files in your application. In order to provide examples, ALL uses the CMake build
system, specific build and installation requirements can be found in the ALL README file. If you wish to use/test
the topological mesh scheme, you will need an MPI-enabled installation of the VTK package.

To build ALL, begin in the root directory of the package and use

export ALL_INSTALLATION=/path/to/my/loadbalancing/install
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$ALL_INSTALLATION -DCM_ALL_VTK_OUTPUT=ON -DCM_ALL_
→˓VORONOI=ON
make -j
make install
cd ..

This will create an installation of ALL in the path pointed to by ALL_INSTALLATION. ALL_test (in the bin
folder) is the binary that performs the tests. If you omit the option -DCM_ALL_VTK_OUTPUT=ON you will not
require the VTK dependency (but cannot use the unstructured mesh method).

In the example/jube/input subdirectory there are 3 test data sets available, namely:

1. Simple Wye-shape biosystem;

2. Heterogeneous polymer melt and

3. A rotated version of the Wye-shaped biosystem.

These data sets are in raw ascii format and need to be translated into a format that can be consumed by ALL_test.
A utility ASCII2MPIBIN is provided to do the conversion, with the command line options:

ASCII2MPIBIN <in_file (ASCII)> <out_file (binary)> <n_x> <n_y> <n_z>

where n_x, n_y, n_z are the number of (MPI) processes (in the X, Y and Z directions) that will be used.

ALL_test takes a number of options,

ALL_test <Method> <Number of iterations> <gamma> <weighted> <input file> <system
→˓size: x, y, z> <domain layout: x, y, z>

Method (integer) is the load-balancing scheme to use of which there are 5 options:

0 : Tensor
1 : Staggered
2 : Unstructured
3 : Voronoi
4 : Histogram

, gamma (double) is a relaxation which controls the convergence of the load-balancing methods, weighted (boolean)
indicates whether points should be assigned a weight. The system size and domain layout are provided in the output
of the call to ASCII2MPIBIN.

An example execution using the polymer melt data set on 125 processors looks like

ASCII2MPIBIN globalBlockCoordsPolymer.txt input.bin 5 5 5
mpirun -n 125 ALL_test 0 50 8.0 0 input.bin 80 80 450 5 5 5

544 Chapter 4. Meso- and Multi-scale Modules

https://cmake.org/runningcmake/
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/README.md
https://vtk.org/

E-CAM Documentation, Release 0.2

Source Code

The implementation of the Tensor-Product method in ALL can be found in ALL_Tensor.hpp.

The source code to the ALL library is available as a git repository at https://gitlab.version.fz-juelich.de/SLMS/
loadbalancing . To obtain a copy of the repository you can use

git clone https://gitlab.version.fz-juelich.de/SLMS/loadbalancing.git

However, please note that the source code is currently under embargo until an associated paper is published, if you
would like to be obtain a copy of the code, please contact Prof. Godehard Sutmann at g.sutmann@fz-juelich.
de.

Software Technical Information

Name A Load Balancing Library (ALL)

Language C++, Fortran interfaces available

Licence BSD 3-Clause

Documentation Tool No tool used in source code, repo documentation written in Markdown

Application Documentation See ALL repository

Relevant Training Material None available

Software Module Developed by Rene Halver

ALL Staggered Grid Method

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

A Load-Balancing Library (ALL) library aims to provide an easy and portable way to include dynamic domain-based
load balancing into particle based simulation codes. The library is developed in the Simulation Laboratory Molecular
Systems of the Juelich Supercomputing Centre at Forschungszentrum Juelich.

Purpose of Module

This module provides an additional method to the ALL library, up-to-date descriptions of the methods in the library
can be found in the ALL README file.

In the staggered-grid scheme, a 3-step hierarchical approach is applied, where:

• work over the cartesian planes is reduced, before the borders of these planes are adjusted;

• in each of the cartesian planes the work is reduced for each cartesian column. These columns are then adjusted
to each other to homogenize the work in each column;

• the work between neighboring domains in each column is adjusted.

4.3. Software related to Extended Software Development Workshops 545

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/include/ALL_Tensor.hpp
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://choosealicense.com/licenses/bsd-3-clause/
https://en.wikipedia.org/wiki/Markdown
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/README.md

E-CAM Documentation, Release 0.2

Each adjustment is done locally with the neighboring planes, columns or domains by adjusting the adjacent boundaries.

Background Information

See ALL (A Load-balancing Library) for details.

Building and Testing

See ALL: Building and Testing for details.

Source Code

The implementation of the method in ALL can be found in ALL_Staggered.hpp.

The source code to the ALL library is available as a git repository at https://gitlab.version.fz-juelich.de/SLMS/
loadbalancing . To obtain a copy of the repository you can use

git clone https://gitlab.version.fz-juelich.de/SLMS/loadbalancing.git

However, please note that the source code is currently under embargo until an associated paper is published, if you
would like to be obtain a copy of the code, please contact Prof. Godehard Sutmann at g.sutmann@fz-juelich.
de.

Software Technical Information

Name A Load Balancing Library (ALL)

Language C++, Fortran interfaces available

Licence BSD 3-Clause

Documentation Tool No tool used in source code, repo documentation written in Markdown

Application Documentation See ALL repository

Relevant Training Material None available

Software Module Developed by Rene Halver

ALL Unstructured Mesh Method

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

A Load-Balancing Library (ALL) library aims to provide an easy and portable way to include dynamic domain-based
load balancing into particle based simulation codes. The library is developed in the Simulation Laboratory Molecular
Systems of the Juelich Supercomputing Centre at Forschungszentrum Juelich.

546 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/include/ALL_Staggered.hpp
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://choosealicense.com/licenses/bsd-3-clause/
https://en.wikipedia.org/wiki/Markdown
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing

E-CAM Documentation, Release 0.2

Purpose of Module

This module provides an additional method to the ALL library, up-to-date descriptions of the methods in the library
can be found in the ALL README file.

In contrast to ALL Tensor-Product method and ALL Staggered Grid Method, the unstructured mesh method adjusts
domains not by moving boundaries but vertices, i.e. corner points, of domains. For each vertex a force, based on the
differences in work of the neighboring domains, is computed and the vertex is shifted in a way to equalize the work
between these neighboring domains.

Background Information

See ALL (A Load-balancing Library) for details.

Building and Testing

See ALL: Building and Testing for details.

Source Code

The implementation of the method in ALL can be found in ALL_Unstructured.hpp.

The source code to the ALL library is available as a git repository at https://gitlab.version.fz-juelich.de/SLMS/
loadbalancing . To obtain a copy of the repository you can use

git clone https://gitlab.version.fz-juelich.de/SLMS/loadbalancing.git

However, please note that the source code is currently under embargo until an associated paper is published, if you
would like to be obtain a copy of the code, please contact Prof. Godehard Sutmann at g.sutmann@fz-juelich.
de.

Software Technical Information

Name A Load Balancing Library (ALL)

Language C++, Fortran interfaces available

Licence BSD 3-Clause

Documentation Tool No tool used in source code, repo documentation written in Markdown

Application Documentation See ALL repository

Relevant Training Material None available

Software Module Developed by Rene Halver

ALL Voronoi Mesh Method

• Purpose of Module

4.3. Software related to Extended Software Development Workshops 547

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/README.md
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/include/ALL_Unstructured.hpp
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://choosealicense.com/licenses/bsd-3-clause/
https://en.wikipedia.org/wiki/Markdown
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing

E-CAM Documentation, Release 0.2

• Background Information

• Building and Testing

• Source Code

A Load-Balancing Library (ALL) library aims to provide an easy and portable way to include dynamic domain-based
load balancing into particle based simulation codes. The library is developed in the Simulation Laboratory Molecular
Systems of the Juelich Supercomputing Centre at Forschungszentrum Juelich.

Purpose of Module

This module provides an additional method to the ALL library, up-to-date descriptions of the methods in the library
can be found in the ALL README file.

Similar to the topological mesh method (ALL Unstructured Mesh Method), the Voronoi mesh method computes a
force, based on work differences. In contrast to the topological mesh method, the force acts on a Voronoi point rather
than a vertex, i.e. a point defining a Voronoi cell, which describes the domain. Consequently, the number of neighbors
is not a conserved quantity, i.e. the topology may change over time. ALL uses the Voro++ library published by the
Lawrance Berkeley Laboratory for the generation of the Voronoi mesh.

Background Information

See ALL (A Load-balancing Library) for details.

Building and Testing

See ALL: Building and Testing for details.

Source Code

The implementation of the method in ALL can be found in ALL_Voronoi.hpp.

The source code to the ALL library is available as a git repository at https://gitlab.version.fz-juelich.de/SLMS/
loadbalancing . To obtain a copy of the repository you can use

git clone https://gitlab.version.fz-juelich.de/SLMS/loadbalancing.git

However, please note that the source code is currently under embargo until an associated paper is published, if you
would like to be obtain a copy of the code, please contact Prof. Godehard Sutmann at g.sutmann@fz-juelich.
de.

Software Technical Information

Name A Load Balancing Library (ALL)

Language C++, Fortran interfaces available

Licence BSD 3-Clause

Documentation Tool No tool used in source code, repo documentation written in Markdown

Application Documentation See ALL repository

548 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/README.md
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/include/ALL_Voronoi.hpp
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://choosealicense.com/licenses/bsd-3-clause/
https://en.wikipedia.org/wiki/Markdown
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing

E-CAM Documentation, Release 0.2

Relevant Training Material None available

Software Module Developed by Rene Halver

ALL Histogram-based Staggered Grid Method

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

A Load-Balancing Library (ALL) library aims to provide an easy and portable way to include dynamic domain-based
load balancing into particle based simulation codes. The library is developed in the Simulation Laboratory Molecular
Systems of the Juelich Supercomputing Centre at Forschungszentrum Juelich.

Purpose of Module

This module provides an additional method to the ALL library, up-to-date descriptions of the methods in the library
can be found in the ALL README file.

The histogram-based staggered-grid scheme results in the same grid as the staggered-grid scheme (see ALL Staggered
Grid Method), this scheme uses the cumulative work function in each of the three cartesian directions in order to
generate this grid. Using histograms and the previously defined distribution of process domains in a cartesian grid,
this scheme generates in three steps a staggered-grid result, in which the work is distributed as evenly as the resolution
of the underlying histogram allows. In contrast to the other schemes this scheme depends on a global exchange of
work between processes.

Background Information

See ALL (A Load-balancing Library) for details.

Building and Testing

See ALL: Building and Testing for details.

Source Code

The implementation of the method in ALL can be found in ALL_Histogram.hpp.

The source code to the ALL library is available as a git repository at https://gitlab.version.fz-juelich.de/SLMS/
loadbalancing . To obtain a copy of the repository you can use

git clone https://gitlab.version.fz-juelich.de/SLMS/loadbalancing.git

However, please note that the source code is currently under embargo until an associated paper is published, if you
would like to be obtain a copy of the code, please contact Prof. Godehard Sutmann at g.sutmann@fz-juelich.
de.

4.3. Software related to Extended Software Development Workshops 549

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/README.md
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/blob/master/include/ALL_Histogram.hpp
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing

E-CAM Documentation, Release 0.2

Software Technical Information

Name A Load Balancing Library (ALL) - C++ interface

Language C++, Fortran interfaces available

Licence BSD 3-Clause

Documentation Tool In source provided by Doxygen, additional using Sphinx

Application Documentation http://slms.pages.jsc.fz-juelich.de/websites/all-website/sphinx/api/ALL.html

Relevant Training Material Webinar (YT)

Software Module Developed by Rene Halver, Stephan Schulz

ALL C++ interface

• Purpose of Module

• Background Information

• Technical Details

• Building

• Source Code

Since C++ becomes more common in the HPC environment, therefore the default interface for ALL is written in that
language. The library uses class inheritance to administrate the different load-balancing methods. Every necessary
functionality to use the library is provided by the interface. In addition there is a Fortran interface provided (description
in module ALL Fortran interface).

Purpose of Module

This module is necessary for all users to couple their code with the ALL library.

It is currently used in all projects, which already include the ALL library to their code and are based on C and C++.

Background Information

The interface is part of ALL which can be found at https://gitlab.version.fz-juelich.de/SLMS/loadbalancing in the
include subdirectory. It is called ALL.hpp

Technical Details

The C++ interface is a header-based solution, as it uses C++ templating capabilities to support different types of
floating point numbers to describe domain borders and work loads. Internally class inheritance is used to administrate
the different included load-balnacing methods. This should provide an easy way to include future additions of new
methods into the library.

550 Chapter 4. Meso- and Multi-scale Modules

https://choosealicense.com/licenses/bsd-3-clause/
http://slms.pages.jsc.fz-juelich.de/websites/all-website/sphinx/api/ALL.html
https://www.youtube.com/watch?v=cUdvsQyxVh0&list=PLmhmpa4C4MzY02eaacXImTts2aGJHrdwQ
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing

E-CAM Documentation, Release 0.2

Building

General installation instructions for ALL can be found in the README.md of the ALL repository (which is also
distributed with each release).

As the C++ interface is the default interface of the ALL library, there is no need to explicitly enable it. The in-
terface provides functions to create an object which handles the computations of new boundaries based on pro-
vided sets of domain borders and work loads. In addition, if the library is compiled with VTK support (requires
CM_ALL_VTK_OUTPUT in CMake), functionality to create VTK descriptions of the domain structure is provided
(for all methods working on orthogonal domains).

Source Code

The source code for this interface consists of: include/ALL.hpp

Software Technical Information

Name A Load Balancing Library (ALL)

Language C++, Fortran interfaces available

Licence BSD 3-Clause

Documentation Tool In source provided by Doxygen, additional using Sphinx

Application Documentation http://slms.pages.jsc.fz-juelich.de/websites/all-website/sphinx/api/ALL_module.
html

Relevant Training Material Webinar (YT)

Software Module Developed by Stephan Schulz

ALL Fortran interface

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

There is still a lot of Fortran code in use and the low entry barrier to the language makes it an easy choice for beginning
scientific programmers. To be able to utilize the features of the library in Fortran code this interface is provided. It
provides basically the same functionality as the C++ interface.

Purpose of Module

This module is necessary for any Fortran developers trying to use this library.

It is currently in use by the Fortran Multi Particle Method written for the thesis of Stephan Schulz. This application of
the interface is documented in the module MPM Integration.

4.3. Software related to Extended Software Development Workshops 551

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing#installation-and-requirements
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/blob/master/include/ALL.hpp
https://choosealicense.com/licenses/bsd-3-clause/
http://slms.pages.jsc.fz-juelich.de/websites/all-website/sphinx/api/ALL_module.html
http://slms.pages.jsc.fz-juelich.de/websites/all-website/sphinx/api/ALL_module.html
https://www.youtube.com/watch?v=2K2YFdzIJF4&list=PLmhmpa4C4MzY02eaacXImTts2aGJHrdwQ&index=3

E-CAM Documentation, Release 0.2

Background Information

The interface is part of ALL which can be found at https://gitlab.version.fz-juelich.de/SLMS/loadbalancing in the src
subdirectory. It is called ALL_module.F90. Additionally, an internal C wrapper is used for the C++ class, since
Fortran can only interoperate with C.

Building and Testing

The Fortran module must be explicitly enabled when building the library. This is done by setting the CMake variable
CM_ALL_FORTRAN to ON. The use of the mpi_f08module can also be enabled with CM_ALL_USE_F08. Then the
new MPI derived types can be used directly. The requisite compilers and MPI implementations must be present. Also
note, that the ALL module must be compiled by the same Fortran compiler as the application (and MPI implementation
if any MPI module is used). More information is available in the libraries documentation in the code’s repository in
docs/Install.rst.

Source Code

The source code for this interface consists of the C wrapper src/ALL_fortran.cpp and the Fortran module ALL
src/ALL_module.F90.

Software Technical Information

Name A Load Balancing Library (ALL)/GMPM-PoC

Language Fortran/C/C++

Licence BSD 3-Clause

Documentation Tool In source documentation using Doxygen, additional man pages and plain text

Application Documentation Non public/in repo

Relevant Training Material Webinar (YT)

Software Module Developed by Stephan Schulz

MPM Integration

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The material point method (MPM) is used to simulate continuous matter and is especially suited for the simulation of
large deformations. Once large deformation are present, a dynamic load balancing solution is sensible to efficiently
simulate large systems. Even if the initial work distribution is good, it is very often the case, that this distribution is
much less so during the simulation run itself. The load balancing library ALL provides an easy plug and play solution
to this problem and this module describes the details in how the library is integrated. Thanks to the good load balancing
provided by the library larger systems can be simulated with less computational cost.

552 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/blob/master/src/ALL_fortran.cpp
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/blob/master/src/ALL_module.F90
https://choosealicense.com/licenses/bsd-3-clause/
https://www.youtube.com/watch?v=2K2YFdzIJF4&list=PLmhmpa4C4MzY02eaacXImTts2aGJHrdwQ&index=3

E-CAM Documentation, Release 0.2

Purpose of Module

This module shows the straight forwardness of including the load balancing library into already existing code. De-
pending on the simulation code additional precautions must be taken and those needed for the MPM simulation code
are presented here. The prerequisites for the simulation code are also shown. Looking at these will help determine
whether a simulation code is particularly suited for integrating ALL or if some further work is needed when integrating.

This module also shows a real world application of the Fortran interface provided with ALL (documented in ALL
Fortran interface).

The MPM simulation code with integrated ALL is used by Stephan Schulz in his thesis.

Background Information

The load balancing library ALL is integrated into the material point method simulation code GMPM-PoC, which is
written by Stephan Schulz during his thesis. The simulation code will be released to the public in the future.

Certain aspects of the simulation code require additional treatment of the library, or additional features of the library.
First, the open boundaries of the simulation code require continuous updates of the outer domain boundaries of the
boundary domains. The system extent is adapted to the particle’s bounding box each time step. This also means,
the geometry generated in the last balance step by the library cannot be used directly. It is therefore saved by the
simulation code, adapted to the new system extent and then given to the library as the basis for the new geometry.

The communication is based on grid halos and only accommodates nearest neighbor communication. This causes the
minimum domain size to be the width of exactly this halo. The library supports this feature and only the aforemen-
tioned outer domain bounds must be checked for compliance with the minimum size. The other domain boundaries
are automatically sufficiently large due to the library.

And lastly, the particle communication at the end of each time step also only accounts for nearest neighbor commu-
nication. This means, that a domain’s boundary must not change so much, that it needs to retrieve particles from a
process that is not its nearest neighbor. Due to the way the library moves boundaries in the staggered grid and tensor
approaches, this is also already guaranteed to be true. There is always an overlap between the old domain’s volume
and the new domain’s.

However, the library also has a few requirements of the simulation code. Due to changing domains, particles must
be able to be communicated across processes, which is implemented for all particle codes with moving particles.
Depending on the load balancing method this communication may be more involved. In the case of the tensor method
the topology does not change and every process has the same 26 neighbors during the entire simulation. If, however, the
staggered grid approach is used, the communication must also handle changing number of neighbors and determine
where they are and what regions they belong to. For example it is common, that one half of a boundary must be
communicated to one process and the other to a different one. So the fixed relationship between boundaries and
neighbors is broken up. The GMPM-PoC code was already designed with such a communication scheme in mind and
provided the necessary flexibility to simply enable the staggered grid method after fixing a few communication bugs.

Building and Testing

To build the code just run make LB=ALL and everything should be build automatically including dependencies.
Make sure the correct compiler are found in the path and if you want to use Intel compilers you need to set
COMPILER=INTEL as well. The normal caveats and required modules for some HPC systems are the described
in the main code’s README.

4.3. Software related to Extended Software Development Workshops 553

E-CAM Documentation, Release 0.2

Source Code

The main changes are the replacement of the original domain decomposition function which used to equi partition the
system extent. Now, ALL is called to update the domain geometry.

1 ! The following additional functions were used:
2 !
3 ! Additional information:
4 ! - LB_METHOD_PRE is set by the preprocessor to ALL_STAGGERED or ALL_TENSOR.
5 ! - The domain_bounds_old will only be used during initialisation for the
6 ! initial domain configuration.
7 ! - ``this_image()`` returns the current image index, i.e. current MPI rank+1.
8 ! - The work is estimated using ``lb_estimate_work`` which takes the current
9 ! domain size and number of particles as arguments.

10

11 function domain_decomposition_jall(bounds, dh, num_images3, domain_bounds_old,
→˓work, output) result(domain_bounds)

12 use ISO_C_BINDING
13 type(boundingbox), intent(in) :: bounds !< simulation bounds
14 real (kind = real_kind), intent(in) :: dh !< grid width
15 integer, dimension(3), intent(in) :: num_images3 !< the 1 indexed number of

→˓images in 3D
16 type(boundingbox_aligned), intent(in) :: domain_bounds_old !< current domain

→˓bounds
17 real(real_kind), intent(in) :: work !< work of this domain
18 logical, intent(in) :: output !< output domain bounds to `vtk_outline`

→˓directory
19 type(boundingbox_aligned) :: domain_bounds
20 type(boundingbox), save :: domain_old
21 type(ALL_t), save :: jall ! ALL object which is initialized once
22 real (kind = real_kind), dimension(3,2) :: verts
23 integer, dimension(3), save :: this_image3 ! the 1 indexed image number in 3D
24 logical, save :: first_run = .true.
25 integer, save :: step = 1
26 logical, dimension(2,3), save :: domain_at_sim_bound ! true if domain is at

→˓the lower/upper simulation boundary
27 real (kind = real_kind), dimension(3), save :: min_size
28 integer(c_int), parameter :: LB_METHOD = LB_METHOD_PRE
29 character (len=ALL_ERROR_LENGTH) :: error_msg
30 if(first_run) then
31 ! calculate this_image3
32 block
33 integer :: x,y,z, cnt
34 cnt = 1
35 do z=1,num_images3(3)
36 do y=1,num_images3(2)
37 do x=1,num_images3(1)
38 if(this_image()==cnt) this_image3 = (/ x,y,z /)
39 cnt = cnt + 1
40 enddo
41 enddo
42 enddo
43 end block
44 call jall%init(LB_METHOD,3,4.0d0)
45 call jall%set_proc_grid_params(this_image3-1, num_images3)
46 call jall%set_proc_tag(this_image())
47 call jall%set_communicator(MPI_COMM_WORLD)

(continues on next page)

554 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

48 min_size(:) = (abs(Rcont_min)+abs(Rcont_max))*dh
49 call jall%set_min_domain_size(min_size)
50 domain_old%bounds_unaligned = domain_bounds_old%bounds_aligned
51 domain_at_sim_bound(1,:) = this_image3==1 ! first image in a direction is

→˓automatically at sim bound
52 domain_at_sim_bound(2,:) = this_image3==num_images3 ! last image likewise

→˓at sim bound
53 call jall%setup()
54 endif
55 call jall%set_work(real(work,real_kind))
56 !! The `domain_old` bounds are not the actual domain bounds, which
57 !! are aligned to grid widths, but what we got from the previous
58 !! iteration of load balancing. However, the simulation boundaries are
59 !! unchanged by the load balancing.
60 block
61 type(boundingbox_aligned) :: aligned_bnds
62 real (kind = real_kind), dimension(3) :: lowest_upper_bound, highest_

→˓lower_bound
63 !> Align the simulation boundaries to the grid and add an additional
64 !! grid width on the top. These may be used instead of our current
65 !! bounds, so they should align properly on the upper bound, if we
66 !! are a simulation boundary. If the simulation bounds have not
67 !! changed they should still coincide with the domain bounds.
68 aligned_bnds%bounds_aligned = floor(bounds%bounds_unaligned/dh)*dh
69 aligned_bnds%bounds_aligned(2,:) = aligned_bnds%bounds_aligned(2,:) + dh
70 !> To make sure, the shrinking domain is still always large enough
71 !! and in particular is not shrunk into the neighbouring domain.
72 !! This can happen if the bounding box is not present in the current
73 !! domain, so the outer bound is moved across the inner bound. This
74 !! must be avoided at all cost. Additionally, we also need to ensure
75 !! the minimum domain width. Also, the outer bound of all boundary
76 !! domains, must be the same. To achieve this, the outermost inner
77 !! bound is calculated in each direction. This then allows us to
78 !! compute the innermost position any outer bound may have to still
79 !! be the required distance from every next inner bound.
80 ! For the lowest domains:
81 lowest_upper_bound = comm_co_min_f(domain_old%bounds_unaligned(2,:))
82 aligned_bnds%bounds_aligned(1,:) = min(lowest_upper_bound-min_size,

→˓aligned_bnds%bounds_aligned(1,:))
83 ! For the highest domains:
84 highest_lower_bound = comm_co_max_f(domain_old%bounds_unaligned(1,:))
85 aligned_bnds%bounds_aligned(2,:) = max(highest_lower_bound+min_size,

→˓aligned_bnds%bounds_aligned(2,:))
86 ! And now set the boundary domains outer bounds to the new, fixed bounds
87 where(domain_at_sim_bound)
88 domain_old%bounds_unaligned = aligned_bnds%bounds_aligned
89 end where
90 end block
91 !> Make sure that the old domain bounds are sensible. we are only
92 !! updating them, based in the previous value. This also means
93 !! the first call must already contain a sensible approximation
94 !! (the equidistant (geometric) distribution suffices for that).
95 verts = transpose(domain_old%bounds_unaligned)
96 call jall%set_vertices(verts)
97 call jall%balance()
98 call jall%get_result_vertices(verts)
99 domain_bounds%bounds_aligned = transpose(verts)

(continues on next page)

4.3. Software related to Extended Software Development Workshops 555

E-CAM Documentation, Release 0.2

(continued from previous page)

100 domain_old%bounds_unaligned = domain_bounds%bounds_aligned
101 domain_bounds%bounds_aligned = nint(domain_bounds%bounds_aligned/dh)*dh
102 if(output) then
103 call ALL_reset_error()
104 call jall%print_vtk_outlines(step)
105 if(ALL_error() /= 0) then
106 error_msg = ALL_error_description()
107 print*, "Error in ALL detected:"
108 print*, error_msg
109 endif
110 endif
111 first_run = .false.
112 step = step + 1
113 call assert_domain_width(domain_bounds, dh)
114 end function
115

116 !> Estimate local work
117 function lb_estimate_work(n_part, domain_bounds_old) result(work)
118 integer, intent(in) :: n_part !< number of particles of this domain
119 type(boundingbox_aligned), intent(in) :: domain_bounds_old !< domain bounds
120 real(real_kind) :: work
121 real(real_kind), parameter :: beta = 0.128 ! empirically determined
122 work = n_part + beta*product(domain_bounds_old%bounds_aligned(2,:)-domain_

→˓bounds_old%bounds_aligned(1,:))/grid%dh**3
123 end function

To include the library and its VTK dependency into the existing make build system, the following snippets were used.
This builds a ‘minimal’ VTK and links ALL against this. During the linking of the main simulation code VTK is
linked using $(VTK_LIB) where the order is very important. The calling of make in this Makefile is deprecated and
should be replaced by appropriate calls to cmake --build and cmake --install.

1 MJOBS ?= $(shell getconf _NPROCESSORS_ONLN)
2 JUELICH_ALL_INCLUDE := external/juelich_all_build/include/modules
3 JUELICH_ALL_LIB := external/juelich_all_build/lib/libALL_fortran.a external/juelich_

→˓all_build/lib/libALL.a
4 VTK_LIB := $(subst lib/,external/vtk_build/lib/, lib/libvtkFiltersProgrammable-7.1.a

→˓lib/libvtkIOParallelXML-7.1.a lib/libvtkIOXML-7.1.a lib/libvtkIOXMLParser-7.1.a lib/
→˓libvtkexpat-7.1.a lib/libvtkParallelMPI-7.1.a lib/libvtkParallelCore-7.1.a lib/
→˓libvtkIOLegacy-7.1.a lib/libvtkIOCore-7.1.a lib/libvtkCommonExecutionModel-7.1.a
→˓lib/libvtkCommonDataModel-7.1.a lib/libvtkCommonTransforms-7.1.a lib/
→˓libvtkCommonMisc-7.1.a lib/libvtkCommonMath-7.1.a lib/libvtkCommonSystem-7.1.a lib/
→˓libvtkCommonCore-7.1.a lib/libvtksys-7.1.a -ldl -lpthread lib/libvtkzlib-7.1.a)

5

6 # ...
7

8 # VTK
9 VTKCONFIG_FILE := external/vtk_build/lib/cmake/vtk-7.1/VTKConfig.cmake

10 $(VTKCONFIG_FILE):
11 mkdir -p external/vtk_build
12 cd external/vtk_build && CC=$(CC) CXX=$(CXX) cmake ../vtk -DCMAKE_INSTALL_

→˓PREFIX=`pwd` $(EXT_LTO_CMFLAGS) -DBUILD_SHARED_LIBS=OFF -DBUILD_TESTING=OFF -DCMAKE_
→˓BUILD_TYPE=Release -DVTK_Group_MPI=OFF -DVTK_Group_Rendering=OFF -DVTK_Group_
→˓StandAlone=OFF -DVTK_RENDERING_BACKEND=None -DVTK_USE_CXX11_FEATURES=ON -DModule_
→˓vtkCommonDataModel=ON -DModule_vtkFiltersProgrammable=ON -DModule_
→˓vtkIOParallelXML=ON -DModule_vtkParallelMPI=ON

13 $(MAKE) -j $(MJOBS) -C external/vtk_build

(continues on next page)

556 Chapter 4. Meso- and Multi-scale Modules

E-CAM Documentation, Release 0.2

(continued from previous page)

14 $(MAKE) -C external/vtk_build install
15

16 # juelich_all
17 $(JUELICH_ALL_LIB): $(VTKCONFIG_FILE)
18 mkdir -p external/juelich_all_build
19 cd external/juelich_all_build && CC=$(CC) CXX=$(CXX) cmake ../juelich_all

→˓$(EXT_LTO_CMFLAGS) -DCMAKE_Fortran_FLAGS="-Wall -Wextra -fbacktrace $(EXT_LTO)" -
→˓DCMAKE_INSTALL_PREFIX=`pwd` -DCM_ALL_FORTRAN=ON -DCM_ALL_USE_F08=$(ALL_USE_F08) -
→˓DCMAKE_BUILD_TYPE=Release -DCM_ALL_DEBUG=OFF -DCM_ALL_VTK_OUTPUT=ON -DVTK_DIR=`pwd`/
→˓../vtk_build/lib/cmake/vtk-7.1

20 $(MAKE) -C external/juelich_all_build
21 $(MAKE) -C external/juelich_all_build install

Software Technical Information

Name A Load Balancing Library (ALL)/GMPM-PoC

Language Fortran/C/C++

Licence BSD 3-Clause

Documentation Tool In source documentation using Doxygen, additional man pages and plain text

Application Documentation HemeLB website

Relevant Training Material General ALL web-based seminar

Software Module Developed by Rene Halver

Cooperation with HemeLB

• Purpose of Module

• Background Information / Bibliography

• Cooperation content

• Cooperation results

“HemeLB is a high performance lattice-Boltzmann solver optimized for simulating blood flow through sparse ge-
ometries, such as those found in the human vasculature.”1 The code is used within the CompBioMed HPC Centre of
Excellence H2020 project2, and is already highly optimized for HPC usage. As a consequence of the initial workshop
about the ALL library hosted by JSC in the context of E-CAM, a cooperation was set up in order analyse and test
whether the use of ALL could improve the existing scalability of the code.

Purpose of Module

This module describes the cooperation between the ALL library and the HemeLB code, from the CompBioMed HPC
Centre of Excellence. It provides details about the work performed an the results of the cooperation.

1 http://hemelb.org/#about, 03.02.2021
2 https://www.compbiomed.eu/

4.3. Software related to Extended Software Development Workshops 557

https://choosealicense.com/licenses/bsd-3-clause/
http://hemelb.org.s3-website.eu-west-2.amazonaws.com/
https://www.youtube.com/playlist?list=PLmhmpa4C4MzY02eaacXImTts2aGJHrdwQ
http://hemelb.org/#about
https://www.compbiomed.eu/

E-CAM Documentation, Release 0.2

Background Information / Bibliography

More information about HemeLB can be found at1, while more information about CompBioMed can be found at2.

Cooperation content

As ALL was designed to work with particle codes, it was interesting to apply the library to an lattice-Boltzmann
solver, which usually is not particle-based. Therefore the different grid points of the solution grid were designated as
particles and since each of the grid-points already was assigned a workload, the sum of grid-point workloads could be
used as domain work load. Since the creation and change of domain boundaries during the simulation was deemed
not feasible, an example code within ALL was used to create initial, balanced domain decompositions for various
systems and the results compared to the already existing load-balancing solution within HemeLB. Since test runs were
performed on a large scale, e.g. SuperMUC, it was necessary to also provide MPI-I/O based output for better parallel
I/O efficiency.

Cooperation results

As a result it can be stated that the domain compositions provided by ALL show a better theoretical load distribution.
Tests to check if this translates into better code performance are inconclusive as yet, due to hardware related issues on
the testing platforms. These are currently under furtherinvestigation, and more definitive results about the performance
of the ALL-provided domain decompositions can be expected in the near future.

The results were part of a publication about HemeLB, which was published in 2020 [Coveney].

4.3.7 Ludwig: A lattice Boltzmann code for complex fluids

The modules listed here account for the modifications of the code Ludwig, carried out within the E-CAM project.

Software Technical Information

Name Ludwig: A lattice Boltzmann code for complex fluids

Language C

Licence https://github.com/ludwig-cf/ludwig/blob/master/LICENSE

Documentation Tool LaTex-generated pdf

Application Documentation https://github.com/ludwig-cf/ludwig/tree/master/docs/tutorial

Externally imposed chemical potential gradient for binary fluid mixture

• Purpose of Module

• Background Information

• Building and Testing

• Source code

558 Chapter 4. Meso- and Multi-scale Modules

https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/blob/master/include/ALL_test.cpp
https://github.com/ludwig-cf/ludwig/blob/master/LICENSE
https://github.com/ludwig-cf/ludwig/tree/master/docs/tutorial

E-CAM Documentation, Release 0.2

We present a module that implements an externally imposed chemical potential gradient to the Lattice Boltzmann code
Ludwig. The gradient is further used in simulation of binary fluid mixture and enables the studies of the related flows
in various porous materials.

Purpose of Module

The gradient of chemical potential in a binary fluid mixture gives rise to a flow, whenever the value of the order
parameter differs from 0. In Ludwig, we first implement the gradient as a vectorial physical property, which can,
similarly to all other physical properties, be used anywhere in the code. Further on, we use it in the context of binary
fluid mixture in the subroutines that account for the time evolution of the order parameter (Cahn-Hilliard equation)
and the force, that arises due to the non-zero chemical potential gradient and order parameter.

This module is essential for studying binary fluid flows in porous materials as well as flows, arising due to the wetting
effect of the walls in nanochannels.

Background Information

This module implements the externally imposed chemical potential gradient (for binary fluid mixture) in the Ludwig
code. The latter, together with its documentation and tutorial is available on the following link: https://github.com/
ludwig-cf/ludwig.

Building and Testing

The module is built and run in the same way as any other simulation in Ludwig. A detailed description of the latter is
available at: https://github.com/ludwig-cf/ludwig/tree/master/docs/tutorial.

Specifically, an example of the input file for a binary fluid simulation with externally imposed chemical potential gra-
dient is available at: https://github.com/ludwig-cf/ludwig/blob/develop/tests/regression/d3q19-short/serial-muex-st1.
inp. The externally imposed chemical potential gradient is specified in the input file, by the following lines:

fd_force_divergence 0
grad_mu 0.00001_0.00002_0.00003

Source code

The related pull requests in Ludwig’s github repository can be found at https://github.com/ludwig-cf/ludwig/pull/80
and https://github.com/ludwig-cf/ludwig/pull/88.

The changes have been incorporated into the Ludwig’s new versions, for the first time within the release/version
0.11.0 (see https://github.com/ludwig-cf/ludwig/blob/master/CHANGES.md).

Software Technical Information

Name Ludwig: A lattice Boltzmann code for complex fluids

Language C

Licence https://github.com/ludwig-cf/ludwig/blob/master/LICENSE

Documentation Tool LaTex-generated pdf

Application Documentation https://github.com/ludwig-cf/ludwig/tree/master/docs/tutorial

4.3. Software related to Extended Software Development Workshops 559

https://github.com/ludwig-cf/ludwig
https://github.com/ludwig-cf/ludwig
https://github.com/ludwig-cf/ludwig
https://github.com/ludwig-cf/ludwig/tree/master/docs/tutorial
https://github.com/ludwig-cf/ludwig/blob/develop/tests/regression/d3q19-short/serial-muex-st1.inp
https://github.com/ludwig-cf/ludwig/blob/develop/tests/regression/d3q19-short/serial-muex-st1.inp
https://github.com/ludwig-cf/ludwig/pull/80
https://github.com/ludwig-cf/ludwig/pull/88
https://github.com/ludwig-cf/ludwig/blob/master/CHANGES.md
https://github.com/ludwig-cf/ludwig/blob/master/LICENSE
https://github.com/ludwig-cf/ludwig/tree/master/docs/tutorial

E-CAM Documentation, Release 0.2

Implementation of simple cubic, body-centered cubic, and face-centered cubic crystalline capillar-
ies

• Purpose of Module

• Background Information

• Building and Testing

• Source code

We present a module that implements simple cubic (SCC), body-centered cubic (BCC), and face-centered cubic (FCC)
crystalline geometries as a utility to create capillaries in the Lattice Boltzmann code Ludwig. The crystalline geome-
tries created are used as porous materials in Lattice Boltzmann simulations.

Purpose of Module

The crystalline structures represent various types of porous materials. We can attribute to them wetting properties, via
which the solid parts of the geometries interact with the fluid. This module is essential for the studies of various types
of flows through such materials. In particular, we focus on flows of binary fluid mixtures, driven by an externally
imposed chemical potential gradient, through porous media.

Background Information

This module implements the SCC, BCC, and FCC crystalline capillaries in the Ludwig code. The latter, together with
its documentation and tutorial is available on the following link: https://github.com/ludwig-cf/ludwig.

Building and Testing

The module is run by specifying the name of the output file, the output type, the crystalline type, the size of the
crystalline cell, and the size of the whole system in the file capillary.c (https://github.com/ludwig-cf/ludwig/
blob/master/util/capillary.c). The file is then compiled and run by:

make capillary
./capillary

This generates the output file (e.g. “capillary.001-001”). The thus generated capillary file, together with the desired
output data, is then specified in the input file of the simulation. An example of this specification is:

porous_media_format BINARY
porous_media_file capillary
porous_media_type status_with_c_h

The latter line porous_media_type should match the output type, defined in the capillary.c file, prior to its
compilation.

Source code

The module has been provided as a pull request on Ludwig’s github repository https://github.com/ludwig-cf/ludwig/
pull/98.

560 Chapter 4. Meso- and Multi-scale Modules

https://github.com/ludwig-cf/ludwig
https://github.com/ludwig-cf/ludwig/blob/master/util/capillary.c
https://github.com/ludwig-cf/ludwig/blob/master/util/capillary.c
https://github.com/ludwig-cf/ludwig/pull/98
https://github.com/ludwig-cf/ludwig/pull/98

CHAPTER 5

What is a module?

In the context of E-CAM, the definition of a software module is any piece of software that could be of use to the
E-CAM community and that encapsulates some additional functionality, enhanced performance or improved usability
for people performing computational simulations in the domain areas of interest to us.

This definition is deliberately broader than the traditional concept of a module as defined in the semantics of most
high-level programming languages and is intended to capture inter alia workflow scripts, analysis tools and test suites
as well as traditional subroutines and functions. Because such E-CAM modules will form a heterogeneous collection
we prefer to refer to this as an E-CAM software repository rather than a library (since the word library carries a
particular meaning in the programming world). The modules do however share with the traditional computer science
definition the concept of hiding the internal workings of a module behind simple and well-defined interfaces. It is
probable that in many cases the modules will result from the abstraction and refactoring of useful ideas from existing
codes rather than being written entirely de novo.

Perhaps more important than exactly what a module is, is how it is written and used. A final E-CAM module adheres
to current best-practice programming style conventions, is well documented and comes with either regression or unit
tests (and any necessary associated data). E-CAM modules should be written in such a way that they can potentially
take advantage of anticipated hardware developments in the near future (and this is one of the training objectives of
E-CAM).

5.1 Scientific Software Development Best Practices

We have attempted to gather a set of best practice guidelines for scientific software development in order to assist
people to develop high quality modules. These guidelines are not specific to E-CAM and gather together best practices
from a number of different sources that can help increase the quality and reusability of the software developed by
scientists.

General Information

• Scientific Software Best Practices
– General Programming Guidelines
– Programming for an HPC Environment

561

https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/

E-CAM Documentation, Release 0.2

• How to contribute?

• search

5.1.1 Scientific Software Best Practices

This text is not meant to be a set of rules, but a set of guidelines that have been formed on the basis of hard-earned ex-
perience. We welcome contributions from anyone, anywhere on any of the topics discussed here. The home repository
for this documentation is within the E-CAM Software Library.

It began as a starting point for guidelines for contributions to the Extended Software Development Workshops (ES-
DWs) of E-CAM but can be considered as a collection of best practice advice for scientific software development. The
scope of these workshops was always expected to vary significantly depending on the research area, as well as over
the project lifetime. For this reason the document itself is quite broad and (in many places) introductory in nature.

General Programming Guidelines

Firstly let us consider some guidelines that are applicable regardless of the type of software project you are working
on.

General Programming Guidelines

Language-independent best practices

The Unix Philosophy

When we develop software in a community we must consider that our work is not just for ourselves but is expected to
be used, adapted and (even) improved by others in that community. Much of the Unix philosophy [Raymond] is worth
considering when developing in such a context:

• Rule of Modularity: Write simple parts connected by clean interfaces.

• Rule of Clarity: Clarity is better than cleverness.

• Rule of Composition: Design programs to be connected to other programs.

• Rule of Separation: Separate policy from mechanism; separate interfaces from engines.

• Rule of Simplicity: Design for simplicity; add complexity only where you must.

• Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing else will do.

• Rule of Transparency: Design for visibility to make inspection and debugging easier.

• Rule of Robustness: Robustness is the child of transparency and simplicity.

• Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.

• Rule of Least Surprise: In interface design, always do the least surprising thing.

• Rule of Silence: When a program has nothing surprising to say, it should say nothing.

562 Chapter 5. What is a module?

https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library

E-CAM Documentation, Release 0.2

• Rule of Repair: When you must fail, fail noisily and as soon as possible.

• Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.

• Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.

• Rule of Optimization: Prototype before polishing. Get it working before you optimize it.

• Rule of Diversity: Distrust all claims for “one true way”.

• Rule of Extensibility: Design for the future, because it will be here sooner than you think.

If you’re new to Unix, these principles are worth some meditation (and I would recommend reading the fuller descrip-
tions of the programming “rules” derived from the Unix philosophy)

When we develop software in a community we must consider that our work is not just for ourselves but is expected to
be used, adapted and (even) improved by others in that community. Much of The Unix Philosophy is worth considering
when developing in such a context.

The Unix Philosophy principles apply to the creation of the software, but there are also some universally recommended
best practices when it comes to the software development work-flow itself [BestPractices]:

• Use a version management tool,

• Make a build in one step,

• Test suites to make sure what you are working on does what you think it should,

• Test-first programming: writing the test for a new line of code before writing that new line of code.

For our specific use case we will support Git as our version management tool (with repositories hosted on the E-CAM
GitLab service), CMake and Autotools (complemented by EasyBuild for HPC environments) as our supported build
environments and unit/regression testing and continuous integration through the E-CAM GitLab service.

Development Guidelines

Going a little deeper into the specifics, let’s consider some advice with respect to a desirable software development
workflow.

Designing your software

After some discussion with other Centres of Excellence, we are wary of over-engineering advice with respect to soft-
ware design. While tools exist that are designed to assist this process, such tools typically require repeated use to
achieve mastery and this overhead excessive in many cases. For this reason, we have chosen to align our software
specification method with our acceptance criteria for software contributions to a project (source code, testing, docu-
mentation, build instructions).

The subsections below are based on the information from Wikipedia ([SoftwareSpecification] and [TDD]).

Software Requirements Specification

A software requirements specification (SRS) is a description of a software system to be developed. It lays out func-
tional and non-functional requirements, and may include a set of use cases that describe user interactions that the
software must provide.

The software requirements specification document lists sufficient and necessary requirements that are required for
developing the project. To derive the requirements, all developers need to have clear and thorough understanding of

5.1. Scientific Software Development Best Practices 563

http://www.faqs.org/docs/artu/ch01s06.html
https://git-scm.com
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/
https://cmake.org/
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html#Autotools-Introduction
http://easybuild.readthedocs.org/
https://gitlab.e-cam2020.eu/
https://exdci.eu/collaboration/coe
https://en.wikipedia.org/wiki/Main_Page

E-CAM Documentation, Release 0.2

the application to be developed. This is achieved through continuous communications between the project team (who
are typically also the customer when we are talking about an open source scientific code).

An example of an SRS would be:

• Purpose

– Definitions

– System overview

– References

• Overall description

– Product perspective

* System Interfaces

* User interfaces

* Hardware interfaces

* Software interfaces

* Communication Interfaces

* Memory Constraints

– Design constraints

* Operations

* Site Adaptation Requirements

– Product functions

– User characteristics

– Constraints, assumptions and dependencies

• Specific requirements

– External interface requirements

– Functional requirements

– Performance requirements

– Software System attributes

* Reliability

* Availability

* Security

* Maintainability

* Portability.

Test-driven Development

The acceptance criteria of E-CAM are explicitly test-focused and we therefore advocate for test-driven development
as a software specification method, where one first decides how a particular development would be tested (and creates
the associated test) before writing the software that would pass this test.

An example of a test-driven development cycle would be:

564 Chapter 5. What is a module?

E-CAM Documentation, Release 0.2

1. Add a test

2. Run all tests and see if the new test fails

3. Write the code

4. Run tests

5. Refactor code

Such an approach is very task-oriented and if a wider perspective is required (for example if one is beginning a software
project or implementing a redesign) we advise the creation of a Software Requirements Specification to supplement
this and provide an overarching structure.

In addition, when dealing with numerical methods the creation of adequate tests can be difficult since bit-wise repro-
ducibility of results is frequently not possible due to floating point precision and/or the use of random numbers.

Version Control

Version control is a system that records changes to a file or set of files over time so that you can recall specific versions
later. Many people’s version-control method of choice is to copy files into another directory (perhaps a time-stamped
directory, if they’re clever). This approach is very common because it is so simple, but it is also incredibly error prone.
It is easy to forget which directory you’re in and accidentally write to the wrong file or copy over files you don’t mean
to.

Git is a widely used source code management system for software development. As with most other distributed version
control systems, and unlike most client–server systems, every Git working directory is a full-fledged repository with
complete history and full version-tracking capabilities, independent of network access or a central server.

We will use Git together with the E-CAM GitLab service within E-CAM. Git will be our version control utility and the
E-CAM GitLab service will help us manage our work-flow by allowing us to create/label/follow/assign issues, review
integration of new features, create milestones, etc (but you could also use GitHub to get the same basic services).

There are many excellent guides to Git, GitLab and GitHub so we will not go into any great detail in this document.
For detailed information we refer you to Software Carpentry’s git lessons, the GitLab documentation and the GitHub
user guides.

Branching Strategy

We follow the GitHub Flow branching strategy which is well described at that link.

Versioning of Releases

Software versioning is the process of assigning either unique version names or unique version numbers to unique states
of computer software. Adopting a logical system for releasing versions provides information to users that allows them,
for example, to predict whether it is safe for them to move to a new release.

We follow the “Semantic Versioning 2.0.0” strategy. Given a version number x.y.z (MAJOR.MINOR.PATCH),
increment the:

• MAJOR version x when you make incompatible API changes,

• MINOR version y when you add functionality in a backwards-compatible manner, and

• PATCH version z when you make backwards-compatible bug fixes.

5.1. Scientific Software Development Best Practices 565

https://git-scm.com
https://git-scm.com
https://gitlab.e-cam2020.eu/
https://git-scm.com
https://gitlab.e-cam2020.eu/
https://github.com/
http://swcarpentry.github.io/git-novice/
https://docs.gitlab.com/ce/README.html#getting-started-with-gitlab
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/introduction/flow/
http://semver.org/

E-CAM Documentation, Release 0.2

The approach relies on bumping the correct component up at the right time. Therefore, determining which type of
version you should be releasing is simple. If you are mostly fixing bugs, then this would be categorized as a patch, in
which case you should bump z. If you are implementing new features in a backward-compatible way, then you will
bump y because this is what’s called a minor version. On the other hand, if you implement new stuff that is likely to
break the existing API, you need to bump x because it is a major version.

Additional labels for pre-release and build meta-data are available as extensions to the MAJOR.MINOR.PATCH for-
mat. We begin at MAJOR version 0 and API changes may be allowed without incrementing it until we are ready to
release a first stable version. Once we release MAJOR version 1 we intend to strictly follow the API policy.

Creating releases on GitLab is well described in their documentation pages.

Creating Citable Code

Zenodo is a great resource that allows you to get a DOI for your code repository.

Zenodo has direct GitHub integration (and there is a handy guide for how to use GitHub’s Zenodo integration) but the
process can also be done manually. You can upload a zip-ball of your software to Zenodo, provide some metadata and
publish it to get a DOI (just as you would if you uploaded a paper or data). It’s probably best if you make a zip-ball of
a tagged release, so that the DOI captures something complete. Additionally you can supplement your record metadata
on Zenodo with a “related identifier” (e.g. a URL) and point back to the tag on your live repository. This way anyone
who discovers your software in the future will also have means to follow your live repository and find the most recent
version of the software.

Coding Guidelines and Code Review

While this document can be used as a starting point for coding best practices, it is really intended for those who want
to contribute code to the E-CAM project, and describes the starting point for our coding standards and code review
checklist. We try to adopt best practices from existing projects with plenty of relative experience. [PyCogent] (for
example) has useful coding guidelines that will act as a starting point for us.

Code, scripts, and documentation should have their spelling checked. All plain-text files should have line widths of
120 characters or less unless that is not supported for the particular file format. It is typical in many projects that a
limit of 80 characters is given but we consider this excessively restrictive.

Variable naming

• Choose the name that people will most likely guess. Make it descriptive, but not too long: curr_record is
better than c, or curr, or current_genbank_record_from_database.

• Good names are hard to find. Don’t be afraid to change names except when they are part of interfaces that other
people are also using. It may take some time working with the code to come up with reasonable names for
everything: if you have unit tests, its easy to change them, especially with global search and replace.

• Use singular names for individual things, plural names for collections. For example, you’d expect self.Name
to hold something like a single string, but self.Names to hold something that you could loop through like a
list or dict. Sometimes the decision can be tricky: is self.Index an int holding a position, or a dict holding
records keyed by name for easy lookup? If you find yourself wondering these things, the name should probably
be changed to avoid the problem: try self.Position or self.LookUp.

• Don’t make the type part of the name. You might want to change the implementation later. Use Records
rather than RecordDict or RecordList, etc. Don’t use Hungarian Notation either (i.e. where you prefix
the name with the type).

566 Chapter 5. What is a module?

https://docs.gitlab.com/ce/workflow/releases.html
https://zenodo.org/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://guides.github.com/activities/citable-code/

E-CAM Documentation, Release 0.2

• Make the name as precise as possible. If the variable is the name of the input file, call it infile_name, not
input or file (which you shouldn’t use anyway, since they’re keywords), and not infile (because that
looks like it should be a file object, not just its name).

• Use result to store the value that will be returned from a method or function. Use data for input in cases
where the function or method acts on arbitrary data (e.g. sequence data, or a list of numbers, etc.) unless a more
descriptive name is appropriate.

• One-letter variable names should only occur in math functions or as loop iterators with limited scope. Limited
scope covers things like for k in keys: print k, where k survives only a line or two. Loop iterators
should refer to the variable that they’re looping through: for k in keys, i in items, or for key
in keys, item in items. If the loop is long or there are several 1-letter variables active in the same
scope, rename them.

• Limit your use of abbreviations. A few well-known abbreviations are OK, but you don’t want to come back to
your code in 6 months and have to figure out what sptxck2 is. It’s worth it to spend the extra time typing
species_taxon_check_2, but that’s still a horrible name: what’s check number 1? Far better to go with
something like taxon_is_species_rank that needs no explanation, especially if the variable is only used
once or twice.

Naming Conventions

It is important to follow the naming conventions because they make it much easier to guess what a name refers to. In
particular, it should be easy to guess what scope a name is defined in, what it refers to, whether it’s OK to change its
value, and whether its referent is callable. The following rules provide these distinctions.

• lowercase_with_underscore for modules and internal variables (including function/method parame-
ters).

• MixedCase for classes and public properties, and for factory functions that act like additional constructors for
a class.

• mixedCaseExceptFirstWord for public methods and functions.

• _lowercase_with_leading_underscore for private functions, methods, and properties.

• __lowercase_with_two_leading_underscores for private properties and functions that must not
be overwritten by a subclass.

• CAPS_WITH_UNDERSCORES for named constants.

Underscores can be left out if the words read OK run together. infile and outfile rather than in_file
and out_file; infile_name and outfile_name rather than in_file_name and out_file_name or
infilename and outfilename (getting too long to read effortlessly).

Merge Requests

We want people who contribute back to use a “branch-hack-pull request” cycle, the GitHub Flow. Our website contains
greater detail on the exact steps required (at How to contribute?) but the basic concept is:

• Create your own copy of the repository on the E-CAM GitLab service (fork)

• clone your repository to your machine

• Create a new branch for your feature. Feature branches should have descriptive names, like
animated-menu-items or issue-#1061.

• Hack

5.1. Scientific Software Development Best Practices 567

https://guides.github.com/introduction/flow/
https://gitlab.e-cam2020.eu/

E-CAM Documentation, Release 0.2

• push your changes back to GitLab

• Create a Merge Request1 against the appropriate of the E-CAM library. This gives other developers an opportu-
nity to review the changes before they become a part of the main codebase.

Code review (see below) is a major benefit of merge requests, but merge requests are actually designed to be a generic
way to talk about code. You can think of merge requests as a discussion dedicated to a particular branch. This means
that they can also be used much earlier in the development process. For example, if a developer needs help with a
particular feature, all they have to do is file a merge request. Interested parties will be notified automatically, and
they’ll be able to see the question right next to the relevant commits.

Code Review and Checklist

Contributors also make good reviewers so we’d like you to be aware of what the review process looks like. We try to
follow the best practices as described in “11 Best Practices for Peer Code Review”. The most important to mention
are:

• Merge requests should be small, the target is to review fewer than 400 lines of code at a time.

• Authors should document source code before the review.

• Embrace the subconscious implications of peer review. The knowledge that others will be examining their work
naturally drives people to produce a better product.

Copy and paste the following into a merge request comment when it is ready for review (in our case that will be on the
E-CAM GitLab service). This lists helps ensure that we try to reach many of our targets in terms of:

- [] Is it mergeable? (i.e., there should be no merge conflicts)
- [] Did it pass the tests? (Are there unit/regression tests? Do they pass?)
- [] If it introduces new functionality, is it tested? (Unit tests?)
- [] Is it well formatted? (typos, line length, brackets,...)
- [] Did it change any interfaces? Only additions are allowed without a major version

increment. Changing file formats also requires a major version number increment.
- [] Is the Copyright year up to date?

Note: After you submit the comment you can check and uncheck the individual boxes on the formatted comment in
GitLab; no need to put x or y in the middle.

Continuous Integration

Continuous Integration (CI) is a development practice that requires developers to integrate code into a shared repository
several times a day. Each check-in is then verified by an automated build, allowing teams to detect problems early.

Our weapon of choice is GitLab CI, the main reason being controlling the servers where the tests are run allows us
to customise their configuration. Of course you can get similar services on GitHub, Travis CI being the most popular
(and completely for free if you are open source).

Gamification

One of the big advantages of the automated CI is that it helps to gamify the development experience. Having all your
unit tests pass or having 100% code coverage for your tests (and getting a little badge to appear notifying you), gives

1 Merge requests let you tell others about changes you’ve pushed to a GitLab repository. Once a merge request is sent, interested parties can
review the set of changes, discuss potential modifications, and even push follow-up commits if necessary

568 Chapter 5. What is a module?

https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html
http://smartbear.com/SmartBear/media/pdfs/WP-CC-11-Best-Practices-of-Peer-Code-Review.pdf
https://gitlab.e-cam2020.eu/
https://about.gitlab.com/features/gitlab-ci-cd/
https://github.com/
https://travis-ci.org/

E-CAM Documentation, Release 0.2

a (small) feeling of accomplishment and can be a good motivator to write better merge requests.

Integrated Development Environment

An Integrated Development Environment (IDE) is not a necessary development tool but it is a useful one. While we
understand that people are familiar with a particular editor or work-flow, use of an IDE can help the development
process flow more easily. An IDE is a software application that provides comprehensive facilities to computer pro-
grammers for software development. An IDE normally consists of a source code editor, build automation tools and a
debugger. We are making this recommendation purely because IDEs can save you lot of time, particularly when you
are contributing to someone else’s code. There are many good reasons to use one:

• Integrated source control (this is major since the Git UI is frequently not intuitive)

• Quickly navigating to a type without needing to worry about namespace, project etc.

• Navigating to members by treating them as hyperlinks

• Auto-completion when you can’t remember the names of all members by heart

• Automatic code generation

• Refactoring (major advantage)

• Warning-as-you-type (i.e. some errors don’t even require a compile cycle)

• Hovering over something to see the documentation (provided by Doxygen)

• Keeping a view of files, errors/warnings/console/unit tests etc. and source code all on the screen at the same
time in a useful way

• Ease of running unit tests from the same window

• Integrated debugging

• Navigating to where a compile-time error or run-time exception occurred directly from the error details.

If you are developing for a parallel environment for multiple HPC systems the Eclipse IDE even has a plugin specifi-
cally designed for this, the Eclipse Parallel Tools Platform.

Programming for an HPC Environment

Due to the nature of the HPC environment (novel hardware, latest techniques, remote resources,. . .). There are many
specific things that need to be considered that impact the software development process.

HPC Programming Guidelines

Once we begin to discuss high performance computing (HPC), we necessarily must begin to discuss not only the latest
hardware technologies, but also the latest software technologies that make exploiting the capabilities of that hardware
easier.

Hardware Developments

There are a number of different organisations and projects that are generating roadmaps about the current and future
technologies that are (or may be in the future) available in the HPC space. Eurolab-4-HPC has summarised many of
these in the Eurolab-4-HPC Long-Term Vision on High-Performance Computing. Here we focus on a small subset of
the content of these roadmaps (primarily from Eurolab-4-HPC and ETP4HPC) that are most likely to impact the target
community of E-CAM in the 3-5 year horizon.

5.1. Scientific Software Development Best Practices 569

https://eclipse.org/ide/
https://eclipse.org/ptp/
https://www.eurolab4hpc.eu/
https://www.eurolab4hpc.eu/static/deliverables/D2-2--final-vision.3718a25ff0dd.pdf
https://www.eurolab4hpc.eu/
http://www.etp4hpc.eu/

E-CAM Documentation, Release 0.2

Currently Available Hardware

For the last decade, power and thermal management has been of high importance. The entire market focus has moved
from achieving better performance through single-thread optimizations, e.g., speculative execution, towards simpler
architectures that achieve better performance per watt, provided that vast parallelism exists. The HPC community,
particularly at the higher end, focuses on the flops/watt metric since the running cost of high-end HPC systems are
so significant. It is the potential power requirements of exa-scale systems that are the limiting factor (given currently
available technologies).

The practical outcome of this is the rise of accelerating co-processors and many-core systems. In the following sections
we will discuss three such technologies that are likely to form the major computing components of the first generation
of exa-scale machines:

Intel Many-core

The 2nd Generation Intel Xeon Phi platform, known as Knights Landing (KNL), has been released on the market in
Q2 of 2016. The chip, based on a 14nm lithography, contains up to 72 cores @1.5GHz with a maximum memory
bandwidth of 115.2 GB/s. One of the main features is the increased AVX512 ISE (Instruction Set Extensions) which
includes SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions). More details are available at
Intel Knights Landing. The same component (Intel Xeon Phi 7250-F) is available in the JURECA Booster as part of
the DEEP and DEEP-ER projects.

Knights Hill is the codename for the third-generation MIC architecture and it will be manufactured in a 10 nm process.
Intel announced the first details at SC14, however since then no further details have been released and the Aurora
project from the DoE delayed (see Some Surprises in the 2018 DoE Budget for Supercomputing).

Knights Mill is Intel’s codename for a Xeon Phi product specialised in deep learning. It is expected to support reduced
variable precision which have been used to accelerate machine learning in other products, such as half-precision
floating-point variables in Nvidia’s Tesla.

Feedback for software developers

Based on the latest hardware developments specified above (and the AVX512 instruction set used by this hardware),
we strongly advise the software developer to take in consideration the importance of enhancing performance through
vectorization both from numerical algorithm point of view and at the compiler level. Intel provides very good tools to
achieve this through compiler flags (which allow you to have a full report about the vectorization efficiency) or more
sophisticated software like Intel Advisor.

At node-level the recommended parallelism is by shared memory. In this case OpenMP is the de facto standard and
Intel provides good tools like VTune.

Many training courses and documents are available on line (see Intel Advisor training and VTune training).

NVIDIA GPU

The new NVIDIA Tesla V100 accelerator incorporates the new Volta GV100 GPU. Equipped with 21 billion transis-
tors, Volta delivers over 7.5 Teraflops per second of double precision performance, 1.5x increase compared to the its
predecessor, the Pascal GP100 GPU. Moreover, architectural improvements include:

• A tensor core is unit that multiplies two 4×4 FP16 matrices, and then adds a third FP16 or FP32 matrix to the
result by using fused multiply–add operations, and obtains an FP32 result that could be optionally demoted to
an FP16 result. Tensor cores are intended to speed up the training of neural networks.

570 Chapter 5. What is a module?

https://ark.intel.com/products/codename/48999/Knights-Landing
http://www.deep-project.eu/deep-project/EN/Home/home_node.html
https://www.nextplatform.com/2017/05/23/surprises-2018-doe-budget-supercomputing/
https://www.servethehome.com/intel-knights-mill-for-machine-learning
https://software.intel.com/en-us/intel-advisor-2017-user-guide-linux
http://www.openmp.org/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-advisor-xe-support/training
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

E-CAM Documentation, Release 0.2

• Tesla V100 uses a faster and more efficient HBM2 implementation. HBM2 memory is composed of memory
stacks located on the same physical package as the GPU, providing substantial power and area savings compared
to traditional GDDR5 memory designs, thus permitting more GPUs to be installed in servers. In addition to the
higher peak DRAM bandwidth on Tesla V100 compared to Tesla P100, the HBM2 efficiency on V100 GPUs has
been significantly improved as well. The combination of both a new generation HBM2 memory from Samsung,
and a new generation memory controller in Volta, provides 1.5x delivered memory bandwidth versus Pascal
GP100, and greater than 95% memory bandwidth efficiency running many workloads.

• NVlink 2.0, which is a high-bandwidth bus between multiple GPUs, and between the CPU and GPU. Compared
to NVLink on Pascal, NVLink 2.0 on V100 increases the signaling rate from 20 to 25 Gigabits/second. Each
link now provides 25 Gigabytes/second in each direction. The number of links supported has been increased
from four to six pushing the supported GPU NVLink bandwidth to 300 Gigabytes/second. The links can be used
exclusively for GPU-to-GPU communication as in the DGX-1 with V100 topology shown in Figure 2, or some
combination of GPU-to-GPU and GPU-to-CPU communication as shown in Figure 3 (currently only available
in combination with Power8/9 processors).

The tensor core of the Volta was explicitly added for deep learning workloads. The NVIDIA Deep Learning SDK
provides powerful tools and libraries for designing and deploying GPU-accelerated deep learning applications. It
includes libraries for deep learning primitives, inference, video analytics, linear algebra, sparse matrices, and multi-
GPU communications.

Feedback for software developers

Several approaches have been developed to exploit the full power of GPUs: from parallel computing platform and
application programming interface specific for NVidia GPU, like CUDA 9.0, to the latest version of OpenMP 4.5 which
contains directives to offload computational work from the CPU to the GPU. While CUDA currently is likely to achieve
best performance from the device, OpenMP allows for better portability of the code across different architectures.
Finally, the OpenACC open standard is an intermediate between the two, more similar to OpenMP than CUDA, but
allowing better usage of the GPU. Developers are strongly advised to look into these language paradigms.

Moreover, it is fundamental to consider that there the several issues linked to hybrid architectures, like CPU-GPU
and GPU-GPU bandwidth communication (the latest greatly improved through NVlink), direct access through Unified
Virtual Addressing, the presence of new APIs for programming (such as Tensor Core multiplications specifically
designed for deep learning algorithms).

Finally, it is important to stress the improvements made by NVidia on the implementation of Unified Memory. This
allows the system to automatically migrate data allocated in Unified Memory between host and device so that it
looks like CPU memory to code running on the CPU, and like GPU memory to code running on the GPU making
programmability greatly simplified.

At this stage, GPU programming is quite mainstream and there are many training courses available online, see for
example the NVidia education site for material related to CUDA and OpenACC. Material for OpenMP is more limited,
but as an increasing number of compilers begin to support the OpenMP 4.5 standard, we expect the amount of such
material to grow (see this presentation on performance of the Clang OpenMP 4.5 implementation on NVIDIA gpus
for a status report as of 2016).

FPGA

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based around a matrix of configurable
logic blocks (CLBs) connected via programmable interconnects. FPGAs can be reprogrammed to desired applica-
tion or functionality requirements after manufacturing. This feature distinguishes FPGAs from Application Specific
Integrated Circuits (ASICs), which are custom manufactured for specific design tasks.

Xilinx Ultrascale FPGAs and ARM processors have been proposed by the EuroEXA project as a new path towards
exascale. EuroEXA is an EU Funded 20 Million Euro for an ARM+FPGA Exascale Project which will lead Europe

5.1. Scientific Software Development Best Practices 571

https://developer.nvidia.com/deep-learning-software
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.openmp.org/updates/openmp-4-5-specs-released/
https://www.openacc.org/specification
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/cuda-education
http://on-demand.gputechconf.com/gtc/2016/presentation/s6510-jeff-larkin-targeting-gpus-openmp.pdf
https://www.hpcwire.com/2017/09/07/eu-funds-20-million-euro-armfpga-exascale-project/

E-CAM Documentation, Release 0.2

towards exascale, together with ExaNeSt, EcoScale and ExaNoDe projects, scaling peak performance to 400 PFLOP
in a peak system power envelope of 30MW; over four times the performance at four times the energy efficiency of
today’s HPC platforms.

Feedback for software developers

Despite their high efficiency in performance and power consumption, FPGA are known for being difficult to program.
OpenCL for FPGA is an example of programming language for FPGA which we recommend, particularly considering
that these new technologies will be soon available within the E-CAM community through the EuroEXA project.

We will outline the current generation of technologies in this space and also describe the (currently) most-productive
programming model for each. We will not discuss other new CPU technologies (such as Power 9, Intel Skylake,
or ARMv8) since in comparison to these technologies they would be expected to only provide ~10% or less of the
compute power of potential exa-scale systems.

The problem with the current three-pronged advance is that it is not always easy to develop parallel programs for these
technologies and, moreover, those parallel programs are not always performance portable between each technology,
meaning that each time the architecture changes the code may have to be rewritten. While there are open standards
available for each technology, each product currently has different preferred standards which are championed by the
individual vendors (and therefore the best performing).

In general, we see a clear trend towards more complex systems, which is expected to continue over the next decade.
These developments will significantly increase software complexity, demanding more and more intelligence across
the programming environment, including compiler, run-time and tool intelligence driven by appropriate programming
models. Manual optimization of the data layout, placement, and caching will become uneconomic and time consum-
ing, and will, in any case, most likely soon exceed the abilities of the best human programmers.

Impact of Deep Learning

Traditional machine learning uses handwritten feature extraction and modality-specific machine learning algorithms to
label images or recognize voices. However, this method has several drawbacks in both time-to-solution and accuracy.
Today’s advanced deep neural networks use algorithms, big data, and the computational power of the GPU (and other
technologies) to change this dynamic. Machines are now able to learn at a speed, accuracy, and scale that are driving
true artificial intelligence and AI Computing.

Deep learning is used in the research community and in industry to help solve many big data problems such as
computer vision, speech recognition, and natural language processing. Practical examples include:

• Vehicle, pedestrian and landmark identification for driver assistance

• Image recognition

• Speech recognition and translation

• Natural language processing

• Life sciences

The influence of deep-learning on the market is significant with the design of commodity products such as the Intel
MIC and NVIDIA Tesla being heavily impacted. Silicon is being dedicated to deep learning workloads and the
scientific workloads for these products will need to adapt to leverage this silicon.

Future HPC Hardware in Europe

The European HPC Technology Platform, ETP4HPC, is an industry-led think-tank comprising of European HPC
technology stakeholders: technology vendors, research centres and end-users. The main objective of ETP4HPC is

572 Chapter 5. What is a module?

http://www.exanest.eu/
http://www.ecoscale.eu/
http://www.exanode.eu/
https://www.altera.com/support/training/course/oopncl100.html

E-CAM Documentation, Release 0.2

to define research priorities and action plans in the area of HPC technology provision (i.e. the provision of super-
computing systems). It has been responsible for the production and maintenance of the European HPC Technology
Strategic Research Agenda (SRA), a document that serves as a mechanism to provide contextual guidance to European
researchers and businesses as well as to guide EU priorities for research in the Horizon 2020 HPC programme, i.e. it
represents a roadmap for the achievement of European exascale capabilities.

We have had numerous discussions of the E-CAM community software needs through our exchanges with ETP4HPC
during the course of our contributions to the SRA. The particular contribution from our discussion related to the
software needs for exascale computing within the ETP4HPC SRA report is shown in the paragraphs below:

E-CAM has not committed itself to a single set of applications or use cases that can represented in such a
manner, it is instead driven by the needs of the industrial pilot projects within the project (as well as the
wider community). Taking into consideration the CECAM community and the industrial collaborations
targeted by E-CAM, probably the largest exa-scale challenge is ensuring that the skillsets of the applica-
tion developers from academia and industry are sufficiently up to date and are aligned with programming
best practices. This means that they are at least competent in the latest relevant language specification
(Fortran 2015, C++17,. . .) and aware of additional tools and libraries that are necessary (or useful) for
application development at the exa-scale. For application users, this means that they have sufficient knowl-
edge of architecture, software installation and typical supercomputing environment to build, test and run
application software optimised for the target.

While quite specific “key applications” are under continuous support by other CoEs, this is not the cur-
rent model of E-CAM. E-CAM is more likely to support and develop a software installation framework
(such as EasyBuild) that simplifies building the (increasingly non-trivial) software stack of a particular
application in a reliable, reproducible and portable way. Industry has already shown significant interest in
this and E-CAM is particularly interested in extending the capabilities of EasyBuild to EsD architectures,
performance analysis workflows and to new scientific software packages. Such an effort could easily be
viewed as transversal since such developments could be leveraged by any other CoE.

One important focus of the SRA is the development of the “Extreme-Scale Demonstrators” (EsDs) that are vehicles
to optimise and synergise the effectiveness of the entire HPC H2020 programme, through the integration of R&D
outcomes into fully integrated HPC system prototypes.

The work in developing the EsDs will fill critical gaps in the H2020 programme, including the following activities:

• Bring technologies from FET-HPC projects closer to commercialisation.

• Combined results from targeted R&D efforts into a complete system (European HPC technology ecosystem).

• Provide the missing link between the three HPC pillars: technology providers, user communities (e.g. E-CAM)
and infrastructure.

As one of the CoEs, E-CAM should aim to provide insight and input into the requirements of future exascale systems
based on lessons learnt from activities within E-CAM (e.g. software development and relevant performance optimisa-
tion and scaling work). This would entail further knowledge and understanding within E-CAM on exploiting current
multi-petaflop infrastructures, what future exascale architectures may look like, as well as interaction and close collab-
oration between E-CAM and other projects (i.e. the projects shown in Figure 12); these are also covered in subsequent
sections of this paper.

Emerging hardware architectures relevant to exascale computing

The European Commission supports a number of projects in developing and testing innovative architectures for next
generation supercomputers, aimed at tackling some of the biggest challenges in achieving exascale computing. They
often involve co-design involving HPC technologists, hardware vendors and code developer/end-user communities in
order to develop prototype systems. Some of these projects include:

• The DEEP (Dynamic Exascale Entry Platform) projects (DEEP, DEEP-ER and DEEP-EST)

5.1. Scientific Software Development Best Practices 573

http://www.etp4hpc.eu/en/%20news/18-strategic-research-agenda-update.html
http://www.etp4hpc.eu/en/%20news/18-strategic-research-agenda-update.html
http://easybuild.readthedocs.io/en/latest/
http://www.deep-project.eu

E-CAM Documentation, Release 0.2

• The Mont-Blanc projects (Mont-Blanc 1, 2 and 3)

• The PRACE PCP (Pre-Commercial Procurement) initiative

Software Developments

It is clear that the hardware developments described above will greatly impact the software development practices of
the E-CAM development community. For this reason, we highlight the the language standards, runtime environments,
workflows and software tools that can help E-CAM developers to deliver high quality, resilient software for current
and next generation machines.

Programming for HPC

C++17

C++17 is the name for the most recent revision of the ISO/IEC 14882 standard for the C++ programming language.

The previous C++ versions show very limited parallel processing capabilities when using multi/many core architec-
tures. This situation will change with the C++17, in which the parallelised version of Standard Template Library
is included. The STL is a software library for C++ programming which has 4 components: Algorithms, Contain-
ers, Functors and Iterators. “Parallel STL advances the evolution of C++, adding vectorization and parallelization
capabilities without resorting to nonstandard or proprietary extensions, and leading to code modernization and the
development of new applications on modern architectures.”

A multi-threading programming model for C++ is supported since C++11.

Fortran 2015

Fortran 2015 is a minor revision of Fortran 2008 (which was when Fortran became a Partitioned Global Address Space
(PGAS) language with the introduction of coarrays). The revisions mostly target additional parallelisation features and
increased interoperability with C.

Most Fortran-based software E-CAM sees in practice is implemented in Fortran 95 and there appears to be little
awareness of the parallel features of the latest Fortran standards. E-CAM is considering organising a workshop that
addresses this lack of awareness (similar to the “Software Engineering and Parallel Programming in Modern Fortran”
held at the Cranfield University).

It should be noted that compiler support for the latest Fortran standards is limited. This is most likely due to the fact
that Fortran is not widely used outside of the scientific research (limiting its commercial scope).

The (potential) role of Python

Given that it is an interpreted language (i.e., it is only compiled at runtime), Python is not usually discussed much
in the HPC space since there is limited scope for control over many factors that influence performance. Where we
are observing a lot of growth is where applications are being written in languages like C++ under the hood but are
intended to be primarily used via their Python interfaces.

This is a valuable, and user friendly, development model that allows users to leverage Python for fast prototyping while
maintaining the potential for high performance application codes.

A warning to would be users: Python 2 will stop being developed in 2020 so please make sure that your code is
Python3 compliant.

574 Chapter 5. What is a module?

http://montblanc-project.eu/
http://www.prace-ri.eu/pcp/
https://en.wikipedia.org/wiki/ISO/IEC_14882
https://en.wikipedia.org/wiki/Standard_Template_Library
https://insidehpc.com/2017/05/parallel-stl/
https://insidehpc.com/2017/05/parallel-stl/
https://insidehpc.com/2017/05/parallel-stl/
https://en.wikipedia.org/wiki/C%2B%2B11#Multithreading_memory_model
http://fortranwiki.org/fortran/show/Fortran+2015
https://en.wikipedia.org/wiki/Coarray_Fortran
https://www.cranfield.ac.uk/courses/short/aerospace/software-engineering-and-parellel-programming-in-modern-fortan
http://fortranwiki.org/fortran/show/Compiler+Support+for+Modern+Fortran
https://pythonclock.org/

E-CAM Documentation, Release 0.2

Open Standards

We describe here some of the open standards that are most likely to be leveraged on next generation HPCresources.

MPI

Now more than 25 years old, Message Passing Interface (MPI) is still with us and remains the de facto standard for
internode communication (though it is not the only option, alternatives such as GASNet exist). MPI-3.1 was approved
by the MPI Forum on June 4, 2015. It was mainly an errata release for MPI 3.0 which included some important
enhancements to MPI:

• Nonblocking collectives

• Sparse and scalable irregular collectives

• Enhancements to one-sided communication (very important for extreme scalability)

• Shared memory extensions (on clusters of SMP nodes)

• Fortran interface

Maintaining awareness of the scope of past and future updates to the MPI standard is important since it is the latest
features that target the latest architectural developments.

OpenMP

OpenMP is also 20 years old and remains the most portable option for on-node workloads. The standard has introduced
new features to deal with increasing node-level heterogeneity (device offloading, such as for the GPU, in particular)
and varied workloads (task level parallelism).

From GCC 6.1, OpenMP 4.5 is fully supported for C and C++ (with Fortran support coming in the GCC 7 series). The
level of OpenMP support among other compilers varies significantly.

OpenACC

OpenACC (for open accelerators) is a programming standard for parallel computing developed by Cray, CAPS, Nvidia
and PGI. The standard is designed to simplify parallel programming of heterogeneous CPU/GPU systems. Since the
paradigm is very similar to the latest OpenMP specs, a future merger into OpenMP is not unlikely. It should be noted
that CUDA (with the nvcc compiler) is still the most commonly used (and highest performing) library for programming
NVIDIA GPUs.

OpenCL

Open Computing Language (OpenCL) is a framework for writing programs that execute across heterogeneous plat-
forms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs, see Section 2.4 for the extreme relevance of this) and other pro-
cessors or hardware accelerators.

OpenCL 2.2 brings the OpenCL C++ kernel language into the core specification for significantly enhanced parallel
programming productivity. When releasing OpenCL version 2.2, the Khronos Group announced that OpenCL would
be merging into Vulkan (which targets high-performance realtime 3D graphics applications) in the future, leaving
some uncertainty as to how this may affect the HPC space.

Runtime System Approaches

As noted already, programming paradigm standards are moving forward to adapt to the technologies that we see in the
market place. The complexity of the hardware infrastructure necessarily brings complexity to the implementation of
the programming standards.

5.1. Scientific Software Development Best Practices 575

https://gasnet.lbl.gov/
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.lrz.de/services/compute/courses/x_lecturenotes/Parallel_Programming_Languages_Workshop/MPI.pdf
http://www.openmp.org/resources/openmp-compilers/
https://www.openacc.org/
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://en.wikipedia.org/wiki/Vulkan_(API)

E-CAM Documentation, Release 0.2

There are number of programming models that leverage runtime systems under development. They promise to abstract
away hardware during the development process, with the proviso that tuning at runtime may be required. Our expe-
rience to date with these systems is limited so we simply provide a list of three such systems here (which is certainly
not exhaustive) in no particular order:

• HPX, a C++ Standard Library for concurrency and parallelism. The goal of the HPX project is to create a
high quality, freely available, open source implementation of ParalleX concepts for conventional and future
systems by building a modular and standards conforming runtime system for SMP and distributed application
environments. (Most recent release: v1.0, April 2017)

• Kokkos implements a programming model in C++ for writing performance portable applications targeting all
major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data
management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and
multiple types of execution resources. It currently can use OpenMP, Pthreads and CUDA as backend program-
ming models. (Most recent release: v2.04.04, 11 Sept 2017)

• OmpSs is an effort to integrate features from the StarSs programming model developed at Barcelona Supercom-
puting Centre (BSC) into a single programming model. In particular, the objective is to extend OpenMP with
new directives to support asynchronous parallelism and heterogeneity (devices like GPUs). However, it can also
be understood as new directives extending other accelerator based APIs like CUDA or OpenCL. The OmpSs
environment is built on top of BSCs Mercurium compiler and Nanos++ runtime system. (Most recent release:
v17.06, June 2017)

Feedback for software developers

Awareness of the latest standards and the status of their implementations are critical at all times during application
development. The adoption of new features from standards are likely to have large impact on the scalability of appli-
cation codes precisely because it is very likely that these features exist to target the scalability challenges on modern
systems. Nevertheless, you should be aware that there can be very long gaps between the publication of a standard
and the implementation in compilers (which is frequently also biased by who is pushing which standard and why:
Intel pushes OpenMP because of their Xeon Phi line, NVIDIA who now own PGI pushes OpenACC because of their
GPUs, AMD pushed OpenCL for their own GPUs to compete with CUDA). The likelihood of there being a single
common (set of) standards that performs well on all architectures is not high in the immediate future. For typical
developers that we see in E-CAM, MPI+OpenMP remains the safest bet and is likely to perform well, as long as the
latest standards are used.

More disruptive software technologies (such as GASNet) are more likely to gain traction if they are used by popular
abstraction layers (which could be PGAS langauages, runtime systems or even domain specific languages) “under
the hood”. This would make the transition to new paradigms an implementation issue for the abstraction layer. In-
deed, given the expected complexity of next generation machines, new programming paradigms that help remove the
performance workload from the shoulders of scientific software developers will gain increasing importance.

As you may have noticed in the previous discussion, the computer scientists developing these abstractions are working
mostly in C++, and the implementation of new standards in compilers is also seen first for C++. From a practical
perspective this has some clear implications: if you want to access the latest software technologies then you had better
consider C++ for your application. This may appear harsh given that the Fortran standard has clear capabilities in this
space, but it is a current reality that cannot be ignored. Also, given that the vast majority of researchers will eventually
transition to industry (because there simply aren’t enough permanent jobs in academia) it is more responsible to ensure
they have programming expertise in a language that is heavily used in the commercial space. Finally, the ecosystem
surrounding C++ (IDEs, testing frameworks, libraries,. . .) is much richer because of it’s use in industry and computer
science.

Taking all of the above into consideration, if you are starting out with an application we would distil the discussion into
the following advice: prototype your application using Python leveraging the Python APIs to the libraries you need;
write unit tests as you go; and, when you start doing computationally intensive work, use C++ with Python interfaces
to allow you to squeeze out maximal performance using the latest software technologies.

576 Chapter 5. What is a module?

https://github.com/STEllAR-GROUP/hpx
http://stellar.cct.lsu.edu/pubs/icpp09.pdf
https://github.com/kokkos/kokkos
https://pm.bsc.es/ompss

E-CAM Documentation, Release 0.2

Accessing Resources

All of the above is academic unless you have access to resources to develop and test new software. There are many
potential ways to access HPC resources, we simply highlight a limited set of the possibilities here.

Accessing HPC Resources in Europe

As far as the Partnership for Advanced Computing in Europe (PRACE) initiative is concerned, the complete list of
available resources are shown in the figure below.

Access to PRACE resources can be obtained by application to the PRACE calls.

Moreover, the Distributed European Computing Initiative (DECI) is designed for projects requiring access to resources
not currently available in the PI’s own country but where those projects do not require resources on the very largest
(Tier-0) European Supercomputers or very large allocations of CPU. To obtain resources from the DECI program,
applications should be made via the DECI calls.

5.1. Scientific Software Development Best Practices 577

https://prace-peer-review.cines.fr/proposal/PRACE_Call_17_Technical_Guidelines_for_Applicants.pdf
http://www.prace-ri.eu/call-announcements/
http://www.prace-ri.eu/deci-13-call/

E-CAM Documentation, Release 0.2

578 Chapter 5. What is a module?

CHAPTER 6

E-CAM Activities

The software stored in E-CAM repositories is developed via two main activities: the work of post-docs in the context of
pilot projects with industrial partners; and the work of the participants at Extended Software Development Workshops
(ESDWs).

6.1 Pilot Projects

One of primary activity of E-CAM is to engage with pilot projects with industrial partners. These projects are con-
ceived together with the partner and typically are to facilitate or improve the scope of computational simulation within
the partner. The related code development for the pilot projects are open source (where the licence of the underlying
software allows this) and are described in the modules associated with the pilot projects.

Below is a list of the current pilot projects within E-CAM:

• Classical MD Modules

– Binding kinetics

– Food Proteins

• Electronic Structure Modules

– Calculations for Applications in Photovoltaic Devices

– Quantum Mechanical Parameterisation of Metal Ions in Proteins

– Wannier90

• Quantum Dynamics Modules

– Quantum Computing

• Meso- and Multi-scale Modules

– Polarizable Mesoscale Models

– Rheological Properties of New Composite Materials

– The GC-AdResS scheme

579

https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/pilot-project-biki/
https://www.e-cam2020.eu/pilot-project-food-proteins/
https://www.e-cam2020.eu/pilot-project-merck/
https://www.e-cam2020.eu/pilot-project-biki-2/
https://www.e-cam2020.eu/pilot-project-ibm/
https://www.e-cam2020.eu/pilot-project-unilever/
https://www.e-cam2020.eu/pilot-project-michelin/
https://www.e-cam2020.eu/pilot-project-gc-adress/

E-CAM Documentation, Release 0.2

6.2 Extended Software Development Workshops

E-CAM carries out 2 week software development workshops. These workshops train scientists in the development
of modular codes for high performance machines. Documentation and testing are key components of the workshops
and the associated on-line manuals and test cases are made available through the E-CAM module library. ESDWs are
open to postdocs, senior graduate students and early career researchers in industry and academia. E-CAM carries out
4 ESDWs per year on each of the four scientific areas, with a maximum 2 weeks duration. For more information see
http://www.e-cam2020.eu/events/

580 Chapter 6. E-CAM Activities

https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
https://www.e-cam2020.eu/
http://www.e-cam2020.eu/events/

CHAPTER 7

Contributing to this documentation

This documentation is created using ReStructured Text and the git repository for the documentation source files can
be found at https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library which are open to contributions from anyone in the
E-CAM community. If you would like to contribute to this effort then please follow the contribution guidelines that
are linked to below.

General Information

• How to contribute?
– Contribution Guidelines

* GitLab account
* Fork the repository
* Clone your fork of the repository
* Keep your master branch up-to-date
* Branching
* Contributing module documentation
* Checking your contribution locally
* Contributing back your input
* Updating your contribution

• search

7.1 How to contribute?

This webpage is actually a repository of files that (typically) document application development efforts during the pilot
projects and Extended Software Development Workshops (ESDWs) of E-CAM. This documentation is completely
open however and we welcome both internal and external contributions. If you would like to contribute to this effort
then please follow the steps below to allow us to include your contribution.

581

https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library
https://www.e-cam2020.eu/

E-CAM Documentation, Release 0.2

In any case you will simply be adding a simple text file that uses ReST and we have prepared an example to help you
get started:

• E-CAM example module

You will find the example within the repository of this documentation under the directory example_module. You
should make a copy of this directory (renaming it) and place it in the appropriate scientific area directory.

7.1.1 Contribution Guidelines

GitLab account

If you do not have a (free) GitLab account yet on the E-CAM GitLab service, you’ll need to get one via https:
//gitlab.e-cam2020.eu/.

Note: You should also register an SSH public key with GitLab (if you have not already done so), so you can easily
clone, push to and pull from your repositories. This can be done via https://gitlab.e-cam2020.eu/profile/keys (once
you’re logged in on GitLab).

In the following it is assumed that an SSH public key has been registered with GitLab (see note above), the possibility
of using the HTTPS protocol to access GitLab is not covered (but is possible).

Fork the repository

Firstly, you’ll need to fork the repository on GitLab you want to work with. Go to https://gitlab.e-cam2020.eu/e-cam/
E-CAM-Library , and click the grey ‘Fork’ button either beside or under the repository name (or just click this fork
link).

Clone your fork of the repository

Clone your fork of the repository to your favorite workstation.

git clone ssh://git@gitlab.e-cam2020.eu:10022/<Your GitLab username>/E-CAM-Library.git

Pull the master branch from the main repository:

cd E-CAM-Library
git remote add upstream https://git@gitlab.e-cam2020.eu/e-cam/E-CAM-Library.git
git pull upstream master

Keep your master branch up-to-date

Make sure you update it every time you create a feature branch (see below):

git checkout master
git pull upstream master

582 Chapter 7. Contributing to this documentation

http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/profile/keys
https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library
https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library
https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library/forks/new
https://gitlab.e-cam2020.eu/e-cam/E-CAM-Library/forks/new

E-CAM Documentation, Release 0.2

Branching

Pick a branch name for your work that makes sense, so you can track things easily and make sense if you end up
having several branches in flight at once (each PR is a new branch).

Examples:

update_gromacs_module

new_esdw_lammps_module

industry_devel_module

Create a feature branch for your work (after updating your master), and check it out

git checkout master
git branch BRANCH_NAME
git checkout BRANCH_NAME

Make sure to always base your features branches on master!

If you are working on several things at the same time, try and keep things isolated in separate branches, to keep it
manageable (both for you, and for reviewing your contributions).

Contributing module documentation

Your contribution to this repository will primarily be a module documentation file (this repository is not for source
code, the documentation file will link to source code which is usually somewhere else). There are already several
examples of these in the repository, but we provide a template for a generic module as a guide:

Software Technical Information

Name Name of the relevant software.

Language Please indicate the primary language(s) used by the module. Please also state if interfaces for other
languages are available.

Licence Specify the licence under which the software is released. Provide a link to the full online description of
the licence. You’ll find descriptions of the most common licences at https://opensource.org/licenses . An
example here would be: GPL or (the more permissive) MIT

Documentation Tool All source code created for this module should be documented so please indicate what tool
has been used for documentation. Doxygen covers most languages but for Fortran you might want to use
Ford, for Python ReST, etc.

Application Documentation Provide a link to any documentation for the application.

Relevant Training Material Add a link to any relevant training material. If there currently is none then say ‘Not
currently available.’

Software Module Developed by Add the name of the person who developed the software for this module here

E-CAM example module

7.1. How to contribute? 583

https://opensource.org/licenses
https://opensource.org/licenses/gpl-license
https://opensource.org/licenses/mit-license
http://fortranwiki.org/fortran/show/FORD
http://www.sphinx-doc.org/en/stable/rest.html

E-CAM Documentation, Release 0.2

• Purpose of Module

• Background Information

• Building and Testing

• Source Code

The E-CAM library is purely a set of documentation that describes software development efforts related to the project.
A module for E-CAM is the documentation of the single development of effort associated to the project.In that sense,
a module does not directly contain source code but instead contains links to source code, typically stored elsewhere.
Each module references the source code changes to which it directly applies (usually via a URL), and provides detailed
information on the relevant application for the changes as well as how to build and test the associated software.

The original source of this page (readme.rst) contains lots of additional comments to help you create your doc-
umentation module so please use this as a starting point. We use Sphinx (which in turn uses ReST) to create this
documentation. You are free to add any level of complexity you wish (within the bounds of what Sphinx and ReST
can do). More general instructions for making your contribution can be found in “How to contribute?”.

Remember that for a module to be accepted into the E-CAM repository, your source code changes in the target
application must pass a number of acceptance criteria:

• Style (use meaningful variable names, no global variables,. . .)

• Source code documentation (each function should be documented with each argument explained)

• Tests (everything you add should have either unit or regression tests)

• Performance (If what you introduce has a significant computational load you should make some performance
optimisation effort using an appropriate tool. You should be able to verify that your changes have not introduced
unexpected performance penalties, are threadsafe if needed,. . .)

Purpose of Module

Give a brief overview of why the module is/was being created, explaining a little of the scientific background and
how it fits into the larger picture of what you want to achieve. The overview should be comprehensible to a scientist
non-expert in the domain area of the software module.

This section should also include the following (where appropriate):

• Who will use the module? in what area(s) and in what context?

• What kind of problems can be solved by the code?

• Are there any real-world applications for it?

• Has the module been interfaced with other packages?

• Was it used in a thesis, a scientific collaboration, or was it cited in a publication?

• If there are published results obtained using this code, describe them briefly in terms readable for non-expert
users. If you have few pictures/graphs illustrating the power or utility of the module, please include them with
corresponding explanatory captions.

Note: If the module is an ingredient for a more general workflow (e.g. the module was the necessary foundation
for later code; the module is part of a group of modules that will be used to calculate certain property or have certain
application, etc.) mention this, and point to the place where you specify the applications of the more general workflow
(that could be in another module, in another section of this repository, an application’s website, etc.).

584 Chapter 7. Contributing to this documentation

http://www.sphinx-doc.org/en/stable/markup/index.html
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/markup/index.html
http://www.sphinx-doc.org/en/stable/rest.html

E-CAM Documentation, Release 0.2

Note: If you are a post-doc who works in E-CAM, an obvious application for the module (or for the group of modules
that this one is part of) is your pilot project. In this case, you could point to the pilot project page on the main website
(and you must ensure that this module is linked there).

If needed you can include latex mathematics like
∑︀𝑁

𝑡=0 𝑓(𝑡,𝑘)

𝑁 which won’t show up on GitLab/GitHub but will in final
online documentation.

If you want to add a citation, such as [CIT2009], please check the source code to see how this is done. Note that
citations may get rearranged, e.g., to the bottom of the “page”.

Background Information

If the modifications are to an existing code base (which is typical) then this would be the place to name that application.
List any relevant urls and explain how to get access to that code. There needs to be enough information here so that
the person reading knows where to get the source code for the application, what version this information is relevant
for, whether this requires any additional patches/plugins, etc.

Overall, this module is supposed to be self-contained, but linking to specific URLs with more detailed information is
encouraged. In other words, the reader should not need to do a websearch to understand the context of this module,
all the links they need should be already in this module.

Building and Testing

Provide the build information for the module here and explain how tests are run. This needs to be adequately detailed,
explaining if necessary any deviations from the normal build procedure of the application (and links to information
about the normal build process needs to be provided).

Source Code

Here link the source code that was created for the module. If you are using Github or GitLab and the Gitflow Workflow
you can point to your feature branch. Linking to your pull/merge requests is even better. Otherwise you can link to the
explicit commits.

• Link to a merge request containing my source code changes

There may be a situation where you cannot do such linking. In this case, I’ll go through an example that uses a patch
file to highlight my source code changes, for that reason I would need to explain what code (including exact version
information), the source code is for.

You can create a similar patch file by (for example if you are using git for your version control) making your changes
for the module in a feature branch and then doing something like the following:

[adam@mbp2600 example (master)]$ git checkout -b tmpsquash
Switched to a new branch "tmpsquash"

[adam@mbp2600 example (tmpsquash)]$ git merge --squash newlines
Updating 4d2de39..b6768b2
Fast forward
Squash commit -- not updating HEAD
test.txt | 2 ++
1 files changed, 2 insertions(+), 0 deletions(-)

(continues on next page)

7.1. How to contribute? 585

https://www.atlassian.com/git/tutorials/comparing-workflows#gitflow-workflow
https://github.com/easybuilders/easybuild-easyblocks/pull/1106

E-CAM Documentation, Release 0.2

(continued from previous page)

[adam@mbp2600 example (tmpsquash)]$ git commit -a -m "My squashed commits"
[tmpsquash]: created 75b0a89: "My squashed commits"
1 files changed, 2 insertions(+), 0 deletions(-)

[adam@mbp2600 example (tmpsquash)]$ git format-patch master
0001-My-squashed-commits.patch

To include a patch file do something like the following (take a look at the source code of this document to see the
syntax required to get this):

1 Always remember that a good patch file should have a comment inside about what the
→˓patch is for....just like this

2 --- hello.c 2014-10-07 18:17:49.000000000 +0530
3 +++ hello_new.c 2014-10-07 18:17:54.000000000 +0530
4 @@ -1,5 +1,6 @@
5 #include <stdio.h>
6

7 -int main() {
8 +int main(int argc, char *argv[]) {
9 printf("Hello World\n");

10 + return 0;
11 }

If the patch is very long you will probably want to add it as a subpage which can be done as follows

Patch file for module

Downloadable version of patch file

To include a patch file do something like the following:

1 Always remember that a good patch file should have a comment inside about what the
→˓patch is for....just like this

2 --- hello.c 2014-10-07 18:17:49.000000000 +0530
3 +++ hello_new.c 2014-10-07 18:17:54.000000000 +0530
4 @@ -1,5 +1,6 @@
5 #include <stdio.h>
6

7 -int main() {
8 +int main(int argc, char *argv[]) {
9 printf("Hello World\n");

10 + return 0;
11 }

you can reference it with Patch file for module

After creating the branch, implement your contributions: new modules, enhancements or updates to existing modules,
bug fixes, structure changes, whatever you like.

Make sure to put your work in the appropriate directory. There are 4 scientific areas in E-CAM and your module is
likely most relevant in one of those. Each of these directories has a modules subdirectory, create a new directory
within it to contain all files relevant to your specific module. In the example below, this directory has been called
gromacs_gpu.

Make sure you commit your work, and try to do it in bite-size chunks, so the commit log remains clear, for example:

586 Chapter 7. Contributing to this documentation

E-CAM Documentation, Release 0.2

git add Classical-MD-Modules/modules/gromacs_gpu/readme.rst
git commit -m "add details on improved GPU support within GROMACS"

Checking your contribution locally

You can locally build the documentation to check that the changes you make look as you expect them. To do this you
will need the Sphinx python package to be installed (see this installation link for information on how to install this tool
on your operating system).

make html # in root directory of repository
firefox _build/html/index.html # Use your browser to view the end result

If you do not have Latex installed on your system you are likely to get related errors. Other (non-latex) errors are
likely to come from your additions.

Contributing back your input

When you’ve finished the implementation of a particular contribution, here’s how to get it into the main repository.

Push your branch to your copy of the repository on GitLab

git push origin <BRANCH_NAME>

Issue a Merge Request for your branch into the main repository. To do this go to https://gitlab.e-cam2020.eu/Your_
GitLab_Username/E-CAM-Library/merge_requests and select the New Merge Request button.

Make sure the branch you just pushed is selected (not master!) issue a merge request for your branch to the master
branch of the main repository.

Updating your contribution

It is common for there to be updates required to contributions, you do not need to open a new Merge Request to do
this.

To update your contribution you update the appropriate files on your contribution branch. Firstly you need to ensure
that you are up to date with the remote repository on GitLab. Make sure you are in the directory of the cloned repository
and then check which branch you want to check out:

git branch # List all available local branches, to include remote branches add the -r
→˓flag
git checkout <BRANCH_NAME> # Check out the branch we want to update
git pull origin <BRANCH_NAME> # Make sure we have any updates we made to our own
→˓branch
git pull upstream master # Also pull in any changes to the main repository

Now that everything is in sync, you can edit and update your files, when you are finished you commit your changes
and push the changes back to GitLab:

git add modules/gromacs_gpu/readme.rst
git commit -m "update documentation on how to trigger the GPU support"
git push origin <BRANCH_NAME>

The Merge Request will now be automatically updated with the changed files.

7.1. How to contribute? 587

http://www.sphinx-doc.org/en/stable/install.html
https://gitlab.e-cam2020.eu/Your_GitLab_Username/E-CAM-Library/merge_requests
https://gitlab.e-cam2020.eu/Your_GitLab_Username/E-CAM-Library/merge_requests

E-CAM Documentation, Release 0.2

588 Chapter 7. Contributing to this documentation

Bibliography

[Swenson2014] D.W.H. Swenson and P.G. Bolhuis, J. Chem. Phys. 141, 044101 (2014); https://doi.org/10.1063/1.
4890037

[Rogal2008] J. Rogal and P.G. Bolhuis. J. Chem. Phys. 129, 224107 (2008); https://doi.org/10.1063/1.3029696

[GaSc2018] https://doi.org/10.1063/1.5019667

[ImAn2018] https://doi.org/10.1063/1.5024611

[BePa2007] https://doi.org/10.1103/PhysRevLett.98.146401

[Beh2011] https://doi.org/10.1063/1.3553717

[Sirk2012] An enhanced entangled polymer model for dissipative particle dynamics, J. Chem. Phys. 136, 134903
(2012); https://doi.org/10.1063/1.3698476

[Kumar2001] Brownian dynamics simulations of flexible polymers with spring–spring repulsions, J. Chem. Phys.
114, 6937, (2001); https://doi.org/10.1063/1.1358860

[Vitalis2012] A. Vitalis and A. Caflisch. Efficient Construction of Mesostate Networks from Molecular Dynamics
Trajectories. J. Chem. Theory Comput. 8 (3), 1108-1120 (2012) DOI

[Blum2009] Blum, V., et al. (2009). Ab initio molecular simulations with numeric atom-centered orbitals. CPC, 180
(11), 2175–2196. https://doi.org/10.1016/j.cpc.2009.06.022

[Fuchs1999] Fuchs, Martin, and Matthias Scheffler. “Ab initio pseudopotentials for electronic structure calculations
of poly-atomic systems using density-functional theory.” CPC 119.1 (1999): 67-98.

[DFTB] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T.
Dumitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz,
C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C.
Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J.
Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko, V. W.-z. Yu, and
T. Frauenheim , “DFTB+, a software package for efficient approximate density functional theory
based atomistic simulations” , The Journal of Chemical Physics 152, 124101 (2020) https://doi.org/
10.1063/1.5143190

[DION2004] Dion et al., Phys. Rev. Lett. 92, 246401 (2004).

[LEE2010] Lee et al., Phys. Rev. B 82, 081101 (2010).

[KLIMES2009] Klimes et al., J. Phys. Cond. Matt. 22, 022201 (2009).

589

https://doi.org/10.1063/1.4890037
https://doi.org/10.1063/1.4890037
https://doi.org/10.1063/1.3029696
https://doi.org/10.1063/1.5019667
https://doi.org/10.1063/1.5024611
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3698476
https://doi.org/10.1063/1.1358860
https://pubs.acs.org/doi/abs/10.1021/ct200801b
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1063/1.5143190
https://doi.org/10.1063/1.5143190

E-CAM Documentation, Release 0.2

[VYDROV2010] Vydrov, VanVoorhis, J. Chem. Phys. 133, 244103 (2010).

[ROMAN2009] Román-Pérez, Soler, Phys. Rev. Lett. 103, 096102 (2009).

[BONELLA2020] Phys. Chem. Chem. Phys., 2020, 22, 10775-10785

[BONELLA2020b] Phys. Chem. Chem. Phys., 2020, 22, 10775-10785

[BONELLA2020a] Phys. Chem. Chem. Phys., 2020, 22, 10775-10785

[Storn1997] Storn, Rainer, and Kenneth Price. “Differential evolution–a simple and efficient heuristic for global opti-
mization over continuous spaces.” Journal of global optimization 11.4 (1997): 341-359.

[FF2018] Fracchia F., Del Frate G., Mancini G., Rocchia W., Barone V., Force Field Parametrization of Metal Ions
from Statistical Learning Techniques. J. Chem. Theory Comput., 2018, 14(1), pp 255-273

[vitale2019] arXiv:1909.00433 [physics.comp-ph]

[Hoja_ea] First-principles modelling of molecular crystals: structures and stabilities, temperature and pressure.
https://doi.org/10.1002/wcms.1294

[Errea_ea] Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmomic approxi-
mation: Application to platinum and palladium hydrides. https://doi.org/10.1103/PhysRevB.89.064302

[Christiansen] Vibrational structure theory: new vibrational wave function methods for calculation of anhar-
monic vibrational energies and vibrational contributions to molecular properties. https://doi.org/10.1039/
B618764A

[Hoja_ea1] First-principles modelling of molecular crystals: structures and stabilities, temperature and pressure.
https://doi.org/10.1002/wcms.1294

[Lloyd-Williams_Monserrat] Lattice dynamics and electron-phonon coupling calculations using nondiagonal super-
cells. https://doi.org/10.1103/PhysRevB.92.184301

[Errea_ea1] Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmomic approx-
imation: Application to platinum and palladium hydrides. https://doi.org/10.1103/PhysRevB.89.064302

[Christiansen1] Vibrational structure theory: new vibrational wave function methods for calculation of anhar-
monic vibrational energies and vibrational contributions to molecular properties. https://doi.org/10.1039/
B618764A

[Lloyd-Williams_Monserrat1] Lattice dynamics and electron-phonon coupling calculations using nondiagonal super-
cells. https://doi.org/10.1103/PhysRevB.92.184301

[Pulay] Convergence acceleration of iterative sequences. The case of scf iteration.https://doi.org/10.1016/0009-
2614(80)80396-4

[LCT1] B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli Phys. Rev. A 84 (2012) 042507 DOI:
10.1103/PhysRevA.84.042507

[LCT2] B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli Chem. Phys. Chem. 16 (2015) 2127 DOI:
10.1002/cphc.201500190

[Mackernan1] D.Mackernan, G.Ciccotti, R.Kapral, Trotter-Based Simulation of Quantum-Classical Dynamics, J.
Phys. Chem. B, 2008, 112 (2), pp 424-432.

[CTMQC1] S. K. Min, F. Agostini, E. K. U. Gross, Phys. Rev. Lett. 115 (2015) 073001 DOI: 10.1103/Phys-
RevLett.115.073001

[CTMQC2] F. Agostini, S. K. Min, A. Abedi, E. K. U. Gross, J. Chem. Theory Comput 5 (2016) 2127 DOI:
10.1021/acs.jctc.5b01180

[CTMQC3] Graeme H. Gossel, F. Agostini, Neepa T. Maitra, (2018) arXiv: 1805.03534 [physics.chem-ph]

590 Bibliography

https://arxiv.org/abs/1909.00433
https://doi.org/10.1002/wcms.1294
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1039/B618764A
https://doi.org/10.1039/B618764A
https://doi.org/10.1002/wcms.1294
https://doi.org/10.1103/PhysRevB.92.184301
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1039/B618764A
https://doi.org/10.1039/B618764A
https://doi.org/10.1103/PhysRevB.92.184301
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.042507
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.042507
http://onlinelibrary.wiley.com/doi/10.1002/cphc.201500190/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cphc.201500190/abstract
http://dx.doi.org/10.1021/jp0761416
https://doi.org/10.1103/PhysRevLett.115.073001
https://doi.org/10.1103/PhysRevLett.115.073001
https://doi.org/10.1021/acs.jctc.5b01180
https://doi.org/10.1021/acs.jctc.5b01180
https://arxiv.org/abs/1805.03534

E-CAM Documentation, Release 0.2

[CTMQC4] S. K. Min, Federica Agostini, I. Tavernelli, E. K. U. Gross, J. Phys. Chem. Lett. 8 (2017) 3048 DOI:
10.1021/acs.jpclett.7b01249

[EF1] A. Abedi, N. T. Maitra, E. K. U. Gross, Phys. Rev. Lett. 105 (2010) 123002 DOI: 10.1103/Phys-
RevLett.105.123002

[EF2] A. Abedi, N. T. Maitra, E. K. U. Gross, J. Chem. Phys. 137 (2012) 22A530 DOI: 10.1063/1.4745836

[EF3] A. Abedi, F. Agostini, Y. Suzuki, E. K. U. Gross, Phys. Rev. Lett. 110 (2013) 263001 DOI: 10.1103/Phys-
RevLett.110.263001

[EF4] F. Agostini, B. F. E. Curchod, R. Vuilleumier, I. Tavernelli, E. K. U. Gross, TDDFT and Quantum-
Classical Dynamics: a Universal Tool Describing the Dynamics of Matter in ‘Handbook of Materi-
als Modeling. Volume 1 Methods: Theory and Modeling’, edited by Wanda Andreoni and Sidney Yip,
Springer (in production).

[Tully] J. C. Tully, J. Chem. Phys. 93 (1990) 1061 DOI: 10.1063/1.459170

[CI1] B. F. E. Curchod, F. Agostini, J. Phys. Chem. Lett. 8 (2017) 831 DOI: 10.1021/acs.jpclett.7b00043

[Gross_PRL2010] Abedi, A., Maitra, N. T., Gross, E. K. U. Phys. Rev. Lett. 105 (2010) 123002 Exact factorization of
the time-dependent electron-nuclear wave function.

[Gross_JCP2012] Abedi, A., Maitra, N. T., Gross, E. K. U. Phys. Rev. Lett. 137 (2012) 22A530 Correlated electron-
nuclear dynamics: Exact factorization of the molecular wave-function.

[Gross_MP2013] Agostini, F., Abedi, A., Suzuki, Y., and Gross, E. K. U. Mol. Phys. 111 (2013) 3625–3640 Mixed
quantum-classical dynamics on the exact time-dependent potential energy surfaces: A fresh look at non-
adiabatic processes.

[Gross_JCP2015] Agostini, F., Abedi, A., Suzuki, Y., Min, S. K., Maitra, N. T., and Gross, E. K. U. J. Chem. Phys.
142 (2015) 084303 The exact forces on classical nuclei in non-adiabatic charge transfer.

[Agostini_JPCL2017] Curchod, B. F. E., and Agostini, F. J. Phys. Chem. Lett. 105 (2017) 831–837 On the dynamics
through a conical intersection.

[ElVibRot] Lauvergnat, D. J. Chem. Phys. Elvibrot: Quantum dynamics code.

[Mackernan] D.Mackernan, G.Ciccotti, R.Kapral, Trotter-Based Simulation of Quantum-Classical Dynamics, J. Phys.
Chem. B, 2008, 112 (2), pp 424-432.

[EF] F. Agostini, E. K. U. Gross, Quantum chemistry and dynamics of excited states: Methods and applica-
tions, edited by L. González and R. Lindh, Wiley (2020).

[CT-MQC] S. K. Min, F. Agostini, E. K. U. Gross, Phys. Rev. Lett. 115 (2015) 073001 DOI: 10.1103/Phys-
RevLett.115.073001

[TSH] J. C. Tully, J. Chem. Phys. 93 (1990) 1061 DOI: 10.1063/1.459170

[EH] J. C. Tully, Faraday Discuss. 110 (1998) 407 DOI: 10.1039/A801824C

[TSH-EDC] G. Granucci, M. Persico, J. Chem. Phys. 126 (2007) 134114 DOI: 10.1063/1.2715585

[G-CT-MQC] F. Talotta, S. Morisset, N. Rougeau, D. Lauvergnat, F. Agostini, J. Chem. Theory Comput. 16 (2020)
4833-4848 DOI: 10.1021/acs.jctc.0c00493

[PSB3] E. Marsili, M. Olivucci, D. Lauvergnat and F. Agostini, J. Chem. Theory Comput. 16 (2020) 6032-6048
DOI: 10.1021/acs.jctc.0c00679

[SOC] F. Talotta, S. Morisset, N. Rougeau, D. Lauvergnat, F. Agostini, Phys. Rev. Lett. 124 (2020) 033001 DOI:
10.1103/PhysRevLett.124.033001

[IC] C. Pieoroni, E. Marsili, D. Lauvergnat and F. Agostini, J. Chem. Phys. 154 (2021) 034104 DOI:
10.1063/5.0036726

Bibliography 591

https://doi.org/10.1021/acs.jpclett.7b01249
https://doi.org/10.1021/acs.jpclett.7b01249
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1063/1.4745836
https://doi.org/10.1103/PhysRevLett.110.263001
https://doi.org/10.1103/PhysRevLett.110.263001
https://doi.org/10.1063/1.459170
https://doi.org/10.1021/acs.jpclett.7b00043
https://github.com/lauvergn/ElVibRot-TnumTana
http://dx.doi.org/10.1021/jp0761416
https://doi.org/10.1103/PhysRevLett.115.073001
https://doi.org/10.1103/PhysRevLett.115.073001
https://doi.org/10.1063/1.459170
https://doi.org/10.1039/A801824C
https://doi.org/10.1063/1.2715585
https://dx.doi.org/10.1021/acs.jctc.0c00493
https://dx.doi.org/10.1021/acs.jctc.0c00679
https://doi.org/10.1103/PhysRevLett.124.033001
https://doi.org/10.1103/PhysRevLett.124.033001
https://doi.org/10.1063/5.0036726
https://doi.org/10.1063/5.0036726

E-CAM Documentation, Release 0.2

[KapralCiccotti1999] R. Kapral, G. Ciccotti, J. Chem. Phys. 110 (1999) 8919 DOI: 10.1063/1.478811

[HsiehKapral2012] C. Hsieh, K. Raymond, J. Chem. Phys. 137 (2012) 22A507 DOI: 10.1063/1.4736841

[HsiehKapral2013] C. Hsieh, K. Raymond, J. Chem. Phys. 138 (2013) 134110 DOI: 10.1063/1.4798221

[IshizakiFleming2009] A. Ishizaki, G. R. Fleming, J. Chem. Phys. 130 (2009) 234111 DOI: 10.1063/1.3155372

[IshizakiFleming2009PNAS] A. Ishizaki, G. R. Fleming, PNAS 106 (2009) 17255 DOI: 10.1073/pnas.0908989106

[WilkinsDattani2015] D. Wilkins, N. Dattani, J. Chem. Theory Comput. (2015) 3411 DOI: 10.1021/ct501066k

[PMon1] M. Monteferrante, S. Bonella, G. Ciccotti Mol. Phys. 109 (2011) 3015 DOI:
10.1080/00268976.2011.619506

[PMon2] M. Monteferrante, S. Bonella, G. Ciccotti J. Chem. Phys. 138 (2013) 054118 DOI: 10.1063/1.4789760

[PBeu] J. Beutier, M. Monteferrante, S. Bonella, R. Vuilleumier, G. Ciccotti Mol. Sim. 40 (2014) 196 DOI:
10.1080/08927022.2013.843776

[PJin] Z. Jin, B. Braams, J. Bowman J. Phys. Chem. A 110 (2006) 1569 DOI: 10.1021/jp053848o

[Pen] D. M. Ceperley, M. Dewing J. Chem. Phys. 110 (1999) 9812 DOI: http://dx.doi.org/10.1063/1.478034

[Ken] A. D. Kennedy, J. Kuti Phys. Rev. Lett. 54 (1985) 2473 DOI: https://doi.org/10.1103/PhysRevLett.54.2473

[Dam] H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, J.-J. Greffet, Quantum Thermal Bath for Molecular
Dynamics Simulation, Phys. Rev. Lett. 103 (2009) 190601.

[Man] E. Mangaud, S. Huppert, T. Plé, P. Depondt, S. Bonella, F. Finocchi, The Fluctuation–Dissipation Theo-
rem as a Diagnosis and Cure for Zero-Point Energy Leakage in Quantum Thermal Bath Simulations, J.
Chem. Th. Comput. 15 (2019) 2863-2880.

[Bri] F. Brieuc, Y. Bronstein, H. Dammak, P. Depondt, F. Finocchi, M. Hayoun, Zero-point energy leakage in
quantum thermal bath molecular dynamics simulations, J. Chem. Th. Comput. 12 (2016) 5688–5697.

[Hern] J. Hern’andez-Rojas, F. Calvo, E. G. Noya, Applicability of Quantum Thermal Baths to Complex Many-
Body Systems with Various Degrees of Anharmonicity, Journal of Chemical Theory and Computation 11
(2015) 861–870.

[Lei] B. Leimkuhler, C. Matthews, Rational Construction of Stochastic Numerical Methods for Molecular Sam-
pling, Applied Mathematics Research eXpress (2012).

[Jin] Z. Jin, B. Braams, J. Bowman J. Phys. Chem. A 110 (2006) 1569 DOI: 10.1021/jp053848o

[Lef] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G.
Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff J. Comp. Phys. 94 (1991) 59 DOI:
https://doi.org/10.1016/0021-9991(91)90137-A

[1Lef] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G.
Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff J. Comp. Phys. 94 (1991) 59 DOI:
https://doi.org/10.1016/0021-9991(91)90137-A

[1Tal] H. Tal-Ezer, R. Kosloff J. Chem. Phys. 81 (1984) 3967 DOI: 10.1063/1.448136

[Tn1] D. Lauvergnat, A. Nauts, Phys. Chem. Chem. Phys. 12 (2010) 8405-8412 DOI: 10.1039/C001944E

[Sm1] S. A. Smolyak, Dokl. Akad. Nauk SSSR 148 (1963) 1042–1045 http://mi.mathnet.ru/eng/dan27586

[Tn] D. Lauvergnat, A. Nauts, Phys. Chem. Chem. Phys. 12 (2010) 8405-8412 DOI: 10.1039/C001944E

[Sm] S. A. Smolyak, Dokl. Akad. Nauk SSSR 148 (1963) 1042–1045 http://mi.mathnet.ru/eng/dan27586

[Curc] B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli Phys. Rev. A 84 (2012) 042507 DOI:
10.1103/PhysRevA.84.042507

592 Bibliography

https://doi.org/10.1063/1.478811
https://doi.org/10.1063/1.4736841
https://doi.org/10.1063/1.4798221
https://doi.org/10.1063/1.3155372
https://doi.org/10.1073/pnas.0908989106
https://doi.org/10.1021/ct501066k
http://dx.doi.org/10.1080/00268976.2011.619506
http://dx.doi.org/10.1080/00268976.2011.619506
http://dx.doi.org/10.1063/1.4789760
http://dx.doi.org/10.1080/08927022.2013.843776
http://dx.doi.org/10.1080/08927022.2013.843776
https://pubs.acs.org/doi/abs/10.1021/jp053848o
https://aip.scitation.org/doi/10.1063/1.478034
https://doi.org/10.1103/PhysRevLett.54.2473
https://pubs.acs.org/doi/abs/10.1021/jp053848o
http://www.sciencedirect.com/science/article/pii/002199919190137A
http://www.sciencedirect.com/science/article/pii/002199919190137A
http://www.sciencedirect.com/science/article/pii/002199919190137A
http://www.sciencedirect.com/science/article/pii/002199919190137A
https://doi.org/10.1063/1.448136
http://dx.doi.org/10.1039/C001944E
http://mi.mathnet.ru/eng/dan27586
http://dx.doi.org/10.1039/C001944E
http://mi.mathnet.ru/eng/dan27586
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.042507
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.042507

E-CAM Documentation, Release 0.2

[Mon1] M. Monteferrante, S. Bonella, G. Ciccotti Mol. Phys. 109 (2011) 3015 DOI:
10.1080/00268976.2011.619506

[Mon2] M. Monteferrante, S. Bonella, G. Ciccotti J. Chem. Phys. 138 (2013) 054118 DOI: 10.1063/1.4789760

[Beu] J. Beutier, M. Monteferrante, S. Bonella, R. Vuilleumier, G. Ciccotti Mol. Sim. 40 (2014) 196 DOI:
10.1080/08927022.2013.843776

[ZJin] Z. Jin, B. Braams, J. Bowman J. Phys. Chem. A 110 (2006) 1569 DOI: 10.1021/jp053848o

[Beck] M. Beck, A. Jäckle, G.A. Worth, and H.-D. Meyer Phys. Rep. 324 (2000) 1–106 DOI: 10.1016/S0370-
1573(99)00047-2

[Lefo] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G.
Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff J. Comp. Phys. 94 (1991) 59 DOI:
10.1016/0021-9991(91)90137-A

[Mey] H.-D. Meyer, G. A. Worth Theor. Chem. Acc. 109 (2003) 251 DOI: 10.1007/s00214-003-0439-1

[Ric] G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth, I. Burghardt, B. Lasorne Int. Rev. Phys. Chem.
34 (2015) 269 DOI: 10.1080/0144235X.2015.1051354

[Wor1] G. A. Worth, M. A. Robb, B. L. Lasorne Mol. Phys. 106 (2008) 2077–2091 DOI:
10.1080/00268970802172503

[Wor2] G. A. Worth, K. Giri, G. W. Richings, M. H. Beck, A. Jackle, H.-D. Meyer Quantics package, version
1.1, (2015)

[Tnum] D. Lauvergnat, A. Nauts, Phys. Chem. Chem. Phys. 12 (2010) 8405-8412 DOI: 10.1039/C001944E

[Smo] S. A. Smolyak, Dokl. Akad. Nauk SSSR 148 (1963) 1042–1045 http://mi.mathnet.ru/eng/dan27586

[Duboue2015] E. Duboué-Dijon, A. Laage, Characterization of the local structure in liquid water by various order
parameters, J. Phys. Chem. B, 119, 8406 (2015).

[SPME] J. Chem. Phys. 103, 8577 (1995)

[Coveney] Coveney, P. V. et al., Towards blood flow in the virtual human: efficient self-coupling of HemeLB, Inter-
face focus 11(1), 20190119

[Raymond] The Art of Unix Programming, Eric Steven Raymond http://www.faqs.org/docs/artu/index.html

[BestPractices] https://en.wikibooks.org/wiki/Computer_Programming/Standards_and_Best_Practices

[SoftwareSpecification] Software requirements specification https://en.wikipedia.org/wiki/Software_requirements_
specification

[TDD] Test-driven Development https://en.wikipedia.org/wiki/Test-driven_development

[PyCogent] http://pycogent.org/coding_guidelines.html

[CIT2009] This is a citation (as often used in journals).

Bibliography 593

http://dx.doi.org/10.1080/00268976.2011.619506
http://dx.doi.org/10.1080/00268976.2011.619506
http://dx.doi.org/10.1063/1.4789760
http://dx.doi.org/10.1080/08927022.2013.843776
http://dx.doi.org/10.1080/08927022.2013.843776
https://pubs.acs.org/doi/abs/10.1021/jp053848o
https://doi.org/10.1016/S0370-1573(99)00047-2
https://doi.org/10.1016/S0370-1573(99)00047-2
https://doi.org/10.1016/0021-9991(91)90137-A
https://doi.org/10.1016/0021-9991(91)90137-A
https://doi.org/10.1007/s00214-003-0439-1
https://doi.org/10.1080/0144235X.2015.1051354
https://doi.org/10.1080/00268970802172503
https://doi.org/10.1080/00268970802172503
http://dx.doi.org/10.1039/C001944E
http://mi.mathnet.ru/eng/dan27586
http://www.faqs.org/docs/artu/index.html
https://en.wikibooks.org/wiki/Computer_Programming/Standards_and_Best_Practices
https://en.wikipedia.org/wiki/Software_requirements_specification
https://en.wikipedia.org/wiki/Software_requirements_specification
https://en.wikipedia.org/wiki/Test-driven_development
http://pycogent.org/coding_guidelines.html

	Classical MD Modules
	Electronic Structure Modules
	Quantum Dynamics Modules
	Meso- and Multi-scale Modules
	What is a module?
	E-CAM Activities
	Contributing to this documentation
	Bibliography

