
dwim
Release 0.3.1

May 29, 2017

Contents

1 Installation 3

2 Usage 5
2.1 Command line interface . 5
2.2 Creating a profile . 6

3 Location awareness 9

4 About the name 11

5 Contact 13

6 License 15

7 Function reference 17
7.1 dwim . 17
7.2 dwim.cli . 19
7.3 dwim.exceptions . 20

Python Module Index 21

i

ii

dwim, Release 0.3.1

The dwim program is a location aware application launcher. To use it you are required to create a profile at ~/.
dwimrc. This profile is a simple Python script that defines which applications you want to start automatically, in
which order the applications should start and whether some applications should only be started when your computer
is on a specific physical location. The location awareness works by matching a unique property of the network that
your computer is connected to (the MAC address of your current network gateway).

Every time you run the dwim program your ~/.dwimrc profile is evaluated and your applications are started au-
tomatically. If you run dwim again it will not start duplicate instances of your applications, but when you quit an
application and then rerun dwim the application will be started again.

• Installation

• Usage

– Command line interface

– Creating a profile

• Location awareness

• About the name

• Contact

• License

Contents 1

http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Gateway_(telecommunications)

dwim, Release 0.3.1

2 Contents

CHAPTER 1

Installation

The dwim package is available on PyPI which means installation should be as simple as:

$ pip install dwim

There’s actually a multitude of ways to install Python packages (e.g. the per user site-packages directory, virtual
environments or just installing system wide) and I have no intention of getting into that discussion here, so if this
intimidates you then read up on your options before returning to these instructions ;-).

3

https://pypi.python.org/pypi/dwim
https://www.python.org/dev/peps/pep-0370/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

dwim, Release 0.3.1

4 Chapter 1. Installation

CHAPTER 2

Usage

There are two ways to use the dwim package: As the command line program dwim and as a Python API. For details
about the Python API please refer to the API documentation available on Read the Docs. The command line interface
is described below.

Please note that you need to create a profile (see below) before you can use the program.

Command line interface

Usage: dwim [OPTIONS]

The dwim program is a location aware application launcher. To use it you are required to create a profile at ~/.dwimrc.
This profile is a simple Python script that defines which applications you want to start automatically, in which order
the applications should start and whether some applications should only be started given a specific physical location.

The location awareness works by checking the MAC address of your gateway (the device on your network that con-
nects you to the outside world, usually a router) to a set of known MAC addresses that you define in ~/.dwimrc.

Every time you run the dwim program your ~/.dwimrc profile is evaluated and your applications are started automati-
cally. If you run dwim again it will not start duplicate instances of your applications, but when you quit an application
and then rerun dwim the application will be started again.

Supported options:

Option Description
-c, --config=FILE Override the default location of the profile script.
-v, --verbose Increase logging verbosity (can be repeated).
-q, --quiet Decrease logging verbosity (can be repeated).
-h, --help Show this message and exit.

5

https://dwim.readthedocs.io/en/latest/

dwim, Release 0.3.1

Creating a profile

To use dwim you need to create a profile at ~/.dwimrc. The profile is a simple Python script that defines which
applications you want to start automatically, in which order the applications should start and whether some applications
should only be started on a specific physical location. The profile script has access to functions provided by the dwim
Python package. Please refer to the documentation for the available functions. The examples below show the most
useful functions.

• Starting your first program

• Modifying the “is running” check

• Enabling location awareness

• Example profile

Starting your first program

If you’d like to get your feet wet with a simple example, try this:

launch_program('pidgin')

When you’ve created the above profile script and you run the dwim program it will start the Pidgin chat client on the
first run. On the next run nothing will happen because Pidgin is already running.

Modifying the “is running” check

The default “is running” check comes down to the following shell command line:

Replace `pidgin' with any program name.
pidof $(which pidgin)

This logic will not work for all programs. For example in my profile I start the Dropbox client using a wrapper script.
Once the Dropbox client has been started the wrapper script terminates so the pidof check fails. The solution is to
customize the “is running” check:

launch_program('dropbox start', is_running='pgrep -f "$HOME/.dropbox-dist/*/dropbox"')

The example above is for the Dropbox client, but the same principle can be applied to all other programs. The only
trick is to find a shell command that can correctly tell whether the program is running. Unfortunately this part cannot be
automated in a completely generic manner. The advanced profile example below contains more examples of defining
custom pidof checks and pgrep -f checks.

Enabling location awareness

The first step to enabling location awareness is to add the following line to your profile:

determine_network_location()

Even if you don’t pass any information to this function it will still report your current gateway’s MAC address. This
saves me from having to document the shell commands needed to do the same thing :-). Run the dwim command and
take note of a line that looks like this:

6 Chapter 2. Usage

http://en.wikipedia.org/wiki/Python_(programming_language)
https://dwim.readthedocs.io/en/latest/#function-reference
http://en.wikipedia.org/wiki/Pidgin_(software)
http://en.wikipedia.org/wiki/Dropbox_(service)

dwim, Release 0.3.1

We're not connected to a known network (unknown gateway MAC address
→˓84:9c:a6:76:23:8e).

Now edit your profile and change the line you just added:

location = determine_network_location(home=['84:9c:a6:76:23:8e'])

When you now rerun dwim it will say:

We're connected to the home network.

So what did we just do? We took note of the current gateway’s MAC address and associated that MAC address with a
location named “home”. In our profile we can now start programs on the condition that we’re connected to the home
network:

if location == 'home':
Client for Music Player Daemon.
launch_program('ario --minimized')

else:
Standalone music player.
launch_program('rhythmbox')

The example profile below (my profile) contains a more advanced example combining multiple networks and networks
with multiple gateways.

Example profile

I’ve been using variants of dwim (previously in the form of a Bash script :-) for years now so my profile has grown
quite a bit. Because of this it may provide some interesting examples of things you can do:

vim: fileencoding=utf-8

~/.dwimrc: Profile for dwim, my location aware application launcher.
For more information please see https://github.com/xolox/python-dwim/.

Standard library modules.
import os
import time

Packages provided by dwim and its dependencies.
from executor import execute
from dwim import (determine_network_location, launch_program, LaunchStatus

set_random_background, wait_for_internet_connection)

This is required for graphical Vim and gnome-terminal to have nicely
anti-aliased fonts. See http://awesome.naquadah.org/wiki/Autostart.
if launch_program('gnome-settings-daemon') == LaunchStatus.started:

When my window manager is initially started I need to wait for a moment
before launching user programs because otherwise strange things can
happen, for example programs that place an icon in the notification area
might be started in the background without adding the icon, so there's
no way to access the program but `dwim' will never restart the program
because it's already running! _
logger.debug("Sleeping for 10 seconds to give Awesome a moment to initialize ..")
time.sleep(10)

2.2. Creating a profile 7

http://en.wikipedia.org/wiki/Bash_(Unix_shell)

dwim, Release 0.3.1

Determine the physical location of this computer by matching the MAC address
of the gateway against a set of known MAC addresses. In my own copy I've
documented which MAC addresses belong to which devices, but that doesn't seem
very relevant for the outside world :-)
location = determine_network_location(home=['84:9C:A6:76:23:8E'],

office=['00:15:C5:5F:92:79',
'B6:25:B2:19:28:61',
'00:18:8B:F8:AF:33'])

Correctly configure my multi-monitor setup based on physical location.
if location == 'home':

At home I use a 24" ASUS monitor as my primary screen.
My MacBook Air sits to the left as the secondary screen.
execute('xrandr --output eDP1 --auto --noprimary')
execute('xrandr --output HDMI1 --auto --primary')
execute('xrandr --output HDMI1 --right-of eDP1')

if location == 'work':
At work I use a 24" LG monitor as my primary screen.
My Asus Zenbook sits to the right as the secondary screen.
execute('xrandr --output eDP1 --auto')
execute('xrandr --output HDMI1 --auto')
execute('xrandr --output HDMI1 --left-of eDP1')

Set a random desktop background from my collection of wallpapers. I use the
program `feh' for this because it supports my desktop environment / window
manager (Awesome). You can install `feh' using `sudo apt-get install feh'.
set_random_background(command='feh --bg-scale {image}',

directory=os.path.expanduser('~/Pictures/Backgrounds'))

Start my favorite programs.
launch_program('gvim')
launch_program('nm-applet')
launch_program('keepassx $HOME/Documents/Passwords/Personal.kdb -min -lock',

is_running='pgrep -f "keepassx $HOME/Documents/Passwords/Personal.kdb"
→˓')
I actually use three encrypted key passes, two of them for work. I omitted
those here, but their existence explains the complex is_running command.
launch_program('fluxgui', is_running='pgrep -f $(which fluxgui)')

The remaining programs require an active internet connection.
wait_for_internet_connection()

launch_program('chromium-browser', is_running='pidof /usr/lib/chromium-browser/
→˓chromium-browser')
launch_program('pidgin')
if location == 'home':

Mozilla Thunderbird is only useful at home (at work IMAPS port 993 is blocked).
launch_program('thunderbird', is_running='pidof /usr/lib/thunderbird/thunderbird')

launch_program('dropbox start', is_running='pgrep -f "$HOME/.dropbox-dist/*/dropbox"')
launch_program('spotify')

8 Chapter 2. Usage

CHAPTER 3

Location awareness

The location awareness works by matching the MAC address of your current network gateway (your router). I’ve
previously also used public IPv4 addresses but given the fact that most consumers will have a dynamic IP address I
believe the gateway MAC access is the most stable unique property to match.

9

http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Gateway_(telecommunications)

dwim, Release 0.3.1

10 Chapter 3. Location awareness

CHAPTER 4

About the name

In programming culture the abbreviation DWIM stands for Do What I Mean. The linked Wikipedia article refers to
Interlisp but I actually know the term from the world of Perl. The reason I chose this name for my application launcher
is because I like to make computer systems anticipate what I want. Plugging in a network cable, booting my laptop
and having all my commonly used programs (depending on my physical location) instantly available at startup is a
great example of Do What I Mean if you ask me :-)

11

http://en.wikipedia.org/wiki/DWIM
http://en.wikipedia.org/wiki/Interlisp
http://en.wikipedia.org/wiki/Perl

dwim, Release 0.3.1

12 Chapter 4. About the name

CHAPTER 5

Contact

The latest version of dwim is available on PyPI and GitHub. The documentation is hosted on Read the Docs. For bug
reports please create an issue on GitHub. If you have questions, suggestions, etc. feel free to send me an e-mail at
peter@peterodding.com.

13

https://pypi.python.org/pypi/dwim
https://github.com/xolox/python-dwim
https://dwim.readthedocs.io/en/latest/
https://github.com/xolox/python-dwim
mailto:peter@peterodding.com

dwim, Release 0.3.1

14 Chapter 5. Contact

CHAPTER 6

License

This software is licensed under the MIT license.

© 2017 Peter Odding.

15

http://en.wikipedia.org/wiki/MIT_License

dwim, Release 0.3.1

16 Chapter 6. License

CHAPTER 7

Function reference

The following documentation is based on the source code of version 0.3.1 of the dwim package.

dwim

dwim: Location aware application launcher.

dwim.DEFAULT_PROFILE = ‘~/.dwimrc’
The default location of the user’s profile script (a string).

dwim.dwim(profile=’~/.dwimrc’)
Evaluate the user’s profile script.

dwim.launch_program(command, is_running=None)
Start a program if it’s not already running.

This function makes it easy to turn any program into a single instance program. If the default “Is the program
already running?” check fails to work you can redefine the way this check is done.

Parameters

• command – The shell command used to launch the application (a string).

• is_running – The shell command used to check whether the application is already run-
ning (a string, optional).

Returns One of the values from the LaunchStatus enumeration.

Examples of custom “is running” checks:

Chromium uses a wrapper script, so we need to match the absolute
pathname of the executable.
launch_program('chromium-browser', is_running='pidof /usr/lib/chromium-browser/
→˓chromium-browser')

Dropbox does the same thing as Chromium, but the absolute pathname of
the executable contains a version number that I don't want to hard

17

dwim, Release 0.3.1

code in my ~/.dwimrc profile :-)
launch_program('dropbox start', is_running='pgrep -f "$HOME/.dropbox-dist/*/
→˓dropbox"')

class dwim.LaunchStatus
LaunchStatus enumerates the possible results of launch_program().

It enables the caller to handle the possible results when they choose to do so, without forcing them to handle
exceptions.

started = <EnumValue: LaunchStatus.started [value=1]>
The program wasn’t running before but has just been started.

already_running = <EnumValue: LaunchStatus.already_running [value=2]>
The program was already running.

not_installed = <EnumValue: LaunchStatus.not_installed [value=3]>
The program is not installed / available on the $PATH.

unspecified_error = <EnumValue: LaunchStatus.unspecified_error [value=4]>
Any other type of error, e.g. the command line can’t be parsed.

dwim.extract_program(command_line)
Parse a simple shell command to extract the program name.

Parameters command_line – A shell command (a string).

Returns The program name (a string).

Raises CommandParseError when the command line cannot be parsed.

Some examples:

>>> extract_program('dropbox start')
'dropbox'
>>> extract_program(' "/usr/bin/dropbox" start ')
'/usr/bin/dropbox'

dwim.resolve_program(executable)
Expand the name of a program into an absolute pathname.

Parameters executable – The name of a program (a string).

Returns The absolute pathname of the program (a string).

Raises MissingProgramError when the program doesn’t exist.

An example:

>>> extract_program('dropbox start')
'dropbox'
>>> resolve_program(extract_program('dropbox start'))
'/usr/bin/dropbox'

dwim.set_random_background(command, directory)
Set a random desktop wallpaper / background.

Parameters

• command – The command to set the wallpaper (a string containing an {image} marker).

• directory – The pathname of a directory containing wallpapers (a string).

Raises ValueError when the command string doesn’t contain an {image} placeholder.

18 Chapter 7. Function reference

https://docs.python.org/2/library/exceptions.html#exceptions.ValueError

dwim, Release 0.3.1

dwim.determine_network_location(**gateways)
Determine the physical location of this computer.

This works by matching the MAC address of the current gateway against a set of known MAC addresses, which
provides a simple but robust way to identify the current network. Because networks usually have a physical
location, identifying the current network tells us our physical location.

Parameters gateways – One or more keyword arguments with lists of strings containing MAC
addresses of known networks.

Returns The name of the matched MAC address (a string) or None when the MAC address of the
current gateway is unknown.

Here’s an example from my ~/.dwimrc involving multiple networks and a physical location with multiple
gateways:

location = determine_network_location(home=['84:9C:A6:76:23:8E'],
office=['00:15:C5:5F:92:79',

'B6:25:B2:19:28:61',
'00:18:8B:F8:AF:33'])

dwim.find_gateway_address()
Find the IP address of the current gateway using the ip route command.

Returns The IP address of the gateway (a string) or None.

An example:

>>> find_gateway_address()
'192.168.1.1'

dwim.find_gateway_mac()
Find the MAC address of the current gateway using the arp -n command.

Returns The MAC address of the gateway (a string) or None.

An example:

>>> find_gateway_address()
'192.168.1.1'
>>> find_gateway_mac(find_gateway_address())
'84:9c:a6:76:23:8e'

dwim.wait_for_internet_connection()
Wait for an active internet connection.

This works by sending ping requests to 8.8.8.8 (one of the Google public DNS IPv4 addresses) and return-
ing as soon as a ping request gets a successful response. The ping interval and timeout is one second.

dwim.have_internet_connection()
Check if an internet connection is available.

Returns True if an internet connection is available, False otherwise.

This works by pinging 8.8.8.8 which is one of Google’s public DNS servers. This IP address was chosen because
it is documented that Google uses anycast to keep this IP address available at all times.

dwim.cli

Usage: dwim [OPTIONS]

7.2. dwim.cli 19

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://developers.google.com/speed/public-dns/

dwim, Release 0.3.1

The dwim program is a location aware application launcher. To use it you are required to create a profile at ~/.dwimrc.
This profile is a simple Python script that defines which applications you want to start automatically, in which order
the applications should start and whether some applications should only be started given a specific physical location.

The location awareness works by checking the MAC address of your gateway (the device on your network that con-
nects you to the outside world, usually a router) to a set of known MAC addresses that you define in ~/.dwimrc.

Every time you run the dwim program your ~/.dwimrc profile is evaluated and your applications are started automati-
cally. If you run dwim again it will not start duplicate instances of your applications, but when you quit an application
and then rerun dwim the application will be started again.

Supported options:

Option Description
-c, --config=FILE Override the default location of the profile script.
-v, --verbose Increase logging verbosity (can be repeated).
-q, --quiet Decrease logging verbosity (can be repeated).
-h, --help Show this message and exit.

dwim.cli.main()
Command line interface for the dwim program.

dwim.exceptions

Custom exceptions raised by dwim.

exception dwim.exceptions.ProgramError
Super class for exceptions raised in launch_program().

exception dwim.exceptions.CommandParseError
Raised by extract_program() when a command line can’t be parsed or is empty.

exception dwim.exceptions.MissingProgramError
Raised by resolve_program() when a program doesn’t exist.

20 Chapter 7. Function reference

Python Module Index

d
dwim, 17
dwim.cli, 19
dwim.exceptions, 20

21

dwim, Release 0.3.1

22 Python Module Index

Index

A
already_running (dwim.LaunchStatus attribute), 18

C
CommandParseError, 20

D
DEFAULT_PROFILE (in module dwim), 17
determine_network_location() (in module dwim), 19
dwim (module), 17
dwim() (in module dwim), 17
dwim.cli (module), 19
dwim.exceptions (module), 20

E
extract_program() (in module dwim), 18

F
find_gateway_address() (in module dwim), 19
find_gateway_mac() (in module dwim), 19

H
have_internet_connection() (in module dwim), 19

L
launch_program() (in module dwim), 17
LaunchStatus (class in dwim), 18

M
main() (in module dwim.cli), 20
MissingProgramError, 20

N
not_installed (dwim.LaunchStatus attribute), 18

P
ProgramError, 20

R
resolve_program() (in module dwim), 18

S
set_random_background() (in module dwim), 18
started (dwim.LaunchStatus attribute), 18

U
unspecified_error (dwim.LaunchStatus attribute), 18

W
wait_for_internet_connection() (in module dwim), 19

23

	Installation
	Usage
	Command line interface
	Creating a profile

	Location awareness
	About the name
	Contact
	License
	Function reference
	dwim
	dwim.cli
	dwim.exceptions

	Python Module Index

