dtcwt Documentation

Release 0.1.0dev1

Rich Wareham, Nick Kingsbury, Cian Shaffrey

January 08, 2015

Contents

1	Contents 1.1 Command line tools 1.2 Algorithm description	1 1 1
2	Installation	3

Contents

1.1 Command line tools

This project contains the following command-line tools:

1. fuseimages - Takes one or more source frames and produces various fused results from them. See the output of fuseimages --help for more information.

1.2 Algorithm description

This section provides a brief overview of the DTCWT-based fusion algorithm as used in this project. The input to the algorithm is a set of input images, \mathcal{I} .

1.2.1 Alignment

This step aligns each input image with a single translation to match as well as possible a template image. The central image of \mathcal{I} is selected as the template image T. For each image $I \in \mathcal{I}$:

- 1. Compute the cross-correlation image $C = (I \cdot w) \star (T \cdot w)$ where w is a two-dimensional Hamming window, \cdot denotes pixel-wise multiplication and \star is the cross-correlation operator. Normalise this cross-correlation, $C \to C/(w \star w)$ where / denotes element-wise division.
- 2. Find the location of the maximum of C and compute the corresponding translational shift for that location. The maximum is found ignoring an apron around the edge of the image to avoid over matching of small overlap-regions.
- 3. Warp *I* according to that translation.

Combine all aligned images into the set of aligned images, \mathcal{I}_a .

1.2.2 Registration

This step locally warps each aligned image to best match the same template image as above. For each image $I \in \mathcal{I}_a$:

- 1. Compute the local affine warp mapping I to T as described in [1, 2].
- 2. Warp *I* according to the registration.

Combine all registered images into the set of registered images, \mathcal{I}_r .

1.2.3 Fusion

This step combines all images in \mathcal{I}_r into a single fused image. The fusion is performed in the wavelet domain and is based on the technique in[3]. The overall lowpass image is computed by taking the mean of the lowpass images corresponding to each image in \mathcal{I}_r . Letting $\theta_{d,\ell,j}^{(i)}$ correspond to the *j*-th highpass coefficient in direction *d* at level ℓ of the DTCWT transform of the *i*-th image in \mathcal{I}_r we can construct the fused wavelet coefficients $\theta_{d,\ell,j}$ in the following way:

- 1. Compute $\Theta_{d,\ell,j} = \sum_i \theta_{d,\ell,j}^{(i)}$ and then $\phi_{d,\ell,j} = \Theta_{d,\ell,j} / |\Theta_{d,\ell,j}|$. These unit-magnitude complex numbers represent the average phase of corresponding wavelet coefficients over all registered images.
- 2. Form the set $\mathcal{T}_{d,\ell,j} = \left\{ \left| \theta_{d,\ell,j}^{(1)} \right|, \left| \theta_{d,\ell,j}^{(2)} \right|, \dots, \left| \theta_{d,\ell,j}^{(N)} \right| \right\}$ for the *N* images in \mathcal{I}_r . Select $T_{d,\ell,j}$ from this set using some heuristic. In the current implementation this can be one of: mean value, maximum value or maximum value after 2-sigma outliers are removed. Which strategy is best may depend on input imagery.
- 3. Compute $\theta_{d,\ell,j} = T_{d,\ell,j} \phi_{d,\ell,j}$.
- 4. Inverse DTCWT to form the fused image I_f .

1.2.4 Shrinkage

The wavelet coefficients of the fused image I_f were selected to maximise sharpness. This may cause noise to be incorrectly preserved in the output image. A wavelet coefficient shrinkage method based on that in [4] is then applied to give the final fused and denoised image.

1.2.5 References

- 1. Pang, Derek, Huizhong Chen, and Sherif Halawa. "Efficient video stabilization with dual-tree complex wavelet transform." EE368 Project Report, Spring (2010).
- 2. Chen, Huizhong, and Nick Kingsbury. "Efficient registration of nonrigid 3-D bodies." Image Processing, IEEE Transactions on 21.1 (2012): 262-272.
- 3. Anantrasirichai, Nantheera, et al. "Atmospheric Turbulence Mitigation using Complex Wavelet-based Fusion." IEEE transactions on image processing: a publication of the IEEE Signal Processing Society (2013).
- 4. Loza, Artur, et al. "Non-Gaussian model-based fusion of noisy images in the wavelet domain." Computer Vision and Image Understanding 114.1 (2010): 54-65.

Installation

The easiest way to install the library is via pip:

\$ pip install git+https://github.com/rjw57/dtcwtfusion.git

Along with support libraries, this will also install the command line tools.