

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dtcwt 0.3 documentation

The dtcwt library

This library provides support for computing 1D and 2D dual-tree complex wavelet
transforms and their inverse in Python.

The interface is intentionally similar to the existing MATLAB dual-tree complex
wavelet transform toolbox provided by Prof. Nick Kingsbury [http://www-sigproc.eng.cam.ac.uk/~ngk/]. This library is intended to ease
the porting of algorithms written in using this toolbox from MATLAB to Python.

The original toolbox is copyrighted and there are some restrictions on use
which are outlined in the file
ORIGINAL_README.txt.

Aside from portions directly derived from the original MATLAB toolbox, any
additions in this library and this documentation are licensed under the
2-clause BSD licence as documented in the file
COPYING.txt.

Table of Contents

	Getting Started
	Installation

	Simple usage

	Reference
	Low-level support functions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtcwt 0.3 documentation

Getting Started

This section will guide you through installing and using the dtcwt library.

Installation

Installation is based on setuptools and follows the usual conventions for a
Python project

$ python setup.py install

A minimal test suite is provided so that you may verify the code works on your
system

$ python setup.py nosetests

This will also write test-coverage information to the cover/ directory.

Simple usage

Once installed, you are most likely to use one of four functions:

	dtcwt.dtwavexfm() – 1D DT-CWT transform.

	dtcwt.dtwaveifm() – Inverse 1D DT-CWT transform.

	dtcwt.dtwavexfm2() – 2D DT-CWT transform.

	dtcwt.dtwaveifm2() – Inverse 2D DT-CWT transform.

See Reference for full details on how to call these functions. We shall
present some simple usage below.

1D transform

This example generates two 1D random walks and demonstrates reconstructing them
using the forward and inverse 1D transforms. Note that
dtcwt.dtwavexfm() and dtcwt.dtwaveifm() will transform
columns of an input array independently:

import numpy as np
from matplotlib.pyplot import *

Generate a 300x2 array of a random walk
vecs = np.cumsum(np.random.rand(300,2) - 0.5, 0)

Show input
figure(1)
plot(vecs)
title('Input')

import dtcwt

1D transform
Yl, Yh = dtcwt.dtwavexfm(vecs)

Inverse
vecs_recon = dtcwt.dtwaveifm(Yl, Yh)

Show output
figure(2)
plot(vecs_recon)
title('Output')

Show error
figure(3)
plot(vecs_recon - vecs)
title('Reconstruction error')

print('Maximum reconstruction error: {0}'.format(np.max(np.abs(vecs - vecs_recon))))

show()

2D transform

Using the pylab environment (part of matplotlib) we can perform a simple
example where we transform the standard ‘Lena’ image and show the level 2
wavelet coefficients:

Load the Lena image from the Internet into a StringIO object
from StringIO import StringIO
from urllib2 import urlopen
LENA_URL = 'http://www.ece.rice.edu/~wakin/images/lena512.pgm'
lena_file = StringIO(urlopen(LENA_URL).read())

Parse the lena file and rescale to be in the range (0,1]
from scipy.misc import imread
lena = imread(lena_file) / 255.0

from matplotlib.pyplot import *
import numpy as np

Show lena on the left
figure(1)
imshow(lena, cmap=cm.gray, clim=(0,1))

import dtcwt

Compute two levels of dtcwt with the defaul wavelet family
Yh, Yl = dtcwt.dtwavexfm2(lena, 2)

Show the absolute images for each direction in level 2.
Note that the 2nd level has index 1 since the 1st has index 0.
figure(2)
for slice_idx in xrange(Yl[1].shape[2]):
 subplot(2, 3, slice_idx)
 imshow(np.abs(Yl[1][:,:,slice_idx]), cmap=cm.spectral, clim=(0, 1))

Show the phase images for each direction in level 2.
figure(3)
for slice_idx in xrange(Yl[1].shape[2]):
 subplot(2, 3, slice_idx)
 imshow(np.angle(Yl[1][:,:,slice_idx]), cmap=cm.hsv, clim=(-np.pi, np.pi))

show()

If the library is correctly installed and you also have matplotlib installed, you should see these three figures:

[image: _images/lena-1.png]
[image: _images/lena-2.png]
[image: _images/lena-3.png]

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dtcwt 0.3 documentation

Reference

	
dtcwt.dtwavexfm(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', include_scale=False)

	Perform a n-level DTCWT decompostion on a 1D column vector X (or on
the columns of a matrix X).

	Parameters:	
	X – 1D real matrix/Image or matrix of 1D columns of shape (N, M)

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the (N, M, 6) shape complex highpass subimages for each level.

	Returns Yscale:	If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 5-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm(X,5,'near_sym_b','qshift_b')

	
dtcwt.dtwaveifm(Yl, Yh, biort='near_sym_a', qshift='qshift_a', gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 1D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	gain_mask – Gain to be applied to each subband.

	Returns Z:	Reconstructed real signal vector (or matrix).

The l-th element of gain_mask is gain for wavelet subband at level l.
If gain_mask[l] == 0, no computation is performed for band l. Default
gain_mask is all ones. Note that l is 0-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a reconstruction from Yl,Yh using the 13,19-tap filters
for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwavexfm2(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', include_scale=False)

	Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

	Parameters:	
	X – 2D real matrix/Image of shape (N, M)

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the (N, M, 6) shape complex highpass subimages for each level.

	Returns Yscale:	If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwaveifm2(Yl, Yh, biort='near_sym_a', qshift='qshift_a', gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 2D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	gain_mask – Gain to be applied to each subband.

	Returns Z:	Reconstructed real image matrix.

The (d, l)-th element of gain_mask is gain for subband with direction
d at level l. If gain_mask[d,l] == 0, no computation is performed for
band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.biort(name)

	Load level 1 wavelet by name.

	Parameters:	name – a string specifying the wavelet family name

	Returns:	a tuple of vectors giving filter coefficients

	Name
	Wavelet

	antonini
	Antonini 9,7 tap filters.

	legall
	LeGall 5,3 tap filters.

	near_sym_a
	Near-Symmetric 5,7 tap filters.

	near_sym_b
	Near-Symmetric 13,19 tap filters.

Return a tuple whose elements are a vector specifying the h0o, g0o, h1o and
g1o coefficients.

	Raises:	
	IOError – if name does not correspond to a set of wavelets known to the library.

	ValueError – if name specifies a qshift() wavelet.

	
dtcwt.qshift(name)

	Load level >=2 wavelet by name,

	Parameters:	name – a string specifying the wavelet family name

	Returns:	a tuple of vectors giving filter coefficients

	Name
	Wavelet

	qshift_06
	Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters,
(only 6,6 non-zero taps).

	qshift_a
	Q-shift 10,10 tap filters,
(with 10,10 non-zero taps, unlike qshift_06).

	qshift_b
	Q-Shift 14,14 tap filters.

	qshift_c
	Q-Shift 16,16 tap filters.

	qshift_d
	Q-Shift 18,18 tap filters.

Return a tuple whose elements are a vector specifying the h0a, h0b, g0a,
g0b, h1a, h1b, g1a and g1b coefficients.

	Raises:	
	IOError – if name does not correspond to a set of wavelets known to the library.

	ValueError – if name specifies a biort() wavelet.

Low-level support functions

A normal user should not need to call these functions but they are documented
here just in case you do.

	
dtcwt.lowlevel.as_column_vector(v)

	Return v as a column vector with shape (N,1).

	
dtcwt.lowlevel.coldfilt(X, ha, hb)

	Filter the columns of image X using the two filters ha and hb =
reverse(ha). ha operates on the odd samples of X and hb on the even
samples. Both filters should be even length, and h should be approx linear
phase with a quarter sample advance from its mid pt (i.e. \(|h(m/2)| >
|h(m/2 + 1)|\)).

 ext top edge bottom edge ext
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a

The output is decimated by two from the input sample rate and the results
from the two filters, Ya and Yb, are interleaved to give Y. Symmetric
extension with repeated end samples is used on the composite X columns
before each filter is applied.

Raises ValueError if the number of rows in X is not a multiple of 4, the
length of ha does not match hb or the lengths of ha or hb are non-even.

	
dtcwt.lowlevel.colfilter(X, h)

	Filter the columns of image X using filter vector h, without decimation.
If len(h) is odd, each output sample is aligned with each input sample
and Y is the same size as X. If len(h) is even, each output sample is
aligned with the mid point of each pair of input samples, and Y.shape =
X.shape + [1 0].

	Parameters:	
	X – an image whose columns are to be filtered

	h – the filter coefficients.

	Returns Y:	the filtered image.

	
dtcwt.lowlevel.colifilt(X, ha, hb)

	Filter the columns of image X using the two filters ha and hb =
reverse(ha). ha operates on the odd samples of X and hb on the even
samples. Both filters should be even length, and h should be approx linear
phase with a quarter sample advance from its mid pt (i.e :math:`|h(m/2)| >
|h(m/2 + 1)|).

 ext left edge right edge ext
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a

The output is interpolated by two from the input sample rate and the
results from the two filters, Ya and Yb, are interleaved to give Y.
Symmetric extension with repeated end samples is used on the composite X
columns before each filter is applied.

	
dtcwt.lowlevel.reflect(x, minx, maxx)

	Reflect the values in matrix x about the scalar values minx and
maxx. Hence a vector x containing a long linearly increasing series is
converted into a waveform which ramps linearly up and down between minx and
maxx. If x contains integers and minx and maxx are (integers + 0.5), the
ramps will have repeated max and min samples.

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	dtcwt 0.3 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dtcwt	

 	
 	
 dtcwt.lowlevel	

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	dtcwt 0.3 documentation

Index

 A
 | B
 | C
 | D
 | Q
 | R

A

 	

 	as_column_vector() (in module dtcwt.lowlevel)

B

 	

 	biort() (in module dtcwt)

C

 	

 	coldfilt() (in module dtcwt.lowlevel)

 	colfilter() (in module dtcwt.lowlevel)

 	

 	colifilt() (in module dtcwt.lowlevel)

D

 	

 	dtcwt (module)

 	dtcwt.lowlevel (module)

 	dtwaveifm() (in module dtcwt)

 	

 	dtwaveifm2() (in module dtcwt)

 	dtwavexfm() (in module dtcwt)

 	dtwavexfm2() (in module dtcwt)

Q

 	

 	qshift() (in module dtcwt)

R

 	

 	reflect() (in module dtcwt.lowlevel)

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.4.2

 	0.3

 	0.2.1

 _images/lena-1.png
100

20

00

00

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		dtcwt 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.4.2

 		0.3

 		0.2.1

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_images/lena-2.png

_images/lena-3.png
120

100

120

100

120

100

_static/down-pressed.png

