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dsdtools

A python package to parse and process the demixing secrets dataset
(DSD) as part of the MUS
task [https://sisec.inria.fr/home/2016-professionally-produced-music-recordings/]
of the Signal Separation Evaluation Campaign
(SISEC) [https://sisec.inria.fr/]
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Installation

pip install dsdtools






DSD100 Dataset / Subset

The complete dataset (~14 GB) can be downloaded
here [https://infinit.io/_/332Augp]. For testing and development we
provide a subset of the DSD100 for direct download
here [https://www.loria.fr/~aliutkus/DSD100subset.zip]. It has the
same file and folder structure as well as the same audio file formats
but consists of only 4 tracks of 30s each.
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Usage

This package should nicely integrate with your existing python code,
thus makes it easy to participate in the SISEC MUS
tasks [https://sisec.inria.fr/home/2016-professionally-produced-music-recordings].
The core of this package is calling a user-provided function that
separates the mixtures from the DSD into several estimated target
sources.


Providing a compatible function

The core of this package consists of calling a user-provided function
which separates the mixtures from the dsdtools into estimated target
sources.


	The function will take an dsdtools Track object which can be used
from inside your algorithm.

	Participants can access

	Track.audio, representing the stereo mixture as an np.ndarray
of shape=(nun_sampl, 2)

	Track.rate, the sample rate

	Track.path, the absolute path of the mixture which might be handy
to process with external applications, so that participants don’t
need to write out temporary wav files.

	The function needs to return a python Dict which consists of
target name (key) and the estimated target as audio arrays with
same shape as the mixture (value).

	It is the users choice which target sources they want to provide for
a given mixture. Supported targets are
['vocals', 'accompaniment', 'drums', 'bass', 'other'].

	Please make sure that the returned estimates do have the same sample
rate as the mixture track.



Here is an example for such a function separating the mixture into a
vocals and accompaniment track.

def my_function(track):

    # get the audio mixture as numpy array shape=(nun_sampl, 2)
    track.audio

    # compute voc_array, acc_array
    # ...

    return {
        'vocals': voc_array,
        'accompaniment': acc_array
    }








Create estimates for SiSEC evaluation


Setting up dsdtools

Simply import the dsdtools package in your main python function:

import dsdtools

dsd = dsdtools.DB(
    root_dir='path/to/dsdtools/',
)





The root_dir is the path to the dsdtools dataset folder. Instead of
root_dir it can also be set system-wide. Just
export DSD_PATH=/path/to/dsdtools inside your terminal environment.




Test if your separation function generates valid output

Before you run the full DSD100, which might take very long, participants
can test their separation function by running:

dsd.test(my_function)





This test makes sure the user provided output is compatible to the
dsdtools framework. The function returns True if the test succeeds.




Processing the full DSD100

To process all 100 DSD tracks and saves the results to the
estimates_dir:

dsd.run(my_function, estimates_dir="path/to/estimates")








Processing training and testing subsets separately

Algorithms which make use of machine learning techniques can use the
training subset and then apply the algorithm on the test data:

dsd.run(my_training_function, subsets="Dev")
dsd.run(my_test_function, subsets="Test")





If you want to exclude tracks from the training you can specify track ids as
dsdtools.DB(..., valid_ids=[1, 2] object. Those tracks are then not
included in Dev but are returned for subsets="Valid".




Processing single or multiple DSD100 tracks

dsd.run(my_function, ids=30)
dsd.run(my_function, ids=[1, 2, 3])
dsd.run(my_function, ids=range(90, 99))





Note, that the provided list of ids can be overridden if the user sets a
terminal environment variable DSD_ID=1.




Use multiple cores


Python Multiprocessing

To speed up the processing, run can make use of multiple CPUs:

dsd.run(my_function, parallel=True, cpus=4)





Note: We use the python builtin multiprocessing package, which sometimes
is unable to parallelize the user provided function to
PicklingError [http://stackoverflow.com/a/8805244].




GNU Parallel


GNU parallel [http://www.gnu.org/software/parallel] is a shell
tool for executing jobs in parallel using one or more computers. A
job can be a single command or a small script that has to be run for
each of the lines in the input. The typical input is a list of
files, a list of hosts, a list of users, a list of URLs, or a list
of tables. A job can also be a command that reads from a pipe. GNU
parallel can then split the input and pipe it into commands in
parallel.


By running only one id in each python process the dsdtools set can
easily be processed with GNU parallel using multiple CPUs without any
further modifications to your code:

parallel --bar 'DSD_ID={0} python main.py' ::: {1..100}






Compute the bss_eval measures

The official SISEC evaluation relies on MATLAB because currently there
does not exist a
bss_eval [http://bass-db.gforge.inria.fr/bss_eval/] implementation
for python which produces indentical results. Therefore please run
dsd100_eval_only.m from the DSD100 Matlab
scripts [https://github.com/faroit/dsd100mat] after you have
processed and saved your estimates with dsdtoolspy.










Evaluation in python


Warning

Evaluation in python is not supported yet
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Example

import dsdtools

def my_function(track):
    '''My fancy BSS algorithm'''

    # get the audio mixture as numpy array shape=(num_sampl, 2)
    track.audio

    # get the mixture path for external processing
    track.path

    # get the sample rate
    track.rate

    # return any number of targets
    estimates = {
        'vocals': vocals_array,
        'accompaniment': acc_array,
    }
    return estimates


# initiate dsdtools
dsd = dsdtools.DB(root_dir="./Volumes/Data/dsdtools")

# verify if my_function works correctly
if dsd.test(my_function):
    print "my_function is valid"

# this might take 3 days to finish
dsd.run(my_function, estimates_dir="path/to/estimates")
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