

 Navigation

 	
 index

 	
 next |

 	dsdtools 0.2.0 documentation

dsdtools

A python package to parse and process the demixing secrets dataset
(DSD) as part of the MUS
task [https://sisec.inria.fr/home/2016-professionally-produced-music-recordings/]
of the Signal Separation Evaluation Campaign
(SISEC) [https://sisec.inria.fr/]

Contents:

	Installation
	DSD100 Dataset / Subset

	Usage
	Providing a compatible function

	Create estimates for SiSEC evaluation
	Setting up dsdtools

	Test if your separation function generates valid output

	Processing the full DSD100

	Processing training and testing subsets separately

	Processing single or multiple DSD100 tracks

	Use multiple cores

	Evaluation in python

	Example

	Modules
	Modules

	Audio Classes

References

If you use this package, please reference the following paper

@inproceedings{SiSEC2015,
 TITLE = {{The 2015 Signal Separation Evaluation Campaign}},
 AUTHOR = {N. Ono and Z. Rafii and D. Kitamura and N. Ito and A. Liutkus},
 BOOKTITLE = {{International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA)}},
 ADDRESS = {Liberec, France},
 SERIES = {Latent Variable Analysis and Signal Separation},
 VOLUME = {9237},
 PAGES = {387-395},
 YEAR = {2015},
 MONTH = Aug,
}

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dsdtools 0.2.0 documentation

Installation

pip install dsdtools

DSD100 Dataset / Subset

The complete dataset (~14 GB) can be downloaded
here [https://infinit.io/_/332Augp]. For testing and development we
provide a subset of the DSD100 for direct download
here [https://www.loria.fr/~aliutkus/DSD100subset.zip]. It has the
same file and folder structure as well as the same audio file formats
but consists of only 4 tracks of 30s each.

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dsdtools 0.2.0 documentation

Usage

This package should nicely integrate with your existing python code,
thus makes it easy to participate in the SISEC MUS
tasks [https://sisec.inria.fr/home/2016-professionally-produced-music-recordings].
The core of this package is calling a user-provided function that
separates the mixtures from the DSD into several estimated target
sources.

Providing a compatible function

The core of this package consists of calling a user-provided function
which separates the mixtures from the dsdtools into estimated target
sources.

	The function will take an dsdtools Track object which can be used
from inside your algorithm.

	Participants can access

	Track.audio, representing the stereo mixture as an np.ndarray
of shape=(nun_sampl, 2)

	Track.rate, the sample rate

	Track.path, the absolute path of the mixture which might be handy
to process with external applications, so that participants don’t
need to write out temporary wav files.

	The function needs to return a python Dict which consists of
target name (key) and the estimated target as audio arrays with
same shape as the mixture (value).

	It is the users choice which target sources they want to provide for
a given mixture. Supported targets are
['vocals', 'accompaniment', 'drums', 'bass', 'other'].

	Please make sure that the returned estimates do have the same sample
rate as the mixture track.

Here is an example for such a function separating the mixture into a
vocals and accompaniment track.

def my_function(track):

 # get the audio mixture as numpy array shape=(nun_sampl, 2)
 track.audio

 # compute voc_array, acc_array
 # ...

 return {
 'vocals': voc_array,
 'accompaniment': acc_array
 }

Create estimates for SiSEC evaluation

Setting up dsdtools

Simply import the dsdtools package in your main python function:

import dsdtools

dsd = dsdtools.DB(
 root_dir='path/to/dsdtools/',
)

The root_dir is the path to the dsdtools dataset folder. Instead of
root_dir it can also be set system-wide. Just
export DSD_PATH=/path/to/dsdtools inside your terminal environment.

Test if your separation function generates valid output

Before you run the full DSD100, which might take very long, participants
can test their separation function by running:

dsd.test(my_function)

This test makes sure the user provided output is compatible to the
dsdtools framework. The function returns True if the test succeeds.

Processing the full DSD100

To process all 100 DSD tracks and saves the results to the
estimates_dir:

dsd.run(my_function, estimates_dir="path/to/estimates")

Processing training and testing subsets separately

Algorithms which make use of machine learning techniques can use the
training subset and then apply the algorithm on the test data:

dsd.run(my_training_function, subsets="Dev")
dsd.run(my_test_function, subsets="Test")

If you want to exclude tracks from the training you can specify track ids as
dsdtools.DB(..., valid_ids=[1, 2] object. Those tracks are then not
included in Dev but are returned for subsets="Valid".

Processing single or multiple DSD100 tracks

dsd.run(my_function, ids=30)
dsd.run(my_function, ids=[1, 2, 3])
dsd.run(my_function, ids=range(90, 99))

Note, that the provided list of ids can be overridden if the user sets a
terminal environment variable DSD_ID=1.

Use multiple cores

Python Multiprocessing

To speed up the processing, run can make use of multiple CPUs:

dsd.run(my_function, parallel=True, cpus=4)

Note: We use the python builtin multiprocessing package, which sometimes
is unable to parallelize the user provided function to
PicklingError [http://stackoverflow.com/a/8805244].

GNU Parallel

GNU parallel [http://www.gnu.org/software/parallel] is a shell
tool for executing jobs in parallel using one or more computers. A
job can be a single command or a small script that has to be run for
each of the lines in the input. The typical input is a list of
files, a list of hosts, a list of users, a list of URLs, or a list
of tables. A job can also be a command that reads from a pipe. GNU
parallel can then split the input and pipe it into commands in
parallel.

By running only one id in each python process the dsdtools set can
easily be processed with GNU parallel using multiple CPUs without any
further modifications to your code:

parallel --bar 'DSD_ID={0} python main.py' ::: {1..100}

Compute the bss_eval measures

The official SISEC evaluation relies on MATLAB because currently there
does not exist a
bss_eval [http://bass-db.gforge.inria.fr/bss_eval/] implementation
for python which produces indentical results. Therefore please run
dsd100_eval_only.m from the DSD100 Matlab
scripts [https://github.com/faroit/dsd100mat] after you have
processed and saved your estimates with dsdtoolspy.

Evaluation in python

Warning

Evaluation in python is not supported yet

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dsdtools 0.2.0 documentation

Example

import dsdtools

def my_function(track):
 '''My fancy BSS algorithm'''

 # get the audio mixture as numpy array shape=(num_sampl, 2)
 track.audio

 # get the mixture path for external processing
 track.path

 # get the sample rate
 track.rate

 # return any number of targets
 estimates = {
 'vocals': vocals_array,
 'accompaniment': acc_array,
 }
 return estimates

initiate dsdtools
dsd = dsdtools.DB(root_dir="./Volumes/Data/dsdtools")

verify if my_function works correctly
if dsd.test(my_function):
 print "my_function is valid"

this might take 3 days to finish
dsd.run(my_function, estimates_dir="path/to/estimates")

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dsdtools 0.2.0 documentation

Modules

	Modules

	Audio Classes

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dsdtools 0.2.0 documentation

Modules

	Modules

	Audio Classes

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	dsdtools 0.2.0 documentation

 	Modules

Audio Classes

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	dsdtools 0.2.0 documentation

Index

 Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

 _static/plus.png

search.html

 Navigation

 		
 index

 		dsdtools 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Fabian-Robert Stöter.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

