
Drupal Commerce Documentation
Release 0.0.1

Isaac Horton

February 01, 2017

Contents

1 Introduction 1
1.1 Contribute to Documentation . 1

2 Commerce 1.x Documentation 3

3 Commerce 2.x 5
3.1 Overview . 5

3.1.1 Drupal modules . 5
3.1.2 PHP libraries . 5
3.1.3 Recommended Tools . 5

3.2 Getting Started . 6
3.2.1 Getting Started with Drupal Commerce 2 . 6

3.3 Libraries and dependencies . 10
3.3.1 Libraries and dependencies . 10

3.4 Setting up stores . 20
3.4.1 Setting up stores . 20

3.5 Managing products . 25
3.5.1 Products . 25

3.6 Catalog and product pages . 38
3.6.1 Catalog and product pages . 38

3.7 Product merchandising . 38
3.7.1 Product merchandising . 38

3.8 Working with orders . 39
3.8.1 Orders . 39

3.9 Configuring Checkout . 42
3.9.1 Configuring your checkout . 42

3.10 Payments . 42
3.10.1 Setting up payments . 42

3.11 Code Recipes . 42
3.11.1 Code Recipes . 42

i

ii

CHAPTER 1

Introduction

Drupal Commerce is the leading flexible eCommerce solution for Drupal, powering over 50,000 online stores of all
sizes.

This documentation is rendered online at http://drupal-commerce.readthedocs.io/en/latest/

1.1 Contribute to Documentation

We love contributors! Please help us improve or fix the documentation by editing a document and making a pull
request in Github. Our documentation is written in Restructured Text(.rst) so please only edit a document if you are
familiar with .rst file formatting guidelines.

Our docs are written in Restructured Text, built locally with Sphinx, managed on Github and hosted with ReadtheDocs.

If you have trouble understanding any part of the documentation, please notify those of us who work on this section
by creating an issue in our documentation repository and clearly explain what you don’t understand and why - we’re
happy to hear from you, your contribution helps everyone!

You can also contribute directly on our documentation repository by editing the files through the GitHub interface
directly in your browser. Alternatively, you can clone the repository and edit the book in your favorite text editor.

Hosting

This site is hosted on Platform.sh.

1

http://drupal-commerce.readthedocs.io/en/latest/
http://drupal-commerce.readthedocs.io/en/latest/
https://github.com/drupalcommerce/commerce-docs
https://github.com/drupalcommerce/commerce-docs
https://github.com/
https://platform.sh

Drupal Commerce Documentation, Release 0.0.1

2 Chapter 1. Introduction

CHAPTER 2

Commerce 1.x Documentation

Head on over to DrupalCommerce.org. On the site you will find a nice overview of the original 1.x build and links to
all the relevant user guides. Linked below for your convenience as well.

• User Guide - A site builder guide with lots of screenshots that covers installation, order management, product
creation, and a myriad of other topics.

• Developer Guide - A guide built for developers that outlines architecture, building payment gateways, code
workflow, and utilizing core APIs.

• Commerce Kickstart 2 - A guide built for site builders that are demo’ing with Kickstart 2.x

• Commerce Cookbook - A cookbook of common site builder tasks that covers things like shipping, inventory,
reporting, merchandising, etc.

• API Documentation - The doxygen output of all the code documentation that ships with all Commerce installa-
tions.

3

https://drupalcommerce.org/getting-started
https://drupalcommerce.org/user-guide
https://drupalcommerce.org/developer-guide
https://drupalcommerce.org/commerce-kickstart-2
https://drupalcommerce.org/site-builders-guide
http://api.drupalcommerce.org/

Drupal Commerce Documentation, Release 0.0.1

4 Chapter 2. Commerce 1.x Documentation

CHAPTER 3

Commerce 2.x

At its core, Commerce is a set of Drupal 8 modules, which in turn depend on other best-of-breed modules and libraries.

3.1 Overview

At its core, Commerce is a set of Drupal 8 modules, which in turn depend on other best-of-breed modules and libraries.

3.1.1 Drupal modules

The following Drupal contrib modules are used:

• Address - Provides functionality for storing, validating and displaying international postal addresses.

• Entity - Extends Drupal 8’s entity API with additional features.

• State Machine - Provides code-driven workflow functionality.

• Inline Entity Form - Provides a widget for inline management of referenced entities.

• Profile - Provides configurable user profiles, used for customer profiles.

3.1.2 PHP libraries

The following PHP libraries are used:

• commerceguys/intl - An internationalization library powered by CLDR data. Handles currencies, currency
formatting, and more.

• commerceguys/addressing - An addressing library, powered by Google’s dataset. Stores and manipulates postal
addresses.

• commerceguys/zone - A zone library. Zones are territorial groupings mostly used for shipping or tax purposes.

• commerceguys/tax - A tax library with a flexible data model, predefined tax rates, powerful resolving logic.

3.1.3 Recommended Tools

The Drupal Console command-line tool.

5

https://drupal.org/project/address
https://drupal.org/project/entity
https://drupal.org/project/state_machine
https://drupal.org/project/inline_entity_form
https://drupal.org/project/profile
https://github.com/commerceguys/intl
https://github.com/commerceguys/addressing
https://github.com/commerceguys/zone
https://github.com/commerceguys/tax
https://drupalconsole.com/

Drupal Commerce Documentation, Release 0.0.1

3.2 Getting Started

3.2.1 Getting Started with Drupal Commerce 2

Drupal Commerce requires using Composer with Drupal. If you are new to Composer, or new to managing Drupal
with Composer, see Composer: the what, why, and how.

To get Drupal Commerce installed, see the Installing Drupal Commerce guide.

For keeping Drupal Commerce up to date, review the Keeping a Drupal Commerce site up to date guide.

Composer: the what, why, and how

@todo

• Port contents of https://glamanate.com/blog/managing-your-drupal-project-composer

• And https://docs.google.com/presentation/d/1PK9q2dBkGHfyEO76bEVpqS61wTgA0LGbru2PECiwUnk/edit?usp=sharing

Installing

Installing Commerce to contribute back? Check out our installation instructions for contributors.

Requirements

Commerce 2.x requires Drupal 8.2.0 or newer.

If you already have a web server, make sure it satisfies Drupal 8’s requirements.
The recommended memory limit is 256MB or more.

For local development we recommend Drupal VM (advanced users) or Acquia Dev Desktop (beginners).
You will also need Composer.

Why must we use Composer?

New site

The following command will download Drupal 8 + Commerce 2.x with all dependencies to the mystore folder:

composer create-project drupalcommerce/project-base mystore --stability dev

Install it just like a regular Drupal site. Commerce will be automatically enabled for you.

Tips:

• The bin folder contains Drupal Console.

• The web folder represents the document root.

• Composer commands are always run from the site root (mystore in this case).

• Downloading additional modules: composer require "drupal/devel:1.x-dev"

6 Chapter 3. Commerce 2.x

https://glamanate.com/blog/managing-your-drupal-project-composer
https://docs.google.com/presentation/d/1PK9q2dBkGHfyEO76bEVpqS61wTgA0LGbru2PECiwUnk/edit?usp=sharing
https://www.drupal.org/requirements
http://www.drupalvm.com/
https://www.acquia.com/products-services/dev-desktop
https://getcomposer.org/doc/00-intro.rst#installation-linux-unix-osx
https://bojanz.wordpress.com/2015/09/18/d8-composer-definitive-intro/
https://drupalconsole.com

Drupal Commerce Documentation, Release 0.0.1

• Updating an existing module: composer update drupal/address –with-dependencies

See the project-base README for more details.

Existing site

Run these commands in the root of your website:

1. Add the Drupal Packagist repository

composer config repositories.drupal composer https://packages.drupal.org/8

This allows Composer to find Commerce and the other Drupal modules.

1. Download Commerce

composer require "drupal/commerce 2.x-dev"

This will also download the required libraries and modules (Address, Entity, State Machine, Inline Entity Form,
Profile).

1. Enable Commerce (instructions below use Drupal Console)

drupal module:install commerce_product commerce_checkout commerce_cart
commerce_tax

Keeping a Drupal Commerce site up to date

Note: Drupal Commerce 2 has now hit beta which supports upgrades. If you have an alpha installation,
you will need to implement an upgrade path manually.

To update to the newest version of Drupal Commerce, you will need to update with Composer.

composer update drupal/commerce --with-dependencies

Please note the ``--with-dependencies`` option. Without this option
specified any needed, contributed projects and libraries will not
update. Only the Drupal Commerce module will be updated.

Run your Drupal updates once all of the dependencies are updated. We recommend running them on the command
line rather than the update.php script. See the example below.

drupal update:debug
drupal update:execute

Getting ready for development

Preparing the local environment

Start by setting up a web server, PHP and MySQL.
We recommend Drupal VM for advanced users, Acquia Dev Desktop for beginners.

You will also need Git and Composer.
Note that Drupal VM comes with Composer included.

3.2. Getting Started 7

https://github.com/drupalcommerce/project-base/blob/8.x/README.rst
https://drupalconsole.com
http://www.drupalvm.com/
https://www.acquia.com/products-services/dev-desktop
https://git-scm.com/
https://getcomposer.org/doc/00-intro.rst#installation-linux-unix-osx

Drupal Commerce Documentation, Release 0.0.1

Getting Commerce

The following command will download Drupal 8 + Commerce 2.x with all dependencies to the mystore folder:

composer create-project drupalcommerce/project-base mystore --prefer-source --stability dev

The –prefer-source option tells Composer to use Git clone as the download method.
When prompted, answer n to:

Do you want to remove the existing VCS (.git, .svn..) history? [Y,n]?

This will keep the downloaded git repositories inside their parent folders (such as
web/modules/contrib/commerce).

Tips:

• The bin folder contains Drupal Console and PHPUnit.

• The web folder represents the document root.

• Composer commands are always run from the site root (mystore in this case).

• Downloading additional modules: composer require "drupal/devel:1.x-dev"

• Updating an existing module: composer update drupal/address –with-dependencies

See the project-base README for more details.

Preparing your fork

Note: You will need a GitHub account for contributing.

Visit the Commerce repository on GitHub and click the fork button.
That will create a copy of the repository on your GitHub account.

Now go to the Commerce folder and add your fork:

cd web/modules/contrib/commerce
git remote add fork git@github.com:YOUR_USER/commerce.git

Replace YOUR_USER with your username (the full url is shown on your fork’s GitHub page).

You will now be able to push new branches to your fork and create pull requests against the main repository.

Running tests

All of the Drupal Commerce tests are based on the PHPUnit framework. In order to run the tests you will need to
copy the phpunit.xml.dist from the core directory and modify it for your environment. An in depth article on
getting ready to run the tests can be found here: https://drupalcommerce.org/blog/45322/commerce-2x-unit-kernel-
and-functional-tests-oh-my

8 Chapter 3. Commerce 2.x

https://drupalconsole.com
https://phpunit.de/
https://github.com/drupalcommerce/project-base/blob/8.x/README.rst
https://github.com/drupalcommerce/commerce
https://help.github.com/articles/using-pull-requests
https://drupalcommerce.org/blog/45322/commerce-2x-unit-kernel-and-functional-tests-oh-my
https://drupalcommerce.org/blog/45322/commerce-2x-unit-kernel-and-functional-tests-oh-my

Drupal Commerce Documentation, Release 0.0.1

cd mystore/web
Run PHPUnit tests
../bin/phpunit -c core/phpunit.xml modules/contrib/commerce

Developing

Choosing an issue

Commerce uses GitHub for code and drupal.org for tracking issues.
To choose an issue, go through the open issues, pick one you like and assign it to you.

If you need help choosing an issue or working on one, join the Commerce 2.x office hours.
They are held every wednesday at 3PM GMT+1 on the #drupal-commerce IRC channel.

Tip: You can also view the issue queue as a kanban board.

Creating a pull request

Start by creating a branch for your work.
The branch name should contain a brief summary of its id and the issue, e.g 2276369-fix-product-form-notice:

cd web/modules/contrib/commerce
git checkout -b 2276369-fix-product-form-notice

Once you’re done with development, push your commits to your fork:

git commit -a -m "Issue 2276369: Fix notice in the product form."
git push fork 2276369-fix-product-form-notice

You can now go to your fork’s GitHub page and create a pull request.
Your pull request should link to the drupal.org issue, and vice-versa.

After your code has been reviewed, you might be asked to perform some changes and then have them reviewed again:

Change the desired files.
git commit -a -m "Addressed feedback."
git push fork 2276369-fix-product-form-notice

Updating the branch will automatically update the related pull request.

Keeping up to date

Your forked repository and the original one (called origin) will eventually get out of sync.
Periodically update your fork by doing:

3.2. Getting Started 9

https://www.drupal.org/project/issues/search/commerce?assigned=&submitted=&project_issue_followers=&status%5B0%5D=Open&version%5B0%5D=8.x&issue_tags_op=%3D&issue_tags=&text=&&&&order=field_issue_priority&sort=desc
https://www.drupal.org/irc
https://contribkanban.com/board/commerce2x
https://help.github.com/articles/using-pull-requests#initiating-the-pull-request

Drupal Commerce Documentation, Release 0.0.1

Update your local branch.
git checkout 8.x-2.x
git pull origin/8.x-2.x
Push the update to your GitHub fork.
git push fork 8.x-2.x

Your pull request might also need rebasing, to re-apply your changes on top of the latest code.
Once you’ve updated the master branch (8.x-2.x), rebase your branch:

git checkout 2276369-fix-product-form-notice
git rebase 8.x-2.x
git push -f fork 2276369-fix-product-form-notice

That’s it! Happy contributing!

3.3 Libraries and dependencies

3.3.1 Libraries and dependencies

Drupal Commerce is built from many different components. Understanding these building blocks and their function-
ality will aid you in building your Drupal Commerce store.

• Address

• Profile

• State Machine

• Inline Entity Form

• Currency

Address Module

See Also: Address Drupal Module | Addressing library | Address Commerce 2.x Story

For the addressing needs of Commerce 1.x the addressfield module was created. It stores addresses using the xNAL
standard, accommodates both name and address data, and provides per-country address forms.

It was a good first try, but we can do better.

Commerce 2.x will depend on the Address 1.x module, which will pull in the commerceguys/addressing library, store
the address formats and subdivisions as configuration entities, and use them to generate and validate Drupal forms.

We gain a much richer dataset and greatly improved support for countries such as China, Korea, Brazil, and others.
Best of all, our efforts benefit the whole wider PHP community.

Install

This is a dependency and once you have successfully installed commerce, you will have the address module available.
See Installation Instructions for Commerce 2.x.

10 Chapter 3. Commerce 2.x

https://www.drupal.org/project/address
https://github.com/commerceguys/addressing
https://drupalcommerce.org/blog/16864/commerce-2x-stories-addressing
https://drupal.org/project/addressfield
https://www.drupal.org/project/address
https://github.com/commerceguys/addressing

Drupal Commerce Documentation, Release 0.0.1

Configure and Customize

To configure or customize address formats, navigate to the Configuration page (1) and click on (2) “Address Formats”
under “Regional and Language”.

admin/config/regional/address-formats

The landing page for the address module shows all the default configurations by country. You can edit the postal
formatting (order of fields, locality dependencies, and many many other things) just by clicking “Edit.”

3.3. Libraries and dependencies 11

Drupal Commerce Documentation, Release 0.0.1

The default values are based on an opensource 3rd party that has the best coverage of all regions in the world. The
formatting of the addresses is for both the form and the display.

12 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

More information on Address formats

Each country has a different address format that tells us:

• Which fields are used in which order (Is there a state field? Does the zip code come before the city? After the
state?)

• Which fields are required

• Which fields need to be uppercased for the actual mailing to facilitate automated sorting of mail

• The labels for the administrative area (state, province, parish, etc.), and the postal code (Postal code or ZIP code)

• Validation rules for postal codes, usually in the form of a regular expression.

In countries using a non-latin script (such as China, Taiwan, Korea), the order of fields varies based on the lan-
guage/script used. Addresses written in latin script follow the minor-to-major order (start with the street, end with the
country) while addresses written in the chinese scr

Zones

See Also: Zone Library | Addressing Library | Address Drupal Module

Overview

Zones are territorial groupings mostly used for shipping or tax purposes.
For example, a set of shipping rates associated with a zone where the rates
become available only if the customer’s address matches the zone.

3.3. Libraries and dependencies 13

https://github.com/commerceguys/zone
https://github.com/commerceguys/addressing
https://www.drupal.org/project/address

Drupal Commerce Documentation, Release 0.0.1

A zone can match other zones, countries, subdivisions (states/provinces/municipalities), postal codes.
Postal codes can also be expressed using ranges or regular expressions.

Examples of zones:

• California and Nevada

• Belgium, Netherlands, Luxemburg

• European Union

• Germany and a set of Austrian postal codes (6691, 6991, 6992, 6993)

• Austria without specific postal codes (6691, 6991, 6992, 6993)

To locate Zones in your Commerce install, (1) click on Configuration and (2) click on Zones:

Each zone consists of zone members, which represent conditions that can be matched.
For example, a “France and Germany” zone would have two zone members: 1) France 2) Germany
and an address would match that zone if it matches one of those two zone members.

Taxes and Zones

The Commerce Tax submodule creates a matching zone for each imported tax type.
For example, importing the German VAT tax type also creates a German VAT zone hich contains two zone members:
1) Germany 2) Austria (postal codes 6691, 6991, 6992, 6993)

Profile

See Also: Module on Drupal.org | Drupal 8 Issue

Provides the profile entity type used to collect customer information. In Commerce 1.x, we called these entities
“Customer Profiles” and for Commerce 2.x we have moved to where the community has extended user profiles to
include fieldable entity bundles. Customer profiles in Commerce 2.x will be entities and orders will link to revisions,
avoiding the duplication we had in Commerce 1.x.

14 Chapter 3. Commerce 2.x

https://www.drupal.org/project/profile
https://www.drupal.org/node/2598342

Drupal Commerce Documentation, Release 0.0.1

The Profile module provides a fieldable entity, that allows administrators to define different sets of fields for user
profiles, which are then displayed in the My Account section. This permits users of a site to share more information
about themselves, and can help community-based sites organize users around specific information.

You can pull the latest from the repository on Drupal.org.

State Machine

See Also: module on drupal.org

Provides code-driven workflow functionality.

A workflow is a set of states and transitions that an entity goes through during its lifecycle.
A transition represents a one-way link between two states and has its own label.
The current state of a workflow is stored in a state field, which provides an API for getting and
applying transitions. An entity can have multiple workflows, each in its own state field.
An order might have checkout and payment workflows. A node might have legal and marketing workflows.
Workflow groups are used to group workflows used for the same purpose (e.g. payment workflows).

Architecture

Workflow and WorkflowGroup are plugins defined in YAML, similar to menu links.

Example: commerce_order.workflow_groups.yml:

order:
label: Order
entity_type: commerce_order

Groups can also override the default workflow class, for more advanced use cases.

Example: commerce_order.workflows.yml:

order_default_validation:
id: order_default_validation
group: order

3.3. Libraries and dependencies 15

https://www.drupal.org/project/profile
https://www.drupal.org/project/state_machine
https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Plugin/Workflow/WorkflowInterface.php
https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Plugin/WorkflowGroup/WorkflowGroupInterface.php

Drupal Commerce Documentation, Release 0.0.1

label: 'Default, with validation'
states:
draft:

label: Draft
validation:

label: Validation
completed:

label: Completed
canceled:

label: Canceled
transitions:
place:

label: 'Place order'
from: [draft]
to: validation

validate:
label: 'Validate order'
from: [validation]
to: completed

cancel:
label: 'Cancel order'
from: [draft, validation]
to: canceled

Transitions can be further restricted by guards, which are implemented as tagged services:

mymodule.fulfillment_guard:
class: Drupal\mymodule\Guard\FulfillmentGuard
tags:
- { name: state_machine.guard, group: order }

The group argument allows the guard factory to only instantiate the guards relevant
to a specific workflow group.

The current state is stored in a StateItem field.
A field setting specifies the used workflow, or a value callback that allows the workflow to be resolved at runtime
(checkout workflow based on the used plugin, etc.).

A validator is provided that ensures that the specified state is valid (exists in the workflow and is in the allowed
transitions).

Inline Entity Form 8.x-2.x

Provides a widget for inline management (creation, modification, removal) of referenced entities. Commerce uses it
extensively for product variations, line items, and (soon) tax rate amounts.

Currency

See Also: Internationalization Commerce Story | Internationalization Library

16 Chapter 3. Commerce 2.x

https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Guard/GuardInterface.php
https://github.com/bojanz/state_machine/blob/8.x-1.x/src/Plugin/Field/FieldType/StateItem.php
https://drupalcommerce.org/blog/15916/commerce-2x-stories-internationalization
https://github.com/commerceguys/intl

Drupal Commerce Documentation, Release 0.0.1

Overview

Commerce without borders means we support every language and every denomination of currency. This is a big
undertaking because not only do we need to support various currencies, we need to support their regional formatting
rules, what each currency is called in every other language, and many other difficult problems.

Commerce 2’s currency support is built upon the commerceguys/intl library which provides a list of currencies, cur-
rency formatting, countries, and languages. This list in not something we cooked up on the back of a napkin, the
intl library uses the internationally-recognized standard of CLDR data. We parse the CLDR definitions into our own
more compact YAML definitions and use them to re-implement intl’s NumberFormatter and provide currency, country,
language data.

Importing Defined Currencies

If you navigate to admin/commerce/config/currency and click on the “Import” tab, you will see a simple
dropdown that shows you all the supported currencies (157 active currencies).

3.3. Libraries and dependencies 17

https://github.com/commerceguys/intl
http://cldr.unicode.org/

Drupal Commerce Documentation, Release 0.0.1

When imported, a configuration entity called “commerce_currency” is created with all the relevant data from the
CLDR definition. Once imported, the configuration entity is unique to your installation, which means you can make
minor changes to formatting and not worry about an update reverting your changes.

Also, thanks to the CLDR dataset, we import all the translations of the currency you are importing for all the languages
you have in your site. A small, but very practical and helpful time saver.

18 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Creating and Editing Currencies

Once imported (or if you click “+ Add a new currency”) you can change the name, the numeric code, the symbol and
how many minor units we use in calculations and display

3.3. Libraries and dependencies 19

Drupal Commerce Documentation, Release 0.0.1

3.4 Setting up stores

3.4.1 Setting up stores

For Commerce 2, we have native support for stores. Stores are used for invoicing, tax types, and any other settings
necessary for understanding orders. This has many applications and its important to understand what use cases are
supported out of the box and how that impacts checkout and other order workflows.

Create a store

To create a store you will need to have at least one currency imported, and then you can create a store.

Shortcut! - The getting started process can be quickly done using Drupal Console command:
drupal commerce:create:store

You are welcome to ignore this shortcut if you prefer the user interface.

Import the currencies your store will use.

The most basic piece of information that defines your store is the currency(s) you want to use. The vast majority of

Commerce stores will simply have one currency and one store. To set this up, first you need to locate the currencies
page at admin/commerce/config/currencies

20 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Next, click the Import tab (admin/commerce/config/currency/import). The reason currencies need to
be imported is because we don’t want to store all the world’s currencies in your database if we don’t have to, so we
make no assumptions and let each store request specific access to specific currencies. The dataset is coming from the
intl library which generates its dataset from an international and frequently updated standards body.

Once you’ve imported one or more currencies, you can move on to creating a store.

3.4. Setting up stores 21

Drupal Commerce Documentation, Release 0.0.1

Create a store.

Next, we need to create a store. Every product requires one store. Additional details will be shared about the power of

having stores baked into the core of Commerce, but for now, all you need to do is define your store’s name, address,
and select a few things about taxes and billing.

22 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Once you’ve got all those details filled out, click save and move on to creating products! Woohoo!

3.4. Setting up stores 23

Drupal Commerce Documentation, Release 0.0.1

Overview & Architecture

Orders will only ever have one store, and it is stored as an entity attribute.

• Carts (which are Orders with additional functionality) can only contain products from one store.

• You can use this architecture to limit which products can be put into carts together, based on physical location
or for billing\/taxes purposes.

Products, by default, have an entity reference field that targets stores and allows one or more stores to be selected.

Stores are fieldable content entities (not configuration entities) that contain a lot of information about the physical
location of the merchant. By default stores collect the following:

• Name

• Email Address

• Default Currency

• Address (used for determining taxes)

• Supported billing countries

• Owner

• Default status (used to select a store when one isn’t given)

• Tax information

Use Cases

We optimize for the two use cases:

1. One business that has one or more locations

or

1. The marketplace model (where you have sellers)

For these use cases and possibly others, it is up to the developer to fill in the gaps that are present in the order workflow.
This is different from Commerce 1.x in that we will support stores by default, allowing for community contributions
to extend the functionality instead of trying to build store functionality from scratch.

1. One or more locations

This is the most common eCommerce situation where we have a single person, company, or organization that is taking
payments online.

24 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

2. Marketplace model

The marketplace model is where you have many sellers who are taking payment for unique products.

Stores and Carts

A customer can have one or more Carts (which are a type of Order), if they have chosen a product from different
stores.

3.5 Managing products

3.5.1 Products

Using product attributes - Before creating products, you need to create some attributes that you will
use to differentiate your products. Read here to learn about how to create, edit, and making some attributes optional.

Products & Variations - Finally, you can create products! Follow the directions in this section on the
most common use cases.

Purchasable Entities - When it comes to product architectures, there is no one true answer.
Furthermore, different clients might have different needs. That’s why it’s important for Commerce 2.x to support any
number of product architectures.

Setup product attributes

Fig. 3.1: Product Attribute Entity Relationships

Imagine you need to sell a DrupalCon t-shirt. This t-shirt comes in different sizes and colors. Each combination of
size and color has its own SKU, so you know which color and size the customer has purchased and you can track
exactly how many of each combination you have in stock.

Color and size are product attributes. Blue and small are product attribute values, belonging to the mentioned attributes.
The combination of attribute values (with a SKU and a price) is called a product variation. These variations are grouped
inside a product.

3.5. Managing products 25

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.2: Product Attribute Entity Relationships

Creating Attributes and their Values

For our t-shirt we need two attributes: color and size. Let’s start by creating the color attribute. Go to
admin/commerce/product-attributes and click the Add attribute link.

Fig. 3.3: Product Attribute Creation

After you have created the color attribute, we need to define at least one value. Normally we would simply say the
color is “blue” or “red” but sometimes you might need to further define the attribute using fields. Adding fields is
covered in detail later on in the documentation.

The product attribute values user interface allows creating and re-ordering multiple values at the same time and a very
powerful translation capability:

Next, you will need to add the attribute to the product variation type. You can find these at
/admin/commerce/config/product-variation-types and you just need to add/edit a product variation
type that requires your new attribute.

26 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.4: Product Attribute Value Creation

3.5. Managing products 27

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.5: Adding Product Attribute to Product Variation

After you have added “Color” and the various colors your t-shirts are available in, the next step is to add that “color”
attribute to our product. Store administrators can do this on the product variation type form, the checkbox in the last
step automatically created entity referenced fields as needed:

Adding fields to Attributes

Product attributes are so much more than a word. Often times they represent a differentiation between products that is
useful to call out visually for customers. The fieldable attribute value lets the information architect decide what best
describes this attribute. Like any other fieldable entity, you can locate the list of attribute bundles and click edit fields:

/admin/commerce/product-attributes

Add a field as you would expect. Most fields are supported and will automatically show up when you go to add
attribute values:

Editing Attributes

Editing the attribute values is pretty easy. Simply locate the attribute type that has the values you want to edit:
/admin/commerce/product-attributes And click “edit” and you will be taken to a screen to edit all the
attributes of that type.

Optional Attributes

After creating attributes, the product variation type needs to know that it uses the attribute. The product variations are
at /admin/commerce/config/product-variation-types and once you’ve clicked on the attribute you
want...

28 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.6: Example Product variation form

Fig. 3.7: Locating list of attributes

3.5. Managing products 29

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.8: Example of attribute with more than one attribute

30 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.9: How do you edit the attribute values?

Fig. 3.10: Adding Product Attribute to Product Variation

3.5. Managing products 31

Drupal Commerce Documentation, Release 0.0.1

Fields are added to the variation type that can then be modified. By default, all attribute fields are required. If your
attribute is optional (perhaps some of the drupalcon t-shirts only come in blue), then you can locate the manage fields
of your particular product variation type and make the color attribute optional by following these steps:

1. Go to /admin/commerce/config/product-variation-types

2. Click the drop down next to the variation type you want and click “manage fields”

3. Un-select the “required” checkbox to make the attribute optional.

Fig. 3.11: Un-select the required checkbox

Make a product

Every product has one or more variations. In the event that a product has more than one variation, each variation is
differentiated by some aspect of the product, whether it’s the product’s color, size, fabric, etc.

For example, you sell t-shirts (Product Type) and you have a new shipment of a particular Drupalcon t-shirt (Product).
This Drupalcon t-shirt comes in different sizes and colors. Each combination of size and color (Small Red, Large
Blue) represents a physical version of the t-shirt (Product Variation).

NOTE: In order to create your first product, you will need to have a store and a currency already set up.
If you don’t have this, there’s a Getting Started section that will walk you through the steps.

Managing Products and their Variations

By default, variations are only manageable from the parent product, using Inline Entity Form. Variations do not have
labels or titles. Labels, by default, are dynamically constructed from the attribute labels. To create or update a product
variation, you must go to the product screen and either choose an existing product or create a new one.

You can simply go to admin/commerce/products and click “Add Product.”

32 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.12: Product Entity Relationships

Fig. 3.13: Product select

3.5. Managing products 33

Drupal Commerce Documentation, Release 0.0.1

Once you have selected an existing product or added a new one, you will be presented with a form that looks similar
to the following. It will have “product details” like title, description, and path. And a widget for creating an unlimited
number of variations that have prices, skus, and any available attributes.

Fig. 3.14: Product edit screen

Deleting a product deletes its variations. Adding a variation to a product automatically creates a backreference on the
variation, accessed via $variation->getProduct().

Product Fields

Products can have all kinds of fields. Often Commerce products will have a very media-rich set of content that is
used to describe and present the product. These fields will remain the same and be available no matter which product
variation is selected on the product page. Perhaps all of our t-shirt products have videos that show off Drupalers
sprinting while wearing each of the t-shirts. We will need a field that accepts video urls and can render them for the
page.

Adding a Product Field Product types, for example, our tshirt product type, can be found at
admin/commerce/config/product-types (under the configuration menu option) and clicking on the ar-
row next to the Edit button will reveal all the management tasks for product variation types. Click on the Manage
Fields option.

34 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Once on the manage fields screen for our product type, you can add as many types of fields as you like by clicking the
+ Add Field button.

Variation Fields

Products variations can have attributes and other kinds of fields. Going back to our t-shirt analogy from above, if our
t-shirts come in sizes and colors, perhaps the product variation should have an image field so you can upload a picture
of a small red shirt. These kinds of non-attribute fields are loaded dynamically when variations are chosen.

Adding a Product Variation Field Product variation types can be found at
admin/commerce/config/product-variation-types and clicking on the arrow next to the Edit
button (1) will reveal all the management tasks for product variation types. Click on the Manage Fields option
(2).

Fig. 3.15: Manage Fields

Once there, you can add as many types of fields as you like. Note that attributes that you have added in the past will
show up here as entity reference fields. For our example, we will be adding an image field.

Fig. 3.16: Add a field

3.5. Managing products 35

Drupal Commerce Documentation, Release 0.0.1

Choose the kind of field you would like to add and setup any of the settings as you need.

Fig. 3.17: Add an image field

Finally, you should have your new field showing up in your product add form located at product/add

Managing the display of the product

Once the tshirt has important content fields and the t-shirt variation fields have differentiating fields figured out, the
product page may not look as clean the designer envisioned. It’s likely that there are a number of labels for fields
(like price, product image, SKU, etc) that you would rather not display. There are two different Manage Display
locations you will need to manage in order to get the desired output on your product page.

NOTE: It’s recommended that if you are using display modes to effect the product pages, that you use
the “show weights” check box. The reason for this is that when a product is rendered, all fields, from the
variation to the actual product get sorted based on weight. So if you just use the drag and drop methods,
you will not get the granular control you might expect.

To fully control the display of all the fields it’s helpful to think of the fields as being a part of one big group.

Above, our T-shirt Product fields (body, variations) are rendered with our T-shirt Product Variation fields (Price,
Image). In order to achieve this order, the field weights must be manually set to go in order, as if they were in a large
group.

Product field weight can be managed here: admin/commerce/config/product-types

Product Variation field weight can be managed here: admin/commerce/config/product-variation-types

FANCY FEATURE ALERT: You may have noticed that product variation fields can be displayed IN-
DEPENDENTLY of the variations field. Lots of work has gone in to making sure these fields get replaced
easily and consistently when a new product is selected on the add-to-cart form. This was developed specif-
ically to allow fine-tuned control of how a store would want to present different pieces of information.
Perhaps you really need the picture of the selected t-shirt to appear before the body field of the product.
Just change the weight :)

Create a product type

@todo

36 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.18: New Field Available

Fig. 3.19: Manage Display field weight graphic

3.5. Managing products 37

Drupal Commerce Documentation, Release 0.0.1

Purchasable Entities

When it comes to product architectures, there is no one true answer. Furthermore, different clients might have different
needs. That’s why it’s important for Commerce 2.x to support any number of product architectures.

The ProductVariation entity class implements the PurchasableEntityInterface:

... needs screenshot of interface code ...

Any content entity type that implements this interface can be purchased. The order module doesn’t depend on the
product module, the product module just provides the default (and most common) product architecture. A product
bundle module will probably want to define its own product architecture, etc.

Line items have a purchased_entity reference field. The target_type of that reference field is different for each line
item type.

... needs screenshot of line item type edit page ...

Here the line item type points to the product variation entity type, indicating that the “Product variation” line item type
is used to purchase product variations.

Early in the Commerce 2.x cycle we explored the idea of hierarchical products, but after initial exploration found out
that the idea required several months of extra effort (having to rewrite the Tree module, reinvent an IEF like widget,
UX and performance considerations). We removed it from the roadmap with a heavy heart, but now that Commerce
2.x supports custom product architectures, we can easily explore the idea in contrib at a later date.

3.6 Catalog and product pages

3.6.1 Catalog and product pages

@todo * Setup a catalog using Search API + Views * Customize add to cart form using order item form display *
Templating a product page

Create a product catalog

@todo install search_api @todo create a server/index @todo create view

Customize the add to cart form

@todo

Theme a product page

@todo

3.7 Product merchandising

3.7.1 Product merchandising

@todo discuss features

38 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Create a promotion

Create a promotion

@todo

3.8 Working with orders

3.8.1 Orders

Orders contain a list of order items and customer information. Orders have states that are controlled through State
Machine.

Orders and order items - Orders contain order items, which represent purchased items.

Understanding order types - You can have different order types. Order types have their own settings when it comes to
cart, checkout, and its processing.

Order Processing - Allows you to process an order, when the system recalculates order item prices and availability.

Order Types

Order types allow you to control how an order interacts with the other components of Drupal Commerce, and the how
the order moves through the system.

Fig. 3.20: Order workflow settings

Orders have a specific workflow that defines what states and transitions the order can move in. Each order type can
have its own workflow.

This means your default order type, which has shippable products, can use the Fulfillment workflow. Meanwhile, your
digital goods order type can have the more simplistic Default workflow.

Each order type can control its refresh settings to control how often order draft’s are processed. This controls the order
refresh process.

The cart module allows each order type to control the default view used when rendering carts in the cart block or cart
form.

You can use a different checkout flow for each order type. In this case you would have a physical order use a multiple
step checkout flow that requires shipping information. A digital order could have a more simplified checkout flow that
has one step (i.e.: payment.)

3.8. Working with orders 39

Drupal Commerce Documentation, Release 0.0.1

Fig. 3.21: Order refresh settings

Fig. 3.22: Order type cart settings

Fig. 3.23: Order type checkout settings

40 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Order Items

An order item represents a purchasable entity inside of an order. It contains a reference to the purchasable entity, a
quantity, a unit price and a total price.

Note: In Drupal Commerce 1.x, these were called line items.

The order total is based off the unit price of order items multiplied by their quantity and the sum of all order item
totals.

Order items have their unit price calculated during the order refresh process. This synchronizes the price with the
current purchasable entity’s price while the order is still in a draft state.

The add to cart form is actually the create form for an order item entity. It is a specific form display. Selecting attributes
on the add to cart form identifies the proper reference purchased entity to reference.

Fig. 3.24: Order item add to cart form

Advanced topics

Order Processing

Order processing is part of the order refresh process. This is run when on draft orders to ensure that it has up to date
adjustments and that its order items are up to date.

3.8. Working with orders 41

Drupal Commerce Documentation, Release 0.0.1

3.9 Configuring Checkout

3.9.1 Configuring your checkout

Allowing guest checkout, or account login

Customizing your checkout

Creating a checkout pane plugin

Creating a checkout flow plugin

3.10 Payments

3.10.1 Setting up payments

@todo discuss onsite, offsite ability @todo call out major payment gateways

Install a payment gateway

@todo how to create a payment gateway @todo maybe two examples: like US and CA

Managing order payments

@todo void, capture, refund

3.11 Code Recipes

3.11.1 Code Recipes

A list of code samples/examples outlining how to create and load commerce entities entirely in code.

These recipes are all designed to work off of each other, so try it out - you can run all the code in a single shot from
top to bottom.

Stores - Stores and types.

Variations - Product variations and types.

Attributes - Product attributes and values.

Products - Products and types.

Orders - Orders, order items, and their types.

Store recipes

Everything starts with a store. Products can belong to many stores, and orders belong to a single store.

42 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Creating a store type

/**
* id [String]

* The primary key for this store type.

*
* label [String]

* The label for this store type.

*
* description [String]

* The description for this store type.

*/
$store_type = \Drupal\commerce_store\Entity\StoreType::create([

'id' => 'custom_store_type',
'label' => 'My custom store type',
'description' => 'This is my first custom store type!',

]);
$store_type->save();

Loading a store type

// Loading is based off of the primary key [String] that was defined when creating it.
$store_type = \Drupal\commerce_store\Entity\StoreType::load('custom_store_type');

Creating a store

/**
* type [String] - [DEFAULT = 'online']

* Foreign key for the store type to yse.

*
* uid [Integer]

* The user id that created the store.

*
* name [String]

* The store's name.

*
* mail [String]

* The store's email address.

*
* address [\Drupal\address\AddressInterface]

* The store's address.

*
* default_currency [String]

* The currency the store uses.

*
* billing_countries [Array(String)]

* Array of country codes selected for the store.

*/

// The store's address.
$address = [

'country_code' => 'US',
'address_line1' => '123 Street Drive',
'locality' => 'Beverly Hills',

3.11. Code Recipes 43

Drupal Commerce Documentation, Release 0.0.1

'administrative_area' => 'CA',
'postal_code' => '90210',

];

// The currency code.
$currency = 'USD';

// If needed, this will import the currency.
$currency_importer = \Drupal::service('commerce_price.currency_importer');
$currency_importer->import($currency);

$store = \Drupal\commerce_store\Entity\Store::create([
'type' => 'custom_store_type',
'uid' => 1,
'name' => 'My Store',
'mail' => 'admin@example.com',
'address' => $address,
'default_currency' => $currency,
'billing_countries' => ['US'],

]);
$store->save();

// If needed, this sets the store as the default store.
$store_storage = \Drupal::service('entity_type.manager')->getStorage('commerce_store');
$store_storage->markAsDefault($store);

Loading a store

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$store = \Drupal\commerce_store\Entity\Store::load(1);

Product Variations and types

Product variations are the purchasable parts of products, thus products need at least one variation.

Creating variation types

/**
* id [String]

* The primary key for this variation type.

*
* label [String]

* The label for this variation type.

*
* status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]

* [AVAILABLE = FALSE, TRUE]

* Whether or not it's enabled or disabled. 1 for enabled.

*
* orderItemType [String] - [DEFAULT = default]

* Foreign key for the order item type to use.

*
* generateTitle [Bool] - [DEFAULT = TRUE]

* Whether or not it should generate the title based off of product label and attributes.

44 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

*/
$variation_type = \Drupal\commerce_product\Entity\ProductVariationType::create([

'id' => 'my_custom_variation_type',
'label' => 'Variation Type With Color',
'status' => TRUE,
'orderItemType' => 'default',
'generateTitle' => TRUE,

]);
$variation_type->save();

Loading a variation type

// Loading is based off of the primary key [String] that was defined when creating it.
$variation_type = \Drupal\commerce_product\Entity\ProductVariationType::load('my_custom_variation_type');

Creating variations

/**
* type [String] - [DEFAULT = default]

* Foreign key of the variation type to use.

*
* sku [String]

* The sku for this variation.

*
* status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]

* [AVAILABLE = FALSE, TRUE]

* Whether or not it's enabled or disabled. 1 for enabled.

*
* price [\Drupal\commerce_price\Price] - [OPTIONAL]

* The price for this variation.

*
* title [String] - [POTENTIALLY NOT REQUIRED]

* The title for the product variation.

* If the variation type is set to generate a title, this is not used.

* Otherwise, a title must be given.

*/
$variation = \Drupal\commerce_product\Entity\ProductVariation::create([

'type' => 'my_custom_variation_type',
'sku' => 'test-product-01',
'status' => TRUE,
'price' => new \Drupal\commerce_price\Price('24.99', 'USD'),

]);
$variation->save();

Loading a variation

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$variation = \Drupal\commerce_product\Entity\ProductVariation::load(1);

3.11. Code Recipes 45

Drupal Commerce Documentation, Release 0.0.1

Product Attributes and Values

Product variation types can have certain attributes (ex. color) and those attributes have values (ex red, blue). In this
example, we will create two attributes (color and size) and add them to the variation type we made previously.

Creating attributes

/**
* id [String]

* The primary key for this attribute.

*
* label [String]

* The label for this attribute.

*/
$color_attribute = \Drupal\commerce_product\Entity\ProductAttribute::create([

'id' => 'color',
'label' => 'Color',

]);
$color_attribute->save();

$size_attribute = \Drupal\commerce_product\Entity\ProductAttribute::create([
'id' => 'size',
'label' => 'Size',

]);
$size_attribute->save();

// We load a service that adds the attributes to the variation type we made previously.
$attribute_field_manager = \Drupal::service('commerce_product.attribute_field_manager');

$attribute_field_manager->createField($color_attribute, 'my_custom_variation_type');
$attribute_field_manager->createField($size_attribute, 'my_custom_variation_type');

Loading an attribute

// Loading is based off of the primary key [String] that was defined when creating it.
$size_attribute = \Drupal\commerce_product\Entity\ProductAttribute::load('size');

Creating values for an attribute

/**
* attribute [String]

* Foreign key of the attribute we want.

*
* name [String]

* The name of this value.

*/
$red = \Drupal\commerce_product\Entity\ProductAttributeValue::create([

'attribute' => 'color',
'name' => 'Red',

]);
$red->save();

$blue = \Drupal\commerce_product\Entity\ProductAttributeValue::create([

46 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

'attribute' => 'color',
'name' => 'Blue',

]);
$blue->save();

$medium = \Drupal\commerce_product\Entity\ProductAttributeValue::create([
'attribute' => 'size',
'name' => 'Medium',

]);
$medium->save();

$large = \Drupal\commerce_product\Entity\ProductAttributeValue::create([
'attribute' => 'size',
'name' => 'Large',

]);
$large->save();

Loading an attribute value

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$red = \Drupal\commerce_product\Entity\ProductAttributeValue::load(1);

Assigning attributes to a variation

Let’s say we want our hypothetical product to have two variations. One will be the color red and size medium, and the
other will be the color blue and size large. // [IMPORTANT] - If a Product Variation Type has fields for attributes (as
we added above), then variations of that type MUST have those attributes.

/**
* attribute_<ATTRIBUTE_ID> [\Drupal\commerce_product\Entity\ProductAttributeValueInterface]

* The attribute value entity to use for the attribute type.

*/
$variation_red_medium = \Drupal\commerce_product\Entity\ProductVariation::create([

'type' => 'my_custom_variation_type',
'sku' => 'product-red-medium',
'price' => new \Drupal\commerce_price\Price('10.00', 'USD'),
'attribute_color' => $red,
'attribute_size' => $medium,

]);
$variation_red_medium->save();

$variation_blue_large = \Drupal\commerce_product\Entity\ProductVariation::create([
'type' => 'my_custom_variation_type',
'sku' => 'product-blue-large',
'price' => new \Drupal\commerce_price\Price('10.00', 'USD'),
'attribute_color' => $blue,
'attribute_size' => $large,

]);
$variation_blue_large->save();

3.11. Code Recipes 47

Drupal Commerce Documentation, Release 0.0.1

Products and types

Creating product types

/**
* id [String]

* Primary key for this product type.

*
* label [String]

* Label for this product type

*
* status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]

* [AVAILABLE = FALSE, TRUE]

* Whether or not it's enabled or disabled. 1 for enabled.

*
* description [String]

* Description for this product.

*
* variationType [String] - [DEFAULT = default]

* Foreign key for the variation type used.

*
* injectVariationFields [Bool] - [OPTIONAL, DEFAULTS TO TRUE]

* Whether or not to inject the variation fields.

*/

// Create the product type.
$product_type = \Drupal\commerce_product\Entity\ProductType::create([

'id' => 'my_custom_product_type',
'label' => "My custom product type",
'description' => '',
'variationType' => 'my_custom_variation_type',
'injectVariationFields' => TRUE,

]);
$product_type->save();

// These three functions must be called to add the appropriate fields to the type
commerce_product_add_variations_field($product_type);
commerce_product_add_stores_field($product_type);
commerce_product_add_body_field($product_type);

Loading a product type

// Loading is based off of the primary key [String] that was defined when creating it.
$product_type = \Drupal\commerce_product\Entity\ProductType::load('my_custom_product_type');

Creating products

/**
* uid [Integer]

* Foreign key of the user that created the product.

*
* type [String] - [DEFAULT = default]

* Foreign key of the product type being used.

*

48 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

* title [String]

* The product title.

*
* stores [Array(\Drupal\commerce_store\Entity\StoreInterface)]

* Array of stores this product belongs to.

*
* variations [Array(\Drupal\commerce_product\Entity\ProductVariationInterface)]

* Array of variations that belong to this product.

*/

// The variations that belong to this product.
$variations = [

$variation_blue_large,
];

$product = \Drupal\commerce_product\Entity\Product::create([
'uid' => 1,
'type' => 'my_custom_product_type',
'title' => 'My Custom Product',
'stores' => [$store],
'variations' => $variations,

]);
$product->save();

// You can also add a variation to a product using the addVariation() method.
$product->addVariation($variation_red_medium);
$product->save();

Loading a product

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$product = \Drupal\commerce_product\Entity\Product::load(1);

Orders and order items

Creating order types

/**
* id [String]

* The primary key for this order type.

*
* label [String]

* The label for this order type.

*
* status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]

* [AVAILABLE = FALSE, TRUE]

* Whether or not it's enabled or disabled. 1 for enabled.

*
* workflow [String] - [DEFAULT = order_default]

* [AVAILABLE = order_default, order_default_validation, order_fulfillment, order_fulfillment_validation]

* The workflow id to use as the workflow.

*
* refresh_mode [String] - [DEFAULT = always]

3.11. Code Recipes 49

Drupal Commerce Documentation, Release 0.0.1

* [AVAILABLE = always, customer]

* The refresh mode to use as the refresh mode.

*
* refresh_frequency [Integer] - [DEFAULT = 30]

* The refresh freuency in seconds.

*/
$order_type = \Drupal\commerce_order\Entity\OrderType::create([

'status' => TRUE,
'id' => 'custom_order_type',
'label' => 'My custom order type',
'workflow' => 'order_default',
'refresh_mode' => 'always',
'refresh_frequency' => 30,

]);
$order_type->save();

// This must be called after saving.
commerce_order_add_order_items_field($order_type);

Loading an order type

// Loading is based off of the primary key [String] that was defined when creating it.
$order_type = \Drupal\commerce_order\Entity\OrderType::load('custom_order_type');

Creating order item types

/**
* id [String]

* The primary key for this order item type.

*
* label [String]

* The label for this order item type.

*
* status [Bool] - [OPTIONAL, DEFAULTS TO TRUE]

* [AVAILABLE = FALSE, TRUE]

* Whether or not it's enabled or disabled. 1 for enabled.

*
* purchasableEntityType [String] - [DEFAULT = commerce_product_variation]

* Foreign key to use for the purchasable entity type.

*
* orderType [String] - [DEFAULT = default]

* Foreign key to use for the order type.

*/
$order_item_type = \Drupal\commerce_order\Entity\OrderItemType::create([

'id' => 'custom_order_item_type',
'label' => 'My custom order item type',
'status' => TRUE,
'purchasableEntityType' => 'commerce_product_variation',
'orderType' => 'custom_order_type',

]);
$order_item_type->save();

50 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Loading an order item type

// Loading is based off of the primary key [String] that was defined when creating it.
$order_item_type = \Drupal\commerce_order\Entity\OrderItemType::load('custom_order_item_type');

Creating order items

/**
* type [String] - [DEFAULT = product_variation]

* Foreign key to use for the order item type.

*
* purchased_entity [Integer | \Drupal\commerce\PurchasableEntityInterface]

* Foreign key to use for the purchased entity. Either the id, or object implementing the interface.

*
* quantity [Integer]

* How many of the purchased items.

*
* unit_price [\Drupal\commerce_price\Price]

* The price per each item, not the total.

*
* adjustments [OPTIONAL] - [Array(Drupal\commerce_order\Adjustment)]

* Array of any price adjustments.

*/
$order_item = \Drupal\commerce_order\Entity\OrderItem::create([

'type' => 'custom_order_item_type',
'purchased_entity' => $variation_red_medium,
'quantity' => 2,
'unit_price' => $variation_red_medium->getPrice(),

]);
$order_item->save();

// You can set the quantity with setQuantity.
$order_item->setQuantity('1');
$order_item->save();

// You can also set the price with setUnitPrice.
$unit_price = new \Drupal\commerce_price\Price('9.99', 'USD');
$order_item->setUnitPrice($unit_price);
$order_item->save();

Loading an order item

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$order_item = \Drupal\commerce_order\Entity\OrderItem::load(1);

Creating orders

/**
* type [String] - [DEFAULT = default]

* Foreign key to use for the order type.

*
* state [String] - [DEFAULT = draft]

3.11. Code Recipes 51

Drupal Commerce Documentation, Release 0.0.1

* [AVAILABLE = draft, completed, canceled]

* The state the order is in.

*
* mail [String]

* The email address the order belongs to.

*
* uid [Integer]

* The user id the order belongs to.

*
* ip_address [String]

* The ip address the order was created from.

*
* order_number [Integer | String] - [OPTIONAL, DEFAULTS TO id]

* The order number for the order. If left out, defaults to the order's id.

*
* billing_profile [\Drupal\profile\Entity\ProfileInterface]

* The billing profile for the order.

*
* store_id [Integer]

* The foreign key for the store that this order belongs to.

*
* order_items [Array(\Drupal\commerce_order\Entity\OrderItemInterface]

* Array of all the order items that belong to this order.

*
* adjustments [OPTIONAL] - [Array(Drupal\commerce_order\Adjustment)]

* Array of any price adjustments.

*
* placed [Timestamp]

* The time the order was placed.

*
* completed [OPTIONAL] - [Timestamp]

* The time the order was completed.

*/

// Create the billing profile.
$profile = \Drupal\profile\Entity\Profile::create([

'type' => 'customer',
'uid' => 1,

]);
$profile->save();

// Next, we create the order.
$order = \Drupal\commerce_order\Entity\Order::create([

'type' => 'custom_order_type',
'state' => 'draft',
'mail' => 'user@example.com',
'uid' => 1,
'ip_address' => '127.0.0.1',
'order_number' => '6',
'billing_profile' => $profile,
'store_id' => $store->id(),
'order_items' => [$order_item],
'placed' => time(),

]);
$order->save();

52 Chapter 3. Commerce 2.x

Drupal Commerce Documentation, Release 0.0.1

Loading an order

// Loading is based off of the primary key [Integer]
// 1 would be the first one saved, 2 the next, etc.
$order = \Drupal\commerce_order\Entity\Order::load(1);

3.11. Code Recipes 53

	Introduction
	Contribute to Documentation

	Commerce 1.x Documentation
	Commerce 2.x
	Overview
	Drupal modules
	PHP libraries
	Recommended Tools

	Getting Started
	Getting Started with Drupal Commerce 2

	Libraries and dependencies
	Libraries and dependencies

	Setting up stores
	Setting up stores

	Managing products
	Products

	Catalog and product pages
	Catalog and product pages

	Product merchandising
	Product merchandising

	Working with orders
	Orders

	Configuring Checkout
	Configuring your checkout

	Payments
	Setting up payments

	Code Recipes
	Code Recipes

