

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dropafile 0.1.2.dev0 documentation

dropafile

Drop me a file, securely.

[image: build-status] [https://travis-ci.org/ulif/dropafile] | documentation [http://dropafile.readthedocs.org/] | sources [https://github.com/ulif/dropafile] | issues [https://github.com/ulif/dropafile/issues]

dropafile provides an HTTPS-secured webapp where users can drop
files.

It is meant as a channel to deliver documents in a not-too-unsecure
manner. For instance as a quickly installable workaround if people are
not able or willing to use GnuPG or similar, although they have
sensible documents to send.

dropafile is written in Python (server parts) and uses the
dropzonejs [http://www.dropzonejs.com/] JavaScript library (client parts). The builtin server is
based on Werkzeug [http://werkzeug.pocoo.org/].

Install

As a user, run:

$ pip install dropafile

then, start the local server:

$ dropafile
Creating temporary self-signed SSL certificate...
Done.
Certificate in: /tmp/tmp1y2bgh/cert.pem
Key in: /tmp/tmp1y2bgh/cert.key
Password is: H93rqnsrdEXD2ad3rQwdWqZ
 * Running on https://localhost:8443/ (Press CTRL+C to quit)

The server will provide SSL. Users can access dropafile sevice
pointing their browsers to the location given. The page is protected
by basic auth. Users will have to provide an arbitrary user name and
the password displayed on the commandline at startup (which changes
with restart).

The –help option will display all available options:

$ dropfile --help
usage: dropafile [-h] [--host HOST] [-p PORT] [-s PASSWORD]

Start dropafile app.

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host we bind to. An IP address or DNS name.
 `localhost` by default.
 -p PORT, --port PORT Port we listen at. An integer. 8443 by default.
 -s PASSWORD, --secret PASSWORD
 Password to access dropafile. If none is given we
 generate one.

Whenever a user sends a file, the path is displayed on the
commandline.

Developer Install

Developers should install a virtualenv [https://virtualenv.pypa.io/] first:

$ virtualenv -p /usr/bin/python2.7 py27 # for Python2.7

See tox.ini for all Python versions supported.

Activate the virtualenv:

$ source py27/bin/activate
(py27) $

Now build the devel environment:

(py27) $ python setup.py dev

You can run tests like this:

(py27) $ py.test

Tests for all supported (and locally available) Python vesions can be
run by:

(py27) $ pip install tox # neccessary only once per virtualenv
(py27) $ tox

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dropafile 0.1.2.dev0 documentation

API Reference

While dropafile is not designed as a library, you might want to use
single components for building bigger and better webservices. For
instance you can use the dropafile.DropAFileApplication as WSGI app
in other environments.

dropafile - Drop a file on a webpage.

	
dropafile.ALLOWED_PWD_CHARS = 'ABCDEFGHJKLMNPQRSTUVWXYZ23456789abcdefghjkmnpqrstuvwxyz'

	Chars allowed in passwords.
We allow plain ASCII chars and numbers, with some entitites removed,
that can be easily mixed up: letter l and number one, for instance.

	
class dropafile.DropAFileApplication(password=None, upload_dir=None)[source]

	Drop-A-File application.

A werkzeug based WSGI application providing a basic-auth
protected web interface for file uploads.

password is required to access the application’s service. If
none is provided, we generate one for you.

upload_dir is the directory, where we store files uploaded by
users. If none is given we create a temporary directory on
start-up. Please note: the directory is not removed on shutdown.

	
authenticate()[source]

	Send 401 requesting basic auth from client.

Send back 401 response to client. Contains some HTML to
display an ‘Unauhorized’ page. Should make browsers ask users
for username and password.

	
check_auth(request)[source]

	Check basic auth against local password.

We accept any username, but only the one password. Returns
True in case of success, False otherwise.

request must contain basic-auth authorization headers (as
set by browsers) to succeed.

	
handle_uploaded_files(request)[source]

	Look for an upload file in request.

If one is found, it is saved to self.upload_dir.

	
password = None

	the password we require (no username neccessary)

	
upload_dir = None

	a path where we store files uploaded by users.

	
dropafile.create_ssl_cert(path=None, bits=4096, days=2, cn='localhost', country='US', state='', location='')[source]

	Create an SSL RSA cert and key in directory path.

Returns a tuple (certificate_path, key_path).

	path

	A directory, where certificate and key can be stored. If none is
given, we create a temporary one.

Default attribute values of the certificate are read from a
package-local SSL configuration file openssl.conf.

Some attribute values can be overridden:

	bits

	number of bits of the key.

	days

	number of days of validity of the generated certificate.

	cn

	Common Name. Put the domain under which the app will be
served in here.

	state and location

	will be empty by default.

	
dropafile.execute_cmd(cmd_list)[source]

	Excute the command cmd_list.

Returns stdout and stderr output.

	
dropafile.get_random_password()[source]

	Get a password generated from ALLOWED_PWD_CHARS.

The password entropy should be >= 128 bits. We use SystemRandom(),
which should provide enough randomness to work properly.

	
dropafile.get_ssl_context(cert_path=None, key_path=None)[source]

	Get an SSL context to serve HTTP.

If cert_path or key_path are None, we create some. Then we
add some modifiers (avail. with Python >= 2.7.9) to disable unsafe
ciphers etc.

The returned SSL context can be used with Werkzeug run_simple.

	
dropafile.get_store_path(directory, filename)[source]

	Get a path where we can safely store a file.

The file should be stored in directory under name filename.
If filename already exists in directory, we construct new
names by appending ‘-<NUM>’ to the original filename, where
<NUM> is a number counting up.

	
dropafile.handle_options(args)[source]

	Handle commandline options.

Expects the arguments passed to dropafile as a list of
arguments. args is expected to represent sys.argv[1:],
i.e. the arguments when called, without the programme name.

Returns parsed options as provided by argparse [http://docs.python.org/library/argparse.html#module-argparse].

	
dropafile.run_server(args=None)[source]

	Run a werkzeug server, serving a DropAFileApplication.

Called when running dropafile from commandline. Serves a
DropAFileApplication instance until aborted.

Options argv are taken from commandline if not specified.

Generates a password and temporary SSL certificate/key on startup
unless otherwise requested in options/args.

 Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dropafile 0.1.2.dev0 documentation

License & Copyright

Copyright

dropafile and this documentation is:

Copyright (c) 2015 Uli Fouquet. All rights reserved.

static/dropzone.js and static/dropzone.css are :

Copyright (c) 2012 Matias Meno <m@tias.me>

License

All parts of dropafile, except files static/dropzone.js,
static/dropzone.css, and files in docs/ are covered by the GPL
3.0. Full license text available in LICENSE

static/dropzone.js and static/dropzone.css are covered by the
MIT (Expat) license.

If that license does not fit your needs and you need a copy of
the software licensed differently, please contact
uli <at> gnufix <dot> de.

[image: Creative Commons License] [http://creativecommons.org/licenses/by/4.0/]

This documentation is licensed under a Creative Commons Attribution
4.0 International License [http://creativecommons.org/licenses/by/4.0/]. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

 Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dropafile 0.1.2.dev0 documentation

Changes

0.1.2dev (unreleased)

	No changes yet.

0.1.1 (2015-03-30)

	Turned former dropafile module into a Python package. This is to
fix installation behvior where data files are installed in different
locations depending on install tool. See diceware bug #1 [https://github.com/ulif/diceware/issues/1].

The problem was revealed by conorsch [https://github.com/conorsch] for the diceware [https://github.com/ulif/diceware] package.

0.1 (2015-03-22)

	Initial release.

 Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	dropafile 0.1.2.dev0 documentation

 Python Module Index

 d

 			

 		
 d	

 	
 	
 dropafile	

 Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	dropafile 0.1.2.dev0 documentation

Index

 A
 | C
 | D
 | E
 | G
 | H
 | P
 | R
 | U

A

 	

 	ALLOWED_PWD_CHARS (in module dropafile)

 	

 	authenticate() (dropafile.DropAFileApplication method)

C

 	

 	check_auth() (dropafile.DropAFileApplication method)

 	

 	create_ssl_cert() (in module dropafile)

D

 	

 	dropafile (module)

 	

 	DropAFileApplication (class in dropafile)

E

 	

 	execute_cmd() (in module dropafile)

G

 	

 	get_random_password() (in module dropafile)

 	get_ssl_context() (in module dropafile)

 	

 	get_store_path() (in module dropafile)

H

 	

 	handle_options() (in module dropafile)

 	

 	handle_uploaded_files() (dropafile.DropAFileApplication method)

P

 	

 	password (dropafile.DropAFileApplication attribute)

R

 	

 	run_server() (in module dropafile)

U

 	

 	upload_dir (dropafile.DropAFileApplication attribute)

 Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/minus.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		dropafile 0.1.2.dev0 documentation »

 All modules for which code is available

		dropafile

 © Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_modules/dropafile.html

 Navigation

 		
 index

 		
 modules |

 		dropafile 0.1.2.dev0 documentation »

 		Module code »

 Source code for dropafile

dropafile -- drop me a file on a webpage
Copyright (C) 2015 Uli Fouquet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""dropafile - Drop a file on a webpage.
"""
import argparse
import os
import random
import pkg_resources
import ssl
import subprocess
import sys
import tempfile
from werkzeug import secure_filename
from werkzeug.serving import run_simple
from werkzeug.wrappers import Request, Response

#: Official version
__version__ = pkg_resources.get_distribution('dropafile').version

PATH_MAP = {
 '/dropzone.js': ('dropzone.js', 'text/javascript'),
 '/dropzone.css': ('dropzone.css', 'text/css'),
 '/style.css': ('style.css', 'text/css'),
 '/index.html': ('page.html', 'text/html'),
 }

STATIC_DIR = os.path.join(os.path.dirname(__file__), 'static')

#: Chars allowed in passwords.
#: We allow plain ASCII chars and numbers, with some entitites removed,
#: that can be easily mixed up: letter `l` and number one, for instance.
ALLOWED_PWD_CHARS = 'ABCDEFGHJKLMNPQRSTUVWXYZ23456789abcdefghjkmnpqrstuvwxyz'

[docs]def handle_options(args):
 """Handle commandline options.

 Expects the arguments passed to dropafile as a list of
 arguments. `args` is expected to represent ``sys.argv[1:]``,
 i.e. the arguments when called, without the programme name.

 Returns parsed options as provided by :mod:`argparse`.
 """
 parser = argparse.ArgumentParser(description="Start dropafile app.")
 parser.add_argument(
 '--host', required=False, default='localhost',
 help=(
 'Host we bind to. An IP address or DNS name. `localhost`'
 ' by default.'
),
)
 parser.add_argument(
 '-p', '--port', required=False, default=8443, type=int,
 help=(
 'Port we listen at. An integer. 8443 by default.'
)
)
 parser.add_argument(
 '-s', '--secret', required=False, metavar='PASSWORD',
 help=(
 'Password to access dropafile. If none is given we generate '
 'one.'
)
)
 opts = parser.parse_args(args)
 return opts

[docs]def get_random_password():
 """Get a password generated from `ALLOWED_PWD_CHARS`.

 The password entropy should be >= 128 bits. We use `SystemRandom()`,
 which should provide enough randomness to work properly.
 """
 rnd = random.SystemRandom()
 return ''.join(
 [rnd.choice(ALLOWED_PWD_CHARS) for x in range(23)])

[docs]def get_store_path(directory, filename):
 """Get a path where we can safely store a file.

 The file should be stored in `directory` under name `filename`.
 If `filename` already exists in `directory`, we construct new
 names by appending '-<NUM>' to the original filename, where
 ``<NUM>`` is a number counting up.
 """
 filename = secure_filename(filename)
 path = os.path.join(directory, filename)
 num = 1
 while os.path.exists(path):
 path = os.path.join(directory, '%s-%s' % (filename, num))
 num += 1
 return path

[docs]class DropAFileApplication(object):
 """Drop-A-File application.

 A `werkzeug` based WSGI application providing a basic-auth
 protected web interface for file uploads.

 `password` is required to access the application's service. If
 none is provided, we generate one for you.

 `upload_dir` is the directory, where we store files uploaded by
 users. If none is given we create a temporary directory on
 start-up. Please note: the directory is not removed on shutdown.
 """

 #: the password we require (no username neccessary)
 password = None

 #: a path where we store files uploaded by users.
 upload_dir = None

 def __init__(self, password=None, upload_dir=None):
 if password is None:
 password = get_random_password()
 self.password = password
 if upload_dir is None:
 upload_dir = tempfile.mkdtemp()
 self.upload_dir = upload_dir

[docs] def check_auth(self, request):
 """Check basic auth against local password.

 We accept any username, but only *the* one password. Returns
 ``True`` in case of success, ``False`` otherwise.

 `request` must contain basic-auth authorization headers (as
 set by browsers) to succeed.
 """
 auth = request.authorization
 if auth is None:
 return False
 if auth.password != self.password:
 return False
 return True

[docs] def authenticate(self):
 """Send 401 requesting basic auth from client.

 Send back 401 response to client. Contains some HTML to
 display an 'Unauhorized' page. Should make browsers ask users
 for username and password.
 """
 return Response(
 '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">\n'
 '<title>401 Unauthorized</title>\n'
 '<h1>Unauthorized</h1>'
 '<p>You are not authorized to use this service.</p>',
 401, {'WWW-Authenticate': 'Basic realm="Login required"',
 'Content-Type': 'text/html'}
)

[docs] def handle_uploaded_files(self, request):
 """Look for an upload file in `request`.

 If one is found, it is saved to `self.upload_dir`.
 """
 uploaded_file = request.files.get('file', None)
 if uploaded_file is None:
 return
 path = get_store_path(self.upload_dir, uploaded_file.filename)
 print("RECEIVED: %s" % path)
 uploaded_file.save(path)

 @Request.application
 def __call__(self, request):
 if not self.check_auth(request):
 return self.authenticate()
 self.handle_uploaded_files(request)
 filename, mimetype = PATH_MAP.get(
 request.path, PATH_MAP['/index.html'])
 with open(os.path.join(STATIC_DIR, filename)) as file_descr:
 page = file_descr.read()
 return Response(page, mimetype=mimetype)

[docs]def execute_cmd(cmd_list):
 """Excute the command `cmd_list`.

 Returns stdout and stderr output.
 """
 pipe = subprocess.PIPE
 proc = subprocess.Popen(
 cmd_list, stdout=pipe, stderr=pipe, shell=False)
 try:
 stdout, stderr = proc.communicate()
 finally:
 proc.stdout.close()
 proc.stderr.close()
 proc.wait()
 return stdout, stderr

[docs]def create_ssl_cert(path=None, bits=4096, days=2, cn='localhost',
 country='US', state='', location=''):
 """Create an SSL RSA cert and key in directory `path`.

 Returns a tuple `(certificate_path, key_path)`.

 `path`
 A directory, where certificate and key can be stored. If none is
 given, we create a temporary one.

 Default attribute values of the certificate are read from a
 package-local SSL configuration file ``openssl.conf``.

 Some attribute values can be overridden:

 `bits`
 number of bits of the key.

 `days`
 number of days of validity of the generated certificate.

 `cn`
 Common Name. Put the domain under which the app will be
 served in here.

 `state` and `location`
 will be empty by default.
 """
 print("Creating temporary self-signed SSL certificate...")
 if path is None:
 path = tempfile.mkdtemp()
 cert_path = os.path.join(path, 'cert.pem')
 key_path = os.path.join(path, 'cert.key')
 openssl_conf = os.path.join(os.path.dirname(__file__), 'openssl.conf')
 subject = '/C=%s/ST=%s/L=%s/O=%s/OU=%s/CN=%s/emailAddress=%s/' % (
 country, state, location, '', '', cn, '')
 cmd = [
 'openssl', 'req', '-x509', '-newkey', 'rsa:%s' % bits, '-nodes',
 '-out', cert_path, '-keyout', key_path, '-days', '%s' % days,
 '-sha256', '-config', openssl_conf, '-batch', "-subj", subject
]
 out, err = execute_cmd(cmd)
 print("Done.")
 print("Certificate in: %s" % cert_path)
 print("Key in: %s" % key_path)
 return cert_path, key_path

[docs]def get_ssl_context(cert_path=None, key_path=None):
 """Get an SSL context to serve HTTP.

 If `cert_path` or `key_path` are ``None``, we create some. Then we
 add some modifiers (avail. with Python >= 2.7.9) to disable unsafe
 ciphers etc.

 The returned SSL context can be used with Werkzeug `run_simple`.
 """
 if (key_path is None) or (cert_path is None):
 cert_path, key_path = create_ssl_cert()
 ssl_context = (cert_path, key_path)
 if hasattr(ssl, 'SSLContext'): # py >= 2.7.9
 ssl_context = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
 ssl_context.options |= ssl.OP_NO_SSLv2 # considered unsafe
 ssl_context.options |= ssl.OP_NO_SSLv3 # considered unsafe
 ssl_context.load_cert_chain(cert_path, key_path)
 return ssl_context

[docs]def run_server(args=None):
 """Run a `werkzeug` server, serving a :class:`DropAFileApplication`.

 Called when running `dropafile` from commandline. Serves a
 :class:`DropAFileApplication` instance until aborted.

 Options `argv` are taken from commandline if not specified.

 Generates a password and temporary SSL certificate/key on startup
 unless otherwise requested in options/args.
 """
 if args is None:
 args = sys.argv
 options = handle_options(args[1:])
 ssl_context = get_ssl_context()
 sys.stdout.flush()
 application = DropAFileApplication(password=options.secret)
 print("Password is: %s" % application.password)
 sys.stdout.flush()
 run_simple(options.host, options.port, application,
 ssl_context=ssl_context)

 © Copyright 2015, Uli Fouquet.
 Created using Sphinx 1.2.2.

_static/file.png

