
Drivetrain Library Documentation
Release 1.0

Brendan Doherty

Dec 11, 2019

Contents

1 Dependencies 3

2 Installation 5

3 Examples 7

4 Table of Contents 9
4.1 BiMotor test . 9
4.2 PhasedMotor test . 10
4.3 StepperMotor test . 10
4.4 Tank Drivetrain test . 11
4.5 Automotive Drivetrain test . 12
4.6 nRF24L01 receiving test . 13
4.7 Drivetrain Configurations . 13

4.7.1 Tank Drivetrain . 14
4.7.2 Automotive Drivetrain . 15
4.7.3 Locomotive Drivetrain . 16
4.7.4 Mecanum Drivetrain . 17

4.8 Drivetrain Interfaces . 18
4.8.1 NRF24L01 . 18
4.8.2 USB . 19

4.9 Motor Types . 20
4.9.1 Solenoid . 20
4.9.2 BiMotor . 21
4.9.3 PhasedMotor . 22
4.9.4 StepperMotor . 23

5 Indices and tables 25

Index 27

i

ii

Drivetrain Library Documentation, Release 1.0

A collection of motor drivers classes and specialized drivetrain classes to coordinate the motors’ objects in generic
configurations. This takes advatage of the threading module for smoothing motor input commands in background
running threads. This was developed for & tested on the Raspberry PI. For running this library on CicuitPython
devices (that don’t have access to the threading module) like the Adafruit ItsyBitsy M4, we have added a fallback
function called “sync()” that should get called at least once in the application’s main loop.

Contents 1

https://drivetrain.readthedocs.io/en/latest/?badge=latest

Drivetrain Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Dependencies

This library requires

• the digitalio and pulseio modules from the adafruit-blinka Library

• for serial communications: pyserial

• and for using the nRF24L01 as an interface: circuitpython-nrf24l01

3

https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html#module-digitalio
https://circuitpython.readthedocs.io/en/latest/shared-bindings/pulseio/__init__.html#module-pulseio
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/pyserial/
https://pypi.org/project/circuitpython-nrf24l01/

Drivetrain Library Documentation, Release 1.0

4 Chapter 1. Dependencies

CHAPTER 2

Installation

Currenty, there is no plan to deploy this library to pypi yet.

You can easily install this library to your Raspberry Pi in the terminal using the following commands:

git clone http://github.com/DVC-Viking-Robotics/Drivetrain.git
cd Drivetrain
python3 setup.py install

Some cases may require the last command be prefixed with sudo or appended with --user.

Installing this library should also automatically install the dependencies listed above (platform permitting).

5

Drivetrain Library Documentation, Release 1.0

6 Chapter 2. Installation

CHAPTER 3

Examples

Try out any of the simple test examples in the examples to make sure everything (including pin connections & library
installation) is setup correctly.

7

https://drivetrain.readthedocs.io/en/latest/examples.html

Drivetrain Library Documentation, Release 1.0

8 Chapter 3. Examples

CHAPTER 4

Table of Contents

Note: To minimize the margin of error during these tests, we suggest connecting each motor pin (specified in the
example codes) to its own resistor and LED (in series). By doing so, you can distinguish between pinout errors and
faulty motor driver ICs more easily (not to mention doing away with the motors’ isolated power requirements).

4.1 BiMotor test

Listing 1: examples/bimotor_test.py

1 """
2 A simple test of the BiMotor class
3

4 This iterates through a list of motor commands
5 and prints the ellapsed time taken to acheive each command
6 """
7 # pylint: disable=invalid-name
8 import time
9 import board

10 from drivetrain import BiMotor
11

12 motor = BiMotor([board.D22, board.D13], ramp_time=2000)
13 Value = [-25, 25, -100, 100, 0]
14 for test in Value:
15 # send input instructions
16 # NOTE we convert the percentage value to range [-65535, 65535]
17 motor.cellerate(test * 655.35)
18 start = time.monotonic()
19 t = start
20 # do a no delay wait for at most 3 seconds
21 while motor.is_cellerating and t < start + 3:

(continues on next page)

9

Drivetrain Library Documentation, Release 1.0

(continued from previous page)

22 t = time.monotonic()
23 print('test result {} took {} seconds'.format(motor.value, t - start))

4.2 PhasedMotor test

Listing 2: examples/phasedmotor_test.py

1 """
2 A simple test of the PhasedMotor class
3

4 This iterates through a list of motor commands
5 and prints the ellapsed time taken to acheive each command
6 """
7 # pylint: disable=invalid-name
8 import time
9 import board

10 from drivetrain.motor import PhasedMotor
11

12 motor = PhasedMotor([board.D17, board.D18], ramp_time=2000)
13 Value = [-25, 25, -100, 100, 0]
14 for test in Value:
15 # send input instructions
16 # NOTE we convert the percentage value to range [-65535, 65535]
17 motor.cellerate(test * 655.35)
18 start = time.monotonic()
19 t = start
20 # do a no delay wait for at most 3 seconds
21 while motor.is_cellerating and t < start + 3:
22 t = time.monotonic()
23 print('test result {} took {} seconds'.format(motor.value, t - start))

4.3 StepperMotor test

Listing 3: examples/steppermotor_test.py

1 """A simple test of the StepperMotor class driving a 5V microstepper"""
2 # pylint: disable=invalid-name
3 import time
4 import board
5 from drivetrain.stepper import StepperMotor
6

7 motor = StepperMotor([board.D13, board.D12, board.D11, board.D10])
8 Steps = [-256, 256, 0] # 1024, 2048, 4096]
9 Angle = [-15, 15, 0] # 180, 360]

10 Value = [-25, 25, 0] # -50, 100, 0]
11 for test in Value:
12 motor.value = test # send input instructions
13 # do a no delay wait for at least 2 seconds
14 start = time.monotonic()
15 t = start
16 end = None

(continues on next page)

10 Chapter 4. Table of Contents

Drivetrain Library Documentation, Release 1.0

(continued from previous page)

17 while motor.is_cellerating or t < start + 2:
18 t = time.monotonic()
19 if not motor.is_cellerating and end is None:
20 end = t
21 print(repr(motor))
22 print('value acheived in', end-start, 'seconds')
23 # elif motor.is_cellerating:
24 # print(repr(motor))

4.4 Tank Drivetrain test

Listing 4: examples/tank_test.py

1 """
2 A simple test of the Tank drivetrain class.
3

4 This iterates through a list of drivetrain commands
5 and tallies up the ellapsed time taken to acheive each set of commands
6 as well as the ellapsed time taken for each motor to acheive each individual command
7 """
8 # pylint: disable=invalid-name
9 import time

10 import board
11 from drivetrain.drivetrain import Tank, BiMotor
12

13 mymotors = [BiMotor([board.D22, board.D13], ramp_time=2000),
14 BiMotor([board.D17, board.D18], ramp_time=2000)]
15 d = Tank(mymotors)
16 testInput = [[100, 0],
17 [-100, 0],
18 [0, 0],
19 [0, 100],
20 [0, -100],
21 [0, 0]]
22 for test in testInput:
23 # use the list `end` to keep track of each motor's ellapsed time
24 end = []
25 # NOTE we convert a percentage to range of an 32 bit int
26 for i, t_val in enumerate(test):
27 test[i] = t_val * 655.35
28 for m in mymotors:
29 # end timer for motor[i] = end[i]
30 end.append(None)
31 d.go(test) # send input commands
32 # unanimous start of all timmers
33 start = time.monotonic()
34 t = start
35 # do a no delay wait for at least 3 seconds
36 while d.is_cellerating or t < start + 3:
37 t = time.monotonic()
38 for j, m in enumerate(mymotors):
39 if not m.is_cellerating and end[j] is None:
40 end[j] = t
41

(continues on next page)

4.4. Tank Drivetrain test 11

Drivetrain Library Documentation, Release 1.0

(continued from previous page)

42 print('test commands {} took {} seconds'.format(repr(test), t - start))
43 for j, m in enumerate(mymotors):
44 if end[j] is not None:
45 print('motor {} acheived {} in {} seconds'.format(j, m.value, end[j]-

→˓start))
46 else:
47 print("motor {} didn't finish cellerating and a has value of {}".format(j,

→˓ m.value))
48 print(' ') # for clearer print statement grouping

4.5 Automotive Drivetrain test

Listing 5: examples/automotive_test.py

1 """
2 A simple test of the Automotive drivetrain class.
3

4 This iterates through a list of drivetrain commands
5 and tallies up the ellapsed time taken to acheive each set of commands
6 as well as the ellapsed time taken for each motor to acheive each individual command
7 """
8 # pylint: disable=invalid-name
9 import time

10 import board
11 from drivetrain.drivetrain import Automotive, PhasedMotor
12

13 mymotors = [PhasedMotor([board.D22, board.D13], ramp_time=2000),
14 PhasedMotor([board.D17, board.D18], ramp_time=2000)]
15 d = Automotive(mymotors)
16 testInput = [[100, 0],
17 [-100, 0],
18 [0, 0],
19 [0, 100],
20 [0, -100],
21 [0, 0]]
22 for test in testInput:
23 # use the list `end` to keep track of each motor's ellapsed time
24 end = []
25 # NOTE we convert a percentage to range of an 32 bit int
26 for i, t_val in enumerate(test):
27 test[i] = t_val * 655.35
28 for m in mymotors:
29 # end timer for motor[i] = end[i]
30 end.append(None)
31 d.go(test) # send input commands
32 # unanimous start of all timmers
33 start = time.monotonic()
34 t = start
35 # do a no delay wait for at least 3 seconds
36 while d.is_cellerating or t < start + 3:
37 t = time.monotonic()
38 for j, m in enumerate(mymotors):
39 if not m.is_cellerating and end[j] is None:
40 end[j] = t

(continues on next page)

12 Chapter 4. Table of Contents

Drivetrain Library Documentation, Release 1.0

(continued from previous page)

41

42 print('test commands {} took {} seconds'.format(repr(test), t - start))
43 for j, m in enumerate(mymotors):
44 if end[j] is not None:
45 print('motor {} acheived {} in {} seconds'.format(j, m.value, end[j]-

→˓start))
46 else:
47 print("motor {} didn't finish cellerating and a has value of {}".format(j,

→˓ m.value))
48 print(' ') # for clearer print statement grouping

4.6 nRF24L01 receiving test

Listing 6: examples/nrf24l01_rx_test.py

1 """
2 Example of library usage receiving commands via an
3 nRF24L01 transceiver to control a Mecanum drivetrain.
4 """
5 import board
6 from digitalio import DigitalInOut as Dio
7 from circuitpython_nrf24l01 import RF24
8 from drivetrain import Mecanum, BiMotor, NRF24L01rx
9

10 # instantiate transceiver radio on the SPI bus
11 nrf = RF24(board.SPI(), Dio(board.D5), Dio(board.D4))
12

13 # instantiate motors for a Mecanum drivetrain in the following order
14 # Front-Right, Rear-Right, Rear-Left, Front-Left
15 motors = [
16 BiMotor([board.RX, board.TX]),
17 BiMotor([board.D13, board.D12]),
18 BiMotor([board.D11, board.D10]),
19 BiMotor([board.D2, board.D7])
20]
21 # NOTE there are no more PWM pins available
22

23 # instantiate receiving object for a Mecanum drivetrain
24 d = NRF24L01rx(nrf, Mecanum(motors))
25

26 while True: # this runs forever
27 d.sync()
28 # doing a keyboard interupt will most likely leave the SPI bus in an
29 # undesirable state. You must do a hard-reset of the circuitoython MCU to
30 # reset the SPI bus for continued use. This code assumes power is lost on exit.

4.7 Drivetrain Configurations

Important: Other motor libraries have implemented the “DC braking” concept in which all coils of the motor
are energized to lock the rotor in place using simultaneously opposing electromagnetic forces. Unlike other motor
libraries, we DO NOT assume your motors’ driver circuit contains flyback diodes to protect its transistors (even though

4.6. nRF24L01 receiving test 13

Drivetrain Library Documentation, Release 1.0

they are practically required due to Lenz’s Law). Therefore, passing a desired speed of 0 to any of the cellerate()
or go() functions of the drivetrain and motor objects will effectively de-energize the coils in the motors.

4.7.1 Tank Drivetrain

class drivetrain.drivetrain.Tank(motors, max_speed=100)
A Drivetrain class meant to be used for motor configurations where propulsion and steering are shared tasks
(also known as a “Differential” Drivetrain). For example: The military’s tank vehicle essentially has 2 motors
(1 on each side) where propulsion is done by both motors, and steering is controlled by varying the different
motors’ input commands.

Parameters

• motors (list) – A list of motors that are to be controlled in concert. Each item in
this list represents a single motor object and must be of type Solenoid, BiMotor,
PhasedMotor, or StepperMotor. The first 2 motors in this list are used to propell
and steer respectively.

• max_speed (int) – The maximum speed as a percentage in range [0, 100] for the driv-
etrain’s forward and backward motion. Defaults to 100%. This does not scale the motor
speed’s range, it just limits the top speed that the forward/backward motion can go.

go(cmds, smooth=None)
This function applies the user input to the motors’ output according to drivetrain’s motor configuration
stated in the contructor documentation.

Parameters

• cmds (list) – A list of input motor commands to be processed and passed to the
motors. This list must have at least 2 items (input values), and any additional items will be
ignored. A list of length less than 2 will throw a ValueError exception.

Important: Ordering of the motor inputs contained in this list/tuple matters. They should
correspond to the following order:

1. left/right magnitude in range [-65535, 65535]

2. forward/reverse magnitude in range [-65535, 65535]

• smooth (bool) – This controls the motors’ built-in algorithm that smooths input values
over a period of time (in milliseconds) contained in the motors’ ramp_time attribute.
If this parameter is not specified, then the drivetrain’s smooth attribute is used by de-
fault. This can be disabled per motor by setting the ramp_time attribute to 0, thus the
smoothing algorithm is automatically bypassed despite this parameter’s value.

Note: Assert this parameter (set as True) for robots with a rather high center of grav-
ity or if some parts are poorly attached. The absence of properly smoothed accelera-
tion/deceleration will likely make the robot fall over or loose parts become dislodged on
sudden and drastic changes in speed.

is_cellerating
This attribute contains a bool indicating if the drivetrain’s motors’ speed is in the midst of changing.
(read-only)

14 Chapter 4. Table of Contents

https://en.wikipedia.org/wiki/Lenz%27s_law
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/functions.html#bool

Drivetrain Library Documentation, Release 1.0

max_speed
This attribute determines a motor’s top speed. Valid input values range [0, 100].

smooth
This attribute enables (True) or disables (False) the input smoothing alogrithms for all motors
(solenoids excluded) in the drivetrain.

stop()
This function will stop all motion in the drivetrain’s motors

sync()
This function should be used at least once per main loop iteration. It will trigger each motor’s subsequent
sync(), thus applying the smoothing input operations if needed. This is not needed if the smoothing
algorithms are not utilized/necessary in the application

4.7.2 Automotive Drivetrain

class drivetrain.drivetrain.Automotive(motors, max_speed=100)
A Drivetrain class meant to be used for motor configurations where propulsion and steering are separate tasks.
The first motor is used to steer, and the second motor is used to propell. An example of this would be any remote
control toy vehicle.

Parameters

• motors (list) – A list of motors that are to be controlled in concert. Each item in
this list represents a single motor object and must be of type Solenoid (steering only),
BiMotor, PhasedMotor, or StepperMotor. The 2 motors in this list are used to
steer and propell respectively.

• max_speed (int) – The maximum speed as a percentage in range [0, 100] for the driv-
etrain’s forward and backward motion. Defaults to 100%. This does not scale the motor
speed’s range, it just limits the top speed that the forward/backward motion can go.

go(cmds, smooth=None)
This function applies the user input to motor output according to drivetrain’s motor configuration.

Parameters

• cmds (list) – A list of input motor commands to be passed to the motors. This list
must have at least 2 items (input values), and any additional item(s) will be ignored. A
list of length less than 2 will throw a ValueError exception.

Important: Ordering of the motor inputs contained in this list/tuple matters. They should
correspond to the following order:

1. left/right magnitude in range [-65535, 65535]

2. forward/reverse magnitude in range [-65535, 65535]

• smooth (bool) – This controls the motors’ built-in algorithm that smooths input values
over a period of time (in milliseconds) contained in the motors’ ramp_time attribute.
If this parameter is not specified, then the drivetrain’s smooth attribute is used by de-
fault. This can be disabled per motor by setting the ramp_time attribute to 0, thus the
smoothing algorithm is automatically bypassed despite this parameter’s value.

Note: Assert this parameter (set as True) for robots with a rather high center of grav-
ity or if some parts are poorly attached. The absence of properly smoothed accelera-

4.7. Drivetrain Configurations 15

https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#True

Drivetrain Library Documentation, Release 1.0

tion/deceleration will likely make the robot fall over or loose parts become dislodged on
sudden and drastic changes in speed.

is_cellerating
This attribute contains a bool indicating if the drivetrain’s motors’ speed is in the midst of changing.
(read-only)

max_speed
This attribute determines a motor’s top speed. Valid input values range [0, 100].

smooth
This attribute enables (True) or disables (False) the input smoothing alogrithms for all motors
(solenoids excluded) in the drivetrain.

stop()
This function will stop all motion in the drivetrain’s motors

sync()
This function should be used at least once per main loop iteration. It will trigger each motor’s subsequent
sync(), thus applying the smoothing input operations if needed. This is not needed if the smoothing
algorithms are not utilized/necessary in the application

4.7.3 Locomotive Drivetrain

class drivetrain.drivetrain.Locomotive(solenoids, switch)
This class relies soley on one Solenoid object controlling 2 solenoids in tandem. Like with a locomotive train,
applied force is alternated between the 2 solenoids using a boolean-ized pressure sensor or switch to determine
when the applied force is alternated.

Parameters

• solenoids (Solenoid) – This object has 1 or 2 solenoids attached. It will be used to
apply the force for propulsion.

• switch (Pin) – This should be the (board module’s) Pin that is connected to the sensor
that will be used to determine when the force for propulsion should be alternated between
solenoids.

Note: There is no option to control the speed in this drivetrain class due to the nature of using solenoids for
propulsion. Electronic solenoids apply either their full force or none at all. We currently are not supporting
dynamic linear actuators (in which the force applied can vary) because they are basically motors simulating
linear motion via a gear box controlling a shaft’s extension/retraction. This may change when we support servos
though.

stop()
This function stops the process of alternating applied force between the solenoids.

go(forward)
This function starts the process of alternating applied force between the solenoids with respect to the
specified direction.

Parameters forward (bool) – True cylces the forces in a way that invokes a forward motion.
False does the same but invokes a force in the backward direction.

Note: Since we are talking about applying linear force to a wheel or axle, the direction is entirely
dependent on the physical orientation of the solenoids. In other words, the armature of one solenoid

16 Chapter 4. Table of Contents

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/Pin.html#microcontroller.Pin
https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/Pin.html#microcontroller.Pin
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False

Drivetrain Library Documentation, Release 1.0

should be attached to the wheel(s) or axle(s) in a position that is always opposite the position of the other
solenoid’s armature on the same wheel(s) or axel(s).

sync()
This function should be used at least once in the application’s main loop. It will trigger the alternating of
each solenoid’s applied force. This IS needed on MCUs (microcontroller units) that can’t use the threading
module.

is_cellerating
This attribute contains a bool indicating if the drivetrain’s applied force via solenoids is in the midst of
alternating. (read-only)

4.7.4 Mecanum Drivetrain

class drivetrain.drivetrain.Mecanum(motors, max_speed=100)
A Drivetrain class meant for motor configurations that involve 4 motors for propulsion and steering are shared
tasks (like having 2 Tank Drivetrains). Each motor drives a single mecanum wheel which allows for the ability
to strafe.

Parameters

• motors (list) – A list of motors that are to be controlled in concert. Each item in this
list represents a single motor object and must be of type BiMotor, PhasedMotor, or
StepperMotor. The motors list should be ordered as follows:

– Front-Right

– Rear-Right

– Rear-Left

– Front-Left

• max_speed (int) – The maximum speed as a percentage in range [0, 100] for the driv-
etrain’s forward and backward motion. Defaults to 100%. This does not scale the motor
speed’s range, it just limits the top speed that the forward/backward motion can go.

is_cellerating
This attribute contains a bool indicating if the drivetrain’s motors’ speed is in the midst of changing.
(read-only)

max_speed
This attribute determines a motor’s top speed. Valid input values range [0, 100].

smooth
This attribute enables (True) or disables (False) the input smoothing alogrithms for all motors
(solenoids excluded) in the drivetrain.

stop()
This function will stop all motion in the drivetrain’s motors

sync()
This function should be used at least once per main loop iteration. It will trigger each motor’s subsequent
sync(), thus applying the smoothing input operations if needed. This is not needed if the smoothing
algorithms are not utilized/necessary in the application

go(cmds, smooth=None)
This function applies the user input to the motors’ output according to drivetrain’s motor configuration
stated in the contructor documentation.

4.7. Drivetrain Configurations 17

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False

Drivetrain Library Documentation, Release 1.0

Parameters

• cmds (list) – A list of input motor commands to be processed and passed to the
motors. This list must have at least 2 items (input values), and any additional items will be
ignored. A list of length less than 2 will throw a ValueError exception.

Important: Ordering of the motor inputs contained in this list/tuple matters. They should
correspond to the following order:

1. left/right magnitude in range [-65535, 65535]

2. forward/reverse magnitude in range [-65535, 65535]

3. strafe boolean. True uses the left/right magnituse as strafing speed. False uses the
left/right magnitude for turning.

• smooth (bool) – This controls the motors’ built-in algorithm that smooths input values
over a period of time (in milliseconds) contained in the motors’ ramp_time attribute.
If this parameter is not specified, then the drivetrain’s smooth attribute is used by de-
fault. This can be disabled per motor by setting the ramp_time attribute to 0, thus the
smoothing algorithm is automatically bypassed despite this parameter’s value.

Note: Assert this parameter (set as True) for robots with a rather high center of grav-
ity or if some parts are poorly attached. The absence of properly smoothed accelera-
tion/deceleration will likely make the robot fall over or loose parts become dislodged on
sudden and drastic changes in speed.

4.8 Drivetrain Interfaces

4.8.1 NRF24L01

class drivetrain.interfaces.NRF24L01(nrf24_object, address=b’rfpi0’, cmd_template=’ll’)
This class acts as a wrapper for circuitpython-nrf24l01 library for using a peripheral device with nRF24L01
radio transceivers. This is a base class to NRF24L01tx and NRF24L01rx classes.

Parameters

• nrf24_object (RF24) – The instantiated object of the nRF24L01 transceiver radio.

• address (bytearray) – This will be the RF address used to transmit/receive drivetrain
commands via the nRF24L01 transceiver. For more information on this parameter’s usage,
please read the documentation on the using the open_tx_pipe()

• cmd_template (str) – This variable will be used as the “fmt” (Format String of Charac-
ters) parameter internally passed to the struct.pack() and struct.unpack() for
transmiting and receiving drivetrain commands. The number of characters in this string
must correspond to the number of commands in the cmds list passed to go().

cmd_template
Use this attribute to change or check the format string used to pack or unpack drivetrain commands in
bytearray form. Refer to Format String and Format Characters for allowed datatype aliases. The
number of characters in this string must correspond to the number of commands in the cmds list passed
to go().

18 Chapter 4. Table of Contents

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#True
https://circuitpython-nrf24l01.readthedocs.io/en/stable/api.html#circuitpython_nrf24l01.rf24.RF24
https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://circuitpython-nrf24l01.readthedocs.io/en/stable/api.html#circuitpython_nrf24l01.rf24.RF24.open_tx_pipe
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/struct.html#format-strings
https://docs.python.org/3.6/library/struct.html#format-strings
https://docs.python.org/3.6/library/struct.html#struct.pack
https://docs.python.org/3.6/library/struct.html#struct.unpack
https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://docs.python.org/3.6/library/struct.html#format-strings

Drivetrain Library Documentation, Release 1.0

value
The most previous list of commands that were processed by the drivetrain object

address
This bytearray will be the RF address used to transmit/receive drivetrain commands via the nRF24L01
transceiver. For more information on this parameter’s usage, please read the documentation on the using
the open_tx_pipe()

class drivetrain.interfaces.NRF24L01tx(nrf24_object, address=b’rfpi0’, cmd_template=’ll’)
Bases: drivetrain.interfaces.NRF24L01

This child class allows the remote controlling of an external drivetrain by transmitting commands to another
MCU via the nRF24L01 transceiver. See also the NRF24L01 base class for details about instantiation.

go(cmds)
Assembles a bytearray to be used for transmitting commands over the air to a receiving nRF24L01
transceiver.

Parameters cmds (list,tuple) – A list or tuple of int commands to be sent over
the air using the nRF24L01. This list/tuple must have a length equal to the number of
characters in the cmd_template string.

class drivetrain.interfaces.NRF24L01rx(nrf24_object, drivetrain, address=b’rfpi0’,
cmd_template=’ll’)

Bases: drivetrain.interfaces.NRF24L01

This child class allows the external remote controlling of an internal drivetrain by receiving commands from
another MCU via the nRF24L01 transceiver.

Parameters drivetrain (Tank,Automotive,Locomotive) – The pre-instantiated drive-
train configuration object that is to be controlled.

See also the NRF24L01 base class for details about instantiation.

sync()
Checks if there are new commands waiting in the nRF24L01’s RX FIFO buffer to be processed by the
drivetrain object (passed to the constructor upon instantiation). Any data that is waiting to be received is
interpreted and passed to the drivetrain object.

go(cmds)
Assembles a list of drivetrain commands from the received bytearray via the nRF24L01 transceiver.

Parameters cmds (list,tuple) – A list or tuple of int commands to be sent the
drivetrain object (passed to the constructor upon instantiation). This list/tuple must
have a length equal to the number of characters in the cmd_template string.

4.8.2 USB

class drivetrain.interfaces.USB(serial_object, cmd_template=’ll’)
This base class acts as a wrapper to pyserial module for communicating to an external USB serial device.
Specifically designed for an Arduino running custom code.

Parameters

• serial_object (busio.UART,serial.Serial,machine.UART) – The instan-
tiated serial object to be used for the serial connection.

• cmd_template (str) – This variable will be used as the “fmt” (Format String of Charac-
ters) parameter internally passed to the struct.pack() and struct.unpack() for
transmiting and receiving drivetrain commands. The number of characters in this string
must correspond to the number of commands in the cmds list passed to go().

4.8. Drivetrain Interfaces 19

https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://circuitpython-nrf24l01.readthedocs.io/en/stable/api.html#circuitpython_nrf24l01.rf24.RF24.open_tx_pipe
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/UART.html#busio.UART
https://pyserial.readthedocs.io/en/latest/pyserial_api.html#serial.Serial
http://docs.micropython.org/en/latest/library/machine.UART.html#machine.UART
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/struct.html#format-strings
https://docs.python.org/3.6/library/struct.html#format-strings
https://docs.python.org/3.6/library/struct.html#struct.pack
https://docs.python.org/3.6/library/struct.html#struct.unpack

Drivetrain Library Documentation, Release 1.0

cmd_template
Use this str attribute to change or check the format string used to pack or unpack drivetrain commands
in bytearray form. Refer to Format String and Format Characters for allowed datatype aliases. The
number of characters in this string must correspond to the number of commands in the cmds list passed
to go().

value
The most previous list of commands that were processed by the drivetrain object

class drivetrain.interfaces.USBtx(serial_object, cmd_template=’ll’)
Bases: drivetrain.interfaces.USB

This child class allows the remote controlling of an external drivetrain by transmitting commands to another
MCU via USB serial connection. See also the USB base class for details about instantiation.

go(cmds)
Assembles a bytearray for outputting over the Serial connection.

Parameters cmds (list,tuple) – A list or tuple of int commands to be sent over the
Serial connection. This list/tuple must have a length equal to the number of characters
in the cmd_template string.

class drivetrain.interfaces.USBrx(drivetrain, serial_object, cmd_template=’ll’)
Bases: drivetrain.interfaces.USB

This child class allows the remote controlling of an external drivetrain by receiving commands from another
MCU via USB serial connection.

Parameters drivetrain (Tank,Automotive,Locomotive) – The pre-instantiated drive-
train configuration object that is to be controlled.

See also the USB base class for details about instantiation.

sync()
Checks if there are new commands waiting in the USB serial device’s input stream to be processed by the
drivetrain object (passed to the constructor upon instantiation). Any data that is waiting to be received is
interpreted and passed to the drivetrain object.

go(cmds)
Assembles a list of drivetrain commands from the received bytearray over the USB serial connection.

Parameters cmds (list,tuple) – A list or tuple of int commands to be sent the
drivetrain object (passed to the constructor upon instantiation). This list/tuple must
have a length equal to the number of characters in the cmd_template string.

4.9 Motor Types

4.9.1 Solenoid

class drivetrain.motor.Solenoid(pins, ramp_time=0)
This base class is meant be used as a parent to BiMotor and PhasedMotor classes of this module, but can
be used for solenoids if needed. Solenoids, by nature, cannot be controlled dynamically (cannot be any value
other than True or False). Despite the fact that this class holds all the smoothing input algorithms for its
child classes, the output values, when instantiated objects with this base class, are not actually smoothed. With
that said, this class can be used to control up to 2 solenoids (see also value attribute for more details) as in the
case of an actual locomotive train.

Parameters

20 Chapter 4. Table of Contents

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://docs.python.org/3.6/library/struct.html#format-strings
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False

Drivetrain Library Documentation, Release 1.0

• pins (list) – A list of (board module’s) Pin numbers that are used to drive the
solenoid(s). The length of this list must be in range [1, 2] (any additional items/pins will
be ignored).

• ramp_time (int) – This parameter is really a placeholder for the child classes BiMotor
& PhasedMotor as it has no affect on objects instantiated with this base class. Changing
this value has not been tested and will probably slightly delay the solenoid(s) outputs.

value
This attribute contains the current output value of the solenoid(s) in range [-1, 1]. An invalid input value
will be clamped to an int in the proper range.

Note: Because this class is built to handle 2 pins (passed in the pins parameter to the constructor)
and tailored for solenoids, any negative value will only energize the solenoid driven by the second pin .
Any positive value will only energize the solenoid driven by the first pin. Alternatively, a 0 value will
de-energize both solenoids.

4.9.2 BiMotor

class drivetrain.motor.BiMotor(pins, ramp_time=500)
This class is meant be used for motors driven by driver boards/ICs that expect 2 PWM outputs . Each pin
represent the controlling signal for the motor’s speed in a single rotational direction.

Parameters

• pins (list) – A list of (board module’s) Pin numbers that are used to drive the mo-
tor. The length of this list or tuple must be in range [1, 2]; any additional items/pins
will be ignored, and a ValueError exception is thrown if no pins are passed (an empty
tuple/list). If only 1 pin is passed, then the motor will only rotate in 1 direction de-
pending on how the motor is connected to the motor driver.

• ramp_time (int) – The time (in milliseconds) that is used to smooth the motor’s input.
Default is 500. This time represents the maximum amount of time that the input will be
smoothed. Since the change in speed is also used to determine how much time will be used
to smooth the input, this parameter’s value will represent the time it takes for the motor to
go from full reverse to full forward and vice versa. If the motor is going from rest to either
full reverse or full forward, then the time it takes to do that will be half of this parameter’s
value. This can be changed at any time by changing the ramp_time attribute.

cellerate(target_speed)
A function to smoothly accelerate/decelerate the motor to a specified target speed.

Parameters target_speed (int) – The desired target speed in range of [-65535, 65535].
Any invalid inputs will be clamped to an int value in the proper range.

is_cellerating
This attribute contains a bool indicating if the motor’s speed is in the midst of changing. (read-only)

ramp_time
This attribute is the maximum amount of time (in milliseconds) used to smooth the input values. A negative
value will be used as a positive number. Set this to 0 to disable all smoothing on the motor input values or
just set the value atribute directly to bypass the smoothing algorithm.

Note: Since the change in speed (target - initial) is also used to determine how much time will be used
to smooth the input, this attribute’s value will represent the maximum time it takes for the motor to go

4.9. Motor Types 21

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

Drivetrain Library Documentation, Release 1.0

from full reverse to full forward and vice versa. If the motor is going from rest to either full reverse or full
forward, then the time it takes to do that will be half of this attribute’s value.

sync()
This function should be used at least in the application’s main loop iteration. It will trigger the smoothing
input operations on the output value if needed. This is not needed if the smoothing algorithms are not
utilized/necessary in the application

value
This attribute contains the current output value of the solenoid(s) in range [-65535, 65535]. An invalid
input value will be clamped to an int in the proper range. A negative value represents the motor’s speed
in reverse rotation. A positive value reprsents the motor’s speed in forward rotation.

4.9.3 PhasedMotor

class drivetrain.motor.PhasedMotor(pins, ramp_time=500)
This class is meant be used for motors driven by driver boards/ICs that expect:

• 1 PWM output (to control the motor’s speed)

• 1 digital output (to control the motor’s rotational direction)

Parameters

• pins (list) – A list of (board module’s) Pin numbers that are used to drive the
motor. The length of this list/tuple must be 2, otherwise a ValueError exception is
thrown.

Note: The first pin in the tuple/list is used for the digital output signal that signifies
the motor’s rotational direction. The second pin is used for PWM output that signifies the
motor’s speed.

• ramp_time (int) – The time (in milliseconds) that is used to smooth the motor’s input.
Default is 500. This time represents the maximum amount of time that the input will be
smoothed. Since the change in speed is also used to determine how much time will be used
to smooth the input, this parameter’s value will represent the time it takes for the motor to
go from full reverse to full forward and vice versa. If the motor is going from rest to either
full reverse or full forward, then the time it takes to do that will be half of this parameter’s
value. This can be changed at any time by changing the ramp_time attribute.

cellerate(target_speed)
A function to smoothly accelerate/decelerate the motor to a specified target speed.

Parameters target_speed (int) – The desired target speed in range of [-65535, 65535].
Any invalid inputs will be clamped to an int value in the proper range.

is_cellerating
This attribute contains a bool indicating if the motor’s speed is in the midst of changing. (read-only)

ramp_time
This attribute is the maximum amount of time (in milliseconds) used to smooth the input values. A negative
value will be used as a positive number. Set this to 0 to disable all smoothing on the motor input values or
just set the value atribute directly to bypass the smoothing algorithm.

22 Chapter 4. Table of Contents

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

Drivetrain Library Documentation, Release 1.0

Note: Since the change in speed (target - initial) is also used to determine how much time will be used
to smooth the input, this attribute’s value will represent the maximum time it takes for the motor to go
from full reverse to full forward and vice versa. If the motor is going from rest to either full reverse or full
forward, then the time it takes to do that will be half of this attribute’s value.

sync()
This function should be used at least in the application’s main loop iteration. It will trigger the smoothing
input operations on the output value if needed. This is not needed if the smoothing algorithms are not
utilized/necessary in the application

value
This attribute contains the current output value of the solenoid(s) in range [-65535, 65535]. An invalid
input value will be clamped to an int in the proper range. A negative value represents the motor’s speed
in reverse rotation. A positive value reprsents the motor’s speed in forward rotation.

4.9.4 StepperMotor

class drivetrain.stepper.StepperMotor(pins, steps_per_rev=4096, de-
gree_per_step=0.087890625, step_type=’half’,
rpm=60)

A class designed to control unipolar or bipolar stepper motors. It is still a work in progress as there is no
smoothing algorithm nor limited maximum speed applied to the motor’s input.

Parameters

• pins (list,tuple) – A list or tuple of (board module) pins that are used to drive
the stepper motor. The length of this list or tuple must be divisible by 2, otherwise a
ValueError exception is thrown.

• steps_per_rev (int) – An int that represents how many steps it takes to complete a
whole revolution. Defaults to 4096. This should correlate with information found in your
motor’s datasheet.

• degree_per_step (int,float) – The value that represents how many degrees the
motor moves per single step. Defaults to 45/512 or 5.625°/64. This should correlate with
information found in your motor’s datasheet.

• step_type (string) – This parameter is used upon instantiation to specify what kind
of stepping pattern the motor uses. Valid values are limited to:

– half (default value)

– full

– wave

This should correlate with information found in your motor’s datasheet.

• rpm (int,float) – The maximum amount of rotations per minute. This should correlate
with information found in your motor’s datasheet.

is_cellerating
This attribute contains a bool indicating if the motor is in the midst of moving. (read-only)

stop()
Use this function when you want to abort any motion from the motor.

4.9. Motor Types 23

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#bool

Drivetrain Library Documentation, Release 1.0

sync()
This function should be used only once per main loop iteration. It will trigger stepping operations on the
motor if needed.

reset0angle()
A calibrating function that will reset the motor’s zero angle to its current position. This function is also
called when the motor’s value, steps, or angle attributes are set to None. Additionally, this function
will stop all movement in the motor.

rpm
This int attribute contains the maximum Rotations Per Minute and can be changed at any time.

angle
Represents the number of the motor’s angle from its zero angle position with respect to the
steps_per_rev parameter passed to the constructor. This value will be in range [-180, 180]. Input
values can be any int or float as any overflow outside the range [0, 360] is handled accordingly.

steps
Represents the number of the motor’s steps from its zero angle position with respect to the
steps_per_rev parameter passed to the constructor. This value will be in range [steps_per_rev
/ -2, steps_per_rev / 2]. Input values can be any int as any overflow outside the range [0,
steps_per_rev] is handled accordingly.

value
Represents the percentual value of the motor’s angle in range [-100, 100] with respect to the
steps_per_rev parameter passed to the constructor. Invalid input values will be constrained to an
int in the range [-100, 100].

24 Chapter 4. Table of Contents

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

25

Drivetrain Library Documentation, Release 1.0

26 Chapter 5. Indices and tables

Index

A
address (drivetrain.interfaces.NRF24L01 attribute),

19
angle (drivetrain.stepper.StepperMotor attribute), 24
Automotive (class in drivetrain.drivetrain), 15

B
BiMotor (class in drivetrain.motor), 21

C
cellerate() (drivetrain.motor.BiMotor method), 21
cellerate() (drivetrain.motor.PhasedMotor

method), 22
cmd_template (drivetrain.interfaces.NRF24L01 at-

tribute), 18
cmd_template (drivetrain.interfaces.USB attribute),

19

G
go() (drivetrain.drivetrain.Automotive method), 15
go() (drivetrain.drivetrain.Locomotive method), 16
go() (drivetrain.drivetrain.Mecanum method), 17
go() (drivetrain.drivetrain.Tank method), 14
go() (drivetrain.interfaces.NRF24L01rx method), 19
go() (drivetrain.interfaces.NRF24L01tx method), 19
go() (drivetrain.interfaces.USBrx method), 20
go() (drivetrain.interfaces.USBtx method), 20

I
is_cellerating (drivetrain.drivetrain.Automotive

attribute), 16
is_cellerating (drivetrain.drivetrain.Locomotive

attribute), 17
is_cellerating (drivetrain.drivetrain.Mecanum at-

tribute), 17
is_cellerating (drivetrain.drivetrain.Tank at-

tribute), 14
is_cellerating (drivetrain.motor.BiMotor at-

tribute), 21

is_cellerating (drivetrain.motor.PhasedMotor at-
tribute), 22

is_cellerating (drivetrain.stepper.StepperMotor
attribute), 23

L
Locomotive (class in drivetrain.drivetrain), 16

M
max_speed (drivetrain.drivetrain.Automotive at-

tribute), 16
max_speed (drivetrain.drivetrain.Mecanum attribute),

17
max_speed (drivetrain.drivetrain.Tank attribute), 14
Mecanum (class in drivetrain.drivetrain), 17

N
NRF24L01 (class in drivetrain.interfaces), 18
NRF24L01rx (class in drivetrain.interfaces), 19
NRF24L01tx (class in drivetrain.interfaces), 19

P
PhasedMotor (class in drivetrain.motor), 22

R
ramp_time (drivetrain.motor.BiMotor attribute), 21
ramp_time (drivetrain.motor.PhasedMotor attribute),

22
reset0angle() (drivetrain.stepper.StepperMotor

method), 24
rpm (drivetrain.stepper.StepperMotor attribute), 24

S
smooth (drivetrain.drivetrain.Automotive attribute), 16
smooth (drivetrain.drivetrain.Mecanum attribute), 17
smooth (drivetrain.drivetrain.Tank attribute), 15
Solenoid (class in drivetrain.motor), 20
StepperMotor (class in drivetrain.stepper), 23
steps (drivetrain.stepper.StepperMotor attribute), 24

27

Drivetrain Library Documentation, Release 1.0

stop() (drivetrain.drivetrain.Automotive method), 16
stop() (drivetrain.drivetrain.Locomotive method), 16
stop() (drivetrain.drivetrain.Mecanum method), 17
stop() (drivetrain.drivetrain.Tank method), 15
stop() (drivetrain.stepper.StepperMotor method), 23
sync() (drivetrain.drivetrain.Automotive method), 16
sync() (drivetrain.drivetrain.Locomotive method), 17
sync() (drivetrain.drivetrain.Mecanum method), 17
sync() (drivetrain.drivetrain.Tank method), 15
sync() (drivetrain.interfaces.NRF24L01rx method), 19
sync() (drivetrain.interfaces.USBrx method), 20
sync() (drivetrain.motor.BiMotor method), 22
sync() (drivetrain.motor.PhasedMotor method), 23
sync() (drivetrain.stepper.StepperMotor method), 23

T
Tank (class in drivetrain.drivetrain), 14

U
USB (class in drivetrain.interfaces), 19
USBrx (class in drivetrain.interfaces), 20
USBtx (class in drivetrain.interfaces), 20

V
value (drivetrain.interfaces.NRF24L01 attribute), 18
value (drivetrain.interfaces.USB attribute), 20
value (drivetrain.motor.BiMotor attribute), 22
value (drivetrain.motor.PhasedMotor attribute), 23
value (drivetrain.motor.Solenoid attribute), 21
value (drivetrain.stepper.StepperMotor attribute), 24

28 Index

	Dependencies
	Installation
	Examples
	Table of Contents
	BiMotor test
	PhasedMotor test
	StepperMotor test
	Tank Drivetrain test
	Automotive Drivetrain test
	nRF24L01 receiving test
	Drivetrain Configurations
	Tank Drivetrain
	Automotive Drivetrain
	Locomotive Drivetrain
	Mecanum Drivetrain

	Drivetrain Interfaces
	NRF24L01
	USB

	Motor Types
	Solenoid
	BiMotor
	PhasedMotor
	StepperMotor

	Indices and tables
	Index

