

 [image: Documentation Status]
 [https://drivetrain.readthedocs.io/en/latest/?badge=latest]
Introduction

A collection of motor drivers classes and specialized drivetrain classes to coordinate the motors’ objects in generic configurations. This takes advatage of the threading module for smoothing motor input commands in background running threads. This was developed for & tested on the Raspberry PI. For running this library on CicuitPython devices (that don’t have access to the threading module) like the Adafruit ItsyBitsy M4, we have added a fallback function called “sync()” that should get called at least once in the application’s main loop.

Dependencies

This library requires

	the digitalio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html#module-digitalio] and pulseio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/pulseio/__init__.html#module-pulseio] modules from the adafruit-blinka Library [https://pypi.org/project/Adafruit-Blinka/]

	for serial communications: pyserial [https://pypi.org/project/pyserial/]

	and for using the nRF24L01 as an interface: circuitpython-nrf24l01 [https://pypi.org/project/circuitpython-nrf24l01/]

Installation

Currenty, there is no plan to deploy this library to pypi yet.

You can easily install this library to your Raspberry Pi in the terminal using the following commands:

git clone http://github.com/DVC-Viking-Robotics/Drivetrain.git
cd Drivetrain
python3 setup.py install

Some cases may require the last command be prefixed with sudo or appended with --user.

Installing this library should also automatically install the dependencies listed above (platform permitting).

Examples

Try out any of the simple test examples in the examples [https://drivetrain.readthedocs.io/en/latest/examples.html] to make sure everything (including pin connections & library installation) is setup correctly.

Table of Contents

Examples

	BiMotor test

	PhasedMotor test

	StepperMotor test

	Tank Drivetrain test

	Automotive Drivetrain test

	nRF24L01 receiving test

API Reference

	Drivetrain Configurations
	Tank Drivetrain

	Automotive Drivetrain

	Locomotive Drivetrain

	Mecanum Drivetrain

	Drivetrain Interfaces
	NRF24L01

	USB

	Motor Types
	Solenoid

	BiMotor

	PhasedMotor

	StepperMotor

Other Links

	Download [https://github.com/DVC-Viking-Robotics/Drivetrain/archive/master.zip]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Note

To minimize the margin of error during these tests, we suggest connecting each motor pin (specified in the example codes) to its own resistor and LED (in series). By doing so, you can distinguish between pinout errors and faulty motor driver ICs more easily (not to mention doing away with the motors’ isolated power requirements).

BiMotor test

examples/bimotor_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	"""
A simple test of the BiMotor class

This iterates through a list of motor commands
and prints the ellapsed time taken to acheive each command
"""
pylint: disable=invalid-name
import time
import board
from drivetrain import BiMotor

motor = BiMotor([board.D22, board.D13], ramp_time=2000)
Value = [-25, 25, -100, 100, 0]
for test in Value:
 # send input instructions
 # NOTE we convert the percentage value to range [-65535, 65535]
 motor.cellerate(test * 655.35)
 start = time.monotonic()
 t = start
 # do a no delay wait for at most 3 seconds
 while motor.is_cellerating and t < start + 3:
 t = time.monotonic()
 print('test result {} took {} seconds'.format(motor.value, t - start))

PhasedMotor test

examples/phasedmotor_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	"""
A simple test of the PhasedMotor class

This iterates through a list of motor commands
and prints the ellapsed time taken to acheive each command
"""
pylint: disable=invalid-name
import time
import board
from drivetrain.motor import PhasedMotor

motor = PhasedMotor([board.D17, board.D18], ramp_time=2000)
Value = [-25, 25, -100, 100, 0]
for test in Value:
 # send input instructions
 # NOTE we convert the percentage value to range [-65535, 65535]
 motor.cellerate(test * 655.35)
 start = time.monotonic()
 t = start
 # do a no delay wait for at most 3 seconds
 while motor.is_cellerating and t < start + 3:
 t = time.monotonic()
 print('test result {} took {} seconds'.format(motor.value, t - start))

StepperMotor test

examples/steppermotor_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	"""A simple test of the StepperMotor class driving a 5V microstepper"""
pylint: disable=invalid-name
import time
import board
from drivetrain.stepper import StepperMotor

motor = StepperMotor([board.D13, board.D12, board.D11, board.D10])
Steps = [-256, 256, 0] # 1024, 2048, 4096]
Angle = [-15, 15, 0] # 180, 360]
Value = [-25, 25, 0] # -50, 100, 0]
for test in Value:
 motor.value = test # send input instructions
 # do a no delay wait for at least 2 seconds
 start = time.monotonic()
 t = start
 end = None
 while motor.is_cellerating or t < start + 2:
 t = time.monotonic()
 if not motor.is_cellerating and end is None:
 end = t
 print(repr(motor))
 print('value acheived in', end-start, 'seconds')
 # elif motor.is_cellerating:
 # print(repr(motor))

Tank Drivetrain test

examples/tank_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	"""
A simple test of the Tank drivetrain class.

This iterates through a list of drivetrain commands
and tallies up the ellapsed time taken to acheive each set of commands
as well as the ellapsed time taken for each motor to acheive each individual command
"""
pylint: disable=invalid-name
import time
import board
from drivetrain.drivetrain import Tank, BiMotor

mymotors = [BiMotor([board.D22, board.D13], ramp_time=2000),
 BiMotor([board.D17, board.D18], ramp_time=2000)]
d = Tank(mymotors)
testInput = [[100, 0],
 [-100, 0],
 [0, 0],
 [0, 100],
 [0, -100],
 [0, 0]]
for test in testInput:
 # use the list `end` to keep track of each motor's ellapsed time
 end = []
 # NOTE we convert a percentage to range of an 32 bit int
 for i, t_val in enumerate(test):
 test[i] = t_val * 655.35
 for m in mymotors:
 # end timer for motor[i] = end[i]
 end.append(None)
 d.go(test) # send input commands
 # unanimous start of all timmers
 start = time.monotonic()
 t = start
 # do a no delay wait for at least 3 seconds
 while d.is_cellerating or t < start + 3:
 t = time.monotonic()
 for j, m in enumerate(mymotors):
 if not m.is_cellerating and end[j] is None:
 end[j] = t

 print('test commands {} took {} seconds'.format(repr(test), t - start))
 for j, m in enumerate(mymotors):
 if end[j] is not None:
 print('motor {} acheived {} in {} seconds'.format(j, m.value, end[j]-start))
 else:
 print("motor {} didn't finish cellerating and a has value of {}".format(j, m.value))
 print(' ') # for clearer print statement grouping

Automotive Drivetrain test

examples/automotive_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	"""
A simple test of the Automotive drivetrain class.

This iterates through a list of drivetrain commands
and tallies up the ellapsed time taken to acheive each set of commands
as well as the ellapsed time taken for each motor to acheive each individual command
"""
pylint: disable=invalid-name
import time
import board
from drivetrain.drivetrain import Automotive, PhasedMotor

mymotors = [PhasedMotor([board.D22, board.D13], ramp_time=2000),
 PhasedMotor([board.D17, board.D18], ramp_time=2000)]
d = Automotive(mymotors)
testInput = [[100, 0],
 [-100, 0],
 [0, 0],
 [0, 100],
 [0, -100],
 [0, 0]]
for test in testInput:
 # use the list `end` to keep track of each motor's ellapsed time
 end = []
 # NOTE we convert a percentage to range of an 32 bit int
 for i, t_val in enumerate(test):
 test[i] = t_val * 655.35
 for m in mymotors:
 # end timer for motor[i] = end[i]
 end.append(None)
 d.go(test) # send input commands
 # unanimous start of all timmers
 start = time.monotonic()
 t = start
 # do a no delay wait for at least 3 seconds
 while d.is_cellerating or t < start + 3:
 t = time.monotonic()
 for j, m in enumerate(mymotors):
 if not m.is_cellerating and end[j] is None:
 end[j] = t

 print('test commands {} took {} seconds'.format(repr(test), t - start))
 for j, m in enumerate(mymotors):
 if end[j] is not None:
 print('motor {} acheived {} in {} seconds'.format(j, m.value, end[j]-start))
 else:
 print("motor {} didn't finish cellerating and a has value of {}".format(j, m.value))
 print(' ') # for clearer print statement grouping

nRF24L01 receiving test

examples/nrf24l01_rx_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	"""
Example of library usage receiving commands via an
nRF24L01 transceiver to control a Mecanum drivetrain.
"""
import board
from digitalio import DigitalInOut as Dio
from circuitpython_nrf24l01 import RF24
from drivetrain import Mecanum, BiMotor, NRF24L01rx

instantiate transceiver radio on the SPI bus
nrf = RF24(board.SPI(), Dio(board.D5), Dio(board.D4))

instantiate motors for a Mecanum drivetrain in the following order
Front-Right, Rear-Right, Rear-Left, Front-Left
motors = [
 BiMotor([board.RX, board.TX]),
 BiMotor([board.D13, board.D12]),
 BiMotor([board.D11, board.D10]),
 BiMotor([board.D2, board.D7])
]
NOTE there are no more PWM pins available

instantiate receiving object for a Mecanum drivetrain
d = NRF24L01rx(nrf, Mecanum(motors))

while True: # this runs forever
 d.sync()
doing a keyboard interupt will most likely leave the SPI bus in an
undesirable state. You must do a hard-reset of the circuitoython MCU to
reset the SPI bus for continued use. This code assumes power is lost on exit.

Drivetrain Configurations

Important

Other motor libraries have implemented the “DC braking” concept in which all coils of the motor are energized to lock the rotor in place using simultaneously opposing electromagnetic forces. Unlike other motor libraries, we DO NOT assume your motors’ driver circuit contains flyback diodes to protect its transistors (even though they are practically required due to Lenz’s Law [https://en.wikipedia.org/wiki/Lenz%27s_law]). Therefore, passing a desired speed of 0 to any of the cellerate() or go() functions of the drivetrain and motor objects will effectively de-energize the coils in the motors.

Tank Drivetrain

	
class drivetrain.drivetrain.Tank(motors, max_speed=100)

	A Drivetrain class meant to be used for motor configurations where propulsion and steering
are shared tasks (also known as a “Differential” Drivetrain). For example: The military’s tank vehicle essentially has 2 motors (1 on each side) where propulsion is done by both motors, and steering is controlled by varying the different motors’ input commands.

	Parameters

	
	motors (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of motors that are to be controlled in concert. Each item in this
list [https://docs.python.org/3.6/library/stdtypes.html#list] represents a single motor object and must be of type Solenoid, BiMotor,
PhasedMotor, or StepperMotor. The first 2 motors in this list [https://docs.python.org/3.6/library/stdtypes.html#list] are used to propell and
steer respectively.

	max_speed (int [https://docs.python.org/3.6/library/functions.html#int]) – The maximum speed as a percentage in range [0, 100] for the drivetrain’s
forward and backward motion. Defaults to 100%. This does not scale the motor speed’s range,
it just limits the top speed that the forward/backward motion can go.

	
go(cmds, smooth=None)

	This function applies the user input to the motors’ output according to drivetrain’s
motor configuration stated in the contructor documentation.

	Parameters

	
	cmds (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of input motor commands to be processed and
passed to the motors. This list must have at least 2 items (input values), and any
additional items will be ignored. A list [https://docs.python.org/3.6/library/stdtypes.html#list] of length less than 2 will throw a
ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] exception.

Important

Ordering of the motor inputs contained in this list/tuple matters. They
should correspond to the following order:

	left/right magnitude in range [-65535, 65535]

	forward/reverse magnitude in range [-65535, 65535]

	smooth (bool [https://docs.python.org/3.6/library/functions.html#bool]) – This controls the motors’ built-in algorithm that smooths input values
over a period of time (in milliseconds) contained in the motors’
ramp_time attribute. If this parameter is not
specified, then the drivetrain’s smooth attribute is used by default.
This can be disabled per motor by setting the ramp_time
attribute to 0, thus the smoothing algorithm is automatically bypassed despite this
parameter’s value.

Note

Assert this parameter (set as True [https://docs.python.org/3.6/library/constants.html#True]) for robots with a rather high center of
gravity or if some parts are poorly attached. The absence of properly smoothed
acceleration/deceleration will likely make the robot fall over or loose parts
become dislodged on sudden and drastic changes in speed.

	
is_cellerating

	This attribute contains a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating if the drivetrain’s motors’ speed is in the
midst of changing. (read-only)

	
max_speed

	This attribute determines a motor’s top speed. Valid input values range [0, 100].

	
smooth

	This attribute enables (True [https://docs.python.org/3.6/library/constants.html#True]) or disables (False [https://docs.python.org/3.6/library/constants.html#False]) the input smoothing alogrithms for all motors (solenoids excluded) in the drivetrain.

	
stop()

	This function will stop all motion in the drivetrain’s motors

	
sync()

	This function should be used at least once per main loop iteration. It will trigger each
motor’s subsequent sync(), thus applying the smoothing input operations if needed. This is
not needed if the smoothing algorithms are not utilized/necessary in the application

Automotive Drivetrain

	
class drivetrain.drivetrain.Automotive(motors, max_speed=100)

	A Drivetrain class meant to be used for motor configurations where propulsion and steering
are separate tasks. The first motor is used to steer, and the second motor is used to
propell. An example of this would be any remote control toy vehicle.

	Parameters

	
	motors (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of motors that are to be controlled in concert. Each item in this
list [https://docs.python.org/3.6/library/stdtypes.html#list] represents a single motor object and must be of type Solenoid (steering only), BiMotor,
PhasedMotor, or StepperMotor. The 2 motors in this list [https://docs.python.org/3.6/library/stdtypes.html#list] are used to steer and propell
respectively.

	max_speed (int [https://docs.python.org/3.6/library/functions.html#int]) – The maximum speed as a percentage in range [0, 100] for the drivetrain’s
forward and backward motion. Defaults to 100%. This does not scale the motor speed’s range,
it just limits the top speed that the forward/backward motion can go.

	
go(cmds, smooth=None)

	This function applies the user input to motor output according to drivetrain’s motor
configuration.

	Parameters

	
	cmds (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of input motor commands to be passed to the
motors. This list [https://docs.python.org/3.6/library/stdtypes.html#list] must have at least 2 items (input values), and any
additional item(s) will be ignored. A list [https://docs.python.org/3.6/library/stdtypes.html#list] of length less than 2 will throw a
ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] exception.

Important

Ordering of the motor inputs contained in this list/tuple matters. They
should correspond to the following order:

	left/right magnitude in range [-65535, 65535]

	forward/reverse magnitude in range [-65535, 65535]

	smooth (bool [https://docs.python.org/3.6/library/functions.html#bool]) – This controls the motors’ built-in algorithm that smooths input values
over a period of time (in milliseconds) contained in the motors’
ramp_time attribute. If this parameter is not
specified, then the drivetrain’s smooth attribute is used by default.
This can be disabled per motor by setting the ramp_time
attribute to 0, thus the smoothing algorithm is automatically bypassed despite this
parameter’s value.

Note

Assert this parameter (set as True [https://docs.python.org/3.6/library/constants.html#True]) for robots with a rather high center of
gravity or if some parts are poorly attached. The absence of properly smoothed
acceleration/deceleration will likely make the robot fall over or loose parts
become dislodged on sudden and drastic changes in speed.

	
is_cellerating

	This attribute contains a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating if the drivetrain’s motors’ speed is in the
midst of changing. (read-only)

	
max_speed

	This attribute determines a motor’s top speed. Valid input values range [0, 100].

	
smooth

	This attribute enables (True [https://docs.python.org/3.6/library/constants.html#True]) or disables (False [https://docs.python.org/3.6/library/constants.html#False]) the input smoothing alogrithms for all motors (solenoids excluded) in the drivetrain.

	
stop()

	This function will stop all motion in the drivetrain’s motors

	
sync()

	This function should be used at least once per main loop iteration. It will trigger each
motor’s subsequent sync(), thus applying the smoothing input operations if needed. This is
not needed if the smoothing algorithms are not utilized/necessary in the application

Locomotive Drivetrain

	
class drivetrain.drivetrain.Locomotive(solenoids, switch)

	This class relies soley on one Solenoid object controlling 2 solenoids in tandem. Like
with a locomotive train, applied force is alternated between the 2 solenoids using a
boolean-ized pressure sensor or switch to determine when the applied force is alternated.

	Parameters

	
	solenoids (Solenoid) – This object has 1 or 2 solenoids attached. It
will be used to apply the force for propulsion.

	switch (Pin [https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/Pin.html#microcontroller.Pin]) – This should be the (board [https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board] module’s)
Pin [https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/Pin.html#microcontroller.Pin] that is connected to the sensor that will be used to
determine when the force for propulsion should be alternated between solenoids.

Note

There is no option to control the speed in this drivetrain class due to the nature of
using solenoids for propulsion. Electronic solenoids apply either their full force or none
at all. We currently are not supporting dynamic linear actuators (in which the force
applied can vary) because they are basically motors simulating linear motion via a gear box
controlling a shaft’s extension/retraction. This may change when we support servos though.

	
stop()

	This function stops the process of alternating applied force between the solenoids.

	
go(forward)

	This function starts the process of alternating applied force between the solenoids
with respect to the specified direction.

	Parameters

	forward (bool [https://docs.python.org/3.6/library/functions.html#bool]) – True [https://docs.python.org/3.6/library/constants.html#True] cylces the forces in a way that invokes a forward motion.
False [https://docs.python.org/3.6/library/constants.html#False] does the same but invokes a force in the backward direction.

Note

Since we are talking about applying linear force to a wheel or axle, the
direction is entirely dependent on the physical orientation of the solenoids. In
other words, the armature of one solenoid should be attached to the wheel(s) or
axle(s) in a position that is always opposite the position of the other solenoid’s
armature on the same wheel(s) or axel(s).

	
sync()

	This function should be used at least once in the application’s main loop. It will
trigger the alternating of each solenoid’s applied force. This IS needed on MCUs
(microcontroller units) that can’t use the threading module.

	
is_cellerating

	This attribute contains a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating if the drivetrain’s applied force via
solenoids is in the midst of alternating. (read-only)

Mecanum Drivetrain

	
class drivetrain.drivetrain.Mecanum(motors, max_speed=100)

	A Drivetrain class meant for motor configurations that involve 4 motors for propulsion
and steering are shared tasks (like having 2 Tank Drivetrains). Each motor drives a single
mecanum wheel which allows for the ability to strafe.

	Parameters

	
	motors (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of motors that are to be controlled in concert. Each item in this
list [https://docs.python.org/3.6/library/stdtypes.html#list] represents a single motor object and must be of type BiMotor,
PhasedMotor, or StepperMotor. The motors list [https://docs.python.org/3.6/library/stdtypes.html#list] should be ordered as follows:

	Front-Right

	Rear-Right

	Rear-Left

	Front-Left

	max_speed (int [https://docs.python.org/3.6/library/functions.html#int]) – The maximum speed as a percentage in range [0, 100] for the drivetrain’s
forward and backward motion. Defaults to 100%. This does not scale the motor speed’s range,
it just limits the top speed that the forward/backward motion can go.

	
is_cellerating

	This attribute contains a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating if the drivetrain’s motors’ speed is in the
midst of changing. (read-only)

	
max_speed

	This attribute determines a motor’s top speed. Valid input values range [0, 100].

	
smooth

	This attribute enables (True [https://docs.python.org/3.6/library/constants.html#True]) or disables (False [https://docs.python.org/3.6/library/constants.html#False]) the input smoothing alogrithms for all motors (solenoids excluded) in the drivetrain.

	
stop()

	This function will stop all motion in the drivetrain’s motors

	
sync()

	This function should be used at least once per main loop iteration. It will trigger each
motor’s subsequent sync(), thus applying the smoothing input operations if needed. This is
not needed if the smoothing algorithms are not utilized/necessary in the application

	
go(cmds, smooth=None)

	This function applies the user input to the motors’ output according to drivetrain’s
motor configuration stated in the contructor documentation.

	Parameters

	
	cmds (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of input motor commands to be processed and
passed to the motors. This list must have at least 2 items (input values), and any
additional items will be ignored. A list [https://docs.python.org/3.6/library/stdtypes.html#list] of length less than 2 will throw a
ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] exception.

Important

Ordering of the motor inputs contained in this list/tuple matters. They
should correspond to the following order:

	left/right magnitude in range [-65535, 65535]

	forward/reverse magnitude in range [-65535, 65535]

	strafe boolean. True [https://docs.python.org/3.6/library/constants.html#True] uses the left/right magnituse as strafing speed. False [https://docs.python.org/3.6/library/constants.html#False]
uses the left/right magnitude for turning.

	smooth (bool [https://docs.python.org/3.6/library/functions.html#bool]) – This controls the motors’ built-in algorithm that smooths input values
over a period of time (in milliseconds) contained in the motors’
ramp_time attribute. If this parameter is not
specified, then the drivetrain’s smooth attribute is used by default.
This can be disabled per motor by setting the ramp_time
attribute to 0, thus the smoothing algorithm is automatically bypassed despite this
parameter’s value.

Note

Assert this parameter (set as True [https://docs.python.org/3.6/library/constants.html#True]) for robots with a rather high center of
gravity or if some parts are poorly attached. The absence of properly smoothed
acceleration/deceleration will likely make the robot fall over or loose parts
become dislodged on sudden and drastic changes in speed.

Drivetrain Interfaces

NRF24L01

	
class drivetrain.interfaces.NRF24L01(nrf24_object, address=b'rfpi0', cmd_template='ll')

	This class acts as a wrapper for circuitpython-nrf24l01 library for using a
peripheral device with nRF24L01 radio transceivers. This is a base class to
NRF24L01tx and NRF24L01rx
classes.

	Parameters

	
	nrf24_object (RF24 [https://circuitpython-nrf24l01.readthedocs.io/en/stable/api.html#circuitpython_nrf24l01.rf24.RF24]) – The instantiated object of the nRF24L01
transceiver radio.

	address (bytearray [https://docs.python.org/3.6/library/stdtypes.html#bytearray]) – This will be the RF address used to transmit/receive drivetrain
commands via the nRF24L01 transceiver. For more information on this parameter’s usage,
please read the documentation on the using the
open_tx_pipe() [https://circuitpython-nrf24l01.readthedocs.io/en/stable/api.html#circuitpython_nrf24l01.rf24.RF24.open_tx_pipe]

	cmd_template (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – This variable will be used as the “fmt” (Format String of
Characters) [https://docs.python.org/3.6/library/struct.html#format-strings] parameter
internally passed to the struct.pack() [https://docs.python.org/3.6/library/struct.html#struct.pack] and struct.unpack() [https://docs.python.org/3.6/library/struct.html#struct.unpack] for
transmiting and receiving drivetrain commands. The number of characters in this string must
correspond to the number of commands in the cmds list passed to
go().

	
cmd_template

	Use this attribute to change or check the format string used to pack or unpack
drivetrain commands in bytearray [https://docs.python.org/3.6/library/stdtypes.html#bytearray] form. Refer to Format String and Format Characters [https://docs.python.org/3.6/library/struct.html#format-strings] for allowed datatype
aliases. The number of characters in this string must correspond to the number of commands
in the cmds list passed to go().

	
value

	The most previous list of commands that were processed by the drivetrain object

	
address

	This bytearray [https://docs.python.org/3.6/library/stdtypes.html#bytearray] will be the RF address used to transmit/receive drivetrain
commands via the nRF24L01 transceiver. For more information on this parameter’s usage,
please read the documentation on the using the
open_tx_pipe() [https://circuitpython-nrf24l01.readthedocs.io/en/stable/api.html#circuitpython_nrf24l01.rf24.RF24.open_tx_pipe]

	
class drivetrain.interfaces.NRF24L01tx(nrf24_object, address=b'rfpi0', cmd_template='ll')

	Bases: drivetrain.interfaces.NRF24L01

This child class allows the remote controlling of an external drivetrain by transmitting
commands to another MCU via the nRF24L01 transceiver. See also the NRF24L01 base class for
details about instantiation.

	
go(cmds)

	Assembles a bytearray to be used for transmitting commands over the air to a receiving
nRF24L01 transceiver.

	Parameters

	cmds (list [https://docs.python.org/3.6/library/stdtypes.html#list],tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] or tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] of int [https://docs.python.org/3.6/library/functions.html#int] commands to be sent over the air
using the nRF24L01. This list [https://docs.python.org/3.6/library/stdtypes.html#list]/tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] must have a length equal to the number of
characters in the cmd_template string.

	
class drivetrain.interfaces.NRF24L01rx(nrf24_object, drivetrain, address=b'rfpi0', cmd_template='ll')

	Bases: drivetrain.interfaces.NRF24L01

This child class allows the external remote controlling of an internal drivetrain by
receiving commands from another MCU via the nRF24L01 transceiver.

	Parameters

	drivetrain (Tank,Automotive,Locomotive) – The
pre-instantiated drivetrain configuration object that is to be controlled.

See also the NRF24L01 base class for details about instantiation.

	
sync()

	Checks if there are new commands waiting in the nRF24L01’s RX FIFO buffer to be
processed by the drivetrain object (passed to the constructor upon instantiation).
Any data that is waiting to be received is interpreted and passed to the drivetrain object.

	
go(cmds)

	Assembles a list of drivetrain commands from the received bytearray via the nRF24L01
transceiver.

	Parameters

	cmds (list [https://docs.python.org/3.6/library/stdtypes.html#list],tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] or tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] of int [https://docs.python.org/3.6/library/functions.html#int] commands to be sent the
drivetrain object (passed to the constructor upon instantiation). This list [https://docs.python.org/3.6/library/stdtypes.html#list]/tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]
must have a length equal to the number of characters in the
cmd_template string.

USB

	
class drivetrain.interfaces.USB(serial_object, cmd_template='ll')

	This base class acts as a wrapper to pyserial module for communicating to an external USB
serial device. Specifically designed for an Arduino running custom code.

	Parameters

	
	serial_object (busio.UART [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/UART.html#busio.UART],serial.Serial [https://pyserial.readthedocs.io/en/latest/pyserial_api.html#serial.Serial],machine.UART [http://docs.micropython.org/en/latest/library/machine.UART.html#machine.UART]) – The instantiated serial object to
be used for the serial connection.

	cmd_template (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – This variable will be used as the “fmt” (Format String of
Characters) [https://docs.python.org/3.6/library/struct.html#format-strings] parameter
internally passed to the struct.pack() [https://docs.python.org/3.6/library/struct.html#struct.pack] and struct.unpack() [https://docs.python.org/3.6/library/struct.html#struct.unpack] for
transmiting and receiving drivetrain commands. The number of characters in this string must
correspond to the number of commands in the cmds list passed to
go().

	
cmd_template

	Use this str [https://docs.python.org/3.6/library/stdtypes.html#str] attribute to change or check the format string used to pack or unpack
drivetrain commands in bytearray [https://docs.python.org/3.6/library/stdtypes.html#bytearray] form. Refer to Format String and Format Characters [https://docs.python.org/3.6/library/struct.html#format-strings] for allowed datatype
aliases. The number of characters in this string must correspond to the number of commands
in the cmds list passed to go().

	
value

	The most previous list of commands that were processed by the drivetrain object

	
class drivetrain.interfaces.USBtx(serial_object, cmd_template='ll')

	Bases: drivetrain.interfaces.USB

This child class allows the remote controlling of an external drivetrain by transmitting
commands to another MCU via USB serial connection. See also the USB base class for
details about instantiation.

	
go(cmds)

	Assembles a bytearray for outputting over the Serial connection.

	Parameters

	cmds (list [https://docs.python.org/3.6/library/stdtypes.html#list],tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] or tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] of int [https://docs.python.org/3.6/library/functions.html#int] commands to be sent over the Serial
connection. This list [https://docs.python.org/3.6/library/stdtypes.html#list]/tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] must have a length equal to the number of characters
in the cmd_template string.

	
class drivetrain.interfaces.USBrx(drivetrain, serial_object, cmd_template='ll')

	Bases: drivetrain.interfaces.USB

This child class allows the remote controlling of an external drivetrain by receiving
commands from another MCU via USB serial connection.

	Parameters

	drivetrain (Tank,Automotive,Locomotive) – The
pre-instantiated drivetrain configuration object that is to be controlled.

See also the USB base class for details about instantiation.

	
sync()

	Checks if there are new commands waiting in the USB serial device’s input stream to be
processed by the drivetrain object (passed to the constructor upon instantiation).
Any data that is waiting to be received is interpreted and passed to the drivetrain object.

	
go(cmds)

	Assembles a list of drivetrain commands from the received bytearray over the USB
serial connection.

	Parameters

	cmds (list [https://docs.python.org/3.6/library/stdtypes.html#list],tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] or tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] of int [https://docs.python.org/3.6/library/functions.html#int] commands to be sent the
drivetrain object (passed to the constructor upon instantiation). This list [https://docs.python.org/3.6/library/stdtypes.html#list]/tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]
must have a length equal to the number of characters in the
cmd_template string.

Motor Types

Solenoid

	
class drivetrain.motor.Solenoid(pins, ramp_time=0)

	This base class is meant be used as a parent to BiMotor and PhasedMotor classes of this
module, but can be used for solenoids if needed. Solenoids, by nature, cannot be controlled
dynamically (cannot be any value other than True [https://docs.python.org/3.6/library/constants.html#True] or False [https://docs.python.org/3.6/library/constants.html#False]). Despite the fact that this class
holds all the smoothing input algorithms for its child classes, the output values, when
instantiated objects with this base class, are not actually smoothed. With that said, this
class can be used to control up to 2 solenoids (see also value attribute for more details) as
in the case of an actual locomotive train.

	Parameters

	
	pins (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of (board [https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board] module’s) Pin numbers that
are used to drive the solenoid(s). The length of this list [https://docs.python.org/3.6/library/stdtypes.html#list] must be in range [1, 2] (any
additional items/pins will be ignored).

	ramp_time (int [https://docs.python.org/3.6/library/functions.html#int]) – This parameter is really a placeholder for the child classes
BiMotor & PhasedMotor as it has no affect on objects instantiated with this base class.
Changing this value has not been tested and will probably slightly delay the
solenoid(s) outputs.

	
value

	This attribute contains the current output value of the solenoid(s) in range
[-1, 1]. An invalid input value will be clamped to an int [https://docs.python.org/3.6/library/functions.html#int] in the proper range.

Note

Because this class is built to handle 2 pins (passed in the pins parameter
to the constructor) and tailored for solenoids, any negative value will only energize
the solenoid driven by the second pin . Any positive value will only energize the
solenoid driven by the first pin. Alternatively, a 0 value will de-energize both
solenoids.

BiMotor

	
class drivetrain.motor.BiMotor(pins, ramp_time=500)

	This class is meant be used for motors driven by driver boards/ICs that expect 2 PWM outputs
. Each pin represent the controlling signal for the motor’s speed in a single rotational
direction.

	Parameters

	
	pins (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of (board [https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board] module’s) Pin numbers that
are used to drive the motor. The length of this list [https://docs.python.org/3.6/library/stdtypes.html#list] or tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] must be in range [1, 2];
any additional items/pins will be ignored, and a ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] exception is thrown if no
pins are passed (an empty tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]/list [https://docs.python.org/3.6/library/stdtypes.html#list]). If only 1 pin is passed, then the motor will
only rotate in 1 direction depending on how the motor is connected to the motor driver.

	ramp_time (int [https://docs.python.org/3.6/library/functions.html#int]) – The time (in milliseconds) that is used to smooth the motor’s input.
Default is 500. This time represents the maximum amount of time that the input will be
smoothed. Since the change in speed is also used to determine how much time will be used
to smooth the input, this parameter’s value will represent the time it takes for the motor
to go from full reverse to full forward and vice versa. If the motor is going from rest to
either full reverse or full forward, then the time it takes to do that will be half of
this parameter’s value. This can be changed at any time by changing the ramp_time
attribute.

	
cellerate(target_speed)

	A function to smoothly accelerate/decelerate the motor to a specified target speed.

	Parameters

	target_speed (int [https://docs.python.org/3.6/library/functions.html#int]) – The desired target speed in range of [-65535, 65535]. Any invalid
inputs will be clamped to an int [https://docs.python.org/3.6/library/functions.html#int] value in the proper range.

	
is_cellerating

	This attribute contains a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating if the motor’s speed is in the midst of
changing. (read-only)

	
ramp_time

	This attribute is the maximum amount of time (in milliseconds) used to smooth the input
values. A negative value will be used as a positive number. Set this to 0 to
disable all smoothing on the motor input values or just set the value atribute
directly to bypass the smoothing algorithm.

Note

Since the change in speed (target - initial) is also used to determine how much
time will be used to smooth the input, this attribute’s value will represent the
maximum time it takes for the motor to go from full reverse to full forward and vice
versa. If the motor is going from rest to either full reverse or full forward, then
the time it takes to do that will be half of this attribute’s value.

	
sync()

	This function should be used at least in the application’s main loop iteration. It will
trigger the smoothing input operations on the output value if needed. This is not needed if
the smoothing algorithms are not utilized/necessary in the application

	
value

	This attribute contains the current output value of the solenoid(s) in range
[-65535, 65535]. An invalid input value will be clamped to an int [https://docs.python.org/3.6/library/functions.html#int] in the proper range.
A negative value represents the motor’s speed in reverse rotation. A positive value
reprsents the motor’s speed in forward rotation.

PhasedMotor

	
class drivetrain.motor.PhasedMotor(pins, ramp_time=500)

	This class is meant be used for motors driven by driver boards/ICs that expect:

	1 PWM output (to control the motor’s speed)

	1 digital output (to control the motor’s rotational direction)

	Parameters

	
	pins (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] of (board [https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board] module’s) Pin numbers that
are used to drive the motor. The length of this list [https://docs.python.org/3.6/library/stdtypes.html#list]/tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] must be 2, otherwise a
ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] exception is thrown.

Note

The first pin in the tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]/list [https://docs.python.org/3.6/library/stdtypes.html#list] is used for the digital output signal
that signifies the motor’s rotational direction. The second pin is used for PWM output
that signifies the motor’s speed.

	ramp_time (int [https://docs.python.org/3.6/library/functions.html#int]) – The time (in milliseconds) that is used to smooth the motor’s input.
Default is 500. This time represents the maximum amount of time that the input will be
smoothed. Since the change in speed is also used to determine how much time will be used
to smooth the input, this parameter’s value will represent the time it takes for the motor
to go from full reverse to full forward and vice versa. If the motor is going from rest to
either full reverse or full forward, then the time it takes to do that will be half of
this parameter’s value. This can be changed at any time by changing the ramp_time
attribute.

	
cellerate(target_speed)

	A function to smoothly accelerate/decelerate the motor to a specified target speed.

	Parameters

	target_speed (int [https://docs.python.org/3.6/library/functions.html#int]) – The desired target speed in range of [-65535, 65535]. Any invalid
inputs will be clamped to an int [https://docs.python.org/3.6/library/functions.html#int] value in the proper range.

	
is_cellerating

	This attribute contains a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating if the motor’s speed is in the midst of
changing. (read-only)

	
ramp_time

	This attribute is the maximum amount of time (in milliseconds) used to smooth the input
values. A negative value will be used as a positive number. Set this to 0 to
disable all smoothing on the motor input values or just set the value atribute
directly to bypass the smoothing algorithm.

Note

Since the change in speed (target - initial) is also used to determine how much
time will be used to smooth the input, this attribute’s value will represent the
maximum time it takes for the motor to go from full reverse to full forward and vice
versa. If the motor is going from rest to either full reverse or full forward, then
the time it takes to do that will be half of this attribute’s value.

	
sync()

	This function should be used at least in the application’s main loop iteration. It will
trigger the smoothing input operations on the output value if needed. This is not needed if
the smoothing algorithms are not utilized/necessary in the application

	
value

	This attribute contains the current output value of the solenoid(s) in range
[-65535, 65535]. An invalid input value will be clamped to an int [https://docs.python.org/3.6/library/functions.html#int] in the proper range.
A negative value represents the motor’s speed in reverse rotation. A positive value
reprsents the motor’s speed in forward rotation.

StepperMotor

	
class drivetrain.stepper.StepperMotor(pins, steps_per_rev=4096, degree_per_step=0.087890625, step_type='half', rpm=60)

	A class designed to control unipolar or bipolar stepper motors. It is still a work in
progress as there is no smoothing algorithm nor limited maximum speed applied to the motor’s
input.

	Parameters

	
	pins (list [https://docs.python.org/3.6/library/stdtypes.html#list],tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]) – A list [https://docs.python.org/3.6/library/stdtypes.html#list] or tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] of (board [https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board] module) pins that are used to drive the
stepper motor. The length of this list [https://docs.python.org/3.6/library/stdtypes.html#list] or tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple] must be divisible by 2, otherwise a
ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] exception is thrown.

	steps_per_rev (int [https://docs.python.org/3.6/library/functions.html#int]) – An int [https://docs.python.org/3.6/library/functions.html#int] that represents how many steps it takes to complete a whole
revolution. Defaults to 4096. This should correlate with information found in your
motor’s datasheet.

	degree_per_step (int [https://docs.python.org/3.6/library/functions.html#int],float [https://docs.python.org/3.6/library/functions.html#float]) – The value that represents how many degrees the motor moves
per single step. Defaults to 45/512 or 5.625°/64. This should correlate with information
found in your motor’s datasheet.

	step_type (string) – This parameter is used upon instantiation to specify what kind of
stepping pattern the motor uses. Valid values are limited to:

	half (default value)

	full

	wave

This should correlate with information found in your motor’s datasheet.

	rpm (int [https://docs.python.org/3.6/library/functions.html#int],float [https://docs.python.org/3.6/library/functions.html#float]) – The maximum amount of rotations per minute. This should correlate with
information found in your motor’s datasheet.

	
is_cellerating

	This attribute contains a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating if the motor is in the midst of moving.
(read-only)

	
stop()

	Use this function when you want to abort any motion from the motor.

	
sync()

	This function should be used only once per main loop iteration. It will trigger stepping operations on the motor if needed.

	
reset0angle()

	A calibrating function that will reset the motor’s zero angle to its current position.
This function is also called when the motor’s value, steps, or angle
attributes are set to None [https://docs.python.org/3.6/library/constants.html#None]. Additionally, this function will stop all movement in the
motor.

	
rpm

	This int [https://docs.python.org/3.6/library/functions.html#int] attribute contains the maximum Rotations Per Minute and can be changed at any
time.

	
angle

	Represents the number of the motor’s angle from its zero angle position with respect to
the steps_per_rev parameter passed to the constructor. This value will
be in range [-180, 180]. Input values can be any int [https://docs.python.org/3.6/library/functions.html#int] or float [https://docs.python.org/3.6/library/functions.html#float] as any overflow
outside the range [0, 360] is handled accordingly.

	
steps

	Represents the number of the motor’s steps from its zero angle position with respect to
the steps_per_rev parameter passed to the constructor. This value will
be in range [steps_per_rev / -2, steps_per_rev / 2]. Input values
can be any int [https://docs.python.org/3.6/library/functions.html#int] as any overflow outside the range [0, steps_per_rev] is
handled accordingly.

	
value

	Represents the percentual value of the motor’s angle in range [-100, 100] with respect to
the steps_per_rev parameter passed to the constructor. Invalid input values
will be constrained to an int [https://docs.python.org/3.6/library/functions.html#int] in the range [-100, 100].

Index

 A
 | B
 | C
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	address (drivetrain.interfaces.NRF24L01 attribute)

 	
 	angle (drivetrain.stepper.StepperMotor attribute)

 	Automotive (class in drivetrain.drivetrain)

B

 	
 	BiMotor (class in drivetrain.motor)

C

 	
 	cellerate() (drivetrain.motor.BiMotor method)

 	(drivetrain.motor.PhasedMotor method)

 	
 	cmd_template (drivetrain.interfaces.NRF24L01 attribute)

 	(drivetrain.interfaces.USB attribute)

G

 	
 	go() (drivetrain.drivetrain.Automotive method)

 	(drivetrain.drivetrain.Locomotive method)

 	(drivetrain.drivetrain.Mecanum method)

 	(drivetrain.drivetrain.Tank method)

 	(drivetrain.interfaces.NRF24L01rx method)

 	(drivetrain.interfaces.NRF24L01tx method)

 	(drivetrain.interfaces.USBrx method)

 	(drivetrain.interfaces.USBtx method)

I

 	
 	is_cellerating (drivetrain.drivetrain.Automotive attribute)

 	(drivetrain.drivetrain.Locomotive attribute)

 	(drivetrain.drivetrain.Mecanum attribute)

 	(drivetrain.drivetrain.Tank attribute)

 	(drivetrain.motor.BiMotor attribute)

 	(drivetrain.motor.PhasedMotor attribute)

 	(drivetrain.stepper.StepperMotor attribute)

L

 	
 	Locomotive (class in drivetrain.drivetrain)

M

 	
 	max_speed (drivetrain.drivetrain.Automotive attribute)

 	(drivetrain.drivetrain.Mecanum attribute)

 	(drivetrain.drivetrain.Tank attribute)

 	
 	Mecanum (class in drivetrain.drivetrain)

N

 	
 	NRF24L01 (class in drivetrain.interfaces)

 	
 	NRF24L01rx (class in drivetrain.interfaces)

 	NRF24L01tx (class in drivetrain.interfaces)

P

 	
 	PhasedMotor (class in drivetrain.motor)

R

 	
 	ramp_time (drivetrain.motor.BiMotor attribute)

 	(drivetrain.motor.PhasedMotor attribute)

 	
 	reset0angle() (drivetrain.stepper.StepperMotor method)

 	rpm (drivetrain.stepper.StepperMotor attribute)

S

 	
 	smooth (drivetrain.drivetrain.Automotive attribute)

 	(drivetrain.drivetrain.Mecanum attribute)

 	(drivetrain.drivetrain.Tank attribute)

 	Solenoid (class in drivetrain.motor)

 	StepperMotor (class in drivetrain.stepper)

 	steps (drivetrain.stepper.StepperMotor attribute)

 	stop() (drivetrain.drivetrain.Automotive method)

 	(drivetrain.drivetrain.Locomotive method)

 	(drivetrain.drivetrain.Mecanum method)

 	(drivetrain.drivetrain.Tank method)

 	(drivetrain.stepper.StepperMotor method)

 	
 	sync() (drivetrain.drivetrain.Automotive method)

 	(drivetrain.drivetrain.Locomotive method)

 	(drivetrain.drivetrain.Mecanum method)

 	(drivetrain.drivetrain.Tank method)

 	(drivetrain.interfaces.NRF24L01rx method)

 	(drivetrain.interfaces.USBrx method)

 	(drivetrain.motor.BiMotor method)

 	(drivetrain.motor.PhasedMotor method)

 	(drivetrain.stepper.StepperMotor method)

T

 	
 	Tank (class in drivetrain.drivetrain)

U

 	
 	USB (class in drivetrain.interfaces)

 	
 	USBrx (class in drivetrain.interfaces)

 	USBtx (class in drivetrain.interfaces)

V

 	
 	value (drivetrain.interfaces.NRF24L01 attribute)

 	(drivetrain.interfaces.USB attribute)

 	(drivetrain.motor.BiMotor attribute)

 	(drivetrain.motor.PhasedMotor attribute)

 	(drivetrain.motor.Solenoid attribute)

 	(drivetrain.stepper.StepperMotor attribute)

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 BiMotor test

 		
 PhasedMotor test

 		
 StepperMotor test

 		
 Tank Drivetrain test

 		
 Automotive Drivetrain test

 		
 nRF24L01 receiving test

 		
 Drivetrain Configurations

 		
 Tank Drivetrain

 		
 Automotive Drivetrain

 		
 Locomotive Drivetrain

 		
 Mecanum Drivetrain

 		
 Drivetrain Interfaces

 		
 NRF24L01

 		
 USB

 		
 Motor Types

 		
 Solenoid

 		
 BiMotor

 		
 PhasedMotor

 		
 StepperMotor

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

