
Hashmap WITSML Server
Documentation

Release 0.0.1

Hashmap

Sep 30, 2019

Contents:

1 Project Overview 1
1.1 Solution Architecture . 1
1.2 Authentication . 4

2 Developer Guide 7
2.1 Getting Started . 7

3 Integration Guide 9
3.1 Setting the WITSML Version . 9
3.2 How to Set Capabilities . 10
3.3 How to Define Return Messages from GetBaseMsg . 10
3.4 Setting up Logging . 10
3.5 DoT Valve Integration Guide . 11

4 Indices and tables 17

i

ii

CHAPTER 1

Project Overview

These guides will help you get started as quickly as possible.

1.1 Solution Architecture

1.1.1 Introduction

What is Drillflow

Drillflow is an API facade that allows Oil and Gas software systems that currently expose drilling data to leverage
WITSML to exchange data between other software systems and vendors. It is packaged as a docker image or a Spring
Boot application to allow for minimum hassle at deploy time. It is also intended to be extensible and horizontally
scalable to handle everything from a one time bulk load to a streaming application.

WHY?!?!?

WITSML servers have been implemented in many forms and fashions over the relatively long lifespan of WITSML.
The point of Drillflow is to ease the burden for software developers and system integrators to make use of WITSML
data. Our goal is that if we can get this hurdle out of the way quicker, time to value is reduced.

Our goal was to implement a WITSML server on a modern stack: Java 11, Spring Boot with CXF, deployed with
docker.

So How does it Work

As stated in the “What is. . . ” section above, Drillflow is an API facade. So what does this mean, exactly?
Drillflow does not have any data persistance, or traditional transactional logic. What it does do is sit in front of a
REST/Thrift/Protobuf/etc. . . API that will allow for data to be accessed via the WITSML data model and semantics.

1

Hashmap WITSML Server Documentation, Release 0.0.1

1.1.2 Core Concepts

There are a few key concepts to understand in Drillflow. First are the major components:

• df-server: This is the WITSML SOAP API exposed via Tomcat and CXF, also the application server

• df-valve: This is the extensibility point that allows Drillflow to proxy WITSML commands to another system

The valve is further broken into two key pieces:

• Translator: The part of the valve that allows the actual body of the commands to be translated between df-server
and the underlying system

• Delegator: The part of the valve that is responsible for actually executing the command on the underlying
system and returning the response to the valve so that it can be returned to df-server

Let’s dig into these a little further in the next session:

Server

To be clear, there is really not much in this part that needs to be modified. Overall this solution is responsible for
handling WITSML specific exchanges with a client. This, currently, can handle WITSML 1.4.1.1 and 1.3.1.1 schema
versions and conforms to the 1.2.0 WSDL. Overall this portion of the server is directly responsible for the 3 required
WITSML functions:

• GetBaseMsg

• GetVersion

• GetCap

2 Chapter 1. Project Overview

Hashmap WITSML Server Documentation, Release 0.0.1

Each one of these is defined mostly by properties files that can be modified at deploy time either by passing environe-
ment variables, passing a properties file, or Java system properties. Overall this is really managed by Spring so any of
the options listed Here.

The one notable exception is GetCap. The contact information, server metadata (name, etc. . .) is from a properties
file, however, the actual function capabilities are advertised to df-server via the Valve. There is a function that allows
the valve to notify, df-server what functions, and what data object for each function is available. This is a key point, as
this allows the Valve to have full-control over the objects and functions that it wants to support. This is not imposed
on the underlying system by df-server. This leads us into our next discussion: The valve.

Valve

As seen in the image above, the valve is an encapsulation of all the elements required to communicate with an under-
lying system.

NOTE: There is one main thing that need to be noted about this. . . Class loader isolation. . . there is none. Therefore
dependency conflicts are possible if care is not taken. This is something that might be addressed in the future, but at
the moment that complexity is not warranted for this solution, yet.

The valve consists of three components:

• Authenticator

• Translator

• Delegator

These can be seen along with their descriptions in the image below:

1.1. Solution Architecture 3

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html/

Hashmap WITSML Server Documentation, Release 0.0.1

As seen in the diagram above, each component of the valve is defined as an abstract class that can then be implemented
by the valve implementation.

There is a distinct difference between the Translator/Delegator and the Authenticator. The Authenticator is used via
a custom authentication provider, the ValveAuthenticationProvider. This is called during the authentication flow of
Tomcat as a function is called. The main purpose of this design is to allow the underlying solution to implement
whatever authentication it sees fit. There is a more detailed section on authentication patterns in a separate section
located here.

The Translator and Delegator components are only invoked through an actual query chain initiated by a client calling
a function of the WITSML API in df-server.

1.2 Authentication

NOTE: Drillflow handles Authentication NOT Authorization. Authorization is the responsibly of the underlying
system, not Drillflow.

4 Chapter 1. Project Overview

https://github.com/hashmapinc/Drillflow/blob/master/df-server/src/main/java/com/hashmapinc/tempus/witsml/server/api/ValveAuthenticationProvider.java

Hashmap WITSML Server Documentation, Release 0.0.1

1.2.1 Introduction

As can be seen in the diagram above, df-server leverages Spring security to handle authentication. This is done via
the ValveAuthenticationProvider. Spring Security is configured to use this authentication provider which calls the
authenticate() method of IValve. The authenticate method is responsible for executing the necessary elements to
authenticate with the underlying system.

1.2.2 WITSML Authentication

It needs to be noted at this point that version 1.3.1.1 and 1.4.1.1 (the currently supported versions of the API) only
support HTTP BASIC authentication. This means that whatever authentication system that the underlying system has,
must be able to handle a username and password combination. This poses issues with most modern solutions. In this
section we will aim to propose some solutions to common integrations.

1.2. Authentication 5

https://github.com/hashmapinc/Drillflow/blob/master/df-server/src/main/java/com/hashmapinc/tempus/witsml/server/api/ValveAuthenticationProvider.java
https://github.com/hashmapinc/Drillflow/blob/master/df-valve/src/main/java/com/hashmapinc/tempus/witsml/valve/IValve.java

Hashmap WITSML Server Documentation, Release 0.0.1

6 Chapter 1. Project Overview

CHAPTER 2

Developer Guide

These guides will help you get started as quickly as possible.

2.1 Getting Started

2.1.1 Introduction

NOTE: These instructions are generic until you get to the running section in which they are specific to the DoT
valve

Building Drillflow

Let’s talk about building Drillflow. It is optimized to build on Java 8+ (including 11 for the latest LTS release). It is
most thoroughly tested on OpenJDK but has been built and runs on the Oracle JDK as well. In order to build Drillflow
you will need the JDK 8+ (preferrably 11), Maven 3.3+ and git to pull the code (or you can download the zip from the
GitHub repo. Additionally to build the docker image you will need docker.

2.1.2 Pulling the Code

First we will start with cloning the repo. . . this is easy enough

git clone https://github.com/hashmapinc/Drillflow.git

This will clone Drillflow to your local repository

2.1.3 Building the Code

Building the code is also relatively simple thanks to the magic of Maven.

Change directories into Drillflow

7

https://github.com/hashmapinc/Drillflow
https://github.com/hashmapinc/Drillflow

Hashmap WITSML Server Documentation, Release 0.0.1

cd Drillflow

And build the project

mvn clean package

You should end up with something like this:

[INFO] --
[INFO] Reactor Summary for DrillFlow 0.0.1-SNAPSHOT: [INFO]
[INFO] DrillFlow ..
SUCCESS [0.750 s] [INFO] DrillFlow Valve Module
.............. SUCCESS [46.487 s] [INFO] DrillFlow Application
Module SUCCESS [12.460 s] [INFO]
--
[INFO] BUILD SUCCESS [INFO] --
[INFO] Total time: 01:00 min [INFO] Finished at: 2018-12-21T12:35:52-06:00
[INFO] --

2.1.4 Running Drillflow

Assuming no errors have occurred then you will have a ready to run application.

Now before you can get started you need to have some system behind Drillflow providing the data as described in the
solution architecture

so you need to set 2 environment variables first: VALVE_BASE_URL: this sets the base URL of the REST queries to
make on the backend VALVE_API_KEY: this sets the API key to use against the REST API on the back end

Change directories into the df-server/target directory:

cd df-server/target

And you can now execute:

java -jar df-server-0.0.1-SNAPSHOT.jar

At this point you will have a WITSML serving getCap, getVersion, getBaseMsg at the following url:

http://localhost:7070/Service/WMLS

The WSDL is available at:

http://localhost:7070/Service/WMLS?wsdl

2.1.5 Running the Docker Container

In the case where you don’t want to build the code and just want to run the container it is as simple as:

Pulling the container:

docker pull hashmapinc/Drillflow:latest

Running the container:

docker run -p 7070:7070 -e VALVE_API_KEY='<api key>' -e VALVE_BASE_URL='<put
in your base url here>' hashmapinc/drillflow:latest

Replacing <api key> with the actual API key and <put in your base url here> with the actual base url.

Ideally this would be injected with a configuration management tool such as Consul.

8 Chapter 2. Developer Guide

CHAPTER 3

Integration Guide

These guides will help you integrate the WITSML Server API with your API implementation

3.1 Setting the WITSML Version

This guide documents how to set the WITSML version that the server reports as SUPPORTED by the
WMLS_GetVersion API.

3.1.1 In Code

The WITSML version can be set in code by modifying the application.properties file. Find the line called:

wmls.version

This allows you to set the property at design time by just adding

=1.3.1.1

To indicate that your implementation only support 1.3.1.1.

The response to WMLS_GetVersion will return whatever is put as the value to wmls.version.

3.1.2 While running the JAR

The version can be set at runtime by running the server jar with the following argument:

--wmls.version=<supported versions(s)>

The complete command would look like the following:

java -jar server-0.0.1-SNAPSHOT.jar --wmls.version=1.3.1.1,1.4.1.1

This will start the server and respond with 1.3.1.1,1.4.1.1 to the WMLS_GetVersion request.

9

Hashmap WITSML Server Documentation, Release 0.0.1

3.2 How to Set Capabilities

This guide documents how to set the server capabilites that the server reports as SUPPORTED by the WMLS_GetCap
API.

3.2.1 In Code

The WITSML version can be set in code by modifying the servercap.properties file.

wmls.contactName: The name of the person responsible for the server installation wmls.contactEmail:
The name of the person responsible for the server installation wmls.contactPhone: The phone of the person
responsible for the server installation

wmls.changeDetectionPeriod: The total amount of time elapsed for a change to be detected (required
in 1.4.1.1) wmls.description: The description of the server wmls.name: The name of the server wmls.
supportUomConversion: 1.4.1.1 only, whether or not the server supports unit of measure conversions wmls.
compressionMethod: 1.4.1.1 only, the compression method used by the server wmls.cascadedDelete:
1.4.1.1 only, whether cascaded deletes are supported

3.3 How to Define Return Messages from GetBaseMsg

This guide documents how to add return messages from GetBaseMsg

3.3.1 In Code

The WITSML version can be set in code by modifying the basemessages.properties file

The file is a list of messages with the structure of:

basemessage.<returncode>=<message>

<returncode> is the short returned from the operation for which the message is assigned <message> is the string
message that should be returned for the corresponding short.

3.4 Setting up Logging

This guide documents how to configure logging in Drillflow.

3.4.1 Introduction

Drillflow uses logback-spring.xml to configure logging. The default logging configuration can be seen here on GitHub.
here on GitHub.

A tutorial on how to modify this file can be found here: logback.xml Example

This default configuration has 2 appenders, a console appender and a file appender. There are several parts of the file
that have been made configurable via environment variables to facilitate running in a container.

If you would like to configure it more deeply (as in adding additional appenders, or changing the logging functionality
overall, you will want to skip to externalizing the configuration.

10 Chapter 3. Integration Guide

https://github.com/hashmapinc/Drillflow/blob/master/df-server/src/main/resources/logback-spring.xml/
https://www.mkyong.com/logging/logback-xml-example/

Hashmap WITSML Server Documentation, Release 0.0.1

3.4.2 Configurable Properties

In the default logback-spring.xml the following items are configurable via environment variables:

Variable LOGBACK_CONFIG_FILE

Description The path to the logback configuration file to use. This could be mounted from a volume

Default %d %p %C{1.} [%t] %m%n

Example Environmental Switch in Docker To Colorize: -e LOGBACK_CONFIG_FILE=’/mnt/config/logback-
spring.xml’

Variable CONSOLE_LOGGER_PATTERN

Description The pattern to use when logging to the console.

Default %d %p %C{1.} [%t] %m%n

Example Environmental Switch in Docker To Colorize: -e CON-
SOLE_LOGGER_PATTERN=’%black(%d{ISO8601}) %highlight(%-5level) [%blue(%t)]
%yellow(%C{1.}): %msg%n%throwable’

Variable FILE_LOGGER_PATTERN

Description The pattern to use when logging to a file.

Default %d %p %C{1.} [%t] %m%n

Example Environmental Switch in Docker Simplified output: -e CONSOLE_LOGGER_PATTERN=’%d{yyyy-
MM-dd HH:mm:ss} - %msg%n’

Variable FILE_LOGGER_MAX_SIZE

Default 10MB

Example Environmental Switch in Docker To increase size: -e FILE_LOGGER_MAX_SIZE=‘20MB’

Variable LOGS

Description The root for a logs directory. It is suggested to log to a mounted volume.

Example Environmental Switch in Docker To increase size: -e FILE_LOGGER_MAX_SIZE=‘20MB’

Example Docker run Command to Set multiple properties:

‘‘ docker run -p 7070:7070 -e VALVE_BASE_URL=’https://test.com/’ -e VALVE_API_KEY=’secret’ -e
CONSOLE_LOGGER_PATTERN=’%black(%d{ISO8601}) %highlight(%-5level) [%blue(%t)] %yellow(%C{1.}):
%msg%n%throwable’ hashmapinc/drillflow:latest ‘‘

3.4.3 External Configuration

The configuration could be mounted externally via a docker volume that is mapped to the container internally. This is
ideal for the case when you would want to centralize a common logging configuration across many containers. You
would leverage the LOGBACK_CONFIG_FILE as mentioned above.

3.5 DoT Valve Integration Guide

These guides will explain the configuation specific to the DoT valve.

3.5. DoT Valve Integration Guide 11

https://test.com/

Hashmap WITSML Server Documentation, Release 0.0.1

3.5.1 Environment Variables

This guide documents how to configure the DrillFlow DOT Valve

Introduction

There are several environment variables that are used in configuring the DrillFlow DoT Valve.

Path Variables

The following variables are the paths to the respective APIs. Full paths need to be provided.

Variable TOKEN_PATH

Description The path to use to get to the Token Broker API

Default /token/jwt/v1/

Required NO (default will be used)

Example Environmental Switch in Docker

To set to /token/jwt/v2 : -e TOKEN_PATH=’/token/jwt/v2’

Variable WELL_PATH

Description The path to use to get to the Wells API

Default https://demo.slb.com/democore/well/v2/witsml/wells/

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/well/v3/witsml/wells/ : -e WELL_PATH=’https://prod.slb.com/
well/v3/witsml/wells/’

Variable WELL_GQL_PATH

Description The path to use to get to the Wells GraphQL API

Default https://demo.slb.com/democore/well/v2/graphql/

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/well/v3/graphql : -e WELL_GQL_PATH=’https://prod.slb.com/
well/v3/graphql/’

Variable WB_PATH

Description The path to use to get to the Wellbore API

Default https://demo.slb.com/democore/wellbore/v1/witsml/wellbores/

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/v3/witsml/wellbores : -e WB_PATH=’https://prod.slb.com/v3/
witsml/wellbores/

Variable WB_GQL_PATH

12 Chapter 3. Integration Guide

https://demo.slb.com/democore/well/v2/witsml/wells/
https://prod.slb.com/well/v3/witsml/wells/
https://prod.slb.com/well/v3/witsml/wells/
https://prod.slb.com/well/v3/witsml/wells/
https://demo.slb.com/democore/well/v2/graphql/
https://prod.slb.com/well/v3/graphql
https://prod.slb.com/well/v3/graphql/
https://prod.slb.com/well/v3/graphql/
https://demo.slb.com/democore/wellbore/v1/witsml/wellbores/
https://prod.slb.com/v3/witsml/wellbores
https://prod.slb.com/v3/witsml/wellbores/
https://prod.slb.com/v3/witsml/wellbores/

Hashmap WITSML Server Documentation, Release 0.0.1

Description The path to use to get to the Wellbore GraphQL API

Default https://demo.slb.com/democore/wellbore/v1/graphql/

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/wellbore/v3/graphql/ : -e WB_GQL_PATH=’https://prod.slb.
com/wellbore/v3/graphql/’

Variable TRAJ_PATH

Description The path to use to get to the Trajectory API

Default https://demo.slb.com/democore/trajectoryreader/v1/witsml/trajectories/

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/trajectoryreader/v3/witsml/trajectories/ : -e
TRAJ_PATH=’https://prod.slb.com/trajectoryreader/v3/witsml/trajectories/’

Variable TRAJ_GQL_PATH

Description The path to use to get to the Trajectory GraphQL API

Default https://demo.slb.com/democore/trajectoryreader/v1/graphql/

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/trajectoryreader/v3/graphql/ : -e TRAJ_GQL_PATH=’https:
//prod.slb.com/trajectoryreader/v3/graphql/’

Variable LOG_DEPTH_BOUNDARY_DATA_PATH

Description The path to use to query channel depth boundary by specified depth ranges.

Default https://demo.slb.com/democore/channelreader/v4/channels/depthboundary

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/channels/depthboundary : -e
LOG_DEPTH_BOUNDARY_DATA_PATH=’https://prod.slb.com/channelreader/v5/channels/
depthboundary’

Variable LOG_DEPTHDATA_PATH

Description The path to use to query channel depth data by specifying different query criteria per chan-
nel.

Default https://demo.slb.com/democore/channelreader/v4/channels/depthdata

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/channels/depthdata : -e
LOG_DEPTHDATA_PATH=’https://prod.slb.com/channelreader/v5/channels/depthdata’

Variable LOG_CHANNELS_PATH

Description

3.5. DoT Valve Integration Guide 13

https://demo.slb.com/democore/wellbore/v1/graphql/
https://prod.slb.com/wellbore/v3/graphql/
https://prod.slb.com/wellbore/v3/graphql/
https://prod.slb.com/wellbore/v3/graphql/
https://demo.slb.com/democore/trajectoryreader/v1/witsml/trajectories/
https://prod.slb.com/trajectoryreader/v3/witsml/trajectories/
https://prod.slb.com/trajectoryreader/v3/witsml/trajectories/
https://demo.slb.com/democore/trajectoryreader/v1/graphql/
https://prod.slb.com/trajectoryreader/v3/graphql/
https://prod.slb.com/trajectoryreader/v3/graphql/
https://prod.slb.com/trajectoryreader/v3/graphql/
https://demo.slb.com/democore/channelreader/v4/channels/depthboundary
https://prod.slb.com/channelreader/v5/channels/depthboundary
https://prod.slb.com/channelreader/v5/channels/depthboundary
https://prod.slb.com/channelreader/v5/channels/depthboundary
https://demo.slb.com/democore/channelreader/v4/channels/depthdata
https://prod.slb.com/channelreader/v5/channels/depthdata
https://prod.slb.com/channelreader/v5/channels/depthdata

Hashmap WITSML Server Documentation, Release 0.0.1

1. The path to use to query channel metadata by container (well, wellbore, relog or BHA run) ID
and other conditions.

2. This path is also used to add Channels’ metadata under a ChannelSet.

3. This path is also used to get all channels’ metadata under a ChannelSet.

Default https://demo.slb.com/democore/channelreader/v4/witsml/channels/metadata

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/witsml/channels/metadata : -e
LOG_CHANNELS_PATH=’https://prod.slb.com/channelreader/v5/witsml/channels/metadata’

Variable LOG_TIME_BOUNDARY_DATA_PATH

Description The path to use query channel time boundary by specified time ranges.

Default https://demo.slb.com/democore/channelreader/v4/channels/timeboundary

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/channels/timeboundary : -e
LOG_TIME_BOUNDARY_DATA_PATH=’https://prod.slb.com/channelreader/v5/channels/
timeboundary’

Variable LOG_TIMEDATA_PATH

Description The path to use to query channel time data by specifying different query criteria per channel.

Default https://demo.slb.com/democore/channelreader/v4/channels/timedata

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/channels/timedata : -e
LOG_TIMEDATA_PATH=’https://prod.slb.com/channelreader/v5/channels/timedata”

Variable LOG_CHANNELS_DATA_PATH

Description The path to use to add JSON-formatted Channel data under a ChannelSet.

Default https://demo.slb.com/democore/channelreader/v4/witsml/channels/data

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/witsml/channels/data : -e
LOG_CHANNELS_DATA_PATH=’https://prod.slb.com/channelreader/v5/witsml/channels/
data’

Variable LOG_CHANNELSET_PATH

Description The path to use to create, delete (by UUID), query (by UUID OR as a list) a ChannelSet.

Default https://demo.slb.com/democore/channelreader/v4/witsml/channelSets

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/witsml/channelSets : -e
LOG_CHANNELSET_PATH=’https://prod.slb.com/channelreader/v5/witsml/channelSets’

14 Chapter 3. Integration Guide

https://demo.slb.com/democore/channelreader/v4/witsml/channels/metadata
https://prod.slb.com/channelreader/v5/witsml/channels/metadata
https://prod.slb.com/channelreader/v5/witsml/channels/metadata
https://demo.slb.com/democore/channelreader/v4/channels/timeboundary
https://prod.slb.com/channelreader/v5/channels/timeboundary
https://prod.slb.com/channelreader/v5/channels/timeboundary
https://prod.slb.com/channelreader/v5/channels/timeboundary
https://demo.slb.com/democore/channelreader/v4/channels/timedata
https://prod.slb.com/channelreader/v5/channels/timedata
https://prod.slb.com/channelreader/v5/channels/timedata
https://demo.slb.com/democore/channelreader/v4/witsml/channels/data
https://prod.slb.com/channelreader/v5/witsml/channels/data
https://prod.slb.com/channelreader/v5/witsml/channels/data
https://prod.slb.com/channelreader/v5/witsml/channels/data
https://demo.slb.com/democore/channelreader/v4/witsml/channelSets
https://prod.slb.com/channelreader/v5/witsml/channelSets
https://prod.slb.com/channelreader/v5/witsml/channelSets

Hashmap WITSML Server Documentation, Release 0.0.1

Variable LOG_CHANNELSET_UUID_PATH

Description The path to use to get a ChannelSet Identity by query Well UID, Wellbore UID, UID or
ChannelSet UUID in WITSML v1.4.1.1 schema.

Default https://demo.slb.com/democore/channelreader/v4/identities

Required NO (default will be used)

Example Environmental Switch in Docker

To set to https://prod.slb.com/channelreader/v5/identities : -e LOG_CHANNELSET_UUID_PATH=’https:
//prod.slb.com/channelreader/v5/identities’

3.5. DoT Valve Integration Guide 15

https://demo.slb.com/democore/channelreader/v4/identities
https://prod.slb.com/channelreader/v5/identities
https://prod.slb.com/channelreader/v5/identities
https://prod.slb.com/channelreader/v5/identities

Hashmap WITSML Server Documentation, Release 0.0.1

16 Chapter 3. Integration Guide

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

	Project Overview
	Solution Architecture
	Authentication

	Developer Guide
	Getting Started

	Integration Guide
	Setting the WITSML Version
	How to Set Capabilities
	How to Define Return Messages from GetBaseMsg
	Setting up Logging
	DoT Valve Integration Guide

	Indices and tables

