

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Dragon Mapper 0.2.6 documentation

Welcome to Dragon Mapper’s documentation!

Dragon Mapper is a Python library that provides identification and conversion
functions for Chinese text processing:

	Identify a string as Traditional or Simplified Chinese, Pinyin, or Zhuyin.

	Convert between Chinese characters, Pinyin, Zhuyin, and the International
Phonetic Alphabet.

>>> s = '我是一个美国人。'
>>> dragonmapper.hanzi.is_simplified(s)
True
>>> dragonmapper.hanzi.to_pinyin(s)
'wǒshìyīgèměiguórén。'
>>> dragonmapper.hanzi.to_pinyin(s, all_readings=True)
'[wǒ][shì/shi/tí][yī][gè/ge/gě/gàn][měi][guó][rén/ren]。'

>>> s = 'Wǒ shì yīgè měiguórén.'
>>> dragonmapper.transcriptions.is_pinyin(s)
True
>>> dragonmapper.transcriptions.pinyin_to_zhuyin(s)
'ㄨㄛˇ ㄕˋ ㄧ ㄍㄜˋ ㄇㄟˇ ㄍㄨㄛˊ ㄖㄣˊ.'
>>> dragonmapper.transcriptions.pinyin_to_ipa(s)
'wɔ˧˩˧ ʂɨ˥˩ i˥ kɤ˥˩ meɪ˧˩˧ kwɔ˧˥ ʐən˧˥.'

If this is your first time using Dragon Mapper, check out the Installation.
Then, read the Tutorial.

If you want a more in-depth view of Dragon Mapper, check out the API.

If you’re looking to help out, read Contributing.

Support

If you encounter a bug, have a feature request, or need help using Dragon Mapper, then use
Dragon Mapper’s GitHub Issues page [https://github.com/tsroten/dragonmapper/issues] to send
feedback.

Documentation Contents

	Dragon Mapper
	Features

	Getting Started

	Installation
	Tarball Release

	Install the Development Version

	Running the Tests

	Tutorial
	Working with Chinese Characters

	Working with Transcriptions

	Conclusion

	API
	dragonmapper.hanzi

	dragonmapper.transcriptions

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Author and Maintainer

	Contributors

	Change Log
	0.2.6 (2016-05-23)

	0.2.5 (2015-08-06)

	0.2.4 (2015-04-08)

	0.2.3 (2014-04-28)

	0.2.2 (2014-04-28)

	0.2.1 (2014-04-28)

	0.2.0 (2014-04-14)

	0.1.0 (2014-02-17)

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Dragon Mapper 0.2.6 documentation

Dragon Mapper

[image: https://badge.fury.io/py/dragonmapper.png]
 [http://badge.fury.io/py/dragonmapper][image: https://travis-ci.org/tsroten/dragonmapper.png?branch=develop]
 [https://travis-ci.org/tsroten/dragonmapper]Dragon Mapper is a Python library that provides identification and conversion
functions for Chinese text processing.

	Documentation: http://dragonmapper.rtfd.org

	GitHub: https://github.com/tsroten/dragonmapper

	Free software: MIT license

Features

	Convert between Chinese characters, Pinyin, Zhuyin, and the International
Phonetic Alphabet.

	Identify a string as Traditional or Simplified Chinese, Pinyin, Zhuyin, or
the International Phonetic Alphabet.

>>> s = '我是一个美国人。'
>>> dragonmapper.hanzi.is_simplified(s)
True
>>> dragonmapper.hanzi.to_pinyin(s)
'wǒshìyīgèměiguórén。'
>>> dragonmapper.hanzi.to_pinyin(s, all_readings=True)
'[wǒ][shì/shi/tí][yī][gè/ge/gě/gàn][měi][guó][rén/ren]。'

>>> s = 'Wǒ shì yīgè měiguórén.'
>>> dragonmapper.transcriptions.is_pinyin(s)
True
>>> dragonmapper.transcriptions.pinyin_to_zhuyin(s)
'ㄨㄛˇ ㄕˋ ㄧ ㄍㄜˋ ㄇㄟˇ ㄍㄨㄛˊ ㄖㄣˊ.'
>>> dragonmapper.transcriptions.pinyin_to_ipa(s)
'wɔ˧˩˧ ʂɨ˥˩ i˥ kɤ˥˩ meɪ˧˩˧ kwɔ˧˥ ʐən˧˥.'

Getting Started

	Install Dragon Mapper [http://dragonmapper.readthedocs.org/en/latest/installation.html]

	Read Dragon Mapper’s tutorial [http://dragonmapper.readthedocs.org/en/latest/tutorial.html]

	Report bugs and ask questions via GitHub Issues [https://github.com/tsroten/dragonmapper]

	Refer to the API documentation [http://dragonmapper.readthedocs.org/en/latest/api.html] when you need more technical information

	Contribute [http://dragonmapper.readthedocs.org/en/latest/contributing.html] documentation, code, or feedback

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Dragon Mapper 0.2.6 documentation

Installation

Installing Dragon Mapper is easy. Make sure you have Python 2.7 or 3 along
with Zhon [https://github.com/tsroten/zhon] and
Hanzi Identifier [https://github.com/tsroten/hanzidentifier]. Then use
pip [http://www.pip-installer.org/]:

$ pip install dragonmapper

That will download Dragon Mapper from
the Python Package Index [http://pypi.python.org/] and install it in your
Python’s site-packages directory.

Tarball Release

If you’d rather install Dragon Mapper manually:

	Download the most recent release from Dragon Mapper’s PyPi page [http://pypi.python.org/pypi/dragonmapper/].

	Unpack the tarball.

	From inside the directory dragonmapper-XX, run python setup.py install

That will install Dragon Mapper in your Python’s site-packages directory.

Install the Development Version

Dragon Mapper’s code [https://github.com/tsroten/dragonmapper] is hosted at GitHub.
To install the development version first make sure Git [http://git-scm.org/]
is installed. Then run:

$ git clone git://github.com/tsroten/dragonmapper.git
$ pip install -e dragonmapper

This will link the dragonmapper directory into your site-packages
directory.

Running the Tests

Running the tests is easy:

$ python setup.py test

If you want to run the tests using multiple versions of Python, install and
run tox:

$ pip install tox
$ tox

Dragon Mapper’s tox.ini file is configured to run tests using Python 2.7, 3.3,
and 3.4. It will also build the documentation (requires
Sphinx [http://sphinx-doc.org]).

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Dragon Mapper 0.2.6 documentation

Tutorial

This tutorial will walk you through common tasks involving Dragon Mapper and
its two supported data formats: Chinese characters and Chinese transcriptions.
Not all of Dragon Mapper’s functions or their options are explained here. Be
sure to read the API for further information.

Note

Python 2 strings are not Unicode by default. Prefix the strings in these
code samples with ‘u’ to make them work correctly. For example,
u'这个字怎么念？' instead of '这个字怎么念？'. See Unicode Literals
in Python Source Code [https://docs.python.org/2/howto/unicode.html#unicode-literals-in-python-source-code] for more information.

Working with Chinese Characters

When using Dragon Mapper to work with Chinese characters, you will first want
to import Dragon Mapper’s dragonmapper.hanzi module:

>>> from dragonmapper import hanzi

It will take a second or two for Dragon Mapper to load the CC-CEDICT and
Unihan data into memory.

Convert Characters to Readings

Let’s take a look at a common task: converting a string of Chinese characters
to Pinyin. We’ll be using the function dragonmapper.hanzi.to_pinyin().

>>> s = '这个字怎么念？'
>>> hanzi.to_pinyin(s)
'zhègèzìzěnmeniàn？'

As you can see, Dragon Mapper simply replaced each Chinese character with it’s
most common reading. Dragon Mapper will automatically add apostrophes to
separate syllables if needed. That is all you need for simple cases. However,
you may want to include all possible readings just in case the most common
reading is incorrect.

>>> hanzi.to_pinyin(s, all_readings=True)
'[zhè][gè/ge/gě/gàn][zì/zi][zěn][me/yāo/mó/ma][niàn]？'

In the previous examples, Dragon Mapper converted each character separately.
Most of the time, you will want to segment your text into words and convert
whole words instead of just characters. Just separate the words by spaces or
Chinese punctuation marks and Dragon Mapper will recognize the word boundaries.

>>> # Sentence without word boundaries marked.
... s = '这个很便宜。'
>>> hanzi.to_pinyin(s)
'zhègèhěnbiànyi。'

>>> # Sentence with word boundaries marked.
... s_spaced = '这个 很 便宜。'
>>> hanzi.to_pinyin(s_spaced)
'zhège hěn piànyi。'

>>> hanzi.to_pinyin(s_spaced, all_readings=True)
'[zhège] [hěn] [piànyi/biànyí]。'

Dragon Mapper’s dragonmapper.hanzi.to_zhuyin() and
dragonmapper.hanzi.to_ipa() work just like the above examples.

Identifying Chinese Characters

Identifying a string of Chinese as containing Traditional versus Simplified
characters is a difficult task that involves a lot more than merely looking at
each character on its own. That task is best left up to humans. However, it can
also be helpful to get a general idea of what character system a string is
compatible with. Dragon Mapper can assist with that.

dragonmapper.hanzi.identify() and its related functions can identify
Chinese characters as Traditional or Simplified based on the CC-CEDICT
dictionary. Again, don’t see this as a fool proof way to determine a string’s
identity. Instead, look at it as a way to determine what character system a
string is compatible with. Let’s take a look:

>>> s = '那辆车是我的。'
>>> hanzi.identify(s) is hanzi.SIMPLIFIED
True

>>> # Shortcut functions are provided:
... hanzi.is_simplified(s)
True
>>> hanzi.is_traditional(s)
False

The Traditional and Simplified Chinese character systems share some
characters. Sometimes a string can be compatible with both character systems:

>>> s = '你好！'
>>> hanzi.identify(s) is hanzi.BOTH
True

>>> # Using the shortcut functions:
... hanzi.is_traditional(s)
True
>>> hanzi.is_simplified(s)
True

Sometimes, a string might contain characters that exist exclusively in
Traditional Chinese and characters that exist exclusively in Simplified:

>>> s = 'Traditional: 車. Simplified: 车.'
>>> hanzi.identify(s) is hanzi.MIXED
True

>>> hanzi.has_chinese(s)
True
>>> # It's not compatible with Traditional or Simplified Chinese:
... hanzi.is_traditional(s)
False
>>> hanzi.is_simplified(s)
False

The last scenario is a string that doesn’t contain any Chinese characters:

>>> s = 'Hello. My name is Thomas.'
>>> hanzi.identify(s) is hanzi.UNKNOWN
True

>>> hanzi.has_chinese(s)
False

Working with Transcriptions

When using Dragon Mapper to work with Chinese transcriptions, you will first
want to import Dragon Mapper’s dragonmapper.transcriptions module:

>>> from dragonmapper import transcriptions

Identifying Transcription Systems

Dragon Mapper supports three transcription systems: Pinyin (accented and
numbered), Zhuyin (Bopomofo), and the International Phonetic Alphabet (IPA).

Let’s try to identify which transcription system a string is:

>>> s = 'Wǒ shì yīgè měiguórén.'
>>> transcriptions.identify(s) is transcriptions.PINYIN
True

>>> # Shortcut functions:
... transcriptions.is_pinyin(s)
True
>>> transcriptions.is_zhuyin(s)
False
>>> transcriptions.is_ipa(s)
False

>>> s = 'ㄋㄧˇ ㄏㄠˇ'
>>> transcriptions.identify(s) is transcriptions.ZHUYIN
True

>>> # Shortcut functions:
... transcriptions.is_zhuyin(s)
True
>>> transcriptions.is_pinyin(s)
False
>>> transcriptions.is_ipa(s)
False

The functions above operate on a syllable-level to check whether or not a Pinyin or Zhuyin
string is valid. However, this can take awhile, so if you don’t need to validate a string
on the syllable-level, consider validating it on a character-level with
is_pinyin_compatible() or is_zhuyin_compatible()

>>> s = 'Wǒ shì yīgè měiguórén.'
>>> transcriptions.is_pinyin_compatible(s)
True

Converting Transcription Systems

Converting between Pinyin, Zhuyin, and IPA is simple. The syllables
have a one-to-one correspondence. Let’s see how Dragon Mapper handles it:

>>> zhuyin = 'ㄋㄧˇ ㄏㄠˇ'
>>> pinyin = transcriptions.zhuyin_to_pinyin(zhuyin)
>>> ipa = transcriptions.zhuyin_to_ipa(zhuyin)

>>> print(pinyin)
nǐ hǎo
>>> print(ipa)
ni˧˩˧ xɑʊ˧˩˧

Pinyin apostrophes are handled automatically when converting to/from Pinyin.
If you’re into using middle dots for tone markers, those are supported as
well.

If you have a string and you don’t know what transcription system it’s using,
but you know what system you want to convert it to, Dragon Mapper has some
handy functions to help you:

>>> unknown = 'nǐhǎo'
>>> transcriptions.to_zhuyin(unknown)
'ㄋㄧˇ ㄏㄠˇ'

>>> # If it's already in the target transcription, no conversion is done.
... transcriptions.to_pinyin(unknown)
'nǐhǎo'

dragonmapper.transcriptions.to_pinyin(),
dragonmapper.transcriptions.to_zhuyin(), and
dragonmapper.transcriptions.to_ipa() all work like that.

Conclusion

You’ve seen that Dragon Mapper understands two data formats: Chinese
characters and Chinese transcriptions. Dragon Mapper has both identification
and conversion capabilities.

Not all of Dragon Mapper’s functions or their options were explained above. Be
sure to read the API for further information.

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Dragon Mapper 0.2.6 documentation

API

dragonmapper.hanzi

Identification and transcription functions for Chinese characters.

Importing this module takes a moment because it loads
CC-CEDICT [http://cc-cedict.org/wiki/] and
Unihan [http://www.unicode.org/charts/unihan.html] data into memory.

Identifying Chinese Characters

Identifying a string of text
as Traditional or Simplified Chinese is a complicated task. This module
takes a simple approach that only looks at individual characters and not word
choice. When these functions identify a string of text as Simplified, they
aren’t saying, “This string of Chinese is Simplified Chinese and not
Traditional Chinese.” Instead, see it as identifying the string as compatible
with the Simplified Chinese character system.

Note

These identification functions and constants are imported from the
Hanzi Identifier [https://github.com/tsroten/hanzidentifier] library.

The following constants are used as return values for identify().

	
dragonmapper.hanzi.UNKNOWN

	Indicates that a string doesn’t contain any Chinese characters.

	
dragonmapper.hanzi.TRAD

	
dragonmapper.hanzi.TRADITIONAL

	Indicates that a string contains Chinese characters that are only used in
Traditional Chinese.

	
dragonmapper.hanzi.SIMP

	
dragonmapper.hanzi.SIMPLIFIED

	Indicates that a string contains Chinese characters that are only used in
Simplified Chinese.

	
dragonmapper.hanzi.BOTH

	Indicates that a string contains Chinese characters that are compatible
with both Traditional and Simplified Chinese.

	
dragonmapper.hanzi.MIXED

	Indicates that a string contains Chinese characters that are found
exclusively in Traditional and Simplified Chinese.

	
dragonmapper.hanzi.identify()

	Identify what kind of Chinese characters a string contains.

s is a string to examine. The string’s Chinese characters are tested to
see if they are compatible with the Traditional or Simplified characters
systems, compatible with both, or contain a mixture of Traditional and
Simplified characters. The TRADITIONAL, SIMPLIFIED,
BOTH, or MIXED constants are returned to indicate the
string’s identity. If s contains no Chinese characters, then
UNKNOWN is returned.

All characters in a string that aren’t found in the CC-CEDICT dictionary
are ignored.

Because the Traditional and Simplified Chinese character systems overlap, a
string containing Simplified characters could identify as
SIMPLIFIED or BOTH depending on if the characters are also
Traditional characters. To make testing the identity of a string easier,
the functions is_traditional(), is_simplified(), and
has_chinese() are provided.

	
dragonmapper.hanzi.has_chinese()

	Check if a string has Chinese characters in it.

	This is a faster version of:

	>>> identify('foo') is not UNKNOWN

	
dragonmapper.hanzi.is_traditional()

	Check if a string’s Chinese characters are Traditional.

	This is equivalent to:

	>>> identify('foo') in (TRADITIONAL, BOTH)

	
dragonmapper.hanzi.is_simplified()

	Check if a string’s Chinese characters are Simplified.

	This is equivalent to:

	>>> identify('foo') in (SIMPLIFIED, BOTH)

Transcribing Chinese Characters

The following functions transliterate Chinese characters into various transcription
systems.

	
dragonmapper.hanzi.to_pinyin(s, delimiter=' ', all_readings=False, container='[]', accented=True)

	Convert a string’s Chinese characters to Pinyin readings.

s is a string containing Chinese characters. accented is a
boolean value indicating whether to return accented or numbered Pinyin
readings.

delimiter is the character used to indicate word boundaries in s.
This is used to differentiate between words and characters so that a more
accurate reading can be returned.

all_readings is a boolean value indicating whether or not to return all
possible readings in the case of words/characters that have multiple
readings. container is a two character string that is used to
enclose words/characters if all_readings is True. The default
'[]' is used like this: '[READING1/READING2]'.

Characters not recognized as Chinese are left untouched.

	
dragonmapper.hanzi.to_zhuyin(s, delimiter=' ', all_readings=False, container='[]')

	Convert a string’s Chinese characters to Zhuyin readings.

s is a string containing Chinese characters.

delimiter is the character used to indicate word boundaries in s.
This is used to differentiate between words and characters so that a more
accurate reading can be returned.

all_readings is a boolean value indicating whether or not to return all
possible readings in the case of words/characters that have multiple
readings. container is a two character string that is used to
enclose words/characters if all_readings is True. The default
'[]' is used like this: '[READING1/READING2]'.

Characters not recognized as Chinese are left untouched.

	
dragonmapper.hanzi.to_ipa(s, delimiter=' ', all_readings=False, container='[]')

	Convert a string’s Chinese characters to IPA.

s is a string containing Chinese characters.

delimiter is the character used to indicate word boundaries in s.
This is used to differentiate between words and characters so that a more
accurate reading can be returned.

all_readings is a boolean value indicating whether or not to return all
possible readings in the case of words/characters that have multiple
readings. container is a two character string that is used to
enclose words/characters if all_readings is True. The default
'[]' is used like this: '[READING1/READING2]'.

Characters not recognized as Chinese are left untouched.

dragonmapper.transcriptions

Identification and conversion functions for Chinese transcription systems.

Identifying Chinese Transcriptions

The following constants are used as return values for identify().

	
dragonmapper.transcriptions.UNKNOWN

	Indicates that a string isn’t a recognized Chinese transcription.

	
dragonmapper.transcriptions.PINYIN

	Indicates that a string’s content consists of Pinyin.

	
dragonmapper.transcriptions.ZHUYIN

	Indicates that a string’s content consists of Zhuyin (Bopomofo).

	
dragonmapper.transcriptions.IPA

	Indicates that a string’s content consists of the International Phonetic
Alphabet (IPA).

	
dragonmapper.transcriptions.identify(s)

	Identify a given string’s transcription system.

s is the string to identify. The string is checked to see if its
contents are valid Pinyin, Zhuyin, or IPA. The PINYIN,
ZHUYIN, and IPA constants are returned to indicate the
string’s identity.
If s is not a valid transcription system, then UNKNOWN is
returned.

When checking for valid Pinyin or Zhuyin, testing is done on a syllable
level, not a character level. For example, just because a string is
composed of characters used in Pinyin, doesn’t mean that it will identify
as Pinyin; it must actually consist of valid Pinyin syllables. The same
applies for Zhuyin.

When checking for IPA, testing is only done on a character level. In other
words, a string just needs to consist of Chinese IPA characters in order
to identify as IPA.

The following functions use identify(), but don’t require typing the
names of the module-level constants.

	
dragonmapper.transcriptions.is_pinyin(s)

	Check if s consists of valid Pinyin.

	
dragonmapper.transcriptions.is_zhuyin(s)

	Check if s consists of valid Zhuyin.

	
dragonmapper.transcriptions.is_ipa(s)

	Check if s consists of valid Chinese IPA.

The above functions is_pinyin() and is_zhuyin() check for valid
syllables. This takes more time than checking on the character-level, but is more
accurate. If you want to simply know if a string is compatible with Pinyin or Zhuyin,
but don’t need to know if each syllable is actually valid, then use these functions:

	
dragonmapper.transcriptions.is_pinyin_compatible(s)

	Checks if s is consists of Pinyin-compatible characters.

This does not check if s contains valid Pinyin syllables; for that
see is_pinyin().

This function checks that all characters in s exist in
zhon.pinyin.printable [http://zhon.readthedocs.org/en/latest/index.html#zhon.pinyin.printable].

	
dragonmapper.transcriptions.is_zhuyin_compatible(s)

	Checks if s is consists of Zhuyin-compatible characters.

This does not check if s contains valid Zhuyin syllables; for that
see is_zhuyin().

Besides Zhuyin characters and tone marks, spaces are also accepted.
This function checks that all characters in s exist in
zhon.zhuyin.characters [http://zhon.readthedocs.org/en/latest/index.html#zhon.zhuyin.characters], zhon.zhuyin.marks [http://zhon.readthedocs.org/en/latest/index.html#zhon.zhuyin.marks], or ' '.

Converting Chinese Transcriptions

Converting between the various transcription systems is fairly simple. A few
things to note:

	When converting from Pinyin to Zhuyin or IPA, spaces are added between each
syllable because Zhuyin and IPA are not meant to be read in sentence format.
They don’t have the equivalent of Pinyin’s apostrophe to separate certain
syllables.

	When converting from Pinyin to Zhuyin or IPA, all syllable-separating
apostrophes are removed. Those that don’t separate syllables (like quotation
marks) are left untouched.

	In Pinyin, 'v' is considered another way to write 'ü'. The
*_to_pinyin functions all output that vowel as 'ü'.

These conversion functions come in two flavors: functions that convert
individual syllabes and functions that convert sentence-style text. If you
only have individual syllables to convert, it’s quicker to use the
_syllable_to_ functions that assume the input is a single valid syllable.

Syllable Conversion

	
dragonmapper.transcriptions.numbered_syllable_to_accented(s)

	Convert numbered Pinyin syllable s to an accented Pinyin syllable.

It implements the following algorithm to determine where to place tone
marks:

	
	If the syllable has an ‘a’, ‘e’, or ‘o’ (in that order), put the

	tone mark over that vowel.

	Otherwise, put the tone mark on the last vowel.

	
dragonmapper.transcriptions.accented_syllable_to_numbered(s)

	Convert accented Pinyin syllable s to a numbered Pinyin syllable.

	
dragonmapper.transcriptions.pinyin_syllable_to_zhuyin(s)

	Convert Pinyin syllable s to a Zhuyin syllable.

	
dragonmapper.transcriptions.pinyin_syllable_to_ipa(s)

	Convert Pinyin syllable s to an IPA syllable.

	
dragonmapper.transcriptions.zhuyin_syllable_to_pinyin(s, accented=True)

	Convert Zhuyin syllable s to a Pinyin syllable.

If accented is True, diacritics are added to the Pinyin syllable. If
it’s False, numbers are used to indicate the syllable’s tone.

	
dragonmapper.transcriptions.zhuyin_syllable_to_ipa(s)

	Convert Zhuyin syllable s to an IPA syllable.

	
dragonmapper.transcriptions.ipa_syllable_to_pinyin(s, accented=True)

	Convert IPA syllable s to a Pinyin syllable.

If accented is True, diacritics are added to the Pinyin syllable. If
it’s False, numbers are used to indicate the syllable’s tone.

	
dragonmapper.transcriptions.ipa_syllable_to_zhuyin(s)

	Convert IPA syllable s to a Zhuyin syllable.

Sentence-Style Conversion

	
dragonmapper.transcriptions.numbered_to_accented(s)

	Convert all numbered Pinyin syllables in s to accented Pinyin.

	
dragonmapper.transcriptions.accented_to_numbered(s)

	Convert all accented Pinyin syllables in s to numbered Pinyin.

	
dragonmapper.transcriptions.pinyin_to_zhuyin(s)

	Convert all Pinyin syllables in s to Zhuyin.

Spaces are added between connected syllables and syllable-separating
apostrophes are removed.

	
dragonmapper.transcriptions.pinyin_to_ipa(s)

	Convert all Pinyin syllables in s to IPA.

Spaces are added between connected syllables and syllable-separating
apostrophes are removed.

	
dragonmapper.transcriptions.zhuyin_to_pinyin(s, accented=True)

	Convert all Zhuyin syllables in s to Pinyin.

If accented is True, diacritics are added to the Pinyin syllables. If
it’s False, numbers are used to indicate tone.

	
dragonmapper.transcriptions.zhuyin_to_ipa(s)

	Convert all Zhuyin syllables in s to IPA.

	
dragonmapper.transcriptions.ipa_to_pinyin(s, accented=True)

	Convert all IPA syllables in s to Pinyin.

If accented is True, diacritics are added to the Pinyin syllables. If
it’s False, numbers are used to indicate tone.

	
dragonmapper.transcriptions.ipa_to_zhuyin(s)

	Convert all IPA syllables in s to Zhuyin.

Combined: Identification and Conversion

These functions take an unidentified transcription string and identify it,
then convert it into the target transcription system. If you know you’ll be
identifying your strings before you convert them, these can save you a few
lines of code.

	
dragonmapper.transcriptions.to_pinyin(s, accented=True)

	Convert s to Pinyin.

If accented is True, diacritics are added to the Pinyin syllables. If
it’s False, numbers are used to indicate tone.

	
dragonmapper.transcriptions.to_zhuyin(s)

	Convert s to Zhuyin.

	
dragonmapper.transcriptions.to_ipa(s)

	Convert s to IPA.

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Dragon Mapper 0.2.6 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/tsroten/dragonmapper/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Dragon Mapper could always use more documentation, whether as part of the
official Dragon Mapper docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/tsroten/dragonmapper/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dragonmapper for local development.

	Fork the dragonmapper repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dragonmapper.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv dragonmapper
$ cd dragonmapper/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 dragonmapper tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7/3.3 and for PyPy. Check
https://travis-ci.org/tsroten/dragonmapper/pull_requests
and make sure that the tests pass for all supported Python versions.

	If you want to receive credit, add your name to AUTHORS.rst.

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Dragon Mapper 0.2.6 documentation

Credits

Author and Maintainer

	Thomas Roten <https://github.com/tsroten>

Contributors

None yet. Why not be the first?

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Dragon Mapper 0.2.6 documentation

Change Log

0.2.6 (2016-05-23)

	Fixes reading for 女. Fixes #10.

	Add a note about Unicode string for Python 2 users.

	Bumps required hanzidentifier version.

	Fix umlaut on “l” consonant. Fixes #14.

0.2.5 (2015-08-06)

	Fixes #9. Uses io.open() in setup.py with UTF-8 encoding.

0.2.4 (2015-04-08)

	Fixes #8. Adds re.UNICODE to transcription conversion.

	Fixes misformatted readings for certain characters.

	Fixes #7. Fixes incorrect Unihan Database readings for the ‘ou’ vowel combinations.

0.2.3 (2014-04-28)

	Fixes #6. Adds -r suffix syllable to transcription mapping data.

0.2.2 (2014-04-28)

	Fixes a capitalization bug related to #5.

0.2.1 (2014-04-28)

	Reformats README.rst.

	Renames change log file to *.rst.

	Adds authors and contributing files.

	Sets up Travis CI.

	Adds version to __init__.py.

	Fixes #5. Make accented_to_numbered() add apostrophes when needed.

	Fixes #4. Fixes numbered_to_accented() handling of 'v' vowel.

	Fixes #3. Changes IndexError exception handlers to KeyError.

	Fixes #2. Fixes accented_to_numbered() with uppercase accented vowel.

0.2.0 (2014-04-14)

	Fixes typo in is_pinyin.

	Adds is_pinyin_compatible() and is_zhuyin_compatible() functions.

	Removes code for identifying Hanzi and incorporates Hanzi Identifier library.

	Removes Sphinx viewcode extension.

	Adds Python 3.4 environment to tox configuration.

	Fixes typo in setup.py. Fixes #1.

0.1.0 (2014-02-17)

	Initial release.

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	Dragon Mapper 0.2.6 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dragonmapper	

 	
 	
 dragonmapper.hanzi	

 	
 	
 dragonmapper.transcriptions	

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 modules |

 	Dragon Mapper 0.2.6 documentation

Index

 A
 | B
 | D
 | H
 | I
 | M
 | N
 | P
 | S
 | T
 | U
 | Z

A

 	

 	accented_syllable_to_numbered() (in module dragonmapper.transcriptions)

 	

 	accented_to_numbered() (in module dragonmapper.transcriptions)

B

 	

 	BOTH (in module dragonmapper.hanzi)

D

 	

 	dragonmapper.hanzi (module)

 	

 	dragonmapper.transcriptions (module)

H

 	

 	has_chinese() (in module dragonmapper.hanzi)

I

 	

 	identify() (in module dragonmapper.hanzi)

 	

 	(in module dragonmapper.transcriptions)

 	IPA (in module dragonmapper.transcriptions)

 	ipa_syllable_to_pinyin() (in module dragonmapper.transcriptions)

 	ipa_syllable_to_zhuyin() (in module dragonmapper.transcriptions)

 	ipa_to_pinyin() (in module dragonmapper.transcriptions)

 	ipa_to_zhuyin() (in module dragonmapper.transcriptions)

 	is_ipa() (in module dragonmapper.transcriptions)

 	

 	is_pinyin() (in module dragonmapper.transcriptions)

 	is_pinyin_compatible() (in module dragonmapper.transcriptions)

 	is_simplified() (in module dragonmapper.hanzi)

 	is_traditional() (in module dragonmapper.hanzi)

 	is_zhuyin() (in module dragonmapper.transcriptions)

 	is_zhuyin_compatible() (in module dragonmapper.transcriptions)

M

 	

 	MIXED (in module dragonmapper.hanzi)

N

 	

 	numbered_syllable_to_accented() (in module dragonmapper.transcriptions)

 	

 	numbered_to_accented() (in module dragonmapper.transcriptions)

P

 	

 	PINYIN (in module dragonmapper.transcriptions)

 	pinyin_syllable_to_ipa() (in module dragonmapper.transcriptions)

 	pinyin_syllable_to_zhuyin() (in module dragonmapper.transcriptions)

 	

 	pinyin_to_ipa() (in module dragonmapper.transcriptions)

 	pinyin_to_zhuyin() (in module dragonmapper.transcriptions)

S

 	

 	SIMP (in module dragonmapper.hanzi)

 	

 	SIMPLIFIED (in module dragonmapper.hanzi)

T

 	

 	to_ipa() (in module dragonmapper.hanzi)

 	

 	(in module dragonmapper.transcriptions)

 	to_pinyin() (in module dragonmapper.hanzi)

 	

 	(in module dragonmapper.transcriptions)

 	to_zhuyin() (in module dragonmapper.hanzi)

 	

 	(in module dragonmapper.transcriptions)

 	

 	TRAD (in module dragonmapper.hanzi)

 	TRADITIONAL (in module dragonmapper.hanzi)

U

 	

 	UNKNOWN (in module dragonmapper.hanzi)

 	

 	(in module dragonmapper.transcriptions)

Z

 	

 	ZHUYIN (in module dragonmapper.transcriptions)

 	zhuyin_syllable_to_ipa() (in module dragonmapper.transcriptions)

 	zhuyin_syllable_to_pinyin() (in module dragonmapper.transcriptions)

 	

 	zhuyin_to_ipa() (in module dragonmapper.transcriptions)

 	zhuyin_to_pinyin() (in module dragonmapper.transcriptions)

 Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Dragon Mapper 0.2.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Thomas Roten.
 Created using Sphinx 1.2.1.

_static/plus.png

_static/down-pressed.png

_static/comment.png

