

Dragonfly

Dragonfly is a speech recognition framework. It is a Python
package which offers a high-level object model and allows its
users to easily write scripts, macros, and programs which use
speech recognition.

It currently supports the following speech recognition engines:

	Dragon NaturallySpeaking (DNS), a product of Nuance

	Windows Speech Recognition (WSR), included with Microsoft
Windows Vista, Windows 7, and freely available for Windows XP

Dragonfly’s documentation is available online at
Read the Docs [http://dragonfly.readthedocs.org/en/latest/].
Dragonfly’s FAQ is available at Stackoverflow [http://stackoverflow.com/questions/tagged/python-dragonfly].
Dragonfly’s mailing list/discussion group is available at
Google Groups [https://groups.google.com/forum/#!forum/dragonflyspeech].

Documentation

Besides this page, the following documentation is also available:

	Introduction
	Features and target audience

	Installation

	Related resources

	Object model

	Engines sub-package

	Actions sub-package

	Miscellaneous topics
	Windows sub-package

	Configuration toolkit

	Project
	Code style

	Commit message format

	Release versioning

	Release process

	Test suite
	Doctests for the fundamental element classes

	Doctests for the Compound element class

	Doctests for the List class

	RecognitionObserver base class

	RecognitionHistory class

	Action doctests

Direct links within this documentation to help you get started:

	Features and target audience

	Installation

Usage example

A very simple example of Dragonfly usage is to create a static
voice command with a callback that will be called when the
command is spoken. This is done as follows:

from dragonfly.all import Grammar, CompoundRule

Voice command rule combining spoken form and recognition processing.
class ExampleRule(CompoundRule):
 spec = "do something computer" # Spoken form of command.
 def _process_recognition(self, node, extras): # Callback when command is spoken.
 print "Voice command spoken."

Create a grammar which contains and loads the command rule.
grammar = Grammar("example grammar") # Create a grammar to contain the command rule.
grammar.add_rule(ExampleRule()) # Add the command rule to the grammar.
grammar.load() # Load the grammar.

The example above is very basic and doesn’t show any of
Dragonfly’s exciting features, such as dynamic speech elements.
To learn more about these, please take a look at the project’s
documentation here [http://dragonfly.googlecode.com/svn/trunk/dragonfly/documentation/index.html].

Rationale behind Dragonfly

Dragonfly offers a powerful and unified interface to developers
who want to use speech recognition in their software. It is used
for both speech-enabling applications and for automating
computer activities.

In the field of scripting and automation, there are other
alternatives available that add speech-commands to increase
efficiency. Dragonfly differs from them in that it is a powerful
development platform. The open source alternatives currently
available for use with DNS are compared to Dragonfly as follows:

	Vocola uses its own easy-to-use scripting language,
whereas Dragonfly uses Python and gives the macro-writer all
the power available.

	Unimacro offers a set of macros for common activities,
whereas Dragonfly is a platform on which macro-writers can
easily build new commands.

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Contents:

	Features and target audience
	Features

	Target audience

	Installation
	Prerequisites

	Installation of Dragonfly

	Installation for Dragon NaturallySpeaking

	Installation for Windows Speech Recognition

	Related resources
	Demonstrations

	Community

	Applications

	Command modules

	Forks

	Unrelated

Features and target audience

This section gives a brief introduction into Dragonfly, its
features, and the audience it’s targeted at.

Features

Dragonfly was written to make it very easy for Python macros,
scripts, and applications to interface with speech recognition
engines. Its design allows speech commands and grammar objects
to be treated as first-class Python objects. This allows easy
and intuitive definition of complex command grammars and greatly
simplifies processing recognition results.

	Language object model

	The core of Dragonfly is based on a flexible object model for
handling speech elements and command grammars. This makes it
easy to define complex language constructs, but also greatly
simplifies retrieving the semantic values associated with a
speech recognition.

	Support for multiple speech recognition engines

	Dragonfly’s modular nature lets it use different speech
recognition engines at the back end, while still providing a
single front end interface to its users. This means that a
program that uses Dragonfly can be run on any of the
supported back end engines without any modification.
Currently Dragonfly supports Dragon NaturallySpeaking and
Windows Speech Recognition (included with Windows Vista).

	Built-in action framework

	Dragonfly contains its own powerful framework for defining
and executing actions. It includes actions for text input
and key-stroke simulation.

Target audience

Dragonfly is a Python package. It is a library which can be
used by people writing software that interfaces with speech
recognition. Its main target audience therefore consists of
programmers.

On the other hand, Dragonfly’s high-level object model is very
easy and intuitive to use. It is very rewarding for people
without any prior programming experience to see their first
small attempts to be rewarded so quickly by making their
computer listen to them and speak to them. This is exactly how
some of Dragonfly’s users were introduced to writing software.

Dragonfly also offers a robust and unified platform for people
using speech recognition to increase their productivity and
efficiency. An entire repository [http://dragonfly-modules.googlecode.com/svn/trunk/command-modules/documentation/index.html]
of Dragonfly command-modules is available which contains command
grammars for controlling common applications and automating
frequent desktop activities.

Installation

This section describes how to install Dragonfly. The
installation procedure of Dragonfly itself is straightforward.
Its dependencies, however, differ depending on which speech
recognition engine is used.

Prerequisites

To be able to use the dragonfly, you will need the following:

	Python, v2.5 or later – for example available from
ActiveState [http://www.activestate.com/Products/activepython/index.mhtml].

	Win32 extensions for Python – already included in
ActiveState’s Python distribution or available from
Mark Hammond’s page [http://python.net/crew/mhammond/win32/Downloads.html].

	Natlink (only for Dragon NaturallySpeaking users) –
for example available from Daniel Rocco [http://www.westga.edu/~drocco/voice/NatLink/].

Installation of Dragonfly

Dragonfly is a Python package. A simple installer of the
next, next, finish type is available from the project’s
download page [http://code.google.com/p/dragonfly/downloads/list].
This installer was created with Python’s standard distutils and
has been tested on Microsoft Windows XP and Vista.

Dragonfly’s installer will install the library in your Python’s
local site-packages directory under the dragonfly
subdirectory.

Installation for Dragon NaturallySpeaking

Dragonfly uses Natlink to communicate with DNS. Natlink is
available in various forms, including Daniel Rocco’s efficient
and tidy pure-Python package. It is available here [http://www.westga.edu/~drocco/voice/NatLink/].

Once Natlink is up and running, Dragonfly command-modules can be
treated as any other Natlink macro files. Natlink automatically
loads macro files from a predefined directory. Common locations
are:

	C:\Program Files\NatLink\MacroSystem

	My Documents\Natlink

At least one of these should be present after installing
Natlink. That is the place where you should put Dragonfly
command-modules so that Natlink will load them. Don’t forget to
turn the microphone off and on again after placing a new
command-modules in the Natlink directory, because otherwise
Natlink does not immediately see the new file.

Installation for Windows Speech Recognition

If WSR is available, then no extra installation needs to be
done. Dragonfly can find and communicate with WSR using
standard COM communication channels.

If you would like to use Dragonfly command-modules with WSR,
then you must run a loader program which will load and manage
the command-modules. A simple loader is available in the
dragonfly/examples/dragonfly-main.py file. When run, it
will scan the directory it’s in for other *.py files and try
to load them as command-modules.

Related resources

Demonstrations

The following demonstrations show how various people use Dragonfly and
speech recognition:

	2013-03-20, Tavis Rudd: Using Python to Code by Voice [https://www.youtube.com/watch?v=8SkdfdXWYaI#t=8m34s]
— A demonstration video showing off his use of Dragonfly at PyCon 2013

	2010-02-02, Tim Harper: Dragonfly Tutorial [http://vimeo.com/9156942]
— Instruction video showing how to install Dragonfly and how to
develop command modules for it

	2009-11-08, John Graves: Python No Hands with Dragonfly [https://www.youtube.com/watch?v=xeyqSzXluAo]
— Demonstration video presented at Kiwi PyCon 2009 showing how to
program without touching a keyboard or mouse

	2009-04-09: Dragonfly Mini-Demo of Continuous Command Recognition [http://www.youtube.com/watch?v=g3c5H7sAbBQ]
— A demonstration video showing the use of continuous command
recognition

Community

The following resources are used by the Dragonfly community and speech
recognition users/developers:

	Dragonfly Speech Google Group [https://groups.google.com/forum/#!forum/dragonflyspeech]

	Dragonfly FAQ at Stackoverflow [http://stackoverflow.com/questions/tagged/python-dragonfly]

	Hands-Free Coding Blog [http://handsfreecoding.org/]
— James Stout’s blog on his experiences with Dragonfly and other
tools for doing hands-free technical computer work

	Speech Computing Forum on Dragonfly [http://web.archive.org/web/20131207063014/http://speechcomputing.com/forum/93]
— Archive.org snapshot from 2013-12-07, before this forum was
taken down

Applications

The following applications integrate Dragonfly for speech recognition:

	Damselfly [https://github.com/TristenHayfield/damselfly]
— Tristen Hayfield’s system for using Dragonfly voice commands to
control Linux apps

	Dictation Toolbox [https://github.com/dictation-toolbox]
— A collection of tools for speech recognition, including:
	Aenea [https://github.com/dictation-toolbox/aenea]
— A client-server library for using voice commands from a
Windows system running Dragonfly to one or more other systems,
e.g. running Linux

	Pyrson [https://github.com/kevlened/pyrson]
— Len Boyette’s Digital Life Assistant (DLA) linking several Python
libraries, including Dragonfly for speech recognition

	SublimeSpeech [https://github.com/Mozillion/SublimeSpeech]
— A Dragonfly-based speech recognition plug-in for Sublime Text 2

	Speechcoder [https://github.com/bradteston/Speechcoder]
— A plug-in for Notepad++ to facilitate writing code

Command modules

The following sources offer a wide variety of command modules for use with
Dragonfly:

	Barry Sims’s Voice Coding Grammars [https://github.com/barrysims/dragonfly]

	Cesar Crusius’ command modules [https://github.com/ccrusius/dragonfly-modules]

	Davitenio’s command modules [https://github.com/davitenio/dragonfly-macros]

	Dictation Toolbox’ Dragonfly Scripts [https://github.com/dictation-toolbox/dragonfly-scripts]

	Dragonfly::Sorcery [https://github.com/synkarius/dragonfly-sorcery]
— David Conway’s Dragonfly resources

	Simian Hacker’s Code-by-Voice [https://github.com/simianhacker/code-by-voice]
— Support files for Chris Cowan’s “code by voice” setup using
Dragon NaturallySpeaking and Dragonfly

	WhIzz2000’s command modules [https://github.com/whIzz2000/natlink-py-scripts]

	Designing Dragonfly grammars [http://handsfreecoding.org/?p=100]
— A blog post by James Stout discussing techniques to design command
grammars

Forks

The following repositories contain forks of the Dragonfly source code,
made by various people for them to improve it or experiment with it:

	Hawkeye Parker’s repo [https://github.com/haughki/MyDragonfly]

	Tylercal’s repo [https://github.com/tylercal/dragonfly-voice]

Unrelated

The following speech recognition resources are unrelated to Dragonfly, but
may be interesting to its users nevertheless:

	PySpeech [https://code.google.com/p/pyspeech/]
— A small Python module for interfacing with WSR

	Pastebin document [http://pastebin.com/BGG1adb0] containing
explanations of the Natlink API

	Unimacro [http://qh.antenna.nl/unimacro/index.html]

	Vocola [http://vocola.net/]

	DragonControl [https://github.com/nriley/DragonControl]
— Nicholas Riley’s scripts for using Dragon Medical under Windows 7
in VMware Fusion as a dictation buffer for OS X

Object model

The core of Dragonfly is a language object model revolving around three
object types: grammars, rules, and elements. This section describes that
object model.

Grammars

A grammar is a collection of rules. It manages the
rules, loading and unloading them, activating and deactivating them, and
it takes care of all communications with the speech recognition engine.
When a recognition occurs, the associated grammar receives the
recognition event and dispatches it to the appropriate rule.

Normally a grammar is associated with a particular context or
functionality. Normally the rules within a grammar are somehow
related to each other. However, neither of these is strictly
necessary, they are just common use patterns.

The Grammar class and derived
classes are described in the Grammar classes section.

Rules

Rules represent voice commands or parts of voice
commands. Each rule has a single root element, the basis of a tree structure of elements
defining how the rule is built up out of speakable parts. The element
tree determines what a user must say to cause this rule to be
recognized.

Exported rules

Rules can be exported or not exported. Whether a rule is exported or not
is defined when the rule is created.

Only exported rules can be spoken directly by the user. In other words,
they form the entry points into a grammar, causing things to happen
(callbacks to be called) when appropriate words are recognized.

WSR distinguishes between top-level rules, which can be recognized
directly, and exported rules, which can be referenced from rules in
other grammars. NatLink doesn’t allow inter-grammar rule referencing and
uses exported to refer to directly recognizable rules. Dragonfly follows
NatLink in functionality and terminology on this topic.

Properties of exported rules:

	Exported rules are known as a top-level rules for WSR
(SRATopLevel).

	Exported rules can be spoken by the user directly.

	Exported rules can be referenced from other rules within
the same grammar.

	Exported rules can be referenced from rules in other grammars
(only possible for WSR).

	Exported rules can be enabled and disabled to receive recognitions
or not (enable(),
disable()).

	Exported rules have callbacks which are called when recognition
occurs (process_begin(),
process_recognition()).

Non-exported rules cannot be recognized directly but only as parts of
other rules that reference them.

Properties of non-exported rules:

	Non-exported rules can’t be spoken by the user directly.

	Non-exported rules can be referenced from other rules within
the same grammar.

	Non-exported rules can’t be referenced from rules in other
grammars (never possible for DNS).

Imported rules

Rules can be imported, i.e. defined outside the grammar referencing
them, or not imported, i.e. defined within the grammar. Whether a
rule is imported or not is defined when the rule is created.

NatLink in general doesn’t allow rules from one grammar to be imported
into another grammar, i.e. inter-grammar rule referencing. However, it
does provide the following three built-in rules which can be imported:

	dgnletters – All the letters of the alphabet for spelling

	dgnwords – All words active during dictation

	dgndictation – A special rule which corresponds to free-form
dictation; imported by Dragonfly for its
Dictation element

Elements

Elements are the basic building blocks of the language model. They
define exactly what can be said and thereby form the content of rules.
The most common elements are:

	Literal
– one or more literal words

	Sequence
– a series of other elements.

	Alternative
– a choice of other elements, only one of which can be said
within a single recognition

	Optional
– an element container which makes its single child element
optional

	RuleRef
– a reference to another rule

	ListRef
– a reference to a list, which is a dynamic language element which
can be updated and modified without reloading the grammar

	Dictation
– a free-form dictation element which allows the speaker to say
one or more natural language words

The above mentioned element types are at the heart of
Dragonfly’s object model. But of course using them all the time
to specify every grammar would be quite tedious. There is
therefore also a special element which constructs these basic
element types from a string specification:

	Compound
– a special element which parses a string
spec to create a hierarchy of basic elements.

Grammar sub-package

Dragonfly’s core is a language object model containing the following
objects:

	Grammars – these represent collections of rules.

	Rules – these implement complete or partial voice commands, and
contain a hierarchy of elements.

	Elements – these form the language building blocks of voice commands,
and represent literal words, element sequences, references to other
rules, etc.

To illustrate this language model, we discuss an example grammar which
contains 2 voice commands: “command one” and “(second command |
command two) [test]”.

	
	Grammar: container for the two voice commands

	
	
	Rule: first voice command rule “command one”

	
	Literal element: element for the literal words “command one”.
This element is the root-element of the first command rule

	
	Rule: second voice command rule “(second command | command two) [test]”

	
	
	Sequence element: root-element of the second command rule

	
	
	Alternative element: first child element of the sequence

	
	Literal element: element for the literal words “second command”

	Literal element: element for the literal words “command two”

	
	Optional element: second child element of the sequence

	
	Literal element: element for the literal words “test”

All of these different objects are described below and in subsections.

Grammar classes

Recognition callbacks

The speech recognition engine processes the audio it receives and calls
the following methods of grammar classes to notify them of the results:

	Grammar.process_begin(): Called when the engine detects the start
of a phrase, e.g. when the user starts to speak. This method checks
the grammar’s context and activates or deactivates its rules depending
on whether the context matches.

	Grammar._process_begin(): Called by Grammar.process_begin()
allowing derived classes to easily implement custom functionality without
losing the context matching implemented in Grammar.process_begin().

	Grammar.process_recognition(): Called when recognition has completed
successfully and results are meant for this grammar.

	Grammar.process_recognition_other(): Called when recognition has
completed successfully, but the results are not meant for this grammar.

	Grammar.process_recognition_failure(): Called when recognition was
not successful, e.g. the microphone picked up background noise.

The last three methods are not defined for the base Grammar class. They
are only called if they are defined for derived classes.

Grammar class

	
class Grammar(name, description=None, context=None, engine=None)

	Grammar class for managing a set of rules.

This base grammar class takes care of the communication
between Dragonfly’s object model and the backend speech
recognition engine. This includes compiling rules and
elements, loading them, activating and deactivating
them, and unloading them. It may, depending on the
engine, also include receiving recognition results and
dispatching them to the appropriate rule.

	name – name of this grammar

	description (str, default: None) –
description for this grammar

	context (Context, default: None) –
context within which to be active. If None, the grammar will
always be active.

	
_process_begin(executable, title, handle)

	Start of phrase callback.

This usually is the method which should be overridden
to give derived grammar classes custom behavior.

This method is called when the speech recognition
engine detects that the user has begun to speak a
phrase. This method is called by the
Grammar.process_begin method only if this
grammar’s context matches positively.

	Arguments:

	
	executable – the full path to the module whose
window is currently in the foreground.

	title – window title of the foreground window.

	handle – window handle to the foreground window.

	
disable()

	Disable this grammar so that it is not active to
receive recognitions.

	
enable()

	Enable this grammar so that it is active to receive
recognitions.

	
enabled

	Whether a grammar is active to receive recognitions or not.

	
engine

	A grammar’s SR engine.

	
enter_context()

	Enter context callback.

This method is called when a phrase-start has been
detected. It is only called if this grammar’s
context previously did not match but now does
match positively.

	
exit_context()

	Exit context callback.

This method is called when a phrase-start has been
detected. It is only called if this grammar’s
context previously did match but now doesn’t
match positively anymore.

	
lists

	List of a grammar’s lists.

	
load()

	Load this grammar into its SR engine.

	
loaded

	Whether a grammar is loaded into its SR engine or not.

	
name

	A grammar’s name.

	
process_begin(executable, title, handle)

	Start of phrase callback.

Usually derived grammar classes override
``Grammar._process_begin`` instead of this method, because
this method merely wraps that method adding context matching.

This method is called when the speech recognition
engine detects that the user has begun to speak a
phrase.

	Arguments:

	
	executable – the full path to the module whose
window is currently in the foreground.

	title – window title of the foreground window.

	handle – window handle to the foreground window.

	
rules

	List of a grammar’s rules.

	
unload()

	Unload this grammar from its SR engine.

ConnectionGrammar class

	
class ConnectionGrammar(name, description=None, context=None, app_name=None)

	Grammar class for maintaining a COM connection well
within a given context. This is useful for controlling
applications through COM while they are in the
foreground. This grammar class will take care of
dispatching the correct COM interface when the
application comes to the foreground, and releasing it
when the application is no longer there.

	name – name of this grammar.

	description – description for this grammar.

	context – context within which to maintain
the COM connection.

	app_name – COM name to dispatch.

	
application

	COM handle to the application.

	
connection_down()

	Method called immediately after exiting this
instance’s context and disconnecting from the
application.

By default this method doesn’t do anything.
This method should be overridden by derived classes
if they need to clean up after disconnection.

	
connection_up()

	Method called immediately after entering this
instance’s context and successfully setting up its
connection.

By default this method doesn’t do anything.
This method should be overridden by derived classes
if they need to synchronize some internal state with
the application. The COM connection is available
through the self.application attribute.

Rules

This section describes the following classes:

	dragonfly.grammar.rule_base.Rule – the base rule class

	dragonfly.grammar.rule_compound.CompoundRule – a rule class
of which the root element is a
dragonfly.grammar.element_compound.Compound element.

	dragonfly.grammar.rule_mapping.MappingRule – a rule class for
creating multiple spoken-form -> semantic value voice-commands.

Rule class

	
class Rule(name=None, element=None, context=None, imported=False, exported=False)

	Rule class for implementing complete or partial voice-commands.

This rule class represents a voice-command or part of a voice-
command. It contains a root element, which defines the language
construct of this rule.

	Constructor arguments:

	
	name (str) – name of this rule. If None, a unique
name will automatically be generated.

	element (Element) –
root element for this rule

	context (Context, default: None) –
context within which to be active. If None, the rule will
always be active when its grammar is active.

	imported (boolean, default: False) –
if true, this rule is imported from outside its grammar

	exported (boolean, default: False) –
if true, this rule is a complete top-level rule which can be
spoken by the user. This should be True for voice-commands
that the user can speak.

The self._log logger objects should be used in methods of
derived classes for logging purposes. It is a standard logger
object from the logger module in the Python standard library.

	
active

	This rule’s active state. (Read-only)

	
disable()

	Disable this grammar so that it is never active to
receive recognitions, regardless of whether its context
matches or not.

	
element

	This rule’s root element. (Read-only)

	
enable()

	Enable this grammar so that it is active to receive
recognitions when its context matches.

	
enabled

	This rule’s enabled state. An enabled rule is active when its context matches, a disabled rule is never active regardless of context. (Read-only)

	
exported

	This rule’s exported status. See Exported rules for more info. (Read-only)

	
grammar

	This rule’s grammar object. (Set once)

	
imported

	This rule’s imported status. See Imported rules for more info. (Read-only)

	
name

	This rule’s name. (Read-only)

	
process_begin(executable, title, handle)

	Start of phrase callback.

This method is called when the speech recognition
engine detects that the user has begun to speak a
phrase. It is called by the rule’s containing grammar
if the grammar and this rule are active.

The default implementation of this method checks
whether this rule’s context matches, and if it does
this method calls
_process_begin().

	Arguments:

	
	executable – the full path to the module whose
window is currently in the foreground

	title – window title of the foreground window

	handle – window handle to the foreground window

	
process_recognition(node)

	Rule recognition callback.

This method is called when the user has spoken words matching
this rule’s contents. This method is called only once for
each recognition, and only for the matching top-level rule.

The default implementation of this method does nothing.

Note

This is generally the method which developers should
override in derived rule classes to give them custom
functionality when a top-level rule is recognized.

	
value(node)

	Start of phrase callback.

This method is called to obtain the semantic value associated
with a particular recognition. It could be called from
another rule’s value() if
that rule references this rule. If also be called from this
rule’s process_recognition()
if that method has been overridden to do so in a derived
class.

The default implementation of this method returns the value of
this rule’s root element.

Note

This is generally the method which developers should
override in derived rule classes to change the default
semantic value of a recognized rule.

CompoundRule class

The CompoundRule class is designed to make it very easy to create a rule
based on a single compound spec.

This rule class has the following parameters to customize its behavior:

	spec – compound specification for the rule’s root element

	extras – extras elements referenced from the compound spec

	defaults – default values for the extras

	exported – whether the rule is exported

	context – context in which the rule will be active

Each of these parameters can be passed as a (keyword) arguments to the
constructor, or defined as a class attribute in a derived class.

Example usage

The CompoundRule class can be used to define a voice-command as follows:

class ExampleRule(CompoundRule):

 spec = "I want to eat <food>"
 extras = [Choice("food", {
 "(an | a juicy) apple": "good",
 "a [greasy] hamburger": "bad",
 }
)
]

 def _process_recognition(self, node, extras):
 good_or_bad = extras["food"]
 print "That is a %s idea!" % good_or_bad

rule = ExampleRule()
grammar.add_rule(rule)

Class reference

	
class CompoundRule(name=None, spec=None, extras=None, defaults=None, exported=None, context=None)

	Rule class based on the compound element.

	Constructor arguments:

	
	name (str) – the rule’s name

	spec (str) – compound specification for the rule’s
root element

	extras (sequence) – extras elements referenced from the
compound spec

	defaults (dict) – default values for the extras

	exported (boolean) – whether the rule is exported

	context (Context) – context in which the rule will be active

	
process_recognition(node)

	Process a recognition of this rule.

This method is called by the containing Grammar when this
rule is recognized. This method collects information about
the recognition and then calls self._process_recognition.

	node – The root node of the recognition parse tree.

MappingRule class

The MappingRule class is designed to make it very easy to create a rule
based on a mapping of spoken-forms to semantic values.

This class has the following parameters to customize its behavior:

	mapping – mapping of spoken-forms to semantic values

	extras – extras elements referenced from the compound spec

	defaults – default values for the extras

	exported – whether the rule is exported

	context – context in which the rule will be active

Each of these parameters can be passed as a (keyword) arguments to the
constructor, or defined as a class attribute in a derived class.

Example usage

The MappingRule class can be used to define a voice-command as follows:

class ExampleRule(MappingRule):

 mapping = {
 "[feed] address [bar]": Key("a-d"),
 "subscribe [[to] [this] feed]": Key("a-u"),
 "paste [feed] address": Key("a-d, c-v, enter"),
 "feeds | feed (list | window | win)": Key("a-d, tab:2, s-tab"),
 "down [<n>] (feed | feeds)": Key("a-d, tab:2, s-tab, down:%(n)d"),
 "up [<n>] (feed | feeds)": Key("a-d, tab:2, s-tab, up:%(n)d"),
 "open [item]": Key("a-d, tab:2, c-s"),
 "newer [<n>]": Key("a-d, tab:2, up:%(n)d"),
 "older [<n>]": Key("a-d, tab:2, down:%(n)d"),
 "mark all [as] read": Key("cs-r"),
 "mark all [as] unread": Key("cs-u"),
 "search [bar]": Key("a-s"),
 "search [for] <text>": Key("a-s") + Text("%(text)s\n"),
 }
 extras = [
 Integer("n", 1, 20),
 Dictation("text"),
]
 defaults = {
 "n": 1,
 }

 rule = ExampleRule()
 grammar.add_rule(rule)

Class reference

	
class MappingRule(name=None, mapping=None, extras=None, defaults=None, exported=None, context=None)

	Rule class based on a mapping of spoken-forms to semantic values.

	Constructor arguments:

	
	name (str) – the rule’s name

	mapping (dict) – mapping of spoken-forms to semantic
values

	extras (sequence) – extras elements referenced from the
spoken-forms in mapping

	defaults (dict) – default values for the extras

	exported (boolean) – whether the rule is exported

	context (Context) – context in which the rule will be active

	
process_recognition(node)

	Process a recognition of this rule.

This method is called by the containing Grammar when
this rule is recognized. This method collects information
about the recognition and then calls
MappingRule._process_recognition.

	node – The root node of the recognition parse tree.

Element classes

Fundamental element classes

Dragonfly grammars are built up out of a small set of fundamental building
blocks. These building blocks are implemented by the following element
classes:

	ElementBase –
the base class from which all other element classes are derived

	Sequence –
sequence of child elements which must all match in the order given

	Alternative –
list of possibilities of which only one will be matched

	Optional –
wrapper around a child element which makes the child element optional

	Repetition –
repetition of a child element

	Literal –
literal word which must be said exactly by the speaker as given

	RuleRef –
reference to a dragonfly.grammar.rule_base.Rule object;
this element allows a rule to include (i.e. reference) another rule

	ListRef –
reference to a dragonfly.grammar.list.List object

The following element classes are built up out of the fundamental
classes listed above:

	Dictation –
free-form dictation; this element matches any words the speaker says,
and includes facilities for formatting the spoken words with correct
spacing and capitalization

	DictListRef –
reference to a dragonfly.all.DictList object; this element is
similar to the dragonfly.all.ListRef element, except that it
returns the value associated with the spoken words instead of the
spoken words themselves

ElementBase class

	
class ElementBase(name=None, default=None)

	Base class for all other element classes.

	Constructor argument:

	
	name (str, default: None) –
the name of this element; can be used when interpreting
complex recognition for retrieving elements by name.

	
_copy_sequence(sequence, name, item_types=None)

	Utility function for derived classes that checks that a given
object is a sequence, copies its contents into a new tuple,
and checks that each item is of a given type.

	
_get_children()

	Returns an iterable of this element’s children.

This method is used by the children() property, and
should be overloaded by any derived classes to give
the correct children element.

By default, this method returns an empty tuple.

	
children

	Iterable of child elements. (Read-only)

	
decode(state)

	Attempt to decode the recognition stored in the given state.

	
dependencies(memo)

	Returns an iterable containing the dependencies of this
element and of this element’s children.

The dependencies are the objects that are necessary
for this element. These include lists and other rules.

	
element_tree_string()

	Returns a formatted multi-line string representing this
element and its children.

	
gstring()

	Returns a formatted grammar string of the contents
of this element and its children.

The grammar string is of a format similar to that used
by Natlink to define its grammars.

	
value(node)

	Determine the semantic value of this element given the
recognition results stored in the node.

	Argument:

	
	node –
a dragonfly.grammar.state.Node instance
representing this element within the recognition
parse tree

The default behavior of this method is to return
an iterable containing the recognized words matched
by this element (i.e. node.words()).

Sequence class

	
class Sequence(children=(), name=None, default=None)

	Element class representing a sequence of child elements
which must all match a recognition in the correct order.

	Constructor arguments:

	
	children (iterable, default: ()) –
the child elements of this element

	name (str, default: None) –
the name of this element

For a recognition to match, all child elements must match
the recognition in the order that they were given in the
children constructor argument.

Example usage:
>>> from dragonfly.test import ElementTester
>>> seq = Sequence([Literal(“hello”), Literal(“world”)])
>>> test_seq = ElementTester(seq)
>>> test_seq.recognize(“hello world”)
[‘hello’, ‘world’]
>>> test_seq.recognize(“hello universe”)
RecognitionFailure

	
_get_children()

	Returns the child elements contained within the sequence.

	
children

	Iterable of child elements. (Read-only)

	
value(node)

	The value of a Sequence is a list containing
the values of each of its children.

Alternative class

	
class Alternative(children=(), name=None, default=None)

	Element class representing several child elements of which only
one will match.

	Constructor arguments:

	
	children (iterable, default: ()) –
the child elements of this element

	name (str, default: None) –
the name of this element

For a recognition to match, at least one of the child elements
must match the recognition. The first matching child is
used. Child elements are searched in the order they are given
in the children constructor argument.

	
_get_children()

	Returns the alternative child elements.

	
children

	Iterable of child elements. (Read-only)

	
value(node)

	The value of an Alternative is the value of its
child that matched the recognition.

Optional class

	
class Optional(child, name=None, default=None)

	Element class representing an optional child element.

	Constructor arguments:

	
	child (ElementBase) –
the child element of this element

	name (str, default: None) –
the name of this element

Recognitions always match this element. If the child element
does match the recognition, then that result is used.
Otherwise, this element itself does match but the child
is not processed.

	
_get_children()

	Returns the optional child element.

	
children

	Iterable of child elements. (Read-only)

	
value(node)

	The value of a Optional is the value of its child,
if the child did match the recognition. Otherwise the
value is None.

Repetition class

	
class Repetition(child, min=1, max=None, name=None, default=None)

	Element class representing a repetition of one child element.

	Constructor arguments:

	
	child (ElementBase) –
the child element of this element

	min (int, default: 1) –
the minimum number of times that the child element must
be recognized; may be 0

	max (int, default: None) –
the maximum number of times that the child element must
be recognized; if None, the child element must be recognized
exactly min times (i.e. max = min + 1)

	name (str, default: None) –
the name of this element

For a recognition to match, at least one of the child elements
must match the recognition. The first matching child is
used. Child elements are searched in the order they are given
in the children constructor argument.

	
children

	Iterable of child elements. (Read-only)

	
get_repetitions(node)

	Returns a list containing the nodes associated with
each repetition of this element’s child element.

	Argument:

	
	node (Node) –
the parse tree node associated with this repetition element;
necessary for searching for child elements within the parse
tree

	
value(node)

	The value of a Repetition is a list containing
the values of its child.

The length of this list is equal to the number of times
that the child element was recognized.

Literal class

	
class Literal(text, name=None, value=None, default=None)

	
	
children

	Iterable of child elements. (Read-only)

	
dependencies(memo)

	Returns an iterable containing the dependencies of this
element and of this element’s children.

The dependencies are the objects that are necessary
for this element. These include lists and other rules.

RuleRef class

	
class RuleRef(rule, name=None, default=None)

	
	
children

	Iterable of child elements. (Read-only)

ListRef class

	
class ListRef(name, list, key=None, default=None)

	
	
children

	Iterable of child elements. (Read-only)

DictListRef class

	
class DictListRef(name, dict, key=None, default=None)

	
	
children

	Iterable of child elements. (Read-only)

Dictation class

	
class Dictation(name=None, format=True, default=None)

	
	
children

	Iterable of child elements. (Read-only)

	
dependencies(memo)

	Returns an iterable containing the dependencies of this
element and of this element’s children.

The dependencies are the objects that are necessary
for this element. These include lists and other rules.

Compound class

	
class Compound(spec, extras=None, actions=None, name=None, value=None, value_func=None, elements=None, default=None)

	

Choice class

	
class Choice(name, choices, extras=None, default=None)

	

Context classes

Dragonfly uses context classes to define when grammars and
rules should be active. A context is an object with a
Context.matches() method which returns True if the
system is currently within that context, and False if it
is not.

The following context classes are available:

	Context –
the base class from which all other context classes are derived

	AppContext –
class which based on the application context, i.e. foreground window
executable, title, and handle

Logical operations

It is possible to modify and combine the behavior of contexts using the
Python’s standard logical operators:

	logical AND:	context1 & context2 – all contexts must match

	logical OR:	context1 | context2 –
one or more of the contexts must match

	logical NOT:	~context1 – inversion of when the context matches

For example, to create a context which will match when
Firefox is in the foreground, but only if Google Reader is
not being viewed:

firefox_context = AppContext(executable="firefox")
reader_context = AppContext(executable="firefox", title="Google Reader")
firefox_but_not_reader_context = firefox_context & ~reader_context

Class reference

	
class AppContext(executable=None, title=None, exclude=False)

	Context class using foreground application details.

This class determines whether the foreground window meets
certain requirements. Which requirements must be met for this
context to match are determined by the constructor arguments.

	Constructor arguments:

	
	executable (str) –
(part of) the path name of the foreground application’s
executable; case insensitive

	title (str) –
(part of) the title of the foreground window; case insensitive

	
class Context

	Base class for other context classes.

This base class implements some basic
infrastructure, including what’s required for
logical operations on context objects. Derived
classes should at least do the following things:

	During initialization, set self._str to some descriptive,
human readable value. This attribute is used by the
__str__() method.

	Overload the Context.matches() method to implement
the logic to determine when to be active.

The self._log logger objects should be used in methods of
derived classes for logging purposes. It is a standard logger
object from the logger module in the Python standard library.

	
matches(executable, title, handle)

	Indicate whether the system is currently within this context.

	Arguments:

	
	executable (str) –
path name to the executable of the foreground application

	title (str) – title of the foreground window

	handle (int) – window handle to the foreground window

The default implementation of this method simply returns True.

Note

This is generally the method which developers should
overload to give derived context classes custom
functionality.

Engines sub-package

Dragonfly supports multiple speech recognition engines as its backend.
The engines sub-package implements the interface code for each
supported engine.

EngineBase class

The dragonfly.engines.engine_base.EngineBase class forms the base
class for this specific speech recognition engine classes. It defines
the stubs required and performs some of the logic necessary for
Dragonfly to be able to interact with a speech recognition engine.

	
class EngineBase

	Base class for engine-specific back-ends.

	
connect()

	Connect to back-end SR engine.

	
connection()

	Context manager for a connection to the back-end SR engine.

	
disconnect()

	Disconnect from back-end SR engine.

	
language

	Current user language of the SR engine.

	
mimic(words)

	Mimic a recognition of the given words.

	
name

	The human-readable name of this engine.

	
speak(text)

	Speak the given text using text-to-speech.

Engine backends

SR back-end package for DNS and Natlink

	
get_engine()

	Retrieve the Natlink back-end engine object.

	
is_engine_available()

	Check whether Natlink is available.

SR back-end package for SAPI 5

	
get_engine()

	Retrieve the Sapi5 back-end engine object.

	
is_engine_available()

	Check whether SAPI is available.

Dictation container classes

Dictation container base class

This class is used to store the recognized results of dictation elements
within voice-commands. It offers access to both the raw spoken-form words
and be formatted written-form text.

The formatted text can be retrieved using
format() or simply by calling str(...)
on a dictation container object. A tuple of the raw spoken words can be
retrieved using words.

	
class DictationContainerBase(words)

	Container class for dictated words as recognized by the
Dictation element.

This base class implements the general functionality of dictation
container classes. Each supported engine should have a derived
dictation container class which performs the actual engine-
specific formatting of dictated text.

A dictation container is created by passing it a sequence
of words as recognized by the backend SR engine.
Each word must be a Unicode string.

	Parameters:	words (sequence-of-unicode) – A sequence of Unicode strings.

	
format()

	Format and return this dictation as a Unicode object.

	
words

	Sequence of the words forming this dictation.

Dictation container class for Natlink

This class is derived from DictationContainerBase and implements
dictation formatting for the Natlink and Dragon NaturallySpeaking engine.

	
class NatlinkDictationContainer(words)

	Container class for dictated words as recognized by the
Dictation element for the Natlink and DNS engine.

	
format()

	Format and return this dictation.

Actions sub-package

The Dragonfly library contains an action framework which offers easy and
flexible interfaces to common actions, such as sending keystrokes and
emulating speech recognition. Dragonfly’s actions sub-package has various
types of these actions, each consisting of a Python class. There is for
example a dragonfly.actions.action_key.Key class for sending
keystrokes and a dragonfly.actions.action_mimic.Mimic class for
emulating speech recognition.

Each of these actions is implemented as a Python class and this makes it
easy to work with them. An action can be created (defined what it will
do) at one point and executed (do what it was defined to do) later.
Actions can be added together with the + operator to attend them
together, thereby creating series of actions.

Perhaps the most important method of Dragonfly’s actions is their
dragonfly.actions.action_base.ActionBase.execute() method, which
performs the actual event associated with its action.

Dragonfly’s action types are derived from the
dragonfly.actions.action_base.ActionBase class. This base class
implements standard action behavior, such as the ability to concatenate
multiple actions and to duplicate an action.

Basic examples

The code below shows the basic usage of Dragonfly action objects. They
can be created, combined, executed, etc.

from dragonfly.all import Key, Text

a1 = Key("up, left, down, right") # Define action a1.
a1.execute() # Send the keystrokes.

a2 = Text("Hello world!") # Define action a2, which
 # will type the text.
a2.execute() # Send the keystrokes.

a4 = a1 + a2 # a4 is now the concatenation
 # of a1 and a2.
a4.execute() # Send the keystrokes.

a3 = Key("a-f, down/25:4") # Press alt-f and then down 4 times
 # with 25/100 s pause in between.
a4 += a3 # a4 is now the concatenation
 # of a1, a2, and a3.
a4.execute() # Send the keystrokes.

Key("w-b, right/25:5").execute() # Define and execute together.

More examples

For more examples on how to use and manipulate Dragonfly action objects,
please see the doctests for the
dragonfly.actions.action_base.ActionBase here:
Action doctests.

Combining voice commands and actions

A common use of Dragonfly is to control other applications by
voice and to automate common desktop activities. To do this,
voice commands can be associated with actions. When the command
is spoken, the action is executed. Dragonfly’s action framework
allows for easy definition of things to do, such as text input
and sending keystrokes. It also allows these things to be
dynamically coupled to voice commands, so as to enable the
actions to contain dynamic elements from the recognized command.

An example would be a voice command to find some bit of text:

	Command specification: please find <text>

	Associated action: Key("c-f") + Text("%(text)s")

	Special element: Dictation("text")

This triplet would allow the user to say “please find some
words”, which would result in control-f being pressed to open
the Find dialogue followed by “some words” being typed into
the dialog. The special element is necessary to define
what the dynamic element “text” is.

Action class reference

ActionBase base class

	
class ActionBase

	Base class for Dragonfly’s action classes.

	
class Repeat(count=None, extra=None)

	Action repeat factor.

Integer Repeat factors ignore any supply data:

>>> integer = Repeat(3)
>>> integer.factor()
3
>>> integer.factor({"foo": 4}) # Non-related data is ignored.
3

Named Repeat factors retrieved their factor-value from the
supplied data:

>>> named = Repeat(extra="foo")
>>> named.factor()
Traceback (most recent call last):
 ...
ActionError: No extra repeat factor found for name 'foo' ('NoneType' object is unsubscriptable)
>>> named.factor({"foo": 4})
4

Repeat factors with both integer count and named extra values set
combined (add) these together to determine their factor-value:

>>> combined = Repeat(count=3, extra="foo")
>>> combined.factor()
Traceback (most recent call last):
 ...
ActionError: No extra repeat factor found for name 'foo' ('NoneType' object is unsubscriptable)
>>> combined.factor({"foo": 4}) # Combined factors 3 + 4 = 7.
7

Key action

This section describes the Key action object. This
type of action is used for sending keystrokes to the foreground
application. Examples of how to use this class are given in
Example key actions.

Keystroke specification format

The spec argument passed to the Key constructor specifies which
keystroke events will be emulated. It is a string consisting of one or
more comma-separated keystroke elements. Each of these elements has one
of the following two possible formats:

	Normal press-release key action, optionally repeated several times:

	[modifiers -] keyname [/ innerpause] [: repeat] [/ outerpause]

	Press-and-hold a key, or release a held-down key:

	[modifiers -] keyname : direction [/ outerpause]

The different parts of the keystroke specification are as follows. Note
that only keyname is required; the other fields are optional.

	modifiers –
Modifiers for this keystroke. These keys are held down
while pressing the main keystroke.
Can be zero or more of the following:

	a – alt key

	c – control key

	s – shift key

	w – Windows key

	keyname –
Name of the keystroke. Valid names are listed in
Key names.

	innerpause –
The time to pause between repetitions of this keystroke.

	repeat –
The number of times this keystroke should be repeated.
If not specified, the key will be pressed and released once.

	outerpause –
The time to pause after this keystroke.

	direction –
Whether to press-and-hold or release the key. Must be
one of the following:

	down – press and hold the key

	up – release the key

Note that releasing a key which is not being held down does not
cause an error. It harmlessly does nothing.

Key names

	Lowercase letter keys: a or alpha, b or bravo,
c or charlie, d or delta, e or echo,
f or foxtrot, g or golf, h or hotel,
i or india, j or juliet, k or kilo,
l or lima, m or mike, n or november,
o or oscar, p or papa, q or quebec,
r or romeo, s or sierra, t or tango,
u or uniform, v or victor, w or whisky,
x or xray, y or yankee, z or zulu

	Uppercase letter keys: A or Alpha, B or Bravo,
C or Charlie, D or Delta, E or Echo,
F or Foxtrot, G or Golf, H or Hotel,
I or India, J or Juliet, K or Kilo,
L or Lima, M or Mike, N or November,
O or Oscar, P or Papa, Q or Quebec,
R or Romeo, S or Sierra, T or Tango,
U or Uniform, V or Victor, W or Whisky,
X or Xray, Y or Yankee, Z or Zulu

	Number keys: 0 or zero, 1 or one, 2 or two,
3 or three, 4 or four, 5 or five,
6 or six, 7 or seven, 8 or eight,
9 or nine

	Symbol keys: bang or exclamation, at, hash,
dollar, percent, caret, and or ampersand,
star or asterisk, leftparen or lparen,
rightparen or rparen, minus or hyphen,
underscore, plus, backtick, tilde,
leftbracket or lbracket, rightbracket or rbracket,
leftbrace or lbrace, rightbrace or rbrace,
backslash, bar, colon, semicolon,
apostrophe or singlequote or squote,
quote or doublequote or dquote, comma, dot,
slash, lessthan or leftangle or langle,
greaterthan or rightangle or rangle, question,
equal or equals

	Whitespace and editing keys: enter, tab, space,
backspace, delete or del

	Modifier keys: shift, control or ctrl, alt

	Special keys: escape, insert, pause, win,
apps or popup

	Navigation keys: up, down, left, right,
pageup or pgup, pagedown or pgdown, home, end

	Number pad keys: npmul, npadd, npsep, npsub,
npdec, npdiv, numpad0 or np0, numpad1 or np1,
numpad2 or np2, numpad3 or np3,
numpad4 or np4, numpad5 or np5,
numpad6 or np6, numpad7 or np7,
numpad8 or np8, numpad9 or np9

	Function keys: f1, f2, f3, f4, f5, f6,
f7, f8, f9, f10, f11, f12, f13, f14,
f15, f16, f17, f18, f19, f20, f21,
f22, f23, f24

	Multimedia keys: volumeup or volup,
volumedown or voldown, volumemute or volmute,
tracknext, trackprev, playpause, browserback,
browserforward

Example key actions

The following code types the text “Hello world!” into the foreground
application:

Key("H, e, l, l, o, space, w, o, r, l, d, exclamation").execute()

The following code is a bit more useful, as it saves the current file with
the name “dragonfly.txt” (this works for many English-language
applications):

action = Key("a-f, a/50") + Text("dragonfly.txt") + Key("enter")
action.execute()

The following code selects the next four lines by holding down the shift
key, slowly moving down 4 lines, and then releasing the shift key:

Key("shift:down, down/25:4, shift:up").execute()

The following code locks the screen by pressing the Windows key together
with the l:

Key("w-l").execute()

Key class reference

	
class Key(spec=None, static=False)

	Keystroke emulation action.

	Constructor arguments:

	
	spec (str) – keystroke specification

	static (boolean) – flag indicating whether the
specification contains dynamic elements

The format of the keystroke specification spec is described in
Keystroke specification format.

This class emulates keyboard activity by sending keystrokes to the
foreground application. It does this using Dragonfly’s keyboard
interface implemented in the keyboard and sendinput
modules. These use the sendinput() function of the Win32 API.

Text action

This section describes the Text action object. This type of
action is used for typing text into the foreground application.

It differs from the Key action in that Text is used for
typing literal text, while dragonfly.actions.action_key.Key
emulates pressing keys on the keyboard. An example of this is that the
arrow-keys are not part of a text and so cannot be typed using the
Text action, but can be sent by the
dragonfly.actions.action_key.Key action.

	
class Text(spec=None, static=False, pause=0.02, autofmt=False)

	Action that sends keyboard events to type text.

	Arguments:

	
	spec (str) – the text to type

	static (boolean) –
if True, do not dynamically interpret spec
when executing this action

	pause (float) –
the time to pause between each keystroke, given
in seconds

	autofmt (boolean) –
if True, attempt to format the text with correct
spacing and capitalization. This is done by first mimicking
a word recognition and then analyzing its spacing and
capitalization and applying the same formatting to the text.

Paste action

	
class Paste(contents, format=None, paste=None, static=False)

	Paste-from-clipboard action.

	Constructor arguments:

	
	contents (str) – contents to paste

	format (int, Win32 clipboard format) –
clipboard format

	paste (instance derived from ActionBase) –
paste action

	static (boolean) –
flag indicating whether the
specification contains dynamic elements

This action inserts the given contents into the Windows system
clipboard, and then performs the paste action to paste it into
the foreground application. By default, the paste action is the
Control-v keystroke. The default clipboard format to use
is the Unicode text format.

Mouse action

This section describes the Mouse action object. This type of
action is used for controlling the mouse cursor and clicking mouse
button.

Below you’ll find some simple examples of Mouse usage, followed
by a detailed description of the available mouse events.

Example mouse actions

The following code moves the mouse cursor to the center of the foreground
window ((0.5, 0.5)) and then clicks the left mouse button once
(left):

Parentheses ("(...)") give foreground-window-relative locations.
Fractional locations ("0.5", "0.9") denote a location relative to
the window or desktop, where "0.0, 0.0" is the top-left corner
and "1.0, 1.0" is the bottom-right corner.
action = Mouse("(0.5, 0.5), left")
action.execute()

The line below moves the mouse cursor to 100 pixels left of the desktop’s
right edge and 250 pixels down from its top edge ([-100, 250]), and
then double clicks the right mouse button (right:2):

Square brackets ("[...]") give desktop-relative locations.
Integer locations ("1", "100", etc.) denote numbers of pixels.
Negative numbers ("-100") are counted from the right-edge or the
bottom-edge of the desktop or window.
Mouse("[-100, 250], right:2").execute()

The following command drags the mouse from the top right corner of the
foreground window ((0.9, 10), left:down) to the bottom left corner
((25, -0.1), left:up):

Mouse("(0.9, 10), left:down, (25, -0.1), left:up").execute()

The code below moves the mouse cursor 25 pixels right and 25 pixels up
(<25, -25>):

Angle brackets ("<...>") move the cursor from its current position
by the given number of pixels.
Mouse("<25, -25>").execute()

Mouse specification format

The spec argument passed to the Mouse constructor specifies
which mouse events will be emulated. It is a string consisting of one or
more comma-separated elements. Each of these elements has one of the
following possible formats:

Mouse movement actions:

	location is absolute on the entire desktop:
[number , number]

	location is relative to the foreground window:
(number , number)

	move the cursor relative to its current position:
< pixels , pixels >

In the above specifications, the number and pixels have the
following meanings:

	number – can specify a number of pixels or a fraction of
the reference window or desktop. For example:

	(10, 10) – 10 pixels to the right and down from the
foreground window’s left-top corner

	(0.5, 0.5) – center of the foreground window

	pixels – specifies the number of pixels

	Mouse button-press action:

	
keyname [: repeat] [/ pause]

	keyname – Specifies which mouse button to click:

	left – left mouse button key

	middle – middle mouse button key

	right – right mouse button key

	repeat – Specifies how many times the button should be clicked:

	0 – don’t click the button, this is a no-op

	1 – normal button click

	2 – double-click

	3 – triple-click

	pause –
Specifies how long to pause after clicking the button. The value
should be an integer giving in hundredths of a second. For example,
/100 would mean one second, and /50 half a second.

	Mouse button-hold or button-release action:

	
keyname : hold-or-release [/ pause]

	keyname – Specifies which mouse button to click; same as above.

	hold-or-release –
Specified whether the button will be held down or released:

	down – hold the button down

	up – release the button

	pause –
Specifies how long to pause after clicking the button; same as above.

Mouse class reference

	
class Mouse(spec=None, static=False)

	Action that sends mouse events.

	Arguments:

	
	spec (str) – the mouse actions to execute

	static (boolean) –
if True, do not dynamically interpret spec
when executing this action

Function action

The Function action wraps a callable, optionally with some
default keyword argument values. On execution, the execution data
(commonly containing the recognition extras) are combined with the
default argument values (if present) to form the arguments with which
the callable will be called.

Simple usage:

>>> def func(count):
... print "count:", count
...
>>> action = Function(func)
>>> action.execute({"count": 2})
count: 2
True
>>> # Additional keyword arguments are ignored:
>>> action.execute({"count": 2, "flavor": "vanilla"})
count: 2
True

Usage with default arguments:

>>> def func(count, flavor):
... print "count:", count
... print "flavor:", flavor
...
>>> # The Function object can be given default argument values:
>>> action = Function(func, flavor="spearmint")
>>> action.execute({"count": 2})
count: 2
flavor: spearmint
True
>>> # Arguments given at the execution-time to override default values:
>>> action.execute({"count": 2, "flavor": "vanilla"})
count: 2
flavor: vanilla
True

Class reference

	
class Function(function, **defaults)

	Call a function with extra keyword arguments.

	Constructor arguments:

	
	function (callable) –
the function to call when this action is executed

	defaults –
default keyword-values for the arguments with which
the function will be called

Mimic action

	
class Mimic(*words, **kwargs)

	Mimic recognition action.

The constructor arguments are the words which will be mimicked.
These should be passed as a variable argument list. For example:

action = Mimic("hello", "world", r"!\exclamation-mark")
action.execute()

If an error occurs during mimicking the given recognition, then an
ActionError is raised. A common error is that the engine does
not know the given words and can therefore not recognize them.
For example, the following attempts to mimic recognition of one
single word including a space and an exclamation-mark; this will
almost certainly fail:

Mimic("hello world!").execute() # Will raise ActionError.

The constructor accepts the optional extra keyword argument, and
uses this to retrieve dynamic data from the extras associated with
the recognition. For example, this can be used as follows to
implement dynamic mimicking:

class ExampleRule(MappingRule):
 mapping = {
 "mimic recognition <text> [<n> times]":
 Mimic(extra="text") * Repeat(extra="n"),
 }
 extras = [
 IntegerRef("n", 1, 10),
 Dictation("text"),
]
 defaults = {
 "n": 1,
 }

The example above will allow the user to speak “mimic
recognition hello world! 3 times”, which would result in the
exact same output as if the user had spoken “hello world!”
three times in a row.

Playback action

The Playback action mimics a sequence of recognitions. This is
for example useful for repeating a series of prerecorded or predefined
voice-commands.

This class could for example be used to reload with one single action:

action = Playback([
 (["focus", "Natlink"], 1.0),
 (["File"], 0.5),
 (["Reload"], 0.0),
])
action.execute()

Class reference

	
class Playback(series, speed=1)

	Playback a series of recognitions.

	Constructor arguments:

	
	series (sequence of 2-tuples) –
the recognitions to playback. Each element must be a
2-tuple of the form ([“words”, “two”, “mimic”], interval),
where interval is a float giving the number of seconds to
pause after the given words are mimicked.

	speed (float) –
the factor by which to speed up playback. The intervals
after each mimic are divided by this number.

	
speed

	Factor to speed up playback.

WaitWindow action

	
class WaitWindow(title=None, executable=None, timeout=15)

	Wait for a specific window context action.

	Constructor arguments:

	
	title (str) –
part of the window title: not case sensitive

	executable (str) –
part of the file name of the executable; not case sensitive

	timeout (int or float) –
the maximum number of seconds to wait for the correct
context, after which an ActionError will
be raised.

When this action is executed, it waits until the correct window
context is present. This window context is specified by the
desired window title of the foreground window and/or the
executable name of the foreground application. These are
specified using the constructor arguments listed above. The
substring search used is not case sensitive.

If the correct window context is not found within timeout
seconds, then this action will raise an ActionError to
indicate the timeout.

FocusWindow action

	
class FocusWindow(executable=None, title=None)

	Bring a window to the foreground action.

	Constructor arguments:

	
	executable (str) – part of the filename of the
application’s executable to which the target window belongs;
not case sensitive.

	title (str) – part of the title of the target window;
not case sensitive.

This action searches all visible windows for a window which
matches the given parameters.

BringApp and StartApp actions

The StartApp and BringApp action classes are used to
start an application and bring it to the foreground. StartApp
starts an application by running an executable file, while
BringApp first checks whether the application is already running
and if so brings it to the foreground, otherwise starts it by running the
executable file.

Example usage

The following example brings Notepad to the foreground if it is already
open, otherwise it starts Notepad:

BringApp(r"C:\Windows\system32\notepad.exe").execute()

Note that the path to notepad.exe given above might not be correct for
your computer, since it depends on the operating system and its
configuration.

In some cases an application might be accessible simply through the file
name of its executable, without specifying the directory. This depends on
the operating system’s path configuration. For example, on the author’s
computer the following command successfully starts Notepad:

BringApp("notepad").execute()

Class reference

	
class BringApp(*args, **kwargs)

	Bring an application to the foreground, starting it if it is not
yet running.

When this action is executed, it looks for an existing window of
the application specified in the constructor arguments. If an
existing window is found, that window is brought to the
foreground. On the other hand, if no window is found the
application is started.

Note that the constructor arguments are identical to those used by
the StartApp action class.

	Constructor arguments:

	
	args (variable argument list of str‘s) –
these strings are passed to subprocess.Popen()
to start the application as a child process

	cwd (str, default None) –
if not None, then start the application in this
directory

	
class StartApp(*args, **kwargs)

	Start an application.

When this action is executed, it runs a file (executable),
optionally with commandline arguments.

	Constructor arguments:

	
	args (variable argument list of str‘s) –
these strings are passed to subprocess.Popen()
to start the application as a child process

	cwd (str, default None) –
if not None, then start the application in this
directory

Pause action

	
class Pause(spec=None, static=False)

	Pause for the given amount of time.

The spec constructor argument should be a string giving the
time to wait. It should be given in hundredths of a second. For
example, the following code will pause for 20/100s = 0.2
seconds:

Pause("20").execute()

The reason the spec must be given as a string is because it
can then be used in dynamic value evaluation. For example, the
following code determines the time to pause at execution time:

action = Pause("%(time)d")
data = {"time": 37}
action.execute(data)

Miscellaneous topics

Contents:

	Windows sub-package
	Clipboard toolkit
	Usage examples

	Clipboard class

	Configuration toolkit
	Configuration toolkit
	Usage example

	Implementation details

	Configuration class reference

Windows sub-package

Dragonfly includes several toolkits for non-speech user interface in.
These include for example dialog GUIs, generic window control, and access
to the Windows system clipboard.

Contents of Dragonfly’s windows sub-package:

	Clipboard toolkit
	Usage examples

	Clipboard class

Clipboard toolkit

Dragonfly’s clipboard toolkit offers easy access to and manipulation of
the Windows system clipboard. The
dragonfly.windows.clipboard.Clipboard class forms the core of
this toolkit. Each instance of this class is a container with a structure
similar to the Windows system clipboard, mapping content formats to
content data.

Usage examples

An instance of something contains clipboard data. The data stored within
an instance can be transferred to and from the Windows system clipboard as
follows: (before running this example, the text “asdf” was copied into the
Windows system clipboard)

>>> from dragonfly.windows.clipboard import Clipboard
>>> instance = Clipboard() # Create empty instance.
>>> print instance
Clipboard()

>>> instance.copy_from_system() # Retrieve from system clipboard.
>>> print instance
Clipboard(unicode=u'asdf', text, oemtext, locale)
>>> # The line above shows that *instance* now contains content for
>>> # 4 different clipboard formats: unicode, text, oemtext, locale.
>>> # The unicode format content is also displayed.

>>> instance.copy_to_system() # Transfer back to system clipboard.

The situation frequently occurs that a developer would like to use the
Windows system clipboard to perform some task without the data currently
stored in it being lost. This backing up and restoring can easily be
achieved as follows:

>>> from dragonfly.windows.clipboard import Clipboard
>>> # Initialize instance with system clipboard content.
... original = Clipboard(from_system=True)
>>> print original
Clipboard(unicode=u'asdf', text, oemtext, locale)

>>> # Use the system clipboard to do something.
... temporary = Clipboard({Clipboard.format_unicode: u"custom content"})
>>> print temporary
Clipboard(unicode=u'custom content')
>>> temporary.copy_to_system()
>>> from dragonfly.all import Key
>>> Key("c-v").execute()

>>> # Restore original system clipboard content.
... print Clipboard(from_system=True) # Show system clipboard contents.
Clipboard(unicode=u'custom content', text, oemtext, locale)
>>> original.copy_to_system()
>>> print Clipboard(from_system=True) # Show system clipboard contents.
Clipboard(unicode=u'asdf', text, oemtext, locale)

Clipboard class

	
class Clipboard(contents=None, text=None, from_system=False)

	
	
copy_from_system(formats=None, clear=False)

	Copy the Windows system clipboard contents into this instance.

	Arguments:

	
	formats (iterable, default: None) – if not None, only the
given content formats will be retrieved. If None, all
available formats will be retrieved.

	clear (boolean, default: False) – if true, the Windows
system clipboard will be cleared after its contents have been
retrieved.

	
copy_to_system(clear=True)

	Copy the contents of this instance into the Windows system
clipboard.

	Arguments:

	
	clear (boolean, default: True) – if true, the Windows
system clipboard will be cleared before this instance’s
contents are transferred.

	
get_format(format)

	Retrieved this instance’s content for the given format.

	Arguments:

	
	format (int) – the clipboard format to retrieve.

If the given format is not available, a ValueError
is raised.

	
get_text()

	Retrieve this instance’s text content. If no text content
is available, this method returns None.

	
has_format(format)

	Determine whether this instance has content for the given
format.

	Arguments:

	
	format (int) – the clipboard format to look for.

	
has_text()

	Determine whether this instance has text content.

Configuration toolkit

Configuration toolkit

Dragonfly’s configuration toolkit makes it very easy to store
program data in a separate file from the main program logic. It uses
a three-phase setup – load – use system:

	setup – a Config object is created and its structure and
default contents are defined.

	load – a separate file containing the user’s configuration
settings is looked for and, if found, its values are loaded
into the Config object.

	use – the program directly accesses the configuration
through easy Config object attributes.

This configuration toolkit uses the following three classes:

	Config – a collection of configuration settings, grouped
within one or more sections

	Section – a group of items and/or subsections

	Item – a single configuration setting

Usage example

The main program using Dragonfly’s configuration toolkit would
normally look something like this:

from dragonfly.all import Config, Section, Item

Setup phase.
This defines a configuration object with the name "Example
configuration". It contains one section with the title
"Test section", which has two configuration items. Both
these items have a default value and a docstring.
config = Config("Example configuration")
config.test = Section("Test section")
config.test.fruit = Item("apple", doc="Must eat fruit.")
config.test.color = Item("blue", doc="The color of life.")

Load phase.
This searches for a file with the same name as the main program,
but with the extension ".py" replaced by ".txt". It is also
possible to explicitly specify the configuration file's path.
See Config.load() for more details.
config.load()

Use phase.
The configuration values can now be accessed through the
configuration object as follows.
print "The color of life is", config.test.color
print "You must eat an %s every day" % config.test.fruit

The configuration defined above is basically complete. Every
configuration item has a default value and can be accessed by
the program. But if the user would like to modify some or all
of these settings, he can do so in an external configuration file
without modifying the main program code.

This external configuration file is interpreted as Python code.
This gives its author powerful tools for determining the desired
configuration settings. However, it will usually consist merely
of variable assignments. The configuration file for the program
above might look something like this:

Test section
test.fruit = "banana" # Bananas have more potassium.
test.color = "white" # I like light colors.

Implementation details

This configuration toolkit makes use of Python’s special methods
for setting and retrieving object attributes. This makes it much
easier to use, as there is no need to use functions such as
value = get_config_value(“item_name”); instead the configuration
values are immediately accessible as Python objects. It also allows
for more extensive error checking; it is for example trivial to
implement custom Item classes which only allow specific values
or value types, such as integers, boolean values, etc.

Configuration class reference

	
class Config(name)

	Configuration class for storing program settings.

	Constructor argument:

	
	name (str) –
the name of this configuration object.

This class can contain zero or more Section instances,
each of which can contain zero or more Item instances.
It is these items which store the actual configuration settings.
The sections merely divide the items up into groups, so that
different configuration topics can be split for easy readability.

	
generate_config_file(path=None)

	Create a configuration file containing this
configuration object’s current settings.

	path (str, default: None) –
path to the configuration file to load. If None,
then a path is generated from the calling module’s
file name by replacing its extension with ”.txt”.

	
load(path=None)

	Load the configuration file at the given path, or
look for a configuration file associated with the calling
module.

	path (str, default: None) –
path to the configuration file to load. If None,
then a path is generated from the calling module’s
file name by replacing its extension with ”.txt”.

If the path is a file, it is loaded. On the other hand,
if it does not exist or is not a file, nothing is loaded
and this configuration’s defaults remain in place.

	
class Section(doc)

	Section of a configuration for grouping items.

	Constructor argument:

	
	doc (str) –
the name of this configuration section.

A section can contain zero or more subsections and zero or more
configuration items.

	
class Item(default, doc=None, namespace=None)

	Configuration item for storing configuration settings.

	Constructor arguments:

	
	default –
the default value for this item

	doc (str, default: None) –
an optional description of this item

	namespace (dict, default: None) –
an optional namespace dictionary which will be made available
to the Python code in the external configuration file
during loading

A configuration item is the object that stores the actual
configuration settings. Each item has a default value, a current
value, an optional description, and an optional namespace.

This class performs the checking of configuration values assigned
to it during loading of the configuration file. The default
behavior of this class is to only accept values of the same Python
type as the item’s default value. So, if the default value is a
string, then the value assigned in the configuration file must
also be a string. Otherwise an exception will be raised and
loading will fail.

Developers who want other kinds of value checking should override
the Item.validate() method of this class.

	
validate(value)

	Determine whether the given value is valid.

This method performs validity checking of the configuration
value assigned to this item during loading of the external
configuration file. If the default behavior is to raise a
TypeError if the type of the assigned value is not the same
as the type of the default value.

Project

Contents:

	Code style

	Commit message format
	Purpose of a commit message

	Structure of a commit message
	First line

	Issue references

	Example

	Background and inspiration

	Release versioning
	Version incrementation

	Release process
	Preparation

	Build and test

	Release

	Post-release

Code style

Commit message format

Commit messages should be written according to the guidelines described
here. These guidelines are meant to ensure high-quality and easily readable
content of commit messages. They also result in a pleasant viewing
experience using standard Git tools.

Purpose of a commit message

Every commit message should provide the reader with the following
information:

	Why this change is necessary

	How this change addresses the issue

	What other effects this change has

Structure of a commit message

First line

The first line of a commit message represents the title or summary of the
change. Standard Git tools often display it differently than the rest of the
message, for example in bold font, or show only this line, for example when
summarizing multiple commits.

A commit message’s first line should be formatted as follows:

	The first line should be no longer than 50 characters

	The first line should start with a capital letter

	The first line should not end with a full-stop

	The first line should be followed by a blank line, if and only if the
commit message contains more text below

	The first line should use the imperative present tense, e.g. “Add cool new
feature” or “Fix some little bug”

Issue references

Issues can be referenced anywhere within a commit message via their
numbered tag, e.g. “#7”.

Commits that change the status of an issue, for example fixing a bug or
implementing a feature, should make the relationship and change explicit on
the last line of the commit message using the following format:
Resolve #X. GitHub will automatically update the issue accordingly.

Please see GitHub’s help on
commit message keywords [https://help.github.com/articles/closing-issues-via-commit-messages]
for more information.

Example

Commit title summarizing the change (50 characters or less)

Subsequent text providing further information about the change, if
necessary. Lines are wrapped at 72 characters.

- May contain bullet points, prefixed by "- " at the beginning of the
 first line for a bullet point and " " for subsequent lines
- Non-breakable text, such as long URLs, may extend past 72 characters;
 doesn't look nice, but at least they still work

Background and inspiration

The commit message format described here is based on common views, such as
those expressed here:

	http://git-scm.com/book/ch5-2.html

	http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	http://who-t.blogspot.nl/2009/12/on-commit-messages.html

	http://dieter.plaetinck.be/why-rewriting-git-history-and-why-commits-imperative-present-tense.html

Release versioning

The versions of Dragonfly releases are strongly inspired by the
semantic versioning concept, as promoted by Tom Preston-Werner and
documented at http://semver.org/.

Each version string has the format “major.minor.patch”, where each part
has the following meaning:

	Major –

	Minor –

	Patch –

Version incrementation

Release process

Preparation

	Version number and release branch
	Determine the appropriate version number for this release,
according to Release versioning.

	Create the new release branch, named release-X.Y.Z

	Update the version.txt file to contain the new version
number.

	Tickets
	Update ticket status for this release, where relevant:
https://github.com/t4ngo/dragonfly/issues

	Release files
	Verify that CHANGES.txt includes the change log for this
release.

	Verify that AUTHORS.txt is up to date with recent
contributors.

	Verify that setup.py specifies all required
dependencies, including their versions, e.g. with the
install_requires and test_requires parameters.

	Verify that MANIFEST.in includes all necessary
data files.

	Draft announcement
	Write a draft announcement text to send to the mailing list after
the release process has been completed.

Build and test

	Test building of documentation

	Build distributions

	Test installation of distributions

	Test on PyPI test server
	Upload distributions to PyPI test server

	Test installation from PyPI test server

	Verify package is displayed correctly on PyPI test server

	Tag release
	Tag git revision

	Push to GitHub

Release

	Upload to GitHub
	Upload distributions to GitHub:
https://github.com/t4ngo/dragonfly/releases

	Trigger building of documentation on Read the Docs
	Check whether documentation was built automatically, and if not
trigger it:
https://readthedocs.org/builds/dragonfly/

	Upload to PyPI server
	Upload distributions to PyPI server

	Test installation from PyPI server

	Verify package is displayed correctly on PyPI server

Post-release

	Announce release
	Website

	Mailing list

Test suite

The Dragonfly library contains tests to verify its functioning and
assure its quality. These tests come in two distinct types:

	Tests based on unittest [http://docs.python.org/library/unittest.html].

	Tests based on doctest [http://docs.python.org/library/doctest.html];
these also serve as documentation by providing usage examples.

See the links below for tests of both types.

Tests in doctests format:

	Doctests for the fundamental element classes
	Sequence element class

	Doctests for the Compound element class
	Basic usage

	Doctests for the List class
	List and ListRef element classes

	RecognitionObserver base class
	Trivial demonstration of RecognitionObserver class

	Tests for RecognitionObserver class

	RecognitionHistory class

	Action doctests
	ActionBase test suite

Tests based on the unittest framework reside in the dragonfly.test
package.

Running the test suite

Using DNS

Follow the following steps to run the test suite for the DNS backend Aland

	Start DNS. (And ensure that NatLink is also automatically started.)

	Extract the Dragonfly source code in a directory <dir>.

	Run the tests with the following commands:
	cd <dir>

	C:\Python26\python.exe <dir>\setup.py test

Using WSR

Follow the following steps to run the test suite for the DNS backend Aland

	Start WSR.

	Wake WSR up, so that it is not in sleeping state, and then turn the
microphone off. (It is important to wake the microphone up first,
because otherwise it’ll be off and sleeping at the same time. This
causes all recognitions to fail. Weird, huh?)

	Extract the Dragonfly source code in a directory <dir>.

	Run the tests with the following commands:
	cd <dir>

	C:\Python26\python.exe <dir>\setup.py test --test-suite=dragonfly.test.suites.sapi5_suite

Doctests for the fundamental element classes

Sequence element class

Test fixture initialization:

>>> from dragonfly import *
>>> from dragonfly.test import ElementTester

Sequence

Basic usage:

>>> seq = Sequence([Literal("hello"), Literal("world")])
>>> test_seq = ElementTester(seq)
>>> test_seq.recognize("hello world")
[u'hello', u'world']
>>> test_seq.recognize("hello universe")
RecognitionFailure

Constructor arguments:

>>> c1, c2 = Literal("hello"), Literal("world")
>>> len(Sequence(children=[c1, c2]).children)
2
>>> Sequence(children=[c1, c2], name="sequence_test").name
'sequence_test'
>>> Sequence([c1, c2], "sequence_test").name
'sequence_test'
>>> Sequence("invalid_children_type")
Traceback (most recent call last):
 ...
TypeError: children object must contain only <class 'dragonfly.grammar.elements_basic.ElementBase'> types. (Received ('i', 'n', 'v', 'a', 'l', 'i', 'd', '_', 'c', 'h', 'i', 'l', 'd', 'r', 'e', 'n', '_', 't', 'y', 'p', 'e'))

Doctests for the Compound element class

Basic usage

Test fixture initialization:

>>> from dragonfly import *
>>> from dragonfly.test import ElementTester

“Hello world”

The spec of the compound element below is parsed into a single literal
“hello world”. The semantic value of the compound element will
therefore be the same as for that literal element, namely “hello world”.

>>> element = Compound("hello world")
>>> tester = ElementTester(element)

>>> tester.recognize("hello world")
u'hello world'
>>> tester.recognize("hello universe")
RecognitionFailure

“Hello [there] (world | universe)”

The spec of the compound element below is parsed into a sequence with three
elements: the word “hello”, an optional “there”, and an alternative of
“world” or “universe”. The semantic value of the compound element will
therefore have three elements, even when “there” is not spoken.

>>> element = Compound("hello [there] (world | universe)")
>>> tester = ElementTester(element)

>>> tester.recognize("hello world")
[u'hello', None, u'world']
>>> tester.recognize("hello there world")
[u'hello', u'there', u'world']
>>> tester.recognize("hello universe")
[u'hello', None, u'universe']
>>> tester.recognize("hello galaxy")
RecognitionFailure

Doctests for the List class

List and ListRef element classes

Basic usage

Setup test tooling:

>>> from dragonfly import *
>>> from dragonfly.test import ElementTester
>>> list_fruit = List("list_fruit")
>>> element = Sequence([Literal("item"), ListRef("list_fruit_ref", list_fruit)])
>>> tester_fruit = ElementTester(element)
>>> # Explicitly load tester grammar because lists can only be updated
>>> # for loaded grammars.
>>> tester_fruit.load()

Empty lists cannot be recognized:

>>> tester_fruit.recognize("item")
RecognitionFailure
>>> tester_fruit.recognize("item apple")
RecognitionFailure

A list update is automatically available for recognition without reloading
the grammar:

>>> tester_fruit.recognize("item apple")
RecognitionFailure

>>> list_fruit.append("apple")
>>> list_fruit
['apple']
>>> tester_fruit.recognize("item apple")
[u'item', u'apple']
>>> tester_fruit.recognize("item banana")
RecognitionFailure

>>> list_fruit.append("banana")
>>> list_fruit
['apple', 'banana']
>>> tester_fruit.recognize("item apple")
[u'item', u'apple']
>>> tester_fruit.recognize("item banana")
[u'item', u'banana']
>>> tester_fruit.recognize("item apple banana")
RecognitionFailure

>>> list_fruit.remove("apple")
>>> list_fruit
['banana']
>>> tester_fruit.recognize("item apple")
RecognitionFailure
>>> tester_fruit.recognize("item banana")
[u'item', u'banana']

Lists can contain the same value multiple times, although that does not
affect recognition:

>>> list_fruit.append("banana")
>>> list_fruit
['banana', 'banana']
>>> tester_fruit.recognize("item banana")
[u'item', u'banana']
>>> tester_fruit.recognize("item banana banana")
RecognitionFailure

Tear down test tooling:

>>> # Explicitly unload tester grammar.
>>> tester_fruit.unload()

Multiple lists

Setup test tooling:

>>> list_meat = List("list_meat")
>>> list_veg = List("list_veg")
>>> element = Sequence([Literal("food"),
... ListRef("list_meat_ref", list_meat),
... ListRef("list_veg_ref", list_veg)])
>>> tester_meat_veg = ElementTester(element)
>>> # Explicitly load tester grammar because lists can only be updated
>>> # for loaded grammars.
>>> tester_meat_veg.load()

Multiple lists can be combined within a single rule:

>>> list_meat.append("steak")
>>> tester_meat_veg.recognize("food steak")
RecognitionFailure
>>> list_veg.append("carrot")
>>> tester_meat_veg.recognize("food steak carrot")
[u'food', u'steak', u'carrot']
>>> list_meat.append("hamburger")
>>> tester_meat_veg.recognize("food hamburger carrot")
[u'food', u'hamburger', u'carrot']

Tear down test tooling:

>>> # Explicitly unload tester grammar.
>>> tester_meat_veg.unload()

A single list can be present multiple times within a rule:

>>> element = Sequence([Literal("carnivore"),
... ListRef("list_meat_ref1", list_meat),
... ListRef("list_meat_ref2", list_meat)])
>>> tester_carnivore = ElementTester(element)
>>> # Explicitly load tester grammar because lists can only be updated
>>> # for loaded grammars.
>>> tester_carnivore.load()

>>> tester_carnivore.recognize("carnivore steak")
RecognitionFailure
>>> tester_carnivore.recognize("carnivore hamburger steak")
[u'carnivore', u'hamburger', u'steak']
>>> tester_carnivore.recognize("carnivore steak hamburger")
[u'carnivore', u'steak', u'hamburger']
>>> tester_carnivore.recognize("carnivore steak steak")
[u'carnivore', u'steak', u'steak']

>>> list_meat.remove("steak")
>>> tester_carnivore.recognize("carnivore steak hamburger")
RecognitionFailure
>>> tester_carnivore.recognize("carnivore hamburger hamburger")
[u'carnivore', u'hamburger', u'hamburger']

Tear down test tooling:

>>> # Explicitly unload tester grammar.
>>> tester_carnivore.unload()

Unique list names

The names of lists must be unique within a grammar:

>>> list_fruit1 = List("list_fruit")
>>> list_fruit2 = List("list_fruit")
>>> element = Sequence([Literal("fruit"),
... ListRef("list_fruit1_ref", list_fruit1),
... ListRef("list_fruit2_ref", list_fruit2)])
>>> tester_fruit = ElementTester(element)
>>> # Explicitly load tester grammar because lists can only be updated
>>> # for loaded grammars.
>>> tester_fruit.load()
Traceback (most recent call last):
 ...
GrammarError: Two lists with the same name 'list_fruit' not allowed.

ListRef construction

ListRef objects must be created referencing the correct type of list
object:

>>> print ListRef("list_fruit_ref", []) # Fails.
Traceback (most recent call last):
 ...
TypeError: List argument to ListRef constructor must be a Dragonfly list.
>>> print ListRef("list_fruit_ref", List("list_fruit")) # Succeeds.
ListRef('list_fruit')

RecognitionObserver base class

Note

RecognitionObserver instances can be used for both
the DNS and the WSR backend engines. However, WSR does not offer
access to the words recognized by a different context, and therefore
the RecognitionObservers.on_recognition() will always
be called with words = False.

Test fixture initialization:

>>> from dragonfly import *
>>> from dragonfly.test import ElementTester

Trivial demonstration of RecognitionObserver class

The following class is derived from RecognitionObserver and prints
when its callback methods are called:

>>> class RecognitionObserverDemo(RecognitionObserver):
... def on_begin(self):
... print "on_begin()"
... def on_recognition(self, words):
... print "on_recognition(): %s" % (words,)
... def on_failure(self):
... print "on_failure()"
...
>>> recobs_demo = RecognitionObserverDemo()
>>> recobs_demo.register()
>>> test_lit = ElementTester(Literal("hello world"))
>>> test_lit.recognize("hello world")
on_begin()
on_recognition(): (u'hello', u'world')
u'hello world'
>>> test_lit.recognize("hello universe")
on_begin()
on_failure()
RecognitionFailure
>>> recobs_demo.unregister()

Tests for RecognitionObserver class

A class derived from RecognitionObserver which will be used here for
testing it:

>>> class RecognitionObserverTester(RecognitionObserver):
... def __init__(self):
... RecognitionObserver.__init__(self)
... self.waiting = False
... self.words = None
... def on_begin(self):
... self.waiting = True
... def on_recognition(self, words):
... self.waiting = False
... self.words = words
... def on_failure(self):
... self.waiting = False
... self.words = False
...
>>> test_recobs = RecognitionObserverTester()
>>> test_recobs.register()
>>> test_recobs.waiting, test_recobs.words
(False, None)

Simple literal element recognitions:

>>> test_lit = ElementTester(Literal("hello world"))
>>> test_lit.recognize("hello world")
u'hello world'
>>> test_recobs.waiting, test_recobs.words
(False, (u'hello', u'world'))
>>> test_lit.recognize("hello universe")
RecognitionFailure
>>> test_recobs.waiting, test_recobs.words
(False, False)

Integer element recognitions:

>>> test_int = ElementTester(Integer(min=1, max=100))
>>> test_int.recognize("seven")
7
>>> test_recobs.waiting, test_recobs.words
(False, (u'seven',))
>>> test_int.recognize("forty seven")
47
>>> test_recobs.waiting, test_recobs.words
(False, (u'forty', u'seven'))
>>> test_int.recognize("one hundred")
RecognitionFailure
>>> test_recobs.waiting, test_recobs.words
(False, False)
>>> test_lit.recognize("hello world")
u'hello world'

RecognitionHistory class

Basic usage of the RecognitionHistory class:

>>> history = RecognitionHistory()
>>> test_lit.recognize("hello world")
u'hello world'
>>> # Not yet registered, so didn't receive previous recognition.
>>> history
[]
>>> history.register()
>>> test_lit.recognize("hello world")
u'hello world'
>>> # Now registered, so should have received previous recognition.
>>> history
[(u'hello', u'world')]
>>> test_lit.recognize("hello universe")
RecognitionFailure
>>> # Failed recognitions are ignored, so history is unchanged.
>>> history
[(u'hello', u'world')]
>>> test_int.recognize("eighty six")
86
>>> history
[(u'hello', u'world'), (u'eighty', u'six')]

The RecognitionHistory class allows its maximum length to be set:

>>> history = RecognitionHistory(3)
>>> history.register()
>>> history
[]
>>> for i, word in enumerate(["one", "two", "three", "four", "five"]):
... assert test_int.recognize(word) == i + 1
>>> history
[(u'three',), (u'four',), (u'five',)]

The length must be a positive integer. A length of 0 is not allowed:

>>> history = RecognitionHistory(0)
Traceback (most recent call last):
 ...
ValueError: length must be a positive int or None, received 0.

Minimum length is 1:

>>> history = RecognitionHistory(1)
>>> history.register()
>>> history
[]
>>> for i, word in enumerate(["one", "two", "three", "four", "five"]):
... assert test_int.recognize(word) == i + 1
>>> history
[(u'five',)]

Action doctests

ActionBase test suite

The ActionBase class implements various basing behaviors of
action objects.

Test tool

The following PrintAction is used in this test suite:

>>> from dragonfly import ActionBase, Repeat
>>> class PrintAction(ActionBase):
... def __init__(self, name):
... ActionBase.__init__(self)
... self._name = name
... def execute(self, data=None):
... if data: print "executing %r %r" % (self._name, data)
... else: print "executing %r" % (self._name,)
...
>>> a = PrintAction("a")
>>> a.execute()
executing 'a'
>>> a.execute({"foo": 2})
executing 'a' {'foo': 2}
>>>

Concatenating actions

Concatenation of multiple actions:

>>> b = PrintAction("b")
>>> (a + b).execute() # Simple concatenation.
executing 'a'
executing 'b'
>>> (a + b).execute({"foo": 2}) # Simple concatenation.
executing 'a' {'foo': 2}
executing 'b' {'foo': 2}

>>> c = a
>>> c += b # In place concatenation.
>>> c.execute({"foo": 2})
executing 'a' {'foo': 2}
executing 'b' {'foo': 2}
>>> c += a # In place concatenation.
>>> c.execute()
executing 'a'
executing 'b'
executing 'a'

>>> (c + c).execute() # Same object concatenation.
executing 'a'
executing 'b'
executing 'a'
executing 'a'
executing 'b'
executing 'a'

Repeating actions

Actions can be repeated by multiplying them with a factor:

>>> (a * 3).execute()
executing 'a'
executing 'a'
executing 'a'
>>> ((a + b) * 2).execute({"foo": 2})
executing 'a' {'foo': 2}
executing 'b' {'foo': 2}
executing 'a' {'foo': 2}
executing 'b' {'foo': 2}

>>> factor = Repeat(3) # Integer-factor repetition.
>>> (a * factor).execute()
executing 'a'
executing 'a'
executing 'a'
>>> factor = Repeat(extra="foo") # Named-factor repetition.
>>> ((a + b) * factor).execute({"foo": 2})
executing 'a' {'foo': 2}
executing 'b' {'foo': 2}
executing 'a' {'foo': 2}
executing 'b' {'foo': 2}
>>> ((a + b) * factor).execute({"bar": 2})
Traceback (most recent call last):
 ...
ActionError: No extra repeat factor found for name 'foo'

>>> c = a
>>> c.execute({"foo": 2})
executing 'a' {'foo': 2}
>>> c *= Repeat(extra="foo")
>>> c.execute({"foo": 2})
executing 'a' {'foo': 2}
executing 'a' {'foo': 2}
>>> c += b
>>> c *= 2
>>> c.execute({"foo": 1})
executing 'a' {'foo': 1}
executing 'b' {'foo': 1}
executing 'a' {'foo': 1}
executing 'b' {'foo': 1}
>>> c *= 2
>>> c.execute({"foo": 0})
executing 'b' {'foo': 0}
executing 'b' {'foo': 0}
executing 'b' {'foo': 0}
executing 'b' {'foo': 0}
>>> c *= 0
>>> c.execute({"foo": 1})

Binding data to actions

Binding of data to actions:

>>> a_bound = a.bind({"foo": 2})
>>> a_bound.execute()
executing 'a' {'foo': 2}

>>> b_bound = b.bind({"bar": 3})
>>> b_bound.execute()
executing 'b' {'bar': 3}

Earliest bound data is used during execution:

>>> ab_bound = a_bound + b_bound
>>> ab_bound.execute({"bar": "later"})
executing 'a' {'foo': 2, 'bar': 'later'}
executing 'b' {'bar': 3}

>>> ab_bound = (a_bound + b_bound).bind({"bar": "later"})
>>> ab_bound.execute()
executing 'a' {'foo': 2, 'bar': 'later'}
executing 'b' {'bar': 3}

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dragonfly	

 	
 	
 dragonfly.actions.action_base	

 	
 	
 dragonfly.actions.action_focuswindow	

 	
 	
 dragonfly.actions.action_function	

 	
 	
 dragonfly.actions.action_key	

 	
 	
 dragonfly.actions.action_mimic	

 	
 	
 dragonfly.actions.action_mouse	

 	
 	
 dragonfly.actions.action_paste	

 	
 	
 dragonfly.actions.action_pause	

 	
 	
 dragonfly.actions.action_playback	

 	
 	
 dragonfly.actions.action_startapp	

 	
 	
 dragonfly.actions.action_text	

 	
 	
 dragonfly.actions.action_waitwindow	

 	
 	
 dragonfly.config	

 	
 	
 dragonfly.engines.backend_natlink	

 	
 	
 dragonfly.engines.backend_natlink.dictation	

 	
 	
 dragonfly.engines.backend_sapi5	

 	
 	
 dragonfly.engines.base.dictation	

 	
 	
 dragonfly.grammar.context	

 	
 	
 dragonfly.grammar.elements_basic	

 	
 	
 dragonfly.grammar.rule_base	

 	
 	
 dragonfly.grammar.rule_compound	

 	
 	
 dragonfly.grammar.rule_mapping	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_copy_sequence() (ElementBase method)

 	_get_children() (Alternative method)

 	(ElementBase method)

 	(Optional method)

 	(Sequence method)

 	
 	_process_begin() (Grammar method)

A

 	
 	ActionBase (class in dragonfly.actions.action_base)

 	active (Rule attribute)

 	
 	Alternative (class in dragonfly.grammar.elements_basic)

 	AppContext (class in dragonfly.grammar.context)

 	application (ConnectionGrammar attribute)

B

 	
 	BringApp (class in dragonfly.actions.action_startapp)

C

 	
 	children (Alternative attribute)

 	(DictListRef attribute)

 	(Dictation attribute)

 	(ElementBase attribute)

 	(ListRef attribute)

 	(Literal attribute)

 	(Optional attribute)

 	(Repetition attribute)

 	(RuleRef attribute)

 	(Sequence attribute)

 	Choice (class in dragonfly.grammar.elements_compound)

 	
 	Clipboard (class in dragonfly.windows.clipboard)

 	Compound (class in dragonfly.grammar.elements_compound)

 	CompoundRule (class in dragonfly.grammar.rule_compound)

 	Config (class in dragonfly.config)

 	connect() (EngineBase method)

 	connection() (EngineBase method)

 	connection_down() (ConnectionGrammar method)

 	connection_up() (ConnectionGrammar method)

 	ConnectionGrammar (class in dragonfly.grammar.grammar_connection)

 	Context (class in dragonfly.grammar.context)

 	copy_from_system() (Clipboard method)

 	copy_to_system() (Clipboard method)

D

 	
 	decode() (ElementBase method)

 	dependencies() (Dictation method)

 	(ElementBase method)

 	(Literal method)

 	Dictation (class in dragonfly.grammar.elements_basic)

 	DictationContainerBase (class in dragonfly.engines.base.dictation)

 	DictListRef (class in dragonfly.grammar.elements_basic)

 	disable() (Grammar method)

 	(Rule method)

 	disconnect() (EngineBase method)

 	dragonfly.actions.action_base (module)

 	dragonfly.actions.action_focuswindow (module)

 	dragonfly.actions.action_function (module)

 	dragonfly.actions.action_key (module)

 	dragonfly.actions.action_mimic (module)

 	dragonfly.actions.action_mouse (module)

 	
 	dragonfly.actions.action_paste (module)

 	dragonfly.actions.action_pause (module)

 	dragonfly.actions.action_playback (module)

 	dragonfly.actions.action_startapp (module)

 	dragonfly.actions.action_text (module)

 	dragonfly.actions.action_waitwindow (module)

 	dragonfly.config (module)

 	dragonfly.engines.backend_natlink (module)

 	dragonfly.engines.backend_natlink.dictation (module)

 	dragonfly.engines.backend_sapi5 (module)

 	dragonfly.engines.base.dictation (module)

 	dragonfly.grammar.context (module)

 	dragonfly.grammar.elements_basic (module)

 	dragonfly.grammar.rule_base (module)

 	dragonfly.grammar.rule_compound (module)

 	dragonfly.grammar.rule_mapping (module)

E

 	
 	element (Rule attribute)

 	element_tree_string() (ElementBase method)

 	ElementBase (class in dragonfly.grammar.elements_basic)

 	enable() (Grammar method)

 	(Rule method)

 	enabled (Grammar attribute)

 	(Rule attribute)

 	
 	engine (Grammar attribute)

 	EngineBase (class in dragonfly.engines.base)

 	enter_context() (Grammar method)

 	exit_context() (Grammar method)

 	exported (Rule attribute)

F

 	
 	FocusWindow (class in dragonfly.actions.action_focuswindow)

 	format() (DictationContainerBase method)

 	(NatlinkDictationContainer method)

 	
 	Function (class in dragonfly.actions.action_function)

G

 	
 	generate_config_file() (Config method)

 	get_engine() (in module dragonfly.engines.backend_natlink)

 	(in module dragonfly.engines.backend_sapi5)

 	get_format() (Clipboard method)

 	
 	get_repetitions() (Repetition method)

 	get_text() (Clipboard method)

 	Grammar (class in dragonfly.grammar.grammar_base)

 	grammar (Rule attribute)

 	gstring() (ElementBase method)

H

 	
 	has_format() (Clipboard method)

 	
 	has_text() (Clipboard method)

I

 	
 	imported (Rule attribute)

 	is_engine_available() (in module dragonfly.engines.backend_natlink)

 	(in module dragonfly.engines.backend_sapi5)

 	
 	Item (class in dragonfly.config)

K

 	
 	Key (class in dragonfly.actions.action_key)

L

 	
 	language (EngineBase attribute)

 	ListRef (class in dragonfly.grammar.elements_basic)

 	lists (Grammar attribute)

 	
 	Literal (class in dragonfly.grammar.elements_basic)

 	load() (Config method)

 	(Grammar method)

 	loaded (Grammar attribute)

M

 	
 	MappingRule (class in dragonfly.grammar.rule_mapping)

 	matches() (Context method)

 	
 	Mimic (class in dragonfly.actions.action_mimic)

 	mimic() (EngineBase method)

 	Mouse (class in dragonfly.actions.action_mouse)

N

 	
 	name (EngineBase attribute)

 	(Grammar attribute)

 	(Rule attribute)

 	
 	NatlinkDictationContainer (class in dragonfly.engines.backend_natlink.dictation)

O

 	
 	Optional (class in dragonfly.grammar.elements_basic)

P

 	
 	Paste (class in dragonfly.actions.action_paste)

 	Pause (class in dragonfly.actions.action_pause)

 	Playback (class in dragonfly.actions.action_playback)

 	process_begin() (Grammar method)

 	(Rule method)

 	
 	process_recognition() (CompoundRule method)

 	(MappingRule method)

 	(Rule method)

R

 	
 	Repeat (class in dragonfly.actions.action_base)

 	Repetition (class in dragonfly.grammar.elements_basic)

 	
 	Rule (class in dragonfly.grammar.rule_base)

 	RuleRef (class in dragonfly.grammar.elements_basic)

 	rules (Grammar attribute)

S

 	
 	Section (class in dragonfly.config)

 	Sequence (class in dragonfly.grammar.elements_basic)

 	
 	speak() (EngineBase method)

 	speed (Playback attribute)

 	StartApp (class in dragonfly.actions.action_startapp)

T

 	
 	Text (class in dragonfly.actions.action_text)

U

 	
 	unload() (Grammar method)

V

 	
 	validate() (Item method)

 	value() (Alternative method)

 	(ElementBase method)

 	(Optional method)

 	(Repetition method)

 	(Rule method)

 	(Sequence method)

W

 	
 	WaitWindow (class in dragonfly.actions.action_waitwindow)

 	
 	words (DictationContainerBase attribute)

Word formatting for DNS v10 and lower

The
dragonfly.engines.backend_natlink.dictation_format.WordParserDns10
class converts DNS v10 (and lower) recognition results to
dragonfly.engines.backend_natlink.dictation_format.Word
objects which contain written and spoken forms together with formatting
information. For example:

>>> from dragonfly.engines.backend_natlink.dictation_format import WordParserDns10
>>> parser_dns10 = WordParserDns10()
>>> print parser_dns10.parse_input("hello")
Word(u'hello')
>>> print parser_dns10.parse_input(".\\full-stop")
Word(u'.', u'full-stop', no_space_before, two_spaces_after, cap_next, not_after_period)

Nonexistent words can be parsed, but don’t have any formatting info:

>>> print parser_dns10.parse_input("nonexistent-word")
Word(u'nonexistent-word')

This helper function allows for a compact notation of input string tests:

>>> from dragonfly.engines.backend_natlink.dictation_format import WordFormatter
>>> def format_dictation_dns10(input):
... if isinstance(input, basestring):
... input = input.split()
... return WordFormatter(parser=WordParserDns10()).format_dictation(input)
>>> format_dictation_dns10("hello world")
u'hello world'

The following tests cover in-line capitalization:

>>> format_dictation_dns10("\\All-Caps hello world")
u'HELLO world'
>>> format_dictation_dns10("\\Caps-On hello world")
u'Hello World'
>>> format_dictation_dns10("\\Caps-On hello of the world")
u'Hello of the World'
>>> format_dictation_dns10("hello \\Caps-On of the world")
u'hello Of the World'
>>> format_dictation_dns10("\\Caps-On hello world \\Caps-Off goodbye universe")
u'Hello World goodbye universe'
>>> format_dictation_dns10("hello \\All-Caps-On world goodbye \\All-Caps-Off universe")
u'hello WORLD GOODBYE universe'
>>> format_dictation_dns10("hello \\All-Caps-On world \\Caps-On goodbye universe")
u'hello WORLD Goodbye Universe'
>>> format_dictation_dns10("hello \\All-Caps-On world goodbye \\Caps-Off universe")
u'hello WORLD GOODBYE universe'

The following tests cover in-line spacing:

>>> format_dictation_dns10("\\No-Space hello world")
u'hello world'
>>> format_dictation_dns10("hello \\No-Space world")
u'helloworld'
>>> format_dictation_dns10("\\No-Space-On hello world")
u'helloworld'
>>> format_dictation_dns10("\\No-Space-On hello world goodbye \\No-Space-Off universe")
u'helloworldgoodbye universe'
>>> format_dictation_dns10("\\No-Space-On hello world \\No-Space-Off goodbye universe")
u'helloworld goodbye universe'
>>> format_dictation_dns10("\\No-Space-On hello world \\space-bar goodbye universe")
u'helloworld goodbyeuniverse'

>>> # The following are different from some DNS installations!
>>> format_dictation_dns10("hello \\No-Space-On world goodbye universe")
u'helloworldgoodbyeuniverse'
>>> format_dictation_dns10("hello \\No-Space-On world \\space-bar goodbye universe")
u'helloworld goodbyeuniverse'

The following tests cover punctuation and other symbols that influence
spacing and capitalization of surrounding words:

>>> format_dictation_dns10("hello \\New-Line world")
u'hello\nworld'
>>> format_dictation_dns10("hello \\New-Paragraph world")
u'hello\n\nWorld'
>>> format_dictation_dns10("hello .\\full-stop world")
u'hello. World'
>>> format_dictation_dns10("hello ,\\comma world")
u'hello, world'
>>> format_dictation_dns10("hello .\\full-stop \\New-Line world")
u'hello.\nWorld'
>>> format_dictation_dns10("hello -\\hyphen world")
u'hello-world'
>>> format_dictation_dns10("hello (\\left-paren world")
u'hello (world'
>>> format_dictation_dns10("hello)\\right-paren world")
u'hello) world'
>>> format_dictation_dns10("hello \\\\backslash world")
u'hello\\world'

The ”.” character at the end of certain words is “swallowed” by following
words that start with that same character:

>>> format_dictation_dns10(["hello", "etc.\\et cetera", "world"])
u'hello etc. world'
>>> format_dictation_dns10(["hello", "etc.\\et cetera", ".\\full-stop", "world"])
u'hello etc. World'
>>> format_dictation_dns10(["hello", "etc.\\et cetera", "...\\ellipsis", "world"])
u'hello etc... world'
>>> # The following are different from some DNS installations!
>>> format_dictation_dns10("hello .\\full-stop ...\\ellipsis world")
u'hello... world'
>>> format_dictation_dns10("hello ...\\ellipsis .\\full-stop world")
u'hello... World'

Letters and numbers spoken in line within dictation allow efficient spelling
of for example words not present in the dictionary:

>>> format_dictation_dns10(["a\\alpha", "b\\bravo",
... "c\\charlie", "d\\delta",
... "e\\echo",
... "x\\xray", "z\\zulu",
... "y\\yankee"])
u'abcdexzy'

Words may contain spaces in their written and/or spoken forms. For example
a custom word added by the user might have the following form with a space
in both spoken and written forms:

>>> format_dictation_dns10(["custom written\\custom spoken"])
u'custom written'
>>> format_dictation_dns10(["custom written\\custom spoken",
... "\\All-Caps",
... "custom written\\custom spoken",
... "\\Cap",
... "custom written\\custom spoken"])
u'custom written CUSTOM written Custom written'
>>> format_dictation_dns10(["custom written\\custom spoken",
... "\\Caps-On",
... "custom written\\custom spoken",
... "\\All-Caps-On",
... "custom written\\custom spoken",
... "\\All-Caps-Off",
... "custom written\\custom spoken"])
u'custom written Custom Written CUSTOM WRITTEN custom written'

Certain words, such as numbers, are not formatted according to the
same rules as “normal” words, i.e. those which specified written and spoken
forms and formatting info.

>>> format_dictation_dns10(“one two three”)
u‘123’

Word formatting for DNS v11 and higher

The
dragonfly.engines.backend_natlink.dictation_format.WordParserDns11
class converts DNS v11 (and higher) recognition results to
dragonfly.engines.backend_natlink.dictation_format.Word
objects which contain written and spoken forms together with formatting
information. For example:

>>> from dragonfly.engines.backend_natlink.dictation_format import WordParserDns11
>>> parser_dns11 = WordParserDns11()
>>> print parser_dns11.parse_input("hello")
Word(u'hello')
>>> print parser_dns11.parse_input(".\\period\\full-stop")
Word(u'.', u'full-stop', no_space_before, two_spaces_after, cap_next, not_after_period)

Nonexistent words can be parsed, but don’t have any formatting info:

>>> print parser_dns11.parse_input("nonexistent-word")
Word(u'nonexistent-word')

This helper function allows for a compact notation of input string tests:

>>> from dragonfly.engines.backend_natlink.dictation_format import WordFormatter
>>> def format_dictation_dns11(input):
... if isinstance(input, basestring):
... input = input.split()
... return WordFormatter(parser=WordParserDns11()).format_dictation(input)
>>> format_dictation_dns11("hello world")
u'hello world'

The following tests cover in-line capitalization:

>>> format_dictation_dns11("\\all-caps\\All-Caps hello world")
u'HELLO world'
>>> format_dictation_dns11("\\caps-on\\Caps-On hello world")
u'Hello World'
>>> format_dictation_dns11("\\caps-on\\Caps-On hello of the world")
u'Hello Of The World'
>>> # Note: output above should probably be u'Hello of the World'
>>> format_dictation_dns11("hello \\caps-on\\Caps-On of the world")
u'hello Of The World'
>>> # Note: output above should probably be u'hello Of the World'
>>> format_dictation_dns11("\\caps-on\\Caps-On hello world \\caps-off\\Caps-Off goodbye universe")
u'Hello World goodbye universe'
>>> format_dictation_dns11("hello \\all-caps-on\\All-Caps-On world goodbye \\all-caps-off\\All-Caps-Off universe")
u'hello WORLD GOODBYE universe'
>>> format_dictation_dns11("hello \\all-caps-on\\All-Caps-On world \\caps-on\\Caps-On goodbye universe")
u'hello WORLD Goodbye Universe'
>>> format_dictation_dns11("hello \\all-caps-on\\All-Caps-On world goodbye \\caps-off\\Caps-Off universe")
u'hello WORLD GOODBYE universe'

The following tests cover in-line spacing:

>>> format_dictation_dns11("\\no-space\\No-Space hello world")
u'hello world'
>>> format_dictation_dns11("hello \\no-space\\No-Space world")
u'helloworld'
>>> format_dictation_dns11("\\no-space-on\\No-Space-On hello world")
u'helloworld'
>>> format_dictation_dns11("\\no-space-on\\No-Space-On hello world goodbye \\no-space-off\\No-Space-Off universe")
u'helloworldgoodbye universe'
>>> format_dictation_dns11("\\no-space-on\\No-Space-On hello world \\no-space-off\\No-Space-Off goodbye universe")
u'helloworld goodbye universe'
>>> format_dictation_dns11("\\no-space-on\\No-Space-On hello world \\space-bar\\space-bar goodbye universe")
u'helloworld goodbyeuniverse'

>>> # The following are different from some DNS installations!
>>> format_dictation_dns11("hello \\no-space-on\\No-Space-On world goodbye universe")
u'helloworldgoodbyeuniverse'
>>> format_dictation_dns11("hello \\no-space-on\\No-Space-On world \\space-bar\\space-bar goodbye universe")
u'helloworld goodbyeuniverse'

The following tests cover punctuation and other symbols that influence
spacing and capitalization of surrounding words:

>>> format_dictation_dns11("hello \\new-line\\New-Line world")
u'hello\nworld'
>>> format_dictation_dns11("hello \\new-paragraph\\New-Paragraph world")
u'hello\n\nWorld'
>>> format_dictation_dns11("hello .\\period\\full-stop world")
u'hello. World'
>>> format_dictation_dns11("hello ,\\comma\\comma world")
u'hello, world'
>>> format_dictation_dns11("hello .\\period\\full-stop \\new-line\\New-Line world")
u'hello.\nWorld'
>>> format_dictation_dns11("hello -\\hyphen\\hyphen world")
u'hello-world'
>>> format_dictation_dns11("hello (\\left-paren\\left-paren world")
u'hello (world'
>>> format_dictation_dns11("hello)\\right-paren\\right-paren world")
u'hello) world'
>>> format_dictation_dns11("hello \\\\hyphen\\backslash world")
u'hello\\world'

The ”.” character at the end of certain words is “swallowed” by following
words that start with that same character:

>>> format_dictation_dns11(["hello", "etc.\\\\et cetera", "world"])
u'hello etc. world'
>>> format_dictation_dns11(["hello", "etc.\\\\et cetera", ".\\period\\full-stop", "world"])
u'hello etc. World'
>>> format_dictation_dns11(["hello", "etc.\\\\et cetera", "...\\ellipsis\\ellipsis", "world"])
u'hello etc... world'
>>> # The following are different from some DNS installations!
>>> format_dictation_dns11("hello .\\period\\full-stop ...\\ellipsis\\ellipsis world")
u'hello... world'
>>> format_dictation_dns11("hello ...\\ellipsis\\ellipsis .\\period\\full-stop world")
u'hello... World'

Letters and numbers spoken in line within dictation allow efficient spelling
of for example words not present in the dictionary:

>>> format_dictation_dns11(["A\\letter\\alpha", "B\\letter\\bravo",
... "C\\letter\\Charlie", "D\\letter\\delta",
... "E\\letter\\echo", "F\\letter\\foxtrot",
... "X\\letter\\X ray", "Z\\letter\\Zulu",
... "Y\\letter\\Yankee"])
u'ABCDEFXZY'
>>> format_dictation_dns11("D\\letter E\\letter F\\letter")
u'DEF'
>>> format_dictation_dns11(["J\\uppercase-letter\\capital J",
... "O\\letter", "H\\letter", "N\\letter"])
u'JOHN'
>>> format_dictation_dns11("J\\letter\\Juliett O\\letter\\Oscar"
... " H\\letter\\hotel N\\letter\\November")
u'JOHN'

Words may contain spaces in their written and/or spoken forms. For example
a custom word added by the user might have the following form with a space
in both spoken and written forms:

>>> format_dictation_dns11(["custom written\\\\custom spoken"])
u'custom written'
>>> format_dictation_dns11(["custom written\\\\custom spoken",
... "\\all-caps\\all caps",
... "custom written\\\\custom spoken",
... "\\cap\\cap",
... "custom written\\\\custom spoken"])
u'custom written CUSTOM written Custom written'
>>> format_dictation_dns11(["custom written\\\\custom spoken",
... "\\caps-on\\caps on",
... "custom written\\\\custom spoken",
... "\\all-caps-on\\all caps on",
... "custom written\\\\custom spoken",
... "\\all-caps-off\\all caps off",
... "custom written\\\\custom spoken"])
u'custom written Custom Written CUSTOM WRITTEN custom written'

Certain words, such as numbers, are not formatted according to the
same rules as “normal” words, i.e. those which specified written and spoken
forms and formatting info.

>>> format_dictation_dns11(“one two three”)
u‘123’
>>> format_dictation_dns11(“one\number two three four”)
u‘1234’
>>> format_dictation_dns11(“thirty four”)
u‘34’

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Dragonfly

 		Introduction

 		Features and target audience

 		Installation

 		Related resources

 		Object model

 		Engines sub-package

 		Actions sub-package

 		Miscellaneous topics

 		Windows sub-package

 		Clipboard toolkit

 		Configuration toolkit

 		Project

 		Code style

 		Commit message format

 		Release versioning

 		Release process

 		Test suite

 		Doctests for the fundamental element classes

 		Doctests for the Compound element class

 		Doctests for the List class

 		RecognitionObserver base class

 		RecognitionHistory class

 		Action doctests

_static/comment-bright.png

_static/comment.png

_static/down.png

