

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dragonfluid 0.9.0.a5 documentation

Welcome to dragonfluid’s documentation!

Contents:

	Introduction
	About

	It’s Not For Everyone

	Quick Start

	How To Speak

	Concepts
	Overview

	Registration

	Intros

	Literalization

	Translation

	Publicly Supported Objects

	Grammars

	Elements

	Rules

	Decorators

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Welcome to dragonfluid!

About

The dragonfluid library is a simple extension to dragonfly [http://dragonfly.readthedocs.org/en/latest/], a library to
create rules or macros that work with Dragon NaturallySpeaking
or Windows Speech Recognition. dragonfluid adds “out of the box”
support for chaining multiple commands in a row without pausing during
speech. You are assumed to be familiar with dragonfly [http://dragonfly.readthedocs.org/en/latest/] and its use.

It’s Not For Everyone

If you have existing voice commands whose words you
absolutely do not want to
alter, dragonfluid might not be for you, especially if those commands consist of
hoots, made up words, or novel syllables. If you are willing to alter your
commands then little should get in your way. I recommend trying in any case
rather than assuming the worst if you’re interested in easy to add on chaining
support, but thought you should know in advance it’s not equally great with all
scenarios.

You may want to read further details regarding The Effect Of Fluidity on command recognition, especially if you have strange commands
or commands you cannot or will not alter.

Quick Start

The easiest way to give it a whirl is to:

	use pip install dragonfluid from the command line to install dragonfluid,
if Python pip is on your path, otherwise it can be located in the Scripts
folder of your Python installation or downloaded. For help installing with
pip, look here [https://pip.pypa.io/en/latest/installing.html].

	or download and unzip a release from here [https://pypi.python.org/pypi/dragonfluid] and from the command line run the
setup script using python setup.py install assuming python.exe is on
your path. For help installing, look here [https://docs.python.org/2/install/].

	once installed, import the following objects into your code,

from dragonfluid import GlobalRegistry, FluidRule, QuickFluidRules

	replace any Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar] class with
GlobalRegistry,

	replace any CompoundRule [http://dragonfly.readthedocs.org/en/latest/rules.html#dragonfly.grammar.rule_compound.CompoundRule]
class with FluidRule,

	replace any MappingRule [http://dragonfly.readthedocs.org/en/latest/rules.html#dragonfly.grammar.rule_mapping.MappingRule] class
with QuickFluidRules,

	reload your macro files!

You don’t have to change all your files at once, but chaining will
generally occur only between dragonfluid rule types added to dragonfluid
grammars.

How To Speak

Just speak naturally. Don’t worry if pauses are needed, speak as if you
trust they are not, and only then address the situations where the intended
functionality does not result.

However, now that you can speak multiple commands in a row,
there is an additional need to say a literal tag before anything that looks
like a command but is not meant to be one. The default literal tag
options are “literal”, “english”, and “English”. For additional details
see the literalization concept section.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Concepts

Overview

dragonfluid is primarily focused on one task – recognizing the occurrence of
commands in the middle an utterance to allow multiple commands to be
spoken in a row without pauses.

When a rule is meant to allow chaining to other rules, it looks
for
registered commands embedded in the utterance that
triggered it, and when it encounters one, the
whole utterance from that first command on is put aside. Once the rule finishes
processing, the
put aside command portion is then mimic [http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic]‘ed. To the speech recognition system,
the mimic [http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic] seems like you just spoke the command right then. And since what was
mimic [http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic]‘ed might contain several chained commands, each rule simply cuts off
the part meant for it, and forwards the rest.

Registration

Registration is the recording of commands that are to be
noticed from within the middle of an utterance. A Registry holds this
information and is consulted by rules that perform chaining when
checking to see if an utterance has embedded commands.

The most common use of a Registry is through the GlobalRegistry, which is a
type of dragonfly [http://dragonfly.readthedocs.org/en/latest/] Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]. It can be
used across files and the rules will all see each other.
It’s a good default choice. If you have a need to isolate some rules, you can
use a RegistryGrammar to hold those rules. A RegistryGrammar or the Registry
it holds can be used locally within a single file, or potentially used across a
subset of files, but it has no awareness of what is registered in the
GlobalRegistry.

Intros

When a rule is registered, the initial fixed
literal text of the command spec is determined and remembered to act as a
trigger that the command occurred. These triggers are referred to as the
intros. This process is largely automatic, but can be guided.

If a spec has only words and no extras elements, such
as:

spec = "next page"
intros = ["next page"]

then the entire spec counts as the intro. If a spec has any extra
elements in it, the intros stop at the first extra they encounter. For
instance:

spec = "go to page <page_number>"
intros = ["go to page"]

This means that any commands whose spec begins with an extra will have an empty
string as its intro, and therefore will not be chained to
from other commands.

Intros is plural, because there can be many:

spec = "(close|quit)"
intros = ["close", "quit"]

And it can get arbitrarily complex:

spec = "(go [to]|at) next line"
intros = ["go next line", "go to next line", "at next line"]

Each intro will be as long as possible until an extra is encountered:

spec = "(insert <part>|delete) below this line"
intros = ["insert", "delete below this line"]

Lastly, consider the following scenario:

spec = "copy <direction> word"
extras = (Choice("direction", {"left":"left", "right":"right"}),)
intros = ["copy"]

The automatic generation of intros stops at the direction extra, but we can
tell that all cases can be determined in advance. The following intros would
result in less need for literal tags:

intros = ["copy left word", "copy right word"]

Rules that undergo registration allow you to supply the intros directly to
override the automatically generated ones, supplied either to the __init__ or as
a class attribute, similar to the spec. So we could supply these improved upon
intros.
There is a short cut option called intro_spec that, instead of supplying
individual intros, lets you give a new spec from which to derive them. Our
original scenario would then look like:

spec = "copy <direction> word"
intros_spec = "copy (left|right) word"
extras = (Choice("direction", {"left":"left", "right":"right"}),)
intros = ["copy left word", "copy right word"]

When supplying intros, directly or through intros_spec, you must supply
appropriate values, for if you have no “zixo” command but you place that in a
list of intros, if “zixo” occurs in the middle of an utterance, it will get
mimic [http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic]‘ed along with all that follows, the mimic will match no commands, and
depending on your setup, that whole rest of the utterance will be lost
and must then be repeated.

Literalization

Literalization in the context of dragonfluid is an indication that something
said, even though it may look like a registered command, is
actually intended as free speech dictation. This is accomplished by
preceded these command impostors with a spoken
literal tag. The default options are “literal”, “english”, and “English”,
and they are configurable. It is Registry‘s that maintain and work with
literal tags.

You don’t necessarily need to literalize every word that begins a command. If
you have a command “drop previous element <words>” in your arsenal but no other
commands begin with the word drop, then you would not need to literalize the
word drop unless it was followed by the words “previous element”. So “drop me a
line” could be said plainly. Commands are recognized only by any one of their
registered intros, avoiding any need for
literalization when possible.

You can further minimize the need for literal tags by crafting your commands to
not sound like things you tend to dictate. Simple strategies include using rarer
words or making commands sound more like headlines or Tarzan speak.

If you actually want to use a literal tag in free speech, just precede it by any
literal tag, including itself. “English English” and “literal English” both just
translate to “English”.

When a literal tag has been literalized to serve as free speech
dictation, it does not serve as a literal tag for what follows.

Translation

Translation in the context of dragonfluid is taking exact words spoken by
the user that may or may not contain literal tags, and
producing the intended free speech that results from removing any literal tags
whenever they are serving the role of literal tags. This is the most common
desired form when grabbing free speech dictation for use in the processing of
your rules, such as when outputting text to an entry field or document.

Translation happens behind the scenes in the Dictation [http://dragonfly.readthedocs.org/en/latest/elements.html?highlight=dictation#dictation-class] elements of
FluidRule‘s. More advanced usage requires a choice of translated versus
non-traslated results, and SplitDictation objects can return either.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Publicly Supported Objects

Below is an exhaustive list of the objects that will be imported upon calling:

from dragonfluid import *

They are mainly ordered by their likelihood of use. You should be familiar with
at least the first four. Beyond that is considered more advanced, but certainly
can still be common place.

GlobalRegistry

FluidRule

QuickFluidRules

ActiveGrammarRule

SplitDictation

SplitForcedDictation

RegisteredRule

ContinuingRule

QuickFluidRule

RegistryGrammar

Registry

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Grammars

	
class GlobalRegistry(name, description=None, context=None, engine=None, **kwargs)

	Bases: dragonfluid._grammars.RegistryGrammar

The GlobalRegistry is a RegistryGrammar with a single globally shared
Registry. It can be used as the Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar] object across many files,
allowing the rules to know about each other for chaining.

	
__init__(name, description=None, context=None, engine=None, **kwargs)

	

	Parameters:	
	name – Passed to dragonfly Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]

	description – Passed to dragonfly Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]

	context – Passed to dragonfly Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]

	engine – Passed to dragonfly Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]

	**kwargs – Passed to RegistryGrammar

	
class RegistryGrammar(name, registry=None, **kwargs)

	Bases: dragonfly.grammar.grammar_base.Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]

A RegistryGrammar is like a normal Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar] object, except it registers
and unregisters RegisteredRule‘s as they are activated and deactivated,
maintaining a registry of those that are currently active.

ContinuingRule‘s that are added to this grammar will automatically use
this object’s registry when seeking out commands embedded in utterances.

	
__init__(name, registry=None, **kwargs)

	

	Parameters:	
	name – Passed to dragonfly Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]

	registry (Registry) – The Registry object that serves as the
active Registration list. It may be shared across
RegistryGrammar instances. If None, a local Registry object is
created.

	**kwargs – Passed safely to dragonfly Grammar [http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar]

	
class Registry(literal_tags=['English', 'english', 'literal'], override_tags=False)

	A registry maintains information about a set of known active rules and the
literal tags that must precede their intros
when their commands are meant as free speech dictation.

Working directly with a Registry object is an advanced use case.

A registry exposes services regarding inspection and parsing of utterances
as it relates to its literal tags and currently actively registered
commands.

	
__init__(literal_tags=['English', 'english', 'literal'], override_tags=False)

	

	Parameters:	
	literal_tags (string list) – These words will function as literalization markers to indicate that what
follows is not a command, but rather free speech dictation.

	override_tags (bool) – If False, the literal_tags supplied to
__init__ will be added to the defaults, otherwise they will
replace them.

	
has_partial(partial_command)

	Returns True if the string supplied is an initial substring of a
registered intro, assuming only full words are supplied.

	
is_registered(intro)

	

	Parameters:	command_intro (string) – A command intro to test for
registration.

	Returns:	True if registered, False otherwise

	Return type:	bool

	
register_rule(rule)

	Adds the rule to a list of known active rules. Not generally called
directly by users. For more information see
the registration concept section.

	
starts_with_registered(words_iterable)

	Returns True if the iterable of strings begins with the words of a
registered command.

	
translate_literals(words_iterable)

	Returns a list of words, stripped of literal tags
in a semantically meaningful way. Final isolated literal_tag’s are
stripped.

When a literal_tag precedes a literal_tag, the second occurrence only
is retained.

In a string of all literal_tag’s, exactly the odd indexed ones
(in a 0-indexed sense) would be returned.

	
unregister_rule(rule)

	Removes the rule from the list of known active rules. Not generally
called directly by users.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Elements

	
class SplitDictation(name, registry=None, forced_dictation=False, **kwargs)

	A rule element used to split recognized dictation into an initial free
dictation part, and a following command part. Either part is optional,
unless the element is initialized with the forced_dictation element to True.

The following example shows this element being used and retrieved in the
standard expected way.

from dragonfluid import RegistryRule, SplitDictation

class SplitterRule(RegistryRule):
 spec = "set name <name_split>"
 extras = (SplitDictation("name_split"),)
 def _process_recognition(self, node, extras):
 name_split = extras["name_split"]
 name = name_split.dictation

The result is a type of container from which parts of the result may be
retrieved. The full list of attributes are individually documented below,
but a simple naming scheme is in place. The first part of the attribute
name indicates the part desired:

	full - The entire utterance

	dictation - The utterance only up to the first accepted command, may
be the empty string if the utterance began with an accepted command

	command - The rest of the utterance starting with the first accepted
command, through the end of the utterance

The second part indicates the return type desired:

	_words - A string list of the words

	_container - The same type of dictation container that a Dictation
element would yield, some derived class of BaseDictationContainer
as appropriate for the speech recognition system in use.

	default - If neither of the above are indicated, the default result type
is a string.

The third part indicates whether literal tags should be retained or
translated out:

	_notrans - Retain the literal tags

	_trans - Strip literal tags and return only the intended content

	default - If neither of the above are indicated, the result will have
the default behavior most common when using the part requested. full and
command parts will retain literal tags, while dictation parts will
strip them so as to only return the intended free speech. Default
translation of the parts applies to all return types.

There is also an issue of formatting. The various dictation containers
have a formatting option. For Windows Speech Recognition there is no real
formatting provided beyond separating words with spaces. Dragon
NaturallySpeaking provides more sophisticated formatting. All return types
except for the _container values have formatting applied to the result
returned. If you absolutely do not want the formatting applied, you must
request the containers directly, from which you can choose to apply
formatting or not. If you choose a _trans container, it will have had
literal tags stripped, but otherwise be unmodified.

	
__init__(name, registry=None, forced_dictation=False, **kwargs)

	

	Parameters:	
	name (string) – The name of this element, used as the keyname in the
extras dictionary passed back to _process_recognition

	registry (Registry) – The Registry instance that determines what
words form a command and what literal tags are in effect. If None,
the ActiveGrammarRule decorator will set the registry of any
RegistryGrammar derived instance the containing rule is added to.

	forced_dictation (bool) – When True, refuses to recognize
utterance-initial commands, so as to ensure this element returns
non-empty free dictation.

	kwargs – Passed safely to Dictation.__init__

	
command

	Alias for command_notrans

	
command_container

	Alias for command_container_notrans

	
command_container_notrans

	Returns any and all content starting from first full command intro, if
any. Content is returned as a BaseDictationContainer of the appropriate
type given the speech recognition system in use, without any
alterations of any sort applied to the container contents.

	
command_container_trans

	Returns any and all content starting from first full command intro, if
any. Content is returned as a BaseDictationContainer of the appropriate
type given the speech recognition system in use, with no formatting
applied yet with literal tags translated to their intended result.

	
command_index

	Returns the 0-based word index at which the first accepted full command
intro occurs, or the index beyond last if no such intro occurs. If
forced_dictation was set True during initialization, any
utterance-initial command will be skipped to ensure dictation content
is non-empty.

	
command_notrans

	Returns any and all content starting from first full command intro, if
any. Content is returned as a string with formatting and with literal
tags retained.

	
command_trans

	Returns any and all content starting from first full command intro, if
any. Content is returned as a string with formatting and with literal
tags retained.

	
command_words

	Alias for command_words_notrans

	
command_words_notrans

	Returns any and all content starting from first full command intro, if
any. Content is returned as a word list with formatting and with
literal tags retained.

	
command_words_trans

	Returns any and all content starting from first full command intro, if
any. Content is returned as a word list with formatting and with
literal tags translated to their intended result.

	
dictation

	Alias for dictation_trans.

	
dictation_container

	Alias for dictation_container_trans.

	
dictation_container_notrans

	Returns any and all content up to the first full command intro, if any.
Content is returned as a BaseDictationContainer of the appropriate type
given the speech recognition system in use, without any alterations
of any sort applied to the container contents.

	
dictation_container_trans

	Returns any and all content up to the first full command intro, if any.
Content is returned as a BaseDictationContainer of the appropriate type
given the speech recognition system in use, with no formatting applied
yet with literal tags translated to their intended result.

	
dictation_notrans

	Returns any and all content up to the first full command intro, if any.
Content is returned as a string with formatting and with literal tags
retained.

	
dictation_trans

	Returns any and all content up to the first full command intro, if any.
Content is returned as a string with formatting and with literal tags
translated to their intended result.

	
dictation_words

	Alias for dictation_words_trans.

	
dictation_words_notrans

	Returns any and all content up to the first full command intro, if any.
Content is returned as a word list with formatting and with literal
tags retained.

	
dictation_words_trans

	Returns any and all content up to the first full command intro, if any.
Content is returned as a word list with formatting and with literal
tags translated to their intended result.

	
full

	Alias for full_notrans.

	
full_container

	Alias for full_container_notrans.

	
full_container_notrans

	Returns the full content, as a BaseDictationContainer of the
appropriate type given the speech recognition system in use, without
any alterations of any sort applied to the container contents.

	
full_container_trans

	Returns the full content, as a BaseDictationContainer of the
appropriate type given the speech recognition system in use, with no
formatting applied yet with literal tags translated to their intended result.

	
full_notrans

	Returns the full content, as a string, with formatting applied and with
literal tags retained.

	
full_trans

	Returns the full content, as a string, with formatting applied and with
literal tags translated to their intended result.

	
full_words

	Alias for full_words_notrans.

	
full_words_notrans

	Returns the full content, as a word list, with formatting applied and
with literal tags retained.

	
full_words_trans

	Returns the full content, as a word list, with formatting applied and
with literal tags translated to their intended result.

	
translate(words_iterable)

	Returns a word list, as translated.

	
class SplitForcedDictation(name, registry=None, **kwargs)

	A SplitDictation with forced_dictation set to True, guaranteed to return
a value for dictation, even if it must ignore an utterance-initial command
from which to provide it.

	
__init__(name, registry=None, **kwargs)

	

	Parameters:	
	name (string) – The name of this element, used as the keyname in the
extras dictionary passed back to _process_recognition

	registry (_Registry) – The _Registry instance that determines what
words form a command

	kwargs – Passed safely to SplitDictation

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Rules

	
class FluidRule(**kwargs)

	Bases: dragonfluid._rules.RegisteredRule, dragonfluid._rules.ContinuingRule

A FluidRule is both a RegisteredRule and a ContinuingRule, meaning it
can be chained to from other commands, and then chain off
to further commands. This is the most common case, for general use unless
you have specific needs. These always attempt to chain automatically.

It must be added to a RegistryGrammar, such as the GlobalRegistry,
to enabled all features.

	
__init__(**kwargs)

	

	Parameters:	**kwargs – passed to ContinuingRule and RegisteredRule

	
class QuickFluidRules(grammar)

	Used like a MappingRule [http://dragonfly.readthedocs.org/en/latest/rules.html#mappingrule-class] but results in FluidRule‘s rather than simple
CompoundRule [http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class]‘s.

The mapping attribute is extended. In addition to the normal key/value
pairs of spec/action, a value may also be a list or tuple whose first
element is the usual action, and whose second element is a dict of
parameters to be passed as **kwargs to QuickFluidRule.

	
__init__(grammar)

	Not usually called directly, but rather via ActiveGrammarRule.

	Parameters:	grammar – The Grammar to add rules to, generally a
RegistryGrammar such as the GlobalRegistry.

	
class RegisteredRule(intros=None, intros_spec=None, **kwargs)

	A rule that can undergo registration to allow its command
to be noticed in the middle of an utterance, allowing other commands to
pass off to this rule. It must be added to a RegistryGrammar, such as the
GlobalRegistry, for the registration to actually be performed. Otherwise,
it acts like a normal CompoundRule [http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class].

	
__init__(intros=None, intros_spec=None, **kwargs)

	For information regarding intros and intros_spec, refer to the
intros documentation.

	Parameters:	
	intros (string, string list, or None) – If None, the command intros
will be automatically determined from the spec, otherwise any string
provided, by itself or in a list, will be registered as an intro of
the command. If supplied, overrides any provided intros_spec.

	intros_spec (string) – If supplied, will be parsed to obtained the
intros for the command, similar in manner to how spec is parsed.

	**kwargs – passed safely to CompoundRule [http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class]

	
class ContinuingRule(**kwargs)

	A rule that automatically looks for embedded commands and chains to
them. It must be added to a RegistryGrammar, such as the
GlobalRegistry to enable all features.

	
__init__(**kwargs)

	

	Parameters:	**kwargs – passed safely to CompoundRule [http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class]

	
class QuickFluidRule(spec, action, args={}, **kwargs)

	Bases: dragonfluid._rules.FluidRule

A shortcut to assign an action [http://dragonfly.readthedocs.org/en/latest/actions.html] to a spec.

Example:

rule = QuickFluidRule("press home key", Key("home"))

	
__init__(spec, action, args={}, **kwargs)

	

	Parameters:	
	spec (string) – The spec for this command, from which intros will be determined.

	action (a dragonfly action [http://dragonfly.readthedocs.org/en/latest/actions.html]) – The action to be executed when this
command is said.

	args (dict) – Provides a way to add to or modify the extras
dictionary. The args dictionary has keys of name strings, items of
function callbacks. The callbacks are supplied a single parameter
of a dictionary of extras, and their return value is assigned to
the extra named by the key. When the action is executed, it
will then have these final values available to it.

	**kwargs – Passed to FluidRule, except "name" and "spec"
ignored.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Decorators

	
ActiveGrammarRule(grammar)

	A rule class decorator to automatically instantiate and add the rule to the
grammar specified.

Example:

from dragonfly import Grammar, CompoundRule, MappingRule
from dragonfluid import ActiveGrammarRule, FluidRule, QuickFluidRules

my_grammar_instance = Grammar("my_grammar")

@ActiveGrammarRule(my_grammar_instance)
class MyRule(CompoundRule):
 pass

@ActiveGrammarRule(my_grammar_instance)
class MyRules(MappingRule):
 pass

@ActiveGrammarRule(my_grammar_instance)
class MyFluidRule(FluidRule):
 pass

@ActiveGrammarRule(my_grammar_instance)
class MyQuickRules(QuickFluidRules):
 pass

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dragonfluid 0.9.0.a5 documentation

Glossary

	chaining

	The ability to invoke multiple recognition elements in a row by speaking
them as a single utterance, i.e. without pausing between them.
In dragonfluid, chains may be of any length.
Depending on the scenario, two neighboring chained elements may be
comprised of free speech dictation and a command, in either order, or a
pair of commands.

Only rules derived from ContinuingRule will pass off, or chain, to
successive commands.

	command action

	The action executed when a rule is triggered by its
command.

	command

	Spoken content within an utterance that is meant to trigger the
execution of a command action. Often specified in the form of a
spec. In contrast with dictation.

	dictation
free speech dictation

	Spoken content within an utterance that is meant to be captured
as its textual representation, generally as a means to supply content to
a command action, such as for printing to the screen. In
contrast with a command.

	dictation container

	A type of value produced by a Dictation [http://dragonfly.readthedocs.org/en/latest/elements.html#dragonfly.grammar.elements_basic.Dictation] element, derived from
DictationContainerBase [http://dragonfly.readthedocs.org/en/latest/engines.html#dragonfly.engines.base.dictation.DictationContainerBase], and specific
to the speech recognition system in use. The elements provided by
dragonfluid, such a SplitDictation can also return these containers
upon request.

	embedded command

	A command within an utterance that does not occur at the
beginning of the utterance.

	extras

	Broadly speaking, an extra is a part of a command that hears and results
in a certain type of content.

An extra uses a named element, derived from
ElementBase [http://dragonfly.readthedocs.org/en/latest/elements.html#dragonfly.grammar.elements_basic.ElementBase],
and provides a value, such as text or a dictation container.
Dragonfly documentation provides a list of elements [http://dragonfly.readthedocs.org/en/latest/elements.html#refelementclasses].

It is often used here as a term for the dictionary of extras passed
to the _process_recognition callback of a rule. You are generally
expected to know how to access the various extras from this dictionary,
and when documentation states that extras are passed to or returned from
a function, the form implied is this dictionary. Note that this
dictionary generally does not container the underlying element that
generates a value, so extras are distinct from elements, with extras
using elements and producing values under the same name.

	intro
command intro

	The initial part of a command’s spec, consisting only of static
literal words, up to the first encountered extra
reference in angle brackets. For further details see the intros concept section.

	literal tag

	A word spoken within an utterance to specific that what follows
is free speech dictation even when it looks a command
or literal tag. For further details see the literalization concept section.

	registered command

	A command that can be triggered from within the middle of an
utterance. For further details see the registration concept section.

	rule
macro

	A triggerable event. The trigger is the command and the event
triggered is the command action.

	spec

	A common dragonfly [http://dragonfly.readthedocs.org/en/latest/] attribute that determines which spoken
words will trigger a rule. It may be a fixed literal command
spec, such as “show desktop”, or it may include references to
extras in angle brackets, such as “delete left <characterCount>
characters”.

	utterance

	The contiguous stream of spoken content captured by your speech
recognition system starting from the moment your it determines you have
begun speaking through until the moment it encounters enough silence to
qualify as a pause given its configuration.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	dragonfluid 0.9.0.a5 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dragonfluid	

 	
 	
 dragonfluid._decorators	

 	
 	
 dragonfluid._elements	

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	dragonfluid 0.9.0.a5 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | Q
 | R
 | S
 | T
 | U

_

 	

 	__init__() (ContinuingRule method)

 	

 	(FluidRule method)

 	(GlobalRegistry method)

 	(QuickFluidRule method)

 	(QuickFluidRules method)

 	(RegisteredRule method)

 	(Registry method)

 	(RegistryGrammar method)

 	(SplitDictation method)

 	(SplitForcedDictation method)

A

 	

 	ActiveGrammarRule() (in module dragonfluid._decorators)

C

 	

 	chaining

 	command

 	

 	(SplitDictation attribute)

 	command action

 	command intro

 	command_container (SplitDictation attribute)

 	command_container_notrans (SplitDictation attribute)

 	command_container_trans (SplitDictation attribute)

 	

 	command_index (SplitDictation attribute)

 	command_notrans (SplitDictation attribute)

 	command_trans (SplitDictation attribute)

 	command_words (SplitDictation attribute)

 	command_words_notrans (SplitDictation attribute)

 	command_words_trans (SplitDictation attribute)

 	ContinuingRule (class in dragonfluid._rules)

D

 	

 	dictation

 	

 	(SplitDictation attribute)

 	dictation container

 	dictation_container (SplitDictation attribute)

 	dictation_container_notrans (SplitDictation attribute)

 	dictation_container_trans (SplitDictation attribute)

 	dictation_notrans (SplitDictation attribute)

 	dictation_trans (SplitDictation attribute)

 	

 	dictation_words (SplitDictation attribute)

 	dictation_words_notrans (SplitDictation attribute)

 	dictation_words_trans (SplitDictation attribute)

 	dragonfluid (module)

 	dragonfluid._decorators (module)

 	dragonfluid._elements (module)

E

 	

 	embedded command

 	

 	extras

F

 	

 	FluidRule (class in dragonfluid._rules)

 	free speech dictation

 	full (SplitDictation attribute)

 	full_container (SplitDictation attribute)

 	full_container_notrans (SplitDictation attribute)

 	full_container_trans (SplitDictation attribute)

 	

 	full_notrans (SplitDictation attribute)

 	full_trans (SplitDictation attribute)

 	full_words (SplitDictation attribute)

 	full_words_notrans (SplitDictation attribute)

 	full_words_trans (SplitDictation attribute)

G

 	

 	GlobalRegistry (class in dragonfluid._grammars)

H

 	

 	has_partial() (Registry method)

I

 	

 	intro

 	

 	is_registered() (Registry method)

L

 	

 	literal tag

M

 	

 	macro

Q

 	

 	QuickFluidRule (class in dragonfluid._rules)

 	

 	QuickFluidRules (class in dragonfluid._rules)

R

 	

 	register_rule() (Registry method)

 	registered command

 	RegisteredRule (class in dragonfluid._rules)

 	

 	Registry (class in dragonfluid._grammars)

 	RegistryGrammar (class in dragonfluid._grammars)

 	rule

S

 	

 	spec

 	SplitDictation (class in dragonfluid._elements)

 	

 	SplitForcedDictation (class in dragonfluid._elements)

 	starts_with_registered() (Registry method)

T

 	

 	translate() (SplitDictation method)

 	

 	translate_literals() (Registry method)

U

 	

 	unregister_rule() (Registry method)

 	

 	utterance

 Copyright .
 Created using Sphinx 1.3.1.

 Suitability.html

 Navigation

 		
 index

 		
 modules |

 		dragonfluid 0.9.0.a5 documentation »

The Impact Of Fluidity

In general, commands have a special place in speech recognition systems. The
system puts extra effort into listening for them, giving them the benefit of
recognition in many cases. Imagine a phone system that only wants to hear
numbers from you – it will try its hardest to map anything you say to one of
the number words it expects. “Sticks hate fun” could easily be accepted as 681.
Meanwhile free dictation has a specific bias to
hear common phrases and grammatical sentences. If you say “national wonderment”,
the system may still recognize “national monument” even if it may have
considered wonderment a closer fit. And yes, if the fit was strong enough or
the surrounding context weak enough to override the “natural language bias”,
then often it will render something less likely, such as “national wonderment”.

When commands are spoken in a row for dragonfluid, only the first part of the
utterance will get the magical command seeking boost. Everything chained
afterward is subject to being recognized as free dictation. So it is not
surprising if you find that commands in the middle of utterances are not
recognized even if they never fail to be recognized when at the beginning of
utterances, especially if the commands consist of made up words or novel sounds.
This means that commands that up to now have always worked for you might present
challenges.

You can add novel command words to your vocabulary and attempt to train them
to be heard better, or you can alter your commands to things much more easily
recognized by your system. In the worst case, a pause between commands
stills works, but that’s not very dragonfluid is it.

Case-sensitivity can come into the picture as well. A command of “english” will
not be triggered if possible vocabulary values or formatting turns the word into
“English”, but start off a sentence with the word “English” and suddenly the
magical boost of commands will just ignore the capital letter in it’s attempt to
match something from the commands it expects.

In general, if you can dictate your list of commands easily into a plain text
document, you should be good to go. If you’re willing to alter your commands
then nothing should be able to get in your way! And if you’re really dead set
on some crazy alien sounding system you devised and loved, then it’s all up
to how trainable your speech recognition system is in the context of free
dictation.

 © Copyright .
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		dragonfluid 0.9.0.a5 documentation »

 All modules for which code is available

		dragonfluid._decorators

		dragonfluid._elements

		dragonfluid._grammars

		dragonfluid._rules

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment.png

global.html

 Navigation

 		
 index

 		
 modules |

 		dragonfluid 0.9.0.a5 documentation »

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		dragonfluid 0.9.0.a5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

_static/up.png

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

