DPPy documentation

Guillaume Gautier et al.

Nov 25, 2020

CONTENTS

1 Installation instructions 4
2 How to cite this work? 5
3 Documentation contents 6
3.1 Finite DPPs e 6
311 Definition L e e e e e e e e e e e e e e e e 6

312 Properties e e e e e e e e e e 11

3.1.3 Exactsampling e e 17

314 MCMCsampling ot it e e e e e e e e e e e e e e 33

3.1.5 Approximate sampling e e e e 35

3.1.6 APIL . . L e e e e e 36

3.2 Continuous DPPs e 42
32,1 Definition e e e e e e e e e e e e e e e e e 42

322 Properties e e e e e e e e e e e e 44

323 Sampling e e 46

324 [B-Ensembles e e e e e 49

3.2.5 Multivariate Jacobiensemble L. L e e 77

32,6 AP . . e e e e e e e e 85

3.3 Exotic DPPs e e e 95
3.3.1 Uniform Spanning Trees e 95

3.3.2 Stationary l1-dependent processo e 96

3.3.3 Poissonized Plancherel measure e e 101

334 AP . . e e e e e e e 102

3.4 Bibliography e 106

Determinantal point processes (DPPs) are specific probability distributions over clouds of points, which have been
popular as models or computational tools across physics, probability, statistics, random matrices, and more recently
machine learning. DPPs are often used to induce diversity or repulsiveness among the points of a sample.

Sampling from DPPs is more tractable than sampling generic point processes with interaction, but it remains a
nontrivial matter and a research area of its own.

As a contraction of DPPs and Python, DPPy is an effort to gather:

* exact and approximate samplers for finite DPPs

¢ random matrix models (fi// and banded) for B-Ensembles

* Multivariate Jacobi ensemble used for Monte Carlo integration

* exact samplers for more Exotic DPPs

https://dppy.readthedocs.io/en/latest/?badge=latest
https://travis-ci.com/guilgautier/DPPy
https://coveralls.io/github/guilgautier/DPPy?branch=master
https://pypi.org/project/dppy/
https://github.com/guilgautier/DPPy

— uniform spanning trees
— descent processes
— the Poissonized Plancherel

The purpose of this documentation is to both provide a quick survey of DPPs and relate each mathematical
property with its implementation in DPPy. The documentation can thus be read in different ways:

* if you read the sections in the order they appear, they will first take you through mathematical definitions and
quick illustrations of how these definitions are encoded in DPPy.

* for more a traditional library documentation please refer to the corresponding API sections documenting the
methods of each object, along with pointers to the mathematical definitions if needed.

* you can also directly jump to the Jupyter notebooks, which showcase the use of some DPPy objects in more
detail.

CONTENTS 2

https://github.com/guilgautier/DPPy/tree/master/notebooks

Original graph

2-Laguerre ensemble

B

e YT T 2R
Noo -ouoo o.o 00 o . o-oo e o ® . oou“ o
0, o & oee® ° o ° oc o ° o0 04 %000
Otoo LR e . ® . AEIETN o 8 ooJ

° .ooo ° 0 © e o e
Y ° ® g0 o e® o) °

o o e o Lo ° ° o ®o
® oo o ° ® L . . . ° o LN
uoonoo" “ oo e ooo ° o e o °, . L4 o. ° o..ooo f

°

uooo. O o ° . o. . oo ° ” ° o.o .oo oo\‘o
e o ° °) (
o, oo . e o o % .0 % oou
® % oo oe ° . o % . by
”ooo oo-o ° ocoo I ° . . LR ooo’)

° ° o. . ®Ceo, o ° o e . . . ° o % M

“-ooo % o o oo . .o o, o ® o.oo Ly S
. ° ° .
fc...ooo c ° ’ . e o Io uo” W
2% P . i oo %o o ° e 4 o o i Y
o® . ° ° °ce o° o [~
S e o e © o o ° [I S

®e e oo e ® & o o o o. Q
% e ° . o o ° ° . o0 of Q

X e ® o © ° e o . o | S
.oo ° ¢ ° ° * . ° ® . o ° ° ° -oo" N
Py e o . ° ¢ o %o o o e o oo.o o | X
uo ® e ° R LY . . * ® o o o m
..‘. ee’ ®o o . oo . % o.o e ooo.. W
noio- .o” ° . . o & e o % o ooo . o.o ° oooo o\"\ ./,m
Vco oooolooo o o2 * % o onoooh.o . &
08% %0 oo ® %o, oo . ® ° ooook M
SoW o ° e 3e % & % oo . oo ocoooo -.o -a o o0 S D
P No.r#-.c.-Q.s 0 Peed of %a®ste 204 m....v...l.\&n Q

Graph associated to K

K kernel of Uniform Spanning Tree

CONTENTS

CHAPTER
ONE

INSTALLATION INSTRUCTIONS

See the installation instructions on GitHub.

https://github.com/guilgautier/DPPy#installation

CHAPTER
TWO

HOW TO CITE THIS WORK?

We wrote a companion paper to DPPy which got accepted for publication in the MLOSS track of JMLR, see
[GPBV19].

If you use this package, please consider citing it with this piece of BibTeX:

@article{GPBV19,

author = {Gautier, Guillaume and Polito, Guillermo and Bardenet, R{\'{e}}lmi and
—~Valko, Michal},

journal = {Journal of Machine Learning Research - Machine Learning Open Source

—~Software (JMLR-MLOSS) },

title = {{DPPy: DPP Sampling with Python}},

keywords = {Computer Science - Machine Learning, Computer Science - Mathematical,
—Software, Statistics - Machine Learning},

url = {http://Jjmlr.org/papers/v20/19-179.html},

year = {2019},

archivePrefix = {arXiv},

arxivId = {1809.07258},

note = {Code at http://github.com/guilgautier/DPPy/ Documentation at http://dppy.
—readthedocs.io/}

}

https://github.com/guilgautier/DPPy
http://www.jmlr.org/mloss/

CHAPTER
THREE

DOCUMENTATION CONTENTS

3.1 Finite DPPs

3.1.1 Definition

A finite point process X on [N] £ {1, ..., N} can be understood as a random subset. It is defined either via its:

* inclusion probabilities (also called correlation functions)

P[S C X], for S C [N],

e likelihood

Px = S], for S C [N].

Hint: The determinantal feature of DPPs stems from the fact that such inclusion, resp. marginal probabilities are
given by the principal minors of the corresponding correlation kernel K (resp. likelihood kernel L).

Inclusion probabilities

We say that X ~ DPP(K) with correlation kernel a complex matrix K if

P[S Cc X] =detKg, VS C[N], 3.1

where Kg = [Kj;]; jes i.e. the square submatrix of K obtained by keeping only rows and columns indexed by .S.

Likelihood

We say that X ~ DPP(L) with likelihood kernel a complex matrix L if

det LS
PX =5=——7"—, VSCI[N] 3.2
¥ =5)= g by (32)
Existence
Some common sufficient conditions to guarantee existence are:
K=K/ and 0y <K =<Iy, (3.3)
L=L" and L >0y, (3.4)
where the dagger { symbol means conjugate transpose.
Note: In the following, unless otherwise specified:
¢ we work under the sufficient conditions (3.3) and (3.3),
* (M\1,...,Ay) denote the eigenvalues of K,
* (71,...,7n~) denote the eigenvalues of L.
from numpy import sqrt
from numpy.random import rand, randn
from scipy.linalg import gr
from dppy.finite dpps import FiniteDPP
r, N =4, 10
e_vecs, _ = gr(randn(N, r), mode='economic')
Inclusion K
e_vals_K = rand(r) # in [0, 1]
dpp_K = FiniteDPP ('correlation', *x{'K_ eig_dec': (e_vals_K, e_vecs)})
or
K = (e_vecs + e _vals K).dot (e_vecs.T)
dpp_K = FiniteDPP ('correlation', #x*{'K': K})
dpp_K.plot_kernel ()
Marginal L
e_vals_L = e_vals_K / (1.0 — e_vals_K)
dpp_L = FiniteDPP ('likelihood', **{'L_eig dec': (e_vals_L, e_vecs)})
or
L = (e_vecs * e _vals L) .dot (e_vecs.T)

dpp_L = FiniteDPP ('likelihood', #+{'L': K})

Phi = (e_vecs #* sqrt(e_vals_L)).T

dpp_L = FiniteDPP ('likelihood', #*x*{'L gram factor': Phi}) # L = Phi.T Phi
dpp_L.plot_kernel ()

3.1. Finite DPPs 7

Fig. 3.1: Correlation K kernel

3.1. Finite DPPs

Fig. 3.2: Correlation K kernel

3.1. Finite DPPs

Projection DPPs

Important: DPP(K) defined by an orthogonal projection correlation kernel K are called projection DPPs.
Recall that orthogonal projection matrices are notably characterized by

a K2=Kand Kf = K,

b. or equivalently by K = UUT with UTU = I, where r = rank(K).

They are indeed valid kernels since they meet the above sufficient conditions: they are Hermitian with eigenvalues 0
orl.

from numpy import ones

from numpy.random import randn

from scipy.linalg import gr

from dppy.finite_dpps import FiniteDPP

r, N =4, 10

eig_vals = ones (r)
A = randn(r, N)
eig_vecs, _ = gqr(A.T, mode='economic')

proj_DPP = FiniteDPP ('correlation', projection=True,
*x{'K_eig _dec': (eig_vals, eig_vecs)})
or
proj DPP = FiniteDPP ('correlation', projection=True, #*#*{'A_zono': A})
K = eig vecs.dot (eig _vecs.T)
proj DPP = FiniteDPP ('correlation', projection=True, **{'K': K})

k-DPPs

A E-DPP can be defined as DPP(L) (3.2) conditioned to a fixed sample size | X| = k, we denote it k-DPP(L).

It is naturally defined through its joint probabilities

1
]Pk,_Dpp[X = S] = mdet L51|S|:ka (35)

where the normalizing constant ey (L) corresponds to the elementary symmetric polynomial of order k evaluated in
the eigenvalues of L,

ex(L) £ ex(v1,. .., 7v) = Z H% = Z det Lg.
SCI[N]

SC[N] s€S
|S|=k |S|=k

Note: Obviously, one must take k < rank(L) otherwise det Lg = 0 for |S| = k > rank(L).

Warning: k-DPPs are not DPPs in general. Viewed as a DPP conditioned to a fixed sample size |X'| = k, the
only case where they coincide is when the original DPP is a projection DPP(K), and k& = rank(K), see (3.13).

See also:

3.1. Finite DPPs 10

https://en.wikipedia.org/wiki/Projection_(linear_algebra)#Projection_matrix
https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial

e Exact sampling of k-DPPs

e FiniteDPP

[KT12] Section 2 for DPPs
[KT12] Section 5 for k-DPPs

3.1.2 Properties

Throughout this section, we assume K and L satisfy the sufficient conditions (3.3) and (3.4) respectively.

Relation between correlation and likelihood kernels

1. Considering the DPP defined by L > Oy, the associated correlation kernel K (3.1) can be derived as

K=LUI+L)'=I-(I+0L)". (3.6)

See also:
Theorem 2.2 [KT12].
2. Considering the DPP defined by Oy < K < I, the associated likelihood kernel L (3.2) can be derived as

L=K(I-K)'=-T+(I-K)" (3.7

See also:

Equation 25 [KT12].

Important: Thus, except for correlation kernels K with some eigenvalues equal to 1, both K and L are diagonalizable
in the same basis

K=UAUY, L=UrUu’ with A, = 1" (3.8)

Note: For DPPs with projection correlation kernel K, the likelihood kernel L cannot be computed via (3.7), since K
has at least one eigenvalue equal to 1 (K? = K).

Nevertheless, if you recall that the number of points of a projection DPP, then its likelihood reads

P[X = S] = det KS1|S\:rank(K) VS C [N]

from numpy.random import randn, rand
from scipy.linalg import gr
from dppy.finite dpps import FiniteDPP

r, N =4, 10

(continues on next page)

3.1. Finite DPPs 11

(continued from previous page)

eig_vals = rand(r) # 0< <1
eig_vecs, _ = gr(randn(N, r), mode='economic')
DPP = FiniteDPP ('correlation', **{'K eig dec': (eig_vals, eig_vecs)})

DPP.compute_L ()

— L (likelihood) kernel computed via:
— eig L = eig K/(l-eig_ K)
- U diag(eig_L) U.T

See also:
* compute_K()
e compute_L ()
Generic DPPs as mixtures of projection DPPs

Projection DPPs are the building blocks of the model in the sense that generic DPPs are mixtures of projection DPPs.

Important: Consider X ~ DPP(K) and write the spectral decomposition of the corresponding kernel as

N
K= Z)\nunu}:.
n=1

Then, denote XZ ~ DPP(K?) with

N
KB = Z Bnunu;ﬂ7 where B, i Ber(An),

n=1

where X' B is obtained by first choosing By, . .., By independently and then sampling from DPP(K?) the DPP with
orthogonal projection kernel K.

Finally, we have X < X'B.

See also:
e Theorem 7 in [HKPVirag06]
e Exact sampling

* Continuous case of Generic DPPs as mixtures of projection DPPs

Number of points

For projection DPPs, i.e., when K is an orthogonal projection matrix, one can show that | X'| = rank(K) = Trace(K)
almost surely (see, e.g., Lemma 17 of [HKPVirag06] or Lemma 2.7 of [KT12]).

In the general case, based on the fact that generic DPPs are mixtures of projection DPPs, we have

N N
¥1= 3 Ber () —;Ber<1+%>. (3.9)

Note: From (3.9) it is clear that | X| < rank(K) = rank(L).

3.1. Finite DPPs 12

Expectation

N N

Tn
E[|X]] = traceK = » A, = : (3.10)
n=1 n=1 1+ Tn

The expected size of a DPP with likelihood matrix L is also related to the effective dimension deg(L) = trace(L(L +
I)~!) = traceK = E[|X|] of L, a quantity with many applications in randomized numerical linear algebra and
statistical learning theory (see e.g., [DerezinskiCV 19]).

Variance

N N
Var[|X|] = trace K — trace K* = Z An(l=X,) = Z 3.11)
n=1

n=1

Tn
(T+7m)*

See also:

Expectation and variance of Linear statistics.

import numpy as np
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

rng = np.random.RandomState (1)
r, N =5, 10
eig_vals = rng.rand(r) # 0< <I

eig_vecs, _ = gr(rng.randn(N, r), mode='economic')

dpp_K = FiniteDPP ('correlation', projection=False,
*x{'K_eig_dec': (eig_vals, eig_vecs)})

nb_samples = 2000
for _ in range(nb_samples) :

dpp_K.sample_exact (random_state=rng)

sizes = list (map(len, dpp_K.list_of_samples))

print ('"E[[X|]:\n emp= , theo= !
.format (np.mean (sizes), np.sum(eig_vals)))
print ('Var[|X|]:\n emp= , theo= !

.format (np.var (sizes), np.sum(eig_valsx (l-eig_vals))))

E[IX]]:

emp=1.581, theo=1.587
Var[|X]]:

emp=0.795, theo=0.781

3.1. Finite DPPs 13

Special cases

1. When the correlation kernel K (3.1) of DPP(K) is an orthogonal projection kernel, i.e., DPP(K) is a projection
DPP, we have

|X| = rank(K) = trace(K), almost surely. (3.12)

import numpy as np
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

r, N =4, 10
eig_vals = np.ones(r)

eig_vecs, _ = gr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP ('correlation', projection=True,
*x{'K_eig _dec': (eig_vals, eig_vecs)})

for _ in range(1000) :
DPP.sample_exact ()

sizes = list (map(len, DPP.list_of_samples))
np.array (DPP.list_of_ samples).shape = (1000, 4)

assert ([np.mean(sizes), np.var(sizes)] == [r, 0])

Important: Since |X| = rank(K) points, almost surely, the likelihood of the projection DPP (K)
reads

PlX = S| = det K1)/ rank k- (3.13)

In other words, the projection DPP having for correlation kernel the orthogonal projection matrix K
coincides with the k-DPP having likelihood kernel K when & = rank(K).

2. When the likelihood kernel L of DPP(L) (3.2) is an orthogonal projection kernel we have

|X'| ~ Binomial(rank(L), 1/2). (3.14)

import numpy as np

from scipy.stats import binom, chisquare
from scipy.linalg import gr

import matplotlib.pyplot as plt

from dppy.finite_dpps import FiniteDPP

r, N =5, 10
e_vals = np.ones(r)
e_vecs, _ = gr(np.random.randn (N, r), mode='economic')

(continues on next page)

3.1. Finite DPPs 14

(continued from previous page)

dpp_L = FiniteDPP ('likelihood',
projection=True,
*x{'L_eig _dec': (e_vals, e_vecs)})

nb_samples = 1000

dpp_L.flush_samples

for _ in range (nb_samples):
dpp_L.sample_exact ()

sizes = list (map(len, dpp_L.list_of_samples))
p = 0.5 # binomial parameter
rv = binom(r, p)

fig, ax = plt.subplots(l, 1)
x = np.arange (0, r + 1)

pdf = rv.pmf (x)
ax.plot (x, pdf,
'ro', ms=8,
label=r'pdf $Bin({/,)$'.format (r, p))

ax.vlines (x, 0, hist,
colors="b', 1lw=5, alpha=0.5,
label="hist of sizes'")

ax.legend(loc='best', frameon=False)

plt.title('p_value = '.format (chisquare (hist, pdf) [1]))
plt.show ()

hist = np.histogram(sizes, bins=np.arange(0, r + 2), density=True) [0]

Geometrical insights

Kernels satisfying the sufficient conditions (3.3) and (3.4) can be expressed as
Kij = (¢i,¢5) and L = (i, ¢;),
where each item is represented by a feature vector ¢; (resp. ;).

The geometrical view is then straightforward.

a. The inclusion probabilities read

P[S C X] = det Kg = Vol*{$, }scs.

b. The likelihood reads

]P’[X = S} ox det LS = VOlg{ws}SES'

That is to say, DPPs favor subsets S whose corresponding feature vectors span a large volume i.e. DPPs sample

softened orthogonal bases.

3.1. Finite DPPs

15

p_value = 1.000

@® pdfBin(5,0.5)
mmm hist of sizes

0.30 A M
0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 A I

0 1 2 3

Fig. 3.3: Distribution of the numbe of points of DPP (L) with orthogonal projection kernel L with rank 5.

| F

4 5

3.1. Finite DPPs

16

See also:

Geometric interpretation of the chain rule for projection DPPs

Diversity

The determinantal structure of DPPs encodes the notion of diversity. Deriving the pair inclusion probability, also
called the 2-point correlation function using (3.1), we obtain

Pli € X] K,
=Pli € X]P[j € X] — |K;;]%,

P[{i, j} €] =

so that, the larger |K;;| less likely items ¢ and j co-occur. If K;; models the similarity between items ¢ and j, DPPs
are thus random diverse sets of elements.

Conditioning
Like many other statistics of DPPs, the conditional probabilities can be expressed my means of a determinant and
involve the correlation kernel K (3.1).

For any disjoint subsets S, T' C [N], i.e., such that S N T = () we have
P[T C X|SCX]=det[Kr - KrsKg'Ksr], (3.15)
PT CX|SNX =0]=det [Kr — Krs(Ks—I) "Ksr]. (3.16)

See also:
* Propositions 3 and 5 of [Pou19] for the proofs

* Equations (3.15) and (3.15) are key to derive the Cholesky-based exact sampler which makes use of the chain
rule on sets.

3.1.3 Exact sampling

Consider a finite DPP defined by its correlation kernel K (3.1) or likelihood kernel L (3.2). There exist three main
types of exact sampling procedures:

1. The spectral method (used by default) requires the eigendecomposition of the correlation kernel K or the like-
lihood kernel L. It is based on the fact that generic DPPs are mixtures of projection DPPs together with the
application of the chain rule to sample projection DPPs. It is presented in Section Spectral method.

2. A Cholesky-based procedure which requires the correlation kernel K (even non-Hermitian!). It boils down to
applying the chain rule on sets; where each item in turn is decided to be excluded or included in the sample. It
is presented in Section Cholesky-based method.

3. Recently, [DerezinskiCV19] have also proposed an alternative method to get exact samples: first sample an
intermediate distribution and correct the bias by thinning the intermediate sample using a carefully designed
DPP. This approach does not require a Cholesky/Eigen-decomposition of the DPP, but the runtime instead scale
with the expected sample size of the DPP (see Number of points). It is presented in Section Intermediate
sampling method. A more refined procedure based on this approach was introduced in [CDerezinskiV20] for
k-DPP sampling.

3.1. Finite DPPs 17

In general, for small N (i.e. less than 1000) spectral or cholesky samplers are recommended for numerical stability.
For larger N (i.e. up to millions) and moderate k (i.e. in the hundreds) intermediate sampling is recommended for
scalability.

The following table summarizes the complexity of all exact samplers currently available, where the expected sample
size E[| X |] is equal to k for k-DPPs and d.¢ for random-sized DPPs.

mode= Time to Time to Notes
first sam- subse-
ple quent
samples
DPP| k- DPP | k-
DPP DPP

Spec- | "GS", O(NPYO(N?) O(Nd%)(NK?The three variants differ slightly, and depending on the DPP
tral "GS_bisT, they can have different numerical stability.
sam- "KuTal2"

pler
Cholesky"chol" [O(NPO(N?) O(N?) O(N?) Also works for non-Hermitian DPPs.
sam-

pler
Intermedittef x " O(NAQNEIP@(dS) O(k®) For "alpha" we report worst case runtime, but depending
sam- k1) on the DPP structure best case runtime can be much faster
pler "alpha"| O(NAR NS /@) O(k®) than "v£x". For particularly ill-posed DPPs "v£x" can be
k%) more numerically stable.
Note:

 There exist specific samplers for special DPPs, like the ones presented in Section Exotic DPPs.

Important: In the next section, we describe the Algorithm 18 of [HKPVirag(06], based on the chain rule, which was
originally designed to sample continuous projection DPPs. Obviously, it has found natural a application in the finite
setting for sampling projection DPP(K). However, we insist on the fact that this chain rule mechanism is specific
to orthogonal projection kernels. In particular, it cannot be applied blindly to sample general k&-DPP(L) but it is
valid when L is an orthogonal projection kernel.

This crucial point is developed in the following Caution section.

Projection DPPs: the chain rule

In this section, we describe the generic projection DPP sampler, originally derived by [HKPVirag06] Algorithm 18.

Recall that the number of points of a projection r = DPP(K) is, almost surely, equal to rank(X’), so that the likelihood
(3.13) of S = {s1,..., s, } reads

PlX = 5] = det K.

Using the invariance by permutation of the determinant and the fact that K is an orthogonal projection matrix, it is

sufficient to apply the chain rule to sample (s1, ..., s,) with joint distribution
1 1
Pl(s1,...,8:)] = ﬁIF’[X ={s1,...,8:-}] =] det Kg,
and forget about the sequential feature of the chain rule to get a valid sample {s1, ..., s,} ~ DPP(K).

3.1. Finite DPPs 18

Considering S = {s1,..., s, } such that P[X = S] = det Kg > 0, the following generic formulation of the chain rule

P[(s1,...,5:)] = P[s1] HP[snsl:i_l],

can be expressed as a telescopic ratio of determinants

r

KS s 1 detKS'
P(s1,...,8,)] = —22 o .
[(817 , S)] r 1_]2: r— (Z —]_) det KSi—l (3 17)

i
where Si—l = {81, ceay 5i—1}~

Using Woodbury’s formula the ratios of determinants in (3.17) can be expanded into

i—155i

K 1,51 T K i8i K iaSi—lKSi—lile
Pllos, o)) = = [==

=2

(3.18)

Hint: MLers will recognize in (3.18) the incremental posterior variance of the Gaussian Process (GP) associated to
K, see [RW06] Equation 2.26.

Caution: The connexion between the chain rule (3.18) and Gaussian Processes is valid in the case where the GP
kernel is an orthogonal projection kernel, see also Caution.

See also:
* Algorithm 18 [HKPVirag06]

* Projection DPPs: the chain rule in the continuous case

Geometrical interpretation

Hint: Since K is an orthogonal projection matrix, the following Gram factorizations provide an insightful geomet-
rical interpretation of the chain rule mechanism (3.17):

1. Using K = K? and K = K, we have K = KK, so that the chain rule (3.17) becomes

1
Pl(s1,...,8)] = pl VolumeQ(Ksl’:7 LK)
K, 2 ﬁ distanceQ(KSiyz, Span {Ksl,:, e ,Ksi_h;} (3.19)
n r pales r—(i—1) '

2. Using the eigendecomposition, we can write K = UUT where UTU = I,., so that the chain rule (3.17) becomes

1
Pl(s1,...,8)] = I VolumeZ(Usl,;, ooy Us,)
U, H2 ﬁ distancez(Usi7;, Span {Ush;7 . Usifl):} (3.20)
- oo r—(G—1) ’

In other words, the chain rule formulated as (3.19) and (3.20) is akin to do Gram-Schmidt orthogonalization of the
feature vectors K; . or U; .. These formulations can also be understood as an application of the base x height formula.

3.1. Finite DPPs 19

https://en.wikipedia.org/wiki/Woodbury_matrix_identity

In the end, projection DPPs favors sets of » = rank(K) of items are associated to feature vectors that span large
volumes. This is another way of understanding diversity.

See also:

MCMC samplers

® Zonotope

sampling

* basis exchange

In practice

The cost of getting one sample from a projection DPP is of order O(N rank(K)?), whenever DPP(K) is defined

through
o K itself;

sampling relies on formulations (3.19) or (3.18)

import numpy as np
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

seed = 0
rng = np.random.RandomState (seed)
r, N =4, 10
eig_vals = np.ones(r) # For projection DPP
eig_vecs, _ = gr(rng.randn(N, r), mode='economic')
DPP = FiniteDPP (kernel_type='correlation',
projection=True,
x*x{'K': (eig_vecs * eig_vals) .dot (eig_vecs.T)})
for mode in ('GS', 'Schur', 'Chol'): # default: GS

rng = np.random.RandomState (seed)
DPP.flush_samples ()

for _ in range(10):
DPP.sample_exact (mode=mode, random_state=rng)

print (DPP.sampling_mode)
print (DPP.list_of_samples)

GS

[rs, 7, 2, 11
-~ 6, 2, 71, [0, 6, 2, 91, [5, 2, 1, 81, [5, 4, 0, 8], [5, 6, 9, 111

Schur

rts, 7, 2, 11, 14, 6, 2, 91, [9, 2, 6, 41, [5, 9, 0, 11, [0, 8, 6, 71, 19,
-~ 6, 2, 71, [0, 6, 2, 91, [5, 2, 1, 81, [5, 4, 0, 8], [5, 6, 9, 111

Chol

[rs, 7, 6, 01, (4, 6, 5, 71, [9, 5, 0, 11, [5, 9, 2, 41, [0, 8, 1, 71, 19,
- 0, 5, 11, [0, 6, 5, 9], [5, 0, 1, 91, [5, 0, 2, 8], [5, 6, 9, 111

~
KN
~
()}
~
N
~
O
~
O
~
N
~
()}
~
S
~
—
(&3]
~
O
~
o
~
=
—
~
o
~
[ee)
~
()}
~
~J
~
O
~

See also:

sample_exact ()

3.1. Finite DPPs 20

— [HKPVirag06] Theorem 7, Algorithm 18 and Proposition 19, for the original idea

— [Poul9] Algorithm 3, for the equivalent Cholesky-based perspective with cost of order
O(N rank(K)?)

* its eigenvectors U, i.e., K = UU' with UTU = rank(K); sampling relies on (3.20)

import numpy as np
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

seed = 0
rng = np.random.RandomState (seed)

r, N =4, 10
eig_vals = np.ones(r) # For projection DPP
eig_vecs, _ = gr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP (kernel_type='correlation',
projection=True,
**x{'K_eig_dec': (eig_vals, eig_vecs)})
rng = np.random.RandomState (seed)
for _ in range(10):
mode='GS': Gram-Schmidt (default)

DPP.sample_exact (mode='GS', random_state=rng)

print (DPP.list_of_samples)

See also:
- sample_exact ()
— [HKPVirag06] Theorem 7, Algorithm 18 and Proposition 19, for the original idea

— [KT12] Algorithm 1, for a first interpretation of the spectral counterpart of [HKPVirag06] Algo-
rithm 18 running in O(N rank(K)?)

- [Gil14] Algorithm 2, for the O(NN rank(K)?) implementation
— [TBA18] Algorithm 3, for a technical report on DPP sampling

Spectral method

Main idea

The procedure stems from Theorem 7 of [HKPVirag06], i.e., the fact that generic DPPs are mixtures of projection
DPPs, suggesting the following two steps algorithm. Given the spectral decomposition of the correlation kernel K

n

N
K=UAU" = Z Aptnul .
n=1

Step 1. Draw independent Bernoulli random variables B, ~ Ber(\,) forn = 1,...,N and collect B =
{’FL ; Bn = 1},

3.1. Finite DPPs 21

Step 2. Sample from the projection DPP with correlation kernel U.gU. BT = Zne B unuL, see the section above.

Note: Step 1. selects a component of the mixture while Step 2. requires sampling from the corresponding projection
DPP, cf. Projection DPPs: the chain rule

In practice

* Sampling projection DPP(K) from the eigendecomposition of K = UUT with UTU = rank(K)) Was presented
in the section above

 Sampling DPP(K) from O = K < Iy can be done by following
Step 0. compute the eigendecomposition of K = UAUT in O(N?).

Step /. draw independent Bernoulli random variables B,, ~ Ber()\,,) forn = 1,..., N and collect
B={n; B, =1}

Step 2. sample from the projection DPP with correlation kernel defined by its eigenvectors U.

Important: Step 0. must be performed once and for all in O(N3). Then the average cost of getting
one sample by applying Steps 1. and 2. is O(NE [|X[]?), where E [|X|] = trace(K) = 327, A

n=1 71"

from numpy.random import RandomState
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

rng = RandomState (0)

r, N =4, 10
eig_vals = rng.rand(r) # For projection DPP
eig_vecs, _ = gr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP (kernel_type='correlation',

projection=False,

x**x{'K': (eig_vecs+*eig_vals) .dot (eig_vecs.
—~T)})

for _ in range (10):
mode='GS': Gram-Schmidt (default)

DPP.sample_exact (mode='GS', random_state=rng)

print (DPP.list_of_samples)

te7, o, 1, 43, f[feJ], [0, 9], [0, 9], [8, 51, [9], [6, 5, 9], [9], [3, O],
=[5, 1, 6]]

 Sampling DPP(L) from L » 0 can be done by following
Step 0. compute the eigendecomposition of L = VI'VT in O(N?).

Step /. is adapted to: draw independent Bernoulli random variables B,, ~ Ber(%ﬁ/n) for n =
1,...,N and collect B={n; B, =1}

Step 2. is adapted to: sample from the projection DPP with correlation kernel defined by its eigen-
vectors V. 3.

3.1. Finite DPPs 22

Important: Step 0. must be performed once and for all in O(IN?). Then the average cost of getting
one sample by applying Steps 1. and 2. is O(NE [|.X[]?), where E [|X|] = trace(L(I +L)~1) =

N
Zn:l 1—7—2n

from numpy.random import RandomState
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

rng = RandomState (0)

r, N =4, 10
phi = rng.randn(r, N)

DPP = FiniteDPP (kernel_type='likelihood"',
projection=False,
x*x{'L": phi.T.dot (phi) })

for _ in range(10):
mode='GS': Gram—-Schmidt (default)

DPP.sample_exact (mode='GS', random_state=rng)

print (DPP.list_of_samples)

tes, 1, 0, 41, (9, 61, (4, 1, 3, 01, (7, O, 6, 41, [5, 0O, 71, [4, 0, 2],
-[5, 3, 8, 41, [0, 5, 2], [7, 0, 2], [6, O, 3]]

 Sampling a DPP(L) for which each item is represented by a d < N dimensional feature vector, all stored in a
Sfeature matrix ® € RN gsothat L = ®T® > Oy, can be done by following

Step 0. compute the so-called dual kernel L= o3t € RIx, eigendecompose it L=WAWT and
recover the eigenvectors of L as V' = ®TW A~z This corresponds to a cost of order O(Nd? + d° +
d? + Nd?).

d;
1+6;

Step /. is adapted to: draw independent Bernoulli random variables B; ~ Ber(
and collect B= {i; B; = 1}

Yfori=1,...,d

Step 2. is adapted to: sample from the projection DPP with correlation kernel defined by its eigen-
vectors V. g = [@TWA~1/2] 5

o

Important: Step 0. must be performed once and for all in O(Nd? + d3). Then the aver-
age cost of getting one sample by applying Steps 1. and 2. is O(NE[|X|]*), where E[|X|] =

trace(L(I + L)~1) = Z?:l 1%& =d

See also:

For a different perspective see
— [Gill4] Section 2.4.4 and Algorithm 3
— [KT12] Section 3.3.3 and Algorithm 3

from numpy.random import RandomState
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

(continues on next page)

3.1. Finite DPPs 23

(continued from previous page)

rng = RandomState (0)

r, N =4, 10
phi = rng.randn(r, N) # L = phi.T phi, I_dual = phi phi.T

DPP = FiniteDPP (kernel_type='likelihood',
projection=False,
x**x{'L_gram_factor': phi})

for _ in range(10):
mode='GS': Gram—-Schmidt (default)

DPP.sample_exact (mode='GS', random_state=rng)

print (DPP.list_of_samples)

IL_dual = Phi Phi.T was computed: Phi (dxN) with d<N
(e, o, 2, 31, 0, 1, 5, 21, (7, 0, 9, 41, (2, o, 31, [e6, 4, 0, 31, [5 O,
- 6, 3], [0, 6, 3, 91, [4, 0, 91, [7, 3, 9, 41, [9, 4, 3]]

Cholesky-based method

Main idea

This method requires access to the correlation kernel K to perform a bottom-up chain rule on sets: starting from the
empty set, each item in turn is decided to be added or excluded from the sample. This can be summarized as the
exploration of the binary probability tree displayed in Fig. 3.4.

Fig. 3.4: Probability tree corresponding to the chain rule on sets

3.1. Finite DPPs 24

Example: for N = 5, if {1, 4} was sampled, the path in the probability tree would correspond to

P[X = {1,4}] =P[1 € X]
xP2¢X|1eX)
xPB¢X|leX,2¢X]
xPAeX|1eX,{2,3}nX =]
x P[5 ¢ X |{1,4} c X,{2,3}nx =],

where each conditional probability can be written in closed formed using (3.15) and (3.16), namely

PT Cc X|SCX]=det[Kr — KrsKg'Kgsr]
PT CX|SNX =0]=det [Kr —Krs(Ks—I)""Ksr].

Important: This quantities can be computed efficiently as they appear in the computation of the Cholesky-type
LDL' or LU factorization of the correlation K kernel, in the Hermitian or non-Hermitian case, respectively. See
[Poul9] for the details.

Note: The sparsity of K can be leveraged to derive faster samplers using the correspondence between the chain rule
on sets and Cholesky-type factorizations, see e.g., [Poul9] Section 4.

In practice

Important:
» The method is fully generic since it applies to any (valid), even non-Hermitian, correlation kernel K.
* Each sample costs O(N?3).

* Nevertheless, the link between the chain rule on sets and Cholesky-type factorization is nicely supported by the
surprisingly simple implementation of the corresponding generic sampler.

Poulson (2019, Algorithm 1) pseudo-code

sample = []
A = K.copy ()

for j in range(N):
if np.random.rand() < A[3j, Jl: # Bernoulli (A _j7)
sample.append(7j)
else:

Alj, 31 =1

Alj+1:, 31 /= Al3, 3]
A[j+1:, j+1:] -= np.outer (A[j+1:, Jl, A[JF, J+1:1)

return sample, A

3.1. Finite DPPs 25

from numpy.random import RandomState
from scipy.linalg import gr
from dppy.finite_dpps import FiniteDPP

rng = RandomState (1)

r, N =4, 10

eig_vals = rng.rand(r)

eig_vecs, _ = gr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP (kernel_type='correlation',
projection=False,

x**x{'K': (eig_vecs+*eig_vals) .dot (eig_vecs.T)})

for _ in range(10):
DPP.sample_exact (mode='Chol', random_state=rng)

print (DPP.list_of_samples)

tez, 91, f[ol1, rz1, te1x, (4, 91, t2, 7, 91, f(oJ, (1, 91, [0, 1, 2], [2]]

See also:
e [Poul9]
e [LGDIS8]

Intermediate sampling method

Main idea

This method is based on the concept of a distortion-free intermediate sample, where we draw a larger sample of
points in such a way that we can then downsample to the correct DPP distribution. We assume access to the likelihood
kernel L (although a variant of this method also exists for projection DPPs). Crucially the sampling relies on an
important connection between DPPs and so-called ridge leverage scores (RLS, see [AM15]), which are commonly
used for sampling in randomized linear algebra. Namely, the marginal probability of the i-th point in X ~ DPP(L) is
also the i-th ridge leverage score of L (with ridge parameter equal 1):

Pli € X] = [L(I +L)"'], =7, ith l-ridge leverage score.

(a3

Suppose that we draw a sample o of ¢ points i.i.d. proportional to ridge leverage scores, i.e., 0 = (01, 09, ..., 0¢) such
that Plo; = i] o 7;. Intuitively, this sample is similar fo X ~ DPP(L) because the marginals are the same, but it
“ignores” all the dependencies between the points. However, if we sample sufficiently many points i.i.d. according
to RLS, then a proper sample X’ will likely be contained within o. This can be formally shown for t = O(E[|X|]?).
When E[|X|]2 < N, then this allows us to reduce the size of the DPP kernel L from N x N to a much smaller size L
t x t. Making this sampling exact requires considerably more care, because even with a large ¢ there is always a small
probability that the i.i.d. sample o is not sufficiently diverse. We guard against this possibility by rejection sampling.

Important: Use this method for sampling X ~ DPP(L) when E [|X|] < v/N.
* Preprocessing costs O (N - poly(E [|X|]) polylog(N)).
« Each sample costs O (E[|X[]%).

There are two implementations of intermediate sampling available in dppy: the mode='vfx' sampler and the
mode="alpha' sampler.

3.1. Finite DPPs 26

In practice

from numpy.random import RandomState

from dppy.finite_dpps import FiniteDPP

from dppy.utils import example_eval_I_linear
rng = RandomState (1)

r, N =4, 10

DPP = FiniteDPP ('likelihood',
*x{'L_eval_ X data': (example_eval_IL_linear, rng.randn(N, r))})

for in range (10):

DPP.sample_exact (mode='vfx', random_state=rng, verbose=False)

print (DPP.list_of_samples)

The verbose=False flag is used to suppress the default progress bars when running in batch mode (e.g. when
generating these docs).

Given, the RLS 7,..., 7y, the normalization constant det(/ + I~JU) and access to the likelihood kernel EU, the
intermediate sampling method proceeds as follows:

repeat
sample ¢ ~ Poisson (k2 e/*), where k = E[|X|]
sample 01, ...,0t ~ (T1,...TN),

Fdet(I + L, . 1
sample Acc NBernoulli(w), where L;; = ———1Lyj,
et/k det(I+L) kJ‘/TiTj
until

Acc = true

return

X ={0;:i€ X} where X ~DPP(L,)

It can be shown that X' is distributed exactly according to DPP(L) and the expected number of rejections is a small
constant. The intermediate likelihood kernel L, forms a ¢ x ¢t DPP subproblem that can be solved using any other DPP
sampler.

* Since the size of the intermediate sample is ¢ = O(E[X]?), the primary cost of the sampling is computing
det(I + L,) which takes O(t3) = O(E[X]°) time. This is also the expected cost of sampling from DPP(L,)
if we use, for example, the spectral method.

* The algorithm requires precomputing the RLS 71, . . ., 7, and det(/+L). Computing them exactly takes O(N?),
however, surprisingly, if we use sufficiently accurate approximations then the exactness of the sampling can be
retained (details in [DerezinskiCV19]). Efficient methods for approximating leverage scores (see [RCCR18])
bring the precomputing cost down to O(Npoly(E [|X|])polylog(V)).

3.1. Finite DPPs 27

* When E[|X|] is sufficiently small, the entire sampling procedure only looks at a small fraction of the entries of
L. This makes the method useful when we want to avoid constructing the entire likelihood kernel.

» When the likelihood kernel is given implicitly via a matrix X such that L = XX (dual formulation) then a
version of this method is given by [Derezinskil9]

* A variant of this method also exists for projection DPPs [DWH18§]
See also:

¢ [DerezinskiCV19] (Likelihood kernel)

¢ [Derezinskil9] (Dual formulation)

* [DWH18] (Projection DPP)

k-DPPs

Main idea

Recall from (3.5) that k-DPP (L) can be viewed as a DPP(L) constrained to a have fixed cardinality & < rank(L).

To generate a sample of k-DPP (L), one natural solution would be to use a rejection mechanism: draw S ~ DPP(L)
and keep it only if | X | = k. However, the rejection constant may be pretty bad depending on the choice of & regarding
the distribution of the number of points (3.9) of S ~ DPP(L).

An alternative solution was found by [KT12] Section 5.2.2. The procedure relies on a slight modification of Step /. of
the Spectral method which requires the computation of the elementary symmetric polynomials.

In practice

Sampling k-DPP(L) from L > O can be done by following

Step 0.
a) compute the eigendecomposition of L = VI'VT in O(N?)
b) evaluate the elementary symmetric polynomials in the eigenvalues of L: E[l,n] := e;(71,-..,Vn)
for0 <! < kand0 < n < N. These computations can done recursively in O(Nk) using Algorithm
7 of [KT12].

Step /. is replaced by Algorithm 8 of [KT12] which we illustrate with the following pseudo-code

Algorithm 8 of Kulesza Taskar (2012).
This is a pseudo-code of in particular Python indexing 1s not,
—respected everywhere

B = set ({})
1=k

for n in range(N, 0, -1):
if Unif(0,1) < gamma[n] % E[1-1, n-1] / E[1l, n]:
1 =1

B.union ({n})

if 1 ==
break

3.1. Finite DPPs 28

https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial

Step 2. is adapted to: sample from the projection DPP with correlation kernel defined by its eigenvectors
V. 5, with a cost of order O(Nk?).

Important: Step 0. must be performed once and for all in O(N? + Nk). Then the cost of getting one sample by
applying Steps 1. and 2. is O(Nk?).

import numpy as np
from dppy.finite dpps import FiniteDPP

rng = np.random.RandomState (1)

r, N =5, 10

Random feature vectors

Phi = rng.randn(r, N)

DPP = FiniteDPP('likelihood', **{'L': Phi.T.dot (Phi)})

k = 4
for _ in range(10):

DPP.sample_exact_k_dpp(size=k, random_state=rng)

print (DPP.list_of_samples)

See also:
s sample_exact_k_dpp ()

e Step 0. requires [KT12] Algorithm 7 for the recursive evaluation of the elementary symmetric polynomials
lei(y1, - - ,yn)]f:;[. in the eigenvalues of L

 Step 1. calls [KT12] Algorithm 8 for selecting the eigenvectors for Step 2.

Caution

Attention: Since the number of points of k~-DPP (L) is fixed, like for projection DPPs, it might be tempting to
sample k-DPP (L) using a chain rule in the way it was applied in (3.18) to sample projection DPPs. However, it
is incorrect: sampling sequentially

sy xLgg, then s;|s1,...,8.1 Loy —Lgs, Ls,_, 'Ls,_,, for2<i<k, (3.21)
where S;—1 = {s1,...,8;,-1}, and forgetting about the order s, ..., s; were selected does not provide a
subset {s1,...,s;} ~ k-DPP(L), in the general case. Nevertheless, it is valid when L is an orthogonal

projection kernel!

Here are the reasons why
1. First keep in mind that, the ultimate goal is to draw a subset S = {s1,...,s5} ~ k-DPP(L) with probability
(3.5)

1
PlX = S] = e det L1 s (3.22)

3.1. Finite DPPs 29

2. Now, if we were to use the chain rule (3.21) this would correspond to sampling sequentially the items s1, . . ., Sk,

so that the resulting vector (s1, ..., sx) has probability
k -1
L L, , —L; s .Lg Ls . .
Q[(s15--.,5%)] = SZMS1 H - Z?SH o) e
1 =2 i(S15- -5 Si—1 (323)
1
=————detLg.
201, 58)
Contrary to Z; = trace(L), the normalizations Z;(s1, ..., s;—1) of the successive conditionals depend, a priori, on
the order s1, . .., s, were selected. For this reason we denote the global normalization constant Z (s, .. ., Sg).

Warning: Equation (3.23) suggests that, the sequential feature of the chain rule matters, a priori; the distribution

of (s1,...,sk) is not exchangeable a priori, i.e., it is not invariant to permutations of its coordinates. This fact,
would only come from the normalization Z(s1, ..., s), since Lg is invariant by permutation.
Note: To see this, let’s compute the normalization constant Z;(s1,...,s;—1) in (3.23) for a generic L > Oy

factored as L = V'V, with no specific assumption on V.

N

—1
Zi(S1y. -, 8i-1) = E Lii —Lis, ,Lg, Ls,
i=1

=trace(L—L. g, , I:LSi—l] -t Ls, ,.)
= trace (L — VVT:,S,,_1 [VSi_l,:VT:,S,:_J - VS&,—L:VT) (3.24)

= trace (Li; — Ve, .| [Vsi_hzvsi_lj] e L VY

HVSq‘,—lv?

= trace(L) — trace(HVSi717:VTV),

where Iy, . denotes the orthogonal projection onto Span{ Vs, ., ..., Vs,—1.}, the supspace spanned the feature
vectors associated to s1,...,8;_1.

Then, summing (3.23) over the k! permutations of 1,..., k&, yields the probability of drawing the subset S =
{s1,..., 8k}, namely

Qlfs1,-rsell = Y Ql(se(1)s -+ 50(k))] =detLs Y e 1

P prss (1) -+ Sa (k) (3.25)

1/Zs

3. For the chain rule (3.23) to be a valid procedure for sampling k-DPP (L), we must be able to identify (3.22) and
(3.25), i.e., Q[S] = P[S] for all | S| = k, or equivalently Zs = e, (L) for all |S| = k.

Important: A sufficient condition (very likely to be necessary) is that the joint distribution of (s, ..., si), generated
by the chain rule mechanism (3.23) is exchangeable (invariant to permutations of the coordinates). In that case, the
normalization in (3.23) would then be constant Z(s1,...,sx) = Z . So that Zg would in fact play the role of the
normalization constant of (3.25), since it would be constant as well and equal to Zg = % Finally, Zg = e (L) by
identification of (3.22) and (3.25).

This is what we can prove in the particular case where L is an orthogonal projection matrix.

3.1. Finite DPPs 30

https://en.wikipedia.org/wiki/Exchangeable_random_variables
https://en.wikipedia.org/wiki/Proofs_involving_the_Moore\T1\textendash {}Penrose_inverse#Projectors_and_subspaces
https://en.wikipedia.org/wiki/Exchangeable_random_variables

To do this, denote 7 = rank(L) and recall that in this case L satisfies L? = L and LT = L, so that it can be factored
asL =II;, = L'L = LLt

Finally, we can plug V' = L in (3.24) to obtain

Zi(s1,..,8i-1) = trace(L) — trace(TlL, L'L)
(I,) — trace(IlL,, | M)
= trace(Ily,) — trace(IlLg, | .)
= rank(Ily,) — rank(Ilr, |)

=r—(i—1):=2Z,.

= trace

Thus, the normalization Z (s, ..., sg) in (3.24) is constant as well equal to

k k ! r
Z(sl,...,sk):HZi:Hr—(i—l):m :k!(k> = Kleg(L) :==

where the last equality is a simple computation of the elementary symmetric polynomial

er(L) = ex(yrr = Lyrsn =0)= Y [[= <>

SC[N]s€S
IS I—
Important: This shows that, when L is an orthogonal projection matrix, the order the items s1, . . ., s, were selected

by the chain rule (3.23) can be forgotten, so that {s1, ..., s} can be considered as valid sample of k-DPP(L).

For our toy example, this sub-optimized implementation is enough
to illustrate that the chain rule applied to sample k-DPP (L)
draws s_1, ..., s_k sequentially, with joint probability

P[(s 1, ..., s k)] =det .S / Z(s_1, ..., s_k)

1. is exchangeable when L is an orthogonal projection matrix
P[(sl, s2)] = P[(s_2, s_1)]

2. 1s a priori NOT exchangeable for a generic L >= 0
P[(sl, s2)] /= P[(s_2, s_1)]

HHoFH W R H W W R H

import numpy as np
import scipy.linalg as LA
from itertools import combinations, permutations

k, N=2, 4
potential_samples = list (combinations (range(N), k))

rank_L = 3

rng = np.random.RandomState (1)

eig_vecs, _ = LA.gr(rng.randn (N, rank_ L), mode='economic')
for projection in [True, False]:

eig_vals = 1.0 + (0.0 if projection else 2 % rng.rand(rank_L))
L = (eig_vecs * eig_vals) .dot (eig_vecs.T)

(continues on next page)

3.1. Finite DPPs 31

https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial

(continued from previous page)

proba = np.zeros ((N, N))
Z_1 = np.trace (L)

for S in potential_samples:
for s in permutations(S):
probals] = LA.det(L[np.ix_ (s, s)])

Z_2_s0 = np.trace(L - L[:, s[:1]].dot(LA.inv(L[np.ix_(s[:1], s[:11)1)).
—dot (L[s[:1], :1))

probals] = 7.1 %= 7Z_2_s0
print ('L is {Jprojection'.format('' if projection else 'NOT '))
print ('"P[s0, sl1]', proba, sep='\n'")
print ('"P[s0]"', proba.sum(axis=0), sep='\n"')

print ('"P[sl]', proba.sum(axis=1), sep='\n'")

print (proba.sum(), '\n' if projection else '')

L is projection

P[s0, sl1]

[0. 0.09085976 0.01298634 0.10338529]
[0.09085976 0. 0.06328138 0.15368033]
[0.01298634 0.06328138 0. 0.07580691]
[0.10338529 0.15368033 0.07580691 0. 11

P[s0]

[0.20723139 0.30782147 0.15207463 0.33287252]

P[sl]

[0.20723139 0.30782147 0.15207463 0.33287252]
1.0000000000000002

L is NOT projection

P[s0, sl]

[[O. 0.09986722 0.01463696 0.08942385]
[0.11660371 0. 0.08062998 0.20535251]
[0.01222959 0.05769901 0. 0.04170435]
[0.07995922 0.15726273 0.04463087 0. 11

P[s0]

[0.20879253 0.31482896 0.13989781 0.33648071]

P[sl]

[0.20392803 0.4025862 0.11163295 0.28185282]

1.0

3.1. Finite DPPs 32

3.1.4 MCMC sampling

Add/exchange/delete

[AGR16], [LIS16c] and [LIS16d] derived variants of a Metropolis sampler having for stationary distribution DPP(L)

(3.2). The proposal mechanism works as follows.

At state S C [N], propose S’ different from S by at most 2 elements by picking

s~Us and t~ U[N]\S-

Then perform

Exchange

Pure exchange moves

S+ S\sUt.

Add-Delete

Pure addition/deletion moves
e Add S' & SUt
* Delete S <+ S'\ s

Add-Exchange-Delete

Mix of exchange and add-delete moves
* Delete S’ <+ S\ s
* Exchange S <+ S\ sUt
e Add S' < SUt

Hint: Because moves are allowed between subsets having at most 2 different elements, transitions are very local

inducing correlation, however fast mixing was proved.

import numpy as np
from dppy.finite_dpps import FiniteDPP

rng = np.random.RandomState (413121)
r, N =4, 10

Random feature vectors

Phi = rng.randn(r, N)

L = Phi.T.dot (Phi)

DPP = FiniteDPP('likelihood', **{'L': L})

DPP.sample_mcmc ("AED', random_state=rng)

AED, AD, E

print (DPP.list_of_samples) # list of trajectories, here there's only one

3.1. Finite DPPs

33

teeo, 2, 3, 61, (0, 2, 3, 61, (O, 2, 3, 61, (O, 2, 3, 6], [0, 2, 3, 6], [0, 2, 3, 6],

See also:
* sample_mcmc ()
* [AGR16], [LJS16¢] and [LIS16d]
e Exact samplers for DPPs

Zonotope

[GBV17] target a projection DPP(K) with
K=0"[00"]" 1,
where @, is the underlying r x N feature matrix satisfying rank(®) = rank(K) = r.

In this setting the Number of points is almost surely equal to r and we have

2 2
det @5 | Vo' {¢s }ses (3.26)

det @®T 1F=" T Tdeg o1 IS

The original finite ground set is embedded into a continuous domain called a zonotope. The hit-and-run procedure is
used to move across this polytope and visit the different tiles. To recover the finite DPP samples one needs to identify
the tile in which the successive points lie, this is done by solving linear programs (LPs).

P[X = S] = detK51|S|=r =

Hint: Sampling from a projection DPP boils down to solving randomized linear programs (LPs).

Important: For its LPs solving needs DPPy uses the cvxopt library, but cvxopt is not installed by default when
installing DPPy. Please refer to the installation instructions on GitHub for more details on how to install the necessary
dependencies.

from numpy.random import RandomState
from dppy.finite_dpps import FiniteDPP

rng = RandomState (413121)

r, N =4, 10
A = rng.randn(r, N)

DPP = FiniteDPP ('correlation', projection=True, *x{'A_zono': A})

DPP.sample_mcmc ('zonotope', random_state=rng)
print (DPP.list_of_samples) # list of trajectories, here there's only one

(1, 4, 5, 71, [1, 4, 5, 71,

Note: On the one hand, the Zonotope perspective on sampling projection DPPs yields a better exploration of the state
space. Using hit-and-run, moving to any other state is possible but at the cost of solving LPs at each step. On the other
hand, the Add/exchange/delete view allows to perform cheap but local moves.

3.1. Finite DPPs 34

https://github.com/guilgautier/DPPy#installation

See also:
* sample_mcmc ()

* [GBV17]

k-DPPs

To preserve the size k of the samples of k&-DPP(L), only Exchange moves can be performed.

Caution: % must satisfy k < rank(L)

from numpy.random import RandomState
from dppy.finite_dpps import FiniteDPP

rng = RandomState (123)
r, N =5, 10

Random feature vectors
Phi = rng.randn(r, N)

L = Phi.T.dot (Phi)
DPP = FiniteDPP('likelihood', **{'L': L})

k =3
DPP.sample_mcmc_k_dpp (size=k, random_state=rng)
print (DPP.list_of_samples) # list of trajectories, here there's only one

ceer, 2, 51, t7, 2, 51, (7, 2, 91, (7, 8, 91, (7, 8, 91, (7, &, 2], [7, 8, 2],
—21, [1, 8, 2], [1, 8, 2]]]

See also:
* sample_mcmc_k_dpp ()
e [LJS16a] for a core-set perspective

* Exact sampling of k-DPPs

3.1.5 Approximate sampling

[LIS16b]

Todo: In a near future this section will include approximation of the kernel through random projections.

3.1. Finite DPPs

35

3.1.6 API

Implementation of F'initeDPP object which has 6 main methods:
*» sample_exact (), see also sampling DPPs exactly
e sample_exact_k_dpp (), see also sampling k-DPPs exactly
e sample_mcmc (), see also sampling DPPs with MCMC
* sample_mcmc_k_dpp (), see also sampling k-DPPs with MCMC
e compute_K (), to compute the correlation K kernel from initial parametrization
e compute_L (), to compute the likelihood L kernel from initial parametrization

class dppy.finite_dpps.FiniteDPP (kernel_type, projection=False, **params)
Bases: object

Finite DPP object parametrized by
Parameters
* kernel_type (string)—
— 'correlation' K kernel
— 'likelihood' L kernel

* projection (bool, default False)—Indicate whether the provided kernel is of projection
type. This may be useful when the F'initeDPP object is defined through its correlation
kernel K.

* params (dict) — Dictionary containing the parametrization of the underlying
— correlation kernel

{'K': K},with0 =<K =<1T

x* {'K_eig_dec': (eig_vals, eig_vecs) },with0 < eigvals <1
* {'A_zono': A}, with A(d x N) and rank(A) =d
— likelihood kernel

* {'L': L},withL >0

% {'L_eig_dec': (eig_vals, eig_vecs) }, with eigvals > 0
#* {'L_gram_factor': Phi},withL = OTd
* {'L_eval_X_data': (eval_L, X_data)},with Xg.q(IN Xd) and eval_L

a likelihood function such that L = eval_L(X4ata, { Xdata). For a full description
of the requirements imposed on eval_L’s interface, see the documentation dppy .
vix_sampling.vfx_sampling_precompute_constants (). For an ex-
ample, see the implementation of any of the kernels provided by scikit-learn (e.g.
sklearn.gaussian_process.kernels.PairwiseKernel).

Caution: For now we only consider real valued matrices K, L, A, ®, Xj4tq.

See also:

* Definition

3.1. Finite DPPs

e Exact sampling

Todo: add .kernel_rank attribute

compute_K (msg=False)

Compute the correlation kernel K from the original parametrization of the FiniteDPP object.
The kernel is stored in the K attribute.

See also:

Relation between correlation and likelihood kernels
compute_L (msg=False)

Compute the likelihood kernel L from the original parametrization of the 7initeDPP object.
The kernel is stored in the L attribute.

See also:

Relation between correlation and likelihood kernels
flush_ samples ()

Empty the 1ist_of_samples attribute.
info ()

Display infos about the FiniteDPP object

plot_kernel (kernel_type='correlation’, save_path="")

Display a heatmap of the kernel used to define the FiniteDPP object (correlation kernel K or likelihood
kernel L)

Parameters

* kernel_type (str) — Type of kernel (' correlation' or 'likelihood"'), de-
fault 'correlation'

* save_path (str)— Path to save plot, if empty (default) the plot is not saved.
sample_exact (mode='GS’, **params)

Sample exactly from the corresponding F'initeDPP object.

Parameters
* mode (string, default 'GS"') —
— projection=True:
% 'GS"' (default): Gram-Schmidt on the rows of K.

% 'Chol"' [Poul9] Algorithm 3

'Schur': when DPP defined from correlation kernel K, use Schur complement
to compute conditionals

- projection=False:

'GS"' (default): Gram-Schmidt on the rows of the eigenvectors of K selected in
Phase 1.

* '"GS_bis"': Slight modification of 'GS"'
#* '"Chol' [Poul9] Algorithm 1

% 'KuTal2': Algorithm 1 in [KT12]

3.1. Finite DPPs

37

Returns Returns a sample from the corresponding FiniteDPP object. In any case, the sample
is appended to the 1ist_of_samples attribute as a list.

% 'vEx': the dpp-vfx rejection sampler in [DerezinskiCV19]

* '"alpha': the alpha-dpp rejection sampler in [CDerezinskiV20]

* params (dict) — Dictionary containing the parameters for exact samplers with keys
— 'random_state' (default None)

— If mode="vEx"'

See dpp_vix_sampler () for a full list of all parameters accepted by ‘vix’
sampling. We report here the most impactful

#* 'rls_oversample_dppvEx"' (default 4.0) Oversampling parameter used
to construct dppvfx’s internal Nystrom approximation. This makes each rejec-
tion round slower and more memory intensive, but reduces variance and the
number of rounds of rejections.

* 'rls_oversample_bless' (default 4.0) Oversampling parameter used
during bless’s internal Nystrom approximation. This makes the one-time pre-
processing slower and more memory intensive, but reduces variance and the
number of rounds of rejections

Empirically, a small factor [2,10] seems to work for both parameters. It is sug-
gested to start with a small number and increase if the algorithm fails to terminate.

— If mode="alpha'

See alpha_k_dpp_sampler () for a full list of all parameters accepted by
‘alpha’ sampling. We report here the most impactful

'rls_oversample_alphadpp' (default 4.0) Oversampling parameter

used to construct alpha-dpp’s internal Nystrom approximation. This makes

each rejection round slower and more memory intensive, but reduces variance

and the number of rounds of rejections.

* 'rls_oversample_bless' (default 4.0) Oversampling parameter used

during bless’s internal Nystrom approximation. This makes the one-time pre-

processing slower and more memory intensive, but reduces variance and the

number of rounds of rejections

Empirically, a small factor [2,10] seems to work for both parameters. It is sug-
gested to start with a small number and increase if the algorithm fails to terminate.

Return type list

Note: Each time you call this method, the sample is appended to the 1ist_of_samples attribute as a

list.

The 1ist_of_samples attribute can be emptied using f1ush_samples ()

Caution: The underlying kernel K, resp. L must be real valued for now.

See also:

e Exact sampling

3.1. Finite DPPs

38

e flush_samples ()
* sample_mcmc ()
sample_exact_k_dpp (size, mode="'GS', **params)

Sample exactly from k-DPP. A priori the F1i niteDPP object was instanciated by its likelihood L kernel
so that

Pk_Dpp(.)(= S) ox det LS 1|S|:k

Parameters
e size (int) - size k of the k-DPP
* mode (string, default 'GS"') —
— projection=True:
#* 'GS' (default): Gram-Schmidt on the rows of K.
* 'Schur': Use Schur complement to compute conditionals.
— projection=False:

% 'GS' (default): Gram-Schmidt on the rows of the eigenvectors of K se-
lected in Phase 1.

% 'GS_bis"': Slight modification of 'GS"'

* 'KuTal2': Algorithm 1 in [KT12]

% 'vEx': the dpp-vfx rejection sampler in [DerezinskiCV19]

% 'alpha': the alpha-dpp rejection sampler in [CDerezinskiV20]

* params (dict) — Dictionary containing the parameters for exact samplers with
keys

'random_state' (default None)
— Ifmode="vfx'

See k_dpp_vix_sampler () for a full list of all parameters accepted
by ‘vfx’ sampling. We report here the most impactful

'rls_oversample_dppvix' (default 4.0) Oversampling param-
eter used to construct dppvfx’s internal Nystrom approximation. This
makes each rejection round slower and more memory intensive, but
reduces variance and the number of rounds of rejections.

% 'rls_oversample_bless' (default 4.0) Oversampling parame-
ter used during bless’s internal Nystrom approximation. This makes
the one-time pre-processing slower and more memory intensive, but
reduces variance and the number of rounds of rejections

Empirically, a small factor [2,10] seems to work for both parameters. It is
suggested to start with a small number and increase if the algorithm fails
to terminate.

— If mode="'alpha' See alpha_k_dpp_sampler () for a full list of all
parameters accepted by ‘alpha’ sampling. We report here the most impactful

% 'rls_oversample_alphadpp' (default 4.0) Oversampling param-
eter used to construct alpha-dpp’s internal Nystrom approximation. This

3.1.

Finite DPPs 39

makes each rejection round slower and more memory intensive, but re-
duces variance and the number of rounds of rejections.

* 'rls_oversample_bless' (default 4.0) Oversampling parameter
used during bless’s internal Nystrom approximation. This makes the one-
time pre-processing slower and more memory intensive, but reduces vari-
ance and the number of rounds of rejections

* 'early_stop' (default False) Wheter to return as soon as a k-DPP
sample is drawn, or to continue with alpha-dpp internal binary search to
make subsequent sampling faster.

Empirically, a small factor [2,10] seems to work for both parameters. It is
suggested to start with a small number and increase if the algorithm fails to
terminate.

Returns
A sample from the corresponding k-DPP.
In any case, the sample is appended to the 1ist_of_samples attribute as a list.

Return type list

Note: Each time you call this method, the sample is appended to the 1ist_of_samples attribute as
a list.

The 1ist_of_samples attribute can be emptied using f1ush_samples ()

Caution: The underlying kernel K, resp. L must be real valued for now.

See also:

* sample_exact ()

* sample_mcmc_k_dpp ()
sample_mcmc (mode, **params)

Run a MCMC with stationary distribution the corresponding F'initeDPP object.
Parameters
* mode (string) -
— 'AED' Add-Exchange-Delete

'AD' Add-Delete

— 'E' Exchange

'zonotope' Zonotope sampling

* params (dict)— Dictionary containing the parameters for MCMC samplers with
keys

'random_state"' (default None)
— If mode="AED', 'AD', 'E"

's_init ' (default None) Starting state of the Markov chain

3.1. Finite DPPs 40

% 'nb_iter' (default 10) Number of iterations of the chain
% 'T_max' (default None) Time horizon
* 'size' (default None) Size of the initial sample for mode="'AD'/'E"

- rank(K) = trace(K) for projection K (correlation) kernel and
mode="E"'

— If mode="zonotope"':

* 'lin_obj' linear objective in main optimization problem (default
np.random.randn(N))

% 'x_0"' initial point in zonotope (default A*u, u~U[0,1]"n)
% 'nb_iter"' (default 10) Number of iterations of the chain
'T_max' (default None) Time horizon
Returns
The last sample of the trajectory of Markov chain.

In any case, the full trajectory of the Markov chain, made of params['nb_iter']
samples, is appended to the 1ist_of_samples attribute as a list of lists.

Return type list

Note: Each time you call this method, the full trajectory of the Markov chain, made of
params ['nb_iter'] samples, is appended to the 1ist_of_samples attribute as a list of lists.

The 1ist_of_samples attribute can be emptied using f1ush_samples ()

See also:

* MCMC sampling
* sample_exact ()
e flush samples ()
sample_mcmc_k_dpp (size, mode="E’, **params)
Calls sample_mcmc () withmode="E"' and params|['size'] = size

See also:

* MCMC sampling
* sample_mcmc ()
* sample_exact_k_dpp ()

e flush samples ()

3.1. Finite DPPs 41

3.2 Continuous DPPs

3.2.1 Definition
Point Process

Let X = R% C? or S?~! be the ambient space, we endow it with the corresponding Borel o-algebra B(X) together
with a reference measure .

For our purpose, we consider point processes as locally finite random subsets X C X i.e.

VC C X compact, #(XNC) < 0.

Hint: A point process is a random subset of points X = {X1,..., Xy} C X with N being random.

See also:
More formal definitions can be found in [MollerW04] Section 2 and [Joh06] Section 2 and bibliography therein.

To understand the interaction between the points of a point process, one focuses on the interaction of each cloud of k
points (for all k). The corresponding k-correlation functions characterize the underlying point process.

Correlation functions

For k > 0, the k-correlation function py, is defined by:
Vf : X¥ — C bounded measurable

k

El S 5o X0 | = [fn e [uldn).
Xk ;
(X1, Xk) i=1
X1 £ A X EX

Hint:

The k-correlation function does not always exists, but but when they do, they have a meaningful interpre-
tation.

_ there is 1 point in each "
pk(xla"'7xk)lu‘(dxl)7"'>ﬂ(dmN) =P B(.%'l,d.’L‘l),...,B(.'I}n,d.Tn) ;

7

where B(x, dx) denotes the ball centered at x with radius dzx.

A Determinant Point Process (DPP) is a point process on (X, B(X), 1) parametrized by a kernel K associated to the
reference measure p. The k-correlation functions read

Vk>1, pr(xy,...,25) = det[K(xi,xj)]ﬁjzl.

See also:

[Mac75] [Sos00] [Joh06] [HKPVirag06]

3.2. Continuous DPPs 42

Existence

One can view K as an integral operator on L2 (1)

Vo e X, Kf(z) = /XK(:c,y)f(y)ﬂ(dy)~

To access spectral properties of the kernel, it is common practice to assume K

1. Hilbert Schmidt

/ / (K () () pu(dy) < o,
XxX

2. Self-adjoint equiv. Hermitian

K(z,y) = K(y,z),

3. Locally trace class

VB C X compact, / K(z,z)p(dz) < oo.
B

. 1. implies K to be a continuous compact operator.

e 2. with 1. allows to apply the spectral theorem, providing

K(z,9) =Y Antn(@)n(y), where Ky = Andn.
n=0

* 3. makes sure there is no accumulation of points: |X N B| = [, K (z,z)u(dz) < oo, see also Number of
points

Warning: These are only sufficient conditions, there indeed exist DPPs with non symmetric kernels, see, e.g.,
Carries process.

Important: Under assumptions 1, 2, and 3

DPP(K)exists <= 0<)\, <1, VneN

See also:
e Remarks 1-2 and Theorem 3 [Sos00]
* Theorem 22 [HKPVirag06]

3.2. Continuous DPPs 43

https://en.wikipedia.org/wiki/Hilbert%E2%80%93Schmidt_integral_operator

Projection DPPs

DPP(K) is said to be a projection DPP with reference measure x when K : X x X — C is a orthogonal projection
kernel, that is

me:Km@fm-éK@@MAWM@:M%w

Construction

A canonical way to construct DPPs generating configurations of at most /V points is the following.

Consider N orthonormal functions ¢q, ..., o1 € L?(p)

/M@@mmmﬁﬁ%

and attach [0, 1]-valued coefficients \,, such that

N-1
n=0

The special case where \y = --- = Ay_1 = 1 corresponds to the construction of a projection DPP with N points.
See also:

* Number of points

e Lemma 21 [HKPVirag06]

* Proposition 2.11 [Joh06] biorthogonal families

3.2.2 Properties

Generic DPPs as mixtures of projection DPPs

Projection DPPs are the building blocks of the model in the sense that generic DPPs are mixtures of projection DPPs.

Consider X ~ DPP(K) and write the spectral decomposition of the corresponding kernel as
K= i MA@ (2)(y).
n=1
Then, denote XZ ~ DPP(K?) with
K= i Bno(x)¢(y), where B, ~ Ber(\,) are independent,
n=1
X is obtained by first sampling By, ..., By independently and then sampling conditionally from DPP(K?), the

DPP with orthogonal projection kernel K 2.

Finally, we have X < X'B.
See also:
* Theorem 7 in [HKPVirag06]
* Finite case of Generic DPPs as mixtures of projection DPPs

e Sampling

3.2. Continuous DPPs 44

Linear statistics

Expectation

E l] /f u(dz) = trace(K f) = trace(fK).
Xex

Variance

> f(X)] =E [X))+ Y f(X)2] -E [Z f(X)r

Xex XAYeX XeXx Xex

- / / F@) F @)K (2, 2)K (9, 9) — K (2, 9) K (3, 2)] p(d)ldy)

+ [rerr@aun - | [f(:v)K(fw)u(d:v)r
:/f(a;)Q z, x)p(dr) — //f YK (y,) p(d) p(dy)

= trace(f2K) — trace(fK fK).

a. Hermitian kernel i.e. K(z,y) = K(y,x)

] [t K@ antdn) - [[1@ @K) Putdn)a(y).

b. Orthogonal projection case i.e. K2 = K = K*
Using K (z,2) = [K(z,y)K(y, x)p(dy) = [|K(z,y)]*n(dy),

] // K (2, 9)* u(dy)p(de).

Var

XEX

Var

XeX

Number of points

For projection DPPs, i.e., when K is the kernel associated to an orthogonal projector, one can show that |[X| =
rank(K) = Trace(K) almost surely (see, e.g., [HKPVirag06] Lemma 17).

In the general case, based on the fact that generic DPPs are mixtures of projection DPPs, we have

|X] = Z Ber(A
i=1

Note:

* For any Borel set B, instantiating f = 1p yields nice expressions for the expectation and variance of the number
of points falling in B.

3.2. Continuous DPPs 45

See also:

Number of points in the finite case

Thinning

Important: The class of DPPs is closed under independent thinning.

Let A > 1. The configuration of points X* obtained after subsampling the points of a configuration X ~ DPP(K)
with i.i.d. Ber (1) is still a DPP with kernel K. To see this, let’s compute the correlation functions of the thinned

process

(11 ----- CEk)
ar:i;zféacj»’:‘./\f‘A

3.2.3 Sampling

k
E Z f(‘rlv"'7$7€)H1{zi€X>‘} X
(Il iEk) i=1
L wﬁé:pjeX
k
Z f(wy, ... zp)E HBiX
(Z1,..,2k) =1
L ziFx; EX
1
D flanm)yy
(Il Ik)
TiFx;EX
1
., xy) det {K(xi, $])] p®* (dx).
A 1<i,j<k

In contrast to the finite case where the ML community has put efforts in improving the efficiency and tractability of
the sampling routine, much less has been done in the continuous setting.

Exact sampling

In this section, we describe the main techniques for sampling exactly continuous DPPs.

As for finite DPPs the most prominent one relies on the fact that generic DPPs are mixtures of projection DPPs.

3.2. Continuous DPPs

46

Projection DPPs: the chain rule

Let’s focus on sampling from projection DPP(K) with a real-valued orthogonal projection kernel K : X x X — R
and reference measure (, that is

K(z,y) = K(y,z) and / K (. 2)K (2. y)u(dz) = K (z,y)

In this setting, recall that the number of points is p-almost surely equal to r = rank(K).

To generate a valid sample X = {x1,...,z,} ~ DPP(K), [HKPVirag06] Proposition 19 showed that it is sufficient
to apply the chain rule to sample (z1, . .., z,-) with joint distribution

1
Pl(z1,...,2.)] =] det[K (xp, 2q)]y o1 1" (d1.y) (3.27)

and forget the order the points were selected.

The original projection DPP sampler of [HKPVirag06] Algorithm 18, was given in an abstract form, which can be
implemented using the following strategy. Write the determinant in (3.27) as a telescopic product of ratios of determi-
nants and use Schur complements to get

T

1 det KZ

Pl o] = ST) TT s 00)
p . R (o020 — K, l(TR K, (o) (3.28)
- (f'“’;’g)ﬂ(dxl)n — rzj(jl_) L (da),

=2

where K, = [K(xp,xq)];quzl and K;_(z) = (K(z,21),...,K(z,2;_1))".

Important:

a) The expression (3.27) indeed defines a probability distribution, with normalization constant r!. In particular this
distribution is exchangeable, i.e., invariant by permutation of the coordinates.

b) The successive ratios that appear in (3.28) are the normalized conditional densities (w.r.t. 1) that drive the chain
rule. The associated normalizing constants r — (¢ — 1) are independent of the previous points.

c) Sampling projection DPPs does not require the eigendecomposition of the kernel!

Hint: MLers will recognize (3.28) as the incremental posterior variance of a noise-free Gaussian Process (GP) model
with kernel K, see [RW06] Equation 2.26.

Caution: The connexion between the chain rule (3.28) and Gaussian Processes is valid in the case where the GP
kernel is an orthogonal projection kernel, see also Caution.

3.2. Continuous DPPs 47

https://en.wikipedia.org/wiki/Schur_complement
https://en.wikipedia.org/wiki/Exchangeable_random_variables

Geometrical interpretation

When the eigendecomposition of the kernel is available, the chain rule can be interpreted and implemented from a
geometrical perspective, see, e.g., [LMollerR12] Algorithm 1.

Writing the Gram formulation of the kernel as
K(z,y) = Zﬁbi(ﬂf)@(?}) = d(z) " D(y),
i=1

where ®(x) £ (¢1(x), ..., ¢, (z)) denotes the feature vector associated to x € X.

The joint distribution (3.27) reads

Pl(rr,)] = o detl® ()T B(ag))]y oy (drr)
: (3.29)

1
= Volume*{®(z1), ..., ®(x,) }u®" (dz1.,),
7!

Hint: The joint distribution (3.29) characterizes the fact that projection DPP(K) favor sets of » = rank(K) points
(z1,...,x,) whose feature vectors ®(x1),...P(x,) span a large volume. This is another way of understanding the
repulsive/diversity feature of DPPs.

Then, the previous telescopic product of ratios of determinants in (3.28) can be understood as the base x height
formula applied to compute Volume®{® (), ..., ®(x,)}, so that

Tq T T1 r (§] i
M(zl,...,xrnWu(dmﬂr_(l detKi o

r - i — 1) det Ki,1
[CIENIE " distance? (®(xi), Span{®(z1), ..., P(wi-1)}) 0
T 1stance Xy), dpan T1)yenny Ti—1
= PO da),
L xl)g G- D) pu(d;)
i—1
where K, _; = [<<I>(xp)T<I>(xq)>]p’q:1.
Hint: The overall procedure is akin to a sequential Gram-Schmidt orthogonalization of ®(z1), ..., ®(zN).

Attention: In contrast to the finite case where the conditionals are simply probability vectors, the chain rule
formulations (3.28) and (3.30) require sampling from a continuous distribution. This can be done using a rejection
sampling mechanism but finding a good proposal density with tight rejection bounds is a challenging problem
[LMollerR12] Section 2.4. But it is achievable in some specific cases, see, e.g., Multivariate Jacobi Ensemble.

See also:
* Algorithm 18 [HKPVirag06] for the original abstract projection DPP sampler
* Projection DPPs: the chain rule in the finite case

* Some Orthogonal Polynomial Ensembles (specific instances of projection DPPs) can be sampled in O(r?) by
computing the eigenvalues of properly randomised tridiagonal matrices.

* The multivariate Jacobi ensemble whose sample () method relies on the chain rule described by (3.30).

3.2. Continuous DPPs 48

Generic DPPs: the spectral method

The procedure stems from the fact that generic DPPs are mixtures of projection DPPs, suggesting the following two
steps algorithm. Given the spectral decomposition of the kernel

K(z,y) =Y Nigi(z)¢:(y), (3.31)
i=1

Step 1. Draw B; ~ Ber()\;) independently and note {i1,...,in} = {i; B; = 1},
Step 2. Sample from the projection DPP with kernel K (z,y) = 27]:[:1 oi, (), (y).

Important:

» Step /. selects a component of the mixture, see [LMollerR12] Section 2.4.1

* Step 2. generates a sample from the projection DPP(K), cf. previous section.

Attention: Contrary to projection DPPs, the general case requires the eigendecomposition of the kernel (3.31).

See also:

Spectral method for sampling finite DPPs.

Perfect sampling
[DFL13] uses Coupling From The Past (CFTP).

Approximate sampling

See also:

 Approximation of K (z,y) = K (x — y) by Fourier series [LMollerR12] Section 4

3.2.4 -Ensembles
Definition

Let 8 > 0, the joint distribution of the 5-Ensemble associated to the reference measure p writes

N
(21, 2N) ~ Az, oon) | T] wlda). (3.32)
N.B i=1
Hint:
* |A(z1,...,2n)[= [];<; |zi — z;] is the absolute value of the determinant of the Vandermonde matrix,

3.2. Continuous DPPs 49

https://pdfs.semanticscholar.org/622e/a9c9c665002670ff26119d1aad5c3c5e0be8.pdf_

X N
A(xl, - ,a:N) = det . . , (3.33)
xivfl fol

encoding the repulsive interaction. The closer the points are the lower the density.

[is the inverse temperature parameter quantifying the strength of the repulsion between the points.

Important: For Gaussian, Gamma and Beta reference measures, the 5 = 1,2 and 4 cases received a very special
attention in the random matrix literature, e.g. [DE02].

The associated ensembles actually correspond to the eigenvalues of random matrices whose distribution is invariant to
the action of the orthogonal (5 = 1), unitary (8 = 2) and symplectic (5 = 4) group respectively.

L N r Beta
Ensemble name | Hermite | Laguerre | Jacobi
support R R* [0,1]

Note: The study of the distribution of the eigenvalues of random orthogonal, unitary and symplectic matrices lying
on the unit circle is also very thorough [KNO4].

Orthogonal Polynomial Ensembles

The case 8 = 2 corresponds a specific type of projection DPPs also called Orthogonal Polynomial Ensembles (OPEs)
[Konig0O4] with associated kernel

N-1

n=0

where (P,) are the orthonormal polynomials w.r.t. pi.e. deg(P,) = n and (Py, P) 12(,) = Okt

Note: OPEs (with N points) correspond to projection DPPs onto Span{ P, }N "1 = RN-1[X]

Hint: First, linear combinations of the rows of A(zy,...,zy) allow to make appear the orthonormal polynomials
(P,) so that

Pogxlg POExN;

Py (z1 Pi(z

|A(Ih. 7$N>|K !
Prn_1(z1) Py_1(zn)

Then,

A2 = |ATA| o det [Kn (2, 2;)]

2,j=1"

3.2. Continuous DPPs 50

Finally, the joint distribution of (1, ...,z x) reads

1 N
(.Z'h N ,{EN) ~ ﬁ det [KN(CBZ‘, ‘,Ej)]z]'j]jzl H,u(dxz) (334)

i=1

See also:
[Konig04], [Joh06]
Sampling

Full matrix models

For specific reference measures the 8 = 1, 2,4 cases are very singular in the sense that the corresponding ensembles
coincide with the eigenvalues of random matrices.

This is a highway for sampling exactly such ensembles in O(N3)!

Hermite Ensemble

Take for reference measure p = N(0, 2), the pdf of the corresponding 3-Ensemble reads

2

N
(1,...,xN) ~ |A(:r1,...,zch)*Bl_[e_%Tz dx;,

i=1
where fromthede finitionin : eq : ‘eq : absy,andermondeget‘wehave : math : * |A(xy,...,zN)| = H |z; — ;.
i<y

Hint: The Hermite ensemble (whose name comes from the fact that Hermite polynomials are orthogonal w.r.t the
Gaussian distribution) refers to the eigenvalue distribution of random matrices formed by i.i.d. Gaussian vectors.

« =1
X~ Nyn(0,1) A= 2EX
’ V2
« f=2
X~ Nyn(0,1) 40 Ny (0,1 A= X*@XT
« =4

{X ~ Ny (0,1) 44 Ny (0, 1)

[X Y} g XX
Y~ Nyar(0,1) +i Ny (0, 1)) |

Normalization /SN to concentrate as the semi-circle law.

V4 — 22

—— 15 gidx.
2 [-2.24%

3.2. Continuous DPPs 51

from dppy.beta_ensembles import HermiteEnsemble

hermite = HermiteEnsemble (beta=4) # beta in {0,1,2,4}, default beta=2
hermite.sample_full_model (size_N=500)

hermite.plot (normalization=True)

hermite.hist (normalization=True)

To compare with the sampling speed of the tridiagonal model simply use
hermite.sample_banded_model (size_N=500)

Realization of 500 points of Hermite Ensemble with B =4

0.35

— semi — circle

B hist

0.30 A

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

Fig. 3.5: Full matrix model for the Hermite ensemble

See also:
e Banded matrix model for Hermite ensemble

e HermiteEnsemble in API

3.2. Continuous DPPs

52

Laguerre Ensemble

Take for reference measure p = T (g(M —N+1), 2) = X%(M—N+1)* the pdf of the corresponding S-Ensemble
reads

N
S(M—N+1)-1 _1,,
(,Il,.-.,l'N)N|A(1'1,..-,13N)|6Hxi2() e 2% dl’i,
i=1
wherefromthede finitionin : eq : ‘eq : absyandermondeget‘wehave : math : * |A(xy,...,xN)| = H |z — ;]
i<j

Hint: The Laguerre ensemble (whose name comes from the fact that Laguerre polynomials are orthogonal w.r.t the
Gamma distribution) refers to the eigenvalue distribution of empirical covariance matrices of i.i.d. Gaussian vectors.

e B=1
X ~Nym(0,1) A=XXT.
L] /B = 2
X ~Nya(0,1) +i Ny ar(0,1) A= XXT,
o ﬂ = 4
X~ 1 i 1
AGVJJ(O,)4—?/VNJM(O,) A~=:{)(* Y;} A= AAT
YNNN,M(O,1)+ZNN,M(O,1) -y X
Normalization S M to concentrate as Marcenko-Pastur law.
1 Ay —x)(z— Ao
1 V(O —2)()1[A_,A+}dx,

2 cx

where

M
c= and A = (1£+0e)2

from dppy.beta_ensembles import LaguerreEnsemble

laguerre = LaguerreEnsemble (beta=1) # beta in {0,1,2,4}, default beta=2
laguerre.sample_full_model (size_N=500, size_M=800) # M >= N

laguerre.plot (normalization=True)

laguerre.hist (normalization=True)

To compare with the sampling speed of the tridiagonal model simply use
laguerre.sample_ banded_model (size_N=500, size_M=800)

See also:
* Banded matrix model for Laguerre ensemble

e LaguerreEnsemble in API

3.2. Continuous DPPs 53

Realization of 500 points of Laguerre Ensemble with =1

with ratio M/N = 1.600

1.0

D fMarcenko — Pastur

B hist

Fig. 3.6: Full matrix model for the Laguerre ensemble

3.2. Continuous DPPs

54

Jacobi Ensemble

Take for reference measure ;. = Beta (g (My —N+1), g(Mg - N+ 1)) , the pdf of the corresponding 3-Ensemble

reads

N
B(My— _
(21,...,2N5) ~ |A(z1, . .. ,$N)|ﬁ Hxiz (M1—N+1) 1(1 - $i>§(M27N+1)71 d;,
i=1
wherefromthede finitionin : eq : ‘eq : absyandermondeget‘wehave : math : * |A(xy,...,xN)| = H |z — xj].
i<j

Hint: The Jacobi ensemble (whose name comes from the fact that Jacobi polynomials are orthogonal w.r.t the Beta
distribution) is associated with the multivariate analysis of variance (MANOVA) model.

e B=1
X ~ 0,1 _
N (0. 1) A=XXT(XXT+YY") ",
YNNN7M2(0,1)
. 522
X ~ 1) 1 _
N 0, H,ZNN’Ml(O’) A=XXT(XXT+yy)
YNNN7M2(0,1)+ZNN7M2(0,1)
e B=4
X1 ~ Ny, (0,1) +i Ny ar, (0,1) o[X X
X5 NNN,Ml(O,l)-i-iNN,Ml(O,l) -X5 Xi A— xxt (XXT—FYYT)il.
Y1 ~ Ny, (0,1) +4 Ny, (0,1) v — i Y
Y, NNN’MQ(O’l) —i—iNN)MZ(O,l) =Yy Y

Concentrates as Wachter law

0+ b=,
2nz(1 — x) ’

where

a

2
M1 M2 (wa(a—l—b—l):ﬂ:ﬁ)
:71):W and g4 = s

a+b

itself tending to the arcsine law in the limit.

from dppy.beta_ensembles import JacobiEnsemble

jacobi = JacobiEnsemble (beta=2) # beta must be in {0,1,2,4}, default beta=2
jacobi.sample_full model (size_N=400, size_M1=500, size_M2=600) # M 1, M2 >= N
jacobi.plot (normalization=True)

jacobi.hist (normalization=True)

To compare with the sampling speed of the triadiagonal model simply use
jacobi.sample_banded_model (size N=400, size_ MI1=500, size_M2=600)

See also:

3.2. Continuous DPPs 55

Realization of 400 points of Jacobi Ensemble with =2
with ratios, M;/N = 1.250, M>/N = 1.500

D fWachter

B hist

Fig. 3.7: Full matrix model for the Jacobi ensemble

3.2. Continuous DPPs

56

e Banded matrix model for Jacobi ensemble
e JacobiEnsemble in API
e Multivariate Jacobi ensemble

e MultivariateJacobiOPE in API

Circular Ensemble

N
. 1
0 i H
’A(el 1,... v N g 2 Ogﬂ])dﬁj,
wherefromthede finitionin : eq : ‘eq : absyandermondeget‘wehave : math : “ |A(xy,...,xN)| = | I |z; — ;]
1<J

Hint: Eigenvalues of orthogonal (resp. unitary and self-dual unitary) matrices drawn uniformly i.e. Haar measure on
the respective groups. The eigenvalues lie on the unit circle i.e. \,, = e*’~. The distribution of the angles 6,, converges
to the uniform measure on [0, 27| as N grows.

. ﬂ =1
Uniform measure i.e. Haar measure on orthogonal matrices Oy: UTU = Iy

1. Via QR algorithm, see [Mez06] Section 5

import numpy as np
from numpy.random import randn
import scipy.linalg as la

A = randn (N, N)

Q, R = la.qgr (A)

d = np.diagonal (R)

U = np.multiply(Q, d/np.abs(d), Q)
la.eigvals (U)

2. The Hermite way
X ~ Ny n(0,1)
A=X+X"=U"TAU
eigvals(U).

e f=2
Uniform measure i.e. Haar measure on unitary matrices Upy: U U =1In

1. Via QR algorithm, see [Mez06] Section 5

import numpy as np
from numpy.random import randn
import scipy.linalg as la

A = randn(N, N) + ljxrandn (N, N)
Q, R = la.qgr(A)

(continues on next page)

3.2. Continuous DPPs 57

(continued from previous page)

d = np.diagonal (R)
U np.multiply(Q, d / np.abs(d), Q)
la.eigvals (U)

from dppy.beta_ensembles import CircularEnsemble
circular = CircularEnsemble (beta=2) # beta in {0,1,2,4}, default beta=2

1. Plot the eigenvalues, they lie on the unit circle
circular.sample_full_model (size_N=30, haar_mode='QR'")
circular.plot ()

2. Histogram of the angle of more points, should look uniform on [O,
circular.flush_samples () # Flush previous sample

circular.sample_full model (size_N=1000, haar_mode='QR'")
circular.hist ()

Realization of 30 points of Circular Ensemble with B =2
using full matrix model with haar_ mode=QR

® sample
1.0 A
0.5 A1
0.0 A
—0.5 A
—1.0 A
—i.O —(l).5 OiO of5 110

Fig. 3.8: Full matrix model for the Circular ensemble from QR on random Gaussian matrix

2. The Hermite way

. Continuous DPPs

Realization of 1000 points of Circular Ensemble with g =2
using full matrix model with haar_mode=QR

0.16 A

0.14 A

0.12 A

0.10 A

0.08 A

0.06 A

0.04 A

0.02 A

0.00 -

Fig. 3.9: Full matrix model for the Circular ensemble from QR on random Gaussian matrix

3.2. Continuous DPPs

59

X ~ ./\/]\;J\r(o7 1) +’L'NN’N(0, 1)
A=X+XT=U'AU
eigvals(U).

from dppy.beta ensembles import CircularEnsemble
circular = CircularEnsemble (beta=2) # beta in {0,1,2,4}, default beta=2

1. Plot the eigenvalues, they lie on the unit circle
circular.sample_full _model (size_N=30, haar_mode='Hermite')
circular.plot ()

2. Histogram of the angle of more points, should look uniform on [O,
circular.flush_samples () # Flush previous sample

circular.sample_full _model (size_N=1000, haar_mode='Hermite')
circular.hist ()

Realization of 30 points of Circular Ensemble with =2
using full matrix model with haar_mode=Hermite

® sample
1.0 A
0.5 A1
0.0 A
—-0.5
—-1.0 A
—1|.0 —(|).5 OiO Oj5 110

Fig. 3.10: Full matrix model for the Circular ensemble from Hermite matrix

'6:4

Uniform measure i.e. Haar measure on self-dual unitary matrices U Spyy: UTU = Ly

3.2. Continuous DPPs 60

Realization of 1000 points of Circular Ensemble with g =2
using full matrix model with haar_mode=Hermite

0.16 A

0.14 A

0.12 A

0.10 A

0.08 A

0.06 A

0.04 A

0.02 A

0.00 -

Fig. 3.11: Full matrix model for the Circular ensemble from Hermite matrix

3.2. Continuous DPPs

61

X NNN’M(071) —l—’L'./\/’N’M(Ql)
Y NNN,M(O,I) +Z'NN)M(0,1)

_| X Y _ t_ yt
A_[_Y* X*} A=X+ X' =UTAU

eigvals(U).

See also:
e Banded matrix model for Circular ensemble

e CircularEnsemble in API

Ginibre Ensemble

N
A1, aw) P [[e dz,
=1

where from the definition in (3.33) we have [A(21, ..., 2n)| = [[;; [z — 2]

2z
V2

Nomalization v N to concentrate in the unit circle.

A (Nn,n(0,1) +i Ny n(0,1)).

from dppy.beta_ensembles import GinibreEnsemble

ginibre = GinibreEnsemble () # beta must be 2 (default)

ginibre.sample_full model (size_N=40)
ginibre.plot (normalization=True)

ginibre.sample_full model (size_N=1000)
ginibre.hist (normalization=True)

See also:

e GinibreEnsemble in APl

Banded matrix models

Computing the eigenvalues of a full N x N random matrix is O(/N?), and can thus become prohibitive for large N.
A way to circumvent the problem is to adopt the equivalent banded models i.e. diagonalize banded matrices.

The first tridiagonal models for the Hermite Ensemble and Laguerre Ensemble were revealed by [DE02], who left the
Jacobi Ensemble as an open question, addressed by [KNO04]. Such tridiagonal formulations made sampling possible
at cost O(N?) but also unlocked sampling for generic 8 > 0!

Note that [KNO04] also derived a quindiagonal model for the Circular Ensemble.

3.2. Continuous DPPs 62

Realization of 40 points of Ginibre Ensemble with g =2

1.0 A
(]
0.5 A
0.0 A
—0.5 A
([
—1.0 A
-1.0 -0.5 0.0 0.5 1.0
Fig. 3.12: Full matrix model for the Ginibre ensemble
3.2. Continuous DPPs 63

Realization of 1000 points of Ginibre Ensemble with g =2
Histogram of the modulus of each points

2.00 A

1.75

1.50 A

1.25 A

1.00 A

0.75 A

0.50 A

0.25 A

0.00 -

Fig. 3.13: Full matrix model for the Ginibre ensemble

3.2. Continuous DPPs

Hermite Ensemble

Take for reference measure . = N (u, o)

_(@i=w)?

N
(xl,...mN)~|A(x1,...,xN)\5He 202 dx;.
i=1

Note: Recall that from the definition in (3.33)

Azy,.. x| =]] i — 2.

1<J

The equivalent tridiagonal model reads

ar VB2 0 0 0
VB2 VB3 0 0
0 ., . . 0 ;
0 0 Byv-1 an-1 VBw
0 0 0 VBy an

with

OziNN(M,O'Q) and ﬂi+1NF<§(N—i),U2>.

To recover the full matrix model for Hermite Ensemble, recall that F(g, 2) = X} and take
p=0 and o%=2.
That is to say,

a; ~N(0,2) and Biy1 ~ X?}(N—i)'

from dppy.beta_ensembles import HermiteEnsemble

hermite = HermiteEnsemble (beta=5.43) # beta can be >=0, default beta=2

Reference measure 1is N (mu, sigma’2)
hermite.sample_banded_model (loc=0.0, scale=1.0, size_N=500)
hermite.plot (normalization=True)

hermite.hist (normalization=True)

See also:
* [DE02] I-C
o [ull matrix model for Hermite ensemble

e HermiteEnsemble in APl

3.2. Continuous DPPs

65

Realizat

ion of 500 points of Hermite Ensemble with 8 =5.43

0.30 A

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

-2.0

— semi — circle

B hist

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Fig. 3.14: Tridiagonal matrix model for the Hermite ensemble

3.2. Continuous DPPs

66

Laguerre Ensemble

Take for reference measure p = I'(k, 6)

Zi

N
(T1,...,TN) ~ |A(m1,...,xN)\Bfofle_ o dx;.
i=1

Note: Recall that from the definition in (3.33)

Azy,.. x| =]] i — 2.

1<J

The equivalent tridiagonal model reads

o JE 0 0 0 V& Ve
VB a2 VB 00 g VE | V; ‘
. . ‘ ' |
0 - .. - 0 - '
N s RV
R~ o Ve Vet

with

§ai—1 ~ T <§(N —i)+ k79> and & ~ T (Ig(N - i)ﬁ) -
To recover the full matrix model for Laguerre Ensemble, recall that F(g, 2) = x4 and take

B

A
2

(M—N+1) and 6=2.
That is to say,

§2i1 ™~ X%(M_iﬂ) and &y; ~ XQﬁ(N—i)'

from dppy.beta_ensembles import LaguerreEnsemble

laguerre = LaguerreEnsemble (beta=2.98) # beta can be >=0, default beta=2
Reference measure is Gamma (k, theta)

laguerre.sample_banded_model (shape=600, scale=2.0, size_N=400)

laguerre.plot (normalization=True)

laguerre.hist (normalization=True)

See also:
« [DEO2] III-B
* Full matrix model for Laguerre ensemble

* LaguerreEnsemble in API

3.2. Continuous DPPs

67

Realization of 400 points of Laguerre Ensemble with §=2.98

with ratio M/N = 2.004

D fMarcenko — Pastur

B hist

Fig. 3.15: Tridiagonal matrix model for the Laguerre ensemble

3.2. Continuous DPPs

68

Jacobi Ensemble

Take for reference measure 1 = Beta(a, b)

N
(xla"'axN) ~ |A(x17"'7xN)|ﬁszq_1(1 _xi)b71 dmi-

=1

Note: Recall that from the definition in (3.33)

Az, an)| =] e — ;1.

1<J

The equivalent tridiagonal model reads

ar VB2 0 0 0
VB2 VB3 0 0
. . 0

0 . ..
0 0 Byn-1 an—1 VDN
0 0 0 \/BN QN
oy =&
o = Eop—2 + Eop—1 Brt1 = Ean—1&2k
gl =C Y1 = 1-— C1

Ge=0—c-1)ar w=cr—1(1—cp)
with

coi—1 ~ Beta (§(Nz) + a, g(Nfi) +b) and co; ~ Beta <§(Nz), g(Nfif 1) +a+b> .

To recover the full matrix model for Laguerre Ensemble, recall that F(g, 2) = x4 and take

azg(Ml—N—&—l) and b:§<Mz—N+1)

That is to say,

co;—1 ~ Beta (S(Ml — 1+ 1), g(Mg — i+ 1)) and c9; ~ Beta (g(N — i), g(Ml + My — N —1+ 1)) .

from dppy.beta_ensembles import JacobiEnsemble

jacobi = JacobiEnsemble (beta=3.14) # beta can be >=0, default beta=2
Reference measure 1s Beta(a,b)

jacobi.sample_banded_model (a=500, b=300, size_N=400)

jacobi.plot (normalization=True)

jacobi.hist (normalization=True)

See also:

¢ [KNO4] Theorem 2

3.2. Continuous DPPs 69

Realization of 400 points of Jacobi Ensemble with = 3.14
with ratios, M1/N = 1.794, M,/N = 1.475

1.75 1

1.50 A

1.25 A

1.00 A

0.75 A

0.50 A

0.25 A

D fWachter
B hist

Fig. 3.16: Tridiagonal matrix model for the Jacobi ensemble

3.2. Continuous DPPs

70

e Full matrix model for Jacobi ensemble
e JacobiEnsemble in API
e Multivariate Jacobi ensemble

e MultivariateJacobiOPE in API

Circular Ensemble

’A(6i617 ZQN O 271-])d& .

u::]z
l\')‘H

Note: Recall that from the definition in (3.33)

Az, an)| =] e — 251,

1<j

Important: Consider the distribution ©,, that for integers v > 2 is defined as follows:

Draw v uniformly at random from the unit sphere S € R¥*1 then vy + ive ~ O,

Now, given 8 € N*, let

* ap ~ Og(N_k—1)+1 independent variables

o for0 < k<N —1setp,=+/1—|agl?

Then, the equivalent quindiagonal model corresponds to the eigenvalues of either LM or M L with
L:diag[Eo,Eg,...] and M:diag[E_l,El,Eg...],
and where

S = {0"“ Pk } , 0<k<N-2 with E1=[] and Ey_;=[an_1].
Pk —O

Hint: The effect of increasing the 3 parameter can be nicely visualized on this Circular Ensemble. Viewing (3 as the
inverse temperature, the configuration of the eigenvalues crystallizes with /3, see the figure below.

from dppy.beta ensembles import CircularEnsemble
circular = CircularEnsemble (beta=2) # beta must be >=0 integer, default beta=2

See the cristallization of the configuration as beta increases
for b in [0, 1, 5, 10]:

circular.beta = b
circular.sample_banded_model (size_N=30)
circular.plot ()

(continues on next page)

3.2. Continuous DPPs 71

(continued from previous page)

circular.beta = 2
circular.sample_banded_model (size_N=1000)
circular.hist ()

Realization of 30 points of Circular Ensemble with =0

using i.i.d samples from Ujg, 25

® sample
1.0 A
0.5 A
0.0 A1
—-0.5
—1.0-
—1|.0 —(|).5 OiO 015 110

Fig. 3.17: Quindiagonal matrix model for the Circular ensemble

See also:
¢ [KNO4] Theorem 1
e Full matrix model for Circular ensemble

e CircularEnsemblein API

3.2. Continuous DPPs

72

Realization of 30 points of Circular Ensemble with =1
using quindiag model

® sample
1.0 A
0.5 A
0.0 A
—0.5 A
—1.0 A
10 -05 00 05 10

Fig. 3.18: Quindiagonal matrix model for the Circular ensemble

3.2.

Continuous DPPs

73

Realization of 30 points of Circular Ensemble with =5
using quindiag model

® sample
1.0 A
0.5 A
0.0 A
—0.5 A
—1.0 A
10 -05 00 05 10

Fig. 3.19: Quindiagonal matrix model for the Circular ensemble

3.2.

Continuous DPPs

74

Realization of 30 points of Circular Ensemble with =10
using quindiag model

® sample
1.0 A
0.5 A
0.0 A
—0.5 A
—1.0 A
10 -05 00 05 10

Fig. 3.20: Quindiagonal matrix model for the Circular ensemble

. Continuous DPPs

Realization of 1000 points of Circular Ensemble with g =2
using quindiag model

0.16 A

0.14 A

0.12 A

0.10 A

0.08 A

0.06 A

0.04 A

0.02 A

0.00 -

Fig. 3.21: Quindiagonal matrix model for the Circular ensemble

3.2. Continuous DPPs

76

3.2.5 Multivariate Jacobi ensemble

Important: For the details please refer to:
a) the extensive documentation of MultivariateJacobiOPE below
b) the associated Jupyter notebook which showcases MultivariatedacobiOPE
¢) our NeurIPS‘19 paper [GBV19] On two ways to use determinantal point processes for Monte Carlo integration

d) our ICML*19 workshop paper

The figures below display a sample of a d = 2 dimensional Jacobi ensemble MultivariateJacobiOPE with
N = 200 points. The red and green dashed curves correspond to the normalized base densities proportional to
(1 —2)% (1 +2)b and (1 — y)?2(1 +)2, respectively.

import numpy as np
import matplotlib.pyplot as plt
from dppy.multivariate_jacobi_ope import MultivariateJacobiOPE

The .plot () method outputs smtg only in dimension d=1 or 2

Number of points / dimension
N, d = 200, 2
Jacobi parameters in [-0.5, 0.5]"{d x 2}
jac_params = np.array([[0.5, 0.5],
[-0.3, 0.411)

dpp = MultivariateJacobiOPE (N, jac_params)

Get an exact sample
sampl = dpp.sample ()

Display

the cloud of points

the base probability densities

the marginal empirical histograms
dpp.plot (sample=sampl, weighted=False)
plt.tight_layout ()

dpp.plot (sample=sampl, weighted='BH')
plt.tight_layout ()

dpp.plot (sample=sampl, weighted='EZ")
plt.tight_layout ()

* In the first plot, observe that the empirical marginal density converges to the arcsine density ﬁ, displayed
in orange.

* In the second plot, we take the same sample and attach a weight m to each of the points. This illustrates the

choice of the weights defining the estimator of [BH16] as a proxy for the reference measure.

Implementation of the class MultivariateJacobiOPE used in [GBV19] for Monte Carlo with Determinantal
Point Processes

It has 3 main methods:

3.2. Continuous DPPs 77

https://github.com/guilgautier/DPPy/blob/master/notebooks/
https://guilgautier.github.io/publications/

-

== a,=0.50, b, =0.50
== a,= —0.30, b, =0.40
—— a=b=-05

== a;=0.50, by =0.50
== a;= —0.30, b,=0.40

3.2.

Continuous DPPs

78

P ~
= o
1 0. ° °. % o
e 00 o° /
L]) I
) ° o I
R I
° ° ¢ I
I
° I
0 o ® i
[] ° '
° 6 '
° I
o]
o]
L] ° ° : ,
o]
-1 J
-1 0 1
== a,=0.50, b =0.50

a;= —0.30, b, =0.40

* sample () to generate samples
* K () to evaluate the corresponding projection kernel

e plot () todisplay 1D or 2D samples
class dppy.multivariate_jacobi_ope.MultivariateJacobiOPE (N, jacobi_params)

Bases: object
Multivariate Jacobi Orthogonal Polynomial Ensemble used in [GBV19] for Monte Carlo with Determinantal

Point Processes
This corresponds to a continuous multivariate projection DPP with state space [—1, 1]¢ with respect to
* reference measure p(dz) = w(x)dx (see also eval_w()), where
d

we) = T =)™ (14 20)"

« kernel K (see also K ())

N—-1
K(z,y)= > Pu(x)Pi(y) = ®(z) 0(y)
b(k)=0
where
-k € N? is a multi-index ordered according to the ordering b (see

compute_ordering())
- Pu(z) =TI, P,Eab)(xz) is the product of orthonormal Jacobi polynomials

1
/ PP (@) P (w) (1 — w) ™ (1 + w)¥ du = S
-1

so that (Py) are orthonormal w.r.t ;(dx)

3.2. Continuous DPPs

T
- (I)(l‘) = (Pb—l(o) (J’J), ey Pb—l(N_l)(.T))
Parameters
* N (int)— Number of points N > 1

* jacobi_params (array_1ike) — Jacobi parameters [(a;, b;)]%, The number of
rows d prescribes the ambient dimension of the points i.e. zy,...,zy € [~1,1]9. -
whend = 1,a1,b; > —1-whend > 2, |a;|, |b;| < %

See also:

* Multivariate Jacobi ensemble

* when d = 1, the univariate Jacobi ensemble is sampled by computing the eigenvalues of a properly
randomized tridiagonal matrix of [KNO4]

* [BH16] initiated the use of the multivariate Jacobi ensemble for Monte Carlo integration. In particular,
they proved CLT with variance decay of order N~(1+1/4) which is faster that the N~! rate of vanilla
Monte Carlo where the points are drawn i.i.d. from the base measure.

K (X, Y=None, eval_pointwise=False)

Evalute (K (z,v)) y ifeval_pointwise=False or (K(z,¥)) e x,y) Otherwise

zeX,ye

N-1

K(z,y)= Y Pu(x)Pi(y) = ¢(z) (y)

b(k)=0
where
* k € N?is a multi-index ordered according to the ordering b, compute ordering()

* Py(z) = Hle P,iab)(xz) is the product of orthonormal Jacobi polynomials

1
/ PP () P () (1= u) (1 + u) du = b
-1

so that (Py) are orthonormal w.r.t u(dz)

« ®(z) = (Py-1(0)(2), ..., Po-1(ny—1)(2)), see eval_multiD_polynomials ()

Parameters
* X (array_like)— M x d array of M points € [—1,1]¢
e Y(array_like (default None))- M’ x darray of M’ points € [—1,1]¢

* eval_pointwise (bool (default False)) — sets pointwise evaluation
of the kernel, if True, X and Y must have the same shape, see Returns

Returns

If eval_pointwise=False (default), evaluate the kernel matrix

(K(l’7 y))chX,yEY

If eval_pointwise=True kernel matrix Pointwise evaluation of K as depicted in
the following pseudo code output

* if YisNone
- (K(2,9)),ex yex if eval_pointwise=False

- (K(x,2)),cy ifeval_pointwise=True

3.2.

Continuous DPPs 80

* otherwise
- (K(2,9))ex yey if eval_pointwise=False

= (K(2,9)) (4,y)e(x,y) if eval_pointwise=True (in this case X and Y
should have the same shape)

Return type array_like

See also:
eval_multiD polynomials ()

eval_multiD_polynomials (X)
Evaluate

(I)(.’El)—r
P(X):=
(I)(.IJV[)T
where ®(z) = (Py-1(0)(2), - ., Pb—l(N,l)(lE))T such that K (z,y) = ®(x)" ®(y). Recall that b de-
notes the ordering chosen to order multi-indices k& € N

This is done by evaluating each of the three-term recurrence relations satisfied by each univariate or-
thogonal Jacobi polynomial, using the dedicated see also SciPy scipy.special.eval_jacobi ()

satistified by the respective univariate Jacobi polynomials P(ai’bi)(i)- Then we use the slicing feature of

-
the Python language to compute ®(x) = (Pk() = Hl 1 P(a“b)()) ‘o) -
k=b-1(0),...,b=1(N—1

Parameters X (array_1like)— M x d array of M points € [—1,1]¢
Returns ®(X) - M x N array
Return type array_like

See also:
¢ evaluation of the kernel 5 ()

eval w(X)
Evaluate w(x) = H;i:l (1—x;)% (142;) which corresponds to the density of the base measure (dz) =
w(z)dr

Parameters X (array_like)— M x d array of M points € [—1,1]¢
Returns w(z) = [T, (1 — 2;)% (1 + ;)"
Return type array_like

sample (nb_trials_max=10000, random_state=None, tridiag_I1D=True)
Use the chain rule [HKPVirag06] (Algorithm 18) to sample (z1, ...,z y) with density

1 N
N (K(xmxp))n,pzl l:[lw(xn)
1 N K(QTn, .”L'n) — K(.’L‘n, ml;nfl) (K(I‘k’ xl))z’?:ll} -1 K(xlmil’ xn)
- NK(ﬁl,xl)w(xl)}l N—(n—1) w(zn)
N n—1
LT i ditance () o)

—n-1)

3.2.

Continuous DPPs 81

https://en.wikipedia.org/wiki/Jacobi_polynomials#Recurrence_relations
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_jacobi.html

The order in which the points were sampled can be forgotten to obtain a valid sample of the corresponding
DPP

« 1 ~ % K(z,2)w(x) using sample_chain_ rule_proposal ()

e z,|Y = {x1,...,x,-1}, is sampled using rejection sampling with proposal density
%K(x, z)w(z) and rejection bound frac{N}{N-(n-1)}

1 N 1
N T K(x,z)w(x)

[K(z,2) — K(2,Y) Ky K(Y, 2)]w(z) < N—tm-ON

Note: Using the gram structure K (z,y) = ®(x) " ®(y) the numerator of the successive conditionals
reads

K(z,z) — K(z,Y)K(Y,Y) ' K(Y,z) = distance®(®(x,,), span{®(z,) ;‘;11)
= H(I_ Hspan{@(xp)}" 1¢()H

which can be computed simply in a vectorized way. The overall procedure is akin to a sequential Gram-
Schmidt orthogonalization of ®(x1),..., ®(zN).

See also:

* Projection DPPs: the chain rule

* sample_chain rule_proposal ()

sample_chain_rule_proposal (nb_trials_max=10000, random_state=None)
Use a rejection sampling mechanism to sample

with proposal distribution

L | e s
i T/ 1 — xl)
Since the target density is a mixture, we can sample from it by

1. Select a multi-index k uniformly at random in {b=1(0),..., b~ (N — 1)}

2
2. Sample from (IIT’}’(:EH)) w(x)dz with proposal we,(z)dz.

The acceptance ratio writes

Pk(w) T d (aub)
M H by (@) (1—)3 (14 2,)%F2 <Gy

weq Hp(au

which can be bounded using the result of [Gau09] on Jacobi polynomials.

Note: Each of the rejection constant C} is computed at initialization of the
MultivariateJacobiOPE objectusing compute_rejection bounds ()

3.2.

Continuous DPPs 82

Returns A sample x € [—1,1]¢ with probability distribution - K (z, z)w(z)

Return type array_like
See also:

* compute_rejection_bounds ()

s sample ()

dppy.multivariate_Jjacobi_ope.compute_degrees_1D_ polynomials (max_degrees)
deg[i, j] =1if i <= max_degrees[j] else 0

dppy.multivariate_jacobi_ope.compute_norms_1D_polynomials (jacobi_params,
deg_max)

@012 of each (univariate) orthogoanl Jacobi polynomial for £k = 0to deg_max

Compute the square norms ||P,£

and a;,b; = jacobi_params[i, :] Recall that the Jacobi polynomials (P,Eai’bi)) are orthogonal w.r.t.
(1 —w)% (1 + u)’ du.
(a.bi) L@
IR = [(P) (1 =) 1+ w0

2wt Pk 4a; 4+ DD(k+b; + 1)

Parameters
* jacobi_params (array_like) — Jacobi parameters [(a;,b;)]¢, € [—3,3]9*2
The number of rows d prescribes the ambient dimension of the pointsi.e. z1,...,zy €

[_17 1]d
* deg_max (int)— Maximal degree of 1D Jacobi polynomials

Returns Array of size deg_max + 1 xd with entry k, ¢ given by HP,E‘”’b") I|?
Return type array_like
See also:

* Wikipedia Jacobi polynomials
* compute_ordering()

dppy.multivariate_jacobi_ope.compute_ordering (N, d)
Compute the ordering of the multi-indices € N? defining the order between the multivariate monomials as
described in Section 2.1.3 of [BH16].
Parameters

* N (int) — Number of polynomials (Py) considered to build the kernel X () (number of
points of the corresponding MultivariateJacobiOPE)

* d (int) - Size of the multi-indices k € N? characterizing the _degree_ of P, (ambient
dimension of the points x_{1}, dots, x_{N} in [-1, 1]*d)

Returns Array of size N x d containing the first N multi-indices € N in the order prescribed by
the ordering b [BH16] Section 2.1.3

Return type array_like
For instance, for N = 12,d = 2

3.2. Continuous DPPs 83

http://en.wikipedia.org/wiki/Jacobi_polynomials#Orthogonality
http://en.wikipedia.org/wiki/Jacobi_polynomials#Orthogonality

See also:
e [BH16] Section 2.1.3

dppy.multivariate_jacobi_ope.compute_rejection_bounds (jacobi_params, ordering,
log_scale=True)

Compute the rejection constants for the acceptance/rejection mechanism used in
sample_chain_rule_proposal () to sample
N—-1 2
1 1 Py (a)>
—K(z,x)w(x)dr = — w(x
et =y (o) =
(k)=0
with proposal distribution
d 1
Weq(z)dx = S —
1];[1 T/ 1-— (1’1)2
To get a sample:
1. Draw a multi-index k uniformly at random in {6=%(0),...,b"(N — 1)}
2. Sample from Py, (z)?w(z)dz with proposal we,(z)dz.
The acceptance ratio writes
Pk(f)) d (a1 ;
1) w@) P () 1 1
- 1—x)%t2(1 Hlite <o
Weq (2 1;[HP(GI (I —z)" T2 (1 +m)" "2 < Cy
e For k; > 0 we use a result on Jacobi polynomials given by, e.g., [Gau09], for
lal, [b] < 5
s P
m(l - w) " (L4 u) TF] (W)
2 P'(n+a+b+ 1I'(n+ max(a,b) + 1)
nl(n+ (a+ b+ 1)/2)2max(ab) I'(n 4+ min(a,b) + 1)
* For k; = 0, we use less involved properties of the Jacobi polynomials:
- PP =1
_ ||P0(a7b)||2 _ 2a+b+1 B(a + 1 b+ 1)
-m= aibﬂ is the mode of (1 —u)*+2 (1 +u)"*2 (valid since a + 1.0+
$>0)
2
So that,
(a,b) 2 _ o\a+i b+1
PO ST AT .l) LR e IEE R
17"l 17" 112
7(1—m)otz (1 +m)btz
— 20t B(a+ 1,0+ 1)
Parameters
* jacobi_params (array_like) - Jacobi parameters [(a;, b;)]0; € [—%, 1]9%2.
The number of rows d prescribes the ambient dimension of the pointsi.e. x1,...,zy €
[_17 1]d
3.2. Continuous DPPs 84

https://en.wikipedia.org/wiki/Jacobi_polynomials

* ordering (array_like) — Ordering of the multi-indices € N? defining the order
between the multivariate monomials (see also compute_ordering())

— the number of rows corresponds to the number /N of monomials considered.
— the number of columns = d

* log_scale (bool) - If True, the rejection bound is computed using the logarithmic
versions betaln, gammaln of beta and gamma functions to avoid overflows

Returns The rejection bounds Cy, for k = b=1(0),...,b7(N — 1)
Return type array_like
See also:

¢ [Gau09] for the domination when k; > 0
* compute_polylD_norms ()

3.2.6 API

Implementation of the meta-class BetaEnsemble see f—Ensembles with children:
* HermiteEnsemble
* LaguerreEnsemble
* JacobiEnsemble
* CircularEnsemble
* GinibreEnsemble
Such objects have 4 main methods:
e sample_full_model ()
e sample_banded_model ()
e plot () todisplay a scatter plot of the last sample and eventually the limiting distribution (after normalization)
e hist () todisplay a histogram of the last sample and eventually the limiting distribution (after normalization)

class dppy.beta_ensembles.BetaEnsemble (beta=2)
Bases: object

[B-Ensemble object parametrized by
Parameters beta (int, float, default 2) — 5 >= 0 inverse temperature parameter.

The default bet a= 2 corresponds to the DPP case, see Orthogonal Polynomial Ensembles
See also:

* (-Ensembles definition

flush_samples ()
Empty the 1ist_of_samples attribute.

abstract hist ()
Display histogram of the last realization of the underlying 5-Ensemble. For some 3-Ensembles, a nor-
malization argument is available to display the limiting (or equilibrium) distribution and scale the points
accordingly.

abstract normalize_points ()
Normalize points ormalization argument is available to display the limiting (or equilibrium) distribution
and scale the points accordingly.

3.2. Continuous DPPs 85

abstract plot ()
Display last realization of the underlying S-Ensemble. For some /3-Ensembles, a normalization argument
is available to display the limiting (or equilibrium) distribution and scale the points accordingly.

abstract sample_banded_model ()
Sample from underlying 5-Ensemble using the corresponding banded matrix model. Arguments are the
associated reference measure’s parameters, or the matrix dimensions used in sample full model ()

abstract sample_full model ()
Sample from underlying S-Ensemble using the corresponding full matrix model. Arguments are the
associated matrix dimensions

class dppy.beta_ensembles.CircularEnsemble (beta=2)
Bases: dppy.beta_ensembles.BetaEnsemble

Circular Ensemble object
See also:

e Full matrix model associated to the Circular ensemble
* Quindiagonal matrix model associated to the Circular ensemble

flush_samples ()
Empty the 1ist_of_samples attribute.

hist (normalization=True)
Display the histogram of the angles 61, ..., 6y associated to the last realization {1, ..., "~} object.

Parameters normalization (bool, default True) — When True, the limiting distribu-
tion of the angles, i.e., the uniform distribution in [0, 27] is displayed

See also:

e sample_full_model (), sample_banded_model ()
* plot()
e Full matrix model associated to the Circular ensemble
* Quindiagonal matrix model associated to the Circular ensemble
normalize_points (points)
No need to renormalize the points

plot (normalization=True)
Display the last realization of the CircularEnsemble object.

Parameters normalization (bool, default True) — When True, the unit circle is dis-
played

See also:

* sample_full_model (), sample_banded _model ()

e hist ()

e Full matrix model associated to the Circular ensemble

* Quindiagonal matrix model associated to the Circular ensemble
sample_banded_model (size_N=10, random_state=None)

Sample from Quindiagonal matrix model associated to the Circular Ensemble. Available for beta € N*,
and the degenerate case beta = 0 corresponding to i.i.d. uniform points on the unit circle

3.2. Continuous DPPs 86

Parameters size_N (int, default 10) — Number N of points, i.e., size of the matrix to be
diagonalized

Note: To compare sample_banded_model () with sample_full_model () simply use the
size_N parameter.

See also:

* Quindiagonal matrix model associated to the Circular ensemble
e sample full_model ()
sample_full_model (size_N=10, haar_mode="Hermite', random_state=None)

Sample from tridiagonal matrix model associated to the Circular ensemble. Only available for beta
€ {1,2,4} and the degener