

Welcome to scaffold’s documentation!

[image: _images/board-anim.gif]

Contents:

	Getting started
	Board tour

	Connecting the board

	Using the Python API

	Platform and DUT sockets

	Kits
	Breadboard kit

	STM32F2 kits

	Smartcard kit

	Scaffold peripherals
	 I/Os

	 UART

	 Power

	 LEDs

	 ISO7816

	 I2C

	 SPI

	 Pulse generator

	 Clock generator

	 Chain triggers

	 Version

	Python API reference
	Scaffold

	STM32

	ISO7816

	Architecture
	Communication protocol

	System bus

	System bus bridge

	Right matrix

	Building and flashing the FPGA bitstream
	Prerequisites

	Building the bitstream

	Flashing the FPGA

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Scaffold is a FPGA board made for security research on hardware embedded
devices. It is capable of communicating with many circuits using standard
protocols. It can be easily extended with new protocols by writing new
transceivers in VHDL or Verilog language, and integrating it in the proposed
scaffold global architecture. When exchanging messages with the devices under
tests, Scaffold can generate triggers for chosen commands, spy data on a bus or
intercept and traffic.

Scaffold board also embeds special electronics tailored for hardware attacks:

	Sense resistor and analog amplifier for real-time current measurement

	FPGA safety protections against voltage glitch attacks

	Controllable power switches

	Fast power tearing capability, for emergency shutdown of the device under test

	Delay and pulse generators, allowing firing glitches or laser pulses.

An easy-to-use python API is provided to control the board.

Board tour

[image: _images/board-640.svg]

	A: USB2 link with host computer. Also used to power the board.

	B: Main board power switch.

	C: Switch the jumper to the right to power the board from an external 5 V
power supply and not from the USB.

	D: External power supply for the platform socket.

	E: External power supply for the DUT socket.

	F: Adjustable voltage regulator for the platform socket. When the jumper
is set on top position, this power source is not used and the platform socket
is powered from the external power supply.

	G: Adjustable voltage regulator for the DUT socket. When the jumper is set
on top position, this power source is not used and the DUT socket is powered
from the external power supply.

	H: Adjustable voltage regulator for the I/O bank of the FPGA connected to
the platform and DUT sockets. This allows setting the correct voltage
depending on the connected device. Supported voltage range goes from 1.5 V up
to 3.3 V.

	I: FPGA active serial connector for bitstream programmation. An USB
blaster can be used to update the bitstream.

	J: FPGA reset button. Push if the board enters error state.

	K: Switches to select Spy or Intercept mode for each I/O of the FPGA. In
intercept mode, the signals of the platform and DUT sockets are not connected
anymore and the FPGA can act as a man in the middle circuit.

	L: Switches to enable 1 KOhm series protection resistors on the I/Os (at
the cost of slew-rate). Shall be enabled when there is a risk to damage the
FPGA, with high-voltage glitches for instance.

	M: Tearing input. Any positive edge will power-off the DUT immediately and
shunt all I/Os to ground.

	N: A0, A1, A2, A3 voltage standard selection between 3.3 V or 5 V. Move
the jumper to change the voltage of the corresponding I/O.

	O: I/Os with voltage translators. 5 V is suited to drive Alphanov TTL
50 Ohm laser sources (other 3.3 V I/Os can’t).

	P: FPGA I/Os. Maximum voltage is 3.3 V. Those I/Os are connected to the
platform and DUT sockets and are usually used to communicate with the target
device and generate triggers. SMA connectors are provided for D0 to D6.

	Q: Platform socket and power state LED.

	R: DUT socket and power state LED.

	S: Adjustable shunt resistor for power trace measurement.

	T: Output of the analog 11 X amplifier for power trace measurement.

Connecting the board

Connect the board with a micro-USB cable to your computer. Power-on the board
using the power switch. The operating system shall detect the board as a
USB-To-Serial device (COMx on Windows, /dev/ttyUSBx on linux). It may be
necessary to install FTDI driver for some Windows versions.

Using the Python API

The file scaffold.py is the library which can be used to interact with
Scaffold board.

from scaffold import Scaffold

Connect to the board.
This will open the serial device and check for hardware version
scaffold = Scaffold('/dev/ttyUSB0')

Configure UART0 for operation
uart = scaff.uart0
uart.baudrate = 115200

Connect UART0 signals to board pins
<< operator connects signals. Left operand is the destination, right operand
is the source (the order is important)
In this example, D0 and D1 are configured as outputs, D2 is configured as an
input.
scaffold.d0 << uart.tx
scaffold.d1 << uart.trigger
uart.rx << scaffold.d2

UART is now ready to use
uart.send('Hello world !')

Platform and DUT sockets

The following figure is a simplified drawing for the Scaffold v1.1 socket
footprints. It can be used to design custom daughter-boards.

Female HE10 connectors can be used on the daughter-boards. All holes are aligned
on a 2.54 mm (100 mil) grid, which is compatible with most of the prototyping
breadboards for very cheap daughter-board making.

[image: _images/sockets.svg]

Kits

Some kits for specific applications with Scaffold are available.

Applications:

	Breadboard kit

	STM32F2 kits
	Python API example

	Example script

	Smartcard kit
	Pinout

Breadboard kit

The Scaffold breadboard provides solderable test points for all the DUT socket
pins. It can be used to mount a setup with any target.

[image: _images/kit-breadboard.png]

STM32F2 kits

STM32 kits allows communicating with the embedded ST bootloader of STM32F205 and
STM32F427 devices. It is possible to write the Flash memory to load code, and
then execute it after reset.

[image: _images/kit-stm32.png]

Those QFP64 and QFP100 may suit other STM32 devices. Some breadboard space
allows customizing the daughterboard for special needs, such as clock or voltage
glitch electronics.

Python API example

The class scaffold.stm32.STM32 of the Python API provides methods to
communicate with the circuit and setup tests very quickly.

from scaffold import Scaffold
from scaffold.stm32 import STM32

stm = STM32(Scaffold('/dev/ttyUSB0'))
Load some code into Flash memory
stm.startup_bootloader()
stm.extended_erase()
stm.write_memory(0x08000000, open('program.bin', 'rb').read())
Run the program
stm.startup_flash()

Example script

An example file in examples/stm32.py can be used to load and execute code
onto a STM32F2 device.

$ python3 stm32.py -d /dev/ttyUSB0 --load program.bin --run
Communication initiated
Product ID: 0x0411
Possible device match: stm32f2xxxx
Get: 310001021121314463738292
Bootloader version: 3.1
Option bytes: ffaa0055ffaa0055ffff0000ffff0000
RDP: no protection
Erasing Flash memory...
Programming...
Verifying...
Flash memory written successfully!
Rebooting from Flash memory...

Smartcard kit

This kit allows communicating with any smartcard using 7816 protocol.

The class scaffold.iso7816.Smartcard of the Python API provides
methods to communicate with an ISO7816 Smartcard and setup tests very quickly.
Currently, only T=0 protocol is supported by the API and it has not been tested
extensively yet.

[image: _images/kit-smartcard.png]

Pinout

	D0

	I/O. This signal is pulled up with a resistor on the daughter board

	D1

	nRST

	D2

	CLK

	D3

	Socket card presence contactor

Scaffold peripherals

The FPGA system has many modules wrapping communication peripherals or utility
hardware. Each module exposes registers which can be read or written. Each
register has a unique address.

Every module has input and output signals. Thoose signals are illustrated in
each peripheral documentation like the following example:

Input and output signals can be routed to Scaffold I/Os. Some special output
signals have a feedback path and can be routed to other peripheral inputs.
Thoose are usually trigger signals and are represented with an extra arrow like
the signal output_c in the example above.

Contents:

	 I/Os
	Programmable pull-resistors

	Internal registers

	value register

	config register

	 UART
	Python API example

	Signals

	Internal registers
	status register

	control register

	config register

	divisor register

	data register

	 Power
	Python API example

	Internal registers
	control register

	 LEDs
	Python API example

	LEDs mode

	Registers
	control register

	brightness registers

	leds_n registers

	mode register

	 ISO7816
	Python API example

	Signals

	Internal registers
	status register

	control register

	config register

	divisor register

	etu register

	data register

	 I2C
	Python API example

	Signals

	Internal registers
	status register

	control register

	config register

	divisor register

	data register

	size registers

	 SPI
	Python API example

	Signals

	Internal registers
	status register

	control register

	config register

	divisor register

	data register

	 Pulse generator
	Python API example

	Signals

	Internal registers
	status register

	control register

	config register

	delay register

	interval register

	width register

	count register

	 Clock generator
	Python API example

	Signals

	Internal registers
	config register

	divisor_a register

	divisor_b register

	count register

	 Chain triggers
	Python API example

	Signals

	Internal registers
	control register

	 Version
	Python API example

	Internal registers
	data register

I/Os

The Scaffold Python API allows controlling and reading the I/Os of the board.
This can be useful, for instance, to control the reset signal of a device under
test. The following example shows how easy this can be done.

Toggle D0 every second.
for i in range(10):
 scaffold.d0 << 0
 time.sleep(1)
 scaffold.d0 << 1
 time.sleep(1)

Put D0 in high impedance state
scaffold.d0 << None
time.sleep(1)

Connect the output to the internal UART peripheral TX signal, and send a
message !
scaffold.d0 << scaffold.uart0.tx
scaffold.uart0.send('Hello world!')

It is also possible to read the current electrical state of an input of the
board:

if scaffold.d0.value == 1:
 print('Input is high!')

Finally, you can watch for events on an input. The event will be asserted if a 1
is detected. This works for short pulses (> 10 ns).

Reset event flag
scaffold.d0.event = 0
Wait some time
time.sleep(1)
Lookup event register to know if a pulse has been received
if scaffold.d0.event == 1:
 print('Event detected!')
 scaffold.d0.clear_event()

Warning

I/Os internals have been refactored in 0.3. Registers are not the same as in
0.2. Current API supports both 0.2 and 0.3 versions.

Programmable pull-resistors

Scaffold hardware version 1.1 comes with programmable pull resistors for D0, D1
and D2. This can replace pull-up resistors which were necessary for
bidirectionnal buses like the I/O signal of the ISO7816 interface. The pull
resistor can be configured using the Python API, as shown in the following
example:

scaffold.d0.pull = Pull.UP
scaffold.d1.pull = Pull.DOWN
scaffold.d2.pull = None # Pull.NONE also accepted

Pull resistor value is 10 kOhm. When pull resistor is disabled, there is still
a weak pull-up resistor from the FPGA I/O itself.

Internal registers

	a0

	0xe000

	a1

	0xe010

	a2

	0xe020

	a3

	0xe030

	dn

	0xe060 + 0x10 * n

	base + 0x0000

	value

	R/W

	base + 0x0001

	config

	W

value register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	event

	value

	value

	Reading this bit will return current logical state on the I/O.
Setting this bit has no effect.

	event

	This bit is set to 1 when the I/O logical state changes. It can be reset by
writing 0 to it.

config register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	pull

	mode

This register allows customizing the output mode of an I/O.

	mode

	Description

	0

	Auto

The pin is driven by the routed peripheral.

	1

	Open-drain

The pin is driven by the routed peripheral, but always acts as an
open-collector.

	2

	Push-only

The pin is driven by the routed peripheral, but is active only when
a one is outputed.

If the I/O supports it, the pull resistor configuration can be configured. For
Scaffold hardware v1, no I/O supports this option. For Scaffold hardware v1.1,
the D0, D1 and D2 I/Os supports this option.

	pull

	Description

	0

	No pull resistor.

	1

	Pull-down resistor

	2

	No pull resistor.

	3

	Pull-up resistor

UART modules

The UART modules are configurable UARTs which can save and receive data.

Python API example

The following example shows how to send a message over UART from D0, and receive
it on D1 using a loop-back cable connecting D1 to D0.

uart = scaffold.uart0
uart.baudrate = 9600

scaffold.d0 << uart.tx
uart.rx << scaffold.d1

uart.flush() # Flush reception FIFO
uart.write('Hello world!')
print(uart.receive(12))

For more API documentation, see scaffold.UART

Signals

Internal registers

	uart0

	0x0400

	uart1

	0x0410

	base + 0x0000

	status

	R

	base + 0x0001

	control

	W

	base + 0x0002

	config

	W

	base + 0x0003

	divisor

	W

	base + 0x0004

	data

	R/W

status register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	empty

	parity_error

	ready

	empty

	1 when reception FIFO is empty.

	parity_error

	Set to 1 when a parity error occurred. Write this flag to 0 to clear it.

	ready

	1 when UART is ready to transmit a new byte.

control register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	flush

	clear

	Write this bit to 1 to flush the reception FIFO memory.

config register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	trigger

	stop_bits

	parity_mode

	trigger

	When set to 1, trigger signal will be asserted at the end of the transmission
of a byte. Default is 0.

	stop_bits

	Number of stop bits. 0 for 1 stop bit, 1 for 2 stop bits.

	parity_mode

	1 for odd parity bit, 2 for even parity bit, 0 to disable parity bit. Value 3
is forbidden and has undefined behavior.

divisor register

The divisor register is a 16 bits register. Write twice at the register address
to load the 16 bits value (MSB first). This register sets the baudrate of the
UART. The minimum allowed value is 0x0001. Setting value to 0x0000 has undefined
behavior. Changing this register during transmission will corrupt outgoing or
incoming bytes.

Effective baudrate is:

\[B = \frac{ F_{sys} }{ D + 1 }\]

Where \(F_{sys}\) is the system frequency (100 MHz) and \(D\) the
divisor value. The value of \(D\) for a given baudrate \(B\) is:

\[D = \frac{ F_{sys} }{ B } - 1\]

Below is a table showing the divisor for common baudrates:

data register

Reading the data register will return the received bytes. The received bytes are
stored in a FIFO memory.

Writing the data register will send a byte over the UART. The module has no
memory for the bytes to be sent. Writing to data register must be performed with
polling mode to ensure the UART is ready to transmit each byte.

Power module

The power module controls two power supplies: the “platform” socket power
supply and the “dut” socket power supply. Each power supply can be turned
on and off.

A positive input pulse on the “tearing” input of the board (SMA connector on
the left side) will automatically power-off both power supplies.

Python API example

Turn DUT on
scaffold.power.dut = 1 # True is also valid
Check current power supply status
(it may be off due to external tearing)
if scaffold.power.dut: # Will return 0 or 1
 print('DUT is still ON')
Turn DUT off
scaffold.power.dut = 0 # False is also valid

The following example controls both power supplies at the same time.

Turn on all power supplies
scaffold.power.all = 0b11
Check current power status of both power supplies
if (scaffold.power.all == 0b11):
 print('Both power supplies are ON')
Turn off all power supplies
scaffold.power.all = 0b00

It is also possible to output the power enable signal to one of the IOs, for
triggering or monitoring:

scaffold.d0 << scaffold.power.dut_trigger

For more API documentation, see scaffold.Power

Internal registers

	control

	0x0600

control register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	platform

	dut

	dut

	Write 1 to enable the DUT socket power supply. Write 0 to disable. This bit
is cleared when the tearing input is high.

	platform

	Write 1 to enable the platform socket power supply. Write 0 to disable. This
bit is cleared when the tearing input is high.

LEDs module

The LEDs module allows controlling the LEDs of the board.

Python API example

Adjust LEDs brightness
0 is minimum
1 is maximum
scaffold.leds.brightness = 0.5

Toggle a LED every second
scaffold.leds.d0.mode = LEDMode.VALUE
for i in range(10):
 time.sleep(1)
 scaffold.d0 << 1
 time.sleep(1)
 scaffold.d0 << 0

Now flash the LED every second
scaffold.leds.d0.mode = LEDMode.EVENT
for i in range(10):
 time.sleep(1)
 scaffold.d0 << 1
 time.sleep(1)
 scaffold.d0 << 0

LEDs mode

A/B/C/D LEDs can be lit according to two different modes:

	Event mode: the LED will flash when an rising or falling edge occurs on the
monitored signal. This is the default mode. This mode allows seeing activity
on the LED even when very short pulses happen.

	Value mode: the LED is ON when the monitored signal is high. When using this
mode, a user may not be able to catch very short pulses. This mode is more
appropriate for watching slow signals.

Registers

	0x0200

	control

	W

	0x0201

	brightness

	W

	0x0202

	leds_0

	W

	0x0203

	leds_1

	W

	0x0204

	leds_2

	W

	0x0205

	mode

	W

control register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	override

	disable

	disable

	Write 1 to disable TLC5927 drivers output. Default is 0 (enabled).

	override

	Sets the LEDs of the board to the values defined in led_n registers.

brightness registers

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	brightness

	brightness

	7-bits word which controls the brightness of the LEDs. See TLC5952 datasheet
for more details.

leds_n registers

leds_n registers define the state of the LEDs of the board when override bit
is set. Set a bit to 1 to turn the corresponding LED on, 0 to turn it off. Value
on reset is 0x00.

mode register

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	d5

	d4

	d3

	d2

	d1

	d0

	c1

	c0

	b1

	b0

	a1

	a0

	reserved

mode register is a 24-bit register. Write three times to update all the bits of
this register.

Each bit of this register sets the lighting mode of a LED. When bit is 0, the
corresponding LED will blink on a falling or rising edge of the monitored
signal. When the bit is 1, the LED will be lit as long as the monitored
signal is high. Default mode is 0 (event mode) for all LEDs.

ISO-7816 module

The ISO-7816 module is a reader interface allowing communication with any
ISO-7816 device.

The ISO-7816 peripheral is a very low level interface. It is like an enhanced
UART with few features. Protocol management (ATR retrieval, byte convention and
APDU exchanges) is implemented in the scaffold.iso7816.Smartcard.

Warning

Current implementation has not been tested with a lot of cards. Don’t
hesitate to report issues!

Python API example

The following example shows how to reset a card, retrieve the ATR and send an
APDU command.

from scaffold import Scaffold
from scaffold.iso7816 import Smartcard

sc = Smartcard(Scaffold('/dev/ttyUSB0'))
Power-on the card
sc.power.dut = 1
Reset the card and retrieve ATR
atr = sc.reset()
Send a SELECT command and get the response
response = sc.apdu(b'\xa0\xa4\x00\x00\x02\x3f\x00')

For convenience, APDUs can be also be exchanged as strings
response = sc.apdu_str('a0a40000023f00')

Signals

Internal registers

	0x0500

	status

	R

	0x0501

	control

	W

	0x0502

	config

	W

	0x0503

	divisor

	W

	0x0504

	etu

	W

	0x0505

	data

	R/W

status register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	empty

	parity_error

	ready

	empty

	1 when reception FIFO is empty.

	parity_error

	Set to 1 when a parity error occurred. Write this flag to 0 to clear it.

	ready

	1 when transceiver is ready to transmit a new byte.

control register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	flush

	clear

	Write this bit to 1 to flush the reception FIFO memory.

config register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	parity_mode

	trigger_long

	trigger_rx

	trigger_tx

	parity_mode

	
	0b00: Even parity (standard and default)

	0b01: Odd parity

	0b10: Parity bit always 0

	0b11: Parity bit always 1

	trigger_tx

	When set to 1, trigger signal will be asserted at the end of bytes
transmission, for one clock cycle long.

	trigger_rx

	When set to 1, trigger signal will be asserted at the beginning of bytes
reception, for one clock cycle long.

	trigger_long

	When set to 1, trigger signal will be asserted at the end of bytes
transmission, and cleared at the beginning of next byte reception or
transmission.

divisor register

The divisor register controls the ISO-7816 clock frequency.

Effective clock frequency is:

\[F = \frac{F_{sys}}{(D+1)*2}\]

Where \(F_{sys}\) is the system frequency and \(D\) the divisor value.
The value of \(D\) for a target frequency \(F\) is:

\[D = \frac{ F_{sys} }{ 2*F } - 1\]

etu register

This register defines the ETU value for ISO-7816 communication. Add 1 to get
effective ETU value. This register has 11 bits. Write this register twice to
load the 11 bits, MSB first. Default value is 371, for the ETU 372.

data register

Reading the data register will return the received bytes. The received bytes are
stored in a FIFO memory.

Writing the data register will send a byte. The module has no memory for the
bytes to be sent. Writing to data register must be performed with polling over
status register to ensure the transceiver is ready to transmit each byte.

I2C module

The I2C module enables I2C master communication with Scaffold.

Python API example

sda = scaffold.d0
scl = scaffold.d1
i2c = scaffold.i2c0

i2c.sda_in << sda
i2c.sda_out >> sda
i2c.scl_in << scl
i2c.scl_out >> scl
i2c.trigger >> scaffold.d5
i2c.frequency = 100e3

i2c.address = 0xc0
i2c.write(b'1234')
print(i2c.read(4))

For more API documentation, see scaffold.I2C

Signals

Internal registers

	i2c0

	0x0700

	base + 0x0000

	status

	R

	base + 0x0001

	control

	W

	base + 0x0002

	config

	W

	base + 0x0003

	divisor

	W

	base + 0x0004

	data

	R/W

	base + 0x0005

	size_h

	R/W

	base + 0x0006

	size_l

	R/W

status register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	data_avail

	nack

	ready

	ready

	1 when the I2C peripheral is ready to start a new transaction.

	nack

	1 if the previous transaction received a NACK from the slave during a byte
transmission.

	data_avail

	1 while there is received data in the FIFO to be read.

control register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	flush

	start

	start

	Write 1 to this bit to start a new transaction. All bytes which have been
pushed in the FIFO are sent. The received bytes are then stored in the FIFO.

	flush

	Write this bit to 1 to clear the FIFO.

config register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	stretching

	trigger_end

	trigger_start

	trigger_start

	When enabled, assert trigger signal when the transaction starts.

	trigger_end

	When enabled, assert trigger signal when the transaction ends.

	stretching

	When set to 1 (default), clock stretching support is enabled and the I2C slave
may maintain SCL low during a transaction and external pull-up resistor on SCL
is mandatory. When this bit is set to 0, clock stretching is disabled and the
SCL signal is fully driven in push-pull by the I2C master peripheral: the
external pull-up resistor on SCL can be omitted.

divisor register

This 16-bits register controls the baudrate of the I2C peripheral. Write twice
to set MSB and LSB.

Effective baudrate is:

\[B = \frac{ F_{sys} }{ 4 \times (D+1) }\]

Where \(F_{sys}\) is the system frequency (100 MHz) and \(D\) the
divisor value. The value of \(D\) for a given baudrate \(B\) is:

\[D = \frac{ F_{sys} }{ 4 \times B } - 1\]

data register

This is the peripheral FIFO access register. Writing to this register will push
the bytes to be transmitted during the next transaction.

Once the transaction has been performed, two cases are possibles:

	all the bytes to be transmitted been poped from the FIFO, and received bytes
have been pushed into the FIFO. Reading the FIFO until it is empty will return
only the received bytes.

	a NACK have been received from the slave during the transaction: the FIFO
will have the remaining bytes which have not been transmitted. Reading the
FIFO is useless because no received bytes have been pushed due to the abortion
of the transaction.

size registers

This 16-bit register is accessing through size_h and size_l registers. Reading
this register will return the untransmitted byte count, which may help
identifying where a transaction has been NACKed by the slave.

Writing this register will set the number of bytes to be read during the next
transaction.

Note: there is no register for the number of bytes to be transmitted: this is
determined by the size of the FIFO.

SPI module

The SPI module enables SPI master communication with Scaffold. For the moment,
it is not able to act as a slave SPI peripheral.

This SPI peripheral is able to send or receive up to 32 bits per transaction.

Python API example

spi = scaffold.spi0
spi.sck >> scaffold.d0
spi.mosi >> scaffold.d1
spi.miso << scaffold.d2
spi.frequency = 10000
resp = spi.transmit(0xaa)

For more API documentation, see scaffold.SPI

Signals

Internal registers

	spi0

	0x0800

	base + 0x0000

	status

	R

	base + 0x0001

	control

	W

	base + 0x0002

	config

	W

	base + 0x0003

	divisor

	W

	base + 0x0004

	data

	R/W

status register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	ready

	ready

	1 when the SPI peripheral is ready to start a new transaction.

control register

	7

	6

	5

	4

	3

	2

	1

	0

	trigger

	reserved

	size

	size

	Number of bits to be transmitted/received, minus 1. When written, transmission
starts.

	trigger

	Write 1 to enable trigger for next transmission.

config register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	phase

	polarity

	polarity

	Clock polarity configuration bit.

	phase

	Clock phase during transmission.

divisor register

This 16-bits register controls the baudrate of the SPI peripheral. Write twice
to set MSB and LSB.

data register

Write to set the data to be transmitted. Writting multiple times this register
will load the transmission buffer from the MSB.

Read this register to get the data which has been received. Reading multiple
times this register will read the reception buffer from the LSB.

Pulse generator modules

Each pulse generator allows generating one or multiple pulse when an input
signal is asserted. Delay, width, interval and number of pulses are all
programmable using the registers of the module.

Below is an example of two generated pulses, to show what delays can be
configured. Delays are a multiple of the system clock period.

[image: _images/wavedrom-3a696921-f70f-4ee4-8cbb-627a469b4852.svg]
Python API example

pgen = scaffold.pgen0
pgen.width = 100e-9 # 100 ns
pgen.count = 1
pgen.delay = 10e-6 # 10 µs
pgen.start << scaffold.d0
pgen.out >> scaffold.d1

Signals

Internal registers

	pgen0

	0x0300

	pgen1

	0x0310

	pgen2

	0x0320

	pgen3

	0x0330

	base + 0x0000

	status

	R

	base + 0x0001

	control

	W

	base + 0x0002

	config

	W

	base + 0x0003

	delay

	W

	base + 0x0004

	interval

	W

	base + 0x0005

	width

	W

	base + 0x0006

	count

	W

status register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	ready

	ready

	1 when the pulse generator is in idle mode, ready to fire. 0 during pulse
generation.

control register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	fire

	fire

	Write this bit to 1 to fire the pulse generation.

config register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	polarity

	polarity

	Pulse polarity. When 1, pulse is negative.

delay register

24 bits register storing the delay before the pulse. If the value of this
register is \(D\), the delay is \(1/F_{sys} * (D+1)\). Write 3 times
this register to load the 24 bits word, MSB first.

interval register

24 bits register storing the delay after the pulse and before the next one
(when using multiple pulses). If the value of this register is \(I\), the
interval is \(1/F_{sys} * (I+1)\). Write 3 times this register to load the
24 bits word, MSB first.

width register

24 bits register storing the width of the pulses to be generated. If the value
of this register is \(W\), the pulse width is \(1/F_{sys} * (W+1)\).
Write 3 times this register to load the 24 bits word, MSB first.

count register

16 bits register storing the number of pulses to be generated. If the value of
this register is \(N\), \(N+1\) pulses are generated.

Clock module

The clock module can generate a clock synthetized from the FPGA system clock,
using a 8-bits clock divisor. The frequency can be changed during a short
amount of time by switching to a secondary clock divisor in order to generate
clock glitches.

Warning

This module is still experimental and may be subject to changes.

Python API example

clock = scaffold.clock0
clock.freq_a = 1e6
clock.freq_b = 4e6
clock.count = 20 # Number of glitching clock edges
clock.out >> scaffold.d0
clock.glitch << scaffold.d1 # Glitch trigger

For more API documentation, see scaffold.Clock

Signals

Internal registers

	clock0

	0x0a00

	base + 0x0000

	config

	W

	base + 0x0001

	divisor_a

	W

	base + 0x0002

	divisor_b

	W

	base + 0x0003

	count

	W

config register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

divisor_a register

This 8-bits register can be configured to adjust the primary clock frequency.
Effective frequency is

Effective clock frequency is:

\[F = \frac{F_{sys}}{(D+1)*2}\]

Where \(F_{sys}\) is the system frequency and \(D\) the divisor value.
The value of \(D\) for a target frequency \(F\) is:

\[D = \frac{ F_{sys} }{ 2*F } - 1\]

The highest possible frequencies are 50 MHz, 25 MHz, 16.66 MHz, 12.5 MHz… The
lowest possible frequency is 196.08 kHz.

divisor_b register

This 8-bits register can be configured to adjust the secondary clock frequency.
Frequency calculation is the same as divisor_a register.

count register

This 8-bits register configures the number \(N\) of glitched clock edges,
where \(N\) is the register value plus one.

Chain modules

Chain modules are utility blocks which can be used to build chained-triggers.
Each chain module has 3 event inputs, and a trigger output. The trigger output
is asserted when the 3 inputs have been sequentially triggered.

Warning

This module is still experimental and may be subject to changes.

Python API example

chain = scaffold.chain0
chain.event0 << scaffold.d0
chain.event1 << scaffold.d1
chain.event2 << 1 # Don't use this one

For more API documentation, see scaffold.Chain

Signals

Internal registers

	chain0

	0x0900

	chain1

	0x0910

	base + 0x0000

	control

	W

control register

	7

	6

	5

	4

	3

	2

	1

	0

	reserved

	rearm

	rearm

	Write this bit to 1 to arm the chain trigger.

Version module

This module helps the software identifying the board. When
scaffold.Scaffold connects to the board, the version string is
automatically queried and cached in the version attribute.

Python API example

Read cached version string
Shall return something like 'scaffold-1.0'
print(scaffold.version)

Internal registers

	0x0100

	data

	R

data register

Reading multiple times this register will return the version string of the
board. A null character indicates the beginning (and end) of the version
string. Latest version string is “scaffold-1.0”.

Python API

Contents:

	Scaffold

	STM32

	ISO7816

Main Scaffold API

This page documents the main classes and methods of the Scaffold Python API.

Manipulating the attributes of the different modules of a Scaffold
instance will read or write in the FPGA registers. Some registers may be cached
by the Python API, so reading them does not require any communication with the
board and thus can be fast.

	
class scaffold.Scaffold(dev='/dev/scaffold', init_ios=False)

	This class connects to a Scaffold board and provides access to all the
device parameters and peripherals.

	Variables

	
	uarts – list of scaffold.UART instance managing UART
peripherals.

	i2cs – list of scaffold.I2C instance managing I2C
peripherals.

	iso7816 – scaffold.ISO7816 instance managing the ISO7816
peripheral.

	pgens – list of four scaffold.PulseGenerator instance
managing the FPGA pulse generators.

	power – scaffold.Power instance, enabling control of the
power supplies of DUT and platform sockets.

	leds – scaffold.LEDs instance, managing LEDs brightness and
lighting mode.

	[a0,a1,a2,a3,b0,b1,c0,c1,d0,d1,d2,d3,d4,d5] – scaffold.Signal
instances for connecting and controlling the corresponding I/Os of the
board.

	
__init__(dev='/dev/scaffold', init_ios=False)

	Create Scaffold API instance.

	Parameters

	
	dev – If specified, connect to the hardware Scaffold board using
the given serial device. If None, call connect method later to
establish the communication.

	init_ios – True to enable I/Os peripherals initialization. Doing
so will set all I/Os to a default state, but it may generate pulses
on the I/Os. When set to False, I/Os connections are unchanged
during initialization and keep the configuration set by previous
sessions.

	
class scaffold.Signal(parent, path)

	Base class for all connectable signals in Scaffold. Every Signal
instance has a Scaffold board parent instance which is used to electrically
configure the hardware board when two Signal are connected
together.

	
__init__(parent, path)

	
	Parameters

	
	parent – Scaffold instance which the signal belongs to.

	path – Signal path string. Uniquely identifies a Scaffold board
internal signal. For instance ‘/dev/uart0/tx’.

	
__lshift__(other)

	Feed the current signal with another signal.

	Parameters

	other – Another Signal instance. The other signal must
belong to the same Scaffold instance.

	
__str__()

	
	Returns

	Signal path. For instance ‘/dev/uart0/tx’.

	
name

	Signal name (last element of the path). For instance ‘tx’. Read-only.

	
parent

	Parent Scaffold board instance. Read-only.

	
path

	Signal path. For instance ‘/dev/uart0/tx’. Read-only.

	
class scaffold.IO(parent, path, index, pullable=False)

	Board I/O.

	
clear_event()

	Clear event register.

	Warning

	If an event is received during this call, it may be cleared
without being took into account.

	
event

	I/O event register.

	Getter

	Returns 1 if an event has been detected on this input, 0
otherwise.

	Setter

	Writing 0 to clears the event flag. Writing 1 has no effect.

	
mode

	I/O mode. Default is AUTO, but this can be overriden for special
applications.

	Type

	IOMode

	
pull

	Pull resistor mode. Can only be written if the I/O supports this
feature.

	Type

	Pull

	
value

	Current IO logical state.

	Getter

	Senses the input pin of the board and return either 0 or 1.

	Setter

	Sets the output to 0, 1 or high-impedance state (None). This
will disconnect the I/O from any already connected internal
peripheral. Same effect can be achieved using << operator.

	
class scaffold.IOMode

	An enumeration.

	
AUTO = 0

	

	
OPEN_DRAIN = 1

	

	
PUSH_ONLY = 2

	

	
class scaffold.Pull

	An enumeration.

	
DOWN = 1

	

	
NONE = 0

	

	
UP = 3

	

	
class scaffold.UARTParity

	Possible parity modes for UART peripherals.

	
EVEN = 2

	

	
NONE = 0

	

	
ODD = 1

	

	
class scaffold.UART(parent, index)

	UART module of Scaffold.

	
baudrate

	Target UART baudrate.

	Getter

	Returns current baudrate, or None if no baudrate has
been previously set during current session.

	Setter

	Set target baudrate. If baudrate cannot be reached within 1%
accuracy, a RuntimeError is thrown. Reading the baudrate attribute
after setting it will return the real effective baudrate.

	
flush()

	Discard all the received bytes in the FIFO.

	
parity

	Parity mode. Disabled by default.

	Type

	UARTParity

	
receive(n=1)

	Receive n bytes from the UART. This function blocks until all bytes
have been received or the timeout expires and a TimeoutError is thrown.

	
reset()

	Reset the UART to a default configuration: 9600 bps, no parity, one
stop bit, trigger disabled.

	
transmit(data, trigger=False)

	Transmit data using the UART.

	Parameters

	
	data – Data to be transmitted. bytes or bytearray.

	trigger – True or 1 to enable trigger on last byte, False or 0 to
disable trigger.

	
class scaffold.ISO7816(parent)

	ISO7816 peripheral of Scaffold. Does not provide convention or protocol
management. See scaffold.iso7816.Smartcard for more features.

	
clock_frequency

	Target ISO7816 clock frequency. According to ISO7816-3 specification,
minimum frequency is 1 Mhz and maximum frequency is 5 MHz. Scaffold
hardware allows going up to 50 Mhz and down to 195312.5 Hz (although
this may not work with the smartcard).

	Getter

	Returns current clock frequency, or None if it has not been
set previously.

	Setter

	Set clock frequency. If requested frequency cannot be reached
within 1% accuracy, a RuntimeError is thrown. Reading this
attribute after setting it will return the real effective clock
frequency.

	
empty

	True if reception FIFO is empty.

	
etu

	ISO7816 ETU parameter. Value must be in range [1, 2^11-1]. Default ETU
is 372.

	
flush()

	Discard all the received bytes in the FIFO.

	
parity_mode

	Parity mode. Standard is Even parity, but it can be changed to odd or
forced to a fixed value for testing purposes.
:type: ISO7816ParityMode

	
receive(n=1)

	Receive bytes. This function blocks until all bytes have been
received or the timeout expires and a TimeoutError is thrown.

	Parameters

	n – Number of bytes to be read.

	
reset_config()

	Reset ISO7816 peripheral to its default configuration.

	
transmit(data)

	Transmit data.

	Parameters

	data (bytes) – Data to be transmitted.

	
trigger_long

	Enable or disable long trigger (set on transmission, cleared on
reception). When changing this value, wait until transmission buffer is
empty.

	Type

	bool

	
trigger_rx

	Enable or disable trigger upon reception.
:type: bool

	
trigger_tx

	Enable or disable trigger upon transmission.
:type: bool

	
class scaffold.I2C(parent, index)

	I2C module of Scaffold.

	
clock_stretching

	Enable or disable clock stretching support. When clock stretching is
enabled, the I2C slave may hold SCL low during a transaction. In this
mode, an external pull-up resistor on SCL is required. When clock
stretching is disabled, SCL is always controlled by the master and the
pull-up resistor is not required.

	Type

	bool or int.

	
flush()

	Discards all bytes in the transmission/reception FIFO.

	
frequency

	Target I2C clock frequency.

	Getter

	Returns current frequency.

	Setter

	Set target frequency. Effective frequency may be different if
target cannot be reached accurately.

	
raw_transaction(data, read_size, trigger=None)

	Executes an I2C transaction. This is a low-level function which does
not manage I2C addressing nor read/write mode (those shall already be
defined in data parameter).

	Parameters

	
	data (bytes) – Transmitted bytes. First byte is usually the address of
the slave and the R/W bit. If the R/W bit is 0 (write), this
parameter shall then contain the bytes to be transmitted, and
read_size shall be zero.

	read_size (int) – Number of bytes to be expected from the slave. 0 in
case of a write transaction.

	trigger (int or str.) – Trigger configuration. If int and value is 1, trigger
is asserted when the transaction starts. If str, it may contain the
letter ‘a’ and/or ‘b’, where ‘a’ asserts trigger on transaction
start and ‘b’ on transaction end.

	Raises

	I2CNackError – If a NACK is received during the transaction.

	
read(size, address=None, trigger=None)

	Perform an I2C read transaction.

	Parameters

	address (int or None) – Slave device address. If None, self.address is used by
default. If defined and addressing mode is 7 bits, LSB must be 0
(this is the R/W bit). If defined and addressing mode is 10 bits,
bit 8 must be 0.

	Returns

	Bytes from the slave.

	Raises

	I2CNackError – If a NACK is received during the transaction.

	
reset_config()

	Reset the I2C peripheral to a default configuration.

	
write(data, address=None, trigger=None)

	Perform an I2C write transaction.

	Parameters

	address (int or None) – Slave device address. If None, self.address is used by
default. If defined and addressing mode is 7 bits, LSB must be 0
(this is the R/W bit). If defined and addressing mode is 10 bits,
bit 8 must be 0.

	Raises

	I2CNackError – If a NACK is received during the transaction.

	
class scaffold.SPI(parent, index)

	SPI peripheral of Scaffold.

	
frequency

	Target SPI clock frequency.

	Getter

	Returns current frequency.

	Setter

	Set target frequency. Effective frequency may be different if
target cannot be reached accurately.

	Type

	float

	
phase

	Clock phase. 0 or 1.
:type: int

	
polarity

	Clock polarity. 0 or 1.
:type: int

	
transmit(value, size=8, trigger=False, read=True)

	Performs a SPI transaction to transmit a value and receive data. If a
transmission is still pending, this methods waits for the SPI peripheral
to be ready.

	Parameters

	
	value (int) – Value to be transmitted. Less significant bit is
transmitted last.

	size (int) – Number of bits to be transmitted. Minimum is 1, maximum is 32.

	read – Set 0 or False to disable received value readout (the
method will return None). Default is True, but disabling it will
make this command faster if the returned value can be discarded.

	Pram trigger

	1 or True to enable trigger upon SPI transmission.

	Returns

	Received value.

	Return type

	int

	
class scaffold.PulseGenerator(parent, index)

	Pulse generator module of Scaffold.
Usually abreviated as pgen.

	
count

	Number of pulses to be generated. Minimum value is 1. Maximum value is
2^16.

	Type

	int

	
delay

	Delay before pulse, in seconds.

	Type

	float

	
fire()

	Manually trigger the pulse generation.

	
interval

	Delay between pulses, in seconds.

	Type

	float

	
polarity

	Pulse polarity. If 0, output is low when idle, and high during pulses.
When 1, output is high when idle, and low during pulses.

	Type

	int

	
width

	Pulse width, in seconds.

	Type

	float

	
class scaffold.Clock(parent, index)

	Clock generator module. This peripheral allows generating a clock derived
from the FPGA system clock using a clock divisor. A second clock can be
generated and enabled during a short period of time to override the first
clock, generating clock glitches.

	
freq_a

	Base clock frequency, in Hertz. Only divisors of the system frequency
can be set: 50 MHz, 25 MHz, 16.66 MHz, 12.5 MHz…

	Type

	float

	
freq_b

	Glitch clock frequency, in Hertz. Only divisors of the system frequency
can be set: 50 MHz, 25 MHz, 16.66 MHz, 12.5 MHz…

	Type

	float

	
class scaffold.Chain(parent, index, size)

	Chain trigger module.

	
rearm()

	Reset the chain trigger to initial state.

	
class scaffold.LEDs(parent)

	LEDs module of Scaffold.

	
brightness

	LEDs brightness. 0 is the minimum. 1 is the maximum.

	Type

	float

	
disabled

	If set to True, LEDs driver outputs are all disabled.

	
override

	If set to True, LEDs state is the value of the leds_n registers.

	
reset()

	Set module registers to default values.

	
class scaffold.Power(parent)

	Controls the platform and DUT sockets power supplies.

	
all

	All power-supplies state. int. Bit 0 corresponds to the DUT power
supply. Bit 1 corresponds to the platform power-supply. When a bit is
set to 1, the corresponding power supply is enabled. This attribute can
be used to control both power supplies simultaneously.

	
dut

	DUT power-supply state. int.

	
platform

	Platform power-supply state. int.

STM32 API

This API is for STM32 experimental daughter boards.

	
class scaffold.stm32.STM32(scaffold)

	Class for instrumenting STM32 devices using Scaffold board and API. The
following Scaffold IOs are used:

	D0: STM32 UART MCU RX pin, Scaffold UART TX

	D1: STM32 UART MCU TX pin, Scaffold UART RX

	D2: STM32 NRST pin for reset

	D6: STM32 BOOT0 pin

	D7: STM32 BOOT1 pin

The uart0 peripheral of Scaffold board is used for serial communication
with the ST bootloader.

This class can communicate with the ST bootloader via USART1. This allows
programming the Flash memory and then execute the loaded code.

	
__init__(scaffold)

	
	Parameters

	scaffold – An instance of scaffold.Scaffold which will
be configured and used to communicate with STM32 daughter board.

	
assert_device()

	Raise a RuntimeError is device is unknown (None).

	
checksum(data)

	Calculate the checksum of some data, according to the STM32
bootloader protocol.

	Parameters

	data – Input bytes.

	Returns

	Checksum byte. This is the XOR of all input bytes.

	
command(index)

	Send a command and return the response.

	Parameters

	index – Command index.

	Returns

	Response bytes.

	
extended_erase()

	Execute the Extended Erase command to erase all the Flash memory of the
device.

	
get()

	Execute the Get command of the bootloader, which returns the version
and the supported commands.

	
get_id()

	Execute the Get ID command. The result is interpreted and the class will
try to find information if the ID matches a known device.

	
go(address, trigger=0)

	Execute the Go command.

	Parameters

	
	address – Jump address.

	trigger – 1 to enable trigger on command transmission.

	
read_memory(address, length, trigger=0)

	Tries to read some memory from the device. If requested size is larger
than 256 bytes, many Read Memory commands are sent.

	Parameters

	
	address – Memory address to be read.

	size – Number of bytes to be read.

	trigger – 1 to enable trigger on command transmission.

	
read_option_bytes()

	Read the option bytes of the device. The method get_id must have been
called previously for device identification.

	Returns

	Memory content of ‘option_bytes’ section.

	
readout_protect()

	Execute the Readout Unprotect command.

	
readout_unprotect()

	Execute the Readout Unprotect command. If the device is locked, it will
perform mass flash erase, which can be very very long.

	
startup_bootloader()

	Power-cycle and reset target device in bootloader mode (boot on System
Memory) and initiate serial communication. The byte 0x7f is sent and
the response byte 0x79 (ACK) is expected. If the device does not
respond, a Timeout exception is thrown by Scaffold. The device will not
respond if it is locked in RDP2 state (Readout Protection level 2).

	
startup_flash()

	Power-cycle and reset target device and boot from user Flash memory.

	
wait_ack(tag=None)

	Wait for ACK byte.

	Parameters

	tag – Tag which is set when NACKError are thrown. Useful for
error diagnostic.

	
wait_ack_or_nack()

	Wait for ACK or NACK byte.

	Returns

	True if ACK has been received, False if NACK has been
received.

	
write_memory(address, data, trigger=0)

	Write data to device memory. If target address is Flash memory, this
function DOES NOT erase Flash memory prior to writing. If data size is
larger than 256 bytes, many Write Memory commands are sent.

	Parameters

	
	address – Address.

	data – Data to be written. bytes or bytearray.

	trigger – 1 to enable trigger on each command transmission.

ISO7816 API

This API provides support for ISO7816 support with Scaffold.

	
class scaffold.iso7816.Smartcard(scaffold)

	Class for smartcard testing with Scaffold board and API. The
following IOs are used:

	D0: ISO7816 IO

	D1: ISO7816 nRST

	D2: ISO7816 CLK

	D3: Socket card contactor sense

scaffold.Scaffold class has ISO7816 peripheral support, but it is
very limited. This class adds full support to ISO7816 by managing ATR,
convention convertion, etc.

	Variables

	
	atr (bytes) – ATR received from card after reset.

	convention (Convention) – Communication convention between card
and terminal. Updated when first byte TS of ATR is received.

	protocols (set) – Communication protocols found in ATR. This set contains
integers, for instance 0 if T=0 is supported, 1 if T=1 is supported…

	
__init__(scaffold)

	Configure a Scaffold board for use with smartcards.
:param scaffold: scaffold.Scaffold instance.

	
apdu(the_apdu, trigger='')

	Send an APDU to the smartcard and retrieve the response.

	Parameters

	
	the_apdu (bytes or str) – APDU to be sent. str hexadecimal strings are allowed,
but user should consider using the apdu_str() method instead.

	trigger (str) – If ‘a’ is in this string, trigger is raised after
ISO-7816 header is sent, and cleared when the following response
byte arrives. If ‘b’ is in this string, trigger is raised after
data field has been transmitted, and cleared when the next
response byte is received.

	Raises

	ValueError – if APDU data is invalid.

	Return bytes

	Response data, with status word.

	
apdu_str(the_apdu)

	Same as apdu() function, with str argument and return type for
convenience.

	Parameters

	the_apdu (str) – APDU to be sent, as an hexadecimal string.

	Return str

	Response from the card, as a lowercase hexadecimal string
without spaces.

	
card_inserted

	True if a card is inserted, False otherwise. Card insertion is detected
with a mecanical switch connected to D3 of Scaffold.

	
find_info()

	Parse the smartcard ATR list database available at
http://ludovic.rousseau.free.fr/softwares/pcsc-tools/smartcard_list.txt
and try to match the current ATR to retrieve more info about the card.

The database file cannot be embedded in the library because it uses GPL
and not LGPL license. On debian systems, this file is provided in the
pcsc-tools package.

	Returns

	A list of str, where each item is an information line about
the card. Return None if the ATR did not match any entry in the
database.

	
inverse_byte(byte)

	Inverse order and polarity of bits in a byte. Used for ISO7816 inverse
convention decoding.

	
receive(n)

	Use the ISO7816 peripheral to receive bytes from the smartcard, and
apply direct or inverse convention depending on what has been read in
the ATR.

	Parameters

	n – Number of bytes to be read.

	
reset()

	Reset the smartcard and retrieve the ATR.
If the ATR is retrieved successfully, the attributes atr
convention and protocols are updated.

	Returns

	ATR from the card.

	Raises

	ProtocolError – if the ATR is not valid.

	
class scaffold.iso7816.Convention

	Possible ISO7816 communication convention. This is given by the first byte
of the ATR returned by the card.

	
DIRECT = 59

	

	
INVERSE = 63

	

	
class scaffold.iso7816.ProtocolError(message)

	Exception raised when a protocol error between the terminal and the
smartcard occurs.

Architecture

The following documentation describes in details the architecture of Scaffold.
The targeted audience is the developer who wish fixing bugs in the architecture
or extend its functionalities. Reading this documentation may help understanding
what’s under the hood.

	Communication protocol
	General architecture

	Protocol

	Register polling

	Polling timeout

	System bus
	Register read cycle

	Register write cycle

	System bus bridge
	State machine

	Polling timeout configuration

	Right matrix
	Multiplexers selection table

Communication protocol

General architecture

The FPGA has many embedded peripherals. Each peripheral has registers which can
be read/written to receive/send data and perform actions. Each register is
assigned a unique 16-bits address and is connected to the system data bus.

A bridge controller, inside the FPGA, controls the read and write operations on
the system data bus. This controller can be driven by a host computer using the
USB link, allowing the host computer to manipulate the registers connected to
the system data bus.

Protocol

When connected to a host computer using a USB cable, the board is recognized as
a USB-to-Serial device from FTDI manufacturer. Baudrate is 2 Mbits/s, with one
stop bit and no parity check.

A very simple protocol is defined to perform read and write operations through
the serial device. To perform an operation, the following data must be sent to
Scaffold:

	Command

	1 byte

	Mandatory

	Address

	2 bytes

	Mandatory

	Polling address

	2 bytes

	When polling enabled

	Polling mask

	1 byte

	When polling enabled

	Polling value

	1 byte

	When polling enabled

	Size

	1 byte

	When size enabled

	Data

	N bytes

	For write commands

Bit 0 of command byte indicates if this is a read (0) or write (1) command.
Bit 1 indicates if size parameter is present (1 to enable size).
Bit 2 indicates if polling is requested for this command (1 to enable polling).
All other bits must be set to zero, otherwise the command is considered invalid
and Scaffold will enter error mode.

For write and read commands, a response is transmitted by the Scaffold board.
This response starts by the data bytes (for register read commands) and
terminates with a status byte. The status byte shall be equal to the size of the
processed data. If a command times out during polling, the returned status byte
will be lower than the size of the data.

Register polling

Read or write operations on registers can be conditioned to a given register
expected state. When polling is enabled, each read or write operation is
performed when the monitored register reaches a given value for some chosen
bits. Polling is enabled when bit 2 of command byte is 1. Read or write
operation is performed when (Register and Mask) = (Value and Mask).

Polling can be used for flow control when using a peripheral to process multiple
bytes. For instance, when using a SPI peripheral, polling can be used to wait
for incoming bytes.

The polled register can be different from the read or written register (two
different addresses can be passed in the command parameters: address and polling
address).

Polling timeout

Optionally, a timeout can be configured for polling operations. This is
particularly useful if receiving bytes from a peripheral is not guaranteed. When
the polling times out in a read operation, the remaining expected bytes are sent
by the board as zero. When the polling times out in a write operation, the
remaining bytes sent to the board are discarded by the bus bridge. The returned
acknowledge byte indicates the number of successfully processed bytes and will
be lower than the requested size in the command.

The timeout delay can be configured with a special command:

	Command 0x08

	1 byte

	Mandatory

	Polling delay value

	4 bytes

	MSB first

No response is expected after this command. The new delay value will be applied
for all the following commands. If the delay is set to zero, then the timeout is
disabled (which is the default).

FPGA bus

The internal global bus connects all the peripherals together. This bus is
controlled by the serial bridge which is connected to the host computer with
the USB link. The bus can perform only two simple operations:

	Read a byte from a register,

	Write a byte to a register.

The bus works using many signals:

	16-bits address: bus_address,

	Write assertion signal: bus_write

	8-bits write data: bus_write_data,

	Read assertion signal: bus_read

	8-bits read data: bus_read_data

Using different data wires for read and write operations makes conflicts
between modules impossible. Also, some FPGA devices may not allow internal
bidirectional wires.

All the signals of the bus are synchronized to the system clock, on rising
edges.

Register read cycle

[image: _images/wavedrom-7f5793aa-b110-450a-a5bc-44ce02ec58c0.svg]

Register write cycle

[image: _images/wavedrom-22bd8765-bee3-4d4d-a145-75a1410aafb1.svg]

FPGA bus bridge

The bus bridge allows reading and writing bytes on the internal FPGA bus using
commands sent in serial. This bridge is implemented in VHDL using a Finite State
Machine. The state machine manages the commands parsing and execution.

The state machine has a lot of states and is a bit complex. However, the parsing
and execution of a command is faster than the time required to receive an
incoming new command - making it hard to saturate the commands queue. The only
cases a command queue can be overflowed is when using polling commands - in such
cases the application may wait for the response before sending further commands.

Overflowing the commands queue will usually lead to entering the
error state as bytes will be discarded, resulting in data bytes being
interpreted as invalid command codes. When in error state, the error LED on the
board is lit. The only way to recover from the error state is pressing the reset
button.

State machine

The following graph is the bus bridge finite state machine implemented in the
FPGA. This document is an help for understanding FPGA internals.

[image: digraph { graph [dpi = 55, bgcolor = "#ffffff00", fontname = "helvetica", fontsize = 16]; node [fontname = "helvetica", fontsize = 16, fixedsize = true, width = 0.8]; edge [fontname = "helvetica", fontsize = 12]; node [shape = doublecircle] CMD; ERR; node [shape = circle]; CMD[group = g5]; CMD -> ADH [label = " data & rw_cmd"]; CMD -> ERR [label = " invalid command"]; ADH[group = g5]; ADH -> ADL [label = " data"]; ADL[group = g5]; ADL -> PADH [label = " data ∧\n has_polling"]; ADL -> SIZE [label = " data ∧\n ! has_polling"]; PADH[group = g6]; PADH -> PADL [label = " data"]; PADL[group = g6]; PADL -> PMSK [label = " data"]; PMSK[group = g6]; PMSK -> PVAL [label = " data"]; PVAL[group = g6]; PVAL -> SIZE [label = " data"]; SIZE[group = g5]; SIZE -> LOOP [label = " data ∨ ! has_size"]; RD[group = g1]; RD -> WAIT1 [label = " 1"]; WAIT1[label = "WAIT", group = g1]; WAIT1 -> SEND [label = " ready"]; SEND[group = g1]; SEND -> LOOP [label = " 1"]; VAL[group = g2]; VAL -> WR [label = " data"]; WR[group = g2]; WR -> LOOP [label = " 1"]; LOOP[group = g5]; LOOP -> P1 [label = " size ≠ 0"]; P1[group = g3]; P1 -> P2 [label = " 1"]; P2[group = g3]; P2 -> P3 [label = " 1"] P3[group = g3]; P3 -> P4 [label = " poll_ok"] P3 -> P1 [label = " ! poll_ok"] P4[group = g3]; P4 -> RD [label = " read_command"]; P4 -> VAL [label = " write_command"]; LOOP -> WAIT2 [label = " size = 0"]; WAIT2[label = "WAIT", group = g4]; WAIT2 -> SEND2 [label = " ready"]; SEND2[label = "SEND", group = g4]; SEND2 -> CMD [label = " 1"]; TOC1 [group = g7] CMD -> TOC1 [label = " data & timeout_config"] TOC2 [group = g7] TOC1 -> TOC2 [label = " data"] TOC3 [group = g7] TOC2 -> TOC3 [label = " data"] TOC4 [group = g7] TOC3 -> TOC4 [label = " data"] TOC4 -> CMD TO [group=g8] P3 -> TO [label = " timeout"] WAIT3[label="WAIT", group=g8] WAIT3 [label="WAIT", group=g8] TO -> WAIT3 [label = " read_command"] SEND3 [label="SEND", group=g8] WAIT3 -> SEND3 [label = " ready"] SEND3 -> TO [label=" 1"] POP4 [label="POP", group=g9] TO -> POP4 [label=" write_command"] POP4 -> TO [label=" data"] TO -> WAIT2 [label=" size = 0"] }]

Details on states:

	CMD: Idle state, awaiting for command byte.

	ADH: Awaiting for read/write address high nibble.

	ADL: Awaiting for read/write address low nibble.

	PADH: Awaiting for polling address high nibble.

	PADL: Awaiting for polling address low nibble.

	PMSK: Awaiting for polling mask.

	PVAL: Awaiting for polling value.

	SIZE: Read/write size fetch. If the command does not require size
parameter, use 1. Otherwise, wait and store next byte received on UART.

	LOOP: Preload polling address on the bus for P1 and P2 states. Return to
initial state if all bytes have been read or written.

	WAIT: Wait for UART to be ready to transmit a byte. This also acts as a
delay cycle required for data bus to be available (due to pipelining).

	SEND: Send result byte on UART (command acknowledge or register value).

	P1: First polling state. Assert bus read signal. Due to pipelining, the
data read from the bus is available to the rest of the logic at P2.

	P2: Second polling state. Used for pipelining (registers the data read
from the bus).

	P3: Polling test. If polling value matches, leave polling by going to
P4. Otherwise, return to P1 for a new polling read cycle.

	P4: End of polling. Load register address on the bus.

	RD: Register read cycle.

	VAL: Read from UART the byte to be written in register.

	WR: Register write cycle.

	TO: Timeout state. Loops until all unprocessed bytes have been discarded
(write operation) or returned as zeros (read operation).

	POP: Cycle used to discard a byte from the input FIFO during a write
operation which has timed out.

Details on transition conditions:

	1: Unconditionally pass to the next state at the next clock cycle.

	data: True when the UART FIFO has a byte available.

	size: Number of remaining bytes to be read or written.

	ready: True when the UART of the bus bridge is ready to transmit a byte.

	read_command: True when the fetched command byte corresponds to a bus read
cycle command.

	write_command: True when the fetched command byte corresponds to a bus
write cycle command.

Polling timeout configuration

A special command bit allows reconfiguring the polling timeout delay. The delay
parameter is stored in an internal 32 bits register and encodes a number of
clock cycles to wait during polling state (1 unit equals to 3 clock cycles).
When this register is set to 0, the timeout is disabled. Note that disabling
the timeout is not recommended since the FSM may stuck in a polling operation
forever or until general reset.

The maximum possible timeout duration is approximately 128 seconds.

Output module

The available I/Os of the scaffold board can be internally connected to any
module output. The “right matrix” controls which module output signals are
connected to which I/Os. Each I/O has a register storing its multiplexer
selecting the source signal.

Multiplexers selection table

	Index

	Signal name

	0

	z

	1

	0

	2

	1

	3

	/power/dut_trigger

	4

	/power/platform_trigger

	5

	/uart0/tx

	6

	/uart0/trigger

	7

	/uart1/tx

	8

	/uart1/trigger

	9

	/iso7816/io_out

	10

	/iso7816/clk

	11

	/iso7816/trigger

	12

	/pgen0/out

	13

	/pgen1/out

	14

	/pgen2/out

	15

	/pgen3/out

Building and flashing the FPGA bitstream

Advanced users may want to modify the architecture of the FPGA of Scaffold to
support more peripherals, implement new features or even fix bugs. This section
briefly describe how to build the FPGA bitstream with Intel (Altera) tools, and
flash the board.

Prerequisites

Quartus II software from Intel (Altera) must be used to build the FPGA
bitstream. The version of Quartus must have support for Cyclone IV devices;
version 14.1 can be used. Although Quartus is a proprietary tool, the free
Quartus Web Edition can be used and shall not require any license. Quartus
can run on linux and Windows (but we did not give a try on Windows).

For flashing the FPGA, a programmer supporting Active Serial mode must be
used. Altera USB Blaster is a good one.

Building the bitstream

Under Quartus software, load the fpga-arch/scaffold.qpf project file with
the File > Open Project menu. Build the design with Start context-menu of
Compile Design task as highlighted below.

[image: _images/screenshot-quartus-project.jpg]

Hopefully the compilation should succeed. If you modified the original design,
we recommand you to check in the compilation report that the max frequency of
the system clock of the compiled design is at least 110 MHz (100 MHz plus some
security margin). If this constraint is not respected, then your design may not
work properly and need to be optimized.

[image: _images/screenshot-quartus-fmax.jpg]

Flashing the FPGA

Power-on the board and connect the programmer as shown below:

[image: _images/flashing.jpg]

In Quartus, open the programmer window with the Tools > Programmer menu.

	Setup your programmer with the Hardware Setup button.

	Switch to Active Serial Programming mode.

	Click on Add File… and select the file confware.pof. The setup shall
represent an EPCS16 device, which is the on-board Flash memory storing the
bitstream and read by the FPGA when powering-up Scaffold.

	Check the Program/Configure and Verify boxes.

	Click on the Start button.

Remove the programmer cable to test your new design!

[image: _images/screenshot-quartus-programmer.jpg]

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 scaffold	

 	
 	
 scaffold.iso7816	

 	
 	
 scaffold.stm32	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (scaffold.iso7816.Smartcard method)

 	(scaffold.Scaffold method)

 	(scaffold.Signal method)

 	(scaffold.stm32.STM32 method)

 	
 	__lshift__() (scaffold.Signal method)

 	__str__() (scaffold.Signal method)

A

 	
 	all (scaffold.Power attribute)

 	apdu() (scaffold.iso7816.Smartcard method)

 	
 	apdu_str() (scaffold.iso7816.Smartcard method)

 	assert_device() (scaffold.stm32.STM32 method)

 	AUTO (scaffold.IOMode attribute)

B

 	
 	baudrate (scaffold.UART attribute)

 	
 	brightness (scaffold.LEDs attribute)

C

 	
 	card_inserted (scaffold.iso7816.Smartcard attribute)

 	Chain (class in scaffold)

 	checksum() (scaffold.stm32.STM32 method)

 	clear_event() (scaffold.IO method)

 	Clock (class in scaffold)

 	
 	clock_frequency (scaffold.ISO7816 attribute)

 	clock_stretching (scaffold.I2C attribute)

 	command() (scaffold.stm32.STM32 method)

 	Convention (class in scaffold.iso7816)

 	count (scaffold.PulseGenerator attribute)

D

 	
 	delay (scaffold.PulseGenerator attribute)

 	DIRECT (scaffold.iso7816.Convention attribute)

 	
 	disabled (scaffold.LEDs attribute)

 	DOWN (scaffold.Pull attribute)

 	dut (scaffold.Power attribute)

E

 	
 	empty (scaffold.ISO7816 attribute)

 	etu (scaffold.ISO7816 attribute)

 	
 	EVEN (scaffold.UARTParity attribute)

 	event (scaffold.IO attribute)

 	extended_erase() (scaffold.stm32.STM32 method)

F

 	
 	find_info() (scaffold.iso7816.Smartcard method)

 	fire() (scaffold.PulseGenerator method)

 	flush() (scaffold.I2C method)

 	(scaffold.ISO7816 method)

 	(scaffold.UART method)

 	
 	freq_a (scaffold.Clock attribute)

 	freq_b (scaffold.Clock attribute)

 	frequency (scaffold.I2C attribute)

 	(scaffold.SPI attribute)

G

 	
 	get() (scaffold.stm32.STM32 method)

 	
 	get_id() (scaffold.stm32.STM32 method)

 	go() (scaffold.stm32.STM32 method)

I

 	
 	I2C (class in scaffold)

 	interval (scaffold.PulseGenerator attribute)

 	INVERSE (scaffold.iso7816.Convention attribute)

 	
 	inverse_byte() (scaffold.iso7816.Smartcard method)

 	IO (class in scaffold)

 	IOMode (class in scaffold)

 	ISO7816 (class in scaffold)

L

 	
 	LEDs (class in scaffold)

M

 	
 	mode (scaffold.IO attribute)

N

 	
 	name (scaffold.Signal attribute)

 	
 	NONE (scaffold.Pull attribute)

 	(scaffold.UARTParity attribute)

O

 	
 	ODD (scaffold.UARTParity attribute)

 	
 	OPEN_DRAIN (scaffold.IOMode attribute)

 	override (scaffold.LEDs attribute)

P

 	
 	parent (scaffold.Signal attribute)

 	parity (scaffold.UART attribute)

 	parity_mode (scaffold.ISO7816 attribute)

 	path (scaffold.Signal attribute)

 	phase (scaffold.SPI attribute)

 	platform (scaffold.Power attribute)

 	polarity (scaffold.PulseGenerator attribute)

 	(scaffold.SPI attribute)

 	
 	Power (class in scaffold)

 	ProtocolError (class in scaffold.iso7816)

 	Pull (class in scaffold)

 	pull (scaffold.IO attribute)

 	PulseGenerator (class in scaffold)

 	PUSH_ONLY (scaffold.IOMode attribute)

R

 	
 	raw_transaction() (scaffold.I2C method)

 	read() (scaffold.I2C method)

 	read_memory() (scaffold.stm32.STM32 method)

 	read_option_bytes() (scaffold.stm32.STM32 method)

 	readout_protect() (scaffold.stm32.STM32 method)

 	readout_unprotect() (scaffold.stm32.STM32 method)

 	rearm() (scaffold.Chain method)

 	
 	receive() (scaffold.ISO7816 method)

 	(scaffold.UART method)

 	(scaffold.iso7816.Smartcard method)

 	reset() (scaffold.iso7816.Smartcard method)

 	(scaffold.LEDs method)

 	(scaffold.UART method)

 	reset_config() (scaffold.I2C method)

 	(scaffold.ISO7816 method)

S

 	
 	Scaffold (class in scaffold)

 	scaffold (module)

 	scaffold.iso7816 (module)

 	scaffold.stm32 (module)

 	Signal (class in scaffold)

 	
 	Smartcard (class in scaffold.iso7816)

 	SPI (class in scaffold)

 	startup_bootloader() (scaffold.stm32.STM32 method)

 	startup_flash() (scaffold.stm32.STM32 method)

 	STM32 (class in scaffold.stm32)

T

 	
 	transmit() (scaffold.ISO7816 method)

 	(scaffold.SPI method)

 	(scaffold.UART method)

 	
 	trigger_long (scaffold.ISO7816 attribute)

 	trigger_rx (scaffold.ISO7816 attribute)

 	trigger_tx (scaffold.ISO7816 attribute)

U

 	
 	UART (class in scaffold)

 	
 	UARTParity (class in scaffold)

 	UP (scaffold.Pull attribute)

V

 	
 	value (scaffold.IO attribute)

W

 	
 	wait_ack() (scaffold.stm32.STM32 method)

 	wait_ack_or_nack() (scaffold.stm32.STM32 method)

 	
 	width (scaffold.PulseGenerator attribute)

 	write() (scaffold.I2C method)

 	write_memory() (scaffold.stm32.STM32 method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to scaffold’s documentation!

 		
 Getting started

 		
 Board tour

 		
 Connecting the board

 		
 Using the Python API

 		
 Platform and DUT sockets

 		
 Kits

 		
 Breadboard kit

 		
 STM32F2 kits

 		
 Python API example

 		
 Example script

 		
 Smartcard kit

 		
 Pinout

 		
 Scaffold peripherals

 		
 I/Os

 		
 Programmable pull-resistors

 		
 Internal registers

 		
 value register

 		
 config register

 		
 UART

 		
 Python API example

 		
 Signals

 		
 Internal registers

 		
 Power

 		
 Python API example

 		
 Internal registers

 		
 LEDs

 		
 Python API example

 		
 LEDs mode

 		
 Registers

 		
 ISO7816

 		
 Python API example

 		
 Signals

 		
 Internal registers

 		
 I2C

 		
 Python API example

 		
 Signals

 		
 Internal registers

 		
 SPI

 		
 Python API example

 		
 Signals

 		
 Internal registers

 		
 Pulse generator

 		
 Python API example

 		
 Signals

 		
 Internal registers

 		
 Clock generator

 		
 Python API example

 		
 Signals

 		
 Internal registers

 		
 Chain triggers

 		
 Python API example

 		
 Signals

 		
 Internal registers

 		
 Version

 		
 Python API example

 		
 Internal registers

 		
 Python API reference

 		
 Scaffold

 		
 STM32

 		
 ISO7816

 		
 Architecture

 		
 Communication protocol

 		
 General architecture

 		
 Protocol

 		
 Register polling

 		
 Polling timeout

 		
 System bus

 		
 Register read cycle

 		
 Register write cycle

 		
 System bus bridge

 		
 State machine

 		
 Polling timeout configuration

 		
 Right matrix

 		
 Multiplexers selection table

 		
 Building and flashing the FPGA bitstream

 		
 Prerequisites

 		
 Building the bitstream

 		
 Flashing the FPGA

_static/file.png

_static/logo.png

_static/up.png

_static/up-pressed.png

_images/graphviz-64264a116a0d79f969f6ea3969522e156eb9078d.png
eta v thas size

ety

_images/kit-breadboard.png
e
3
P

<o
«og
«og
=o@s
«og
o«
og-
o0=
oa-
o

_images/board-anim.gif
i— %

cLOCK
_,i.' AT
CURREN
05

i}
5
i)
=
o
2

st Wi
(€
st N

_images/flashing.jpg
—
PN 1TARGET
SIDE

_images/kit-smartcard.png
-

:
z
&
®

Plug the
@ socket into
Scaffold

_images/kit-stm32.png
CoEEEEEEEE DDOSHDDDDD
FL6 0686666 16050000°0

STM32F427 QFP100 socket : STM32F205 QFP64 socket
oooooog, §

11 MCU TX
24 NRST
D3: PCO
D6: BOOTO
D7: BOOTL

DO] MU RX

_images/screenshot-quartus-fmax.jpg
@ Compilation Report - scaffold

Table of Contents.

B2 Flow Elapsed Time
B2 Flow OS Summary
Flow Log
» 1 Analysis & Synthesis
» 0 Fitter
() Flow Messages
() Flow Suppressed Messages
» (3 Assembler
v
£3 summary
B Parallel Compilation
B8 SDC File List

&8 Setup Summary
8 Hold Summary

Recovery Summary
)

This panel reports FMAX for every clock in the design, regardless
of the user-specified clock periods. FMAX s only computed for
paths where the source and destination registers or ports are

e b Thes Some tlock: Pthe oF iterent clocks. mclading

[

_images/screenshot-quartus-programmer.jpg
- Programmer.
File Edit View Processing Tools Window Help %

| 4 Hardware Setup... | [1SB-Blaster [1-1.2.2]] Mode: |Active Serial Programming :|

] Enable real-time ISP to allow background programming when available

Progress: m 0 \

File Device Checksum Usercode Program/ Verify Blank-
b start Configure Check
Wsiop pof EPCS16 A2E 00000000

B4 Auto Detect|

Examine Securit
Bit

[X pelete | [l ¢ .
% Add File.
% Change
i save File Asol
3Add Device.]
fiup | DATA

$iDown

_images/screenshot-quartus-project.jpg
4> Cyclone IV E: EP4CE22E22C8

> i scaffold &

» I Analysis & Synthesis

