

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Domination Game 1.6.2 documentation

Home

Intro

The domination game is a game played by two teams of agents. They will combat one another and accumulate points through capturing control points on the map. The team with the most agents on a control point will capture that control point. These control points remain captured by the same team even when left alone. Agents are capable of picking up ammo, that spawns at designated positions on the map, and use it to shoot other agents. Upon death, agents will respawn in their teams’ designated spawn areas. Agents can freely roam the map, but are unable to walk through walls or other agents.

Within one iteration an agent can turn, change its speed, and shoot (in that order). To assure that simulations can terminate in reasonable time, there is a reaction time limit per iteration per agent. Simply, if the agent exceeds this limit it will not do anything. Map layouts (walls, control points and such) are known at the start of the game, but other info are not commonly known and have to be observed by the agents (ammopacks and agents).

Contents

	Running a Game
	Creating a Game object directly

	Game

	Replays

	Settings

	Creating Agents
	Initialize

	Observe

	Action

	Debug

	Finalize

	Communication

	(Binary) Data

	Using Scenarios
	Reference

	Customizing the Field

	Utilities

	Third Party Libraries
	A-Star

	Hungarian Algorithm

Quickstart

If you’re not going to read any of the other documentation, just do the following.

	Copy and modify the basic agent found in the source code (agent.py [https://github.com/noio/Domination-Game/blob/master/domination/agent.py]).

	Make sure your folder structure looks like this (you only need the domination module):

[image: _images/folderstructure.png]

	Create another file, put the following code in there, and run it:

from domination import core

Setup
my_settings = core.Settings(max_steps=100)
my_game = core.Game(red='my_agent.py', blue='domination/agent.py', settings=my_settings)
Run it
my_game.run()

Indices and tables

	Index

	Search Page

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Domination Game 1.6.2 documentation

Running a Game

In order to run a game, you need to import the domination module, and either create a Scenario, or create a Game object directly.

Creating a Game object directly

The simplest way you can use the game object, is to just instantiate it and call its run() method. This will run a game with all its default settings:

from domination import core
core.Game(rendered=True).run() # Set rendered=False if you don't have pygame.

However, creating a game object directly is useful mainly if you want to do some fiddling with its internals, so we recommend skipping right to Creating Agents or Using Scenarios.

If we like, we can mess around a bit with the game object and its properties:

from domination import core

Make it a short game
settings = core.Settings(max_steps=20)

Initialize a game
game = core.Game('domination/agent.py','domination/agent.py',
 record=True, rendered=False, settings=settings)

Will run the entire game.
game.run()

And now let's see the replay!
replay = game.replay
playback = core.Game(replay=replay)
playback.run()

Game

The Game class has the following specification.

	
class domination.core.Game(red=<open file '/home/docs/checkouts/readthedocs.org/user_builds/domination-game/checkouts/latest/domination/agent.py', mode 'r'>, blue=<open file '/home/docs/checkouts/readthedocs.org/user_builds/domination-game/checkouts/latest/domination/agent.py', mode 'r'>, red_init={}, blue_init={}, settings=Settings(), field=None, record=False, replay=None, rendered=True, verbose=True, hard_errors=False, step_callback=None)[source]

	The main game class. Contains game data and methods for
simulation.

Constructor for Game class

	Parameters:	
	red – Descriptor of the red agent.
Can be either a path, an open file, a string with the
class definition, or an instance of Team

	blue – Descriptor of the blue agent

	red_init – A dictionary of keyword arguments passed to the red
agent constructor.

	blue_init – Like red_init.

	settings – Instance of the settings class.

	field – An instance of Field to play this game on, or a generator.

	record – Store all actions in a game replay.

	replay – Pass a game replay to play it.

	rendered – Enable/disable the renderer.

	verbose – Print game log to output.

	hard_errors – Enable to make agent errors interrupt the game.

	step_callback – Function that is called on every step. Useful for debugging.

	
log = None

	The game log as an instance of class:~domination.core.GameLog

	
replay = None

	The replay object, can be accessed after game has run

	
stats = None

	Instance of GameStats.

	
red = None

	Instance of Team.

	
blue = None

	Instance of Team.

	
run()[source]

	Start and loop the game.

	
class domination.core.GameStats[source]

	
	
score_red = None

	The number of points scored by red

	
score_blue = None

	The number of points scored by blue

	
score = None

	The final score as a float (red/total)

	
steps = None

	Number of steps the game lasted

	
ammo_red = None

	Number of ammo packs that red picked up

	
ammo_blue = None

	Idem for blue

	
deaths_red = None

	Number red agents that got shot

	
deaths_blue = None

	Number blue agents that got shot

	
think_time_red = None

	Total time in seconds that red took to compute actions

	
think_time_blue = None

	Idem for blue

Replays

Running replays is easy, first you need to unpack them:

>>> import pickle
>>> from domination import core
>>> rp = pickle.load(open('replay20120215-1341_t2v1_vs_t6v1.pickle','rb'))
>>> print rp
<domination.core.ReplayData object at 0x10fca5fd0>

Then you call the play method:

>>> rp.play()

	
class domination.core.ReplayData(game)[source]

	Contains the replaydata for a game.

	
play()[source]

	Convenience method for setting up a game to play this replay.

Settings

	
class domination.core.Settings(max_steps=600, max_score=400, max_turn=1.0471975511965976, max_speed=40, max_range=60, max_see=100, field_known=True, ammo_rate=20, ammo_amount=3, agent_type='tank', spawn_time=10, tilesize=16, think_time=0.01, capture_mode=2, end_condition=1)[source]

	Constructor for Settings class

	Parameters:	
	max_steps – How long the game will last at most

	max_score – If either team scores this much, the game is finished

	max_speed – Number of game units each tank can drive in its turn

	max_turn – The maximum angle that a tank can rotate in a turn

	max_range – The shooting range of tanks in game units

	max_see – How far tanks can see (vision is a square with sides that are 2x this value)

	field_known – Whether the agents have knowledge of the field at game start

	ammo_rate – How long it takes for ammo to reappear

	ammo_amount – How many bullets there are in each ammo pack

	agent_type – Type of the agents (‘tank’ or ‘vacubot’)

	spawn_time – Time that it takes for tanks to respawn

	think_time – How long the tanks have to do their computations (in seconds)

	capture_mode – One of the CAPTURE_MODE constants.

	end_condition – One of the ENDGAME flags. Use bitwise OR for multiple.

	tilesize – How big a single tile is (game units), change at risk of massive bugginess

The Settings.capture_mode can be one of:

	
domination.core.CAPTURE_MODE_NEUTRAL = 0

	Controlpoints are neutral when occupied by both teams

	
domination.core.CAPTURE_MODE_FIRST = 1

	Controlpoints stay in control of first team that captures them

	
domination.core.CAPTURE_MODE_MAJORITY = 2

	Controlpoints are owned by the team with the most occupiers

The Settings.end_condition can be one of:

	
domination.core.ENDGAME_NONE = 0

	End game when time expires

	
domination.core.ENDGAME_SCORE = 1

	End game when either team has 0 score

	
domination.core.ENDGAME_CRUMBS = 2

	End game when all crumbs are picked up

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Domination Game 1.6.2 documentation

Creating Agents

Writing agents consists of creating a Python class that implements five methods, some
of which are optional. The agents are imported using Python’s exec method [http://docs.python.org/reference/simple_stmts.html#exec], after which
the class named Agent is extracted. It is probably easiest to refer to and modify
the default agent [https://github.com/noio/Domination-Game/blob/master/domination/agent.py].
But there is a quick rundown of the functions below as well.

The first thing you need to do is create a new file with a class named Agent
that contains these 5 methods:

class Agent(object):

 NAME = "my_agent" # Replay filenames and console output will contain this name.

 def __init__(self, id, team, settings=None, field_rects=None, field_grid=None, nav_mesh=None, **kwargs):
 pass

 def observe(self, observation):
 pass

 def action(self):
 return (0,0,False)

 def debug(self, surface):
 pass

 def finalize(self, interrupted=False):
 pass

Initialize

It needs to implement an __init__ method that accepts a number of setup arguments.
This method will be called for each agent at the beginning of each game.

	
Agent.__init__(id, team, settings=None, field_rects=None, field_grid=None, nav_mesh=None, blob=None, **kwargs)[source]

	Each agent is initialized at the beginning of each game.
The first agent (id==0) can use this to set up global variables.
Note that the properties pertaining to the game field might not be
given for each game.

The settings object is an instance of Settings, and contains all the game
settings such as game length and maximum score. The field_rects, field_grid,
and nav_mesh arguments provide some information about the map that the game
will be played on. The first contains a list of walls on the map as (x,y,width,height)
tuples, the second contains the same information, but as a 2D binary array instead.

Navigation Mesh

Also passed to the agent constructor is a ‘navigation mesh’. This is a directed graph containing the set of points from which all points on the map can be seen, and the straight lines connecting them. You can use it in conjunction with find_path() to plan paths.

[image: _images/navmesh.png]
It is structured as a dictionary where the keys are (x, y) tuples defining connectivity and distances. All connections are in this dictionary two times, both A → B and B → A are in there. The example below shows a point at (0, 0) connected to two other points, at (1, 0) and (0 ,2):

{(0, 0): {(1, 0): 1.0,
 (0, 2): 2.0},
 (1, 0): {(0, 0): 1.0},
 (0, 2): {(0, 0): 2.0}}

Agent Parameters

Finally, you can provide extra arguments to “parametrize” your agents. You can set
these arguments when you start a new game. For example, if your initialization looks as follows:

def __init__(self, id, team, settings, field_rects, field_grid, nav_mesh, aggressiveness=0.0):

Then you can set this parameter to different values when you start the game:

MyScenario('my_agent.py','opponent.py',red_init={'aggressiveness':10.0}).run()
MyScenario('my_agent.py','opponent.py',red_init={'aggressiveness':20.0}).run()

Observe

The second method you need to implement is observe. This method
is passed an observation of the current game state, depending on the settings,
agents usually don’t observe the entire game field, but only a part of it. Agents
use this function to update what they know about the game, e.g. computing the most
likely locations of enemies. The properties of the Observation object are listed below.

	
Agent.observe(observation)[source]

	Each agent is passed an observation using this function,
before being asked for an action. You can store either
the observation object or its properties to use them
to determine your action. Note that the observation object
is modified in place.

class Observation(object):
 def __init__(self):
 self.step = 0 #: Current timestep
 self.loc = (0,0) #: Agent's location (x,y)
 self.angle = 0 #: Current angle in radians
 self.walls = [] #: Visible walls around the agent: a 2D binary array
 self.friends = [] #: All/Visible friends: a list of (x,y,angle)-tuples
 self.foes = [] #: Visible foes: a list of (x,y,angle)-tuples
 self.cps = [] #: Controlpoints: a list of (x,y,TEAM_RED/TEAM_BLUE)-tuples
 self.objects = [] #: Visible objects: a list of (x,y,type)-tuples
 self.ammo = 0 #: Ammo count
 self.score = (0,0) #: Current game score
 self.collided = False #: Whether the agent has collided in the previous turn
 self.respawn_in = -1 #: How many timesteps left before this agent can move again.
 self.hit = None #: What the agent hit with its last shot. Can be None/TEAM_RED/TEAM_BLUE
 # The following properties are only set when
 # the renderer is enabled:
 self.selected = False #: Indicates if the agent is selected in the UI
 self.clicked = [] #: A list of mouse-clicks, tuples of (x, y, shift, selected)
 self.keys = [] #: A list of all keys pressed in the previous turn

 def __str__(self):
 items = sorted(self.__dict__.items())
 maxlen = max(len(k) for k,v in items)
 return "== Observation ==\n" + "\n".join(('%s : %r'%(k.ljust(maxlen), v)) for (k,v) in items)

Action

This is the most important function you have to implement. It should return a tuple containing
a representation of the action you want the agent to perform. In this game, the action tuples
are supposed to look like (turn, speed, shoot).

	Turn indicates how much your tank should spin around it’s center.

	Speed indicates how much you want your tank to drive forward after it has turned.

	Shoot is set to True if you want to fire a projectile in this turn.

Turn is given in radians, and Speed is given in game units (corresponding to pixels
in the renderer). Note that any exceptions raised by your agent are ignored, and the agent
simply loses it’s turn. Turn and speed are capped by the game settings.

	
Agent.action()[source]

	This function is called every step and should
return a tuple in the form: (turn, speed, shoot)

Debug

Allows the agents to draw on the game UI, refer to the pygame reference to see how you can draw [http://www.pygame.org/docs/ref/draw.html] on a pygame.surface [http://pygame.org/docs/ref/surface.html]. The given surface is not cleared automatically. Additionally, this function will only be called when the renderer is active, and it will only be called for the active team.

	
Agent.debug(surface)[source]

	Allows the agents to draw on the game UI,
Refer to the pygame reference to see how you can
draw on a pygame.surface. The given surface is
not cleared automatically. Additionally, this
function will only be called when the renderer is
active, and it will only be called for the active team.

Finalize

This method gives your agent an opportunity to store data or clean up after the game is finished. Learning agents could store their Q-tables, which they load up in __init__.

	
Agent.finalize(interrupted=False)[source]

	This function is called after the game ends,
either due to time/score limits, or due to an
interrupt (CTRL+C) by the user. Use it to
store any learned variables and write logs/reports.

Communication

The recommended way to establish communication between agents is to define static attributes [http://stackoverflow.com/questions/68645/static-class-variables-in-python] in the Agent class definition. Static attributes are variables that are identical for every instance of the class, essentially, they are attributes of the class, not of the instances.

In Python, static variables can be defined in the class body, and accessed through the class definition. Be careful, setting Agent.attribute is quite different from setting my_agent = Agent(); my_agent.attribute:

class Agent:
 shared_knowledge = 1

 def __init__(self, etc):
 print Agent.shared_knowledge
 # is identical to
 print self.__class__.shared_knowledge

 # BUT THIS IS DIFFERENT:
 self.shared_knowledge = 5

(Binary) Data

You might want to supply your agent with additional (binary) data, for example a Q/value table, or some kind
of policy representation. The convention for doing this is to pass an open file-pointer to the agent’s constructor:

Game(..., red_init={'blob': open('my_q_table','rb')})

This is also the way that your data will be passed to the agent in the web app. If you have stored your data as a
pickled file, you can simply read it using file.read() [http://docs.python.org/library/stdtypes.html#file.read], then unpickle its contents from a string using pickle.loads() [http://docs.python.org/library/pickle.html#pickle.loads]

In class Agent
def __init__(..., blob=None):
 if blob is not None:
 my_data = pickle.loads(blob.read())
 blob.seek(0) #: Reset the filepointer for the next agent.
 # if you omit this, the next agent will raise an EOFError

Of course, the way you store your data in this file is up to you, you can store it in any format, and even
read it line-by-line if you want.

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Domination Game 1.6.2 documentation

Using Scenarios

Because most usage of the game will be more or less the same, some stuff has been automated in the form of a Scenario. Scenarios offer a way to define settings and score conditions, and automatically save the results of repeated runs.

For example, we subclass the Scenario module from domination.scenarios:

import domination

class MyScenario(domination.scenarios.Scenario) :
 REPEATS = 10
 SETTINGS = core.Settings()
 FIELD = core.FieldGenerator().generate()

 def before_each():
 # Regenerate the field before each game.
 self.FIELD = core.FieldGenerator().generate()

We can now run our scenario and save the results:

MyScenario.one_on_one('agent_one.py', 'agent_two.py', output_folder='results')

When a tournament is run, using domination.scenarios.Scenario.tournament() a MatchInfo object is passed to the agent constructor.

Reference

	
class domination.scenarios.Scenario[source]

	A scenario is used to run multiple games under the same conditions.

	
SETTINGS = Settings()

	The settings with which these games will be played

	
GENERATOR = <domination.core.FieldGenerator object>

	Will generate FIELD before each game if defined

	
FIELD = None

	Will play on this field if GENERATOR is None

	
REPEATS = 4

	How many times to repeat each game

	
SWAP_TEAMS = True

	Repeat each run with blue/red swapped

	
setup()[source]

	Function is called once before any games

	
before_game()[source]

	Function that is run before each game.
Use it to regenerate the map, for example.

	
after_game(game)[source]

	Function that is run after each game.

	Parameters:	game – The previous game

	
classmethod test(red, blue)[source]

	Test this scenario, this will run a single
game and render it, so you can verify the
FIELD and SETTINGS.

	Parameters:	
	red – Path to red agent

	blue – Path to blue agent

	
classmethod one_on_one(output_folder, red, blue, rendered=False, verbose=False)[source]

	Runs the set amount of REPEATS and SWAP_TEAMS if
desired, between two given agents.

	Parameters:	output_folder – Folder in which results will be stored

	
classmethod tournament(output_folder, folder=None, agents=None, rendered=False, verbose=False)[source]

	Runs a full tournament between the agents specified,
respecting the REPEATS and SWAP_TEAMS settings.

	Parameters:	
	agents – A list of paths to agents

	folder – A folder that contains all agents, overrides the agents parameter.

	output_folder – Folder in which results will be stored.

	
class domination.scenarios.MatchInfo(num_games, current, match_id, score_weight)[source]

	An instance of this object is passed to agents to let them know
that they are participating in a match consisting of multiple games,
and which game they are currently in.

Constructor for MatchInfo

	Parameters:	
	num_games – The total number of games in this match

	current – The current game with 1 being the first game.

	match_id – A unique id of the opponent the agent is playing against.

	score_weight – How much weight is assigned to the score of the current match.

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Domination Game 1.6.2 documentation

Customizing the Field

Game fields are based on a tilemap where each tile can only be occupied by a single object. This means they can
be represented conveniently by an ASCII representation. You can instantiate fields from these ASCII representations
as well. Suppose we create a file field.txt with the following contents:

w w w w w w w w w w w w w w w w w
w _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ w
w R _ _ _ _ _ _ C _ _ _ _ _ _ B w
w _ _ _ _ w _ _ _ _ _ w _ _ _ _ w
w _ _ _ _ w w w w w w w _ _ _ _ w
w _ _ _ _ w _ _ _ _ _ w _ _ _ _ w
w R _ _ _ _ _ _ A _ _ _ _ _ _ B w
w _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ w
w w w w w w w w w w w w w w w w w

We can then load it up using the domination.core.Field.from_string() function, the map defined aboves looks like the image below:

field = core.Field.from_string(open('field.txt').read())
core.Game(field=field).run()

[image: _images/asciifield.png]
The default maps are randomly generated using the FieldGenerator class, it has a number of paramters for generating maps.

	
class domination.core.FieldGenerator(width=41, height=24, tilesize=16, mirror=True, num_red=6, num_blue=6, num_points=3, num_ammo=6, num_crumbsource=0, wall_fill=0.4, wall_len=(3, 7), wall_width=4, wall_orientation=0.5, wall_gridsize=6)[source]

	Generates field objects from random distribution

Create a FieldGenerator object with certain parameters for a random
distribution of fields.

	Parameters:	
	width – The width of the field in tiles

	height – The height of the field in tiles

	tilesize – The size of each tile (don’t change from 16)

	mirror – Make a symmetrical map

	num_blue – The number of blue spawns

	num_red – The number of red spawns

	num_points – The number of controlpoints

	num_ammo – The number of ammo locations on the map

	num_crumbsource – The number of crumb fountains

	wall_fill – What portion of the map is occupied by walls

	wall_len – A range for the length of wall sections (min, max)

	wall_width – The width of each wall section

	wall_orientation – The probability that each wall will be placed horizontally
i.e. that the walls length will be along a horizontal axis

	wall_gridsize – Place walls only at every n-th tile with their top-left

	
generate()[source]

	Generates a new field using the parameters for random
distribution set in the constructor.

	Returns:	A Field instance.

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Domination Game 1.6.2 documentation

Utilities

This module holds functions, exceptions and constants
that are or might be used by both the game, renderer
and perhaps the agents. By putting this code in a separate
module, each of them can access it without requiring
the other modules.

	
domination.utilities.frange(limit1, limit2=None, increment=1.0)[source]

	Like xrange, but for real numbers.

	
domination.utilities.mean(iterable)[source]

	Returns mean of given list or generator.

	
domination.utilities.stdev(iterable)[source]

	Returns standard deviation of given list or generator.

>>> stdev([1,2,3])
1.0

	
domination.utilities.point_add(a, b)[source]

	Add the coordinates of two points
(Inline this if you can, function calls are slow)

	
domination.utilities.point_sub(a, b)[source]

	Subtract two 2d vectors
(Inline this if you can, function calls are slow)

	
domination.utilities.point_mul(a, f)[source]

	Multiply a vector by a scalar
(Inline this if you can, function calls are slow)

	
domination.utilities.point_dist(a, b)[source]

	Distance between two points.

	
domination.utilities.line_intersects_rect(p0, p1, r)[source]

	Check where a line between p1 and p2 intersects
given axis-aligned rectangle r.
Returns False if no intersection found.
Uses the Liang-Barsky line clipping algorithm.

>>> line_intersects_rect((1.0,0.0),(1.0,4.0),(0.0,1.0,4.0,1.0))
((0.25, (1.0, 1.0)), (0.5, (1.0, 2.0)))

>>> line_intersects_rect((1.0,0.0),(3.0,0.0),(0.0,1.0,3.0,1.0))
False

	
domination.utilities.line_intersects_circ((p0x, p0y), (p1x, p1y), (cx, cy), r)[source]

	Computes intersections between line and circle. The line
runs between (p0x,p0y) and (p1x,p1y) and the circle
is centered at (cx,cy) with a radius r.
Returns False if no intersection is found, and one or two intersection points otherwise.
Intersection points are (t, (x, y)) where t is the distance along the line between 0-1.
(From stackoverflow.com/questions/1073336/circle-line-collision-detection)

>>> line_intersects_circ((0,0), (4,0), (2,0), 1)
[(0.25, (1.0, 0.0)), (0.75, (3.0, 0.0))]

>>> line_intersects_circ((0,0), (2,0), (2,0), 1)
[(0.5, (1.0, 0.0))]

>>> line_intersects_circ((0,1), (2,1), (1,0), 1)
[(0.5, (1.0, 1.0))]

>>> line_intersects_circ((0,0), (0,1), (2,0), 1)
False

	
domination.utilities.line_intersects_grid((x0, y0), (x1, y1), grid, grid_cell_size=1)[source]

	Performs a line/grid intersection, finding the “super cover”
of a line and seeing if any of the grid cells are occupied.
The line runs between (x0,y0) and (x1,y1), and (0,0) is the
top-left corner of the top-left grid cell.

>>> line_intersects_grid((0,0),(2,2),[[0,0,0],[0,1,0],[0,0,0]])
True

>>> line_intersects_grid((0,0),(0.99,2),[[0,0,0],[0,1,0],[0,0,0]])
False

	
domination.utilities.rect_contains_point(rect, point)[source]

	Check if rectangle contains a point.

	
domination.utilities.rect_offset(rect, offset)[source]

	Offsets (grows) a rectangle in each direction.

	
domination.utilities.rect_corners(rect)[source]

	Returns cornerpoints of given rectangle.

>>> rect_corners((1,2,1,3))
((1, 2), (2, 2), (2, 5), (1, 5))

	
domination.utilities.rects_bound(rects)[source]

	Returns a rectangle that bounds all given rectangles

>>> rects_bound([(0,0,1,1), (3,3,1,1)])
(0, 0, 4, 4)

	
domination.utilities.rects_merge(rects)[source]

	Merge a list of rectangle (xywh) tuples.
Returns a list of rectangles that cover the same
surface. This is not necessarily optimal though.

>>> rects_merge([(0,0,1,1),(1,0,1,1)])
[(0, 0, 2, 1)]

	
domination.utilities.angle_fix(theta)[source]

	Fixes an angle to a value between -pi and pi.

>>> angle_fix(-2*pi)
0.0

	
domination.utilities.reachable(grid, (x, y), border=1)[source]

	Performs a ‘flood fill’ operation to find
reachable areas on given tile map from (x,y).
Returns as binary grid with 1 for reachable.

	Parameters:	border – can be a value or a function
indicating borders of region

>>> reachable([[0,1,0],[0,1,0]], (0,0))
[[1, 0, 0], [1, 0, 0]]

	
domination.utilities.make_nav_mesh(walls, bounds=None, offset=7, simplify=0.001, add_points=[])[source]

	Generate an almost optimal navigation mesh
between the given walls (rectangles), within
the world bounds (a big rectangle).
Mesh is a dictionary of dictionaries:

mesh[point1][point2] = distance

	
domination.utilities.find_path(start, end, mesh, grid, tilesize=16)[source]

	Uses astar to find a path from start to end,
using the given mesh and tile grid.

>>> grid = [[0,0,0,0,0],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,0]]
>>> mesh = make_nav_mesh([(2,2,1,1)],(0,0,4,4),1)
>>> find_path((0,0),(4,4),mesh,grid,1)
[(4, 1), (4, 4)]

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Domination Game 1.6.2 documentation

Third Party Libraries

Included in the domination package are a number of third party libraries.

A-Star

Introduction

The Munkres module provides an implementation of the Munkres algorithm
(also called the Hungarian algorithm or the Kuhn-Munkres algorithm),
useful for solving the Assignment Problem.

Assignment Problem

Let C be an nxn matrix representing the costs of each of n workers
to perform any of n jobs. The assignment problem is to assign jobs to
workers in a way that minimizes the total cost. Since each worker can perform
only one job and each job can be assigned to only one worker the assignments
represent an independent set of the matrix C.

One way to generate the optimal set is to create all permutations of
the indexes necessary to traverse the matrix so that no row and column
are used more than once. For instance, given this matrix (expressed in
Python):

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]

You could use this code to generate the traversal indexes:

def permute(a, results):
 if len(a) == 1:
 results.insert(len(results), a)

 else:
 for i in range(0, len(a)):
 element = a[i]
 a_copy = [a[j] for j in range(0, len(a)) if j != i]
 subresults = []
 permute(a_copy, subresults)
 for subresult in subresults:
 result = [element] + subresult
 results.insert(len(results), result)

results = []
permute(range(len(matrix)), results) # [0, 1, 2] for a 3x3 matrix

After the call to permute(), the results matrix would look like this:

[[0, 1, 2],
 [0, 2, 1],
 [1, 0, 2],
 [1, 2, 0],
 [2, 0, 1],
 [2, 1, 0]]

You could then use that index matrix to loop over the original cost matrix
and calculate the smallest cost of the combinations:

n = len(matrix)
minval = sys.maxint
for row in range(n):
 cost = 0
 for col in range(n):
 cost += matrix[row][col]
 minval = min(cost, minval)

print minval

While this approach works fine for small matrices, it does not scale. It
executes in O(n!) time: Calculating the permutations for an nxn
matrix requires n! operations. For a 12x12 matrix, that’s 479,001,600
traversals. Even if you could manage to perform each traversal in just one
millisecond, it would still take more than 133 hours to perform the entire
traversal. A 20x20 matrix would take 2,432,902,008,176,640,000 operations. At
an optimistic millisecond per operation, that’s more than 77 million years.

The Munkres algorithm runs in O(n^3) time, rather than O(n!). This
package provides an implementation of that algorithm.

This version is based on
http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html.

This version was written for Python by Brian Clapper from the (Ada) algorithm
at the above web site. (The Algorithm::Munkres Perl version, in CPAN, was
clearly adapted from the same web site.)

Usage

Construct a Munkres object:

from munkres import Munkres

m = Munkres()

Then use it to compute the lowest cost assignment from a cost matrix. Here’s
a sample program:

from munkres import Munkres, print_matrix

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
m = Munkres()
indexes = m.compute(matrix)
print_matrix(matrix, msg='Lowest cost through this matrix:')
total = 0
for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)
print 'total cost: %d' % total

Running that program produces:

Lowest cost through this matrix:
[5, 9, 1]
[10, 3, 2]
[8, 7, 4]
(0, 0) -> 5
(1, 1) -> 3
(2, 2) -> 4
total cost=12

The instantiated Munkres object can be used multiple times on different
matrices.

Non-square Cost Matrices

The Munkres algorithm assumes that the cost matrix is square. However, it’s
possible to use a rectangular matrix if you first pad it with 0 values to make
it square. This module automatically pads rectangular cost matrices to make
them square.

Notes:

	The module operates on a copy of the caller’s matrix, so any padding will
not be seen by the caller.

	The cost matrix must be rectangular or square. An irregular matrix will
not work.

Calculating Profit, Rather than Cost

The cost matrix is just that: A cost matrix. The Munkres algorithm finds
the combination of elements (one from each row and column) that results in
the smallest cost. It’s also possible to use the algorithm to maximize
profit. To do that, however, you have to convert your profit matrix to a
cost matrix. The simplest way to do that is to subtract all elements from a
large value. For example:

from munkres import Munkres, print_matrix

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
cost_matrix = []
for row in matrix:
 cost_row = []
 for col in row:
 cost_row += [sys.maxint - col]
 cost_matrix += [cost_row]

m = Munkres()
indexes = m.compute(cost_matrix)
print_matrix(matrix, msg='Highest profit through this matrix:')
total = 0
for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)

print 'total profit=%d' % total

Running that program produces:

Highest profit through this matrix:
[5, 9, 1]
[10, 3, 2]
[8, 7, 4]
(0, 1) -> 9
(1, 0) -> 10
(2, 2) -> 4
total profit=23

The munkres module provides a convenience method for creating a cost
matrix from a profit matrix. Since it doesn’t know whether the matrix contains
floating point numbers, decimals, or integers, you have to provide the
conversion function; but the convenience method takes care of the actual
creation of the cost matrix:

import munkres

cost_matrix = munkres.make_cost_matrix(matrix,
 lambda cost: sys.maxint - cost)

So, the above profit-calculation program can be recast as:

from munkres import Munkres, print_matrix, make_cost_matrix

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
cost_matrix = make_cost_matrix(matrix, lambda cost: sys.maxint - cost)
m = Munkres()
indexes = m.compute(cost_matrix)
print_matrix(matrix, msg='Lowest cost through this matrix:')
total = 0
for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)
print 'total profit=%d' % total

References

	http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html

	Harold W. Kuhn. The Hungarian Method for the assignment problem.
Naval Research Logistics Quarterly, 2:83-97, 1955.

	Harold W. Kuhn. Variants of the Hungarian method for assignment
problems. Naval Research Logistics Quarterly, 3: 253-258, 1956.

	Munkres, J. Algorithms for the Assignment and Transportation Problems.
Journal of the Society of Industrial and Applied Mathematics,
5(1):32-38, March, 1957.

	http://en.wikipedia.org/wiki/Hungarian_algorithm

Copyright and License

This software is released under a BSD license, adapted from
<http://opensource.org/licenses/bsd-license.php>

Copyright (c) 2008 Brian M. Clapper
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name “clapper.org” nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

	
class domination.libs.munkres.Munkres[source]

	Calculate the Munkres solution to the classical assignment problem.
See the module documentation for usage.

Create a new instance

	
static make_cost_matrix(profit_matrix, inversion_function)[source]

	DEPRECATED

Please use the module function make_cost_matrix().

	
pad_matrix(matrix, pad_value=0)[source]

	Pad a possibly non-square matrix to make it square.

	Parameters:	
	matrix : list of lists

	matrix to pad

	pad_value : int

	value to use to pad the matrix

	Return type:	list of lists

	Returns:	a new, possibly padded, matrix

	
compute(cost_matrix)[source]

	Compute the indexes for the lowest-cost pairings between rows and
columns in the database. Returns a list of (row, column) tuples
that can be used to traverse the matrix.

	Parameters:	
	cost_matrix : list of lists

	The cost matrix. If this cost matrix is not square, it
will be padded with zeros, via a call to pad_matrix().
(This method does not modify the caller’s matrix. It
operates on a copy of the matrix.)

WARNING: This code handles square and rectangular
matrices. It does not handle irregular matrices.

	Return type:	list

	Returns:	A list of (row, column) tuples that describe the lowest
cost path through the matrix

	
domination.libs.munkres.make_cost_matrix(profit_matrix, inversion_function)[source]

	Create a cost matrix from a profit matrix by calling
‘inversion_function’ to invert each value. The inversion
function must take one numeric argument (of any type) and return
another numeric argument which is presumed to be the cost inverse
of the original profit.

This is a static method. Call it like this:

For example:

	Parameters:	
	profit_matrix : list of lists

	The matrix to convert from a profit to a cost matrix

	inversion_function : function

	The function to use to invert each entry in the profit matrix

	Return type:	list of lists

	Returns:	The converted matrix

Hungarian Algorithm

This is an algorithm for solving the assignment problem.

Introduction

The Munkres module provides an implementation of the Munkres algorithm
(also called the Hungarian algorithm or the Kuhn-Munkres algorithm),
useful for solving the Assignment Problem.

Assignment Problem

Let C be an nxn matrix representing the costs of each of n workers
to perform any of n jobs. The assignment problem is to assign jobs to
workers in a way that minimizes the total cost. Since each worker can perform
only one job and each job can be assigned to only one worker the assignments
represent an independent set of the matrix C.

One way to generate the optimal set is to create all permutations of
the indexes necessary to traverse the matrix so that no row and column
are used more than once. For instance, given this matrix (expressed in
Python):

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]

You could use this code to generate the traversal indexes:

def permute(a, results):
 if len(a) == 1:
 results.insert(len(results), a)

 else:
 for i in range(0, len(a)):
 element = a[i]
 a_copy = [a[j] for j in range(0, len(a)) if j != i]
 subresults = []
 permute(a_copy, subresults)
 for subresult in subresults:
 result = [element] + subresult
 results.insert(len(results), result)

results = []
permute(range(len(matrix)), results) # [0, 1, 2] for a 3x3 matrix

After the call to permute(), the results matrix would look like this:

[[0, 1, 2],
 [0, 2, 1],
 [1, 0, 2],
 [1, 2, 0],
 [2, 0, 1],
 [2, 1, 0]]

You could then use that index matrix to loop over the original cost matrix
and calculate the smallest cost of the combinations:

n = len(matrix)
minval = sys.maxint
for row in range(n):
 cost = 0
 for col in range(n):
 cost += matrix[row][col]
 minval = min(cost, minval)

print minval

While this approach works fine for small matrices, it does not scale. It
executes in O(n!) time: Calculating the permutations for an nxn
matrix requires n! operations. For a 12x12 matrix, that’s 479,001,600
traversals. Even if you could manage to perform each traversal in just one
millisecond, it would still take more than 133 hours to perform the entire
traversal. A 20x20 matrix would take 2,432,902,008,176,640,000 operations. At
an optimistic millisecond per operation, that’s more than 77 million years.

The Munkres algorithm runs in O(n^3) time, rather than O(n!). This
package provides an implementation of that algorithm.

This version is based on
http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html.

This version was written for Python by Brian Clapper from the (Ada) algorithm
at the above web site. (The Algorithm::Munkres Perl version, in CPAN, was
clearly adapted from the same web site.)

Usage

Construct a Munkres object:

from munkres import Munkres

m = Munkres()

Then use it to compute the lowest cost assignment from a cost matrix. Here’s
a sample program:

from munkres import Munkres, print_matrix

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
m = Munkres()
indexes = m.compute(matrix)
print_matrix(matrix, msg='Lowest cost through this matrix:')
total = 0
for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)
print 'total cost: %d' % total

Running that program produces:

Lowest cost through this matrix:
[5, 9, 1]
[10, 3, 2]
[8, 7, 4]
(0, 0) -> 5
(1, 1) -> 3
(2, 2) -> 4
total cost=12

The instantiated Munkres object can be used multiple times on different
matrices.

Non-square Cost Matrices

The Munkres algorithm assumes that the cost matrix is square. However, it’s
possible to use a rectangular matrix if you first pad it with 0 values to make
it square. This module automatically pads rectangular cost matrices to make
them square.

Notes:

	The module operates on a copy of the caller’s matrix, so any padding will
not be seen by the caller.

	The cost matrix must be rectangular or square. An irregular matrix will
not work.

Calculating Profit, Rather than Cost

The cost matrix is just that: A cost matrix. The Munkres algorithm finds
the combination of elements (one from each row and column) that results in
the smallest cost. It’s also possible to use the algorithm to maximize
profit. To do that, however, you have to convert your profit matrix to a
cost matrix. The simplest way to do that is to subtract all elements from a
large value. For example:

from munkres import Munkres, print_matrix

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
cost_matrix = []
for row in matrix:
 cost_row = []
 for col in row:
 cost_row += [sys.maxint - col]
 cost_matrix += [cost_row]

m = Munkres()
indexes = m.compute(cost_matrix)
print_matrix(matrix, msg='Highest profit through this matrix:')
total = 0
for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)

print 'total profit=%d' % total

Running that program produces:

Highest profit through this matrix:
[5, 9, 1]
[10, 3, 2]
[8, 7, 4]
(0, 1) -> 9
(1, 0) -> 10
(2, 2) -> 4
total profit=23

The munkres module provides a convenience method for creating a cost
matrix from a profit matrix. Since it doesn’t know whether the matrix contains
floating point numbers, decimals, or integers, you have to provide the
conversion function; but the convenience method takes care of the actual
creation of the cost matrix:

import munkres

cost_matrix = munkres.make_cost_matrix(matrix,
 lambda cost: sys.maxint - cost)

So, the above profit-calculation program can be recast as:

from munkres import Munkres, print_matrix, make_cost_matrix

matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
cost_matrix = make_cost_matrix(matrix, lambda cost: sys.maxint - cost)
m = Munkres()
indexes = m.compute(cost_matrix)
print_matrix(matrix, msg='Lowest cost through this matrix:')
total = 0
for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)
print 'total profit=%d' % total

References

	http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html

	Harold W. Kuhn. The Hungarian Method for the assignment problem.
Naval Research Logistics Quarterly, 2:83-97, 1955.

	Harold W. Kuhn. Variants of the Hungarian method for assignment
problems. Naval Research Logistics Quarterly, 3: 253-258, 1956.

	Munkres, J. Algorithms for the Assignment and Transportation Problems.
Journal of the Society of Industrial and Applied Mathematics,
5(1):32-38, March, 1957.

	http://en.wikipedia.org/wiki/Hungarian_algorithm

Copyright and License

This software is released under a BSD license, adapted from
<http://opensource.org/licenses/bsd-license.php>

Copyright (c) 2008 Brian M. Clapper
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name “clapper.org” nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Domination Game 1.6.2 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 domination	

 	
 	
 domination.libs.munkres	

 	
 	
 domination.utilities	

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Domination Game 1.6.2 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | O
 | P
 | R
 | S
 | T

_

 	

 	__init__() (domination.agent.Agent method)

A

 	

 	action() (domination.agent.Agent method)

 	after_game() (domination.scenarios.Scenario method)

 	ammo_blue (domination.core.GameStats attribute)

 	

 	ammo_red (domination.core.GameStats attribute)

 	angle_fix() (in module domination.utilities)

B

 	

 	before_game() (domination.scenarios.Scenario method)

 	

 	blue (domination.core.Game attribute)

C

 	

 	CAPTURE_MODE_FIRST (in module domination.core)

 	CAPTURE_MODE_MAJORITY (in module domination.core)

 	

 	CAPTURE_MODE_NEUTRAL (in module domination.core)

 	compute() (domination.libs.munkres.Munkres method)

D

 	

 	deaths_blue (domination.core.GameStats attribute)

 	deaths_red (domination.core.GameStats attribute)

 	debug() (domination.agent.Agent method)

 	

 	domination.libs.munkres (module), [1]

 	domination.utilities (module)

E

 	

 	ENDGAME_CRUMBS (in module domination.core)

 	ENDGAME_NONE (in module domination.core)

 	

 	ENDGAME_SCORE (in module domination.core)

F

 	

 	FIELD (domination.scenarios.Scenario attribute)

 	FieldGenerator (class in domination.core)

 	finalize() (domination.agent.Agent method)

 	

 	find_path() (in module domination.utilities)

 	frange() (in module domination.utilities)

G

 	

 	Game (class in domination.core)

 	GameStats (class in domination.core)

 	

 	generate() (domination.core.FieldGenerator method)

 	GENERATOR (domination.scenarios.Scenario attribute)

L

 	

 	line_intersects_circ() (in module domination.utilities)

 	line_intersects_grid() (in module domination.utilities)

 	

 	line_intersects_rect() (in module domination.utilities)

 	log (domination.core.Game attribute)

M

 	

 	make_cost_matrix() (domination.libs.munkres.Munkres static method)

 	

 	(in module domination.libs.munkres)

 	make_nav_mesh() (in module domination.utilities)

 	MatchInfo (class in domination.scenarios)

 	

 	mean() (in module domination.utilities)

 	Munkres (class in domination.libs.munkres)

O

 	

 	observe() (domination.agent.Agent method)

 	

 	one_on_one() (domination.scenarios.Scenario class method)

P

 	

 	pad_matrix() (domination.libs.munkres.Munkres method)

 	play() (domination.core.ReplayData method)

 	point_add() (in module domination.utilities)

 	

 	point_dist() (in module domination.utilities)

 	point_mul() (in module domination.utilities)

 	point_sub() (in module domination.utilities)

R

 	

 	reachable() (in module domination.utilities)

 	rect_contains_point() (in module domination.utilities)

 	rect_corners() (in module domination.utilities)

 	rect_offset() (in module domination.utilities)

 	rects_bound() (in module domination.utilities)

 	rects_merge() (in module domination.utilities)

 	

 	red (domination.core.Game attribute)

 	REPEATS (domination.scenarios.Scenario attribute)

 	replay (domination.core.Game attribute)

 	ReplayData (class in domination.core)

 	run() (domination.core.Game method)

S

 	

 	Scenario (class in domination.scenarios)

 	score (domination.core.GameStats attribute)

 	score_blue (domination.core.GameStats attribute)

 	score_red (domination.core.GameStats attribute)

 	Settings (class in domination.core)

 	SETTINGS (domination.scenarios.Scenario attribute)

 	

 	setup() (domination.scenarios.Scenario method)

 	stats (domination.core.Game attribute)

 	stdev() (in module domination.utilities)

 	steps (domination.core.GameStats attribute)

 	SWAP_TEAMS (domination.scenarios.Scenario attribute)

T

 	

 	test() (domination.scenarios.Scenario class method)

 	think_time_blue (domination.core.GameStats attribute)

 	

 	think_time_red (domination.core.GameStats attribute)

 	tournament() (domination.scenarios.Scenario class method)

 Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

 _images/asciifield.png

_images/navmesh.png

_modules/domination/utilities.html

 Navigation

 		
 index

 		
 modules |

 		Domination Game 1.6.2 documentation »

 		Module code »

 Source code for domination.utilities

""" This module holds functions, exceptions and constants
 that are or might be used by both the game, renderer
 and perhaps the agents. By putting this code in a separate
 module, each of them can access it without requiring
 the other modules.
"""

IMPORTS
import math
import time
import copy
from pprint import pprint
from heapq import heappush, heappop
from sys import maxint

Local libs
from libs import astar

Shortcuts
sqrt = math.sqrt
try:
 inf = float('inf')
except ValueError:
 inf = 1e1000000
pi = math.pi
astar = astar.astar

EXCEPTIONS
class GameInterrupt(Exception):
 pass

LISTS

def all_pairs(seq):
 l = len(seq)
 for i in range(l):
 for j in range(i+1, l):
 yield seq[i], seq[j]

NUMERICAL

[docs]def frange(limit1, limit2 = None, increment = 1.):
 """ Like xrange, but for real numbers.
 """
 if limit2 is None:
 limit2, limit1 = limit1, 0.
 else:
 limit1 = float(limit1)
 count = int(math.ceil((limit2 - limit1)/increment))
 return (limit1 + n*increment for n in xrange(count))

[docs]def mean(iterable):
 """ Returns mean of given list or generator."""
 s = 0.0
 n = 0
 for num in iterable:
 s += num
 n += 1
 return s/n

[docs]def stdev(iterable):
 """ Returns standard deviation of given list or generator.

 >>> stdev([1,2,3])
 1.0
 """
 nums = list(iterable)
 n = len(nums)
 avg = mean(nums)
 return sum((a - avg)**2 for a in nums)/float(max(n-1,1))

GEOMETRY

[docs]def point_add(a, b):
 """ Add the coordinates of two points
 (Inline this if you can, function calls are slow)
 """
 return (a[0] + b[0], a[1] + b[1])

[docs]def point_sub(a, b):
 """ Subtract two 2d vectors
 (Inline this if you can, function calls are slow)
 """
 return (a[0] - b[0], a[1] - b[1])

[docs]def point_mul(a, f):
 """ Multiply a vector by a scalar
 (Inline this if you can, function calls are slow)
 """
 return (a[0]*f, a[1]*f)

[docs]def point_dist(a, b):
 """ Distance between two points. """
 return ((a[0]-b[0]) ** 2 + (a[1]-b[1]) ** 2) ** 0.5

[docs]def line_intersects_rect(p0, p1, r):
 """ Check where a line between p1 and p2 intersects
 given axis-aligned rectangle r.
 Returns False if no intersection found.
 Uses the Liang-Barsky line clipping algorithm.

 >>> line_intersects_rect((1.0,0.0),(1.0,4.0),(0.0,1.0,4.0,1.0))
 ((0.25, (1.0, 1.0)), (0.5, (1.0, 2.0)))

 >>> line_intersects_rect((1.0,0.0),(3.0,0.0),(0.0,1.0,3.0,1.0))
 False
 """
 l,t,r,b = (r[0],r[1],r[0]+r[2],r[1]+r[3])
 p0x,p0y = p0
 q0x,q0y = p1
 t0,t1 = 0.0, 1.0
 dx, dy = p1[0] - p0[0], p1[1] - p0[1]
 for edge in xrange(4):
 if edge == 0:
 p,q = -dx, -(l-p0x)
 elif edge == 1:
 p,q = dx, (r-p0x)
 elif edge == 2:
 p,q = -dy, -(t-p0y)
 else:
 p,q = dy, (b-p0y)
 if p == 0: # Parallel line
 if q < 0:
 return False
 else:
 ti = q/float(p)
 if p < 0:
 if ti > t1:
 return False
 elif ti > t0:
 t0 = ti
 else:
 if ti < t0:
 return False
 elif ti < t1:
 t1 = ti
 # Return (two) intersection coords
 return ((t0, (p0x + t0*dx, p0y + t0*dy)), (t1, (p0x + t1*dx, p0y + t1*dy)))

[docs]def line_intersects_circ((p0x,p0y), (p1x,p1y), (cx,cy), r):
 """ Computes intersections between line and circle. The line
 runs between (p0x,p0y) and (p1x,p1y) and the circle
 is centered at (cx,cy) with a radius r.
 Returns False if no intersection is found, and one or two intersection points otherwise.
 Intersection points are (t, (x, y)) where t is the distance along the line between 0-1.
 (From stackoverflow.com/questions/1073336/circle-line-collision-detection)

 >>> line_intersects_circ((0,0), (4,0), (2,0), 1)
 [(0.25, (1.0, 0.0)), (0.75, (3.0, 0.0))]

 >>> line_intersects_circ((0,0), (2,0), (2,0), 1)
 [(0.5, (1.0, 0.0))]

 >>> line_intersects_circ((0,1), (2,1), (1,0), 1)
 [(0.5, (1.0, 1.0))]

 >>> line_intersects_circ((0,0), (0,1), (2,0), 1)
 False
 """
 dx, dy = p1x-p0x, p1y-p0y
 fx, fy = p0x-cx, p0y-cy

 a = dx*dx + dy*dy
 b = 2 * (dx*fx + dy*fy)
 c = (fx*fx + fy*fy) - r*r

 discriminant = b * b - 4 * a * c;
 if discriminant < 0:
 return False
 else:
 # ray didn't totally miss sphere, so there is a solution to the equation.
 discriminant = sqrt(discriminant);
 t1 = (-b - discriminant)/(2*a);
 t2 = (-b + discriminant)/(2*a);
 isects = []
 if t1 >= 0 and t1 <= 1:
 p1 = p0x + dx*t1, p0y + dy*t1
 isects.append((t1,p1))
 if discriminant > 0 and t2 >= 0 and t2 <= 1:
 p2 = p0x + dx*t2, p0y + dy*t2
 isects.append((t2,p2))
 if not isects:
 return False
 else:
 return isects

 # // use t2 for second point

[docs]def line_intersects_grid((x0,y0), (x1,y1), grid, grid_cell_size=1):
 """ Performs a line/grid intersection, finding the "super cover"
 of a line and seeing if any of the grid cells are occupied.
 The line runs between (x0,y0) and (x1,y1), and (0,0) is the
 top-left corner of the top-left grid cell.

 >>> line_intersects_grid((0,0),(2,2),[[0,0,0],[0,1,0],[0,0,0]])
 True

 >>> line_intersects_grid((0,0),(0.99,2),[[0,0,0],[0,1,0],[0,0,0]])
 False
 """
 grid_cell_size = float(grid_cell_size)
 x0 = x0 / grid_cell_size
 x1 = x1 / grid_cell_size
 y0 = y0 / grid_cell_size
 y1 = y1 / grid_cell_size
 dx = abs(x1 - x0)
 dy = abs(y1 - y0)
 x = int(math.floor(x0))
 y = int(math.floor(y0))
 if dx != 0:
 dt_dx = 1.0 / dx
 else:
 dt_dx = inf
 if dy != 0:
 dt_dy = 1.0 / dy
 else:
 dt_dy = inf
 t = 0.0
 n = 1
 if (dx == 0):
 x_inc = 0
 t_next_horizontal = dt_dx
 elif (x1 > x0):
 x_inc = 1
 n += int(math.floor(x1)) - x
 t_next_horizontal = (math.floor(x0) + 1 - x0) * dt_dx
 else:
 x_inc = -1
 n += x - int(math.floor(x1))
 t_next_horizontal = (x0 - math.floor(x0)) * dt_dx
 if (dy == 0):
 y_inc = 0
 t_next_vertical = dt_dy
 elif (y1 > y0):
 y_inc = 1
 n += int(math.floor(y1)) - y
 t_next_vertical = (math.floor(y0) + 1 - y0) * dt_dy
 else:
 y_inc = -1
 n += y - int(math.floor(y1))
 t_next_vertical = (y0 - math.floor(y0)) * dt_dy
 while (n > 0):
 if grid[y][x] == 1:
 return True
 if (t_next_vertical < t_next_horizontal):
 y += y_inc
 t = t_next_vertical
 t_next_vertical += dt_dy
 else:
 x += x_inc
 t = t_next_horizontal
 t_next_horizontal += dt_dx
 n -= 1
 return False

[docs]def rect_contains_point(rect, point):
 """ Check if rectangle contains a point. """
 if (rect[0] <= point[0] and
 rect[1] <= point[1] and
 rect[0] + rect[2] >= point[0] and
 rect[1] + rect[3] >= point[1]):
 return True
 return False

[docs]def rect_offset(rect, offset):
 """ Offsets (grows) a rectangle in each direction. """
 return (rect[0] - offset, rect[1] - offset, rect[2]+2*offset, rect[3]+2*offset)

[docs]def rect_corners(rect):
 """ Returns cornerpoints of given rectangle.

 >>> rect_corners((1,2,1,3))
 ((1, 2), (2, 2), (2, 5), (1, 5))
 """
 tl = (rect[0],rect[1])
 tr = (rect[0]+rect[2],rect[1])
 br = (rect[0]+rect[2],rect[1]+rect[3])
 bl = (rect[0],rect[1]+rect[3])
 return (tl,tr,br,bl)

[docs]def rects_bound(rects):
 """ Returns a rectangle that bounds all given rectangles

 >>> rects_bound([(0,0,1,1), (3,3,1,1)])
 (0, 0, 4, 4)
 """
 def rb((ax,ay,aw,ah), (bx,by,bw,bh)):
 x = min(ax, bx)
 y = min(ay, by)
 w = max(ax+aw, bx+bw) - x
 h = max(ay+ah, by+bh) - y
 return (x,y,w,h)
 return reduce(rb, rects)

[docs]def rects_merge(rects):
 """ Merge a list of rectangle (xywh) tuples.
 Returns a list of rectangles that cover the same
 surface. This is not necessarily optimal though.

 >>> rects_merge([(0,0,1,1),(1,0,1,1)])
 [(0, 0, 2, 1)]
 """
 def stack(rects, horizontal=False):
 """ Stacks rectangles that connect in either horizontal
 or vertical direction.
 """
 if horizontal:
 rects = [(y,x,h,w) for (x,y,w,h) in rects]
 rects.sort()
 newrects = []
 i = 0
 while i < len(rects):
 (x1,y1,w1,h1) = rects[i]
 # Initialize new rect to this one
 nr = [x1,y1,w1,h1]
 # While the next rectangle connects to this one:
 while (i+1 < len(rects) and
 nr[0] == rects[i+1][0] and
 nr[2] == rects[i+1][2] and
 nr[1]+nr[3] == rects[i+1][1]):
 # Increase height of the current new rect
 nr[3] += rects[i+1][3]
 i += 1
 i += 1
 newrects.append(tuple(nr))
 # Flip rects back if we were stacking horizontally
 if horizontal:
 newrects = [(x,y,w,h) for (y,x,h,w) in newrects]
 return newrects
 # Stack twice, once in each direction
 return stack(stack(rects),horizontal=True)

[docs]def angle_fix(theta):
 """ Fixes an angle to a value between -pi and pi.

 >>> angle_fix(-2*pi)
 0.0
 """
 return ((theta + pi) % (2*pi)) - pi

NAVIGATION

[docs]def reachable(grid, (x, y), border=1):
 """ Performs a 'flood fill' operation to find
 reachable areas on given tile map from (x,y).
 Returns as binary grid with 1 for reachable.

 :param border: can be a value or a function
 indicating borders of region

 >>> reachable([[0,1,0],[0,1,0]], (0,0))
 [[1, 0, 0], [1, 0, 0]]
 """
 w,h = len(grid[0]), len(grid)
 reachability = [[0 for _ in range(w)] for _ in range(h)]
 edge = [(x, y)]
 # If border is not a function, convert it to a simple compare
 if not hasattr(border, '__call__'):
 _border = border
 border = lambda x: (x == _border)
 while edge:
 newedge = []
 for (x, y) in edge:
 if 0 <= x < w and 0 <= y < h and not border(grid[y][x]) and reachability[y][x] != 1:
 reachability[y][x] = 1
 newedge.extend(((x+1, y), (x-1, y), (x, y+1), (x, y-1)))
 edge = newedge
 return reachability

def grid_path_length((x,y),(gx,gy),g):
 #Path list (current coords, cost, expected cost)
 p = [((x,y),0,abs(gx-x)+abs(gy-y))]
 #Nodes visited
 h = []
 #Max values of coords
 m = (len(g[0]),len(g))
 while (len(p) > 0):
 #Sort based on best estimate of distance, with slight advantage
 #to paths already explored
 p.sort(key=lambda o:0.99999*o[1]+o[2])
 #Best current loc
 (x,y) = p[0][0]
 l = []
 #Expand in all 4 directions, add if:
 # 1. Not of of bounds 2. No wall present 3. Not yet visited
 n = x-1
 if n >= 0 and g[y][n] == 0 and (n,y) not in h:
 l.append(((n,y),abs(gx-n)+abs(gy-y)))
 n = x+1
 if n < m[0] and g[y][n] == 0 and (n,y) not in h:
 l.append(((n,y),abs(gx-n)+abs(gy-y)))
 n = y-1
 if n >= 0 and g[n][x] == 0 and (x,n) not in h:
 l.append(((x,n),abs(gx-x)+abs(gy-n)))
 n = y+1
 if n < m[1] and g[n][x] == 0 and (x,n) not in h:
 l.append(((x,n),abs(gx-x)+abs(gy-n)))

 #Add all new valid paths to path list and history
 for i in l:
 if i[1] == 0:
 #Goal reached
 return p[0][1]+1
 h.append(i[0])
 p.append((i[0],p[0][1]+1,i[1]))
 #Remove old path
 del p[0]
 return None

[docs]def make_nav_mesh(walls, bounds=None, offset=7, simplify=0.001, add_points=[]):
 """ Generate an almost optimal navigation mesh
 between the given walls (rectangles), within
 the world bounds (a big rectangle).
 Mesh is a dictionary of dictionaries:
 mesh[point1][point2] = distance
 """
 # If bounds not given, assume outer walls are bounds.
 if bounds is None:
 bounds = rects_bound(walls)
 # 1) Offset walls and add nodes on corners
 walls = [rect_offset(w,offset) for w in walls]
 nodes = set(add_points)
 for w in walls:
 for point in rect_corners(w):
 # 2) Remove points that are inside of other walls (or outside bounds)
 other_walls = filter(lambda x: x!=w,walls)
 if (rect_contains_point(bounds, point) and
 not any(rect_contains_point(ow, point) for ow in other_walls)):
 nodes.add((int(point[0]),int(point[1])))
 # 3) Connect nodes that can "see" eachother
 walls = [rect_offset(w,-0.001) for w in walls]
 mesh = dict((n,{}) for n in nodes)
 for n1 in nodes:
 for n2 in nodes:
 if n1 != n2:
 if not any(line_intersects_rect(n1,n2,w) for w in walls):
 mesh[n1][n2] = point_dist(n1,n2)
 # 4) Remove direct connections that are not much shorter than indirect ones
 def astar_path_length(m, start, end):
 """ Length of a path from start to end """
 neighbours = lambda n: m[n].keys()
 cost = lambda n1, n2: m[n1][n2]
 goal = lambda n: n == end
 heuristic = lambda n: point_dist(end, n)
 nodes, length = astar(start, neighbours, goal, 0, cost, heuristic)
 return length
 connections = []
 for n1 in mesh:
 for n2 in mesh[n1]:
 connections.append((mesh[n1][n2],(n1,n2)))
 connections.sort(reverse=True) # Start with the longest connections
 for length, (n1, n2) in connections:
 mesh[n1].pop(n2) # Remove connection to see best path without it
 alternative_dist = astar_path_length(mesh, n1,n2)
 # Put the connection back if the alternative is much worse
 if alternative_dist > (1+simplify) * length:
 mesh[n1][n2] = length

 return mesh

[docs]def find_path(start, end, mesh, grid, tilesize=16):
 """ Uses astar to find a path from start to end,
 using the given mesh and tile grid.

 >>> grid = [[0,0,0,0,0],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,0]]
 >>> mesh = make_nav_mesh([(2,2,1,1)],(0,0,4,4),1)
 >>> find_path((0,0),(4,4),mesh,grid,1)
 [(4, 1), (4, 4)]
 """
 # If there is a straight line, just return the end point
 if not line_intersects_grid(start, end, grid, tilesize):
 return [end]
 # Copy mesh so we can add temp nodes
 mesh = copy.deepcopy(mesh)
 # Add temp notes for start
 mesh[start] = dict([(n, point_dist(start,n)) for n in mesh if not line_intersects_grid(start,n,grid,tilesize)])
 # Add temp nodes for end:
 if end not in mesh:
 endconns = [(n, point_dist(end,n)) for n in mesh if not line_intersects_grid(end,n,grid,tilesize)]
 for n, dst in endconns:
 mesh[n][end] = dst

 neighbours = lambda n: mesh[n].keys()
 cost = lambda n1, n2: mesh[n1][n2]
 goal = lambda n: n == end
 heuristic = lambda n: ((n[0]-end[0]) ** 2 + (n[1]-end[1]) ** 2) ** 0.5
 nodes, length = astar(start, neighbours, goal, 0, cost, heuristic)
 return nodes

TIMING

tictocs = {}

def tic(timer_id='default'):
 try:
 tictocs[timer_id][0] = time.clock()
 except KeyError:
 tictocs[timer_id] = [time.clock(),0.0]

def toc(timer_id='default'):
 try:
 p, a = tictocs[timer_id]
 d = time.clock() - p
 tictocs[timer_id][1] *= 0.9
 tictocs[timer_id][1] += 0.1 * d
 return d
 except KeyError:
 tictocs[timer_id] = [time.clock(),0.0]
 return 0.0

def toc_avg(timer_id='default'):
 try:
 return tictocs[timer_id][1]
 except KeyError:
 return 0.0

if __name__ == "__main__":
 import doctest
 doctest.testmod()

 © Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

_modules/domination/agent.html

 Navigation

 		
 index

 		
 modules |

 		Domination Game 1.6.2 documentation »

 		Module code »

 Source code for domination.agent

class Agent(object):

 NAME = "default_agent"

 def __init__(self, id, team, settings=None, field_rects=None, field_grid=None, nav_mesh=None, blob=None, **kwargs):
[docs] """ Each agent is initialized at the beginning of each game.
 The first agent (id==0) can use this to set up global variables.
 Note that the properties pertaining to the game field might not be
 given for each game.
 """
 self.id = id
 self.team = team
 self.mesh = nav_mesh
 self.grid = field_grid
 self.settings = settings
 self.goal = None
 self.callsign = '%s-%d'% (('BLU' if team == TEAM_BLUE else 'RED'), id)

 self.blobpath = None
 self.blobcontent = None

 # Read the binary blob, we're not using it though
 if blob is not None:
 # Remember the blob path so we can write back to it
 self.blobpath = blob.name
 self.blobcontent = pickle.loads(blob.read())
 print "Agent %s received binary blob of %s" % (
 self.callsign, type(self.blobcontent))
 # Reset the file so other agents can read it too.
 blob.seek(0)

 # Recommended way to share variables between agents.
 if id == 0:
 self.all_agents = self.__class__.all_agents = []
 self.all_agents.append(self)

 def observe(self, observation):

[docs] """ Each agent is passed an observation using this function,
 before being asked for an action. You can store either
 the observation object or its properties to use them
 to determine your action. Note that the observation object
 is modified in place.
 """
 self.observation = observation
 self.selected = observation.selected

 if observation.selected:
 print observation

 def action(self):

[docs] """ This function is called every step and should
 return a tuple in the form: (turn, speed, shoot)
 """
 obs = self.observation
 # Check if agent reached goal.
 if self.goal is not None and point_dist(self.goal, obs.loc) < self.settings.tilesize:
 self.goal = None

 # Walk to ammo
 ammopacks = filter(lambda x: x[2] == "Ammo", obs.objects)
 if ammopacks:
 self.goal = ammopacks[0][0:2]

 # Drive to where the user clicked
 # Clicked is a list of tuples of (x, y, shift_down, is_selected)
 if self.selected and self.observation.clicked:
 self.goal = self.observation.clicked[0][0:2]

 # Walk to random CP
 if self.goal is None:
 self.goal = obs.cps[random.randint(0,len(obs.cps)-1)][0:2]

 # Shoot enemies
 shoot = False
 if (obs.ammo > 0 and
 obs.foes and
 point_dist(obs.foes[0][0:2], obs.loc) < self.settings.max_range and
 not line_intersects_grid(obs.loc, obs.foes[0][0:2], self.grid, self.settings.tilesize)):
 self.goal = obs.foes[0][0:2]
 shoot = True

 # Compute path, angle and drive
 path = find_path(obs.loc, self.goal, self.mesh, self.grid, self.settings.tilesize)
 if path:
 dx = path[0][0] - obs.loc[0]
 dy = path[0][1] - obs.loc[1]
 turn = angle_fix(math.atan2(dy, dx) - obs.angle)
 if turn > self.settings.max_turn or turn < -self.settings.max_turn:
 shoot = False
 speed = (dx**2 + dy**2)**0.5
 else:
 turn = 0
 speed = 0

 return (turn,speed,shoot)

 def debug(self, surface):

[docs] """ Allows the agents to draw on the game UI,
 Refer to the pygame reference to see how you can
 draw on a pygame.surface. The given surface is
 not cleared automatically. Additionally, this
 function will only be called when the renderer is
 active, and it will only be called for the active team.
 """
 import pygame
 # First agent clears the screen
 if self.id == 0:
 surface.fill((0,0,0,0))
 # Selected agents draw their info
 if self.selected:
 if self.goal is not None:
 pygame.draw.line(surface,(0,0,0),self.observation.loc, self.goal)

 def finalize(self, interrupted=False):

[docs] """ This function is called after the game ends,
 either due to time/score limits, or due to an
 interrupt (CTRL+C) by the user. Use it to
 store any learned variables and write logs/reports.
 """
 if self.id == 0 and self.blobpath is not None:
 try:
 # We simply write the same content back into the blob.
 # in a real situation, the new blob would include updates to
 # your learned data.
 blobfile = open(self.blobpath, 'wb')
 pickle.dump(self.blobcontent, blobfile, pickle.HIGHEST_PROTOCOL)
 except:
 # We can't write to the blob, this is normal on AppEngine since
 # we don't have filesystem access there.
 print "Agent %s can't write blob." % self.callsign

 © Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Domination Game 1.6.2 documentation »

 All modules for which code is available

		domination.agent

		domination.core

		domination.libs.munkres

		domination.scenarios

		domination.utilities

 © Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

_images/folderstructure.png
v [domination

> [assets
@ core.py
> [libs
[# renderer.py
® runpy
@ testoy
[# utilities.py
[# my_agent.py

_modules/domination/scenarios.html

 Navigation

 		
 index

 		
 modules |

 		Domination Game 1.6.2 documentation »

 		Module code »

 Source code for domination.scenarios

#!/usr/bin/env python
""" Domination game engine for Reinforcement Learning research.

Contains functions for running multiple games and tournaments.

"""

IMPORTS
Python
import datetime
import sys
import os
import csv
import glob
import cPickle as pickle
import zipfile
import math
import hashlib
import copy
import uuid
import shutil
from collections import defaultdict

Local
import core
from utilities import *

Shortcuts
pi = math.pi

CONSTANTS
SCORING_LINEAR = 'linear'
SCORING_CONSTANT = 'constant'

FUNCTIONS

def callfunc(tup):
 """ Function to ensure compatibility with Pool.map
 """
 (ob, fun, args, kwds) = tup
 return getattr(ob, fun)(*args, **kwds)

CLASSES

[docs]class MatchInfo(object):
 """ An instance of this object is passed to agents to let them know
 that they are participating in a match consisting of multiple games,
 and which game they are currently in.
 """

 def __init__(self, num_games, current, match_id, score_weight):
 """ Constructor for MatchInfo

 :param num_games: The total number of games in this match
 :param current: The current game with 1 being the first game.
 :param match_id: A unique id of the opponent the agent is playing against.
 :param score_weight: How much weight is assigned to the score of the current match.
 """
 self.num_games = num_games
 self.current = current
 self.match_id = match_id
 self.score_weight = score_weight

[docs]class Scenario(object):
 """ A scenario is used to run multiple games under the same conditions. """

 #: The settings with which these games will be played
 SETTINGS = core.Settings()
 #: The field that these games will be played on
 GENERATOR = core.FieldGenerator() #: Will generate FIELD before each game if defined
 FIELD = None #: Will play on this field if GENERATOR is None
 REPEATS = 4 #: How many times to repeat each game
 SWAP_TEAMS = True #: Repeat each run with blue/red swapped
 DRAW_MARGIN = 0.05
 SCORING = SCORING_LINEAR

 MULTITHREADING = True

[docs] def setup(self):
 """ Function is called once before any games
 """
 pass

[docs] def before_game(self):
 """ Function that is run before each game.
 Use it to regenerate the map, for example.
 """
 pass

[docs] def after_game(self, game):
 """ Function that is run after each game.

 :param game: The previous game
 """
 pass

 """ You shouldn't have to override any
 of the methods below, but you may.
 """
 def _single(self, red, blue, matchinfo=None, rendered=False, verbose=False):
 """ Runs a single game, returns results, called repeatedly
 by :meth:`Scenario._multi`.
 """
 if self.GENERATOR is not None:
 self.FIELD = self.GENERATOR.generate()
 self.before_game()
 # Open blobs for reading if we can find 'em
 red_blob = os.path.splitext(red)[0] + '_blob'
 blue_blob = os.path.splitext(blue)[0] + '_blob'
 # Build the initializer arguments
 red_init = {}
 blue_init = {}
 if matchinfo is not None:
 red_init['matchinfo'] = matchinfo
 blue_init['matchinfo'] = matchinfo
 if os.path.exists(red_blob):
 red_init['blob'] = open(red_blob,'rb')
 if os.path.exists(blue_blob):
 blue_init['blob'] = open(blue_blob,'rb')

 # Run the game
 game = core.Game(red, blue,
 red_init=red_init, blue_init=blue_init,
 field=self.FIELD, settings=self.SETTINGS,
 record=True, verbose=verbose, rendered=False)
 if rendered:
 game.add_renderer()
 game.run()
 # Close the blobs
 if 'blob' in red_init:
 red_init['blob'].close()
 if 'blob' in blue_init:
 blue_init['blob'].close()
 self.after_game(game)
 print game.stats
 return (matchinfo, game.stats, game.replay, game.log)

 def _match(self, red, blue, output_folder, rendered, verbose):
 """ Runs a single match consisting of multiple games
 Copies the agents to a temporary subfolder so that
 they can write to a unique blob.
 """
 # Create a folder for the agent copies
 uid = uuid.uuid4().hex[:8]
 path = os.path.join(output_folder,'matchups')
 rbase = os.path.splitext(os.path.basename(red))[0]
 bbase = os.path.splitext(os.path.basename(blue))[0]
 folder = os.path.join(path, '%s_vs_%s_%s' % (rbase, bbase, uid))
 os.makedirs(folder)

 # Copy the agents and blobs
 newred = os.path.join(folder, 'red_' + os.path.basename(red))
 newblue = os.path.join(folder, 'blue_' + os.path.basename(blue))
 shutil.copyfile(red, newred)
 shutil.copyfile(blue, newblue)
 red_blob = os.path.splitext(red)[0] + '_blob'
 blue_blob = os.path.splitext(blue)[0] + '_blob'
 if os.path.exists(red_blob):
 shutil.copyfile(red_blob, os.path.splitext(newred)[0] + '_blob')
 if os.path.exists(blue_blob):
 shutil.copyfile(blue_blob, os.path.splitext(newblue)[0] + '_blob')

 # Run the matches
 gameinfo = []
 for i in range(self.REPEATS):
 if self.SCORING == SCORING_CONSTANT or self.REPEATS == 1:
 score_weight = 1.0
 elif self.SCORING == SCORING_LINEAR:
 score_weight = 2.0 * i / (self.REPEATS - 1)
 matchinfo = MatchInfo(self.REPEATS, i, hash((red, blue)), score_weight)
 gameinfo.append((red, blue) + self._single(newred, newblue, matchinfo, rendered, verbose))
 return gameinfo

 def _multi(self, games, output_folder, rendered=False, verbose=False):
 """ Runs multiple matches, given as a list of
 (red, blue) tuples.
 """
 self.setup()

 calls = [(self, '_match', (red, blue, output_folder, rendered, verbose), {})
 for (red, blue) in games]
 # Run the games
 try:
 from multiprocessing import Pool, cpu_count
 threads = max(1, cpu_count() - 1)
 print "Using %d threads to run games." % (threads)
 pool = Pool(threads)
 gameinfos = pool.map(callfunc, calls)
 except ImportError:
 print "No multithreading available, running on single CPU."
 gameinfos = map(callfunc, calls)

 gameinfos = [gameinfo for l in gameinfos for gameinfo in l]
 if output_folder is not None:
 self._write(gameinfos, output_folder)

 def _write(self, gameinfo, output_folder, include_replays=True):
 """ Write a csv with all game results, all the replays in a zip and
 a textfile with a summary to the output_folder
 """
 # Find the prefix from the agent paths
 all_agents = set(a for g in gameinfo for a in (g[0], g[1]))
 prefix = os.path.commonprefix(all_agents).rfind('/') + 1

 # Configure the CSV
 fieldnames = ('red_file', 'blue_file', 'score_red', 'score_blue', 'score',
 'weight', 'points_red', 'points_blue', 'steps', 'ammo_red', 'ammo_blue')
 csvf = csv.DictWriter(open(os.path.join(output_folder, 'games.csv'),'w'), fieldnames, extrasaction='ignore')
 csvf.writerow(dict(zip(fieldnames, fieldnames)))

 # Open other files
 zipf = zipfile.ZipFile(os.path.join(output_folder, 'replays.zip'),'w', zipfile.ZIP_DEFLATED, True)
 logs = zipfile.ZipFile(os.path.join(output_folder, 'logs.zip'),'w', zipfile.ZIP_DEFLATED, True)
 sf = open(os.path.join(output_folder, 'summary.md'),'w')
 sf.write('In total, %d games were played.\n\n' % len(gameinfo))

 by_color = defaultdict(lambda: [0., 0.])
 by_match = defaultdict(lambda: [0., 0.])
 by_team = defaultdict(lambda: 0.)

 for i, (r, b, matchinfo, stats, replay, log) in enumerate(gameinfo):
 r = r[prefix:]
 b = b[prefix:]

 # Compute weighted score
 if abs(stats.score - 0.5) < self.DRAW_MARGIN:
 points_red, points_blue = (matchinfo.score_weight, matchinfo.score_weight)
 elif stats.score > 0.5:
 points_red, points_blue = (2 * matchinfo.score_weight, 0)
 else:
 points_red, points_blue = (0, 2 * matchinfo.score_weight)

 # Add scores to tables by color/team/matchup
 by_color[(r,b)][0] += points_red
 by_color[(r,b)][1] += points_blue
 if r < b:
 by_match[(r,b)][0] += points_red
 by_match[(r,b)][1] += points_blue
 else:
 by_match[(b,r)][0] += points_blue
 by_match[(b,r)][1] += points_red
 by_team[r] += points_red
 by_team[b] += points_blue

 # Write to the csv file
 s = copy.copy(stats.__dict__)
 s.update([('red_file',r),
 ('blue_file',b),
 ('weight', matchinfo.score_weight),
 ('points_red', points_red),
 ('points_blue', points_blue)])
 csvf.writerow(s)
 rbase = os.path.splitext(os.path.basename(r))[0]
 bbase = os.path.splitext(os.path.basename(b))[0]
 zipf.writestr('replay_%04d_%s_vs_%s.pickle'%(i, rbase, bbase), pickle.dumps(replay, pickle.HIGHEST_PROTOCOL))
 logs.writestr('log_%04d_%s_vs_%s.txt'%(i, rbase, bbase), log.truncated(kbs=32))

 # Put the matches into a matchup matrix (team a on left, team b on top)
 matrix = defaultdict(lambda: defaultdict(lambda: None))
 for (a, b), (points) in by_match.items():
 matrix[a][b] = points
 order = sorted(by_team.keys())
 table = [] #[[for _ in range(len(order)+1)] for _ in range(len(order))]
 for left in order[:-1]:
 table.append([left] + [matrix[left][top] for top in order[1:]])

 # Final ranking
 ranking = sorted(by_team.items(), key=lambda x: x[1], reverse=True)

 # Write to output
 sf.write(markdown_table([(r,b,pr,pb) for ((r,b),(pr,pb)) in by_color.items()], header=['Red','Blue','R','B']))
 sf.write('\n')
 sf.write(markdown_table(table, header=['']+order[1:]))
 sf.write('\n')
 sf.write(markdown_table(ranking, header=['Team','Points']))

 # Close all files
 zipf.close()
 logs.close()
 sf.close()

 @classmethod
[docs] def test(cls, red, blue):
 """ Test this scenario, this will run a single
 game and render it, so you can verify the
 FIELD and SETTINGS.

 :param red: Path to red agent
 :param blue: Path to blue agent
 """
 scen = cls()
 scen._single(red, blue, None, rendered=True, verbose=True)

 @classmethod
[docs] def one_on_one(cls, output_folder, red, blue, rendered=False, verbose=False):
 """ Runs the set amount of REPEATS and SWAP_TEAMS if
 desired, between two given agents.

 :param output_folder: Folder in which results will be stored
 """
 cls.tournament(agents=[red, blue], output_folder=output_folder, rendered=rendered, verbose=verbose)

 @classmethod
[docs] def tournament(cls, output_folder, folder=None, agents=None, rendered=False, verbose=False):
 """ Runs a full tournament between the agents specified,
 respecting the REPEATS and SWAP_TEAMS settings.

 :param agents: A list of paths to agents
 :param folder: A folder that contains all agents, overrides the agents parameter.
 :param output_folder: Folder in which results will be stored.
 """
 if os.path.exists(output_folder):
 print "WARNING: Output directory exists; overwriting results"
 else:
 os.makedirs(output_folder)

 if folder is not None:
 agents = glob.glob(os.path.join(folder,'*.py'))
 if output_folder is None:
 output_folder = folder
 matchups = list(all_pairs(agents))
 # Add swapped version
 if cls.SWAP_TEAMS:
 matchups += [(t1, t2) for (t2, t1) in matchups]

 scenario = cls()
 scenario._multi(matchups, output_folder=output_folder, rendered=rendered, verbose=verbose)

HELPER FUNCTIONS

def markdown_table(body, header=None):
 """ Generate a MultiMarkdown text table.
 :param body: The body as a list-of-lists
 :param header: The header to print
 """
 s = ""
 def cellstr(cell):
 if type(cell) == float:
 return ("%.2f" % cell)
 if type(cell) in (list, tuple):
 return ', '.join(cellstr(e) for e in cell)
 return str(cell)

 def makerow(row):
 rowstrs = [cellstr(cell).rjust(maxlen[i]) for i,cell in enumerate(row)]
 return '| ' + ' | '.join(rowstrs) + ' |\n'

 if header:
 body = [header] + body
 maxlen = [max(len(cellstr(cell)) for cell in col) for col in zip(*body)]
 if header:
 s += makerow(body[0])
 s += '|'+'|'.join('-'*(m+2) for m in maxlen)+'|\n'
 body = body[1:]
 for row in body:
 s += makerow(row)
 return s

if __name__ == '__main__':
 now = datetime.datetime.now()
 folder = os.path.join('tournaments', now.strftime("%Y%m%d-%H%M"))
 Scenario.one_on_one(red='agent.py', blue='agent_adjustable.py', output_folder=folder)

 © Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_modules/domination/core.html

 Navigation

 		
 index

 		
 modules |

 		Domination Game 1.6.2 documentation »

 		Module code »

 Source code for domination.core

#!/usr/bin/env python
""" Domination game engine for Reinforcement Learning research.

This is the game engine module that can simulate games, without rendering them.
Refer to the readme for usage instructions.

"""
__author__ = "Thomas van den Berg and Tim Doolan"
MAJOR,MINOR,PATCH = 1,6,2
__version__ = '%d.%d.%d'%(MAJOR,MINOR,PATCH)

IMPORTS
Python
import random
import sys
import re
import os
import math
import time
import datetime
import itertools
import collections
import copy
import traceback
import bisect
import hashlib
import logging
from pprint import pprint
import cPickle as pickle
try:
 import numpy
except ImportError:
 pass

Local
from utilities import *
from libs import *

Shortcuts
sqrt = math.sqrt
try:
 inf = float('inf')
except ValueError:
 inf = 1e1000000
pi = math.pi
sin = math.sin
cos = math.cos
rand = random.random

CONSTANTS###
RANDOMSEED = 1597671198

TEAM_RED = 0
TEAM_BLUE = 1
TEAM_NEUTRAL = 2

CAPTURE_MODE_NEUTRAL = 0 #: Controlpoints are neutral when occupied by both teams
CAPTURE_MODE_FIRST = 1 #: Controlpoints stay in control of first team that captures them
CAPTURE_MODE_MAJORITY = 2 #: Controlpoints are owned by the team with the most occupiers

ENDGAME_NONE = 0 #: End game when time expires
ENDGAME_SCORE = 1 #: End game when either team has 0 score
ENDGAME_CRUMBS = 2 #: End game when all crumbs are picked up

DEFAULT_AGENT_FILE = os.path.join(os.path.dirname(__file__), 'agent.py')
ILLEGAL_PATH_CHARS = r'[:*?"<>\|\n]+'

AGENT_GLOBALS = globals().copy()

CLASSES

[docs]class Settings(object):
 def __init__(self, max_steps=600,
 max_score=400,
 max_turn=pi/3,
 max_speed=40,
 max_range=60,
 max_see=100,
 field_known=True,
 ammo_rate=20,
 ammo_amount=3,
 agent_type='tank',
 spawn_time=10,
 tilesize=16,
 think_time=0.010,
 capture_mode=CAPTURE_MODE_MAJORITY,
 end_condition=ENDGAME_SCORE):
 """ Constructor for Settings class

 :param max_steps: How long the game will last at most
 :param max_score: If either team scores this much, the game is finished
 :param max_speed: Number of game units each tank can drive in its turn
 :param max_turn: The maximum angle that a tank can rotate in a turn
 :param max_range: The shooting range of tanks in game units
 :param max_see: How far tanks can see (vision is a square with sides that are 2x this value)
 :param field_known: Whether the agents have knowledge of the field at game start
 :param ammo_rate: How long it takes for ammo to reappear
 :param ammo_amount: How many bullets there are in each ammo pack
 :param agent_type: Type of the agents ('tank' or 'vacubot')
 :param spawn_time: Time that it takes for tanks to respawn
 :param think_time: How long the tanks have to do their computations (in seconds)
 :param capture_mode: One of the CAPTURE_MODE constants.
 :param end_condition: One of the ENDGAME flags. Use bitwise OR for multiple.
 :param tilesize: How big a single tile is (game units), change at risk of massive bugginess
 """
 self.max_steps = max_steps
 self.max_score = max_score
 self.max_speed = max_speed
 self.max_turn = max_turn
 self.max_range = max_range
 self.max_see = max_see
 self.field_known = field_known
 self.ammo_rate = ammo_rate
 self.ammo_amount = ammo_amount
 self.agent_type = agent_type
 self.spawn_time = spawn_time
 self.think_time = think_time
 self.capture_mode = capture_mode
 self.end_condition = end_condition
 self.tilesize = tilesize
 # Validate
 if max_score % 2 != 0:
 raise Exception("Max score (%d) has to be even."%max_score)

 def __repr__(self):
 default = Settings()
 args = ('%s=%s'%(v,repr(getattr(self,v))) for v in vars(self) if getattr(self,v) != getattr(default,v))
 args = ', '.join(args)
 return 'Settings(%s)'%args

[docs]class GameStats(object):
 def __init__(self):
 self.score_red = 0 #:The number of points scored by red
 self.score_blue = 0 #: The number of points scored by blue
 self.score = 0.0 #: The final score as a float (red/total)
 self.steps = 0 #: Number of steps the game lasted
 self.ammo_red = 0 #: Number of ammo packs that red picked up
 self.ammo_blue = 0 #: Idem for blue
 self.deaths_red = 0 #: Number red agents that got shot
 self.deaths_blue = 0 #: Number blue agents that got shot
 self.think_time_red = 0.0 #: Total time in seconds that red took to compute actions
 self.think_time_blue = 0.0 #: Idem for blue

 def __str__(self):
 items = sorted(self.__dict__.items())
 maxlen = max(len(k) for k,v in items)
 return "== GAME STATS ==\n" + "\n".join(('%s : %r'%(k.ljust(maxlen), v)) for (k,v) in items)

class GameLog(object):
 """ Simple writable object that can replace
 sys.stdout
 """
 def __init__(self, verbose=False):
 self.verbose = verbose
 self.log = []

 def write(self, string):
 if self.verbose and string != '\n':
 try:
 print >> sys.__stdout__, string
 except:
 pass
 self.log.append(string)

 def truncated(self, kbs=16):
 s = str(self)
 if len(s) > kbs*1024:
 msg = "\n== LOG TRUNCATED TO %dKB ==\n"%(kbs,)
 s = s[:kbs*1024-len(msg)] + msg
 return s

 def __str__(self):
 return ''.join(self.log)

class Team(object):
 """ Holds info about a team.
 """
 FIND_NAME = r'^[\t]*NAME[\t]*=[\t]*[\'\"]([a-zA-Z0-9\-_]{3,20})[\'\"]'
 NAME_UNSAFE = r'[^a-zA-Z0-9_]+'

 def __init__(self, brain=None, init_kwargs={}, name=None):
 """ Initialize a Team object.

 :param brain: A path to the brain, or a string containing it, or an
 open file pointer.
 """
 # Do some heuristics to find out how to get the agent:
 if brain is None:
 self.brain_string = ''
 self.name_external = name
 elif type(brain) == file:
 brain.seek(0)
 self.brain_string = brain.read()
 self.name_external = os.path.basename(brain.name)
 else:
 if re.search(ILLEGAL_PATH_CHARS, brain) is None:
 self.brain_string = open(brain).read()
 self.name_external = os.path.basename(brain)
 else:
 self.brain_string = brain
 self.name_external = name
 self.init_kwargs = init_kwargs
 self.brain_class = None
 # Fetch the NAME from the agent code
 match = re.search(self.FIND_NAME, self.brain_string, re.M)
 if match:
 found = match.groups(1)[0]
 self.name_internal = re.sub(self.NAME_UNSAFE, '_', found)
 self.name_internal = self.name_internal.strip('_')
 else:
 self.name_internal = 'unnamed'
 self.raised_exception = False

 def setname(self, fullname):
 parts = fullname.split(' (', 1)
 if len(parts) == 1:
 self.name_internal = parts[0]
 else:
 self.name_internal, ext = parts
 self.name_external = ext[:-1]

 def fullname(self):
 if self.name_external is None:
 return self.name_internal
 else:
 return self.name_internal + ' (' + self.name_external + ')'

 def load(self, scope):
 """ Load up the brain from the string
 """
 exec(self.brain_string, scope)
 return scope['Agent']

class AgentStub(object):
 """ Brains are replaced by this code when they can't
 be loaded for some reason.
 """
 def __init__(*args, **kwargs): pass

 def observe(self,o): pass

 def action(self): return (0,0,False)

 def finalize(self, interrupted=False): pass

 def debug(self, surface): pass

[docs]class Game(object):

 """ The main game class. Contains game data and methods for
 simulation.
 """

 SIMULATION_SUBSTEPS = 10
 SIMULATION_MAXITER = 20

 STATE_NEW = 0
 STATE_READY = 1
 STATE_RUNNING = 2
 STATE_INTERRUPT = 3
 STATE_ENDED = 4

 def __init__(self, red=open(DEFAULT_AGENT_FILE),
 blue=open(DEFAULT_AGENT_FILE),
 red_init={},
 blue_init={},
 settings=Settings(),
 field=None,
 record=False,
 replay=None,
 rendered=True,
 verbose=True,
 hard_errors=False,
 step_callback=None):
 """ Constructor for Game class

 :param red: Descriptor of the red agent.
 Can be either a path, an open file, a string with the
 class definition, or an instance of :class:`~domination.core.Team`
 :param blue: Descriptor of the blue agent
 :param red_init: A dictionary of keyword arguments passed to the red
 agent constructor.
 :param blue_init: Like red_init.
 :param settings: Instance of the settings class.
 :param field: An instance of Field to play this game on, or a generator.
 :param record: Store all actions in a game replay.
 :param replay: Pass a game replay to play it.
 :param rendered: Enable/disable the renderer.
 :param verbose: Print game log to output.
 :param hard_errors: Enable to make agent errors interrupt the game.
 :param step_callback: Function that is called on every step. Useful for debugging.
 """
 self.record = record
 self.verbose = verbose
 self.step_callback = step_callback
 self.hard_errors = hard_errors

 # Public properties
 self.log = GameLog(self.verbose) #: The game log as an instance of class:`~domination.core.GameLog`
 self.replay = replay #: The replay object, can be accessed after game has run
 self.stats = None #: Instance of :class:`~domination.core.GameStats`.
 self.red = red if isinstance(red, Team) else Team(red, red_init) #: Instance of :class:`~domination.core.Team`.
 self.blue = blue if isinstance(blue, Team) else Team(blue, blue_init) #: Instance of :class:`~domination.core.Team`.

 if self.record and self.replay is not None:
 raise Exception("Cannot record and play replay at the same time.")
 # Set up a new game
 if replay is None:
 self.settings = settings
 if isinstance(field, FieldGenerator):
 self.field = field.generate()
 elif field is None:
 self.field = FieldGenerator().generate()
 else:
 self.field = field
 self.settings.tilesize = self.field.tilesize
 # Load up a replay
 else:
 if replay.version != __version__:
 print >> sys.stderr, ("WARNING: Replay is for version %s, you have %s."%(replay.version, __version__))
 self.settings = replay.settings
 self.field = replay.field
 self.red.setname(replay.red_name)
 self.blue.setname(replay.blue_name)

 # Create the renderer if needed
 if rendered:
 self.add_renderer()
 else:
 self.renderer = None

 self.state = Game.STATE_NEW

 def _agent_call(self, method, args=[], kwargs={}, team=TEAM_NEUTRAL, default=None):
 """ Calls a method on an agent, wrapping it in a try/catch block
 to prevent agents from crashing the game.
 """
 if self.hard_errors:
 return method(*args, **kwargs)
 else:
 try:
 return method(*args, **kwargs)
 except Exception, e:
 if team == TEAM_RED:
 self.red.raised_exception = True
 else:
 self.blue.raised_exception = True
 print "\n%s raised exception in < %s() >" % ('RED' if team == TEAM_RED else 'BLU', method.__name__)
 print '-' * 60
 traceback.print_exc(file=sys.stdout)
 print '-' * 60
 return default

 def add_renderer(self, **kwargs):
 import renderer
 globals()['renderer'] = renderer
 self.renderer = renderer.Renderer(self, **kwargs)

 def _setup(self):
 """ Sets up the game.
 """
 # Redirect STDOUT
 self.old_stdout = sys.stdout
 sys.stdout = self.log
 # Print version
 print "Domination Game Ver. %s"%__version__
 # Read agent brains (from string or file)

 print "Playing `%s` vs. `%s`"%(self.red.fullname(), self.blue.fullname())

 self.random = random.Random()
 self.random.seed(RANDOMSEED)
 # Initialize new replay
 if self.record:
 self.replay = ReplayData(self)
 self.replay.red_name = self.red.fullname()
 self.replay.blue_name = self.blue.fullname()
 # Load field objects
 allobjects = self.field.get_objects()
 cps = [o for o in allobjects if isinstance(o, ControlPoint)]
 reds = [o for o in allobjects if isinstance(o, TankSpawn) and o.team == TEAM_RED]
 blues = [o for o in allobjects if isinstance(o, TankSpawn) and o.team == TEAM_BLUE]
 # Game logic variables
 self.score_red = self.settings.max_score / 2
 self.score_blue = self.settings.max_score / 2
 self.step = 0
 self.interrupted = False
 self.keys = []
 # Simulation variables
 self.object_uid = 0
 self.objects = []
 self.broadphase_mov = []
 self.broadphase_stat = []
 # Performance tracking
 self.stats = GameStats()
 self.think_time_red = 0.0
 self.think_time_blue = 0.0
 self.update_time_total = 0.0
 self.sim_time = 0.0
 self.sim_time_total = 0.0
 # Game objects
 self.tanks = []
 self.controlpoints = []
 for o in allobjects:
 self._add_object(o)
 self.controlpoints = cps
 # Initialize tanks
 print "Initializing agents."
 if self.record or self.replay is None:
 # Initialize new tanks with brains
 brain_kwargs = {'settings': self.settings}
 if self.settings.field_known:
 brain_kwargs.update({'field_rects': self.field.wallrects,
 'field_grid': self.field.wallgrid,
 'nav_mesh': self.field.mesh})

 red_brain_class = self._agent_call(self.red.load, kwargs={'scope':AGENT_GLOBALS.copy()}, team=TEAM_RED, default=AgentStub)
 blue_brain_class = self._agent_call(self.blue.load, kwargs={'scope':AGENT_GLOBALS.copy()}, team=TEAM_BLUE, default=AgentStub)

 def construct_tanks(brainclass, init_kwargs, team, spawns):
 for i,s in enumerate(spawns):
 kwargs = copy.deepcopy(brain_kwargs)
 kwargs.update(init_kwargs)
 brain = self._agent_call(brainclass, args=[i, team], kwargs=kwargs, team=team, default=AgentStub())
 t = Tank(s.x+2, s.y+2, s.angle, i, team=team, brain=brain, spawn=s, record=self.record)
 self.tanks.append(t)
 self._add_object(t)

 construct_tanks(red_brain_class, self.red.init_kwargs, TEAM_RED, reds)

 construct_tanks(blue_brain_class, self.blue.init_kwargs, TEAM_BLUE, blues)

 else:
 # Initialize tanks to play replays
 for i,(s,a) in enumerate(zip(reds,self.replay.actions_red)):
 t = Tank(s.x+2, s.y+2, s.angle, i, team=TEAM_RED, spawn=s, actions=a[:])
 self.tanks.append(t)
 self._add_object(t)
 for i,(s,a) in enumerate(zip(blues,self.replay.actions_blue)):
 t = Tank(s.x+2, s.y+2, s.angle, i, team=TEAM_BLUE, spawn=s, actions=a[:])
 self.tanks.append(t)
 self._add_object(t)
 self.tanks_red = [tank for tank in self.tanks if tank.team == TEAM_RED]
 self.tanks_blue = [tank for tank in self.tanks if tank.team == TEAM_BLUE]
 self.state = Game.STATE_READY
 self.interrupted = False

[docs] def run(self):
 """ Start and loop the game. """
 if self.state != Game.STATE_READY:
 self._setup()
 res = Game.SIMULATION_SUBSTEPS
 render = self.renderer is not None
 settings = self.settings
 ## MAIN GAME LOOP
 self.state = Game.STATE_RUNNING
 try:
 for s in xrange(settings.max_steps):
 self.step = s+1
 if self.step % 10 == 0:
 print "Step %d: %d - %d"%(self.step, self.score_red, self.score_blue)
 if self.step_callback is not None:
 self.step_callback(self)
 ## UPDATE & CHECK VICTORY
 p = time.clock()
 for o in self.objects:
 o.update()
 for t in self.tanks:
 t.send_observation()
 for t in self.tanks:
 t.get_action()
 # Compute shooting
 for tank in self.tanks:
 tank.hit = None
 tank.clicked = []
 if tank.shoots:
 tcx, tcy = tank._x + tank.width/2, tank._y + tank.height/2
 target = (cos(tank.angle) * settings.max_range + tcx,
 sin(tank.angle) * settings.max_range + tcy)
 hits = self._raycast((tcx, tcy), target, exclude=tank)
 tank._hitx, tank._hity = target
 if hits:
 t, (px,py), who = hits[0]
 tank._hitx, tank._hity = px, py
 if isinstance(who, Tank):
 tank.hit = who.team
 who.respawn_in = self.settings.spawn_time

 # Record times
 self.update_time_total += time.clock() - p
 sum_red = sum(tank.time_thought for tank in self.tanks_red)
 sum_blue = sum(tank.time_thought for tank in self.tanks_blue)
 self.stats.think_time_red += sum_red
 self.stats.think_time_blue += sum_blue
 if self.tanks_red:
 self.think_time_red = sum_red / len(self.tanks_red)
 if self.tanks_blue:
 self.think_time_blue = sum_blue / len(self.tanks_blue)
 # Score ending condition
 if ((self.settings.end_condition & ENDGAME_SCORE) and
 (self.score_red == 0 or self.score_blue == 0)):
 break
 # No crumbs left ending condition
 if ((self.settings.end_condition & ENDGAME_CRUMBS) and
 not any(True for o in allobjects if isinstance(o, Crumb))):
 break
 ## RESET SOME STUFF
 if render:
 self.keys = []
 ## SIMULATE AND RENDER
 for o in self.objects:
 if o.movable:
 o._dx = (o.x - o._x) / res
 o._dy = (o.y - o._y) / res
 if render:
 o._da = (o.angle - o._a) / renderer.ROTATION_FRAMES
 # Render rotation/shooting
 if render:
 for _ in xrange(renderer.ROTATION_FRAMES):
 for o in self.objects:
 o._a += o._da
 self.renderer.render(self)
 for f in xrange(renderer.SHOOTING_FRAMES):
 self.renderer.render(self, shooting_frame = f)

 # Reset tanks that got shot
 for tank in self.tanks:
 if tank.respawn_in == self.settings.spawn_time:
 if tank.team == TEAM_RED:
 self.stats.deaths_red += 1
 else:
 self.stats.deaths_blue += 1
 tank.ammo = 0
 tank.x = tank._x = tank.spawn.x + 2
 tank.y = tank._y = tank.spawn.y + 2
 tank._dx = tank._dy = 0
 tank.angle = tank._a = tank.spawn.angle

 # Simulate/Render movement
 self.sim_time = 0.0
 for step in xrange(res):
 p = time.clock()
 # Perform one physics substep
 self._substep()
 self.sim_time += time.clock() - p
 if render:
 self.renderer.render(self)
 self.sim_time_total += self.sim_time
 for o in self.objects:
 if o.movable:
 o.x = o._x
 o.y = o._y
 o._a = o.angle = angle_fix(o.angle)
 except GameInterrupt:
 self.state = Game.STATE_INTERRUPT
 except KeyboardInterrupt:
 self.state = Game.STATE_INTERRUPT
 self._end(interrupted=(self.state==Game.STATE_INTERRUPT))
 return self # For chaining, if you're into that.

 def _end(self, interrupted=False):
 """ End the game and tells all the agents that the game
 is over so that they can write any remaining info.
 """
 if self.renderer is not None:
 self.renderer.quit()
 if interrupted:
 print "Game was interrupted."
 self.interrupted = True
 self.state = Game.STATE_ENDED
 self.stats.score_red = self.score_red
 self.stats.score_blue = self.score_blue
 self.stats.score = self.score_red / float(self.score_red + self.score_blue)
 self.stats.steps = self.step
 print self.stats
 if self.record:
 self.replay.settings = copy.copy(self.settings)
 self.replay.field = self.field
 self.replay.actions_red = [tank.actions for tank in self.tanks_red]
 self.replay.actions_blue = [tank.actions for tank in self.tanks_blue]
 # Finalize tanks brains.
 if self.record or self.replay is None:
 for tank in self.tanks:
 self._agent_call(tank.brain.finalize, args=[interrupted], team=tank.team)

 # Set the stdout back to whatever it was before
 sys.stdout = self.old_stdout

 def _substep(self):
 """ Performs a single physics substep. All objects are moved by
 their respective _dx and _dy amounts, collisions are computed,
 and all objects are repeatedly separated until no large collisions
 occur anymore.
 """
 for o in self.broadphase_mov:
 o._x += o._dx
 o._y += o._dy
 o._moved = True # if (o._dx != 0 or o._dy != 0) else False
 something_collided = True
 iteration = Game.SIMULATION_MAXITER
 pairs = set([])
 while something_collided and iteration > 0:
 self.broadphase_mov.sort(key=lambda o:(o._x))
 collisions = []
 k = 0
 for i, o1 in enumerate(self.broadphase_mov):
 for o2 in self.broadphase_mov[i+1:]:
 # If the object didn't move, no need to check.
 if o2._moved or o1._moved:
 # Break if the next object's _x is already outside
 # this object's bounds. (The essential bit)
 if o2._x >= o1._x + o1.width:
 break
 # Otherwise check if the y's intersect too
 if o2._y < (o1._y + o1.height) and o1._y < (o2._y + o2.height):
 sep = self._compute_separation(o1,o2)
 if sep is not None:
 if o1.solid and o2.solid:
 collisions.append(sep)
 if (o1, o2) not in pairs:
 pairs.add((o2, o1))
 if o1._moved:
 sf = True
 for o2 in self.broadphase_stat[k:]:
 # Maintain marker index for static broadphase
 if o2._x + o2.width <= o1._x:
 if sf:
 k += 1
 continue
 elif sf:
 sf = False
 # Break if the next object's _x is already outside
 # this object's bounds. (The essential bit)
 if o2._x >= o1._x + o1.width:
 break
 # Otherwise check if the y's intersect too
 if o2._y < (o1._y + o1.height) and o1._y < (o2._y + o2.height):
 sep = self._compute_separation(o1,o2)
 if sep is not None:
 if o1.solid and o2.solid:
 collisions.append(sep)
 if (o1, o2) not in pairs:
 pairs.add((o2, o1))
 o1._moved = False
 something_collided = len(collisions) > 0
 # Sort the collisions on their first property, the penetration distance.
 collisions.sort(reverse=True, key=lambda c: c[0])
 for (p, o1, o2, px, py) in collisions:
 if p < 1:
 break
 if not o1._moved and not o2._moved:
 if o1.movable:
 if o2.movable:
 dx = px/2
 dy = py/2
 o1._x += dx
 o1._y += dy
 o2._x -= dx
 o2._y -= dy
 o1._moved = True
 o2._moved = True
 else:
 o1._x += px
 o1._y += py
 o1._moved = True
 else:
 o2._x -= px
 o2._y -= py
 o2._moved = True
 iteration -= 1
 pairs = sorted(pairs)
 for (o1,o2) in pairs:
 o1.collide(o2)
 o2.collide(o1)

 def _add_object(self,o):
 """ Add an object to the game and collision list. """
 o.game = self
 o.uid = hashlib.md5(str(self.object_uid)).digest()
 self.object_uid += 1
 self.objects.append(o)
 if o.physical:
 if o.movable:
 self.broadphase_mov.append(o)
 self.broadphase_mov.sort(key=lambda o:(o._x))
 else:
 self.broadphase_stat.append(o)
 self.broadphase_stat.sort(key=lambda o:(o._x))
 o.added_to_game(self)

 def _rem_object(self,o):
 """ Removes an object from the game and collision lists. """
 self.objects.remove(o)
 if o.physical:
 if o.movable:
 self.broadphase_mov.remove(o)
 else:
 self.broadphase_stat.remove(o)
 # Check if we need to remove this object from a parent
 if hasattr(o, 'parent'):
 o.parent.remove_child(o)

 def _get_objects_in_bounds(self, xmin, xmax, ymin, ymax, solid_only=True):
 """ Return a list of all objects whose bounding boxes
 intersect the given bounds.
 """
 for o in self.broadphase_mov:
 if o._x > xmax:
 break
 if (not solid_only or o.solid) and o._x + o.width > xmin:
 if ymin < (o._y + o.height) and o._y < ymax:
 yield o
 for o in self.broadphase_stat:
 if o._x > xmax:
 break
 if (not solid_only or o.solid) and o._x + o.width > xmin:
 if ymin < (o._y + o.height) and o._y < ymax:
 yield o

 def _compute_separation(self, object1, object2):
 """ Compute object separation/penetration
 Returns a tuple or None.
 The tuple consists of the penetration distance,
 both objects, and the required movement of _object1_
 to separate.
 """
 # Find out what kind of collision we're dealing with
 # The circle proxy is either a real circle, or a rect's corner
 # that another circle collides with.
 objects_switched = False
 if ((object1.shape == GameObject.SHAPE_CIRC) and
 (object2.shape == GameObject.SHAPE_CIRC)):
 circleproxy = (object1._x, object1._y, object1.width/2)
 sep_as_circles = True
 elif ((object1.shape == GameObject.SHAPE_RECT) and
 (object2.shape == GameObject.SHAPE_RECT)):
 sep_as_circles = False
 else:
 if (object1.shape == GameObject.SHAPE_CIRC):
 objects_switched = True
 (object1, object2) = (object2, object1)
 cx = object2._x + object2.width/2
 cy = object2._y + object2.height/2
 ra = object2.width/2
 l, t = object1._x, object1._y
 r, b = l + object1.width, t + object1.height
 sep_as_circles = False
 if cx < l:
 if cy < t:
 circleproxy = (l,t,0.0)
 sep_as_circles = True
 elif cy > b:
 circleproxy = (l,b,0.0)
 sep_as_circles = True
 elif cx > r:
 if cy < t:
 circleproxy = (r,t,0.0)
 sep_as_circles = True
 elif cy > b:
 circleproxy = (r,b,0.0)
 sep_as_circles = True
 # Separate Circle/Circle
 if sep_as_circles:
 (cx,cy,ra) = circleproxy
 md = ra + object2.width / 2 # Minimum distance
 dx = (cx + ra) - (object2._x + object2.width/2)
 dy = (cy + ra) - (object2._y + object2.height/2)
 ds = dx*dx + dy*dy # Actual distance squared
 if ds < 0.01:
 p,px,py = 0.0, 0.0, 0.0
 elif ds < md*md:
 d = sqrt(ds) # Actual Distance
 p = md - d # Penetration amount
 f = p/d
 px = f * dx
 py = f * dy
 else:
 return None
 # Separate Rect/Rect
 else:
 o1l, o1t = object1._x, object1._y
 o1r, o1b = o1l + object1.width, o1t + object1.height
 o2l, o2t = object2._x, object2._y
 o2r, o2b = o2l + object2.width, o2t + object2.height
 p,px,py = inf, 0, 0
 # Try to find the side with the smallest separation distance
 pt = o1r - o2l # Left side penetration
 if 0 < pt:
 p, px, py = pt, -pt, 0.0
 else:
 return None
 pt = o1b - o2t # Top penetration
 if 0 < pt:
 if pt < p:
 p, px, py = pt, 0.0, -pt
 else:
 return None
 pt = o2r - o1l # Right side penetration
 if 0 < pt:
 if pt < p:
 p, px, py = pt, pt, 0.0
 else:
 return None
 pt = o2b - o1t # Bottom penetration (really...)
 if 0 < pt:
 if pt < p:
 p, px, py = pt, 0.0, pt
 else:
 return None
 if objects_switched:
 object1, object2 = object2, object1
 px, py = -px, -py
 return (p, object1, object2, px, py)

 def _raycast(self, p0, p1, exclude=None):
 """ Shoots a ray from p0 to p1 and determines
 which objects are hit and at what time
 in the parametric line equation p0 + t * (p1 - p0)
 """
 p0x, p0y = p0
 p1x, p1y = p1
 xmin, xmax = (p0x, p1x) if p0x < p1x else (p1x, p0x)
 ymin, ymax = (p0y, p1y) if p0y < p1y else (p1y, p0y)

 # List collided pairs
 in_box = self._get_objects_in_bounds(xmin,xmax,ymin,ymax)
 # Determine actual hits
 hits = []
 for o in in_box:
 if o != exclude:
 if o.shape == GameObject.SHAPE_RECT:
 isect = line_intersects_rect(p0,p1,(o._x,o._y,o.width,o.height))
 if isect:
 # Append the t0 (intersection time) and object
 hits.append((isect[0][0],isect[0][1],o))
 elif o.shape == GameObject.SHAPE_CIRC:
 r = o.width/2
 isect = line_intersects_circ(p0,p1,(o._x+r,o._y+r),r)
 if isect:
 # Append the t0 (intersection time), position and object
 hits.append((isect[0][0],isect[0][1],o))
 hits.sort(key=lambda h: h[0])
 return hits

 def _click(self, (x,y), shift):
 """ Tells the game that the right-mouse button was clicked
 somewhere on the field.
 """
 for t in self.tanks:
 t.send_click((x, y, shift, t.selected))

 def _keypress(self, key):
 """ Tells the game that some key on the keyboard was pressed.
 """
 self.keys.append(key)

 def _select_tanks(self, rect, team=0):
 """ Function that is called by the renderer to set
 selected=True on tanks in the given rectangle. Handy
 for manually selecting and controlling tanks.
 """
 x,y,w,h = rect
 if w < 0:
 x += w
 w = -w
 if h < 0:
 y += h
 h = -h
 for t in self.tanks:
 if (t._x < x+w and
 t._y < y+h and
 t._x + t.width > x and
 t._y + t.height > y) and t.team == team:
 t.selected = True
 else:
 t.selected = False

 def __str__(self):
 args = ','.join(['%r'%self.red.fullname(),
 '%r'%self.blue.fullname(),
 'settings=%r'%self.settings])
 if self.red.init_kwargs != {}:
 args += ',red_init=%r'%self.red.init_kwargs
 if self.blue.init_kwargs != {}:
 args += ',blue_init=%r'%self.blue.init_kwargs
 return 'Game(%s)'%args

class Field(object):
 """ Class representing a playing field.

 You can use to_file, which dumps an ASCII representation of the
 field to a file, or you can pickle the entire Field object.
 Any way to create a Field is fine, the included FieldGenerator
 does a pretty good job!
 """
 # TILE MARKERS
 NOT = '^'
 WALL = 'W'
 AMMO = 'A'
 SOURCE = 'S'
 RED = 'R'
 BLUE = 'B'
 CONTROL = 'C'
 CLEAR = '_'
 REACHABLE = '.'

 def __init__(self, width, height, tilesize):
 # Settings variables
 self.width = width
 self.height = height
 self.tilesize = tilesize

 # Initial empty tilemap with border
 # Create rows
 t = [Field.WALL] * self.width
 m = [Field.WALL] + [Field.CLEAR] * (self.width - 2) + [Field.WALL]
 b = [Field.WALL] * self.width
 # Stack top + middle + bottom
 self.tiles = [t] + [m[:] for _ in xrange(self.height-2)] + [b]

 self._unpacked = None

 ## BUILTINS
 def __getstate__(self):
 """ Used for pickling, removes the _unpacked property """
 self._unpacked = None
 return self.__dict__

 def __str__(self):
 """ Returns the ASCII representation of this field """
 return '\n'.join([' '.join(row) for row in self.tiles])

 def __eq__(self, other):
 """ Equality, for testing purposes """
 return (self.width == other.width and
 self.height == other.height and
 self.tilesize == other.tilesize and
 self.tiles == other.tiles)

 ## SAVING/LOADING
 @classmethod
 def from_string(cls, s):
 """ Returns a new Field from given ASCII representation. """
 tiles = [[t.upper() for t in l.split()] for l in s.strip().split('\n')]
 h, w = len(tiles), len(tiles[0])
 field = cls(w, h, tilesize=16)
 field.tiles = tiles
 return field

 def to_file(self, filename):
 open(filename,'w').write(str(self))

 ## MANIPULATION
 def clone(self):
 """ Returns an exact copy of this field, that can
 be modified without changing this one.
 """
 f = Field(self.width, self.height, self.tilesize)
 f.tiles = [r[:] for r in self.tiles]
 return f

 def find(self, match, bounds=None, mask=None):
 """ Find all (x,y) positions of given tile marker.
 e.g. field.find(Field.CONTROL) returns
 positions of all controlpoints, (in tile coordinates).
 """
 if bounds is None:
 bounds = (0, 0, self.width, self.height)
 if match.startswith(Field.NOT):
 matches = lambda x: x not in match[1:]
 else:
 matches = lambda x: x in match
 found = []
 for i in xrange(bounds[1], bounds[3]):
 for j in xrange(bounds[0], bounds[2]):
 if matches(self.tiles[i][j]) and (mask is None or mask[i][j]):
 found.append((j,i))
 return found

 def set(self, coords, marker, mirror=False, match='^'):
 """ Set tiles in coords to a marker, but only
 if it matches the given match expression.
 """
 if match.startswith(Field.NOT):
 matches = lambda x: x not in match[1:]
 else:
 matches = lambda x: x in match
 # If only a single point was given, wrap it in list.
 if len(coords) and type(coords[0]) == int:
 coords = [coords]
 for i, (x,y) in enumerate(coords):
 if matches(self.tiles[y][x]):
 self.tiles[y][x] = marker
 if mirror:
 self.tiles[y][self.width-1-x] = marker

 def scatter(self, marker, num, pad=1, mirror=True):
 """ Scatter markers over the map, symmetrically or not."""
 midline = int(self.width / 2.0 + 0.5)
 if mirror:
 bounds = (pad, pad, midline-pad, self.height - pad)
 clear = self.find(Field.CLEAR, bounds=bounds)
 # Begin by scattering half of the points.
 points = random.sample(clear, num // 2)
 self.set(points, marker, mirror=True)
 # If odd number, add one more on midline:
 if num%2:
 bounds = (midline-1, pad, midline, self.height - pad)
 point = random.choice(self.find(Field.CLEAR, bounds=bounds))
 self.set(point, marker)
 else:
 # If not mirroring, just scatter the whole bunch.
 bounds = (pad, pad, self.width-1-pad, self.height-1-pad)
 clear = self.find(Field.CLEAR, bounds=bounds)
 points = random.sample(clear, num)
 self.set(points, marker)

 def fill_unreachable(self):
 spawn = self.find(Field.RED)[0] or self.find(Field.BLUE)[0]
 reach = reachable(self.tiles, spawn, border=Field.WALL)
 reach = self.find(Field.CLEAR, mask=reach)
 # Mark reachable areas
 self.set(reach, Field.REACHABLE)
 # Set the rest to walls
 self.set(self.find(Field.CLEAR), Field.WALL)
 clear = self.find(Field.REACHABLE + Field.CLEAR)
 self.set(clear, Field.CLEAR)

 def valid(self):
 """ Check if map is valid, i.e. all points are
 reachable
 """
 spawn = self.find(Field.RED)[0] or self.find(Field.BLUE)[0]
 reachability = reachable(self.tiles, spawn, border=Field.WALL)
 for (x, y) in self.find(Field.AMMO +
 Field.CONTROL +
 Field.BLUE +
 Field.RED):
 if not reachability[y][x]:
 return False
 return True

 ## ACCESS BY GAME

 def unpack(self):
 """ Unpacks the tilemap and generates derivative
 properties like the navigation mesh, wall rects,
 and game objects. Game objects are not
 actually created yet, but GENERATED ON THE FLY
 when the game asks for them, so that each
 game gets a shiny new batch of game objects.
 """
 _unpacked = {'wallrects':[],
 'objects': [],
 'mesh': None,
 'grid': None}

 def create_object(x, y, marker):
 """ Creates an object from a tile marker """
 kwargs = {}
 if marker == Field.AMMO:
 cls = AmmoFountain
 elif marker == Field.SOURCE:
 cls = CrumbFountain
 elif marker == Field.CONTROL:
 cls = ControlPoint
 elif marker == Field.RED:
 cls = TankSpawn
 kwargs.update({'angle': 0, 'team': TEAM_RED})
 elif marker == Field.BLUE:
 cls = TankSpawn
 kwargs.update({'angle': pi, 'team': TEAM_BLUE})
 else:
 raise Exception("Unknown map marker '%s'"%marker)
 offset = cls.SIZE/2.0 - self.tilesize/2.0
 kwargs['x'] = x * self.tilesize - offset
 kwargs['y'] = y * self.tilesize - offset
 return (cls, kwargs)

 # Unpacking tilemap
 for i, row in enumerate(self.tiles):
 for j, tile in enumerate(row):
 if tile == self.WALL:
 _unpacked["wallrects"].append((j*self.tilesize, i*self.tilesize, self.tilesize, self.tilesize))
 elif tile not in self.CLEAR + self.REACHABLE:
 _unpacked["objects"].append(create_object(j, i, tile))

 # Optimize the walls and generate Wall objects
 _unpacked['wallrects'] = rects_merge(_unpacked['wallrects'])
 _unpacked['objects'].extend((Wall, {'x':x, 'y':y, 'width':w, 'height':h})
 for (x,y,w,h) in _unpacked['wallrects'])

 # Generate nav mesh
 add_points = [(o.cx, o.cy) for o in _unpacked['objects'] if
 (isinstance(o,Ammo) or isinstance(o,ControlPoint))]
 _unpacked['mesh'] = make_nav_mesh(_unpacked['wallrects'], simplify=0.3,add_points=add_points)

 # Generate wall grid
 _unpacked['grid'] = [[(1 if t == self.WALL else 0) for t in row] for row in self.tiles]

 self._unpacked = _unpacked

 @property
 def mesh(self):
 if not self._unpacked: self.unpack()
 return self._unpacked['mesh']

 @property
 def wallgrid(self):
 if not self._unpacked: self.unpack()
 return self._unpacked['grid']

 @property
 def wallrects(self):
 if not self._unpacked: self.unpack()
 return self._unpacked['wallrects']

 def get_objects(self):
 """ Creates the gameobjects and returns them """
 if not self._unpacked: self.unpack()
 return [cls(**kwargs) for (cls, kwargs) in self._unpacked['objects']]

[docs]class FieldGenerator(object):
 """ Generates field objects from random distribution """

 def __init__(self, width=41, height=24, tilesize=16, mirror=True,
 num_red=6, num_blue=6, num_points=3, num_ammo=6, num_crumbsource=0,
 wall_fill=0.4, wall_len=(3,7), wall_width=4,
 wall_orientation=0.5, wall_gridsize=6):
 """ Create a FieldGenerator object with certain parameters for a random
 distribution of fields.

 :param width: The width of the field in tiles
 :param height: The height of the field in tiles
 :param tilesize: The size of each tile (don't change from 16)
 :param mirror: Make a symmetrical map
 :param num_blue: The number of blue spawns
 :param num_red: The number of red spawns
 :param num_points: The number of controlpoints
 :param num_ammo: The number of ammo locations on the map
 :param num_crumbsource: The number of crumb fountains
 :param wall_fill: What portion of the map is occupied by walls
 :param wall_len: A range for the length of wall sections (min, max)
 :param wall_width: The width of each wall section
 :param wall_orientation: The probability that each wall will be placed horizontally
 i.e. that the walls length will be along a horizontal axis
 :param wall_gridsize: Place walls only at every n-th tile with their top-left
 """
 self.width = width
 self.height = height
 self.tilesize = tilesize
 self.mirror = mirror
 self.num_red = num_red
 self.num_blue = num_blue
 self.num_points = num_points
 self.num_ammo = num_ammo
 self.num_crumbsource = num_crumbsource
 self.wall_fill = wall_fill
 self.wall_len = wall_len
 self.wall_width = wall_width
 self.wall_orientation = wall_orientation
 self.wall_gridsize = wall_gridsize

[docs] def generate(self):
 """ Generates a new field using the parameters for random
 distribution set in the constructor.

 :returns: A :class:`~domination.core.Field` instance.
 """
 # Create a new field
 field = Field(width=self.width, height=self.height, tilesize=self.tilesize)

 ## IMPORTANT OBJECTS
 # Add controlpoints
 field.scatter(Field.CONTROL, self.num_points, pad = 4, mirror=self.mirror)
 # Add sources of crumbs
 field.scatter(Field.SOURCE, self.num_crumbsource, pad = 2, mirror=self.mirror)
 # Spawn regions
 spawn_h = int(sqrt(max(self.num_red, self.num_blue)) + 0.5) # height of the spawn block
 spawn_y = random.randint(1, self.height - 2 - spawn_h) # y-pos of the spawn block
 for i in xrange(max(self.num_red, self.num_blue)):
 if i < self.num_red:
 x = 1 + i // spawn_h
 y = spawn_y + i%spawn_h
 field.set((x,y), Field.RED)
 if i < self.num_blue:
 x = self.width - 2 - i//spawn_h
 y = spawn_y + i%spawn_h
 field.set((x,y), Field.BLUE)

 ## WALLS
 midline = int(0.5 + self.width/2.0)
 # Add objects untill enough % is filled
 min_filled = self.height*self.width*self.wall_fill
 if len(self.wall_len) == 2:
 min_len, max_len = self.wall_len
 else:
 min_len, max_len = self.wall_len, self.wall_len
 attempts = 100
 while len(field.find('W')) < min_filled and attempts:
 new = field.clone()
 # Create horizontal section
 if rand() < self.wall_orientation:
 sec_width = random.randint(min_len,max_len)
 sec_height = self.wall_width
 # Create vertical section
 else:
 sec_width = self.wall_width
 sec_height = random.randint(min_len,max_len)
 # If map is mirrored, put stuff on left half only
 if self.mirror:
 x = random.randint(1, midline - sec_width)
 y = random.randint(1, self.height - sec_height - 1)
 else:
 x = random.randint(1, self.width - sec_width)
 y = random.randint(1, self.height - sec_height - 1)

 # Round to gridsize
 x = (x // self.wall_gridsize) * self.wall_gridsize
 y = (y // self.wall_gridsize) * self.wall_gridsize

 pts = new.find('W_.', bounds=(x, y, x + sec_width, y + sec_height))
 if len(pts) == sec_width*sec_height:
 new.set(pts, Field.WALL, self.mirror)
 if new.valid():
 field = new
 new.fill_unreachable()
 continue
 attempts -= 1

 # Clear walls under controlpoints
 for (x, y) in field.find(Field.CONTROL):
 for _y in xrange(y-1,y+2):
 for _x in xrange(x-1,x+2):
 field.set((_x,_y), Field.CLEAR, match=Field.WALL)

 ## ITEMS
 field.scatter(Field.AMMO, self.num_ammo)

 return field

class GameObject(object):
 """ Generic game object """

 SHAPE_RECT = 0
 SHAPE_CIRC = 1

 SIZE = 12

 def __init__(self, x=0.0, y=0.0, width=12, height=12, angle=0, shape=0,
 solid=True, movable=True, physical=True, graphic='default'):
 # Game variables
 self.uid = -1
 self.x = float(x)
 self.y = float(y)
 self.width = float(width)
 self.height = float(height)
 self.angle = float(angle)
 self.shape = shape
 self.solid = solid
 self.movable = movable
 self.physical = physical
 self.graphic = graphic # Graphic used by the renderer.
 if not movable:
 self.cx = int(x + self.SIZE/2)
 self.cy = int(y + self.SIZE/2)
 # Internal vars, used by the collision detection
 self._x = self.x
 self._y = self.y
 self._a = self.angle
 self._dx = 0.0
 self._dy = 0.0
 self._da = 0.0
 self._moved = False

 def added_to_game(self, game):
 """ Tells the object that it has been added to the game,
 that includes having its ".game" attribute set.
 """
 pass

 def update(self):
 """ Tells this object to update its game state.
 Only called once per game-step.
 """
 pass

 def collide(self, other):
 """ Informs the object that it has collided with another.
 Is called once per simulation substep.
 """
 pass

 def __eq__(self, other):
 return id(self) == id(other)

 def __ne__(self, other):
 return id(self) != id(other)

 def __lt__(self, other):
 return self.uid < other.uid

 def __cmp__(self, other):
 raise Exception("no sorting")

Gameobject Subclasses

class Tank(GameObject):
 SIZE = 12
 SIZE_VACUBOT = 16

 def __init__(self,
 x=0, y=0, angle=0, id=0, team=TEAM_RED,
 brain=None, spawn=None, actions=None, record=False):
 super(Tank, self).__init__(x=x, y=y, angle=angle, width=self.SIZE, height=self.SIZE,
 shape=GameObject.SHAPE_CIRC, solid=True, movable=True)
 if team == TEAM_RED:
 self.graphic = 'tank_red'
 else:
 self.graphic = 'tank_blue'
 self.brain = brain
 self.id = id
 self.team = team
 self.ammo = 0
 self.selected = False
 self.clicked = []
 self.shoots = False
 self.hit = None #: What the tank hit. Can be None/TEAM_RED/TEAM_BLUE
 self.respawn_in = -1
 self.spawn = spawn
 # A list of actions, either for recording or playing back.
 self.actions = actions if actions is not None else []
 self.record = record
 self.time_thought = 0.0
 # Additional hidden vars
 self._hitx = 0.0
 self._hity = 0.0
 self.grid_x = 0
 self.grid_y = 0

 def added_to_game(self, game):
 # Initialize observation
 self.observation = Observation()
 gridrng = (self.game.settings.max_see/2+1)//game.field.tilesize
 self.observation.walls = [[0 for _ in xrange(gridrng*2+1)] for _ in xrange(gridrng*2+1)]
 # Adjust settings for vacubot
 if game.settings.agent_type == 'vacubot':
 self.width = self.height = self.SIZE_VACUBOT
 if self.team == TEAM_RED:
 self.graphic = 'vacubot_red'
 else:
 self.graphic = 'vacubot_blue'

 def update(self):
 # Check alive status
 if self.respawn_in == 0:
 self.respawn_in = -1
 elif self.respawn_in > 0:
 self.respawn_in -= 1

 def send_observation(self):
 """ Send an observation to this agent's brain, if it has one """
 rng = self.game.settings.max_see
 obs = self.observation
 siz = self.width / 2.0
 obs.step = self.game.step
 obs.loc = mx, my = (int(self.x+siz), int(self.y+siz))
 obs.angle = self.angle
 obs.ammo = self.ammo
 obs.friends = []
 obs.foes = []
 obs.objects = []
 obs.respawn_in = self.respawn_in
 obs.hit = self.hit
 obs.score = (self.game.score_red, self.game.score_blue)
 obs.selected = self.selected
 obs.clicked = self.clicked
 obs.keys = self.game.keys
 close = self.game._get_objects_in_bounds(self.x - rng, self.x + self.width + rng,
 self.y - rng, self.y + self.height + rng, solid_only=False)

 for o in close:
 if isinstance(o, Tank):
 if o.team == self.team:
 if o != self:
 obs.friends.append((int(o._x+siz), int(o._y+siz)))
 else:
 obs.foes.append((int(o._x+siz), int(o._y+siz), o._a))
 elif isinstance(o, Ammo):
 obs.objects.append((o.cx, o.cy, "Ammo"))
 elif isinstance(o, Crumb):
 obs.objects.append((o.cx, o.cy, "Crumb"))
 obs.cps = [(cp.cx,cp.cy,cp.team) for cp in self.game.controlpoints]
 # Observe walls
 f = self.game.field
 xj, yi = mx//f.tilesize, my//f.tilesize
 # Only regenerate grid if we moved to another cell.
 if xj != self.grid_x or yi != self.grid_y:
 gridrng = (rng/2+1)//f.tilesize
 w,h = f.width, f.height
 for oi,i in enumerate(xrange(yi-gridrng, yi+gridrng+1)):
 for oj,j in enumerate(xrange(xj-gridrng, xj+gridrng+1)):
 if (i >= 0 and j >= 0 and i < h and j < w and
 f.wallgrid[i][j] == 0):
 obs.walls[oi][oj] = 0
 else:
 obs.walls[oi][oj] = 1
 self.grid_x = xj
 self.grid_y = yi

 last_clock = time.clock()
 if self.brain is not None:
 self.game._agent_call(self.brain.observe, args=[obs], team=self.team)
 self.time_thought = time.clock() - last_clock

 def get_action(self):
 ## Ask brain for action (or replay)
 if not self.record and self.actions:
 # print "i gots actions %s-%d"%('BLU' if self.team==TEAM_BLUE else 'RED',self.id)
 # print len(self.actions)
 (turn, speed, shoot) = self.actions.pop(0)
 else:
 last_clock = time.clock()

 def _act():
 action = self.brain.action()
 if action is None or len(action) != 3:
 raise Exception("Action should be a 3-tuple of (turn, speed, shoot)")
 return action

 (turn, speed, shoot) = self.game._agent_call(_act, default=(0,0,False), team=self.team)
 self.time_thought += time.clock() - last_clock
 # Ignore action (NO-OP) if agent thought too long.
 if self.time_thought > self.game.settings.think_time:
 (turn, speed, shoot) = (0,0,False)
 print '[Game]: Agent %s-%d timed out (%.3fs).'%('RED'if self.team==0 else 'BLU',self.id,self.time_thought)
 if self.record:
 self.actions.append((turn,speed,shoot))
 if self.game.renderer is not None and self.game.renderer.active_team == self.team:
 self.brain.debug(self.game.renderer.agent_debug)
 self.shoots = False
 if self.respawn_in == -1:
 max_turn = self.game.settings.max_turn
 speed = max(-self.game.settings.max_speed, min(self.game.settings.max_speed, speed))
 turn = max(-max_turn, min(max_turn, angle_fix(turn)))
 self.angle += turn
 self.x += math.cos(self.angle)*speed
 self.y += math.sin(self.angle)*speed
 # Process shooting
 if shoot and self.ammo > 0:
 self.shoots = True
 self.ammo -= 1
 self.observation.collided = False

 def collide(self, other):
 if isinstance(other, Tank):
 self.observation.collided = True
 elif isinstance(other, Wall):
 self.observation.collided = True

 def send_click(self, clicktuple):
 self.clicked.append(clicktuple)

class Wall(GameObject):
 def __init__(self, **kwargs):
 kwargs['graphic'] = None
 kwargs['movable'] = False
 kwargs['solid'] = True
 super(Wall, self).__init__(**kwargs)

class ControlPoint(GameObject):
 SIZE = 24
 def __init__(self,x,y):
 super(ControlPoint, self).__init__(x=x, y=y, width=ControlPoint.SIZE, height=ControlPoint.SIZE, shape=GameObject.SHAPE_CIRC,
 solid=False, movable=False, graphic='cp_neutral')
 self.team = TEAM_NEUTRAL
 self.collided = [0, 0, 0]

 def update(self):
 self.collided = [0, 0, 0]
 if self.team == TEAM_RED and self.game.score_red < self.game.settings.max_score:
 self.game.score_red += 1
 self.game.score_blue -= 1
 elif self.team == TEAM_BLUE and self.game.score_blue < self.game.settings.max_score:
 self.game.score_blue += 1
 self.game.score_red -= 1

 def collide(self, other):
 if isinstance(other, Tank):
 self.collided[other.team] += 1
 if self.game.settings.capture_mode == CAPTURE_MODE_NEUTRAL:
 if not (self.collided[TEAM_RED] and self.collided[TEAM_BLUE]):
 self.team = other.team
 else:
 self.team = TEAM_NEUTRAL
 if self.game.settings.capture_mode == CAPTURE_MODE_FIRST:
 if self.collided[self.team] == 0:
 self.team = other.team
 elif self.game.settings.capture_mode == CAPTURE_MODE_MAJORITY:
 if self.team != other.team and self.collided[other.team] == self.collided[self.team]:
 self.team = TEAM_NEUTRAL
 elif self.collided[other.team] > self.collided[self.team]:
 self.team = other.team

 if self.team == TEAM_RED:
 self.graphic = 'cp_red'
 elif self.team == TEAM_BLUE:
 self.graphic = 'cp_blue'
 else:
 self.graphic = 'cp_neutral'

class Ammo(GameObject):
 """ Represents an ammo pack.
 """
 SIZE = 16
 GRAPHIC = 'ammo_full'
 def __init__(self,x,y):
 super(Ammo, self).__init__(x=x, y=y, width=self.SIZE, height=self.SIZE,
 shape=GameObject.SHAPE_CIRC, solid=False,
 movable=False, graphic=self.GRAPHIC)
 self.pickedup = False

 def collide(self, other):
 if not self.pickedup and isinstance(other, Tank):
 if other.team == TEAM_RED:
 self.game.stats.ammo_red += 1
 elif other.team == TEAM_BLUE:
 self.game.stats.ammo_blue += 1
 other.ammo += self.game.settings.ammo_amount
 self.game._rem_object(self)
 self.pickedup = True

class Crumb(Ammo):
 """ Represents a crumb, something that can be picked
 up, with no other purpose than being registered
 as picked up. Essentially a small ammo packet.
 """
 SIZE = 4
 GRAPHIC = 'crumb'

class Fountain(GameObject):
 """ A non-physical object that spawns other objects at
 regular intervals, or when there are too few
 of its 'child' objects on the map.
 """
 MIN_CHILDREN = 1
 DELAY = 10
 CHILD_CLASS = Ammo
 SIZE = 16
 GRAPHIC = None

 def SPREAD(self, x, y):
 return (x,y)

 def __init__(self, x, y):
 super(Fountain, self).__init__(x=x, y=y, width=self.SIZE, height=self.SIZE,
 shape=GameObject.SHAPE_RECT, solid=False,
 movable=False, physical=False, graphic=self.GRAPHIC)
 self.countdown = -1
 self.children = []
 self.initialized = False

 def added_to_game(self, game):
 for _ in xrange(self.MIN_CHILDREN):
 self.spawn_one()

 def update(self):
 # Charge slowly
 if self.countdown > -1:
 self.countdown -= 1
 if self.countdown == -1 and len(self.children) < self.MIN_CHILDREN:
 self.countdown = self.DELAY
 if self.countdown == 0:
 self.spawn_one()

 def remove_child(self, child):
 self.children.remove(child)

 def spawn_one(self, attempts = 10):
 while attempts:
 (x,y) = self.SPREAD(self.x + self.width/2.0, self.y + self.height/2.0)
 f = self.game.field
 # Check if we're not spawning our object into a wall.
 (j,i) = int(x//f.tilesize), int(y//f.tilesize)
 if 0 <= i < f.height and 0 <= j < f.width and not f.wallgrid[i][j]:
 c = self.CHILD_CLASS(x - self.CHILD_CLASS.SIZE/2.0, y - self.CHILD_CLASS.SIZE/2.0)
 c.parent = self
 self.children.append(c)
 self.game._add_object(c)
 return
 attempts -= 1

class AmmoFountain(Fountain):
 MIN_CHILDREN = 1
 CHILD_CLASS = Ammo
 GRAPHIC = 'ammo_empty'

 def added_to_game(self, game):
 self.DELAY = self.game.settings.ammo_rate
 super(AmmoFountain, self).added_to_game(game)

class CrumbFountain(Fountain):
 MIN_CHILDREN = 200
 DELAY = -1
 CHILD_CLASS = Crumb

 def SPREAD(self, x, y):
 return x + self.game.random.gauss(0, 32), y + self.game.random.gauss(0, 32)

class TankSpawn(GameObject):
 SIZE = 16
 def __init__(self,x=0, y=0, angle=0, team=TEAM_RED, brain=None):
 super(TankSpawn, self).__init__(x=x, y=y, angle=angle, width=TankSpawn.SIZE, height=TankSpawn.SIZE,
 shape=GameObject.SHAPE_RECT, solid=False, movable=False, physical=False)
 self.team = team
 self.graphic = 'spawn_red' if self.team == TEAM_RED else 'spawn_blue'

class Observation(object):
 def __init__(self):
 self.step = 0 #: Current timestep
 self.loc = (0,0) #: Agent's location (x,y)
 self.angle = 0 #: Current angle in radians
 self.walls = [] #: Visible walls around the agent: a 2D binary array
 self.friends = [] #: All/Visible friends: a list of (x,y,angle)-tuples
 self.foes = [] #: Visible foes: a list of (x,y,angle)-tuples
 self.cps = [] #: Controlpoints: a list of (x,y,TEAM_RED/TEAM_BLUE)-tuples
 self.objects = [] #: Visible objects: a list of (x,y,type)-tuples
 self.ammo = 0 #: Ammo count
 self.score = (0,0) #: Current game score
 self.collided = False #: Whether the agent has collided in the previous turn
 self.respawn_in = -1 #: How many timesteps left before this agent can move again.
 self.hit = None #: What the agent hit with its last shot. Can be None/TEAM_RED/TEAM_BLUE
 # The following properties are only set when
 # the renderer is enabled:
 self.selected = False #: Indicates if the agent is selected in the UI
 self.clicked = [] #: A list of mouse-clicks, tuples of (x, y, shift, selected)
 self.keys = [] #: A list of all keys pressed in the previous turn

 def __str__(self):
 items = sorted(self.__dict__.items())
 maxlen = max(len(k) for k,v in items)
 return "== Observation ==\n" + "\n".join(('%s : %r'%(k.ljust(maxlen), v)) for (k,v) in items)

[docs]class ReplayData(object):
 """ Contains the replaydata for a game. """
 def __init__(self, game):
 self.settings = game.settings
 self.version = __version__
 self.actions_red = [] # List of lists of red agents' actions
 self.actions_blue = [] # List of lists of blue agents' actions

[docs] def play(self):
 """ Convenience method for setting up a game to play this replay.
 """
 g = Game(replay=self,rendered=True)
 g.run()
 return g

if __name__ == "__main__":
 g = Game(verbose=True, rendered=True).run()

 © Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

_modules/domination/libs/munkres.html

 Navigation

 		
 index

 		
 modules |

 		Domination Game 1.6.2 documentation »

 		Module code »

 Source code for domination.libs.munkres

#!/usr/bin/env python
-*- coding: iso-8859-1 -*-

Documentation is intended to be processed by Epydoc.

"""
Introduction
============

The Munkres module provides an implementation of the Munkres algorithm
(also called the Hungarian algorithm or the Kuhn-Munkres algorithm),
useful for solving the Assignment Problem.

Assignment Problem
==================

Let *C* be an *n*\ x\ *n* matrix representing the costs of each of *n* workers
to perform any of *n* jobs. The assignment problem is to assign jobs to
workers in a way that minimizes the total cost. Since each worker can perform
only one job and each job can be assigned to only one worker the assignments
represent an independent set of the matrix *C*.

One way to generate the optimal set is to create all permutations of
the indexes necessary to traverse the matrix so that no row and column
are used more than once. For instance, given this matrix (expressed in
Python)::

 matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]

You could use this code to generate the traversal indexes::

 def permute(a, results):
 if len(a) == 1:
 results.insert(len(results), a)

 else:
 for i in range(0, len(a)):
 element = a[i]
 a_copy = [a[j] for j in range(0, len(a)) if j != i]
 subresults = []
 permute(a_copy, subresults)
 for subresult in subresults:
 result = [element] + subresult
 results.insert(len(results), result)

 results = []
 permute(range(len(matrix)), results) # [0, 1, 2] for a 3x3 matrix

After the call to permute(), the results matrix would look like this::

 [[0, 1, 2],
 [0, 2, 1],
 [1, 0, 2],
 [1, 2, 0],
 [2, 0, 1],
 [2, 1, 0]]

You could then use that index matrix to loop over the original cost matrix
and calculate the smallest cost of the combinations::

 n = len(matrix)
 minval = sys.maxint
 for row in range(n):
 cost = 0
 for col in range(n):
 cost += matrix[row][col]
 minval = min(cost, minval)

 print minval

While this approach works fine for small matrices, it does not scale. It
executes in O(*n*!) time: Calculating the permutations for an *n*\ x\ *n*
matrix requires *n*! operations. For a 12x12 matrix, that's 479,001,600
traversals. Even if you could manage to perform each traversal in just one
millisecond, it would still take more than 133 hours to perform the entire
traversal. A 20x20 matrix would take 2,432,902,008,176,640,000 operations. At
an optimistic millisecond per operation, that's more than 77 million years.

The Munkres algorithm runs in O(*n*\ ^3) time, rather than O(*n*!). This
package provides an implementation of that algorithm.

This version is based on
http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html.

This version was written for Python by Brian Clapper from the (Ada) algorithm
at the above web site. (The ``Algorithm::Munkres`` Perl version, in CPAN, was
clearly adapted from the same web site.)

Usage
=====

Construct a Munkres object::

 from munkres import Munkres

 m = Munkres()

Then use it to compute the lowest cost assignment from a cost matrix. Here's
a sample program::

 from munkres import Munkres, print_matrix

 matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
 m = Munkres()
 indexes = m.compute(matrix)
 print_matrix(matrix, msg='Lowest cost through this matrix:')
 total = 0
 for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)
 print 'total cost: %d' % total

Running that program produces::

 Lowest cost through this matrix:
 [5, 9, 1]
 [10, 3, 2]
 [8, 7, 4]
 (0, 0) -> 5
 (1, 1) -> 3
 (2, 2) -> 4
 total cost=12

The instantiated Munkres object can be used multiple times on different
matrices.

Non-square Cost Matrices
========================

The Munkres algorithm assumes that the cost matrix is square. However, it's
possible to use a rectangular matrix if you first pad it with 0 values to make
it square. This module automatically pads rectangular cost matrices to make
them square.

Notes:

- The module operates on a *copy* of the caller's matrix, so any padding will
 not be seen by the caller.
- The cost matrix must be rectangular or square. An irregular matrix will
 not work.

Calculating Profit, Rather than Cost
====================================

The cost matrix is just that: A cost matrix. The Munkres algorithm finds
the combination of elements (one from each row and column) that results in
the smallest cost. It's also possible to use the algorithm to maximize
profit. To do that, however, you have to convert your profit matrix to a
cost matrix. The simplest way to do that is to subtract all elements from a
large value. For example::

 from munkres import Munkres, print_matrix

 matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
 cost_matrix = []
 for row in matrix:
 cost_row = []
 for col in row:
 cost_row += [sys.maxint - col]
 cost_matrix += [cost_row]

 m = Munkres()
 indexes = m.compute(cost_matrix)
 print_matrix(matrix, msg='Highest profit through this matrix:')
 total = 0
 for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)

 print 'total profit=%d' % total

Running that program produces::

 Highest profit through this matrix:
 [5, 9, 1]
 [10, 3, 2]
 [8, 7, 4]
 (0, 1) -> 9
 (1, 0) -> 10
 (2, 2) -> 4
 total profit=23

The ``munkres`` module provides a convenience method for creating a cost
matrix from a profit matrix. Since it doesn't know whether the matrix contains
floating point numbers, decimals, or integers, you have to provide the
conversion function; but the convenience method takes care of the actual
creation of the cost matrix::

 import munkres

 cost_matrix = munkres.make_cost_matrix(matrix,
 lambda cost: sys.maxint - cost)

So, the above profit-calculation program can be recast as::

 from munkres import Munkres, print_matrix, make_cost_matrix

 matrix = [[5, 9, 1],
 [10, 3, 2],
 [8, 7, 4]]
 cost_matrix = make_cost_matrix(matrix, lambda cost: sys.maxint - cost)
 m = Munkres()
 indexes = m.compute(cost_matrix)
 print_matrix(matrix, msg='Lowest cost through this matrix:')
 total = 0
 for row, column in indexes:
 value = matrix[row][column]
 total += value
 print '(%d, %d) -> %d' % (row, column, value)
 print 'total profit=%d' % total

References
==========

1. http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html

2. Harold W. Kuhn. The Hungarian Method for the assignment problem.
 Naval Research Logistics Quarterly, 2:83-97, 1955.

3. Harold W. Kuhn. Variants of the Hungarian method for assignment
 problems. *Naval Research Logistics Quarterly*, 3: 253-258, 1956.

4. Munkres, J. Algorithms for the Assignment and Transportation Problems.
 Journal of the Society of Industrial and Applied Mathematics,
 5(1):32-38, March, 1957.

5. http://en.wikipedia.org/wiki/Hungarian_algorithm

Copyright and License
=====================

This software is released under a BSD license, adapted from
<http://opensource.org/licenses/bsd-license.php>

Copyright (c) 2008 Brian M. Clapper
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* Neither the name "clapper.org" nor the names of its contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""

__docformat__ = 'restructuredtext'

Imports

import sys

Exports

__all__ = ['Munkres', 'make_cost_matrix']

Globals

Info about the module
__version__ = "1.0.5.4"
__author__ = "Brian Clapper, bmc@clapper.org"
__url__ = "http://software.clapper.org/munkres/"
__copyright__ = "(c) 2008 Brian M. Clapper"
__license__ = "BSD-style license"

Classes

[docs]class Munkres:
 """
 Calculate the Munkres solution to the classical assignment problem.
 See the module documentation for usage.
 """

 def __init__(self):
 """Create a new instance"""
 self.C = None
 self.row_covered = []
 self.col_covered = []
 self.n = 0
 self.Z0_r = 0
 self.Z0_c = 0
 self.marked = None
 self.path = None

[docs] def make_cost_matrix(profit_matrix, inversion_function):
 """
 DEPRECATED

 Please use the module function ``make_cost_matrix()``.
 """
 import munkres
 return munkres.make_cost_matrix(profit_matrix, inversion_function)

 make_cost_matrix = staticmethod(make_cost_matrix)

[docs] def pad_matrix(self, matrix, pad_value=0):
 """
 Pad a possibly non-square matrix to make it square.

 :Parameters:
 matrix : list of lists
 matrix to pad

 pad_value : int
 value to use to pad the matrix

 :rtype: list of lists
 :return: a new, possibly padded, matrix
 """
 max_columns = 0
 total_rows = len(matrix)

 for row in matrix:
 max_columns = max(max_columns, len(row))

 total_rows = max(max_columns, total_rows)

 new_matrix = []
 for row in matrix:
 row_len = len(row)
 new_row = row[:]
 if total_rows > row_len:
 # Row too short. Pad it.
 new_row += [0] * (total_rows - row_len)
 new_matrix += [new_row]

 while len(new_matrix) < total_rows:
 new_matrix += [[0] * total_rows]

 return new_matrix

[docs] def compute(self, cost_matrix):
 """
 Compute the indexes for the lowest-cost pairings between rows and
 columns in the database. Returns a list of (row, column) tuples
 that can be used to traverse the matrix.

 :Parameters:
 cost_matrix : list of lists
 The cost matrix. If this cost matrix is not square, it
 will be padded with zeros, via a call to ``pad_matrix()``.
 (This method does *not* modify the caller's matrix. It
 operates on a copy of the matrix.)

 WARNING: This code handles square and rectangular
 matrices. It does *not* handle irregular matrices.

 :rtype: list
 :return: A list of ``(row, column)`` tuples that describe the lowest
 cost path through the matrix

 """
 self.C = self.pad_matrix(cost_matrix)
 self.n = len(self.C)
 self.original_length = len(cost_matrix)
 self.original_width = len(cost_matrix[0])
 self.row_covered = [False for i in range(self.n)]
 self.col_covered = [False for i in range(self.n)]
 self.Z0_r = 0
 self.Z0_c = 0
 self.path = self.__make_matrix(self.n * 2, 0)
 self.marked = self.__make_matrix(self.n, 0)

 done = False
 step = 1

 steps = { 1 : self.__step1,
 2 : self.__step2,
 3 : self.__step3,
 4 : self.__step4,
 5 : self.__step5,
 6 : self.__step6 }

 while not done:
 try:
 func = steps[step]
 step = func()
 except KeyError:
 done = True

 # Look for the starred columns
 results = []
 for i in range(self.original_length):
 for j in range(self.original_width):
 if self.marked[i][j] == 1:
 results += [(i, j)]

 return results

 def __copy_matrix(self, matrix):
 """Return an exact copy of the supplied matrix"""
 return copy.deepcopy(matrix)

 def __make_matrix(self, n, val):
 """Create an *n*x*n* matrix, populating it with the specific value."""
 matrix = []
 for i in range(n):
 matrix += [[val for j in range(n)]]
 return matrix

 def __step1(self):
 """
 For each row of the matrix, find the smallest element and
 subtract it from every element in its row. Go to Step 2.
 """
 C = self.C
 n = self.n
 for i in range(n):
 minval = min(self.C[i])
 # Find the minimum value for this row and subtract that minimum
 # from every element in the row.
 for j in range(n):
 self.C[i][j] -= minval

 return 2

 def __step2(self):
 """
 Find a zero (Z) in the resulting matrix. If there is no starred
 zero in its row or column, star Z. Repeat for each element in the
 matrix. Go to Step 3.
 """
 n = self.n
 for i in range(n):
 for j in range(n):
 if (self.C[i][j] == 0) and \
 (not self.col_covered[j]) and \
 (not self.row_covered[i]):
 self.marked[i][j] = 1
 self.col_covered[j] = True
 self.row_covered[i] = True

 self.__clear_covers()
 return 3

 def __step3(self):
 """
 Cover each column containing a starred zero. If K columns are
 covered, the starred zeros describe a complete set of unique
 assignments. In this case, Go to DONE, otherwise, Go to Step 4.
 """
 n = self.n
 count = 0
 for i in range(n):
 for j in range(n):
 if self.marked[i][j] == 1:
 self.col_covered[j] = True
 count += 1

 if count >= n:
 step = 7 # done
 else:
 step = 4

 return step

 def __step4(self):
 """
 Find a noncovered zero and prime it. If there is no starred zero
 in the row containing this primed zero, Go to Step 5. Otherwise,
 cover this row and uncover the column containing the starred
 zero. Continue in this manner until there are no uncovered zeros
 left. Save the smallest uncovered value and Go to Step 6.
 """
 step = 0
 done = False
 row = -1
 col = -1
 star_col = -1
 while not done:
 (row, col) = self.__find_a_zero()
 if row < 0:
 done = True
 step = 6
 else:
 self.marked[row][col] = 2
 star_col = self.__find_star_in_row(row)
 if star_col >= 0:
 col = star_col
 self.row_covered[row] = True
 self.col_covered[col] = False
 else:
 done = True
 self.Z0_r = row
 self.Z0_c = col
 step = 5

 return step

 def __step5(self):
 """
 Construct a series of alternating primed and starred zeros as
 follows. Let Z0 represent the uncovered primed zero found in Step 4.
 Let Z1 denote the starred zero in the column of Z0 (if any).
 Let Z2 denote the primed zero in the row of Z1 (there will always
 be one). Continue until the series terminates at a primed zero
 that has no starred zero in its column. Unstar each starred zero
 of the series, star each primed zero of the series, erase all
 primes and uncover every line in the matrix. Return to Step 3
 """
 count = 0
 path = self.path
 path[count][0] = self.Z0_r
 path[count][1] = self.Z0_c
 done = False
 while not done:
 row = self.__find_star_in_col(path[count][1])
 if row >= 0:
 count += 1
 path[count][0] = row
 path[count][1] = path[count-1][1]
 else:
 done = True

 if not done:
 col = self.__find_prime_in_row(path[count][0])
 count += 1
 path[count][0] = path[count-1][0]
 path[count][1] = col

 self.__convert_path(path, count)
 self.__clear_covers()
 self.__erase_primes()
 return 3

 def __step6(self):
 """
 Add the value found in Step 4 to every element of each covered
 row, and subtract it from every element of each uncovered column.
 Return to Step 4 without altering any stars, primes, or covered
 lines.
 """
 minval = self.__find_smallest()
 for i in range(self.n):
 for j in range(self.n):
 if self.row_covered[i]:
 self.C[i][j] += minval
 if not self.col_covered[j]:
 self.C[i][j] -= minval
 return 4

 def __find_smallest(self):
 """Find the smallest uncovered value in the matrix."""
 minval = sys.maxint
 for i in range(self.n):
 for j in range(self.n):
 if (not self.row_covered[i]) and (not self.col_covered[j]):
 if minval > self.C[i][j]:
 minval = self.C[i][j]
 return minval

 def __find_a_zero(self):
 """Find the first uncovered element with value 0"""
 row = -1
 col = -1
 i = 0
 n = self.n
 done = False

 while not done:
 j = 0
 while True:
 if (self.C[i][j] == 0) and \
 (not self.row_covered[i]) and \
 (not self.col_covered[j]):
 row = i
 col = j
 done = True
 j += 1
 if j >= n:
 break
 i += 1
 if i >= n:
 done = True

 return (row, col)

 def __find_star_in_row(self, row):
 """
 Find the first starred element in the specified row. Returns
 the column index, or -1 if no starred element was found.
 """
 col = -1
 for j in range(self.n):
 if self.marked[row][j] == 1:
 col = j
 break

 return col

 def __find_star_in_col(self, col):
 """
 Find the first starred element in the specified row. Returns
 the row index, or -1 if no starred element was found.
 """
 row = -1
 for i in range(self.n):
 if self.marked[i][col] == 1:
 row = i
 break

 return row

 def __find_prime_in_row(self, row):
 """
 Find the first prime element in the specified row. Returns
 the column index, or -1 if no starred element was found.
 """
 col = -1
 for j in range(self.n):
 if self.marked[row][j] == 2:
 col = j
 break

 return col

 def __convert_path(self, path, count):
 for i in range(count+1):
 if self.marked[path[i][0]][path[i][1]] == 1:
 self.marked[path[i][0]][path[i][1]] = 0
 else:
 self.marked[path[i][0]][path[i][1]] = 1

 def __clear_covers(self):
 """Clear all covered matrix cells"""
 for i in range(self.n):
 self.row_covered[i] = False
 self.col_covered[i] = False

 def __erase_primes(self):
 """Erase all prime markings"""
 for i in range(self.n):
 for j in range(self.n):
 if self.marked[i][j] == 2:
 self.marked[i][j] = 0

Functions

[docs]def make_cost_matrix(profit_matrix, inversion_function):
 """
 Create a cost matrix from a profit matrix by calling
 'inversion_function' to invert each value. The inversion
 function must take one numeric argument (of any type) and return
 another numeric argument which is presumed to be the cost inverse
 of the original profit.

 This is a static method. Call it like this:

 .. python::

 cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func)

 For example:

 .. python::

 cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxint - x)

 :Parameters:
 profit_matrix : list of lists
 The matrix to convert from a profit to a cost matrix

 inversion_function : function
 The function to use to invert each entry in the profit matrix

 :rtype: list of lists
 :return: The converted matrix
 """
 cost_matrix = []
 for row in profit_matrix:
 cost_matrix.append([inversion_function(value) for value in row])
 return cost_matrix

def print_matrix(matrix, msg=None):
 """
 Convenience function: Displays the contents of a matrix of integers.

 :Parameters:
 matrix : list of lists
 Matrix to print

 msg : str
 Optional message to print before displaying the matrix
 """
 import math

 if msg is not None:
 print msg

 # Calculate the appropriate format width.
 width = 0
 for row in matrix:
 for val in row:
 width = max(width, int(math.log10(val)) + 1)

 # Make the format string
 format = '%%%dd' % width

 # Print the matrix
 for row in matrix:
 sep = '['
 for val in row:
 sys.stdout.write(sep + format % val)
 sep = ', '
 sys.stdout.write(']\n')

Main

if __name__ == '__main__':

 matrices = [
 # Square
 ([[400, 150, 400],
 [400, 450, 600],
 [300, 225, 300]],
 850 # expected cost
),

 # Rectangular variant
 ([[400, 150, 400, 1],
 [400, 450, 600, 2],
 [300, 225, 300, 3]],
 452 # expected cost
),

 # Square
 ([[10, 10, 8],
 [9, 8, 1],
 [9, 7, 4]],
 18
),

 # Rectangular variant
 ([[10, 10, 8, 11],
 [9, 8, 1, 1],
 [9, 7, 4, 10]],
 15
),
]

 m = Munkres()
 for cost_matrix, expected_total in matrices:
 print_matrix(cost_matrix, msg='cost matrix')
 indexes = m.compute(cost_matrix)
 total_cost = 0
 for r, c in indexes:
 x = cost_matrix[r][c]
 total_cost += x
 print '(%d, %d) -> %d' % (r, c, x)
 print 'lowest cost=%d' % total_cost
 assert expected_total == total_cost

 © Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Domination Game 1.6.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Thomas van den Berg and Tim Doolan.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

