

iotagent-mosca

[image: License badge] [https://opensource.org/licenses/GPL-3.0] [image: Docker badge] [https://hub.docker.com/r/dojot/iotagent-mosca/] [image: Travis badge] [https://travis-ci.org/dojot/iotagent-mosca#]

IoT agents are responsible for receiving messages from physical devices
(directly or through a gateway) and sending them commands in order to configure
them. This iotagent-mosca, in particular, receives messages via MQTT with JSON
payloads.

Contents:

	Concepts
	MQTT

	Kafka

	Operation
	Configuration

	Receiving messages from DeviceManager via Kafka

	Sending messages to other components via Kafka

	Receiving messages from devices via MQTT

	How to build/update/translate documentation
	Build

	Update workflow

How does it work

iotagent-mosca depends on a Kafka broker, so that it can receive messages
informing it about new devices (and, in extension, about their updates and
removals). It listens to device management topics on Kafka and for MQTT
messages using its internal broker implemented by Mosca library. For more
information about the internals of this mechanism, check iotagent-nodejs [https://github.com/dojot/iotagent-nodejs]
documentation.

How to build

As this is a npm-based project, building it is as simple as

npm install

And that’s all.

How to run

As simple as:

node index.js

Remember that you should already have a Kafka node (with a zookeeper instance).

How do I know if it is working properly?

Simply put: you won’t. In fact you can implement a simple Kafka publisher to
emulate the behaviour of a device manager instance and a listener to check what
messages it is generating. But it seems easier to get the real components -
they are not that hard to start and to use (given that you use dojot’s
docker-compose [https://github.com/dojot/docker-compose]). Check also DeviceManager documentation [http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/] for further
information about how to create a new device.

Concepts

MQTT

MQTT is a somewhat simple protocol: it follows a publish/subscriber paradigm
and messages are exchanged using topics. These topics are simple strings such
as /admin/cafe/attrs. A publisher can, well, publish messages by sending
them to a MQTT broker using a particular topic and all the subscribers that are
listening to that topic will receive a copy of the message.

Subscribers can listen not only to specific topics, but also to topics with
wildcards. For instance, one could use a ‘+’ to indicate that any token will
match the subscribed topic, such as /admin/+/attrs - messages sent to both
/admin/cafe/attrs and /admin/4593/attrs, for instance, will be received
by this subscriber. Another possibility is to create a subscription to all
remainder tokens in the topic, such as /admin/#. All messages sent to
topics beginning with /admin/ will be received by this subscriber.

Kafka

Kafka is, in fact, a project from the Apache Foundation [https://kafka.apache.org]. It is a messaging
system that is similar to MQTT in the sense that both are based on
publisher/subscriber. Kafka is way more complex and robust - it deals with
multiple subscribers belonging to the same group (and performs load-balancing
between them), stores and replays messages, and so on. The side effect is that
its clients are not that simple, which could be a heavy burden for tiny
devices.

Operation

Configuration

iotagent-mosca configuration is pretty simple. These are the environment
variables used by it:

	BACKEND_HOST, BACKEND_PORT: redis host and port to be used.

Receiving messages from DeviceManager via Kafka

Messages containing device operations should be in this format:

{
 "event": "create",
 "meta": {
 "service": "admin"
 },
 "data": {
 "id": "cafe",
 "attrs" : {

 }
 }
}

These messages are related to device creation, update, removal and actuation.
For creation and update operations, it contains the device data model
to be added or updated. For removal operation, it will contain only the device
ID being removed. The actuation operation will contain all attributes previously
created with their respective values.

The documentation related to this message can be found in DeviceManager
Messages [http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/kafka-messages.html].

Device configuration for iotagent-mosca

The following device attributes are considered by iotagent-mosca. All these
attributes are of meta type.

Table 1 Device attributes for iotagent-mosca

	Attribute

	Description

	Example

	topic

	Topic to which the device will publish messages.

	/admin/efac/attrs

Example

The following message serves as an example of a device with all attributes used
by iotagent-mosca.

{
 "label": "Thermometer Template",
 "attrs": [
 {
 "label": "topic",
 "type": "meta",
 "value_type": "string",
 "static_value": "/agent/main/000BABC80F4A/devinfo"
 },
 {
 "label": "temperature",
 "type": "dynamic",
 "value_type": "float"
 },
 {
 "label": "reset",
 "type": "actuator",
 "value_type": "boolean"
 }
]
}

Sending messages to other components via Kafka

When iotagent-mosca receives a new message from a particular device, it must
publish the new data to other components. The default subject used to publish
this information is “device-data”. Check data-broker [https://github.com/dojot/data-broker] documentation to check
how these subjects are translated into Kafka topics.

The message sent by iotagent-mosca is like this one:

{
 "metadata": {
 "deviceid": "c6ea4b",
 "tenant": "admin",
 "timestamp": 1528226137452
 },
 "attrs": {
 "humidity": 60
 }
}

Receiving messages from devices via MQTT

Any message payload sent to iotagent-mosca must be in JSON format. Preferably,
they should follow a simple key-value structure, such as:

{
 "speed": 100.0,
 "weight": 50.2,
 "id": "truck-001"
}

If more than one device is supposed to use the same topic, you should set the
client ID in all messages sent by devices. Its value should be service:ID,
such as admin:efac.

Should the device send its messages using any other JSON scheme, the user could
translate them into simple key-value structures using flows, using flowbuilder
for that.

Example

This example uses mosquitto_pub tool, available with mosquitto_clients
package. To send a message to iotagent-mosca via MQTT, just execute this
command:

mosquitto_pub -h localhost -i "admin:efac" -t /device/data -m '{"temperature" : 10}'

This command will send the message containing one value for attribute
speed. The device ID is efac and its service is “admin”. -t flag
sets the topic to which this message will be published and -i sets the
client ID to be sent.

This command assumes that you are running iotagent-mosca in your machine (it
also works if you use dojot’s docker-compose [https://github.com/dojot/docker-compose]).

How to build/update/translate documentation

If you have a local clone of this repository and you want to change the
documentation, then you should follow this simple guide.

Build

The readable version of this documentation can be generated by means of
sphinx. In order to do so, please follow the steps below. Those are
actually based off ReadTheDocs documentation [https://docs.readthedocs.io/en/latest/getting_started.html].

pip install sphinx sphinx-autobuild sphinx_rtd_theme sphinx-intl
make html

For that to work, you must have pip installed on the machine used to
build the documentation. To install pip on an Ubuntu machine:

sudo apt-get install python-pip

To build the documentation in Brazilian Portuguese language, run the
following extra commands:

sphinx-intl -c conf.py build -d locale
make html BUILDDIR=build/html-pt_BR O='-d build/doctrees/ -D language=pt_BR'

Update workflow

To update the documentation, follow the steps below:

	Update the source files for the english version

	Extract translatable messages from the english version

make gettext

	Update the message catalog (PO Files) for pt_BR language

sphinx-intl -c conf.py update -p build/gettext -l pt_BR

	Translate the messages in the pt_BR language PO files

This workflow is based on the Sphinx i18n guide [http://www.sphinx-doc.org/en/stable/intl.html].

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 iotagent-mosca

 		
 Concepts

 		
 MQTT

 		
 Kafka

 		
 Operation

 		
 Configuration

 		
 Receiving messages from DeviceManager via Kafka

 		
 Device configuration for iotagent-mosca

 		
 Sending messages to other components via Kafka

 		
 Receiving messages from devices via MQTT

 		
 Example

 		
 How to build/update/translate documentation

 		
 Build

 		
 Update workflow

_static/up.png

