
python-docx-template Documentation
Release 0.9.x

Eric Lapouyade

May 08, 2023

Contents

1 Introduction 3

2 Jinja2-like syntax 5
2.1 Restrictions . 5
2.2 Extensions . 5

3 RichText 9
3.1 Hyperlink with RichText . 9

4 Inline image 11

5 Sub-documents 13

6 Escaping 15

7 Replace docx pictures 17

8 Replace docx medias 19

9 Replace embedded objects 21

10 Get Defined Variables 23

11 Multiple rendering 25

12 Microsoft Word 2016 special cases 27

13 Jinja custom filters 29

14 Command-line execution 31

15 Examples 33

16 Share 35

17 Indices and tables 37

i

ii

python-docx-template Documentation, Release 0.9.x

Quickstart

To install using pip:

pip install docxtpl

or using conda:

conda install docxtpl --channel conda-forge

Usage:

from docxtpl import DocxTemplate

doc = DocxTemplate("my_word_template.docx")
context = { 'company_name' : "World company" }
doc.render(context)
doc.save("generated_doc.docx")

Contents 1

python-docx-template Documentation, Release 0.9.x

2 Contents

CHAPTER 1

Introduction

This package uses 2 major packages :

• python-docx for reading, writing and creating sub documents

• jinja2 for managing tags inserted into the template docx

python-docx-template has been created because python-docx is powerful for creating documents but not for modifying
them.

The idea is to begin to create an example of the document you want to generate with microsoft word, it can be as
complex as you want : pictures, index tables, footer, header, variables, anything you can do with word. Then, as you
are still editing the document with microsoft word, you insert jinja2-like tags directly in the document. You save the
document as a .docx file (xml format) : it will be your .docx template file.

Now you can use python-docx-template to generate as many word documents you want from this .docx template and
context variables you will associate.

3

python-docx-template Documentation, Release 0.9.x

4 Chapter 1. Introduction

CHAPTER 2

Jinja2-like syntax

As the Jinja2 package is used, one can use all jinja2 tags and filters inside the word document. Nevertheless there are
some restrictions and extensions to make it work inside a word document:

2.1 Restrictions

The usual jinja2 tags, are only to be used inside the same run of a same paragraph, it can not be used across several
paragraphs, table rows, runs. If you want to manage paragraphs, table rows and a whole run with its style, you must
use special tag syntax as explained in next chapter.

Note:

a ‘run’ for Microsoft Word is a sequence of characters with the same style. For example, if you create a paragraph
with all characters of the same style, MS Word will create internally only one ‘run’ in the paragraph. Now, if you put
in bold a text in the middle of this paragraph, word will transform the previous ‘run’ into 3 different ‘runs’ (normal -
bold - normal).

2.2 Extensions

2.2.1 Tags

In order to manage paragraphs, table rows, table columns, runs, special syntax has to be used:

{%p jinja2_tag %} for paragraphs
{%tr jinja2_tag %} for table rows
{%tc jinja2_tag %} for table columns
{%r jinja2_tag %} for runs

By using these tags, python-docx-template will take care to put the real jinja2 tags (without the p, tr, tc or r) at the
right place into the document’s xml source code. In addition, these tags also tell python-docx-template to remove the
paragraph, table row, table column or run where the tags are located.

5

python-docx-template Documentation, Release 0.9.x

For example, if you have this kind of template:

{%p if display_paragraph %}
One or many paragraphs
{%p endif %}

The first and last paragraphs (those containing {%p ... %} tags) will never appear in generated docx, regardless of
the display_paragraph value.

Here only:

One or many paragraphs

will appear in generated docx if display_paragraph is True, otherwise, no paragraph at all are displayed.

IMPORTANT : Always put space after a starting tag delimiter and a space before the ending one :

Avoid:

{%if something%}
{%pif display_paragraph%}

Use instead:

{% if something %}
{%p if display_paragraph %}

IMPORTANT : Do not use {%p, {%tr, {%tc or {%r twice in the same paragraph, row, column or run. Example :

Do not use this:

{%p if display_paragraph %}Here is my paragraph {%p endif %}

But use this instead in your docx template:

{%p if display_paragraph %}
Here is my paragraph
{%p endif %}

This syntax is possible because MS Word considers each line as a new paragraph (if you do not use SHIFT-RETURN).

2.2.2 Display variables

As part of jinja2, one can used double braces:

{{ <var> }}

if <var> is a string, \n, \a, \t and \f will be translated respectively into newlines, new paragraphs, tabs and page
breaks

But if <var> is a RichText object, you must specify that you are changing the actual ‘run’:

{{r <var> }}

Note the r right after the opening braces.

VERY IMPORTANT : Variables must not contains characters like <, > and & unless using Escaping

IMPORTANT : Always put space after a starting var delimiter and a space before the ending one :

6 Chapter 2. Jinja2-like syntax

python-docx-template Documentation, Release 0.9.x

Avoid:

{{myvariable}}
{{rmyrichtext}}

Use instead:

{{ myvariable }}
{{r myrichtext }}

2.2.3 Comments

You can add jinja-like comments in your template:

{#p this is a comment as a paragraph #}
{#tr this is a comment as a table row #}
{#tc this is a comment as a table cell #}

See tests/templates/comments_tpl.docx for an example.

2.2.4 Split and merge text

• You can merge a jinja2 tag with previous line by using {%-

• You can merge a jinja2 tag with next line by using -%}

A text containing Jinja2 tags may be unreadable if too long:

My house is located {% if living_in_town %} in urban area {% else %} in countryside {
→˓% endif %} and I love it.

One can use ENTER or SHIFT+ENTER to split a text like below, then use {%- and -%} to tell docxtpl to merge the
whole thing:

My house is located
{%- if living_in_town -%}
in urban area

{%- else -%}
in countryside

{%- endif -%}
and I love it.

IMPORTANT : Use an unbreakable space (CTRL+SHIFT+SPACE) when a space is wanted at line beginning or
ending.

IMPORTANT 2 : {%- xxx -%} tags must be alone in a line : do not add some text before or after on the same
line.

2.2.5 Escaping delimiters

In order to display {%, %}, {{ or }}, one can use:

{_%, %_}, {_{ or }_}

2.2. Extensions 7

python-docx-template Documentation, Release 0.9.x

2.2.6 Tables

Spanning

You can span table cells horizontally in two ways, by using colspan tag (see tests/dynamic_table.py):

{% colspan <var> %}

<var> must contain an integer for the number of columns to span. See tests/test_files/dynamic_table.py for an exam-
ple.

You can also span horizontally within a for loop (see tests/horizontal_merge.py):

{% hm %}

You can also merge cells vertically within a for loop (see tests/vertical_merge.py):

{% vm %}

Cell color

There is a special case when you want to change the background color of a table cell, you must put the following tag
at the very beginning of the cell:

{% cellbg <var> %}

<var> must contain the color’s hexadecimal code without the hash sign

8 Chapter 2. Jinja2-like syntax

CHAPTER 3

RichText

When you use {{ <var> }} tag in your template, it will be replaced by the string contained within var variable.
BUT it will keep the current style. If you want to add dynamically changeable style, you have to use both : the {{r
<var> }} tag AND a RichText object within var variable. You can change color, bold, italic, size, font and
so on, but the best way is to use Microsoft Word to define your own character style (Home tab -> modify style ->
manage style button -> New style, select ‘Character style’ in the form), see example in tests/richtext.py Instead of
using RichText(), one can use its shortcut : R()

The RichText() or R() offers newline, new paragraph, and page break features : just use \n, \a, \t or \f in the
text, they will be converted accordingly.

There is a specific case for font: if your font is not displayed correctly, it may be because it is defined only for a region.
To know your region, it requires a little work by analyzing the document.xml inside the docx template (this is a zip
file). To specify a region, you have to prefix your font name this that region and a column:

ch = RichText('TEST', font='eastAsia:')

Important : When you use {{r }} it removes the current character styling from your docx template, this means that
if you do not specify a style in RichText(), the style will go back to a microsoft word default style. This will affect
only character styles, not the paragraph styles (MSWord manages this 2 kind of styles).

IMPORTANT : Do not use 2 times {{r in the same run. Use RichText.add() method to concatenate several strings
and styles at python side and only one {{r at template side.

Important : RichText objects are rendered into xml before any filter is applied thus RichText are not compatible
with Jinja2 filters. You cannot write in your template something like {{r <var>|lower }}. Only solution is
instead to do any filtering into your python code when creating the RichText object.

3.1 Hyperlink with RichText

You can add an hyperlink to a text by using a Richtext with this syntax:

9

python-docx-template Documentation, Release 0.9.x

tpl=DocxTemplate('your_template.docx')
rt = RichText('You can add an hyperlink, here to ')
rt.add('google',url_id=tpl.build_url_id('http://google.com'))

Put rt in your context, then use {{r rt}} in your template

10 Chapter 3. RichText

CHAPTER 4

Inline image

You can dynamically add one or many images into your document (tested with JPEG and PNG files). just add {{
<var> }} tag in your template where <var> is an instance of doxtpl.InlineImage:

myimage = InlineImage(tpl, image_descriptor='test_files/python_logo.png',
→˓width=Mm(20), height=Mm(10))

You just have to specify the template object, the image file path and optionally width and/or height. For height and
width you have to use millimeters (Mm), inches (Inches) or points(Pt) class. Please see tests/inline_image.py for an
example.

11

python-docx-template Documentation, Release 0.9.x

12 Chapter 4. Inline image

CHAPTER 5

Sub-documents

A template variable can contain a complex subdoc object and be built from scratch using python-docx document
methods. To do so, first, get the sub-document object from your template object, then use it by treating it as a python-
docx document object. See example in tests/subdoc.py.

Since docxtpl V0.12.0, it is now possible to merge an existing .docx as a subdoc, just specify its path when calling
method new_subdoc()

tpl = DocxTemplate('templates/merge_docx_master_tpl.docx')
sd = tpl.new_subdoc('templates/merge_docx_subdoc.docx')

See tests/merge_docx.py for full code.

13

python-docx-template Documentation, Release 0.9.x

14 Chapter 5. Sub-documents

CHAPTER 6

Escaping

By default, no escaping is done : read carefully this chapter if you want to avoid crashes during docx generation.

When you use a {{ <var> }}, under the hood, you are modifying an XML word document, this means you cannot
use all chars, especially <, > and &. In order to use them, you must escape them. There are 4 ways :

• context = { 'var':R('my text') } and {{r <var> }} in the template (note the r),

• context = { 'var':'my text'} and {{ <var>|e }} in your word template

• context = { 'var':escape('my text')} and {{ <var> }} in the template.

• enable autoescaping when calling render method: tpl.render(context, autoescape=True) (de-
fault is autoescape=False)

See tests/escape.py example for more informations.

Another solution, if you want to include a listing into your document, that is to escape the text and manage \n, \a,
and \f you can use the Listing class :

in your python code:

context = { 'mylisting':Listing('the listing\nwith\nsome\nlines \a and some paragraph
→˓\a and special chars : <>&') }

in your docx template just use {{ mylisting }}

With Listing(), you will keep the current character styling (except after a \a as you start a new paragraph).

15

python-docx-template Documentation, Release 0.9.x

16 Chapter 6. Escaping

CHAPTER 7

Replace docx pictures

It is not possible to dynamically add images in header/footer, but you can change them. The idea is to put a dummy
picture in your template, render the template as usual, then replace the dummy picture with another one. You can do
that for all medias at the same time. Note: the aspect ratio will be the same as the replaced image Note2 : Specify the
filename that has been used to insert the image in the docx template (only its basename, not the full path)

Syntax to replace dummy_header_pic.jpg:

tpl.replace_pic('dummy_header_pic.jpg','header_pic_i_want.jpg')

The replacement occurs in headers, footers and the whole document’s body.

17

python-docx-template Documentation, Release 0.9.x

18 Chapter 7. Replace docx pictures

CHAPTER 8

Replace docx medias

It is not possible to dynamically add other medias than images in header/footer, but you can change them. The idea is
to put a dummy media in your template, render the template as usual, then replace the dummy media with another one.
You can do that for all medias at the same time. Note: for images, the aspect ratio will be the same as the replaced
image Note2 : it is important to have the source media files as they are required to calculate their CRC to find them in
the docx. (dummy file name is not important)

Syntax to replace dummy_header_pic.jpg:

tpl.replace_media('dummy_header_pic.jpg','header_pic_i_want.jpg')

WARNING : unlike replace_pic() method, dummy_header_pic.jpg MUST exist in the template directory when ren-
dering and saving the generated docx. It must be the same file as the one inserted manually in the docx template. The
replacement occurs in headers, footers and the whole document’s body.

19

python-docx-template Documentation, Release 0.9.x

20 Chapter 8. Replace docx medias

CHAPTER 9

Replace embedded objects

It works like medias replacement, except it is for embedded objects like embedded docx.

Syntax to replace embedded_dummy.docx:

tpl.replace_embedded('embedded_dummy.docx','embedded_docx_i_want.docx')

WARNING : unlike replace_pic() method, embedded_dummy.docx MUST exist in the template directory when ren-
dering and saving the generated docx. It must be the same file as the one inserted manually in the docx template. The
replacement occurs in headers, footers and the whole document’s body.

Note that replace_embedded() may not work on other documents than embedded docx. Instead, you should use
zipname replacement:

tpl.replace_zipname(
'word/embeddings/Feuille_Microsoft_Office_Excel1.xlsx',
'my_excel_file.xlsx')

The zipname is the one you can find when you open docx with WinZip, 7zip (Windows) or unzip -l (Linux). The
zipname starts with “word/embeddings/”. Note that the file to be replaced is renamed by MSWord, so you have to
guess a little bit. . .

This works for embedded MSWord file like Excel or PowerPoint file, but won’t work for others like PDF, Python or
even Text files : For these ones, MSWord generate an oleObjectNNN.bin file which is no use to be replaced as it is
encoded.

21

python-docx-template Documentation, Release 0.9.x

22 Chapter 9. Replace embedded objects

CHAPTER 10

Get Defined Variables

In order to get the missing variables after rendering use

tpl=DocxTemplate('your_template.docx')
tpl.render(context_dict)
set_of_variables = tpl.get_undeclared_template_variables()

IMPORTANT : You may use the method before rendering to get a set of keys you need, e.g. to be prompted to a user
or written in a file for manual processing.

23

python-docx-template Documentation, Release 0.9.x

24 Chapter 10. Get Defined Variables

CHAPTER 11

Multiple rendering

Since v0.15.0, it is possible to create DocxTemplate object once and call render(context) several times.
Note that if you want to use replacement methods like replace_media(), replace_embedded() and/or
replace_zipname() during multiple rendering, you will have to call reset_replacements() at rendering
loop start.

25

python-docx-template Documentation, Release 0.9.x

26 Chapter 11. Multiple rendering

CHAPTER 12

Microsoft Word 2016 special cases

MS Word 2016 will ignore \t tabulations. This is special to that version. Libreoffice or Wordpad do not have this
problem. The same thing occurs for line beginning with a jinja2 tag providing spaces : They will be ignored. To solve
these problem, the solution is to use Richtext:

tpl.render({
'test_space_r' : RichText(' '),
'test_tabs_r': RichText(5*'\t'),

})

And in your template, use the {{r notation:

{{r test_space_r}} Spaces will be preserved
{{r test_tabs_r}} Tabs will be displayed

27

python-docx-template Documentation, Release 0.9.x

28 Chapter 12. Microsoft Word 2016 special cases

CHAPTER 13

Jinja custom filters

render() accepts jinja_env optional argument : you may pass a jinja environment object. By this way you will
be able to add some custom jinja filters:

from docxtpl import DocxTemplate
import jinja2

def multiply_by(value, by):
return value * by

doc = DocxTemplate("my_word_template.docx")
context = { 'price_dollars' : 5.00 }
jinja_env = jinja2.Environment()
jinja_env.filters['multiply_by'] = multiply_by
doc.render(context,jinja_env)
doc.save("generated_doc.docx")

Then in your template, you will be able to use:

Euros price : {{ price_dollars|multiply_by(0.88) }}

29

python-docx-template Documentation, Release 0.9.x

30 Chapter 13. Jinja custom filters

CHAPTER 14

Command-line execution

One can use docxtpl module directly on command line to generate a docx from a template and a json file as a context:

usage: python -m docxtpl [-h] [-o] [-q] template_path json_path output_filename

Make docx file from existing template docx and json data.

positional arguments:
template_path The path to the template docx file.
json_path The path to the json file with the data.
output_filename The filename to save the generated docx.

optional arguments:
-h, --help show this help message and exit
-o, --overwrite If output file already exists, overwrites without asking

for confirmation
-q, --quiet Do not display unnecessary messages

See tests/module_execute.py for an example.

31

python-docx-template Documentation, Release 0.9.x

32 Chapter 14. Command-line execution

CHAPTER 15

Examples

The best way to see how it works is to read examples, they are located in tests/ directory. Docx test templates are in
tests/templates/. To generate final docx files:

cd tests/
python runtests.py

Generated files are located in tests/output directory.

If you are not sure about your python environment, python-docx-template provides Pipfiles for that:

pip install pipenv (if not already done)
cd python-docx-template (where Pipfiles are)
pipenv install --python 3.6 -d
pipenv shell
cd tests/
python runtests.py

33

python-docx-template Documentation, Release 0.9.x

34 Chapter 15. Examples

CHAPTER 16

Share

If you like this project, please rate and share it here : http://rate.re/github/elapouya/python-docx-template

Functions index

Functions documentation

35

http://rate.re/github/elapouya/python-docx-template

python-docx-template Documentation, Release 0.9.x

36 Chapter 16. Share

CHAPTER 17

Indices and tables

• genindex

• modindex

• search

37

	Introduction
	Jinja2-like syntax
	Restrictions
	Extensions

	RichText
	Hyperlink with RichText

	Inline image
	Sub-documents
	Escaping
	Replace docx pictures
	Replace docx medias
	Replace embedded objects
	Get Defined Variables
	Multiple rendering
	Microsoft Word 2016 special cases
	Jinja custom filters
	Command-line execution
	Examples
	Share
	Indices and tables

